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Summary 

We can clearly perceive the location of moving auditory objects in space. However, the 

cortical representation of auditory space, and auditory motion in particular, is not well 

characterized. This work uses a novel linear regression-based framework together with scalp 

recorded electroencephalography (EEG) to study various aspects of spatial hearing in 

humans. 

Previously, it has been shown that the sound position is cortically represented by a 

population of broadly tuned neurons. However, it is unclear how this cortical activity reflects 

the time-varying location of a moving sound. In our first study, we showed that in an acoustic 

scene with one sound source, auditory cortex tracks the time-varying location of a 

continuously moving sound. Specifically, we identified two distinct frequency components, 

namely, delta (0-2Hz) and the alpha power (8-12Hz) of EEG that track the sound location. 

The delta and the power of alpha EEG encoding had different spatio-temporal 

characteristics, which suggested that they potentially reflect different aspects of auditory 

motion processing. Importantly, we also showed that the trajectory tracking is not specific 

to a particular type of spatial acoustic cue and is independent from the well-known sound 

envelope tracking of the cortex. 

In natural settings, we are almost exclusively presented with multiple competing sounds and 

so we typically focus our attention on the relevant source in order to segregate it from the 

competing sources. While many studies have examined this in the context of sound envelope 

tracking by the cortex, it is unclear how we process and utilize spatial information in such 

scenarios. In our second study we created an experiment where subjects listened to two 

concurrent sound stimuli that were moving independently within the horizontal plane and 

were tasked with paying attention to one of them. We showed that the attended sound source 

trajectory can be reliably reconstructed from EEG, even in the presence of other competing 

sources and demonstrated that the trajectory tracking works for noise as well as more 

complex speech stimuli. We also observed weak tracking of the unattended source location 

for the speech stimuli, however, this applied only to delta but not to the alpha power EEG 

component. This further suggests that location tracking by delta and alpha power EEG 

possibly represent different neural mechanisms. Finally, with more practical applications in 

mind, we demonstrated that the trajectory reconstruction approach can be used to decode 

selective attention. 

Following on from our study on multiple moving sounds, we were then interested to study 

how higher orders of motion are processed in the brain. Psychophysical studies have shown 
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that we are sensitive to sound velocity as well as acceleration. Although cortical sensitivity 

to motion has been demonstrated by contrasting static and moving sounds, it is unclear to 

which particular aspects of motion neurons are sensitive. This has been tested in our third 

study, where we investigated cortical sensitivity to varying position, velocity, speed and 

acceleration. We found that sound speed but not velocity can be reconstructed from EEG 

independently from sound position. Surprisingly, our results also indicated that sound 

acceleration might be independently represented at the cortical level, which has not been 

reported before. 

Finally, in the last study, we deployed our reconstruction method in a naturalistic scenario 

where subjects were allowed to move their heads and received visual input over a virtual 

reality headset. We were primarily interested in whether sound location is cortically encoded 

using cranio- or allo-centric coordinates. Although our initial analysis indicated a cranio-

centric representation of sound location, we were not able to reconstruct the trajectory from 

EEG after we removed the head motion-related artefacts. Therefore, we were unable to find 

strong evidence for cortical encoding in either frame of reference. Our secondary goal was 

to test the feasibility of using the Oculus Rift headset together with EEG recording. Although 

we found it is possible to use this setup, we have encountered several practical issues, such 

as subject discomfort during longer recordings that need to be addressed.  

Here in this thesis we demonstrated that the stimulus reconstruction framework can be used 

to study human spatial hearing. Using this framework that enables relating a continuous 

representation of stimulus spatial properties to un-epoched and un-averaged EEG data, we 

have addressed several important questions related to the dynamics of cortical spatial 

encoding and the neural representation of sound motion. Moreover, we hope that this work 

will help future studies on sound localization to employ a wider variety of sound stimuli and 

to create more naturalistic acoustic scenarios.  
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 Introduction 

1.1. Background 

Spatial hearing, the ability to localize sounds in the environment, is crucial in our everyday 

life. This applies particularly to moving sources, which from an evolutionary perspective, 

often present a potential threat. For example, spatial hearing is important for detecting a 

predator moving within the bushes, and in modern life, realising a car is approaching so that 

we can avoid collision or localizing a mosquito that is buzzing around our bed during the 

night so that we can swat it.  

At a first glance, when comparing our spatial hearing ability with other senses – particularly 

vision, one might consider spatial hearing to be inferior due to its low spatial acuity. That is, 

using hearing without the help of other senses, we can only estimate the approximate location 

of the object that makes sound. In contrast, vision allows us to pinpoint the location of every 

miniscule object within our visual field. However, one should not forget that our field of 

view is limited, and for example, we cannot see objects behind us. On the other hand, hearing 

allows localization of sounds all around us, and due to diffraction, we can even monitor 

sound sources behind obstacles and around corners, which is something that we would not 

be able to accomplish with vision. Therefore, human spatial hearing and vision can be 

considered complementary for localizing objects in our environment.  

Importantly, in contrast to visual or somatosensory systems, auditory space does not have an 

explicit topographic representation on the receptor surface as the hair cells within the cochlea 

are spatially organized according to the frequency content of the incoming sound. Instead, 

the central auditory system calculates the sound location position based on so called spatial 

acoustic cues. The horizontal angle, azimuth, of the sound is mainly determined based on 

differences in intensity and arrival time between the ears, which are caused by the shape and 

shadowing effects of our head and body. The vertical sound angle, elevation, can be 

calculated by analyzing the spectral information of the sound as the interaction between the 

incoming sound and the outer ear as well as our bodies which cause an elevation-dependent 

filtering effect. Finally, the distance of the sound source can be estimated from the change 

in overall sound intensity as well as characteristic spectral changes.  

Clearly, localizing a sound source is not a trivial task, and despite the importance of spatial 

hearing and the long line of research, which dates back to 1876 when Lord Raleigh 

investigated hearing acuity, the exact mechanisms of how we process and localize sounds 
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are still unknown. The central auditory system consists of a highly complex and hierarchical 

neural network. There are multiple parallel ascending and descending neuronal streams, 

some of them crossing over and projecting to the contralateral pathways. While the 

subcortical regions play an important role in translating the spatial acoustic cues into a neural 

spiking signal, the synthesis of auditory space is thought to be done at the higher neural 

levels in auditory cortex. Here, it appears that the sound location is represented by 

populations of non-topographically organized neurons, which have relatively broad tuning 

and respond primarily to sounds from the contralateral part of the auditory space. However, 

how exactly the positional information is encoded using these neurons is unclear.  

Even less is known about how we encode dynamic spatial properties of a sound such as 

motion direction, velocity and acceleration. In vision, it has been shown that there are low-

level motion detectors that respond to motion velocity and direction. However, in the 

auditory domain, it is unknown whether we have specialized motion detectors, or whether 

we analyze motion at higher levels of the auditory pathway using the same networks that are 

involved in localizing static sources. A related interesting and unanswered question is how 

we keep stable perception of our auditory environment despite our constant head motion. 

Every time we move our head, the environment moves in the opposite direction relative to 

our ears. Therefore, in order to account for that, the auditory system must incorporate the 

proprioceptive information of the body.     

In real-world scenarios we are often surrounded by multiple overlapping sound sources. In 

such situations, we are often trying to attend only the most relevant source while ignoring 

the others. This has been investigated in the so-called cocktail party effect, which describes 

our remarkable ability to selectively attend a single conversation in a complex acoustic 

environment such as a noisy bar. Although it might not be obvious, spatial hearing plays an 

important role in this as it helps us to separate sources and form auditory objects in complex 

acoustic scenes with multiple concurrent sounds. This is well demonstrated in people with 

spatial hearing loss, which is a relatively common impairment that manifests by the inability 

to distinguish spatial cues. As a result of decreased spatial hearing ability, people with this 

impairment have issues with hearing and processing speech in the presence of background 

noise. All this suggests that we can process overlapping spatial cues corresponding to several 

sound sources and that the spatial representations of multiple sound sources exists 

somewhere within the ascending auditory pathway. Nevertheless, the neural underpinnings 

of spatial coding in more complex multi-source scenarios when the auditory system needs 

to localize several overlapping sounds is unknown. 
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Above, we have shown that spatial hearing is important in our everyday life and we have 

discussed that many of the neural mechanisms that are driving our ability to localize sound 

are not well understood. Besides the large complexity of these processes, another important 

reason that prevents us from better understanding the neurophysiology of the central auditory 

system and sound localization is methodological. One issue with hearing research is the 

requirement for an imaging method with high temporal resolution, as most of the information 

is encoded within the fine structure of the sound waveform. Another issue that is more 

specific to spatial hearing is how to deliver high-fidelity spatialized sound to the listener. For 

free-field sound presentation, experiments usually employ large loudspeaker arrays. This 

solution is expensive and not possible in studies utilizing functional magnetic resonance 

imaging (fMRI) and magnetoencephalography (MEG) for technical reasons. Only a 

relatively recent development of virtual auditory environments brought about an affordable 

way to present spatial sound over headphones. This method is based on application of a 

head-related transfer function (HRTF), which describes the location-dependent filtering 

properties of the head and pinna, on the sound. 

The work in this thesis is centred on investigating various aspects of auditory motion using 

non-invasive electroencephalography (EEG) and multivariate linear regression data 

analysis. The traditional method used to analyze the EEG data is to average a large number 

of neural responses to repeated stimulus presentations and extract the so-called evoked 

related potential (ERP) waveform.  However, the main drawback of this approach is the 

requirement for hundreds of repetitions of a discrete stimulus, which limits its experimental 

applications. Here, we used multivariate linear regression as our primary method for EEG 

data analysis. This was done for several reasons: Firstly, it allows the use of continuous 

stimuli that do not need to be repeated, which is particularly important for studying motion 

perception. Secondly, as a multivariate measure, it combines information from all EEG 

electrodes, and so has the potential to be more sensitive than the traditional univariate ERP 

analysis. 

1.2. Aims of This Work 

The overarching aim of this work is to investigate the neural signatures of spatial hearing 

with emphasis on the localization of moving sounds. Specifically, it examines whether the 

cortical activity reflects the time-varying location of a moving sound and whether the brain 

tracks the position of multiple concurrent sound sources. We also aim to examine if the 

cortical activity reflects other dynamic measures of auditory motion such as velocity and 

acceleration. Finally, we aim to investigate the spatial encoding of sound when listeners 
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move their heads.  

1.3. Thesis Outline 

Chapter 2 introduces different acoustic cues that are used in spatial hearing and describes 

basic psychophysical measures that are used to evaluate spatial hearing ability. The 

following section of this chapter describes the basic principles of electroencephalography 

(EEG) and discusses frameworks that are used to process the EEG data. Finally, the chapter 

discusses the neural anatomy of sound localization. It briefly describes the subcortical 

processing of spatial acoustic cues and mainly focuses on the cortical encoding of sound 

location and cortical sensitivity to sound motion.  

In chapter 3, a novel approach that allows investigation of the cortical correlates of auditory 

motion is described over two experiments. The first experiment shows that the time-varying 

sound azimuth of a moving sound can be reconstructed from the scalp recorded EEG. 

Specifically, it demonstrates that two frequency components of EEG, namely delta and the 

power of alpha, track the sound location. The second experiment shows that this cortical 

tracking of sound azimuth is present even for impoverished sound stimuli, which contain 

either interaural time- or level differences (ITD and ILD).  

Chapter 4 investigates whether the cortical activity reflects the locations of multiple sounds 

in complex acoustic environments. Specifically, it tests this in an environment with two 

moving concurrent noise stimuli, which are describable based on their frequencies, and two 

speech stimuli that are dynamically changing in their sound source location. It shows that 

the attended sound source can be reliably decoded even in the presence of distracting non-

stationary auditory stimulus. It also demonstrates that the cortical representation of the 

unattended sound location is much weaker. 

Chapter 5 explores whether higher-order measures of sound motion, namely velocity, speed 

and acceleration, are encoded within the cortex. In this chapter, it is demonstrated that sound 

speed and acceleration, but not velocity, can be reconstructed from EEG independently on 

sound azimuth.   

In chapter 6, it is investigated whether it is possible to reconstruct a moving sound trajectory 

using both cranio- and allo-centric coordinates from EEG while subjects listen to a moving 

sound and rotate their heads at the same time independently on the sound position. The 

experiment shows that the sound trajectory can be successfully reconstructed using 

craniocentric coordinates only when motion artefacts are not controlled for and that the 

reconstruction accuracy drops below the chance level when we partial-out the head 
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trajectory. The study also demonstrates the feasibility of using Oculus Rift VR headset for 

stimulus presentation together with high-density EEG recording.  
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 Background 

2.1. Sound Localization Cues 

The basic acoustic cues driving sound localization were discovered during early 

psychophysical experiments (Rayleigh, 1875; Thompson, 1878; Rayleigh, 1907). Binaural 

cues such as the interaural level difference (ILD) and the interaural time difference (ITD) 

are based on the differences in sound perceived by the left and the right ear and are mainly 

used for sound localization in the horizontal plane. Monaural cues, which are also known as 

spectral cues, are mainly used to determine the sound elevation and are caused by location-

sensitive filtering by the listeners head. See figure 2-1 for an overview of acoustic cues. The 

individual acoustic cues are described in sections 2.1.1-2.1.3 in more detail. 

 

Figure 2-1. Acoustic sound localization cues. Binaural cues interaural time and level 

difference are mainly used to localize sound in the horizontal plane. Monaural cues are 

predominantly used for vertical sound localization and in situations where binaural cues are 

ambiguous. Adapted from Grothe et al. (2010a) 

According to the well-established “duplex theory”, ILD and ITD have complementary roles 

(Rayleigh, 1875). This theory states that ILD cues are mainly used for sound localization of 

high frequency sounds, while ITD is used for determining the location of low frequency 

sounds. Although it has its limitations, e.g. it is possible to extract ITD from the envelope of 

a rapidly moving signal (Henning, 1974), psychophysical experiments have shown that this 

theory is still valid (Macpherson & Middlebrooks, 2002). Figure 2-2 shows sensitivity to 

ILD and ITD cues for different sound frequencies. 
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Figure 2-2. Measured ITD- and ILD-bias weights for individual listeners shown for the 

wideband (0.5–16 kHz), low-pass (0.5–2 kHz) and high-pass (4–16 kHz) sound stimuli. 

Listeners gave high weight to ITD and low weight to ILD for low-pass stimuli. For high-

pass stimuli, listeners gave high weight to ILD and most listeners gave low weight to ITD. 

Adapted from Macpherson and Middlebrooks (2002) 

The spectral acoustic cues are monaural and are primarily used for sound localization in the 

vertical plane, or in situations where the binaural cues are ambiguous. This ambiguity arises 

when one cue, ITD or ILD, can encode for more than one spatial location. Such situations 

often occur for sound sources placed within the median plane, where one cannot identify 

whether the sound is coming from the front or behind us, as ITD and ILD are zero in both 

cases. A similar scenario of front-back confusion occurs when sources are positioned 

symmetrically with respect to the interaural axis and lie on a so-called “cone of confusion”. 

As mentioned above, spectral cues can help in resolving this ambiguity. However, in natural 

conditions, a listener can move his or her head, which is an obvious solution enabling the 

exploitation of all available cues in these scenarios. Using this mechanism, also known as 

“Wallach cue”, the listener can adjust the position of sound sources relative to the head so 

that the binaural differences become more favourable (Wallach, 1939). In the following 

section, the acoustic cues are described in more detail. Further information can be found in 

reviews (Middlebrooks & Green, 1991; Blauert, 1997; Stecker & Gallun, 2012). 

2.1.1. Interaural Level Difference  

The interaural level difference (ILD), which is sometimes referred to as interaural intensity 

difference (IID), is caused by the attenuation, reflection and refraction of the sound when 

interacting with the head and outer ear (“head shadowing effect”). As a result of this 
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interaction, the sound coming to the closer ear will be louder, whereas the one arriving to 

the further ear will be softer. When a sound is positioned at the midline relative to the 

listener, the resultant ILD will be 0 dB. On the contrary, the largest ILD, which is around 20 

dB, is achieved when the sources are placed at the most lateral positions. 

The availability of ILD depends on the stimulus frequency. For low frequency sounds with 

long wavelengths, the sound diffracts around the head with little attenuation. For frequencies 

below 500 Hz, the ILD is close to 0 dB and therefore is not informative for sound 

localization. For a sound with a frequency of 6 kHz, the ILD can be larger than 20 dB 

(Feddersen et al., 1957). The ILD as a function of stimulus frequency is shown below in 

figure 2-3. The estimation of ILD is more complicated for sound sources near (<1 m) to the 

listener. For such sources, the ILDs can reach up to 30 dB and unlike for distant sources 

(>1m) the ILDs are also present for low frequencies (Brungart & Rabinowitz, 1999). 

 

Figure 2-3. Interaural level differences (ILDs) shown for different azimuth angles and 

stimulus frequencies. Adapted from Feddersen et al. (1957). 

2.1.2. Interaural Time Difference  

Originally described by (Thompson, 1878), the interaural time difference (ITD) describes 

the different timing of sound waveform arrival or phase difference between two ears. For 

lateral stimuli, the sound emitted by the source arrives earlier to the closer ear and later to 

the ear that is further away. This timing information can be used analogically to ILD to 
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determine the azimuth of the sound source. For adults, the range of possible ITDs over all 

azimuths span approximately within the interval of 0-750 µs (Kuhn, 1977). The temporal 

information can be extracted from the signal in several ways: (1) from the temporal fine 

structure of a changing signal, or (2) from larger-scale temporal fluctuations of the sound 

e.g. amplitude envelope or sound energy onset (Blauert, 1997). 

As in the case of ILD, the ITD availability depends on the sound stimulus frequency content. 

For pure tones and higher frequencies (~ >700 Hz) the information carried by sound phase 

becomes ambiguous and diminishes further at around 1.6 kHz (see figure 2-4). For complex 

(non-tonal) stimuli, the ITD information can be obtained even for higher frequencies from 

the signal envelope (Henning, 1974).  

 

Figure 2-4.  Interaural time differences (ITDs) shown as function of stimulus frequency and 

sound angle. Adapted from Kuhn (1977). 

2.1.3. Spectral Cues 

As mentioned above, relying solely on binaural cues for sound localization in the horizontal 

plane causes front-back confusion for sound sources placed within the midplane and the cone 

of confusion. Moreover, binaural cues do not carry information about the sound source 

elevation. In these situations, one employs the spectral (monaural) cues. The spectral cues 

are, as the name suggests, caused by the location-dependent spectral changes introduced in 

the incoming sound, which are mainly caused by the interaction of the acoustic signal with 

the outer ear, head and torso of the listener (Blauert, 1997). As can be seen in figure 2-5, the 

sound is attenuated differently at different stimulus frequencies and, importantly for sound 

localization purposes, changes as a function of sound position. This complex relationship 
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between the sound direction and frequency filtering is characterized by the head-related 

transfer function (HRTF). Interestingly, the HRTFs exhibit relatively large differences 

between individuals, which is due to large variability in the outer ear shape within 

population. An important implication is that when one presents sound via headphones, 

without incorporating individualized spectral cues, the sounds appear “internalized” i.e. are 

perceived to originate from the inside of the head. In the case of virtual acoustic spaces 

(VAS), where sound is presented via headphones and modified using appropriate 

(individualized) HRTFs, the sound is perceived more “externalized” i.e. coming from the 

outside of the head.  

  

 

Figure 2-5.  Spectral (monaural cues) are caused by sound location-dependent filtering of 

outer ear, head and body. The sound attenuation is shown as a function of stimulus frequency 

and sound source azimuth. Adapted from Schnupp et al. (2011)  

2.2. Psychophysical Measures of Spatial Sensitivity 

Our ability to localize sound depends on the position of the sound source, as our spatial 

sensitivity is not uniform across the whole auditory space. Below we introduce the most 

common measures to quantify spatial sensitivity and discuss how this sensitivity changes for 

different spatial locations.  

For stationary sound sources, the common relative measure of spatial sensitivity is minimal 
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audible angle (MAA), which is described as the smallest perceivable spatial separation of 

two subsequent sounds (Mills, 1958). Typically, subjects are asked whether the stimulus was 

on the left or right from the preceding sound. For the sources positioned on a frontal midline, 

the detectable azimuthal distance could be as low as 1°. For lateral locations, the MAA is 

around 7°. For sources varying in elevation the MAA is larger than for azimuth, and is larger 

than 4° (Perrott & Saberi, 1990).  However, the MAA values are only approximate as the 

localization resolution depends on the spectro-temporal properties of the sound stimulus and 

acoustic properties of the test environment e.g. psychophysical studies have shown that it is 

easier to localize broadband than tonal stimuli (Recanzone et al., 1998). 

A related measure of spatial sensitivity is minimum audible movement angle (MAMA), 

which is the minimum distance that the sound needs to travel to be perceived as moving. For 

slowly moving sources the MAMA is around 9° and it increases with velocity up to 

approximately 20°. Similarly, to MAA, the MAMA strongly depends on the stimulus 

characteristics (Chandler & Grantham, 1992; Carlile & Leung, 2016). One alternative to the 

relative measures described above, is to measure sound localization ability in absolute terms. 

This is usually done by asking the listeners to point or otherwise indicate the perceived origin 

of the sound source. The range of source estimates span roughly between 2-30° based on 

source location and shows relatively large differences between studies (Wightman & Kistler, 

1989; Makous & Middlebrooks, 1990; Recanzone et al., 1998). 

2.3. Neuroimaging  

There are several different neuroimaging methods that are used to study the human auditory 

nervous system. Here in this section, the most common techniques are introduced, and the 

next sections of this chapter focus specifically on electroencephalography, which is the 

imaging method that was employed in this work. 

Electroencephalography (EEG) and magnetoencephalography (MEG) are both non-invasive 

methods that directly measure neural activity. EEG measures the electrical field that is 

caused by synchronous activation of large groups of cortical neurons. MEG is principally 

like EEG; however, it measures the induced magnetic field. Both imaging methods have the 

capability to capture fast neural dynamics, but their spatial resolution is worse than the below 

mentioned imaging methods. Although MEG has superior spatial resolution to EEG, the 

required acquisition system is relatively expensive and therefore is less common.  

Both EEG as well as MEG techniques have been extensively used to study cortical encoding 

of static sounds (e.g. Palomaki et al.,2000, 2005; Briley et al., 2013 and others). Also, due 

to its ability to capture fast dynamics of cortical activity, these methods seem particularly 
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suitable for studying location encoding of moving sound sources (e.g. Xiang et al., 2002; 

Getzmann et al., 2012; Magezi et al., 2013). Although these imaging techniques appear ideal 

to study location encoding of moving sound sources in humans, challenges exist in how to 

process such signals and how to improve their low signal-to-noise ratio (see section 2.3.2 

below).  Specifically, the traditional EEG analysis requires many repetitions of short and 

discrete stimuli. As a result, sound localization studies typically employed some type of 

transient sound stimuli (typically noise bursts) that were repeatedly presented from different 

spatial locations or were moving along short trajectories.  

Besides this being arguably a non-naturalistic acoustic scenario, it is difficult to use such 

methods to answer a question on whether cortical activity reflects the on-going dynamics of 

a continuously moving sound beyond motion- onset responses. In section 2.3.3 we propose 

a novel method to study sound localization using EEG that allows to use continuous and 

unrepeated stimuli.  

Electrocorticography (ECoG), is an invasive method that measures electrical activity of 

neurons directly on the exposed brain surface. This recording method requires a craniotomy 

and therefore it is usually limited to patients that undergo brain surgery for clinical reasons 

such as epilepsy. Also, ECoG electrodes typically cover only a limited brain area of a patient, 

which further limits this method. Nevertheless, this imaging method has superior signal-to-

noise ratio as well as high spatial and temporal resolution. To our best knowledge, ECoG 

has not been used to study sound localization in humans. 

Functional magnetic resonance (fMRI) and positron emission tomography (PET) measure 

brain activity indirectly by detecting local changes in blood flow and metabolic activity. 

fMRI does this by detecting magnetic responses of tissue to externally applied magnetic 

fields that are delivered by coils of the MRI scanner. Specifically, it measures cognitive 

activity-induced changes in blood oxygenation level, which are reflected by the amount of 

oxyhemoglobin and its form without oxygen, deoxyhemoglobin, in red blood cells that differ 

in their magnetic properties. PET measures radioactive emission caused by the decay of 

positron-emitting isotopes that are introduced to the blood stream of a patient. An increase 

in brain activity causes increased uptake of a radioactive tracer, which is reflected by a 

change in emitted radiation (Webster, 2009). These two methods have good spatial 

resolution; however, their temporal resolution is relatively poor.  

The use of fMRI/PET in spatial hearing research is relatively common and has been useful 

to identify brain regions that are active during sound localization process (see extensive 

meta-study of human imaging studies Arnott et al., 2004).  A typical experiment in such 
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studies is contrasting brain activity during spatial and non-spatial tasks e.g. determining 

stimulus location and pitch discrimination (e.g. Alain et al., 2001). Another example of using 

fMRI in sound localization studies can be determining cortical sensitivities to ITD and ILD 

cues (e.g. Higgins et al., 2017). However, as the temporal resolution of these methods is 

relatively poor and these methods are not very suitable for studying highly dynamic stimuli, 

they have been mostly used to study sound localization using stationary sound sources. 

Although there are several fMRI studies investigating sound motion, they have usually 

restricted the analysis to contrasting responses to moving sound and ‘corresponding’ 

stationary sounds, which is often problematic from a methodological point of view (Smith 

et al, 2007, Poirier 2017). Nevertheless, novel paradigms to study encoding of auditory 

motion using fMRI have started to emerge (e.g. Ortiz-Rios et al, 2017). Finally, another 

limitation of the fMRI studies is that it is not possible to use loudspeaker arrays for sound 

delivery and one is restricted to sound virtualization techniques and fMRI compatible 

headphones.  

 

2.3.1. Electroencephalography 

Electroencephalography (EEG) is a non-invasive imaging method that measures the 

electrical activity of the brain using scalp electrodes. The electrical potential on the cortical 

surface is generated mainly by the net effect of local postsynaptic potentials of many cortical 

neurons. A figure of a typical pyramidal cell neuron is shown in figure 2-6. The pyramidal 

cells are the most common type of cortical neuron and are predominantly oriented 

perpendicular to the scalp surface. Each neuron consists of a dendritic tree with many 

branching dendrites that receive input from other neurons, cell body (soma) and an axon, 

which act as an output to other neurons. In the case of excitatory input, the dendritic 

membrane depolarizes and causes current flow from the soma, which acts as a current source, 

to the dendritic part that behaves like a current sink. In the case of inhibitory input, the 

polarity is reversed and the current flows in the opposite direction. In effect, each of the 

pyramidal cells act as a radially oriented electrical dipole and its polarity depends on whether 

it receives excitatory or inhibitory input.  When a large number of these neurons 

synchronously activates it generates an electrical field which is measurable as a unipolar 

potential on the scalp surface (Webster, 2009). 
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Figure 2-6. Generation of cortical field potential in the case of an excitatory input. The 

dendritic tree acts as a current sink and the neuron body (soma) acts as a current source. 

The generated electrical field can be approximated as an electrical dipole. Adapted from 

Webster (2009) 

Since the measuring electrodes are placed on the scalp, the electric field generated by 

neurons is attenuated when passing through several layers of tissue i.e. the meninges 

covering the brain, the cerebrospinal fluid, the bone and skin. This also leads to volume 

conduction which causes spatial smearing of the signal across the scalp. As result, EEG has 

two major weaknesses. The first is low signal-to-noise ratio (SNR) of the EEG signal. The 

EEG signal is of very low amplitude (range of µV) and is often contaminated by signals 

which are generated by muscles during eye movements, jaw movement and other muscle 

activity. The second weakness of EEG imaging is its low spatial resolution, caused by the 

volume conduction of the brain and by the limited coverage of the brain by EEG electrodes. 

Nevertheless, the EEG has superb temporal resolution and allows to study responses to 

rapidly changing stimuli such as sound.   

Even when at rest, the brain shows ongoing oscillatory activity. Historically, this rhythmic 

spontaneous activity was divided into the following frequency bands: Delta (0-4Hz), Theta 

(4-8Hz), Alpha (8-12Hz), Beta (12-30Hz) and Gamma (30Hz~70Hz) (van Drongelen, 

2006). The strength of these oscillations were found to be modulated by different 

behavioural states such as different stages of sleep, level of attention and measuring 

spontaneous activity has a role in clinical applications such as epilepsy treatment. Another 

class of EEG signals is evoked activity or event-related potentials (ERPs) by internal or 
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external stimuli and is discussed in the next section. 

 

2.3.2. Event-Related analysis 

An event-related potential (ERP) is a brain response to a standard auditory, visual or 

somatosensory stimulus such as beep, flash etc. However, these event-related responses are 

approximately ten-times smaller than the spontaneous EEG activity. To overcome this a 

method of signal time-averaging is usually applied to the EEG signal. This method assumes 

that the evoked responses to repeated stimuli are consistent, the noise is truly random and 

has zero mean and the noise is not correlated with the stimulus (van Drongelen, 2006). Figure 

2-7 shows the principle of the averaging method: First, we present many repetitions of the 

same stimulus and average all the EEG responses, which include the “true” response signal 

with superimposed noise (spontaneous EEG activity). Then we average the EEG responses 

to repeated stimuli together. As the random noise component is not time-locked to stimulus, 

it averages out while the evoked response signal stays intact. If we have enough trial 

repetitions, this approach increases the SNR and allows us to obtain a good estimate of the 

neural evoked response signal.  

However, despite the effectiveness of the averaging method in increasing SNR, it has two 

major shortcomings: (1) it requires for the stimuli to be discrete, and (2) it requires many 

repetitions of the stimuli. An alternative method of extracting evoked responses that 

overcomes these limitations is described below in section 2.3  
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Figure 2-7. Extracting evoked responses using time-averaging. The first and second trace 

show the signal and noise separately. How the signal look with superimposed noise is shown 

for one trial (trace 3) and multiple trials (trace 4). The recovered signal by averaging trials 

is shown for odd (blue, trace 5), even (red, trace 5) and all trials (green, trace 6). The last 

trace shows the residual noise, which was calculated by subtracting averaged signal of odd 

and even trials. Adapted from van Drongelen (2006). 

Typical ERPs to auditory stimuli are shown in figure 2-8. Based on their latency, they can 

be categorized into three groups: (1) fast responses of the auditory brainstem response 

(ABR), (2) middle-latency responses from initial activation of the auditory cortex and (3) 

slow responses from the activation of primary and higher auditory cortices (Picton, 2013).  

Each evoked response consists of several prominent components (deflections). The 

components of ABRs are named in order using roman numerals. The middle and slow 

responses are labelled using P or N, which indicates their polarity i.e. whether they have 

positive (P) or negative (N) amplitude, and a letter or number which specifies their order. 

Alternatively, the polarity letter is followed by a number that specifies the latency of the 

component in milliseconds e.g. N100. The most commonly identified components are 

described below: 

P1 

The P1 component, also referred to as the P50, is the smallest ERP component of the late 

evoked response, appearing around 50 ms post-stimulus. It is thought to originate in primary 

auditory cortex in Heschl’s gyrus and possibly also has generators in the hippocampus, 

planum temporale, lateral temporal cortex and neocortical areas. The auditory processing 
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associated with P1 appears to be pre-attentive orienting to new sound stimuli. The P1 also 

changes during auditory system development and is also modulated by a number of disorders 

such as posttraumatic stress disorder, autism, Alzheimer’s disease and many others (Luck & 

Kappenman, 2011). 

N1 

The N1 component is a negative ERP component, peaking between 80 ms and 120 ms after 

an acoustic change in the environment. The N1 peak is composed of three overlapping, 

independent subcomponents (Naatanen & Picton, 1987): a fronto-central subcomponent 

with a negative peak at 100 ms and generators in a wide area around A1 on Heschl’s gyrus, 

a T subcomponent with positive and negative peaks at 100 ms and 150 ms respectively, both 

originating in association areas in the superior temporal gyrus; and a vertex-negative 

subcomponent peaking at around 100 ms associated with attention to stimuli (Luck & 

Kappenman, 2011). 

P2 

The P2 component, which usually occurs in pair with N1, is a positive deflection with latency 

in the range 150–250 ms. As the N1 response, P2 is also sensitive to physical parameters of 

the stimuli, however the exact function is unclear.  The source of auditory P2 is thought to 

be auditory cortices, planum temporale and Brodmann’s area 22 (Crowley et al., 2004; 

Godey et al., 2001). 

MMN 

The mismatch negativity (MMN) response is seen as a negative displacement in the 

difference wave obtained by subtracting the ERP to frequent stimuli (standard), from that to 

less-frequent stimuli (deviant). Although the MMN is not an ERP component in its strict 

definition, it is frequently used in the literature.  

The concept of mismatch negativity was introduced and recently reviewed by (Naatanen et 

al., 2007). The MMN is an automatically-generated brain response to any change in auditory 

stimulation exceeding a certain limit roughly corresponding to the behavioural 

discrimination threshold. The change could be in various aspects of the stimuli, for example, 

pitch or sound direction. Moreover, the MMN is also elicited by higher-level abstract 

changes such as grammar violations in mother-tongue sentences.  

The MMN response is seen as a negative displacement in the difference wave obtained by 

subtracting. The scalp-recorded MMN has a fronto-centrally predominant scalp distribution 

and is mainly explained by the sum of the activity generated in the supratemporal cortices. 
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The MMN usually peaks at 150–250 ms from change onset. In contrast to the N1 or P2, the 

MMN is mainly the outcome of a discrimination process where the deviant stimuli are found 

to mismatch the memory representation of the preceding stimuli in the auditory cortex. 

Importantly, the MMN is thought to be elicited irrespective of the subject or patient’s 

direction of attention. 

How some of these auditory evoked components are modulated by the location and other 

spatial features of sound is discussed in the section 2.4.2. 

 

Figure 2-8. Auditory evoked potentials. Typical evoked responses to a click train showed on 

three time-scales. Left: fast responses of the auditory brainstem response, Center: Middle-

latency responses caused by initial activation of the auditory cortex, Right: slow responses 

of the auditory and association cortices. Adapted from Picton (2013). 

2.3.3. Model-based TRF analysis 

As mentioned in the previous section, the time-averaging method for estimating the neural 

evoked response requires for the stimuli to be discrete and needs many stimulus repetitions. 

Recently, a model-based approach called temporal-response function (TRF) modelling has 

been proposed that allows to estimate the neural response using continuous, unrepeated 

stimuli (Lalor et al., 2006; Lalor et al., 2009; Crosse et al., 2016).  

The idea behind this method is that the relationship between the stimulus (input) and 

corresponding neural response measured by EEG (output) can be described by a linear time-

invariant (LTI) system. Certainly, the brain responses violate the assumptions of the LTI, 

which requires for the stimulus-response relationship to be linear and consistent in time. 

However, by approximating the brain to LTI, it allows us to employ continuous and 

unrepeated stimuli in experimental paradigms as well as to model the brain-response 

relationship by an impulse response (or as referred in this work as TRF). An impulse 

response is a function that fully characterizes an LTI and is calculated e.g. using 

deconvolution by measuring the output of the system to a known input signal. 
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Importantly, when the impulse response of a system is known, it allows one to predict the 

output of the system to a given input signal (forward mapping). Similarly, the impulse 

response can also be used to reconstruct the input signal to the system when we know the 

output (backward mapping). In the context of this work, an example of forward mapping can 

be predicting the EEG signal from the known sound source azimuth time-series. An example 

of backward mapping is when we reconstruct the sound azimuth from the recorded EEG 

signal.  

2.3.4. Forward TRF mapping 

The aim of forward mapping is to predict a neural response (EEG) to a known stimulus 

feature time-series such as sound azimuth or sound envelope amplitude. See diagram in 

figure 2-10. A model, also called encoder, 𝑤(𝜏, 𝑛) represents the linear mapping from the 

stimulus feature time-series 𝑠(𝑡) to the multi-channel EEG response 𝑟̂(𝑡, 𝑛).  

𝑟̂(𝑡, 𝑛) = ∑ 𝑤(𝜏, 𝑛)𝑠(𝑡 − 𝜏, 𝑛)𝜏     Eq 2-1 

where 𝑡 = 1…𝑇 is the time sample, 𝜏 = 𝜏𝑚𝑖𝑛 …𝜏𝑚𝑎𝑥 is the relative time lag in samples, and 

𝑛 = 1. . 𝑁 is the number of EEG channels. The model weights 𝑤 can be solved by ridge 

regression using the equation (Tikhonov and Arsenin, 1977): 

𝑤 = (𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇𝑟    Eq 2-2 

where 𝜆 is the ridge regression parameter, 𝐼 is the identity matrix and the matrix S is the 

lagged time series of the stimulus feature: 

𝑆 =

[
 
 
 
 
 
 
 
 
 
𝑠(1 − 𝜏𝑚𝑖𝑛) 𝑠(−𝜏𝑚𝑖𝑛) ⋯ 𝑠(1) 0 ⋯ 0

⋮ ⋮ ⋯ ⋮ 𝑠(1) ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 𝑠(1)

𝑠(𝑇) ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 𝑠(𝑇) ⋯ ⋮ ⋮ ⋯ ⋮
⋮ 0 ⋯ ⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑠(𝑇) 𝑠(𝑇 − 1) ⋯ 𝑠(𝑇 − 𝜏𝑚𝑎𝑥)]

 
 
 
 
 
 
 
 
 

 Eq 2-3 

 

The model weights 𝑤 are two-dimensional as the model is a function of time (lags) and space 

(EEG channels) and can be interpreted in a similar way as an ERP. The time lags represent 

a time-shift between the EEG and stimulus time-series. Negative time-lag means that the 

stimulus is lagging behind the EEG, while positive time-lag means that that the stimulus is 
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preceding before the EEG. Essentially, the TRF model can be viewed as an impulse response 

and the process of predicting the neural response from the stimulus time series is analogous 

to convolution. Figure 2-9 illustrates the structure of the TRF model. 

 

Figure 2-9. TRF model weights. The TRF model is a function of EEG electrode channels 

(spatial dimension) and a time-lag between EEG and stimulus (temporal dimension).  

The TRF model is trained and validated on different data in order to prevent overfitting. In 

practice, this is usually implemented using leave-one-out cross-validation approach. The 

data is first divided into a number of parts (folds) and the model is trained on all folds except 

one, which is left out. Then, the model is evaluated on the left-out fold. The model evaluation 

is performed by correlating the predicted and the actual neural response using Pearson’s r. 

This process is repeated for all folds and then the resultant correlation values are averaged 

together.  See figure 2-10 for the diagram of the TRF fitting process.  



 

 

21 

 

 

Figure 2-10. Schematic of forward and backward TRF mapping.  The aim of forward 

mapping is to find an encoding model that allows to predict EEG data from known stimulus 

time-series. Backward mapping is trying to reconstruct the stimulus time-series from the 

known EEG data. To prevent model-overfitting, a cross-validation approach is used. The 

data is split into a training data set, which is used to calculate the model weights, and a 

validation set that is used for evaluating the model performance. 

2.3.5. Backward TRF mapping 

In backward mapping, we are interested in reconstructing a stimulus feature time-series from 

a neural response EEG. See diagram in figure 2-10. The process is mathematically analogical 

to the forward mapping that is described above. A model, also called decoder, 𝑔(𝜏, 𝑛) 

represents the linear mapping from the continuous multi-channel EEG response 𝑟(𝑡, 𝑛) back 

to the stimulus time-series 𝑠̂(𝑡).  

𝑠̂(𝑡) = ∑ ∑ 𝑔(𝜏, 𝑛)𝑟(𝑡 + 𝜏, 𝑛)𝜏
𝑁
𝑛=1     Eq 2-4 

where 𝑡 = 1…𝑇 is the time sample, 𝜏 = 𝜏𝑚𝑖𝑛 …𝜏𝑚𝑎𝑥 is the relative time lag in samples, and 

𝑛 = 1. . 𝑁 is the number of EEG channels.  

 

As in the forward mapping, the model 𝑔 can be solved by performing ridge regression: 

𝑔 = (𝑅𝑇𝑅 + 𝜆𝐼)−1𝑅𝑇𝑠    Eq 2-5 

where 𝜆 is the ridge regression parameter, 𝐼 is the identity matrix and the matrix R is the 
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lagged time series of EEG data: 

𝑅 =

[
 
 
 
 
 
 
 
 
 
𝑟(1 − 𝜏𝑚𝑖𝑛 , 1) 𝑟(−𝜏𝑚𝑖𝑛 , 1) ⋯ 𝑟(1,1) 0 ⋯ 0

⋮ ⋮ ⋯ ⋮ 𝑟(1,1) ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ 𝑟(1,1)

𝑟(𝑇, 1) ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 𝑟(𝑇, 1) ⋯ ⋮ ⋮ ⋯ ⋮
⋮ 0 ⋯ ⋮ ⋮ ⋯ ⋮
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑟(𝑇, 1) 𝑟(𝑇 − 1,1) ⋯ 𝑟(𝑇 − 𝜏𝑚𝑎𝑥 , 1)]

 
 
 
 
 
 
 
 
 

 Eq 

2-6 

Importantly, there are two features of the backward mapping that are worth mentioning: (1) 

The method is “multi-variate” in a sense that the stimulus is reconstructed based on 

information from all available EEG channels across number of time lags. Therefore, it has 

the potential to be more sensitive than traditional methods of EEG analysis e.g. time-

averaging. (2) The backward models, unlike their forward mapping counterparts, are not 

easily interpretable in a neurophysiological sense due to its sensitivity to noise i.e. the spatial 

distribution of the decoder weights does not necessary reflect the underlying EEG activity. 

However, it is possible to transform a backward model weights into forward mapping 

“activation patterns”, which are more physiologically interpretable (Haufe et al., 2014): 

𝐴 = 𝛴𝑟𝑔𝛴𝑠̂
−1       Eq 2-7 

where A is the activation pattern, 𝛴𝑟 and 𝛴𝑠̂ are covariance matrices corresponding to neural 

response 𝑟 and reconstructed stimulus 𝑠̂, and 𝑔 are the decoder model weights. 

2.4. Neural Representation of Auditory Space 

In this section we describe the main parts of the central auditory system that are involved in 

sound localization. First, we briefly discuss the subcortical regions, where many interaural 

interactions occur and where spatial acoustic cues are first processed. Then we describe 

which cortical regions are involved in spatial hearing, and lastly we describe current models 

of the neural representation of acoustic space. Most of this section will focus on the more 

often studied topic of encoding of azimuthal (horizontal) location and the section 2.4.3 will 

briefly discuss the neural encoding of sound elevation (vertical position). Sections 2.4.4 and 

2.4.5 discuss spatial hearing in complex environments with multiple sources and the effect 

of attention. Finally, the last two sections describe the neural response to sound motion and 

the neural sensitivity to sound source velocity and acceleration.  

2.4.1. Subcortical Processing of Auditory Space  
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After the incoming sound waves are transduced into neural activity by the peripheral 

auditory system, they travel to the cochlear nucleus (CN) via the auditory nerve. There the 

signal diverges into a number of parallel upstream pathways. The schematic diagram of the 

central auditory pathways is shown in figure 2-11. It appears that the interaural time 

difference (ITD), interaural level difference (ILD), and monaural spectral cues are processed 

in separate subcortical streams (Grothe et al., 2010a). There are several subcortical structures 

that are involved in binaural cue processing: ventral cochlear nucleus (VCN), superior 

olivary complex (SOC), dorsal nuclei of lateral lemniscus (DNLL) and inferior colliculus 

(IC) (Stecker & Gallun, 2012). 

Initially, the temporal information of the sound is encoded by bushy cells in the VCN, which 

phase lock to the fine temporal structure or the envelope of the sound. The neural signals 

then target the nuclei in SOC, medial and lateral superior olives (MSO and LSO), the primary 

sites of binaural interaction. Here, the neurons were shown to be sensitive both to ITD and 

ILD acoustic cues (Yin 2002). The next structure along the pathway, DNLL, is thought to 

play a role in response sharpening and for hearing enhancement in reverberant environments 

(Pecka et al., 2007). Another major structure that is involved in binaural sound localization 

is the IC, which receives many inputs from the abovementioned subcortical structures. The 

responses of IC neurons show similar characteristics to SOC; however, they have some 

additional properties such as further response sharpening, envelope-ITD sensitivity (Joris, 

2003) or reduced frequency dependence of ITD tuning (Fitzpatrick & Kuwada, 2001). 

There is evidence that spectral cues are mainly processed in the dorsal part of dorsal cochlear 

nucleus (DCN). Here, the neurons are responsive to sound location-sensitive notches in the 

frequency spectrum of the incoming sound. Further, the spectral information is processed by 

the IC, which is likely involved in response sharpening (Grothe et al., 2010a). More 

information on subcortical processing can be found in detailed review articles by (Yin, 2002; 

Grothe et al., 2010a; Stecker & Gallun, 2012). 
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Figure 2-11. The mammalian ascending auditory pathways involved in sound localisation. 

Figure adapted from Grothe et al. (2010b). 

2.4.2. Cortical Representation of Sound Azimuth 

After spatial auditory cues are extracted and pre-processed in subcortical regions, the 

auditory neural pathways enter the auditory cortex (AC) for further processing. It has been 

shown that the AC plays an important role in sound localization and lesion studies 

demonstrated that an intact auditory cortex is necessary for normal spatial hearing (Jenkins 

& Masterton, 1982; Zatorre & Penhune, 2001; Bizley et al., 2007). Also, an interesting 

question then arises as to whether the AC encodes sound source position independent of the 

type of acoustic cue or if the cues are represented separately. As mentioned in the previous 

section, the ITD and ILD acoustic cues are processed in separate pathways at the brainstem 

level. However, at the level of cortex it is unclear how these cues are encoded and as 

concluded by (Higgins et al., 2017), it appears that the ILD and ITD cues are neither fully 

separated or fully integrated.  For further discussion see studies by (Ungan et al., 2001; 

Altmann et al., 2007; Johnson & Hautus, 2010; Edmonds & Krumbholz, 2014; Salminen et 

al., 2015; Higgins et al., 2017; Wood et al., 2018). 

Which regions of AC are selective specifically to sound location has been discussed. Based 

on animal studies, it was proposed that sound location is processed in the spatially-selective 

dorsal “where” pathway, which is separate from the ventral “what” pathway that is involved 

in sound object recognition (Romanski et al., 1999; Kaas & Hackett, 2000; Rauschecker & 
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Tian, 2000; Tian et al., 2001). This functional separation of auditory streams is also 

supported by human imaging studies (Arnott et al., 2004). The “where” stream originates in 

posterior belt and parabelt regions of AC, targets planum temporale (PT) and posterior 

superior temporal area (pST). Further, it connects via inferior parietal lobule (IPL) to 

premotor cortex (PMC), dorsolateral prefrontal cortex (DLPC) and finally reaches to the 

inferior frontal cortex (IFC). A model diagram of this dual pathway is shown in figure 2-12. 

For further information on the functional role of the dorsal and ventral auditory pathways 

see reviews (Ahveninen et al., 2014; Clarke & Geiser, 2015; Rauschecker, 2017). 

 

 

Figure 2-12. Recent model of the auditory dual-route pathway which separates the neural 

streams into the “what” pathway (green) that is used for object recognition and the “where” 

pathway (red) that is involved in sound localization. Marked structures: 41-core auditory 

cortex (AC), 42-belt areas of AC, 22- dorsal superior temporal sulcus (STS), 40- inferior 

parietal lobule (IPL), 6-premotor cortex (PMC), 8-dorsolateral prefrontal cortex, 44, 45-

inferior frontal cortex (IFC). Adapted from Rauschecker (2017).  

Although we know which regions are likely involved in sound localization, it is unclear how 

auditory space is encoded in these structures. In contrast to human visual or somatosensory 

systems, there is no evidence that auditory space is encoded using a local code in a form of 

cortical topographic map. Instead, animal studies suggested that the neurons in AC are 

broadly tuned to spatial location and their receptive field mostly covers the contralateral 
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hemifield of the auditory space (Middlebrooks & Pettigrew, 1981; Stecker et al., 2003; 

Harrington et al., 2008; Middlebrooks & Bremen, 2013). However, a minority of spatially 

sensitive AC neurons respond maximally to ipsilateral hemifield or are tuned to the midline. 

See an example of firing activity of single neuron as function of sound azimuth in figure 2-

13. 

 

Figure 2-13. Neuronal spiking activity measured in the primary auditory cortex of a cat 

expressed as function of sound azimuth. On x-axis, the values on the left (labelled “C”) 

indicates contralateral locations with respect to the listener, while values on the right of the 

centre (labelled “I”) show ipsilateral angles. Different colours show different presentation 

rates of the stimulus noise bursts. Adapted from Middlebrooks and Bremen (2013) 

Compatible results with animal intracortical recordings have been also obtained using non-

invasive imaging in humans. The lateralized evoked responses have been obtained to 

spatialized static sound sources as shown by MEG (Palomaki et al., 2000; Palomaki et al., 

2005) as well as  EEG (Magezi & Krumbholz, 2010; Briley et al., 2013) studies. From these 

studies, it appears that it is the N1 and P2 components of the evoked response, which peak 

around 100 and 200 ms post-stimulus respectively, that are modulated by horizontal sound 

location. See figures 2-14 and 2-15. The spatial sensitivity of human cortex to spatial sound 

have also been investigated using fMRI (Derey et al., 2016), which also showed mostly 

broad contralateral responses within the AC to sound. See figure 2-16. Interestingly, this 

study also showed that PT, unlike other spatially sensitive AC regions, is invariant to sound 

level variations.  
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Figure 2-14. The amplitudes of MEG N1m evoked component shown as function of sound 

azimuth for the left and right hemispheres. A clockwise convention was used to indicate the 

sound angles, where 0, 90, 180, 270 deg correspond to front, right, rear and left locations 

relatively to the listener. Adapted from Palomaki et al. (2000) 

 

Figure 2-15. EEG evoked responses of the left and right auditory cortices to sound location 

shifts. The sound stimuli were presented in sequence and originated in one of the five 

azimuthal locations -60 (left), -30, 0, +30, +60 (right).  The data shows that response 

magnitude of the N1 and P2 components increase with the size of the location shift.  Adapted 

from Briley et al. (2013) 

 

Figure 2-16. fMRI activation map of the cortical surface with color-coded preference to 

different sound source positions in the horizontal plane shown for two subjects. The stimuli 

were presented from different spatial locations and the maps was obtained using phase-
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encoding paradigm. Adapted from Derey et al. (2016) 

Based on neurophysiological observations, several cortical encoding models of auditory 

space have been proposed. The currently popular “opponent-channel” model (Stecker et al., 

2005) is a population encoding scheme which states that the azimuthal sound position may 

be computed by calculating the difference between contra- and ipsilaterally tuned neural 

populations within each hemisphere. This model is supported by a number of neuroimaging 

studies (Magezi & Krumbholz, 2010; Młynarski, 2015; Derey et al., 2016; Ortiz-Rios et al., 

2017). Others hypothesized that the sound position might be encoded using more than two 

neuronal channels. The existence of a third channel was proposed by (Dingle et al., 2010; 

Dingle et al., 2012; Briley et al., 2016) and even encoding by a larger number of relatively 

narrowly tuned channels was proposed (Carlile et al., 2016). Another alternative is “labelled-

line” representation, where sound location is represented by activity patterns of individual 

neurons.  As discussed in a ferret study by (Wood et al., 2018), although the A1 neurons 

within each hemisphere respond generally to the contralateral hemifield, the receptive fields 

of neurons in a single hemisphere were narrower than predicted by opponent channel theory 

and had best azimuth distributed across the opposite hemifield. The authors proposed that 

each hemifield of auditory space is encoded by contralateral A1 using labelled-line system.    

2.4.3. Cortical Representation of Sound Elevation 

Finally, as most studies investigating cortical encoding of sound location focus only on 

horizontal plane localization (azimuth), not much is known on how the brain encodes 

elevation. Based on the somewhat limited evidence, it appears that the cortical regions that 

process sound azimuth and elevation overlap (Pavani et al., 2002; Trapeau & Schönwiesner, 

2018). Nevertheless, in our recent study (Bednar et al., 2017) as well as in a study by Fujiki 

et al. (2002), it has been shown that the monaural cues are processed later than binaural cues, 

which suggests their separate processing. With respect to elevation encoding, a recent fMRI 

study (Trapeau & Schönwiesner, 2018) showed that location sensitive AC regions decrease 

in activation with increasing elevation, however, the observed tuning was quite broad. Also, 

the study showed that the cortex does not encode the acoustical elevation, but rather 

perceived sound elevation. 

2.4.4. Encoding Location Multiple Sound Sources  

When sound waves from two concurrent sounds arrive simultaneously, the interaction 

between the sound waves might corrupt the binaural spatial cues, which become less 
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informative (Blauert, 1997). However, psychophysical experiments have shown that humans 

can localize more than one sound source, although the localization is worse than in the 

single-source case (Yost & Brown, 2013). Also, this study proposed that the ability to 

localize multiple sources might be explained by brief temporal windows “glimpses”, where 

the acoustic power of one of the sources dominates over the other source. This way, 

assuming there is enough of these glimpses, one could accumulate enough spatial 

information about several sources.  With respect to our ability to resolve a pair of two 

concurrent spatial sources, it has been shown that for broadband noise stimuli that were only 

distinguishable based on their location, subjects were able to detect spatial separation of 

sources when the stimuli were horizontally separated only about 20 degrees. However, larger 

separation was needed for more lateral locations (Best et al., 2004a).  

The spatial sensitivity of the central auditory system to multiple sources has been 

investigated by animal neurophysiological studies. In an experiment that involved two 

spatial sounds, Middlebrooks and Bremen (2013) found that neurons in cat’s primary AC 

preferentially synchronized to one of the two stimuli and in effect segregated the spatial 

streams. A rabbit study that investigated firing patterns of IC neurons in response to spatial 

auditory stimuli showed that the pattern activity decoder can correctly distinguish between 

two simultaneously presented stimuli and a single sound source (Day & Delgutte, 2013). In 

line with that, another study showed that the neural activity measured in monkey IC was 

alternating between patterns corresponding to each of the spatialized sounds to which 

monkeys were simultaneously presented (Caruso et al., 2018). 

Human spatial studies that employed multiple sources focused mainly on “stream 

segregation”. The process of stream segregation describes the ability to disentangle 

competing sounds that come from multiple sources (Bregman, 1994). It has been shown that 

several different sound characteristics play a role in this, namely, temporal envelope, 

fundamental frequency, phase spectrum as well as spatial acoustic cues contribute to the 

segregation process, see review by Moore and Gockel (2002). The spatial stream segregation 

in humans has been shown for both binaural cues ITD and ILD as well as for elevation, 

although the successful elevation-based segregation depended on the stimulus characteristics 

(Middlebrooks & Onsan, 2012; Carl & Gutschalk, 2013). Interestingly, it has been suggested 

that the spatial stream segregation is based on differences between spatial acoustic cues 

corresponding to concurrent sound sources but not on perceived difference in locations of 

the target and masker sources (Middlebrooks & Onsan, 2012). Consequently, the authors 

propose that different neural pathways might be involved in spatial stream segregation and 
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location discrimination. Somewhat in line with this are the results of a recent fMRI study 

(Shiell et al., 2018), who showed that human cortex encodes spatial separation between the 

sources rather than their absolute locations. 

2.4.5. Spatial Attention and Cocktail Party Scenario  

In the previous section, we have discussed the human ability to perceive and localize 

multiple sound sources. However, in the real-world, we typically pay attention to only one 

of the objects within the scene at a time. How attentional selection among multiple sources 

influences the auditory neural processing has long been investigated mostly in the context 

of “cocktail party”, which describes a situation when one is attending a speaker in the 

presence of other competing speakers (Cherry, 1953). In such situations, it has been shown 

that the low-frequency neural activity dynamically tracks predominantly the envelope of the 

attended speech stream and to a lesser extent the unattended stream (Ding & Simon, 2012a; 

Mesgarani & Chang, 2012; O'Sullivan et al., 2015).   

Several studies employed a cocktail-party experiment with multiple competing sources that 

required listeners to perform a spatial task, and identified that PT and posterior STG 

(Zündorf et al., 2013; Zündorf et al., 2014; Lewald & Getzmann, 2015) regions are involved 

in selective spatial attention. An EEG study (Gamble & Luck, 2011) used a paradigm, where 

subjects indicated whether one of the two simultaneously presented sounds was a target 

stimulus. The study identified a prominent ERP component reflecting allocation of selective 

attention named N2ac (N2-anterior-contralateral) with latency around 350 ms post-stimulus, 

which was calculated as the difference between responses to left- and right- spatialized 

targets. The N2ac component was as well observed in later studies that involved similar 

experimental paradigms (Lewald & Getzmann, 2015; Lewald et al., 2016). In addition, the 

latter study reported a longer latency component, LPCpc, which was also suggested to reflect 

attention allocation.  See figure 2-17 that shows the morphology of the N2ac and LPCpc 

components. 
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Figure 2-17. N2ac and LPCpc subcomponents of the difference evoked response that was 

obtained by subtracting responses to spatial target stimuli (left minus right) in multi-speaker 

condition. From Lewald et al. (2016) 

Along with the N2ac and LPCpc components, it has been also found that the power of alpha 

EEG (8-12 Hz) reflects the locus of deployed attention. Specifically, it has been shown that 

the posterior alpha power increases ipsilaterally and decreases contralaterally to the location 

of the attended stimuli. This effect has been demonstrated first for visual (e.g. Worden et al., 

2000; Kelly et al., 2009) as well as for spatial auditory stimuli (Kerlin et al., 2010; Wöstmann 

et al., 2016; Wostmann et al., 2018).  See an example of auditory alpha lateralization in 

figure 2-18. 

 

Figure 2-18. Topographic map of the attentional modulation of the alpha power (8-12Hz) 

during an auditory selective attention task. The attentional modulation was calculated as 

the normalized difference in alpha power in responses to lateralized attended stimuli (left 

minus right). From Wöstmann et al. (2016) 
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2.4.6. Auditory Motion Sensitivity 

In the visual system, there are specialized low-level motion detectors that are direction- and 

velocity- sensitive (Borst & Egelhaaf, 1989). In the auditory domain, the existence of such 

low-level detectors has not been confirmed. Instead, it might be that we perform a higher-

level motion detection based on already extracted sound source location data. However, how 

this higher-level motion perception might work is under debate (Carlile & Leung, 2016). 

Based on psychophysical experiments, (Grantham, 1986; 1997) proposed a “snapshot 

hypothesis”, which states that the subject can infer the direction or extent of motion by spatial 

comparison of snapshots taken at the endpoints of moving trajectories. Therefore, the 

auditory system does not need to have motion detectors per se but can simply rely on the 

same neural structures that are used for localization of non-moving sources. However, this 

theory in its original form does not explain results from psychophysical studies that found 

sensitivity to the source position between the trajectory endpoints (Perrott & Marlborough, 

1989), and sensitivity to sound acceleration (Perrott et al., 1993). These latter findings 

instead support the existence of spatialized motion detectors within the auditory system. 

Many neurophysiological studies found that neurons in the auditory system are sensitive to 

moving stimuli. At the subcortical level, it was found that neurons in IC are sensitive to 

stimulus dynamics i.e., their activity depends on prior stimulation (Spitzer & Semple, 1991; 

Spitzer & Semple, 1998).However, McAlpine et al. (2000) argued that this effect could be 

explained by adaptation and does not necessary imply motion sensitivity in the form we 

observe in the visual system. Human imaging studies investigated neural responses to 

moving sound stimuli and found that posterior temporal areas, planum temporale and IPL 

are involved in motion processing (Griffiths et al., 1998; Baumgart et al., 1999; Griffiths & 

Green, 1999; Griffiths et al., 2000; Pavani et al., 2002; Warren et al., 2002; Krumbholz et 

al., 2005a; Poirier et al., 2005; Krumbholz et al., 2007; Alink et al., 2012; Poirier et al., 

2017). In addition, the majority of studies found the neural responses to moving stimuli to 

be different (stronger) in comparison to responses to “corresponding” static stimuli. This 

could be interpreted in such a way that supports the possibility of exclusive motion sensitive 

structures within the auditory system. However, comparisons between moving and static 

sounds are questionable from the methodological point of view, since static stimuli are 

always somewhat impoverished relative to moving stimuli. See (Smith et al., 2004; Smith et 

al., 2007) for evidence against the existence of spatialized motion detectors. 

The existence of the auditory motion aftereffect (Grantham & Wightman, 1979; Grantham, 
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1989; Dong et al., 2000), which is analogous to the “waterfall effect” in the visual domain, 

might be considered as evidence in favour of specialized motion sensitivity. This 

phenomenon occurs after adaptation to repeated moving adaptor stimuli, which cause 

subsequent static probe stimuli to be perceived as moving in the opposite direction to the 

adaptor. Interestingly, Magezi et al. (2013) showed that the EEG correlates of auditory 

motion aftereffect are not direction selective i.e. the adaptor motion direction did not matter.  

To summarize, humans are sensitive to moving sound and its properties like direction, 

velocity and acceleration. However, the exact neural mechanisms underlying motion 

sensitivity are unclear and although several models of motion perception have been 

proposed, there is no consensus on this matter. More information on auditory motion 

processing can be found in reviews by (Warren et al., 2002; Neuhoff, 2004; Ahveninen et 

al., 2014; Middlebrooks, 2015; Carlile & Leung, 2016). 

2.4.7. Sound Velocity Sensitivity 

There are several psychophysical experiments showing that we are able to resolve the 

velocity of moving sound (Chandler & Grantham, 1992; Carlile & Best, 2002; Kaczmarek, 

2005), and that we can also discriminate between accelerating and decelerating sounds 

(Perrott et al., 1993). However, physiological evidence for motion and velocity sensitivity 

of neurons is lacking and it is often argued that the velocity is estimated based on location 

cues (Locke et al., 2016)  

A handful of neurophysiological studies investigating evoked responses to motion onset 

found that latency and amplitude of the motion related component of the response is 

dependent on the stimulus velocity (Makela & McEvoy, 1996; Xiang et al., 2005; Getzmann, 

2009). Specifically, the response had a shorter latency and larger amplitude with increasing 

velocity. This is also in line with a psychophysical study that employed a reaction time task 

and found that listeners responded faster to higher velocity sounds (Getzmann, 2008). In 

addition, Getzmann (2009) found that responses exhibited larger contralaterality and right 

hemispheric bias for the higher-velocity stimuli and suggested that a different mechanism 

might be involved in fast- and slow- motion processing.    

Compatible with these results, an fMRI study by (Meng et al., 2016) compared neural 

responses to slow and fast-moving sounds and found that the higher velocity sounds cause 

stronger activation of PT and increased activation of premotor areas. The authors 

hypothesised that premotor areas might be engaged in preparation of head movements, 

which are typically performed for higher velocity sounds. To the best of our knowledge, 
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neural sensitivity to sound acceleration has not been investigated. 

2.5. Summary  

In this chapter, we have first introduced acoustic cues that are used for sound localization, 

namely binaural interaural time- and level- differences (ITD and ILD) as well as monaural 

spectral cues. Next, we provided an introduction on neuroimaging techniques with emphasis 

on electroencephalography (EEG), which is a technique we employed in this work. We have 

then described the basic principles of traditional event-related (ERP) analysis of EEG data 

and discussed details of more advanced model-based EEG prediction (forward mapping) and 

stimulus reconstruction (backward mapping) techniques that are used throughout this work.  

In the following section, we have reviewed the neural representation of auditory space. First, 

we have briefly introduced spatial processing at the subcortical level where the spatial 

acoustic cues are extracted and processed in functionally separate pathways. Next, we 

discussed how auditory space is represented at the cortex. Specifically, we have identified 

cortical regions of the dorsal auditory stream that are sensitive to sound source location. We 

then provided an overview of the current literature on cortical encoding of sound location, 

which indicates that the sound position is represented by some form of population neural 

coding rather than topographically as is often seen in other sensory systems. However, the 

exact details on how auditory space is cortically encoded are unknown. 

In the next sections, we discussed how we localize sound in more naturalistic scenarios with 

multiple overlapping sources. We describe how spatial acoustic cues help to separate 

overlapping sources from the mixture of sounds. And we also discuss how spatial attention 

help us to select the most relevant source and what are the neural correlates of selective 

attention.  

Finally, we reviewed literature on auditory motion processing, which suggests that we likely 

do not have low-level motion detectors but rather analyse motion using the same neural 

structures that are used for sound localization. Nevertheless, it appears that the cortex is 

modulated by motion as some cortical regions respond differently to static and moving sound 

and a small number of studies have reported cortical sensitivity to motion velocity. 

In the following chapter we present the results from our first study which investigated the 

cortical tracking of the azimuthal time-series of a sound applying the methods described 

earlier in this chapter. 

 



 

 

35 

 

 Decoding the Trajectory of Continuously 

Moving Sound Source 

3.1. Introduction 

In chapter 2.4, we have discussed that auditory space is encoded by broadly tuned neurons 

within each hemisphere of auditory cortex, which are activated primarily by sounds coming 

from the contralateral hemifield. This was shown in mammals (Middlebrooks & Pettigrew, 

1981; Stecker et al., 2003; Werner-Reiss & Groh, 2008; Ortiz-Rios et al., 2017), and in 

humans (Palomaki et al., 2000; Krumbholz et al., 2005b; Palomaki et al., 2005; McLaughlin 

et al., 2015; Derey et al., 2016).  

At a more fundamental level, there is uncertainty as to whether this contralateral neural 

tuning applies both to ILD and ITD cues (Johnson & Hautus, 2010; McLaughlin et al., 2015), 

and whether these cues are processed independently at the level of cortex (Ungan et al., 

2001; Altmann et al., 2007; Johnson & Hautus, 2010; Edmonds & Krumbholz, 2014; 

Higgins et al., 2017).  

It is unclear how this distributed opponent encoding might reflect the dynamics of sound 

motion. EEG studies have shown that the brain responds to a sudden stimulus motion onset 

(MOR) (Krumbholz et al., 2007; Getzmann & Lewald, 2010; Getzmann, 2011); or to an 

onset of mismatching moving stimuli (MMN) (Altman et al., 2010; Shestopalova et al., 

2012). Nevertheless, as these studies employed only transient and discretized stimuli with 

abrupt sound energy and motion onsets, it remains unknown whether cortex tracks spatial 

changes in more natural auditory situations, where sound stimulus and its movement are 

continuous. In order to address this issue, we have designed a study that consist of two 

experiments:   

In Experiment 1, we aimed to use a model-based decoding method, which we introduced in 

section 2.3.5, to attempt to learn whether the cortex reflects continuous, time-varying 

location of a moving sound source. This builds up on previous spatial studies that used short 

and often static discrete sound stimuli to investigate sound location encoding in humans. To 

test this, we presented subjects with HRTF- spatialized noise stimuli that was perceived to 

be randomly moving in the horizontal plane while we recorded their EEG. Next, we 

attempted to build a reconstruction model, that would predict the sound trajectory from the 

EEG data. 

Experiment 2 was aimed to test whether the sound encoding relies on sound amplitude 

envelope fluctuations and to address a question whether we encode ITD and ILD using the 
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same cortical structures. In this experiment, we employed the same stimulus-reconstruction 

approach but used spatially impoverished ITD- or ILD- only pulse stimuli, which were again 

simulating random sound source motion in the horizontal plane. 

Previously, we have shown that we can successfully predict positions of static noise bursts 

using a linear classifier (Bednar et al., 2017). However, to the best of our knowledge this is 

the first study to attempt to “decode” EEG signals to determine the time-varying location of 

a moving auditory input. Such decoding approaches have been used previously for stationary 

auditory inputs, based on their intensity (Lalor et al., 2009; Mesgarani et al., 2009a) and to 

assess how attention is deployed in complex environments (Ding & Simon, 2012a; 

O'Sullivan et al., 2015). 

The results of this study were published as a research article: Bednar, A., & Lalor, E. C. 

(2018). “Neural tracking of auditory motion is reflected by delta phase and alpha power of 

EEG.” NeuroImage, 181, 683-691. 
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3.2. Material and Methods 

Participants. In total thirty-three participants (median = 21 years; min = 18 years; max = 27 

years; 22 females; 26 right handed) participated in this study with informed consent. Sixteen 

subjects took part in the first experiment and seventeen in the second. All subjects reported 

no neurological diseases and normal hearing. The experiments were conducted in 

accordance with the Declaration of Helsinki and were approved by the Research Subjects 

Review Board of the University of Rochester.  

Experimental procedure. Participants listened to auditory stimuli (described below) 

presented via headphones while performing a simple target detection task. The task required 

subjects to respond with a button press to infrequent tremolo targets (modulation frequency 

4 Hz, 2 s long), which were embedded in the stimuli. The number of targets within each trial 

ranged from 1 to 6 per trial. During the experiment, the subjects sat in a dark soundproof 

room. To minimize movement, the participants were asked to look at a fixation cross 

displayed on a computer screen directly in front of them. In both experiments, subjects 

undertook a total of 24 trials. Each trial lasted 3 minutes and consisted of one continuous 

sound stimulus that was perceived as randomly moving within the horizontal plane. The 

stimuli were different for the first and the second experiment. 

Stimuli. In both experiments, the auditory stimulus was perceived as moving within the 

frontal part of the horizontal plane. The trajectory was pseudo-random, simulating smooth 

but unpredictable sound movement. The stimulus and method of sound spatialization was 

different for the first and the second experiment. 

In the first experiment, the sound stimuli consisted of continuous pink noise with frequency 

roll-off 10 dB/decade. The sound source motion was implemented by virtual acoustic space 

(VAS) using Oculus Audio SDK, which simulates head-related transfer function (HRTF) 

filtering. The sound was spatialized so that it was perceived to be pseudo randomly moving 

on a semi-circular trajectory in the horizontal plane between -90˚ (left) and +90˚ (right) 

relative to the subject (see figure 3-1A). The simulated motion of the source had an average 

angular velocity of 80˚/second. Each trial (sound stimulus) lasted exactly 180 s. 

In the second experiment, we used trains of short pink noise bursts. The noise bursts were 

presented at a rate of 100 Hz, each burst lasted 1 ms and the silence interval between the 

bursts was 9 ms (see figure 3-1B). The stimuli were spatialized using either interaural level 

differences (ILDs) or interaural time differences (ITD). Similar to the first experiment, the 

acoustic cues were manipulated so that the sound appeared to be moving smoothly in a 

pseudo-random manner between the left and the right ear. The ITD cues varied between +/- 
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750 µs and ILD cues within the range of +/- 20 dB. From the total of 24 trials, 12 trials were 

spatialized using only ILDs and 12 trials contained only ITDs. The ILD and ITD trials were 

alternating. As in the first experiment, all trials were 180 s long.  

EEG data preprocessing. The EEG data were recorded using a 128-channel ActiveTwo 

acquisition system (BioSemi, The Netherlands) at a sampling rate of 512 Hz. Preprocessing 

was done in MATLAB using custom written scripts and the EEGLAB toolbox (Delorme & 

Makeig, 2004). The data were filtered between 0.02 and 30 Hz and downsampled to 64 Hz. 

Bad channels were interpolated from the surrounding channels using the spline function 

from EEGLAB. Finally, the data were re-referenced to the average of all electrodes. 

Data analysis. In order to assess if and how the location of the moving stimuli was 

represented in the EEG, we used a multivariate linear reconstruction model 𝑔 to reconstruct 

the sound stimulus trajectory 𝑆 from the neural data 𝑅 (see section 2.3.5 for more details). 

This mapping can be described as: 

𝑆̂(𝑡) = ∑ ∑ 𝑔(𝜏, 𝑛)𝑅(𝑡 + 𝜏, 𝑛),𝜏
𝑁
𝑛=1     Eq 3-1 

where 𝑆̂(𝑡) is the reconstructed estimate of the stimulus position at time 𝑡=1…T,  𝑔(𝜏, 𝑛) is 

the decoder model which is a function of the time lag 𝜏 and the electrode channel 𝑛=1…N, 

and 𝑅(𝑡, 𝑛) is the neural response at time 𝑡 and electrode 𝑛. 

The stimulus trajectory, 𝑆̂(𝑡), is a measure of the azimuth, where azimuth of +90˚ 

corresponds to the right and -90˚ corresponds to the left (see fig. 1A). The decoder 𝑔(𝜏, 𝑛) 

integrates EEG over time lags 𝜏 from 0 ms to 250 ms poststimulus to reconstruct each sample 

of the stimulus trajectory. This range of lags was selected as it typically encompasses major 

cortical ERP components to an auditory stimulus. As indicated by the equation, the decoder 

𝑔(𝜏, 𝑛) is essentially a multivariate impulse response function calculated from all 128 EEG 

electrodes and all time-lags simultaneously and the stimulus trajectory is estimated by 

convolving this impulse response with the EEG data. 

Leave-one-out cross-validation was used as a performance measure of our stimulus 

reconstruction. We fitted the model (decoder) on all but one trial and then evaluated this 

decoder on the remaining left out trial. Afterwards, we measured the similarity between the 

reconstructed and the original sound trajectory using Pearson’s r. We repeated this for each 

trial. These correlation coefficients were then averaged across trials for each subject. 

To measure the within-subject statistical significance of our decoding, we used a non-

parametric permutation approach (Combrisson & Jerbi, 2015). First, we established a null 
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distribution of the predictions by running the decoding process 1,000 times with randomly 

permuted stimulus trajectories. After, we used the tail of this empirical distribution to 

calculate the p-value for the original classification. This was done for trial-averaged data and 

for each subject separately. 

All comparisons on a group level were conducted using two-sided Wilcoxon signed-rank 

tests.  

 

Figure 3-1. Continuously moving stimuli. In Experiment 1, the pink noise stimulus was 

HRTF-filtered to be perceived as randomly moving on a semi-circular trajectory around the 

listener between the left and right. In Experiment 2 the noise stimuli were replaced by ILD- 

and ITD-only spatialized pulse trains. (A) Example of the sound trajectory. The sound source 

simulated random and smooth motion between the left (-90 deg) and the right (+90 deg) ear. 

(B) Sound stimulus waveform examples. Left: HRTF-filtered pink noise was used in 

Experiment 1. Center: Experiment 2- ILD condition used a pulse train with embedded level 

differences. Right: Experiment 2- ITD condition used a pulse train with introduced time 

differences between pulses. 

3.3. Results 

3.3.1. Experiment 1: Reconstructing azimuth of moving sound 

We investigated whether the scalp recorded EEG reflects the dynamics of a moving sound 

source in the horizontal plane. As we have done in the past for other sound features e.g. 

sound intensity (O'Sullivan et al., 2015), we used the decoding approach to reconstruct the 

time-varying azimuth of the moving sound. In the first experiment, the subjects listened to 
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spatialized continuous pink noise. We used VAS to simulate a moving sound source and so 

listeners had both binaural cues available, as well as spectral cues.  

Predicting stimulus trajectory from broadband EEG. Initially, we tested the feasibility of 

reconstructing the sound trajectory using broadband EEG (0.02-30 Hz). As input to the 

decoder, we used all 128 EEG channels and lags within the range of 0 and 250 ms. 

We used Pearson’s r to compare the reconstructed sound trajectories with the original ones 

(‘decoding’). The mean reconstruction correlation averaged across all subjects and trials was 

r=0.076. The mean chance-level correlation (‘control’) was r=0.008 and was computed by 

averaging the permutation test correlations across all trials and repetitions (figure 3-2A). On 

a group-level, the decoding correlation values were significantly larger than the control 

condition (p=4.4e-4). See examples of reconstructed trajectories in figure 3-2C. Although 

the reconstruction correlation values are relatively low, it is important to point out that they 

represent stimulus trajectory predictions from novel unaveraged EEG and should be 

interpreted in this context given that background EEG can be an order of magnitude larger 

than stimulus evoked activity. 

We also ran the analysis on a single-subject level. For all subjects, the correlations averaged 

across all trials were higher than the control condition, and for eleven out of sixteen subjects, 

this difference was significant (see figure 3-2B).  

 

Figure 3-2. Azimuth reconstruction from broadband EEG. (A) Decoding results shown as 
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an average across subjects and trials. The decoding performance is represented as 

Pearson’s r between the reconstructed and the original sound trajectory. As a control 

condition, to estimate whether our decoding is above the chance-level, we trained the 

decoders with randomly permuted trajectories between the trials. We found there is a 

significant difference between the decoding and the control condition (p<0.001). (B) 

Decoding results shown for each individual subject. The black bars show the reconstruction 

correlation values averaged across all trials. The white bars show the correlation values 

corresponding to the permutation test (‘control’).  (C) Examples of original sound stimulus 

trajectories along with their reconstructions shown for two different trial segments of one 

subject. The correlation values between the original and reconstructed trajectories are 

shown above the plots.    

 

 

Decoding at different EEG bands. The next stage of our analysis focused on investigating 

what EEG frequencies are best for stimulus angle reconstruction. We extracted different 

EEG bands using a sliding bandpass filter from 0.02 to 30 Hz which had a passband window 

with a width of 2 Hz. We then ran our decoding analysis using each of these EEG bands 

(figure 3-3A). The results revealed that the decoding is driven by the lowest frequency EEG 

delta band (0.02-2 Hz). We also ran the analysis after calculating the analytic envelope of 

the EEG signal using the Hilbert transformation following the bandpass filtering. In this 

case, the greatest decoding accuracy was achieved within the alpha band of the EEG (i.e., 

the EEG power in the range 8-12 Hz). In general, the performance decreased with increasing 

frequency, except for a small improvement around 18 Hz. In the following analyses, we 

therefore focused on the delta and alpha power EEG decoders, from now on abbreviated as 

‘Delta’ and ‘Alpha Pwr’.  

The decoding results for Delta and Alpha Pwr decoders are shown in figure 3-3B. The 

average reconstruction accuracies for both the Delta and Alpha Pwr were significantly above 

the chance level r=0.08, p=4.3e-04 and r=0.046, p=4.3e-04 respectively.  

The Delta decoder performed better than the Alpha Pwr decoder (p=9.7e-3). For the Delta 

decoder, eleven subjects had decoding accuracy significantly above the chance level. For the 

Alpha Pwr decoder, eight out of sixteen subjects showed significant decoding on single 

subject level. In comparison to broadband EEG decoders, both the Delta decoder and the 

Alpha Pwr decoder had higher reconstruction accuracies than the broadband EEG decoder 

(p=4.3e-4 and p=5.2e-3 respectively). 

To test whether delta and alpha power EEG carry independent information about the source 

azimuth, we combined the Delta and Alpha Pwr decoders. This was done by performing the 
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regression using 256 channels (128 channel delta EEG + 128 channels alpha power EEG). 

Then we compared its performance with each of the decoders separately. On average, this 

combined ‘Delta+Alpha Pwr’ decoder performed better than the individual Delta and Alpha 

Pwr decoders. However, this improvement was only significant when compared with Alpha 

Pwr decoder (p=4.3e-4), not with the Delta decoder (p=0.063).  

Spatiotemporal decoder characteristics. In order to obtain some insight into the possible 

cortical areas involved in encoding spatial information, we examined which scalp regions 

were modulated by sound source position and driving our decoding. To do this we plotted 

the forward transformations of the decoder weights ‘activation patterns’, which are more 

interpretable in terms of the underlying physiology (Haufe et al., 2014). As shown in figure 

3-3C, the Delta decoder showed strong activations over temporal scalp bilaterally, indicating 

the likely involvement of auditory cortex. The activation patterns were opposite between the 

hemispheres, i.e., an increase in activity in one hemisphere was accompanied by a decrease 

in the other. The Alpha Pwr decoder indicated more posterior activation. The stimulus 

caused a relative decrease in parietal activity contralateral to the stimulus position, and a 

relative increase over ipsilateral scalp. 

To further compare the Delta and Alpha Pwr markers of spatial audio encoding, we then 

evaluated the two performances of the two decoders at individual time lags. The temporal 

window of lags where the decoding was significantly above chance was relatively long. For 

the Delta decoder, the stimulus angle reconstruction was best when EEG was lagging the 

stimulus by 78 ms. For the Alpha Pwr decoder the responses were more delayed and 

decoding peaked at a lag of 187 ms (see figure 3-4A). The single-lag decoder activation 

patterns are shown in figure 3-4B.  
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Figure 3-3. Decoding azimuth for different EEG bands. (A) The decoding performance 

dependency on frequency bandwidth of raw EEG signal (black) and EEG envelope (grey). 

Significant frequency windows are marked using thick lines at the bottom of the plot 

(p<0.001). (B) Azimuth reconstruction accuracies shown for Delta (blue), Alpha Pwr (red) 

and Delta+Alpha Pwr (orange) decoders. All reconstruction accuracies were significantly 

above the chance level (p<0.001). *** indicates reconstruction differences at the level of 

p<0.01. (C) Head plots of decoder activation patterns are shown for Delta and Alpha Pwr 

decoders. 
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Figure 3-4. Single lag decoding with decoder activation patterns (A) Single lag decoding 

shows reconstruction correlations as a function of time lag between stimulus and EEG 

shown for Delta (blue) and Alpha Pwr (red) decoders. Significant time lags are marked 

using thick lines at the bottom of the plot (p<0.001). (B) Decoder activation patterns at 

selected time lags shown for Delta and Alpha Pwr decoders. 

We also investigated if we can reconstruct sound azimuth using EEG channels from a single 

hemisphere and tested whether this ‘simulated lesion’ results in a degradation of decoding 

performance in comparison to using information from the entire scalp. We did this by 

training our decoders on electrode subsets (n=55) covering either left or right scalp, ‘L-hemi’ 

and ‘R-hemi’, and comparing the results with the decoder that was trained on electrodes 

covering the entire scalp ‘Full Scalp’. To control for the greater number of electrodes in the 

‘Full Scalp’ decoder, this decoder was trained 1000-times on a random subset of 55 

electrodes from the entire scalp and the decoding results were averaged together. All midline 

electrodes (n=18) were omitted. 

For both ‘L-hemi’ and ‘R-hemi’ decoders using both delta and alpha EEG bands, the azimuth 

reconstructions were significantly better than chance level (all p<0.005). Also, the results 

showed that the ‘Full Scalp’ decoders were significantly better than the decoders trained on 

a single hemisphere. This was true for ‘L-hemi’ and ‘R-hemi’ using delta filtered EEG 

(p=8e-4 and p=0.016) and for the power of alpha EEG (p=4.5e-3 and p=6.1e-3). See 

decoding results in figure 3-5. 
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Also, previous literature has suggested a possible asymmetric representation of auditory 

spatial information across the hemispheres (Kaiser et al., 2000; Zatorre & Penhune, 2001; 

Krumbholz et al., 2005b). While our decoder activation patterns (figure 3-3C) didn’t show 

any obvious lateralization, we decided to test this formally by comparing the reconstruction 

accuracies between the left and the right hemisphere. The accuracies of these different 

reconstructions were not significantly different for either delta (p=0.26) or the power of 

alpha EEG (p=0.72). See figure 3-5.  

 

Figure 3-5. Reconstructing stimulus azimuth using a single hemisphere shown for Delta (A) 

and Alpha Pwr decoders (B). The decoders were trained using a subset of 55 EEG electrodes 

corresponding to the left hemisphere ‘L-hemi’ or the right hemisphere ‘R-hemi’.  ‘Full 

Scalp’ represents a decoder that was trained using 55 randomly selected EEG electrodes 

from the entire scalp covering both hemispheres (shown as an average of 1000 randomly 

selected electrode subsets). * ** *** indicates prediction differences at the level of p<0.05, 

p<0.01 and p<0.005 respectively. 

Sensitivity to specific position in azimuth. Finally, we tested whether the EEG tracking of 

sound position relies on specific position in space or whether it only exhibits sensitivity to 

stimulus laterality i.e., stimulus on the left or right. We used a forward modelling approach 

(see Crosse et al., 2016), in which we tried to predict previously unseen EEG data from the 

stimulus trajectory. Specifically, we used either full trajectory of the moving stimulus ‘Full’ 

(continuously varying angle between -90° and +90°, as shown in figure 3-1A) or left/right-

only trajectory ‘L/R’ (rectangular waveform indicating sound position within left or right 

hemifield).  

The EEG prediction accuracies for both Full and impoverished L/R trajectories are shown 

in figure 3-5A. The comparison of EEG prediction accuracies averaged across all electrode 

channels show we can predict the EEG signal significantly better using the Full than the L/R 

trajectory. This was shown for both Delta (p=6.4e-4) and Alpha Pwr EEG (p= 2.3e-3). The 

scalp distributions of EEG prediction accuracies for Full and L/R trajectories are shown in 
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figure 3-6B.   

 

Figure 3-6. Predicting EEG using full trajectory and left/right-only trajectory. To test 

whether the EEG tracking of sound position is sensitive to specific position in azimuth rather 

than just left/right lateralization, we used a forward modelling approach to predict 

previously unseen EEG from the trajectory data. The sound position was either represented 

as full trajectory ‘Full’ (continuously varying angle between -90° and +90°) or left/right-

only trajectory ‘L/R’ (rectangular waveform indicating sound position within left or right 

hemifield). (A) Comparison of EEG prediction accuracies averaged across all electrodes 

shown for both trajectories and Delta and Alpha Pwr EEG. ** and *** indicates prediction 

differences at the level of p<0.01 and p<0.005 respectively. (B) Topographical plots 

indicating EEG prediction accuracies across scalp shown for both trajectories and Delta 

and Alpha Pwr EEG. 

Correlation with behaviour. We compared the azimuth reconstruction accuracy with the 

performance in the tremolo target detection task, which subjects performed during the 

experiment. On a group level, there was no significant correlation between the trajectory 

reconstruction accuracy and behaviour performance (r=-0.21, p=0.44) and (r=-0.28, p=0.31) 

for Delta and Alpha Pwr decoders respectively. 

3.3.2. Experiment 2: Reconstructing ITD/ILD of moving stimuli 

In the second experiment, we examined which features of the acoustic signal were driving 

our stimulus trajectory reconstruction. We did so by running the decoding on spatially 

impoverished stimuli that contained either only ITD or only ILD acoustic cues. Similar to 

the first experiment we simulated smooth movement of the sound in the horizontal plane by 

manipulating these acoustic cues.  

We used the same approach as in the first experiment and we attempted to reconstruct 

stimulus position (time series of the ILD/ITD stimulus azimuth) from delta band and alpha 

power of EEG. We found that both ILD and ITD stimuli can be decoded with reconstruction 

accuracy significantly above the chance level. For Delta decoder, the mean reconstruction 

correlations of ILD and ITD stimuli were r=0.050, p=9.9e-3 and r=0.045, p=0.017. For 
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Alpha Pwr decoder, the reconstruction values were r=0.042, p=4.2e-4and r=0.034, p=3.1e-

3 for ILD and ITD respectively (see figure 3-7A).  

 

 

ILD/ITD decoder activation patterns. To characterize the spatial distribution of neural 

responses to each acoustic cue, we calculated the decoder activation patterns for ILD and 

ITD decoders (figure 7B). For both ITD and ILD trials, the Delta decoder weights had a 

lateralised distribution and the activation patterns had an opposite polarity between the 

hemispheres. Although being noisier, the activation patterns, and especially the patterns 

corresponding to ILD cue processing, resembled the activation patterns seen in the first 

experiment. For the Alpha Pwr decoders, the lateralized responses were again more 

posterior, showing opposite patterns between the left and the right hemispheres. In 

comparison to the ILD decoder, the ITD weights are less central and located closer to the 

temporal areas.  

 

Figure 3-7. Decoding ITDs and ILDs. (A) Reconstruction accuracy of ILD and ITD trials 

shown for delta (0.02-2 Hz) and alpha power EEG (8-12 Hz) shown along with chance level 

correlation values (‘control’). * ** *** indicates classification with decoding accuracy 

significantly above the chance level for p<0.05 p<0.01 and p<0.005 respectively. (B) Head 

plots of Delta and Alpha decoder activation patterns shown for ILD and ITD trials. 

Cross-modal decoding. We observed that the activation patterns for ILD and ITD decoders 

were relatively similar. We attempted to quantify this similarity by performing cross-cue 

classification e.g. evaluating ILD-trained model performance on ITD trials and ITD-trained 
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model performance on ILD trials.  

When evaluating the ILD-trained decoder on ITD data, the reconstruction accuracies were 

r=0.045, p=0.025 and r=0.032, p=3.6e-3 for Delta and Alpha Pwr. When evaluating ITD-

trained decoder on ILD trials, the decoding results were r=0.051, p=1.2e-3 for Delta and 

r=0.033, p=0.044 for Alpha Pwr. The reconstruction accuracies were significantly above the 

chance level for all conditions. Pair-wise comparisons between the within-modal (e.g. ILD 

decoder evaluated on ILD data) and cross-modal reconstruction (e.g. ILD decoder evaluated 

on ITD trials) are shown in figure 3-8. On a group level, there were no significant differences 

in reconstruction accuracies between the within-modal and cross-modal decoding.  

 

Figure 3-8. Comparison of within modal and cross-modal classification for Delta and Alpha 

Pwr decoders. The cross-modal classification was done by evaluating ILD-trained model on 

ITD trials and ITD-trained model on ILD trials. The p-values correspond to pairwise 

comparison between the within-modal and cross-modal decoders. 

Correlation with behaviour. We compared the azimuth reconstruction accuracy for both 

ILD and ITD trials with the performance in the tremolo target detection task. For ILD, there 

was no significant correlation between the trajectory reconstruction accuracy and behaviour 

performance (r=0.34, p=0.18) and (r=0.21, p=0.41) for Delta and Alpha Pwr decoders 

respectively. For ITD there was a significant correlation between azimuth reconstruction for 

Delta (r=0.55, p=0.02) but not for Alpha Pwr (r=0.30, p=0.23) decoders.  
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3.4. Discussion 

EEG decoding reveals cortical tracking of auditory motion. Recent studies have shown that 

cortex is sensitive to sound position, yet it remains unclear to what extent neural activity 

reflects the on-going dynamics of a moving sound. Here, we demonstrated that it is possible 

to decode the trajectory of a moving sound source from low frequency delta EEG (0.02-2 

Hz) and by the power of alpha EEG (8-12hz). This suggests that cortical activity tracks the 

time-varying azimuth of a moving sound. We also showed that this tracking does not rely 

only on the stimulus lateralization i.e., whether sound is on the left or right side of the 

acoustic space but is rather sensitive to specific sound source location in azimuth.    

Auditory motion is likely encoded in auditory cortex. We found that the low-frequency delta 

EEG (<2 Hz) track the fluctuating stimulus azimuth. This is somewhat in line with previous 

studies, which demonstrated that low frequency EEG oscillations (<10 Hz) entrain to 

temporal modulations of sensory input. Specifically, in the auditory domain, this was shown 

for the speech envelope (Lalor & Foxe, 2010; Luo et al., 2010). 

One reason why our decoding performs well in this relatively low and narrow frequency 

band might be explained by the frequency characteristics of the stimulus. The stimulus 

consisted of pink noise that was spatialized to be perceived as moving smoothly around the 

listener. To ensure that the stimulus movement would be comfortable to follow and 

perceived as continuous, the maximum angular velocity was kept under 280 deg/s. 

Translating this into the frequency domain, the spectral analysis of the stimulus trajectory 

time-series showed that the majority of signal power is distributed below 1 Hz (see appendix 

C). And if, as the results indicate, the cortical activity entrains to the temporally varying 

sound azimuth in a (quasi-) linear manner, then we would expect that the frequency band of 

EEG that encodes the stimulus would correspond to the frequency bandwidth of the stimulus 

trajectory.  

The delta EEG decoder weights indicated a contralateral bias. The topographical distribution 

was relatively symmetrical between the hemispheres but the polarity of weights was opposite 

between the left and the right hemisphere. Similar to this, predominately contralateral tuning 

was also shown for lateralized sounds in animals (Stecker et al., 2003; Stecker et al., 2005; 

Werner-Reiss & Groh, 2008; Ortiz-Rios et al., 2017; Poirier et al., 2017), as well as in 

humans  (Palomaki et al., 2000; Fujiki et al., 2002; Pavani et al., 2002; Palomaki et al., 2005; 

Getzmann & Lewald, 2010; Lewald & Getzmann, 2011; Derey et al., 2016). 

Using single time-lags to decode the trajectory showed that the sound position is best 

reconstructed when delta filtered EEG is lagging the stimulus trajectory by approximately 
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100ms. The cortical sensitivity to sound azimuth at this latency was also reported by previous 

studies (Palomaki et al., 2000; Fujiki et al., 2002; Palomaki et al., 2005; Lewald & 

Getzmann, 2011; Bednar et al., 2017). This would correspond to the latency of the N100 

waveform in classical ERP analysis, which is generated from Heschel’s gyrus and planum 

temporale (Godey et al., 2001). 

The second EEG measure that was found to track the sound azimuth was the parieto-occipital 

alpha power, which is often related to deployment of selective attention (Kerlin et al., 2010; 

Ahveninen et al., 2013; Wöstmann et al., 2016). Unlike these studies, our experiment did 

not explicitly employ selective attention as the subjects listened only to a single moving 

sound stimulus and no competing audio stream was present. However, our results are 

compatible with recent studies that reported lateralization of occipital alpha oscillations in 

response to salient but spatially unpredictable sounds (Störmer et al., 2016; Feng et al., 

2017). 

Different spatio-temporal characteristics of delta and the power of alpha EEG encoding 

suggests they potentially reflect different aspects of auditory motion processing. We tested 

this, by combining the Delta and Alpha Pwr decoders and comparing that with the results of 

the Delta and Alpha Pwr decoders individually. More specifically, if we could show that 

combining the two decoders led to improved decoding performance, we could argue that the 

two neural signatures carried complementary information. On average, the combined 

decoder performed better than the Delta and Alpha decoders separately. However, this result 

was only significant in comparison to the Alpha Pwr decoder. Therefore, we were unable to 

confirm if delta and alpha EEG each carry different information about the sound source 

position.  

We then investigated the involvement of each hemisphere in sound location encoding. As 

shown in a human lesion study (Zatorre & Penhune, 2001), a unilateral lesion caused 

impairment in sound localization ability. In line with that, we found that the azimuth 

reconstruction accuracies decreased when we trained the decoders on a subset of EEG 

channels covering either left or right scalp only. However, the performances of decoders that 

were trained on a single hemisphere were still significantly higher than the chance level. 

This suggest that the sound source position is at least partially encoded in a single 

hemisphere, however, the inter-hemispheric interactions are necessary to fully describe the 

sound source position. This is also compatible with the opponent-channel model (Stecker et 

al., 2005), which predicts that sound location is calculated based on a difference of contra- 

and ipsilaterally tuned neural channels and assumes that both contralateral and ipsilateral 
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channels are present within each hemisphere. 

Interestingly, the comparison of decoding performance between hemispheres did not reveal 

any significant lateralization, which is in contrast with a number of studies that suggested a 

larger involvement of right hemisphere in auditory localization (Burke et al., 1994; Kaiser 

et al., 2000; Zatorre & Penhune, 2001; Palomaki et al., 2005). However, our lack of any 

inter hemispheric differences may be due to the limited spatial sensitivity of our approach. 

Are we decoding sound position or just fluctuations in the envelope of the sound in each 

ear? 

It is possible that the decoding in our first experiment was not driven by sound position per 

se but by the fluctuating envelope of the signal that was caused by ILDs. In the second 

experiment, we sought to test this by investigating if we can decode sound position 

independently based on the type of the acoustic localization cue. Analogous to the first 

experiment, we simulated a smoothly moving sound source in the horizontal plane. 

However, the stimuli were spatially impoverished and contained either ILD or ITD cues. 

The results showed that we can indeed reconstruct the trajectory of a sound source containing 

only ILD or ITD cues from the EEG with accuracy significantly above the chance level. This 

indicates that we decoded genuine sound motion trajectory and not only sound envelope 

changes that correspond to varying ILDs. Interestingly, the performances of ILD and ITD 

decoders were relatively similar. The correlation values were generally lower than in the first 

experiment, which could be attributed to several factors. First, the spatially impoverished 

character of the stimuli possibly caused a reduction in neural responses compared with the 

stimuli that contained all forms of sound localization cues. This was shown in previous MEG 

studies (Palomaki et al., 2000; Palomaki et al., 2005). Another possible reason for the 

reduction in accuracy may be that there were two conditions (ILD and ITD) in the latter 

experiment and so the decoders were trained on only half the number trials. Indeed, when 

sub-sampling half the number of trials of Experiment 1 and comparing the decoding 

performance results with Experiment 2, we found only significant differences for delta EEG 

and ITD trials (p=0.048) but not for ILD trials and there were no differences for alpha filtered 

EEG (all p>0.05). 

ITD and ILD cues may not be represented independently at the level of cortex. To 

determine whether or not ILD and ITD are represented differently in the EEG activity, we 

performed cross-cue decoding. A similar approach to this was used in an fMRI study by 

(Higgins et al., 2017). The results presented here show that we can successfully exchange 

ILD- and ITD- trained models without any significant change in reconstruction accuracy, 
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despite only approximate ILD-ITD mapping. This suggests that activity at the cortical level 

represents sound location in an acoustic cue-independent manner. Or, considering the 

possibility that ILD and ITD are processed by separate cortical networks, the ILD and ITD 

may activate similar brain regions, whose separation is not detectable by EEG. Whether and 

where ITD and ILD cues integrate in human cortex is still under debate. And one could 

interpret the relatively inconsistent electrophysiological evidence seen to date as meaning 

that although cortical responses to perceptually matched ITD and ILD stimuli show some 

differences, a cortical region sensitive to sound location independent of the type of acoustic 

cue possibly exists. See (Ungan et al., 2001; Johnson & Hautus, 2010; Edmonds & 

Krumbholz, 2014; Salminen et al., 2015; Altmann et al., 2017; Higgins et al., 2017).  

Limitations. In this study, we showed that one could decode EEG signals to investigate the 

neural underpinnings of auditory motion processing. Nevertheless, there are several 

limitations in the current study. 

First, we discuss some limitations arising from the stimulus used. The stimuli were presented 

over headphones, and the motion was simulated by manipulating the acoustic cues that were 

embedded in the signal. In the first experiment, VAS was used which is based on non-

individualized HRTFs. In the second experiment, subjects were presented with artificially 

impoverished sound that contained only ILD or ITD binaural cues. Therefore, in both 

experiments, the fidelity of sound spatialization was imperfect and the neural responses we 

obtained might not fully represent processing of ‘true’ auditory motion as it would be when 

using free-field sound presentation.  

Second, the results of the cross-modal decoding in the second experiment should be 

interpreted with caution since the ITD and ILD were not perceptually matched. We used 

only approximate linear mapping between the acoustic cues where the maximum ITDs of 

+/- 750 µs of corresponded to ILD +/- 20 dB. The absence of evidence for a change in 

performance when exchanging decoders cannot necessarily be construed as evidence for 

absence of any difference in how ITD and ILD are represented in cortex. Especially given 

the inherent spatial limitations and signal-to-noise ratio of EEG.  

Finally, the sound trajectory time-series used here could also be improved to better elucidate 

the underlying neural dynamics of tracking sound motion.  In particular, the stimuli 

trajectories happened to be relatively strongly autocorrelated (see appendix D). This caused 

‘smearing’ of the temporal dimension of our decoding and prevented us from providing more 

detailed information on the neural dynamics of sound motion processing.  
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3.5. Conclusion 

We demonstrated that cortical activity fluctuates in a phase-locked manner with the 

dynamics of a moving sound source. Specifically, the delta phase and alpha power of EEG 

were both found to contribute to the decoding of sound azimuth. Moreover, using spatially 

impoverished stimuli, we found that this cortical tracking is equally present for both binaural 

acoustic cues ILD and ITD.  

3.6. Appendix 

 

Appendix A. Individual azimuth reconstruction accuracies shown for Delta (blue), Alpha 

Pwr decoders (red). The decoding performance is represented as Pearson’s r between the 

reconstructed and the original sound trajectory. As control condition, to estimate whether 

our decoding is above the chance-level, we trained the decoders with randomly permuted 

trajectories between the trials. * ** *** indicates within-subject classification with decoding 

accuracy significantly higher than the chance level of p<0.05 p<0.01 and p<0.005 

respectively. 
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Appendix B. Individual azimuth reconstruction accuracies shown for Delta (blue), Alpha 

Pwr decoders (red) for ILD and ITD trials. The decoding performance is represented as 

Pearson’s r between the reconstructed and the original sound trajectory. As control 

condition, to estimate whether our decoding is above the chance-level, we trained the 

decoders with randomly permuted trajectories between the trials. * ** *** indicates within-

subject classification with decoding accuracy significantly higher than the chance level of 

p<0.05 p<0.01 and p<0.005 respectively 
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Appendix C. Frequency spectrum of moving stimulus trajectory (azimuth time-series). 

Majority of stimulus trajectory power is distributed under 1 Hz. 

 

 

Appendix D. Autocorrelation plot of stimulus trajectory (azimuth time-series).  
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 Decoding Locations of Attended and 

Unattended Moving Sound Sources using EEG 

4.1. Introduction 

From section 2.4.6, we know that our auditory system allows us to identify the location of 

multiple sound sources in our environment and to follow those sources as they change 

position. This is behaviourally important in and of itself, but also helps us to attend to and 

understand speech in complex listening scenarios (Cherry, 1953; Shinn-Cunningham et al., 

2001).  

As we also discussed in chapter 2, while a substantial body of literature exists on how single-

sound source location is encoded in subcortical and cortical neurons, much work remains to 

be done to fully characterize how cortex represents of the location of multiple auditory 

objects in complex scenes. An animal study by Middlebrooks and Bremen (2013) showed 

that primary AC neurons preferentially synchronized to one of the two stimuli and, in effect, 

segregated the streams. From human studies on auditory scene analysis, we know that spatial 

cues alone can facilitate the stream segregation even when other cues are unavailable (Best 

et al., 2004b; Middlebrooks & Onsan, 2012; Carl & Gutschalk, 2013). This suggests we can 

process overlapping spatial cues corresponding to several sound sources and one can 

speculate that the spatial representations of multiple sound sources might exist within the 

ascending auditory pathway. However, it has been proposed that distinct neural pathways 

are involved in spatial stream segregation vs sound location processing (Middlebrooks & 

Onsan, 2012) and a recent fMRI study demonstrated that spatial separation between sources 

but not their locations can be decoded from the auditory cortex (Shiell et al., 2018).  

When investigating hearing in acoustic scenarios with multiple sources, it is also important 

to consider the effects of top-down attentional mechanisms on cortical responses. One of the 

most common examples of top-down selection in complex acoustic environments is the so 

called “cocktail party problem”, which describes a situation when one is attending to one 

speaker in the presence of other competing speakers (Cherry, 1953). In such situations, it 

has been shown that the auditory cortex primarily tracks the dynamic changes of the attended 

stream. Nevertheless, the unattended stream tracking is also reflected in the cortex although 

the tracking is weaker (Ding & Simon, 2012a; Mesgarani & Chang, 2012; O'Sullivan et al., 

2015).  

In our previous study (chapter 3), we showed that the cortex tracks the time-varying location 

of a continuously moving sound source and we demonstrated that it is possible to reconstruct 
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the sound trajectory from EEG using a linear reconstruction model. Here, we used the same 

stimulus-reconstruction framework to investigate how cortex encodes spatial information in 

a multi-source acoustic scenario and we wanted to assess the effect of attention on our ability 

to decode the locations of simultaneous, competing stimuli. We tested the trajectory 

reconstruction in two different experiments that differed in their stimulus and behavioural 

task: 

Experiment 1 employed continuous band-passed filtered noise stimuli with an active sound 

localization task. This builds on our previous study from chapter 3, where we successfully 

reconstructed the trajectory of noise stimuli in a single source scenario and we were 

interested in applying this approach in a multi-source environment using already tested 

stimuli. The active localization task was used as it was previously shown that spatial 

attention augments the location sensitive responses of the cortex (Zatorre et al., 2002; 

Ahveninen et al., 2006; Altmann et al., 2008).  

In experiment 2, we used competing speech stimuli. Unlike the noise stimuli, the speech 

stimuli had fluctuating envelope over time. This allowed us to test whether the EEG activity 

reflects sound azimuth of more complex and less artificial audio signals. The second reason 

to choose speech stimuli was to investigate if we can use location reconstruction approach 

to decode selective attention in a cocktail party scenario. For this experiment, we chose to 

use speech-comprehension task rather than a sound localization task as it more naturalistic 

in scenarios where subjects listen to speech and we also wanted to confirm that the location 

tracking does not rely on active localization task. In our previous study from chapter 3, we 

found that we can reconstruct a single sound source trajectory from the phase of delta (<2 

Hz) and power of alpha (8–12 Hz) EEG. Here, we predicted that in the multi-source scenario 

the delta and alpha components of EEG might be differentially sensitive to bottom-up source 

location and top-down attention: (1) We predicted that the delta EEG component would track 

the trajectory of both the attended and the unattended sources, however, the unattended 

would be tracked to a lesser extent. This was based on envelope-reconstruction studies, 

which showed that the low-frequency cortical oscillations predominantly synchronize with 

the temporal structure of the attended sound stimulus, and less with the unattended source 

(Ding & Simon, 2012a; O'Sullivan et al., 2015). (2) We predicted that the alpha power 

tracking would be restricted to the attended sound as it has a long-standing association with 

allocation of spatial attention (Kerlin et al., 2010; Wöstmann et al., 2016).  

The findings described in this chapter have been submitted as a research article: Bednar, A., 

& Lalor, E. C. “Where is the cocktail party? Decoding locations of attended and unattended 
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moving sound sources using EEG.” NeuroImage, in review. 

4.2. Material and Methods 

Participants. In total 29 participants (median = 20 years; min = 18 years; max = 30 years; 

12 females; 23 right handed) participated in this study with informed consent.  Nineteen 

subjects took part in the first experiment and ten in the second. Two subjects were excluded 

from the first experiment due to inability to perform the task. All subjects reported no 

neurological diseases and normal hearing. The experiments were approved by the Research 

Subjects Review Board of the University of Rochester.  

Experimental Procedures. Participants were presented with two simultaneous continuously 

moving auditory stimuli via headphones and were asked to pay attention to one of the 

presented audio stimuli, ‘attended’ stimulus, while ignoring the other ‘unattended’ stimulus.  

There were two experimental conditions, which differed in the type of auditory stimulus and 

the task performed by the subjects. In experiment 1, we used filtered noise stimuli and 

subjects performed a spatial task. In experiment 2, subjects listened to continuous speech 

stimuli and performed a speech comprehension task.  

In both experiments, the attended and unattended stimuli were spatialized to be perceived as 

randomly moving within the frontal part of horizontal plane using Oculus Audio SDK, which 

simulates head-related transfer function (HRTF) filtering. The pseudo-random trajectories 

for both stimuli were generated independently, simulating smooth but unpredictable sound 

movement. The stimuli were set to move on a semi-circular trajectory in the horizontal plane 

between -90˚ (left) and +90˚ (right) relative to the subject (see figure 1A and B). The 

simulated motion of the source had an average angular velocity of 50˚ / second. During the 

experiment, the subjects sat in a dark soundproof room. To minimize movement, the 

participants were asked to look at a fixation cross displayed on a computer screen directly in 

front of them. 

Experiment 1- Moving Noise Stimuli.  Subjects were presented with two moving concurrent 

band-passed noise stimuli, each having different spectral content, ‘Low’ and ‘High’. Both 

stimuli were continuous band-pass filtered noise with a bandwidth of 1 kHz, with the center 

frequency being 750 Hz for the Low stimulus and 4500 Hz for the High stimulus (see figure 

4-1C and D). Before each trial, the subjects were cued to attend to either the Low or High 

stimulus by text on the computer screen.  

The subjects performed a target localization task. The task required subjects to respond with 

a button press to infrequent tremolo targets (modulation frequency 4 Hz, 2 s long) in the 
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attended stream and indicate whether the target originated from the left or right side of the 

auditory space using left or right mouse buttons. After each trial, the subjects were shown a 

target detection score on the screen. The subjects undertook a total of 44 trials, each trial 

lasting 2 minutes.  The number of targets within each trial ranged from 1 to 4 per trial.  The 

experiment was divided into 4 blocks, each having 11 trials. In experimental blocks 1 and 3 

subjects attended to the Low stimulus, while in blocks 2 and 4 attended to the High stimulus.  

Experiment 2- Moving Speech Stimuli.  Subjects were presented with two different speech 

streams (audiobooks), each read by different male speaker. Silent gaps in the audio streams 

exceeding 0.5 s were truncated to 0.5 s in duration. See O'Sullivan et al. (2015) for details. 

Again, the stimuli were spatialized, so the speakers performed random continuous motion in 

the horizontal plane. Before each trial, subjects were cued to attend to one of the speakers. 

See figure 4-1D for example stimuli. 

The subjects performed a speech comprehension task and were required to answer between 

4 and 6 multiple-choice questions on both stories after each trial. Each question had 4 

possible answers. After answering the question, the subjects were shown correct answers. 

The subjects undertook a total of 40 trials, each trial lasting 1 minutes.  The experiment was 

divided into 2 blocks, each having 20 trials. For the first 20 trials the subjects paid attention 

to one speaker and for the next 20 trials they paid attention to the other speaker.  

 

 

Figure 4-1. Continuously moving auditory stimuli. In experiment 1 (noise stimuli) and 

experiment 2 (speech stimuli), the subjects were presented with two concurrent stimuli, 

which were HRTF-filtered to be perceived as randomly moving in the frontal part of the 

horizontal plane between -90 (left) and +90 degrees (right). (A) Example of stimulus 

trajectories shown as azimuth time-series. (B) Top view of the auditory scene. (C) Left: 
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Example waveforms of band-passed filtered noise stimuli that were used in Experiment 1. 

Right: Power spectrum density (PSD) shown for Low and High noise stimuli having 

bandwidth of 1kHz and center frequencies of 750 Hz and 4500 Hz respectively. (D) Left: 

Example waveforms of speech stimuli that were used in Experiment 2. Right: PSD shown for 

both speech waveforms. 

EEG data preprocessing. The EEG data were recorded using a 128-channel ActiveTwo 

acquisition system (BioSemi, The Netherlands) at a sampling rate of 512 Hz. Preprocessing 

was done in MATLAB using custom written scripts and the EEGLAB toolbox (Delorme & 

Makeig, 2004). The data were filtered between 0.02 and 30 Hz and downsampled to 64 Hz. 

Bad channels were interpolated from the surrounding channels using the spline function 

from EEGLAB. Independent component analysis (ICA) was used to remove eye movement 

artifacts. The components to be removed were preselected by the ADJUST algorithm 

(Mognon et al., 2011) and then marked for rejection by visual inspection. Finally, the data 

were re-referenced to the average of all electrodes. 

Multivariate backward modelling. We used the same multivariate linear reconstruction 

approach as in the previous study (chapter 3) to reconstruct the trajectory of the attended as 

well unattended sound trajectory from the EEG data. We also repeated this analysis where 

we focused on reconstructing the spatial trajectory of one stimulus, while controlling for 

(i.e., regressing out) the effect of the other stimulus on the EEG data. To do this we used a 

linear predictive (forward) model, which we described in detail in chapter 2.3.4: We first 

trained a forward model to predict EEG from a given stimulus trajectory. Next, we subtracted 

that predicted stimulus trajectory from the original EEG signal. Then we fed the residual 

EEG data into our stimulus trajectory reconstruction analysis described above.   

Decoding selective attention. In the second experiment, we attempted to use our trajectory 

reconstruction method to decode selective attention i.e. to determine which of the two 

speakers was attended from the EEG data. The traditional approach for determining the 

attended speech stream has been based on stimulus envelope reconstruction. Briefly, the 

stimulus envelope is reconstructed from the EEG and compared with actual attended and 

unattended speech envelopes using Pearson's r, then the envelope which has the largest 

correlation with the reconstructed envelope is deemed the attended envelope (e.g. O'Sullivan 

et al., 2015). 

Here, we used a similar approach as O’Sullivan, with a main difference that we were 

reconstructing sound trajectory instead of sound envelope: First, we used a leave-one-out 

cross-validation approach to train an “attended model”, which reconstructed the attended 

stimulus trajectory from the EEG, and used this model to reconstruct the trajectories of the 
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left-out trials. Afterwards, for each subject and each trial, we compared the reconstructed 

trajectory with the actual attended and unattended stimulus trajectories by calculating 

Pearson’s r, which we will refer to as rtraj-ttended and rtraj-unattended. We then used a linear 

discriminant analysis (LDA), which used rtraj-ttended and rtraj-unattended as input features, to 

determine whether the given trial was attended or unattended. Again, this was done using a 

leave-one-out cross-validation approach. Afterwards, the single-subject decoding accuracy 

was calculated as the proportion of correctly classified trials.  This was done for Delta and 

Alpha Pwr models separately. 

In addition, to get a better idea how the performance of trajectory-based attention decoders 

compares to envelope-based methods, we use the above mentioned approach to train an 

envelope decoder on the current dataset. That is, we repeated the analysis using the stimulus 

envelope instead of the stimulus trajectory and ran the LDA using renv-ttended and renv-unattended, 

values corresponding to the correlation values between the reconstructed envelope and the 

actual attended and unattended envelopes, as input features. As done by O'Sullivan et al. 

(2015), this decoding was performed on EEG that was filtered between 2 and 8Hz. 

Finally, we also tried to combine both the trajectory and envelope based attention decoders. 

To do so, we ran the LDA decoder using an input feature vector containing 6 correlation 

values: two pairs of rtraj-attended and rtraj-unattended corresponding to the Delta and Alpha trajectory 

decoders and renv-attended and renv-unattended from the envelope decoder. 

To statistically assess whether classification performance is above theoretical chance on a 

single-subject level, we used a nonparametric permutation test (Combrisson & Jerbi, 2015). 

First, to establish a null distribution of the classification accuracies, we repeated the LDA 

1000 times with randomly permuted classification labels. Afterwards, we used the tail of this 

empirical distribution to calculate the p‐value for the original classification. The group level 

statistical comparison was conducted using one‐sided Wilcoxon signed‐rank test by testing 

the actual classification accuracy of each subject against the chance level accuracy that was 

obtained by averaging the null-distribution.   
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Figure 4-2. Decoding EEG analysis. For both attended and unattended sound stimuli, we 

trained regression models to separately reconstruct the attended and unattended trajectory 

from EEG. The reconstruction models were using simultaneously information from all EEG 

channels and time lags corresponding to time window 0-250ms. The models were trained 

using leave-one-out cross-validation approach and the reconstruction accuracy of both 

trajectories was assed using Pearson’s r by correlating the actual and reconstructed 

trajectories. 

4.3. Results 

4.3.1. Experiment 1 – Noise Stimuli 

We investigated whether the spatial dynamics of multiple moving sound sources are 

separately reflected in scalp recorded EEG and were interested in how attention affects the 

neural tracking of those spatial dynamics. Specifically, we attempted to decode the 

trajectories of two simultaneously presented noise stimuli from EEG in a situation when one 

source was attended and the other unattended. Our hypothesis was that the delta phase and 

alpha power components of EEG might be differentially sensitive to bottom-up effects 

induced by spatial properties of the stimuli and top-down attentional selection effects.  

Behavioural results. During the experiment, subjects were asked to indicate the spatial 

location of tremolo targets within the attended audio stream. This was done to confirm that 

subjects attended the correct stimuli and to quantify how well subjects perceived the spatial 

aspects of the auditory scene. Subjects responded quite accurately to this challenging task 

with 72.8% of attended targets correctly detected. And they were successfully able to ignore 

the unattended with only 4.7% of targets in that stream being responded to as false alarms. 

The group-average sensitivity d-prime index was d=2.08. We also calculated d-prime 

sensitivity indices separately for low (d= 1.67) and high stimuli (d= 1.51) and found no 
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significant differences.  

Trajectory reconstruction results. First, we investigated what EEG signal frequency 

bandwidth would be the most informative for sound trajectory reconstruction. To test this, 

we filtered the EEG into different frequency bands and for each band we separately ran the 

trajectory reconstruction models. This was performed on EEG amplitude signal as well as 

on EEG power. Consistent with our previous single-source study (Bednar & Lalor, 2018), 

for both attended and unattended EEG the delta (0.05-2Hz) and the alpha power (8-12Hz) 

of EEG were the most informative for sound trajectory reconstruction (see figure 4-3). In 

further analysis, we therefore focused on these two EEG subcomponents. Specifically, we 

individually trained the trajectory reconstruction models on the delta phase and the alpha 

power of EEG, naming the models “Delta” and “Alpha Pwr” respectively.  

 

Figure 4-3. Experiment 1- Noise Stimuli: Trajectory decoding performance dependency the 

EEG bandwidth. The trajectory reconstruction accuracies shown for different frequencies 

of raw EEG signal (solid) and EEG power (dashed) for the attended (red) or unattended 

(blue) stimuli. The EEG power was calculated as an absolute value of a Hilbert transform 

of a raw EEG signal. Different frequencies of the signals were obtained using a sliding band-

pass filter with pass-band width of 2 Hz. 

Using both Delta and Alpha Pwr decoders, we found that we could reconstruct the sound 

trajectory of the attended noise source with accuracies above the chance level. For the 

attended sound source, the average reconstruction correlations were r=0.079, p=1.6e-4 and 

r=0.055, p=1.9e-4 for Delta and Alpha Pwr respectively. For the unattended sound source, 

the reconstruction accuracies were below the chance level, r=0.01, p=0.56 for the Delta 

decoder and r=0.013, p=0.13 for the Alpha Pwr decoder. The trajectory reconstruction 

accuracies showed strong effects of attention. Specifically, the reconstruction correlation 

values were larger for the attended sound source than the unattended for Delta (p=3e-4) as 

well as the Alpha Pwr of the EEG (p=6e-4). (See left panel in figure 4-4.) 

In our experiment, the attended and unattended source trajectories shared a common location 
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at times. In order to minimize any confounding effects that location overlap between the 

sources might have on our assessment of the reconstructed trajectories, we ran the decoders 

on the EEG that had the unattended trajectory partialled-out, i.e., that contained only spatial 

information about the attended source. Similarly, we evaluated the decoders on EEG that 

had regressed-out the attended trajectory (see methods section for details). When using EEG 

data with partialled-out unattended source, the trajectory reconstruction accuracy of the 

unattended source decreased to zero (trivially) and the reconstruction accuracy of the 

attended source did not significantly change. This pattern was the same for the Delta and the 

Alpha Pwr decoders. (See middle panel in figure 4-4).  

When we removed the attended trajectory information, the reconstruction accuracy of the 

attended trajectory decreased below the chance level (p<0.05). The accuracy of the 

unattended source trajectory reconstruction increased on average, however it remained 

below the significance threshold of p<0.05. Again, this effect was the same in both Delta 

and Alpha decoders. (See right panel in figure 4-4).    

 

Figure 4-4. Experiment 1- Noise Stimuli: Reconstructing sound trajectories of two 

continuously moving noise sources from EEG. Stimulus trajectory reconstruction accuracies 

are shown for the attended (“Att”, red) and unattended stimuli (“Unatt”, blue) for Delta 

and Alpha Pwr decoders. The reconstruction was performed on: (1) filtered-only EEG 

(“Raw”), (2) filtered EEG with partialled-out unattended stimulus trajectory (“Unatt 

Removed”) and (3) filtered EEG signal with partialled-out attended stimulus trajectory 

(“Att Removed”). Shaded gray area at the bottom of each plot indicates significance 

threshold (p<0.05). * ** *** indicates reconstruction accuracies at the level of p < 0.05, p 

< 0.01 and p < 0.005 respectively. 
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We then ran the decoders at different time-lags between the EEG and the stimulus trajectory 

using a sliding window of 50 ms. We found that the attended source decoding peaked at 

around 200 and 125 ms for Delta and Alpha Pwr decoders respectively. For the unattended 

source, the single-lag accuracy was below the significance level threshold. As discussed in 

Bednar and Lalor (2018), due to the relatively low velocity of the sound stimuli, the 

reconstruction accuracy remains high over a relatively large time-lag interval. 

For selected time-lags, we plotted the decoder activation patterns (see figure 4-5 below).  For 

the attended source, the Delta decoder showed strong activations over temporal scalp 

bilaterally. The activation patterns were opposite between the hemispheres, i.e., an increase 

in activity in one hemisphere was accompanied by a decrease in the other. The Alpha Pwr 

decoder indicated more posterior activation in parieto-occipital areas. The stimulus caused 

a relative decrease in activity contralateral to the stimulus position, and a relative increase 

over ipsilateral scalp. These activation patterns indicating activity over fronto-temporal areas 

strongly resemble the patterns we observed in our previous study that involved listening to 

single moving sound source (Bednar & Lalor, 2018). For the unattended decoder, although 

the activation patterns were also opposite between the hemispheres, the spatial distribution 

of activation patterns differed from the attended decoders and were generally noisier. The 

Delta decoder patterns were again more frontal and indicated a relative decrease in activity 

contralateral to the stimulus position. The Alpha Pwr unattended decoder patterns were 

localized more posteriorly and were more central in comparison to the attended Alpha Pwr 

decoder. However, one needs to be careful to interpret these patterns as the reconstruction 

accuracies of these models were below the chance level. Nevertheless, there was still some 

structure in the decoder weights, which might suggest some weak cortical tracking of the 

unattended source. 
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Figure 4-5. Noise Stimuli: Trajectory decoder activation patterns and single-lag decoding. 

The decoders were independently evaluated at single time-lags between the EEG and the 

trajectory signal. Middle: Reconstruction accuracies shown for each individual time-lag. 

Top and Bottom: Decoder activation patterns corresponding to different time-lags are 

shown for the attended (red background) and unattended speech stimuli (blue background). 

The decoder patterns for each time-lag were individually normalized. 

Correlation with behavioural results. We compared the behaviour and trajectory 

reconstruction data across subjects and found there was no significant correlation between 

the target detection sensitivity and trajectory reconstruction of the attended or unattended 

stimuli from the EEG data (all p>0.05).  

4.3.2. Experiment 2- Speech Stimuli 

In the second experiment, we were interested in whether we could employ a more naturalistic 

attention paradigm and attempted to reconstruct the trajectories of two concurrent non-

stationary speech sources (speakers). Also, in contrast to the first experiment, the subjects 

performed a non-spatial speech comprehension task. This was done to see if our spatial 

decoding measures were still affected by attention even when the task wasn’t specifically 

spatial. Finally, we tried using trajectory reconstruction to decode selective attention in 

multi-speaker environment and compare it with ‘traditional’ envelope-based cocktail party 

decoders. In addition, we tried to see if markers of spatial attention could be added to 

traditional cocktail party measures to improve the selective attention decoding performance. 
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Behavioural results. In the second experiment, subjects were asked to answer multiple-

choice questions on the attended and unattended story after each trial. On average, the 

subjects answer correctly 69.5% (p<0.005) of the questions from the attended story and 

25.1% from the unattended story, which was not greater than chance (25%, p>0.05). The 

number of correctly answered question was significantly higher for the attended than the 

unattended stream (p<0.005). 

Trajectory reconstruction results. Using the Delta decoder, we found we could successfully 

reconstruct the trajectory of the attended and unattended speech sources with reconstruction 

correlation values of r=0.057, p=4.8e-3 and r=0.024, p=0.032 respectively. For the Alpha 

Pwr decoder, the correlation values for the attended and unattended stimuli were r=0.042, 

p=4.2e-3 and r=0.019, p=0.5. The reconstruction values were significantly larger for the 

attended than the unattended speech stimuli only for the Delta EEG p= 0.019 but not for the 

Alpha Pwr decoder p=0.065. See figure 4-6 for reconstruction results. 

As in the first experiment, we attempted to reconstruct the attended and unattended sources 

in isolation by regressing-out the other source. Again, the reconstruction accuracies of the 

attended sound source were unaffected when we removed the trajectory information of the 

unattended source (see figure 4-6, middle panel). Importantly, when we removed the 

positional information of the attended sound source from the EEG, it was still possible to 

reconstruct the unattended source trajectory using the Delta decoder (r=0.023, p=0.032). 

This indicates that the above chance-level reconstruction accuracy of the unattended sound 

source trajectory was not simply caused by the time intervals where both sound sources were 

co-located.   
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Figure 4-6. Experiment 2- Speech Stimuli: Reconstructing sound trajectories of two moving 

speech sources from EEG. Stimulus trajectory reconstruction accuracies shown for the 

attended (“Att”) and unattended stimuli (“Unatt”) for Delta and Alpha Pwr decoders. The 

reconstruction was performed on: (1) filtered-only EEG (“Raw”), (2) filtered EEG with 

partialled-out unattended stimulus trajectory (“Unatt Removed”) and (3) filtered EEG 

signal with partialled-out attended stimulus trajectory (“Att Removed”). Shaded grey area 

at the bottom of each plot indicates significance threshold (p<0.05). * ** *** indicates 

reconstruction accuracies at the level of p < 0.05, p < 0.01 and p < 0.005 respectively. 

Figure 4-7 shows the activation patterns of the speech trajectory decoders and the single-lag 

decoding results. The attended decoder patterns indicate strong contralateral tuning and 

opposite activations between hemispheres and their morphology resembles the activation 

patterns from the first experiment.  

The activation patterns corresponding to the unattended decoder were relatively noisy and 

interestingly less lateralized than the attended decoder. Again, this should be interpreted with 

caution since the reconstruction accuracy of the model was weak. The single-lag decoding 

showed that the trajectory of the attended sound is best decoded at 195 and 250 ms for Delta 

and Alpha decoders respectively. In comparison to the first experiment, the Alpha decoding 

peaked around 125 ms later, which might be possibly attributed to the different nature if the 

attention task. 
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Figure 4-7. Experiment 2- Speech Stimuli: Trajectory decoder activation patterns and 

single-lag decoding. The decoders were independently evaluated at single time-lags between 

the EEG and the trajectory signal. Middle: Reconstruction accuracies shown for each 

individual time-lag. Top and Bottom: Decoder activation patterns corresponding to different 

time-lags are shown for the attended (red background) and unattended speech stimuli (blue 

background). The decoder patterns for each time-lag were individually normalized. 

 

Decoding selective attention at single-trial level using sound trajectory and envelope 

reconstruction. As the trajectory reconstruction appeared to be strongly modulated by 

selective attention, we tested the possibility of using the spatial decoders to decode selective 

attention in a cocktail party, i.e., to decode which of the two speakers was attended. We used 

an approach similar to (O'Sullivan et al., 2015), who used a method based on sound 

amplitude (envelope) reconstruction to decode selective attention from EEG at a single trial 

level.  

Briefly, our method was to train a trajectory reconstruction model on the attended speech 

stimulus. Next, using a previously unseen EEG trial, we reconstructed the stimulus trajectory 

and assessed the correlation between the predicted trajectory and each of the two original 

speech stimulus trajectories. Finally, we used LDA to classify the correlation values as 

attended or unattended speech stream. As well as this trajectory-based decoding, we also 
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used the same dataset to perform envelope-based decoding of selective attention, which is 

using the same regression approach, and compared the results. Finally, we also tried to 

combine the trajectory- and envelope- based decoder together. See methods section for 

details. 

On a group-level, the trajectory-based approach decoded selective attention with an accuracy 

significantly above the chance level for the Delta decoder with an accuracy of 66.75% (p=2e-

3), but not for the Alpha Pwr decoder, which reached 53.75% (p=0.28). The average 

decoding accuracy of the envelope decoder was 92% (p=9.8e-4) and was better than both 

trajectory decoders (p<0.005). Finally, the decoder that combined both trajectory decoders 

and envelope decoder reached average decoding accuracy of 93% (p=9.8e-4). This was on 

average higher decoding accuracy than for envelope decoder alone, however, the difference 

was not significant (p=0.53).Within-subject statistical analysis showed that for the Delta and 

Alpha Pwr trajectory decoders, the decoding accuracy was above the chance level for 6/10 

and 3/10 subjects respectively. For the envelope and combined decoder, the single subject 

data showed significant decoding accuracy for 10/10 subjects. See results in figure 4-8. 

 

Figure 4-8. Experiment 2- Speech Stimuli: Decoding selective attention using trajectory and 

envelope reconstruction models. The decoding was performed using Delta and Alpha Pwr 

trajectory decoders, envelope decoder and “Trajectory+Envelope” decoder that integrated 

both trajectory decoders and envelope decoder together. The decoding accuracy is shown 

for individual subjects (left) as well as group average (right). Subjects are sorted according 

to the performance of their envelope decoder.* ** *** indicates prediction differences at 

the level of p < 0.05, p < 0.01 and p < 0.005 respectively. 

4.4. Discussion 

Here in this study, we were interested in whether we can decode sound source locations from 

EEG when listeners were presented with two concurrent moving stimuli and attended to one 
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of them. Specifically, we tried to reconstruct the trajectory of attended as well as unattended 

stimuli. This was tested in two experiments which differed in their stimulus type and 

behavioural task: Experiment 1 employed filtered noise stimuli that were discriminable by 

their frequency content and subjects performed a spatial task. Experiment 2 involved 

listening to two different speakers telling a story and a speech comprehension task. 

The trajectory of an attended sound can be reconstructed from EEG even in the 

presence of another stimulus. Previously, it has been shown that a single-source location 

can been decoded from recorded neurophysiological data (Zhang et al., 2015; Derey et al., 

2016; Bednar et al., 2017). Moreover, in our previous study (Bednar & Lalor, 2018), we 

showed that in an acoustic environment with one continuously moving sound source, the 

cortex dynamically tracks the source’s location in time and demonstrated that the trajectory 

of the source can be reconstructed using a regression model. Importantly, we also 

demonstrated that the trajectory can be successfully applied to the ITD-spatialized pulse-

train, which shows that our trajectory reconstruction is not purely driven by envelope 

fluctuations. 

Here in this paper, we showed that in a more complex acoustic environment with two 

continuously moving sources, the sound trajectory of the attended sound source can be 

successfully decoded from EEG.  As in our previous study, we identified two distinct EEG 

components that tracked the location of the attended sound:  (1) low frequency delta (0-2Hz) 

component, which showed strong bilateral activation indicating involvement of auditory 

cortex and (2) the alpha power (8-12Hz) of EEG that was over the parieto-occipital region.  

The cortical activation within the delta band indicated the hemispheric preference for 

contralateral stimuli as shown previously (e.g. Palomaki et al., 2000; Palomaki et al., 2005). 

The alpha EEG activation pattern looked similar to patterns observed in studies that involved 

deploying spatial attention to auditory stimuli (Kerlin et al., 2010; Wöstmann et al., 2016). 

Active sound localization task is not required to successfully reconstruct the attended 

sound trajectory. It has been shown that paying attention to the location of a sound enhances 

neural tuning to this stimulus feature (Zatorre et al., 2002; Ahveninen et al., 2006; Altmann 

et al., 2008). In the first experiment, we successfully decoded the sound trajectory when 

subjects performed a spatial task. However, it was unclear whether it is possible to apply our 

decoding framework in situations where one does not perform an active sound localization 

task, as in this case one might expect reduced spatial sensitivity of the cortex. However, as 

we showed in our second experiment, which involved a non-spatial speech comprehension 

task, it is possible to reconstruct the attended sound trajectory even when subjects were not 
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tasked with localizing targets. This is in line with observations from an fMRI study by 

Deouell et al. (2007) that demonstrated that the cortex is spatially sensitive even when 

subjects do not perform a localization task.  

Do we track the position of the unattended sound? Previous studies showed that we are 

sensitive to spatial separation between sound sources within the auditory scene (Zatorre et 

al., 2002; Shiell et al., 2018). However, it has been unclear whether the exact location of the 

unattended source is represented within the auditory cortex. We tested this by attempting to 

reconstruct the unattended sound source trajectory from the EEG signal. 

The data from our first experiment, which involved noise stimuli, showed that the unattended 

sound source position cannot be successfully reconstructed from the EEG signal. However, 

in the second experiment that involved speech, the results indicated that the unattended 

source position can be successfully decoded using the delta EEG component. As one might 

expect, the unattended reconstruction accuracies were lower than for the attended stimulus, 

which is in line with studies that showed that the selective attention enhances the neural 

representation of the attended sound (Woldorff et al., 1993; Petkov et al., 2004).  

However, in both of our experiments, the trajectories of attended and unattended sources 

were partially correlated and at times shared the same location. Therefore, we were 

concerned that the decoding of the unattended sound source was possibly driven by the 

moments when the locations of both sound sources coincided. In order to test this possibility, 

we first regressed-out the attended trajectory from the EEG signal and then attempted to 

reconstruct the unattended sound source location. The results showed that it is still possible 

to reconstruct the unattended speech stimulus trajectory with a decoding accuracy above the 

chance level, which further supports the idea that cortex actually tracks the unattended 

speech source trajectory.  

Location tracking by delta and alpha power EEG possibly represent different 

mechanisms. We predicted that the Delta decoder might track attended as well as unattended 

trajectories and we expected that the unattended tracking would be weaker. This assumed 

that the delta EEG trajectory tracking would directly encode the spatial location of the 

stimulus and that that would just be modulated by attention, similar to amplitude envelope 

tracking by sub-alpha band (<8hz) EEG, which can be seen in cocktail party studies (e.g. 

O'Sullivan et al., 2015) that showed this pattern. In contrast, for the alpha power EEG 

component, which is often associated with spatial attention per se (Kerlin et al., 2010; 

Wöstmann et al., 2016), we hypothesized that it would track only the attended sound source 

trajectory. Indeed, the results from our second experiment, which employed speech stimuli, 
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support this dissociation of delta and alpha power components. However, for the noise 

stimuli (experiment 1), the decoding accuracy of the unattended sound source was below the 

detection level for both frequency components of EEG. 

A question remains then as to what the delta and alpha power EEG components actually 

represent in the context of sound location tracking. The morphology of the delta EEG 

reconstruction model indicated enhanced cortical responses contralaterally to the stimulus 

location. This suggests that the delta EEG response reflects intrinsic contralateral tuning of 

the auditory system that has been described in other studies (e.g. Palomaki et al., 2000; 

Lewald & Getzmann, 2011; Briley et al., 2013; Derey et al., 2016). With respect to the alpha 

EEG component, as we mention above, the lateralized posterior scalp alpha power is often 

related to auditory spatial attention. In line with this, we found that the alpha tracking is 

restricted to the attended sound source. This might suggest that our alpha power-based 

reconstruction reflects allocation of spatial attention rather than the spatial location of the 

sound source per se. Indeed the parietal distribution of our alpha power decoder weights 

supports the notion that this might reflect auditory spatial attention (Banerjee et al., 2011). 

However, we cannot completely rule out the possibility of a cross-modal effect with our 

auditory stimulus eliciting covert visual attention effects. In line with this idea, a recent study 

by Feng et al. (2017) showed that a spatial auditory cue caused posterior alpha lateralization 

and further demonstrated that the changes in alpha activity predicted the accuracy in 

subsequent visual task. The authors also speculated that the posterior alpha 

desynchronization might reflect a general priming mechanism that facilitates visual 

processing. 

Is the trajectory tracking motion specific? It has been discussed whether the moving 

sounds engage different cortical networks than static sounds. Neuroimaging studies have 

indicated that non-primary auditory cortex and particularly planum temporale (PT) is 

involved motion processing (Baumgart et al., 1999; Pavani et al., 2002; Warren et al., 2002; 

Krumbholz et al., 2005a). However, these structures often respond to spatial static sounds 

and so it is debatable as to whether they represent true motion detectors. Nevertheless, a 

recent study provided strong evidence for cortical motion sensitivity and showed that activity 

in posterior belt and parabelt cortical regions cannot be explained by static spatial and 

spectro-temporal processes (Poirier et al., 2017). Although the cortical motion sensitivity 

might have contributed to our trajectory reconstruction, we speculate that the spatial tracking 

as we observed is not motion specific. As we discussed above, the contralateral tuning of the 

cortex (Palomaki et al., 2000; Palomaki et al., 2005; Magezi & Krumbholz, 2010; Briley et 
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al., 2013) as well as alpha lateralization (Kerlin et al., 2010; Wöstmann et al., 2016; Feng et 

al., 2017) have been mainly demonstrated for static sound stimuli.  

Different spatial sensitivity to moving noise and speech stimuli. It has been proposed, 

that in a multi-source environment, listeners are able to collect spatial information from both 

sources during “glimpses” where sound envelopes do not overlap and this allows listeners 

to track the position of multiple sources (Yost & Brown, 2013). This could explain why we 

were unable to reconstruct the unattended sound trajectory in the first experiment, which 

used noise stimuli, and why we were successful in the second experiment that employed 

speech. Specifically, in the first experiment, the noise stimuli had relatively constant 

intensity and were ongoing during the whole trial length, which possibly did not allow to 

listeners to “collect” enough information about the unattended sound source. In contrast, in 

the second experiment that employed competing speech, the stimuli had varying intensity 

included periods of silence, e.g., breaks between words and sentences. Therefore, subjects 

could possibly utilize these glimpses to tracks both sources.  Another possibility as to why 

we were able to decode the location of the unattended speech but not the unattended noise 

stimulus is that it is easier to localize and follow speech than filtered noise due to having 

access to more spatial acoustic cues, as it has been previously shown that it is easier to 

localize amplitude modulated signals (Blauert, 1997).  

Potential for using stimulus trajectory reconstruction to decode selective attention. 

With more practical applications in mind, we tested whether one can use the trajectory 

reconstruction approach to build a decoder of selective attention, which can be used in 

cognitively steered hearing aids (Lunner et al., 2009; Mirkovic et al., 2015). We used the 

same approach as the envelope-based reconstruction decoder, which is capable of 

successfully solving the “cocktail party problem” on a single-trial level (O'Sullivan et al., 

2015). We demonstrated that it is possible to use the trajectory reconstruction approach to 

decode to which speaker the listener was attending with above-chance accuracy. However, 

note that this method assumes that the locations of speakers are known, which might not be 

easily achievable in practice. 

We also compared the results with the envelope-based decoder of selective attention. By a 

clear margin, the envelope-based model outperformed the trajectory reconstruction model, 

showing that the neural tracking of the attended stimulus envelope is more robust than that 

of the stimulus location. We also tried to combine the trajectory and envelope decoders 

together, however, although the combined decoder led to slightly better average accuracy, 

this gain was not significant. Nevertheless, unlike the envelope decoder, the trajectory 
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reconstruction model directly predicts the sound source angle, which can be theoretically 

used as control signal for cognitively steering hearing aids. Therefore, it might be of interest 

in future studies to investigate the possibility of integrating both types of decoders 

4.5. Conclusion 

We showed the trajectory of an attended sound source can be reliably reconstructed from 

EEG data and that the reconstruction results are robust to the presence of distracting auditory 

stimuli and the specific behavioural task. With respect to reconstructing the trajectory of the 

unattended sound, our data suggested that the cortical representation of the unattended 

source position is below detection level for the noise stimuli but we observed weak tracking 

of the unattended source location for the speech stimuli. Our data indicated that the ability 

to track the unattended sound source position in time was likely driven by temporal glimpses 

in which the sound intensities of the attended and unattended sources did not overlap. We 

also demonstrated that the trajectory reconstruction method can be in principle used to 

decode selective attention on a single-trial basis, however, its performance is inferior to 

envelope-based decoders. 
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 Higher Orders of Motion: Decoding 

Velocity, Speed and Acceleration 

5.1. Introduction 

It has been shown previously that the auditory cortex is sensitive to sound stimulus azimuth 

(see chapter 2.4.2) and we have shown in study 3 that the time-varying sound stimuli azimuth 

of a moving sound can be reconstructed from the EEG data. However, as we discussed in 

section 2.4.7, less is known about cortical representation of higher-order measures 

describing sound source motion such as velocity and acceleration and it is unclear whether 

these measures have representation in the cortex that is separate from azimuth encoding. 

With respect to our ability to perceive sound velocity, there are several psychophysical 

studies showing that we are sensitive to the velocity of moving sound (Chandler & 

Grantham, 1992; Carlile & Best, 2002; Kaczmarek, 2005). Furthermore, an fMRI study 

demonstrated that posterior superior temporal regions and premotor areas are possibly 

involved in velocity processing and showed increased activation in these structures for when 

contrasting fast- and slow-moving sources. In line with that, electrophysiological studies 

found that latency and amplitude of the neural responses to motion onset are modulated by 

stimulus velocity (Makela & McEvoy, 1996; Xiang et al., 2005; Getzmann, 2009). However, 

above-mentioned studies were limited as they used short discrete sound stimuli and so it is 

unclear whether the cortex respond to dynamic changes in velocity of a sound stimulus that 

is continuously moving. 

Although we can clearly perceive sound acceleration, i.e., we can also distinguish between 

sound sources that are speeding up or slowing down, to our best knowledge, the cortical 

encoding of sound acceleration has not been investigated in the past and the neural correlates 

of sound acceleration are unknown. 

In this study, we propose that our stimulus reconstruction framework may be suitable to 

investigate the neural sensitivity to velocity and acceleration. Specifically, we want to test 

whether the cortex reflects time-varying velocity and acceleration by reconstructing these 

measures from the EEG signal. Firstly, this method allows us to use continuous stimuli, 

which goes further than previous studies investigating neural responses to velocity using 

motion-onset evoked responses and short discrete stimuli. Secondly, as our reconstruction 

approach is more sensitive than traditional approaches of analysing EEG data, we consider 

it particularly suitable for exploratory investigation of sound acceleration encoding. Lastly, 

using the regression modelling approach, one can control for the potential correlation 
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between the variables and investigate each of the motion measures in separation. 

 

5.2. Material and Methods 

Participants. We used the dataset from our second study that employed simultaneous 

presentation of two noise stimuli, attended and unattended (see section 4.2).  Here, we chose 

to run our analysis only on the attended stimulus trajectory, which was found to have stronger 

cortical representation (see chapter 4 for more details). 

Note that originally, we attempted to answer these questions using the data from study 1 

(chapter 3). However, we found this dataset to be unsuitable for this analysis as the first and 

second derivatives of azimuth (velocity and acceleration) exhibited strong periodicity and 

were strongly autocorrelated. This has been fixed in the second study. 

Stimuli. For each stimulus trial, we extracted first and second differentials of the stimulus 

trajectory (azimuth time-series) i.e. angular velocity and angular acceleration, to which we 

will refer as ‘velocity’ and ‘acceleration’.  We also calculated stimulus speed as the absolute 

value of velocity.  See figure 5-1 below for comparison of these motion measures. 

 

Figure 5-1. Relationship between sound stimulus trajectory azimuth, velocity, speed and 

acceleration shown for ten seconds of an example stimulus. All measures were normalized 

to allow for comparison.  

EEG data preprocessing. The EEG data were filtered between 0.5 and 30 Hz and 

downsampled to 64 Hz. We also ran the analysis after calculating the analytic envelope of 

the EEG signal using the Hilbert transformation. 

Backward modelling. First, we attempted to use the backward modelling approach to 
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reconstruct different stimulus motion representations from EEG. The methodology was 

similar to the stimulus trajectory reconstruction framework that was used in our previous 

studies (e.g. see chapter 4.2). However, instead of azimuth, here we attempted to reconstruct 

other representations of motion, namely, velocity, speed and acceleration.  

The azimuth and motion measures, velocity, speed and acceleration were relatively highly 

correlated between each other (see figure 5-2 for cross-correlation plots). Therefore, it was 

important to control for this in our analysis and investigate these measures in isolation. We 

did so by repeating the reconstruction analysis for each of the measures while regressing out 

the contribution from the other motion measures on the EEG data.  Specifically, we used a 

linear predictive (forward) models (see Crosse et al., 2016): We first trained a forward model 

to predict EEG from the stimulus motion measure we wanted to partial-out. Next, we 

subtracted the EEG predicted by that stimulus measure from the original EEG signal and 

then we fed the residual EEG data into our stimulus reconstruction analysis.   

Forward modelling. In addition to the reconstruction analysis above, we also used EEG 

prediction approach (forward modelling) to validate our finding that speed and acceleration 

are independently represented in the EEG data. To do this, we built three different models 

that predicted EEG from sound stimuli based on: (1) azimuth, (2) combination of azimuth 

and speed, and (3) combination of azimuth, speed and acceleration. We reasoned that if 

speed and acceleration are represented independently from sound azimuth, we should 

achieve better prediction accuracies of EEG when combining these measures in comparison 

to using azimuth only. 
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Figure 5-2. Cross-correlation plots between azimuth, velocity, speed and acceleration. The 

plot shows the average cross-correlation between motion measures across all trials.  

5.3. Results 

Backward modelling. First, we attempted to reconstruct the sound azimuth and motion 

measures, namely, velocity, speed and acceleration, from the EEG signal when no variable 

was partialled-out. The reconstruction correlation values are summarized in table 5-1 and 

plotted in figure 5-3 along with the corresponding model activation patterns. All motion 

measures were reconstructed with accuracy better than the chance level from EEG as well 

as EEG power except for acceleration, which was successfully reconstructed only from EEG 

but not from EEG power. 
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Table 5-1. Reconstruction accuracies for different motion measures when all measures were 

present (not-partialled out) in the EEG signal. Upper number in each cell represents 

Pearson’s r correlation between the reconstructed and the actual stimulus and lower number 

in brackets is the corresponding p-value. Correlation values that are significantly above the 

chance level (p<0.05) are shaded grey.  

 Azimuth Velocity Speed Acceleration 

EEG 
0.0243 

(<0.001) 

0.0391 

(<0.001) 

0.0309 

(<0.001) 

0.0276 

(<0.001) 

EEG Power 
0.0328 

(0.001) 

0.0131 

(0.003) 

0.0271 

(0.011) 

0.0106 

(0.103) 

 

 

Figure 5-3. Reconstructing azimuth, velocity, speed and acceleration from the EEG data. 

Upper panel shows boxplot of average reconstruction accuracies for each motion measure. 

Lower panel shows corresponding model activation patterns, which were averaged across 

time-lags 0-250 ms. * ** *** indicates prediction differences at the level of p < 0.05, p < 

0.01 and p < 0.005 respectively. 

Then we repeated the analysis after controlling for the correlation between the motion 

measures (see cross-correlation plot in figure 5-2 above). When we partialled-out the 
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stimulus azimuth from the EEG data, the reconstruction accuracies for azimuth and velocity 

decreased below the chance level. However, speed and acceleration were successfully 

reconstructed from the data. See table 5-2 and left panel in figure 5-4.  

Table 5-2. Reconstruction accuracies for different motion measures when we partialled-out 

sound azimuth from the EEG data. Upper number in each cell represents Pearson’s r 

correlation between the reconstructed and the actual stimulus and lower number in brackets 

is a corresponding p-value. Correlation values that are significantly above the chance level 

(p<0.05) are shaded grey. Red text indicates the partialled-out variable. 

 Azimuth Velocity Speed Acceleration 

EEG 
0.0001 

(1.000) 

0.0046 

(0.982) 

0.0255 

(<0.001) 

0.0193 

(<0.001) 

EEG Power 
0.0003 

(1.000) 

0.0038 

(0.997) 

0.0274 

(0.007) 

0.0065 

(0.009) 

 

Finally, we also regressed-out all measures except acceleration i.e. azimuth, velocity and 

speed from the EEG data. As expected, the backward regression modelling revealed that 

azimuth, velocity and speed could not be reconstructed from the EEG data. However, we 

were able to reconstruct sound source acceleration with decoding accuracy above the chance 

level. See table 5-3. 

Table 5-3. Reconstruction accuracies for different motion measures when we partialled-out 

sound azimuth, speed and velocity from the EEG data. Upper number in each cell represents 

Pearson’s r correlation between the reconstructed and the actual stimulus and lower number 

in brackets is a corresponding p-value. Correlation values that are significantly above the 

chance level (p<0.05) are shaded grey. Red text indicates partialled-out variables. 

 Azimuth Velocity Speed Acceleration 

EEG 
0.0000 

(1.000) 

0.0022 

(0.997) 

0.0030 

(0.992) 

0.0074 

(<0.001) 

EEG Power 
0.0000 

(1.000) 

0.0005 

(1.000) 

0.0046 

(0.997) 

0.0086 

(0.001) 
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Figure 5-4. Reconstructing azimuth, velocity, speed and acceleration from the EEG data 

when we controlled for azimuth as well as azimuth, velocity and speed respectively. Upper 

panel shows boxplot of average reconstruction accuracies for each motion measure. Lower 

panel shows corresponding model activation patterns, which were averaged across time-

lags. * ** *** indicates prediction differences at the level of p < 0.05, p < 0.01 and p < 

0.005 respectively. 

Since we were successful in reconstructing the sound speed and acceleration independently 

even when controlling for other variables, we decided to run an additional analysis in order 

to obtain more information about the spatio-temporal properties of our speed and 

acceleration reconstruction models. 

We did that by running our decoders at individual time-lags between the stimulus and the 

EEG signal. See figure 5-5 below. For EEG, the plot of correlation values against time-lags 

showed that the acceleration, peaking at 160 ms, is represented in EEG at a shorter latency 

than the speed with peak at around 250 ms. For EEG power, this pattern was similar, 

however both speed and acceleration peaked later than for raw EEG. Specifically, the 

acceleration was best reconstructed at a time-lag of 190 ms and speed at 375 ms.  

With respect to the activation patterns of the speed reconstruction model, for raw EEG, the 

topography at around 200ms indicated negative activations around the temporal areas and 

positive weights centrally. Later, at around 600 ms the polarity of this pattern reversed. For 
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the EEG power models, we observed prominent negative central activation and positive 

weight that were distributed mostly in the posterior regions. This pattern was stable 

activation across the range of time lags.  

For acceleration reconstruction models, the activation pattern corresponding to the peak at 

200 ms showed negative weights in the central area and positive activation in the temporal 

and occipital regions. At 400 ms, the polarity of this activation pattern reversed.  The EEG 

power model showed positive central and negative posterior activation. This pattern was 

similar across wide range of time-lags, however, it was most prominent at latency of 200 

ms, which corresponded to the time-lag of the highest acceleration reconstruction accuracy.   



 

 

84 

 

 

Figure 5-5. Reconstructing sound speed and acceleration at single time-lags. The decoders 

performances were independently evaluated at single time-lags between the EEG and the 

stimulus. This was done for both velocity and acceleration using EEG as well as EEG power. 

Forward modelling.  In addition to our stimulus reconstruction analysis (backward 

modelling), we used an EEG prediction (forward modelling) approach to confirm our 



 

 

85 

 

previous results i.e. to test whether the velocity and acceleration are represented at the level 

of cortex. Specifically, we attempted to predict the EEG using the following representations 

of sound stimulus motion: (1) azimuth, (2) azimuth and speed “azimuth+speed” (3) azimuth, 

speed and acceleration “azimuth+speed+acceleration”. We reasoned that if speed is 

represented independently from sound azimuth, we should be able to reach better prediction 

accuracies of EEG when combining these measures in comparison to using azimuth only. 

Similarly, we would expect superior prediction accuracies when predicting the EEG using 

all three motion measures. Again, this was done for raw EEG as well as EEG signal power. 

See figure 5-6 below for the forward modelling results. The results showed that we can 

predict EEG from azimuth with average prediction accuracy of r=0.0206, p=1.9e-4. When 

using the combination of azimuth+speed, the prediction accuracy was r=0.0231, p=2.3e-4. 

Finally, combining all three measures, velocity+speed+acceleration, led to a prediction 

accuracy of r=0.0248, p=2.3e-4. As expected, for raw EEG, the combination of 

azimuth+speed was better than azimuth alone (p=0.004). And the combination of 

azimuth+velocity+speed gave superior EEG prediction accuracy to azimuth alone as well as 

to the combination of azimuth+speed (both p=0.001).  

We also predicted EEG signal power from the motion measures. The prediction values were 

r=0.0075, p=0.16 for azimuth, r=0.0074, p=0.001 for azimuth+speed and r=0.0085, 

p=0.0023 for azimuth+speed+acceleration respectively. The comparison between the 

models showed there are significant differences between the azi+speed and 

azi+speed+acceleration models (p=0.004). However, the azimuth+speed and 

azimuth+speed+acceleration were not significantly better than the azimuth alone. See figure 

5-6. 

Finally, we considered the possibility that the prediction accuracies of the combined models 

(azimuth+speed and azimuth+speed+acceleration) were better than the azimuth-only model 

due to the larger dimensionality of the combined models. To test this, we ran the EEG 

prediction using the combined models while permuting the speed and acceleration features 

across trials. Thus, we built models with the same dimensionality but the features (speed and 

acceleration) were not informative. We found that the accuracies of these permuted models 

were not significantly different from the performance of the azimuth-only model (all 

p>0.05), which indicates that the superior performances of the combined models were not 

due to their larger dimensionality. 

 



 

 

86 

 

 

Figure 5-6. Predicting EEG from azimuth, azimuth+speed and 

azimuth+speed+acceleration. The upper two panels show boxplots EEG and EEG power 

prediction correlation values for different motion measures. * ** *** indicates prediction 

differences at the level of p < 0.05, p < 0.01 and p < 0.005 respectively. At the bottom, the 

topographic plots show the prediction correlation values on the scalp surface.  

5.4. Discussion 

Previously, we have shown that the sound stimuli azimuth is represented in the EEG. Here, 

in this study, we aimed to test whether the cortex also represents higher order motion 

measures, namely velocity, speed and acceleration.  

Sound source speed is encoded in the cortex independently on sound source azimuth. 

We found that stimulus speed can be successfully reconstructed from the raw broadband 

EEG as well as from the EEG power. This was true even when we the sound azimuth was 

partialled-out from the EEG signal, which indicates that sound stimulus speed is cortically 

encoded independently from sound azimuth. Similarly, using a forward encoding model, we 
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found that we are able to better estimate EEG from the combination of azimuth and speed 

than from azimuth only time-series. This further demonstrates that the cortex reflects not 

only the moving sound source trajectory but is also sensitive to the speed of the sound.  

These results are in line with other neurophysiological studies that have shown cortical 

sensitivity to velocity using short discrete stimuli (Makela & McEvoy, 1996; Xiang et al., 

2005; Getzmann, 2009; Meng et al., 2016). In particular, our findings are similar to a study 

by (Getzmann, 2009), who compared motion onset responses to moving stimuli of different 

speeds. Specifically, the topography of the cP2 component of the motion onset response 

looked similar to our speed reconstruction model activation patterns. This component 

showed bilateral negative activation in parieto-temporal regions and positive activation over 

the central area. Also, the cP2 waveform peaked on average around 235 ms after the motion 

onset. Somewhat similar to this, we found that the single-lag reconstruction performance of 

our model was best at a time-lag corresponding to 250 ms. Our findings are also compatible 

with an fMRI study by Meng et al. (2016), who compared slow- and fast-moving sources, 

and found activation in posterior superior temporal regions and premotor ventral-rostral 

areas.  

Interestingly, we were able to reconstruct the sound source angular velocity only before we 

partialled-out the sound azimuth from the EEG data. In our experiment, the angular velocity 

was different from the speed measure only in its directionality. Therefore, we would expect 

that if we can reconstruct speed, it should also be possible to reconstruct velocity from EEG. 

We speculate that this somewhat unexpected outcome might be caused by the fact that the 

azimuth was highly correlated with velocity but not with speed (see figure 5-2).  

Finally, although we were successful in reconstructing the sound source speed from the EEG 

signal power with accuracy above the chance level, the activation patterns were noisier and 

difficult to interpret as they did not show any consistent pattern. To our best knowledge there 

is no literature on sensitivity of EEG power to velocity or speed and so it is difficult to put 

this observation in context.  

Sound acceleration can be reconstructed from EEG independently from azimuth and 

speed. Our backward mapping results showed that it is possible to reconstruct sound 

acceleration from EEG with above-chance accuracy even when we control for all other 

motion measures, namely azimuth, velocity and speed. Again, this was also confirmed by 

our forward modelling, which showed that EEG prediction accuracy is the best when we 

include sound acceleration as a predictor (along with azimuth and speed). 

As discussed above, psychophysics have shown that we are able to discriminate between 
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accelerating and decelerating sounds (Perrott et al., 1993). Nevertheless, acceleration 

sensitivity of auditory neurons has not been demonstrated and to our best knowledge no 

other neurophysiological study has shown neural sensitivity to sound acceleration and it is 

likely that sound acceleration estimation is a higher-level process based on already extracted 

sound source location data (Carlile & Leung, 2016).  

5.5. Conclusion 

Here, using continuous moving stimuli, we showed that the cortex is sensitive to the speed 

of sound stimuli. Also, using both forward and backward mapping, we showed that the 

cortical representation of sound source speed is at least partially segregated from the 

representation of sound source trajectory. Similarly, we also showed that the sound 

acceleration can be decoded from the EEG independently on other measures. However, 

given the lack of other evidence about cortical sensitivity to acceleration makes it difficult 

to put too much weighting on this finding.  
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 Decoding Sound Trajectory during Free 

Head Movement with VR 

6.1. Introduction 

The vast majority of studies have investigated spatial hearing using a fixed-head listening 

scenario, where listeners have been unable to move within the environment. However, this 

situation is highly unnatural and the inability to employ head movements causes sound 

localization deficits such as front-back confusion. See section 2.1. (Wallach, 1940; 

Wightman & Kistler, 1999). 

In humans, the ears have a fixed position on the head and so the spatial acoustic cues i.e. 

interaural level and time differences (ILD and ITD) as well as monaural cues are represented 

relative to the cranio-centric (head-centric) coordinate frame. When we move our head or 

move within the environment, the sound position relative to our head changes in the opposite 

direction to our motion.  Therefore, in order to localize a sound source with respect to our 

environment i.e. using a world-centric (allo-centric) coordinate frame and to keep a stable 

perception of the acoustic space, we need to integrate the information from our 

proprioceptive system to compensate for our movement. However, exactly how this 

transformation process is performed by the auditory pathway and whether the sound location 

is cortically represented using both cranio- and allo-centric coordinate frames is unclear. 

One of the main reasons for this is methodological. In order to investigate this, the cranio-

centric and allo-centric reference frames needs to be experimentally dissociated, which 

requires listeners to move or rotate within the environment. Unfortunately, fMRI and MEG 

imaging techniques require subjects to be stationary and although it is theoretically possible 

to use EEG, complications arise because of the electromyographic (EMG) motion artefacts 

e.g. see figure 1 in Altmann et al. (2009). As result there is only limited research on this 

topic. As we discussed in chapter 2, two EEG studies that have investigated auditory 

processing in experiments involving head rotation found that only cranio-centric and not 

allo-centric representations of location exist within human auditory cortex (Altmann et al., 

2009; Altmann et al., 2012). In contrast, another EEG study demonstrated that both cranio- 

and allo-centric reference frames are represented within the auditory cortex (Schechtman et 

al., 2012). As well as providing conflicting results, these studies were not based on direct 

EEG measures of sound source location per se, but rather reflected neural responses to 

unexpected location changes. 

Some work has been done on directly measuring cortical representation of both spatial 
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coordinate frames in a recent ferret study (Town et al., 2017), which tested spatial neural 

sensitivity in animals that were free to move during the recordings. This study found that the 

majority of neurons in auditory cortex encode sound location cranio-centrically, and a small 

number of neurons were sensitive to sound location in allocentric terms.  

Here, we aimed to investigate whether we encode sound location using cranio- and/or allo-

centric coordinates. This has been tested by reconstructing the sound source position with 

respect to both cranio- and allo-centric frames of reference in a situation where listeners 

move their head. If we could successfully reconstruct the sound position in given coordinate 

frame, it would indicate that the cortex encodes sound location using this frame of reference. 

As we mention above, the head motion was implemented as it is required to dissociate the 

coordinate frames. 

For this task we decided to employ the virtual reality (VR) headset OculusVR CV1 for 

stimulus presentation. This was used as it has a number of advantages over headphone or 

free-field (loudspeaker array) presentation: Firstly, the Oculus VR facilitates head position 

tracking, as it has low latency and high precision rotational and head tracking system so no 

external head-tracking system was needed. Second benefit is that the system automatically 

adjusts (compensates) the audio for head motion i.e. the perceived sound source location is 

unchanged with respect to the allocentric coordinates despite the user’s head motion. This 

technical feature was required in order to keep our experiment as naturalistic as possible.  

Note that the audio compensation for head movement is also possible to implement using 

standard headphones or loudspeaker arrays, however, it is technically very challenging. In 

addition, we were interested to test the combination of VR stimulus presentation and EEG 

recording in practice as consumer grade VR use for neuroscientific experiments is not very 

common and we had no previous hands on experience with it.  

 

6.2. Material and Methods 

Participants. In total eleven participants (median = 26 years; min = 20 years; max = 34 

years; 4 females; 8 right handed) took part in this study with informed consent. All subjects 

reported no neurological diseases and normal hearing. The experiments were approved by 

the Research Subjects Review Board of University of Rochester.  

Experimental procedure. Participants wore an OculusVR virtual reality headset (version 

CV1, https://www.oculus.com/rift/) and listened to spatial auditory stimuli presented via the 

embedded headphones while we recorded their EEG (see figure 6-1A). During the 
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experiment, the subject wearing the headset sat on a fixed desk chair in a dark soundproof 

room. The room was equipped with head tracking sensors of the OculusVR set and the 

subject’s position was recorded during the experiment. 

The experimental virtual environment was custom-developed using a Unity 3D development 

platform (https://unity.com).  The virtual environment consisted of a rectangular floor with 

green tiles and a clear blue skybox. The subject’s avatar was placed in the middle of the floor 

with a camera (avatar’s head) at a distance from the floor that corresponded to a sitting 

position (see figure 6-1B). The position of the virtual camera was linked to the position of 

the subject’s head in the real-world i.e. when the subject moved his or her head, the virtual 

camera performed the corresponding motion in the virtual world.  

There were two experimental conditions: (1) static head+moving sound and (2) moving 

head+ moving sound. There were 20 trials in each experimental condition, each trial lasting 

60 s. 

Condition 1. In the first condition, the subjects listened to moving stimuli while they were 

asked not to move their heads and look at the fixation cross. The fixation cross was shown 

in the middle of their field of view.  

The sound stimuli consisted of continuous pink noise, which was spatialized so that the 

sound was perceived to be pseudo randomly moving on a semi-circular trajectory in a 

horizontal plane between -90˚ (left) and +90˚ (right) relative to the subject. The sound 

trajectory was pseudo-random, simulating smooth but unpredictable sound movement. The 

sound source motion was controlled by the Unity Engine and Oculus Audio SDK. This 

condition was similar to our previous experiment, which was described in chapter 3- section 

3.2. 

Condition 2. In the second condition, the subjects listened to the same spatial sound stimuli 

as in condition 1, however, they were asked to move their heads at the same time. The head-

motion was indicated by a left- or right-pointing arrow which was shown in the middle of 

the field of view instead of the fixation cross (see 6-1B). For each time-frame, an arrow 

indicated the subject to move his or her head towards the desired position according to the 

predefined head trajectory.  The head-trajectory was predefined in a similar way as the sound 

trajectory i.e. smooth random motion within the horizontal plane between -90 and +90 

degrees. An example of a predefined and measured head trajectory is shown in figure 6-1C.  

As expected, the subjects responded to the arrows that indicated head motion with a delay. 

Figure 6-1D shows a cross-correlation plot between the predefined and measured head 

trajectory. As indicated by the peak of the cross-correlation plot, the measured trajectory was 
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lagging the predefined trajectory by 810ms. Also, as result of the head-movement, the sound 

position with respect to allo-centric and cranio-centric coordinate frames was dissociated. 

See figure 6-2 for an example of sound trajectory represented using both coordinate frames. 

Behaviour task. In both experimental conditions, the subjects performed a simple target 

detection task. The task required subjects to respond with a remote control button press to 

infrequent tremolo targets (modulation frequency 4 Hz, 2 s long), which were embedded in 

the auditory stimuli. The number of targets within each trial ranged from 1 to 4 per trial.  

 

 

Figure 6-1. Experimental setup with OculusVR virtual reality headset. (A)The subjects 

listened to spatialized stimuli over headset’s embedded headphones while we recorded their 

EEG using a 128-channel ActiView Biosemi acquisition system. (B) Subjects were asked to 

move their head as indicated by an arrow which was presented in the centre of the field of 

view. (C) Example of predefined (as indicated by the changing arrow) and measured head 

trajectory shown for a selected subject. (D) Cross-correlation plot between the predefined 

trajectory and measured trajectory shown as grand-average across all subjects. On average, 

the measured trajectory was lagging the predefined trajectory by 810 ms.    
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Figure 6-2. Example of head trajectory and sound trajectory represented in allocentric and 

egocentric coordinate frames. In experimental condition 2, the subjects were asked to move 

their head as indicated while they listened to the moving sound stimuli in the same time. The 

allo-centric coordinates represent location of the sound with respect to the environment and 

the cranio-centric coordinates with respect to the person’s head. 

EEG data preprocessing and analysis. The EEG data were pre-processed using the same 

pipeline as our previous experiment- see section 3.2. 

For the first experimental condition, which required subjects to keep their head still as they 

listened to a single moving sound source, we used the stimulus trajectory reconstruction 

approach as described in chapter 3. Briefly, we trained a backward model to reconstruct the 

sound trajectory from the EEG data.  

In the second experimental condition subjects listened to the spatial stimuli while they 

moved their heads. In order to control for the muscle artefacts caused by the head motion in 

the EEG signal, we partialled-out the recorded head trajectory from the EEG data.  To do so, 

we trained a forward model (see section 2.3.4 for details) to predict the EEG signal from the 

recorded head trajectory. As the head trajectory and sound trajectory were independent, this 

predicted EEG signal contained only information that was related to head motion itself i.e. 

mainly EMG activity caused by the neck muscles. Next, we obtained the residual EEG by 

subtracting this predicted EEG signal from the original signal.  Afterwards we ran our sound 

trajectory reconstruction on this “clean” EEG as in the first experimental condition. 

6.3.  Results 

Behaviour task. In both experimental conditions, the subjects performed a tremolo target 

detection task. For the first experimental condition, where subjects kept their heads static the 

mean average detection score was 91.82±1.54% (SE). For the second condition that required 

head movement, the targets were successfully detected with accuracy of 88.64±2.10% (SE).  
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A pairwise comparison using Wilcoxon signed rank test between the experimental 

conditions revealed no significant differences (p=0.353). 

 

Figure 6-3. Behaviour results. During both experimental condition, the subjects responded 

with a button press to a tremolo targets, which were embedded in the audio. No significant 

differences were found between the experimental conditions. 

Trajectory reconstruction analysis. For the first experimental condition (static head), the 

Delta decoder mean reconstruction accuracy was r=0.037, p=0.007. For the Alpha Pwr 

decoder, the reconstruction accuracy was r=0.026 and was not significantly above the chance 

level (p=0.18). See left panel in figure 6-4. 

For the second condition (moving head), we first ran the sound trajectory reconstruction 

analysis without controlling for EMG artefacts caused by the head rotations. This was done 

for sound source location represented using cranio- as well as allo-centric coordinate frames.  

The results showed that only the cranio-centric representation can be reconstructed 

significantly above the chance level from EEG for both Delta and Alpha Pwr decoders. 

Specifically, for the Delta decoder, the allocentric and cranio-centric sound trajectories were 

reconstructed with average accuracies of r=0.037, p=0.38 and r=0.097, p=0.002 respectively. 

For the Alpha Pwr decoder, the average reconstruction accuracies were r=0.019, p=0.68 for 

allocentric and r=0.12, p=0.001 for cranio-centric representation.  

In addition, to get an idea of how strongly represented the motion-related activity in the EEG 

signal was, we tried to reconstruct the head trajectory (rotation angle time-series) from the 

EEG data. For the Delta decoder, the average head trajectory reconstruction was r=0.28, 

p=5e-4. For the Alpha Pwr decoder, the reconstruction accuracy was r=0.27, p=1e-3. See 

right panel in figure 6-4. 
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Figure 6-4. Reconstructing sound and head trajectory from the EEG data. First boxplot 

(green) shows sound trajectory reconstruction accuracy for experimental condition 1 (static 

head). In this case the allo-centric and ego-centric coordinate frames were aligned. Second 

and third box (pink and blue) show sound trajectory reconstruction values from 

experimental condition 2 (moving head) with respect to allo-centric and ego-centric frames. 

The rightmost box (red) shows the head trajectory reconstruction accuracy for the second 

experimental condition.  

Importantly, the very large reconstruction values of the head trajectory from EEG show that 

the EMG artefacts caused by head turning were strongly represented within the EEG signal. 

And, as the cranio-centric sound-location is anti-correlated with head motion i.e. when we 

turn our head to the right, the sound source moves to the left with respect to our head, it was 

important to separate out the effects of sound source position and head motion on the EEG 

signal. Therefore, we partialled-out the head trajectory from the EEG signal and tried to 

reconstruct the sound source trajectory again (see methods section for details).  

After we partialled-out the head trajectory from the EEG data, the sound trajectory 

reconstruction accuracies dropped below the chance level. Specifically, the Delta average 

sound reconstruction values decreased to r=0.027, p=0.71 for allo-centric and r=0.027, 
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p=0.86 for cranio-centric representation.  For the Alpha Pwr decoder, the reconstruction 

accuracies were r=0.018, p=0.79 and r=0.017, p=0.86 for allo-centric and cranio-centric 

representations respectively. Also, as expected, the head trajectory reconstruction accuracies 

decreased below the chance level, showing that our partialling-out procedure was successful. 

See figure 6-5 for reconstruction accuracies.  

Figure 6-6 shows the model activation patterns for all decoders. For the static head condition, 

we expected the activation patterns to be similar to those from our first study (see chapter 

3). However, the Delta activation pattern was relatively noisy and did not show any 

consistent pattern. For the Alpha decoder, the topography looked relatively similar to our 

previous study, nevertheless, the reconstruction of this model was not significantly above 

the chance level and so one needs to be careful to interpret this. Similarly, it is difficult to 

comment on the decoder activation patterns corresponding to the moving head condition as 

the reconstruction accuracies in this condition were all not significantly above chance.  
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Figure 6-5. Reconstructing sound and head trajectory after we partialled-out the head 

trajectory from the EEG signal. First and second box (pink and blue) show sound trajectory 

reconstruction values from the experimental condition 2 (moving head) with respect to allo-

centric and ego-centric frames. The rightmost box (red) shows the head trajectory 

reconstruction accuracy for the second experimental condition after it was partialled-out. 

 

 

Figure 6-6. Activation patterns corresponding to sound and head trajectory decoders shown 

for Delta and Alpha Pwr after we partialled-out the head trajectory. The activation patterns 

were averaged across subjects and individually normalized. 

6.4. Discussion 

There were two main aims of this study. First, we were interested to see whether we can 

apply our trajectory reconstruction models in more naturalistic scenarios where subjects are 

allowed to move their heads and to test whether we can perform the reconstruction using 

cranio- and allo-centric representations of the sound. Second, we were interested to test the 

feasibility of using the Oculus Rift CV1 headset for stimulus presentation in an EEG 

experiment.   

The trajectory reconstruction in the static head condition was successfully replicated 

using delta but not alpha power EEG. In the first experimental condition, the subjects 

listened to a single moving sound moving sound and were instructed to not move their heads. 

By doing this, we aimed to replicate our previous study from chapter 3 and validate that we 

can use the OculusVR hardware for stimulus presentation in our experimental scenario. 

Interestingly, we found that we can reconstruct the sound trajectory significantly above the 

chance level using the Delta but not the Alpha Pwr decoder. This is in contrast with our 
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results from chapter 3, which showed that both of these EEG components can be used to 

reconstruct sound trajectory.  

In the current and the previous study, the sound stimuli were spatialized using the same 

method (Oculus Audio SDK). However, there were several differences in other aspects of 

the experimental design, which could explain the overall lower reconstruction accuracies 

and below-chance level performance of the Alpha decoder in the current study. The most 

obvious was the difference in the received visual input.  Specifically, in our previous study, 

subjects were sitting in a dimly lit room and were asked to look at a white fixation cross in 

the centre of a black computer screen. In contrast, the subjects in the current study were in 

the VR environment that was composed of a simple visual scene with a green rectangular 

floor and a blue skybox (see 6-1B), which was done to make the experiment more naturalistic 

and to make subjects feel immersed within the VR environment. This could result in the 

cortical responses in the current experiment being dominated by the visual input or more 

trivially, it is possible that that the subjects paid less attention to the auditory modality. 

A second factor that could contribute to this is that the current VR experiment had a shorter 

duration and so we collected less data than in our previous study. This could potentially 

cause a suboptimal fitting of the reconstruction models and consequently lower 

reconstruction accuracies. 

Finally, it is possible that the decreased reconstruction accuracy of the Alpha decoder was 

caused by the problematic head attachment of the OculusVR. Specifically, the attachment 

strap of the headset applies relatively large pressure on EEG electrodes around the parietal-

occipital region of the scalp, which is the area that contributes most to the Alpha decoder. 

Therefore, it is possible that this led to a decreased signal-to-noise ratio of EEG within this 

area and subsequently lower reconstruction accuracies of the decoder.  

Head movement substantially impairs sound location decoding with EEG. In the second 

condition, we attempted to reconstruct the sound source trajectory when subjects moved 

their heads using both head- and allo-centric representations of the sound trajectory. 

First, we ran the reconstructions on EEG without any compensation for motion artefacts and 

found that we can successfully decode the sound source trajectory in cranio-centric but not 

in allo-centric representation. This finding would be in line with the fact that the spatial 

acoustic cues are defined with respect to our head and previous EEG research that suggested 

that cortical encoding of sound location has cranio-centric rather than allocentric 

representation (Altmann et al., 2009; Altmann et al., 2012).  



 

 

99 

 

However, as the head rotation proportionally changes cranio-centric location of a sound 

source, it was important to remove the motion artefacts from the EEG data. Without 

controlling for this, our above-chance reconstruction accuracy could be possibly driven by 

head-movement artefacts within the EEG data. Note that we tried to reconstruct head rotation 

time-series from EEG and obtained correlation values that were approximately ten times 

larger than for sound source trajectory reconstructions (see figure 6-4). Therefore, in our 

next step, we partialled-out the head-movement trajectory from the EEG data, which 

effectively removed movement-related artefacts from the EEG signal. We then found that 

the reconstruction accuracies for both cranio- and allo-centric models were below the chance 

level.  This shows that we are unable to reconstruct sound azimuth from the EEG data 

independently of the head movement and consequently makes it difficult to draw a 

conclusion on whether it is possible to reconstruct sound trajectory from the neural activity 

when subjects move their heads. 

Is it feasible to use OculusVR version CV1 in EEG experiments? As this was our first 

practical experience with OculusVR in an EEG experiment and there are not many other 

neurophysiological studies employing this hardware we encountered several difficulties: 

First, as we already mentioned, even when fully elongated the attachment strap that keeps 

the relatively heavy headset on the head, presses against the EEG electrodes at the back of 

the scalp. This can cause potential issues with the EEG signal quality and it can cause 

discomfort to users that wear the headset over long periods of time, which is a limiting factor 

for EEG studies. One solution to this issue would be to use a different EEG acquisition 

system with more compact electrodes or to use a reduced electrode montage i.e. leave out 

the electrodes that would be in contact with the VR headset. The other option would be to 

make a custom attachment strap for the headset, however, this would require a relatively 

complicated hardware modification as the strap is used to deliver the sound signal to the 

headphones. 

Next, there is the issue of synchronizing the audio stimulus presentation with the EEG signal. 

As the VR environment needs to compensate for user’s movement and behaviour, it has to 

render the audio and visual components of the scene in real-time. Consequently, there is 

some inherent latency and latency jitter in stimulus presentation. This is in contrast with 

traditional “offline” experimental stimulus delivery systems, which can preload the stimuli 

prior to their presentation and then present them at a desired latency with relatively large 

accuracy and precision. Here, we overcame this issue by designing custom electronic 

circuitry that measured the electrical signal feeding the headphones and used this signal to 
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send a trigger to the EEG acquisition system with the latency of actual sound stimulus onset. 

Although a similar approach could be theoretically adopted for video-EEG synchronization, 

we have not implemented this in our study. 

6.5. Conclusion 

Here, we tried to reconstruct moving sound trajectory using both cranio- and allo-centric 

coordinates from EEG while subjects listened to a moving sound and rotated their heads at 

the same time independently on the sound trajectory. 

We found that we were unable to reconstruct the allo-centrically represented sound trajectory 

from the EEG. With respect to cranio-centric representation, we were only successful in 

reconstructing the sound source trajectory when not controlling for motion artefacts. The 

subsequent analysis showed that the reconstruction accuracy drops below the chance level 

when we partialled-out the head trajectory. Therefore we cannot confirm whether the neural 

encoding of sound location is represented using a cranio-centric representation. 

Our secondary goal was to test the feasibility of using Oculus Rift VR headset for stimulus 

presentation together with high-density EEG recording. Although we found it is theoretically 

possible to do this, we encountered several practical issues, for example, subject discomfort 

when the headset was worn over extended time-periods, which need to be addressed in future 

studies.  
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 General Discussion 

7.1. A Novel Approach to Study Cortical Representations of 

Auditory Space 

In this thesis we used an analysis framework based on multi-variate linear regression to study 

neural correlates of spatial sound processing in humans. This analysis method of relating a 

continuous stimulus representation to un-epoched, un-averaged neural data has been only 

recently adopted by neurophysiological studies and has for the most part been used for 

studying speech and language processing. These studies have shown that the stimulus 

envelope is tracked by low-frequency cortical activity in an approximately linear fashion and 

showed that the stimulus envelope can be reconstructed from EEG (Mesgarani et al., 2009b; 

Ding & Simon, 2012b; Zion Golumbic et al., 2013; O'Sullivan et al., 2015) 

Here, we demonstrated that the stimulus reconstruction framework can be successfully 

applied to study human spatial hearing for moving sound stimuli with a stochastic sound 

trajectory. Specifically, we demonstrated that the moving sound stimulus trajectory, 

represented as an azimuthal time-series, can be reconstructed from EEG using multivariate 

linear regression (see chapter 3). 

In the case of envelope-tracking by the cortex, where low frequency neural activity is phase-

locked to the stimulus envelope, the applicability of linear models is relatively intuitive. In 

contrast, the use of a linear model to map EEG to sound stimulus azimuth is less obvious. 

The stimulus spatial position is not explicitly available in the acoustic signal that arrives to 

an ear. Instead, the sound position is calculated subcortically mainly from the intensity and 

timing differences between the ears, ILD and ITD, and the higher-level location-sensitive 

neurons in auditory cortex were found to respond to a broad range of spatial angles. Most of 

these neurons have contralateral tuning i.e. respond mostly to stimuli from the opposite 

hemifield (e.g. see Fig 2-13B). This contralateral neural tuning can be reasonably 

approximated using a linear function and therefore can be mapped using a linear model. 

However, note that some spatially sensitive cortical neurons respond to the ipsilateral field 

and other non-linear response patterns such as tuning to several spatial locations have also 

been observed (Wang et al., 2019).  Therefore, our linear regression models reflect only part 

of the neural activity associated with spatial sound tracking and do not reflect spatially 

sensitive neurons that have firing patterns which are non-linearly dependent on sound 

azimuth. 

Importantly, unlike the ERP analysis, the stimulus reconstruction method only reflects the 
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response of the neural system to a specific stimulus parameter (regressor). Therefore, using 

the same neural data, it is possible to independently reconstruct several different attributes 

of the same stimulus. This has been used in chapter 5, where we reconstructed velocity, 

speed and acceleration of the sound. Similarly, it allows the presentation of several sound 

stimuli simultaneously and analysis of the neural responses corresponding to each stimulus 

separately. This has been showed in chapter 4, where we presented multiple competing 

sources and tested whether we can decode the trajectory of both attended and unattended 

sound sources.  

Another advantage of this methodological framework is that it allows the use of continuous 

stimuli, which is particularly suitable for studying dynamic aspects of auditory motion. And 

finally, due to its multi-variate nature (the reconstruction model integrates over a number of 

time-lags between EEG and stimulus as well as over EEG electrodes), it has the potential to 

be more sensitive than univariate measures.  

7.2. Future work 

Here we used headphone presented stimuli that were spatialized using non-individualized 

HRTFs. As a consequence, the stimuli contained only approximate spectral cues, which 

affects mainly localization in the vertical plane and causes front-back confusion. Therefore, 

we investigated only neural responses to horizontal sound motion, and we restricted the 

source motion to the frontal part of the auditory space. By using individualized HRTFs or 

free-field (loudspeaker array) presentation to deliver higher-fidelity spatial audio, one could 

test aspects of spatial hearing which we have purposely omitted. For example, it would be 

interesting to test what happens to the spatial coding when a source moves on a full circle 

(360 degrees) around the subject and to test whether in this situation we can successfully 

reconstruct sound azimuth from EEG. Or it would be intriguing to use our regression 

framework to reconstruct elevational trajectory of a sound source that moves within the 

vertical plane. As we described in section 2.4.3, the number of studies that investigated 

sound elevation processing is very small and not much is known about cortical encoding of 

sound elevation. Therefore, any additional research in this area would be certainly beneficial. 

Another way to build on this work would be to improve the reconstruction model itself. As 

mentioned in the previous section, our stimulus reconstruction model can capture only neural 

activity that is (approximately) linearly related to the stimulus parameter of interest. 

Although the linearity makes the interpretation of the reconstruction models relatively easy, 

it is certainly suboptimal in the context of stimulus reconstruction performance. By using a 

more complex non-linear model, one could better fit the neural data, which would result in 
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higher reconstruction accuracies and potentially, a more accurate image of how auditory 

space is encoded within the cortex. One could get inspiration from recent speech research, 

where non-linear models for multi-variate neural data analysis is beginning to appear in the 

form of deep neural networks (Yang et al., 2015; Akbari et al., 2019).  

Finally, it would be interesting to move towards more naturalistic experiments that also 

include visual input to the subject. It is known that the auditory and visual system work 

together to localize objects within the environment (see review by King, 2008) and so 

studying both senses in isolation can provide only limited insight on how we localize objects 

within our environment. Here, we “probed this” in chapter 6, where we delivered spatial 

auditory stimulus together with a simple visual environment that did not provide cues about 

the sound’s location over Oculus VR headset. We believe, that using VR technology, which 

undergoes rapid development, might be particularly suitable for this as it allows precisely 

controlling both audio and video input while in real-time compensating for subjects 

movement (see Bohil et al., 2011)  

7.3. Practical applications 

Recently, there have been attempts to implement cognitively steered hearing aids, which 

would automatically (without user’s manual control) detect which aspect (speaker) of the 

auditory scene is attended and amplify it while filtering-out the irrelevant sounds.  Currently, 

one of the most promising ways to decode selective attention is principally based on the 

stimulus envelope reconstruction method (Mesgarani & Chang, 2012; O'Sullivan et al., 

2015; Mirkovic et al., 2016). Here, in chapter 4, we demonstrated that the attended source 

trajectory has a stronger cortical representation than the unattended source and we also 

showed that the reconstructed trajectory of the attended source is relatively unaffected by 

the distractor’s location. There are two ways how this can be utilized in order to help with 

selective amplification of the attended source: (1) One could possibly use the trajectory 

decoder output (source azimuth) directly to steer the microphone array on the hearing aid 

e.g. using a beam-former to be more sensitive to sound coming from the direction 

corresponding to attended sound source. (2) Assuming we know the location of sound 

sources within the environment, one could use the trajectory decoder to determine which 

speaker is attended and then amplify the corresponding sound using the same pipeline that 

is used in the case of envelope based methods. Finally, we speculate that it might be 

beneficial to integrate both types of decoders, as we showed that a decoder that combined 

envelope and trajectory reconstruction had slightly higher decoding accuracy than each 

method separately. 
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Another possible practical application of our trajectory reconstruction method could be used 

in assessing spatial fidelity of virtual acoustic environments. The objective evaluation of 

virtual environments is typically done using psychophysically-based methods i.e. listeners 

are asked to determine the location of test stimuli or to note differences between sounds 

(Carlile, 1996; Xie, 2013). This approach is time-consuming and requires active 

participation of the listener. We speculate that our stimulus trajectory approach could be 

theoretically used as an alternative to these methods. Specifically, one could compare the 

trajectory reconstruction performance between the reference (free-field) sound delivery 

system and the tested virtual environment and any mismatch between the reconstruction 

models would signalise reduced fidelity of the tested environment. The advantage of this 

method would be the passive role of the listener since no active feedback would be required. 

7.4. Summary 

This thesis provides a novel linear regression-based framework to study spatial hearing. In 

our first study, we showed that the azimuth of a continuously moving noise source can be 

reconstructed from EEG. In particular, we identified two distinct frequency components, 

namely, delta (0-2Hz) and the alpha power (8-12Hz) of EEG that track the sound location. 

Importantly, by replicating the results using spatially-impoverished pulse stimuli, we 

showed that this method does not rely on a particular acoustic cue and is independent from 

the previously described sound envelope tracking by the cortex. 

In our second study we employed a more naturalistic acoustic scenario with multiple moving 

sound sources. We showed that the attended sound source trajectory can be reliably 

reconstructed from EEG even in the presence of other competing sources and demonstrated 

that the trajectory tracking works for noise as well as more complex speech stimuli. 

Interestingly, we also observed weak tracking of the unattended source location for the 

speech stimuli. Finally, we demonstrated that the trajectory reconstruction approach can be 

theoretically used to decode selective attention, however, in comparison to envelope 

reconstruction-based methods, this method has lower decoding performance. 

The study in chapter 5 tested whether the cortex is sensitive to other motion characteristics 

of sound besides location. We showed that sound speed but not velocity can be reconstructed 

from EEG independently from sound azimuth. Surprisingly, our results also indicate that 

sound acceleration might be independently represented at the cortex, which has not been 

reported before. 

Finally, in the last study, we deployed our reconstruction method in a naturalistic scenario 

where subjects were allowed to move their heads and received visual input over a virtual 
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reality headset. We were primarily interested in whether sound is cortically encoded using 

cranio- or allo-centric coordinates. Although our initial analysis using the raw data indicated 

a cranio-centric representation of sound location, the subsequent analysis on the data with 

the motion-related artefact removed led to below-chance level reconstruction accuracies. 

Therefore, we were unable to find strong evidence for cortical encoding in either frame of 

reference. Our secondary goal was to test the feasibility of using the Oculus Rift headset 

together with high-density EEG recording. We found it is possible to perform experiments 

using this setup, however, several practical issues need to be resolved, mainly how to 

increase comfort of the subjects to allow for longer recording time. 
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