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ABSTRACT

This work is concerned with the optimal allocation of limited maintenance resources among

a collection of competing multi-state systems, and the dynamic of each multi-state system is

modelled by a Markov chain. Determining the optimal dynamic maintenance policy is pro-

hibitively difficult, and hence we propose a heuristic dynamic maintenance policy in which

maintenance resources are allocated to systems with higher importance. The importance mea-

sure is well justified by the idea of subsidy, yet the computation is expensive. Hence, we fur-

ther propose two modifications of the importance measure, resulting in two modified heuristic

policies. The performance of the two modified heuristics is evaluated in a systematic compu-

tational study, showing exceptional competence.

KEY WORDS: approximate linear programming; expected discounted reward; partially ob-

servable Markov decision process;

1 Introduction

A partially observable Markov decision process (POMDP) is a generalization of a Markov de-

cision process. A POMDP models a decision process in which it is assumed that the system’s

dynamic is determined by a Markov decision process, but the decision maker cannot directly ob-

serve the system’s state. For a finite-state Markov decision process, the optimal policy can be

expressed in a simple tabular form. When state uncertainty is introduced, the optimal policy for

a POMDP is defined over a continuum of states. It is established in Madani et al. (1999) that
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optimal planning without full observability is prohibitively difficult both in theory and practice,

and many natural questions in this domain are undecidable. Consequently, approximate methods

are required even for small-size problems. Existing efficient approximate methods are policy it-

eration (Hansen, 1998), point-based value iteration (Pineau et al., 2003), and approximate linear

programming (Hauskrecht and Kveton, 2004). The current work investigates an even more diffi-

cult problem: optimally maintaining a collection of multi-state systems with limited maintenance

resources, where the dynamic of each multi-state system is modelled by a Markov chain. That

is, instead of one POMDP, the problem involves multiple independent POMDPs, and the state of

a POMDP affects the action taken on another POMDP. Determining the optimal dynamic main-

tenance policy for multiple competing POMDPs is apparently impractical, and hence we develop

a heuristic policy: at each decision epoch, we measure the importance of each system, and only

systems with larger importance measures will receive their optimal actions.

Importance measures have been widely used as important decision-aiding indicators in various

domains. For example, in risk analyses, importance measures are used in risk-informed decision-

making (Tyrväinen, 2013); in reliability engineering, importance measures are used to prioritize

components in a system for reliability improvement (Borgonovo et al., 2016). Recently, impor-

tance measures have been applied for maintenance optimization. Liu et al. (2014) proposed a

maintenance strategy in which the component yielding the largest expected net revenue is selected

for maintenance whenever the system reliability is below a threshold. To reduce system downtime,

Wu et al. (2016) proposed a maintenance strategy that, when a component in a system is failed

and under repair, a number of the other components are selected for preventive maintenance; the

authors developed an importance measure for the selection of components for preventive mainte-

nance. Dui et al. (2017) pointed out that the preventive maintenance time of a selected component

may be longer than the maintenance time of the failed component, and that with the same reliability

improvement on the system, different components may result in different preventive maintenance

costs; the authors developed an importance measure taking into account the time and cost of pre-

ventive maintenance. With the objective of maximizing the throughput of a production system

over a time interval, Ahmed and Liu (2019) developed two types of importance measures for prior-

itizing the critical components in the maintenance schedule. In the framework of condition-based

maintenance, Do and Bérenguer (2020) developed an importance measure based on the conditional

reliability of the system; that is, components are ranked according to their ability to improve the

system’s conditional reliability over a time interval.

Existing works on importance-measure based maintenance are all focused on ranking the com-
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ponents. By contrast, this work is devoted to ranking systems. Within the POMDP framework,

a multi-state system is treated as important (having a large importance measure) if the cost for

not optimally maintaining the system is high. The importance measure defined in this work has

the economic interpretation as a subsidy (for a positive importance measure) or a tax (for a neg-

ative importance measure); see Whittle (1988). Our sequential resource allocation and stochastic

scheduling framework is very general, and can be applied to solve, e.g., the dynamic multichannel

access problem (Liu and Zhao, 2010), multi-UAV dynamic routing (Ny et al., 2008), sequential

selection of online ads (Yuan and Wang, 2012), etc.

In the upcoming sections, we will cover the following. In Section 2, we formulate the problem,

define the importance measure, and point out its drawbacks. In Section 3, we introduce the two

modified importance measures. We prove that the two measures are well defined and further give

two interpretations of the second measure. In Section 4, the performance of the proposed heuristics

is studied in computational experiments. Section 5 concludes.

2 Problem Formulation

POMDPs provide a rich framework for planning under both state transition uncertainty and obser-

vation uncertainty. A standard discrete-time POMDP can be defined by a tuple (S,A,Z, pa
ss′, f a

s (z),R
a
s ,θ):

• S is a finite set of states;

• A is a finite set of actions;

• Z is an observation space;

• pa
ss′ is the probability of transitioning to state s′ after taking action a, given that the current

state is s (s,s′ ∈ S and a ∈A);

• f a
s (z) is the probability for observing z after taking action a, given that the current state is s

(z ∈ Z, s ∈ S and a ∈A);

• Ra
s is the finite immediate reward by taking action a for state s (s ∈ S and a ∈A);

• θ ∈ (0,1) is a discount factor.

For an action a that cannot return any observation, it is equivalent to saying that action a always

returns the same observation, denoted by “null”, and f a
s (z = null) = 1 for any state s. Ellis et al.
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(1995) provided an application example of the POMDP to a one-lane, two-girder highway bridge.

The condition of the bridge is characterized by five states, i.e., S= {1,2,3,4,5}. The available ac-

tions are A={doing nothing, visual inspection, nondestructive ultrasonic evaluation, cleaning and

repainting corroded surfaces, repainting and strengthening deteriorated girders, extensive structural

repair}. An visual inspection yields one of three possible outcomes: good, fair, and poor. The ul-

trasonic technique is to measure web and flange thickness loss in girders, and the indicated results

{state 1, state 2, state 3, state 4, state 5} are error corrupted. Therefore, the observation space Z is a

discrete set of eight observations. If, for example, the underlying state is s = 1 and the action taken

is a =visual inspection, then f a
s (z = good) = 0.2 and f a

s (z = fair) = 0.8; if the underlying state is

s = 2 and the action taken is a =nondestructive ultrasonic evaluation, then f a
s (z = state 1) = 0.05,

f a
s (z = state 2) = 0.9, and f a

s (z = state 3) = 0.05. State transitions satisfy the Markov property;

for example, given s = 1 at time t and a =doing nothing, the probability pa
ss′ for s′ = 2 at time t +1

is 0.13, independent of all states and actions before time t.

Within the POMDP framework, the information on the system’s true state is incomplete and

encapsulated by a probability vector, called the belief state. A belief state at epoch t (t = 0,1,2, . . .)

is a (column) vector of probabilities: bbbt = (bt
s : s ∈ S), where bt

s is the probability of the system

being in state s at epoch t. We have bt
s ≥ 0 and ∑s∈S bt

s = 1, and therefore the belief state space is a

unit simplex, denoted by ∆. It is well-known that bbbt summarizes all the information necessary for

making decisions at epoch t (Sondik, 1978); that is, to make a decision at epoch t, we only need to

know the belief state bbbt , instead of all the historical actions and observations.

The Markovian decision-making process is as follows. At time 0, the decision maker’s belief

state bbb0 characterizes the prior knowledge regarding the condition of the system before the begin-

ning of the sequential decision making. At time point t (t = 1,2, . . .), the decision maker collects

an observation zt . According to the information at time t − 1 (i.e., bbbt−1 and at−1) and the new

information (i.e., zt), the decision maker updates his belief regarding the system’s current state

st . According to the newly updated belief state bbbt , the decision maker then determines the action

at . Likewise, at epoch t +1, the decision maker collects a new observation zt+1, then updates the

belief state bbbt+1 from (bbbt , at , zt+1), and finally determines the action at+1.

The rule for determining the action at for the belief state bbbt is called a policy. More formally,

a policy π is a mapping from the belief state space to the action set (π : ∆→ A), and the optimal
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policy π∗ maximizes the value function (the expected discounted reward) for any given belief state:

Vπ∗(bbbt) = E
[
Rat

st
+θRat+1

st+1 +θ
2Rat+2

st+2 + · · · |bbb
t ,π∗

]
= max

a∈A
{∑

s∈S
Ra

s bt
s +θ

∫
Z

Pr(zt+1 = z|bbbt ,at = a)Vπ∗(bbbt+1)dz}, (1)

where bbbt+1 is calculated from (bbbt , at , zt+1) using Bayes’ rule:

Pr(st+1 = s′|bbbt ,at = a,zt+1 = z) =
Pr(zt+1 = z|bbbt ,at = a,st+1 = s′)Pr(st+1 = s′|bbbt ,at = a)

Pr(zt+1 = z|bbbt ,at = a)

=
f a
s′(z)∑s∈S bt

s pa
ss′

∑s′∈S f a
s′(z)∑s∈S bt

s pa
ss′
. (2)

In the following, we write bbbt+1 and `(bbb,a,z) interchangeably to indicate that bbbt+1 is updated from

bbbt = bbb, at = a and zt+1 = z. The optimal policy π∗ is deterministic, stationary and Markovian

(Blackwell, 1965). The optimum policy is defined over a continuum of states, yet does not have an

analytic expression. Hence, different methods have been developed for approximating the optimal

policy; see Hauskrecht (2000), de Farias and Roy (2003) and Shani et al. (2013).

The current work is focused on the problem of optimally allocating limited effort (such as time,

spares, maintenance personnel, etc.) among a collection of competing projects, and the dynamic

of each project is modelled by an independent Markov chain. For example, a collection of multi-

state systems competing for a limited number of spare parts. For illustrative purpose, we here

consider the problem of maintaining a collection of M (> 1) multi-state systems with only κ(< M)

repairmen. Consequently, at each decision epoch, if there are more than κ systems whose optimal

actions are not “doing nothing”, we need to decide which κ systems will receive their optimal

actions – the remaining M−κ systems will all receive the do-nothing action. The optimal planning

for a collection of competing POMDPs is prohibitively difficult due to the inherent complexity of

the POMDP model. In fact, Papadimitriou and Tsitsiklis (1999) proved that such problems are

PSPACE-hard. This motivates us to develop a heuristic policy: at each decision epoch, we measure

the importance of each system, and only κ systems with larger importance measures will receive

their optimal actions. Hereafter, we label the do-nothing action by the number 0; that is, at = 0

means that the action taken at time t is “doing nothing”.

The importance measure defined in this work is inspired by the idea of subsidy for “doing

nothing”. We explain the idea through one POMDP/multi-state system. Assume that the decision

maker will be given a subsidy whenever the action taken on the system is “doing nothing”. For

example, if the optimal action for the belief state bbbt is “replacing a component”. If the decision
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maker instead takes the do-nothing action, he will be given a positive subsidy to offset the loss

caused by not taking the optimal action for the belief state bbbt . Apparently, the decision maker

is willing to trade “replacing a component” for “doing nothing” only when the subsidy is large

enough to cover the loss. In other words, the minimal subsidy required by the decision maker

reflects the importance of the optimal action for the belief state bbbt , and hence can be adopted as the

importance measure of the system at time t.

We now formally define the importance measure. After including the subsidy w for the do-

nothing action, let V (bbbt ;w) denote the new maximal expected discounted reward (EDR) for belief

state bbbt :

V (bbbt ;w) = max
at∈A
{wδ (at = 0)+ ∑

s∈S
Rat

s bt
s +θ

∫
Z

Pr(zt+1 = z|bbbt ,at)V (bbbt+1;w)dz}

= max
at∈A
{∑

s∈S
[Rat

s +wδ (at = 0)]bt
s +θ

∫
Z

Pr(zt+1 = z|bbbt ,at)V (bbbt+1;w)dz}, (3)

where δ (·) is the indicator function. Equation (3) implies that the subsidy can be incorporated into

the reward structure, and the tuple (S,A,Z, pa
ss′, f a

s (z),R
a
s +wδ (a = 0),θ) is still a POMDP with a

deterministic and stationary optimal policy. The optimal action for belief state bbbt is

a(bbbt ;w) = argmax
at∈A
{wδ (at = 0)+ ∑

s∈S
Rat

s bt
s +θ

∫
Z

Pr(zt+1 = z|bbbt ,at)V (bbbt+1;w)dz}. (4)

We call the set of belief states P(w) = {bbb ∈ ∆ : a(bbb;w) = 0} as the inactive set. In other words,

under subsidy w, if the belief state bbbt ∈ P(w), then the optimal action a(bbbt ;w) is “doing nothing”.

Intuitively, if the optimal action for a belief state bbb is “doing nothing” when the subsidy is w, then

the optimal action for bbb will be “doing nothing” for any subsidy larger than w. Hence, we would

expect that, if the action a(bbb;w1) is “doing nothing”, then a(bbb;w2) is always “doing nothing” for

w2 > w1; or, equivalently, if bbb ∈ P(w1) and w2 > w1, then bbb ∈ P(w2). Unfortunately, this is not

always the case (Whittle, 1988): for an arbitrary POMDP (S,A,Z, pa
ss′, f a

s (z),R
a
s ,θ), there may

exist a subsidy w2(> w1) such that bbb ∈ P(w1) yet bbb /∈ P(w2). In other words, the subsidy as an

importance measure is not well defined for all POMDPs. The POMDPs whose inactive sets can

only increase with the subsidy are called indexable:

Definition 1. A POMDP (S,A,Z, pa
ss′, f a

s (z),R
a
s ,θ) is called indexable if the inactive set P(w)

increases from the empty set ∅ to the whole belief state space ∆ as the subsidy w increases from

−∞ to +∞.
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Definition 2. If a POMDP (i.e., a multi-state system) is indexable, and its belief state at time t

is bbbt , then its importance measure at time t, denoted by I(bbbt), is the infimum subsidy w such that

a(bbbt ;w) = 0.

Given that indexability does not always hold, we have to trade indexability for specific struc-

tural conditions. In Appendix A, we study a particular POMDP (with only two actions) for which

the indexability always holds.

After defining the importance measure, we now come back to the problem of optimally allocat-

ing limited effort among M multi-state systems. Note that the M multi-state systems need not be

identical; each multi-state system can be modelled by a different Markov chain. Suppose that all

the M multi-state systems are indexable. At each decision epoch, if the number of positive impor-

tance measures is larger than κ , then only κ multi-state systems with larger importance measures

will receive their optimal actions. If the number of positive importance measures is smaller than κ ,

then only multi-state systems with positive importance measures will receive their optimal actions.

Although the importance measure defined above is well justified by the notion of subsidy, it

has two drawbacks: (1) The importance measure is only defined for indexable POMDPs. (2) The

importance measure is computationally expensive; according to Equation (3), we have to try many

candidate subsidy values for a belief state, and each trial calls the running of value iteration until

convergence. Therefore, we below introduce two modified importance measures, both of which

are defined for every POMDP and are computationally cheap.

3 Two Modified Importance Measures

3.1 Approximate Measure

The computational burden of the importance measure is mainly introduced by the difficulty in

evaluating the value function Vπ∗(bbb). We hence propose to approximate the value function to the

second order. Then the infimum subsidy calculated from the approximate value function will serve

as an importance measure, called the approximate measure.

Recall that, given a policy π , the EDR for the POMDP (S,A,Z, pa
ss′, f a

s (z),R
a
s ,θ) is

Vπ(bbb) = E
[
Rat

st
+θRat+1

st+1 +θ
2Rat+2

st+2 + · · · |bbb
t = bbb,π

]
. (5)

The well-known myopic policy approximates the EDR Vπ(bbb) by 〈~Rπ(bbb),bbb〉, where 〈·, ·〉 is the inner

product, and ~Ra = (Ra
s : s ∈ S) is a vector of rewards. We here propose a second-order approxima-
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tion:

Vπ(bbb)≈ E
[
Rat

st
+θRat+1

st+1 |bbb
t = bbb,π

]
= 〈~Rπ(bbb),bbb〉+θE

[
Rat+1

st+1 |bbb
t = bbb,π

]
. (6)

Then the optimal value function Vπ∗(·) is approximated by V2(·):

V2(bbb) = max
a∈A
{〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a) max
at+1∈A

〈~Rat+1, `(bbb,a,z)〉dz}. (7)

For the POMDP (S,A,Z, pa
ss′, f a

s (z),R
a
s +wδ (a = 0),θ), the corresponding optimal value function

is approximated by

V2(bbb;w)=max
a∈A
{wδ (a= 0)+〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a) max
at+1∈A

〈wδ (at+1 = 0)+~Rat+1, `(bbb,a,z)〉dz}.

(8)

The optimal action determined by the second-order approximation is

a2(bbb;w)= argmax
a∈A
{wδ (a= 0)+〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a) max
at+1∈A

〈wδ (at+1 = 0)+~Rat+1, `(bbb,a,z)〉dz}.

(9)

Correspondingly, we can define an inactive set P2(w) = {bbb ∈ ∆ : a2(bbb;w) = 0}. The approximate

measure for belief state bbb is defined as the infimum subsidy w such that a2(bbb;w) = 0. The following

proposition states that the approximate measure is well defined for every POMDP.

Proposition 1. For any POMDP, the inactive set P2(w) increases from the empty set ∅ to the

whole belief state space ∆ as the subsidy w increases from −∞ to +∞.

Proof. The proof is given in Appendix B.

Then the heuristic policy for the competing M multi-state systems operates as follows. At each

decision epoch, if the number of positive approximate measures is larger than κ , then only κ sys-

tems with larger approximate measures will receive their optimal actions. If the number of positive

approximate measures is smaller than κ , then only systems with positive approximate measures

will receive their optimal actions. Although the values of the approximate measures are different

from the values of the importance measures, it is the ordering of the importance/approximate mea-

sures that determines the policy. We expect that the ordering of the importance measures is most

of the time preserved under our approximate approach.

We can further approximate the optimal value function Vπ∗(·) to the third order:

V3(bbb) = max
a∈A
{〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a)V2(`(bbb,a,z))dz}, (10)
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and define an importance measure from the third-order approximation in a similar manner, which

we might call the third-order measure. One may argue that the heuristic policy under the third-

order measure is superior to the approximate-measure policy, as the third-order approximation

V3(bbb) is closer to Vπ∗(bbb). However, as with the importance measure, the third-order measure is

not well defined for every POMDP. The computational complexity of the approximate measure is

much lower than that of the third-order measure. Moreover, the numerical study in Section 4 will

reveal that the approximate-measure policy outperforms the third-order measure policy.

To calculate the approximate measure, we need to numerically try different values of w. For a

large enough subsidy ŵ such that 0 = argmaxa∈A〈~Ra+ ŵδ (a = 0),bbb〉 for any bbb, the optimal action

at any decision epoch is always a = 0. Hence, we only need to search in the interval (0, ŵ) the

minimal subsidy value such that the optimal action for bbb is a = 0. If the observation space Z is

discrete, the approximate measure can be quickly determined. Otherwise, if the observation space

is continuous, we can apply numerical integration on the grid of points {z1,z2,z3, . . .} over the

observation space Z. Specifically, under subsidy w, the second-order approximation reads:

V2(bbb;w)≈max
a∈A
{wδ (a = 0)+ 〈~Ra,bbb〉+θ ∑

zi

Pr(zt+1 = zi|bbb,at = a) max
at+1∈A

〈wδ (at+1 = 0)+~Rat+1, `(bbb,a,zi)〉dzi}.

(11)

3.2 Rate Measure

The rate measure for belief state bbb, denoted by I(bbb), is the minimal subsidy w such that

0 = argmax
a∈A
{wδ (a = 0)+ 〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a)Vπ∗(`(bbb,a,z))dz}. (12)

I(bbb) can be interpreted as a one-off subsidy as follows. Recall that the optimal action for bbb should

be

argmax
a∈A
{〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a)Vπ∗(`(bbb,a,z))dz}. (13)

However, due to competing multi-state systems, we have to take action a = 0. We assume that this

is a one-time restriction, and we can still act optimally afterwards according to the optimal policy

π∗. Under this assumption, the loss for taking action a = 0 (at time t only) is

Vπ∗(bbb)− [〈~R0,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = 0)Vπ∗(`(bbb,0,z))dz]. (14)

If we subsidize action a = 0 by the amount I(bbb), then the optimal action for state bbb will be a = 0.

Therefore, we have

I(bbb) =Vπ∗(bbb)− [〈~R0,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = 0)Vπ∗(`(bbb,0,z))dz]. (15)
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We can utilize the above equation to calculate the rate measure, which requires very little effort.

A POMDP under the rate measure is apparently indexable: if

0 = argmax
a∈A
{I(bbb)δ (a = 0)+ 〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a)Vπ∗(`(bbb,a,z))dz}, (16)

then 0 = argmaxa∈A{wδ (a = 0)+ 〈~Ra,bbb〉+ θ
∫
ZPr(zt+1 = z|bbb,at = a)Vπ∗(`(bbb,a,z))dz} for any

w > I(bbb); that is, with the subsidy increasing, the inactive set cannot decrease.

We here give another interpretation of I(bbb) utilizing the approximate linear programming tech-

nique (de Farias and Roy, 2003; Hauskrecht and Kveton, 2004). Consider the problem

(P1) min
V (·)

∫
∆

c(bbb)V (bbb)dbbb

s.t. V (bbb)≥ 〈~Ra,bbb〉+θ

∫
Z

Pr(z|bbb,a)V (`(bbb,a,z))dz, ∀ bbb ∈ ∆,a ∈A.

Here, c(·) is an arbitrary positively valued function. It is clear that, for any positive function

c(·), Vπ∗(·) is the unique solution to problem (P1). The approximate linear programming method

approximates the value function V (·) by a set of basis functions, in order to transform the problem

into linear. With an aim of computing a coefficient vector βββ = (β1, . . . ,βk) such that Vπ∗(·) can be

approximated closely by the given basis functions υυυ(bbb) = (υ1(bbb), . . . ,υk(bbb)): Vπ∗(bbb)≈ 〈βββ ,υυυ(bbb)〉,
we pose the following optimization problem

(P2) min
βββ

〈βββ ,
∫

∆

c(bbb)υυυ(bbb)dbbb〉

s.t. 〈βββ ,υυυ(bbb)−θ

∫
Z

Pr(z|bbb,a)υυυ(`(bbb,a,z))dz〉 ≥ 〈~Ra,bbb〉, ∀ bbb ∈B,a ∈A,

where we approximate the belief state space by a finite set, B, of randomly sampled belief states.

Define for shorthand υ̃υυ =
∫

∆
c(bbb)υυυ(bbb)dbbb and ῡυυ(bbb,a) =

∫
ZPr(z|bbb,a)υυυ(`(bbb,a,z))dz. Then the La-

grange dual function is

L(βββ ,λbbb,a) = 〈βββ ,υ̃υυ〉− ∑
a∈A

∑
bbb∈B

λbbb,a[〈βββ ,υυυ(bbb)〉−〈~Ra,bbb〉−θ〈βββ ,ῡυυ(bbb,a)〉]. (17)

The corresponding Lagrange dual problem is

(P3) max
{λbbb,a}

∑
a∈A

∑
bbb∈B

λbbb,a〈~Ra,bbb〉

s.t. υ̃υυ− ∑
a∈A

∑
bbb∈B

λbbb,a[υυυ(bbb)−θῡυυ(bbb,a)] = 0;

λbbb,a ≥ 0, ∀ bbb ∈B,a ∈A.
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Let βββ ∗ and {λ ∗bbb,a : a ∈ A,bbb ∈ B} denote the optimal primal and dual solutions. We note the

following.

• The objective function of the dual problem (P3) indicates that λ ∗bbb,a can be interpreted as the

expected discounted time that action a is taken for belief state bbb under the optimal policy.

By complementary slackness, we have λ ∗bbb,a = 0 for any non-optimal action a: 〈βββ ∗,υυυ(bbb)〉>
〈~Ra,bbb〉+ θ〈βββ ∗,ῡυυ(bbb,a)〉. In other words, the optimal action for a belief point bbb is simply

{a ∈A : λ ∗bbb,a > 0}.

• The Lagrange dual function (17) indicates that 〈βββ ,υυυ(bbb)〉−〈~Ra,bbb〉−θ〈βββ ,ῡυυ(bbb,a)〉 is the rate

of decrease in the objective function of the dual problem per unit increase in the value of λbbb,a

– the expected discounted time that action a is taken for bbb. Therefore, we can define a rate

measure as 〈βββ ∗,υυυ(bbb)〉−〈~R0,bbb〉−θ〈βββ ∗,ῡυυ(bbb,0)〉, representing the cost of taking the inactive

action a = 0 for belief state bbb.

It is clear that the rate measure is exactly the one-off subsidy I(bbb), hence the name.

4 Numerical Study

In this section, we numerically evaluate the performance of the approximate-measure policy and

the rate-measure policy. We first compare the two heuristic policies with a random policy, and

then compare the approximate-measure policy with the third-order measure policy and the myopic

policy.

Suppose we have M identical systems (e.g., M wind turbines in a wind farm) and κ repairmen.

Hence, at any decision epoch, at most κ systems can be maintained. Four actions {0,1,2,3} are

available to each system, with actions a = 0 and a = 1 respectively representing “doing nothing”

and “replacement”. Each system has 4 states, labelled by {1,2,3,4} from the worst state to the

pristine state. The transition matrix for action a = 0 takes the form

P0 =


1 0 0 0

p0
21 1− p0

21 0 0

p0
31 p0

32 1−∑ p0
3 j 0

p0
41 p0

42 p0
43 1−∑ p0

4 j

 ,

11



and P1 = (000,000,000,111). The transition matrices for actions a = 2 and a = 3 take the form

P2 =


1−∑ p2

1 j p2
12 p2

13 p2
14

0 1−∑ p2
2 j p2

23 p2
24

0 0 1− p2
34 p2

34

0 0 0 1

 and P3 =


1−∑ p3

1 j p3
12 p3

13 p3
14

0 1−∑ p3
2 j p3

23 p3
24

0 0 1− p3
34 p3

34

0 0 0 1

 .

All the probabilities {p0
21, p0

31, p0
32, p0

41, p0
42, p0

43}, {p2
12, p2

13, p2
14, p2

23, p2
24, p2

34} and {p3
12, p3

13, p3
14, p3

23, p3
24, p3

34}
are randomly generated, subject to the following conditions:

• all the diagonal entries are positive, and

• action 3 is more efficient (and hence more costly) than action 2: ∑
j
k=1 p3

ik ≤ ∑
j
k=1 p2

ik, ∀
j = 1, . . . ,4 and i = 1, . . . ,4.

Correspondingly, the reward structure is specified as follows:

R =


Ra=0

s=1 Ra=2
s=1 Ra=3

s=1 Ra=1
s=1

Ra=0
s=2 Ra=2

s=2 Ra=3
s=2 Ra=1

s=2

Ra=0
s=3 Ra=2

s=3 Ra=3
s=3 Ra=1

s=3

Ra=0
s=4 Ra=2

s=4 Ra=3
s=4 Ra=1

s=4

=


−100 10 30 60

12 20 65 50

40 66 50 40

80 60 45 25

 .
The observation space Z is the (0, 1) interval, and the observation function f a

s (z) is a beta density

which we assume depends only on the true state s, not the action a. Hence let the four observation

density functions, corresponding to states {1,2,3,4}, be Beta(2, 8), Beta(8, 12), Beta(12, 8) and

Beta(8, 2). The discount rate is 0.95.

The transition matrices used for the following performance evaluation are (rounded to two

decimal places):

P0 =


1.00 0 0 0

0.71 0.29 0 0

0.48 0.26 0.26 0

0.29 0.20 0.22 0.29

 ,P2 =


0.32 0.29 0.18 0.21

0 0.40 0.29 0.31

0 0 0.53 0.47

0 0 0 1.00

 ,P3 =


0.27 0.21 0.28 0.24

0 0.30 0.23 0.47

0 0 0.42 0.58

0 0 0 1.00

 .
The total discounted reward and the total EDR are employed as the criteria for evaluating

different policies. At time 0, given the M belief states (bbb0(1), . . . ,bbb0(M)), measure the importance

of each system and then take the portfolio of maintenance actions determined by the corresponding

heuristic policy. M rewards (Ra1
0

s1
0
,Ra2

0
s2

0
, . . . ,RaM

0
sM

0
) are obtained for time 0. At time 1, update the belief

12



states according to the belief states at time 0, maintenance actions at time 0, and observations at

time 1; measure the importance of each system and then take the implied portfolio of maintenance

actions. M rewards (Ra1
1

s1
1
,Ra2

1
s2

1
, . . . ,RaM

1
sM

1
) are obtained for time 1. Repeat the procedure until arriving

at time 90. (We approximate the infinite horizon by a finite horizon of 90 units of time as 0.9590 <

0.01.) The total discounted reward is simply ∑
M
m=1 ∑

90
t=0 θ tRam

t
sm
t

. By repeating the above procedure

for 1000 times, we approximate the total EDR by the average of the 1000 total discounted rewards.

4.1 Evaluating the Two Heuristic Policies

Generally, the relative suboptimality gap is employed as the performance measure: V (bbb0
1:M)−Vi(bbb0

1:M)

V (bbb0
1:M)

,

where bbb0
1:M = (bbb0(1), . . . ,bbb0(M)), V (bbb0

1:M) is the total EDR under the optimal policy, and Vi(bbb0
1:M)

is the total EDR under a heuristic policy. However, evaluating the optimal policy is PSPACE hard.

Hence, instead of the optimal policy, we compare with a random policy in which we randomly

select κ out of all the systems that need be maintained. Let V (bbb0
1:M) be the total EDR under the

random policy.

Set M to be 10, and let κ in turn take a value from {2,4,6,8}. Randomly generate one set of

M starting belief states (bbb0(1), . . . ,bbb0(M)). To calculate the original optimal action for any given

belief state, the optimal value function for each system is approximated by a set of 10000 α-vectors

(Hauskrecht, 2000). In Figures 1-3, the red solid curve corresponds to the approximate-measure

policy, the blue dashed curve corresponds to the rate-measure policy, and the black dotdash curve

corresponds to the random policy. Figure 1 plots the total discounted reward ∑
M
m=1 ∑

90
t=0 θ tRam

t
sm
t

for

each of the 1000 repeats, and Table 1 gives the mean value of the 1000 total discounted rewards. As

Table 1: Average of the 1000 total discounted rewards for different κ values.

κ = 2 κ = 4 κ = 6 κ = 8

Approximate 11900.10 12627.15 13106.80 13219.79

Rate 1303.41 12324.83 13108.82 13218.77

Random -1251.84 9739.55 12748.75 13137.71

stated in Section 3.2, the performance of the rate-measure policy depends on the ratio κ

M , the larger

the better. Figure 1 and Table 1 show that, when the ratio κ

M is larger than 0.5, the rate-measure

policy and the approximate-measure policy have the same performance. Hence, when the ratio is

larger than 0.5, we can use only the rate measure, as calculating the rate measure is faster than

13
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Figure 1: Total discounted rewards under 1000 repeats; each panel corresponds to a different κ

value. The red solid curve corresponds to the approximate-measure policy, the blue dashed curve

corresponds to the rate-measure policy, and the black dotdash curve corresponds to the random

policy.

calculating the approximate measure. When the ratio is smaller than 0.5, the approximate-measure

policy outperforms the rate-measure policy. In each case, the random policy performs the worst,

with the 1000 total discounted rewards having low mean value and large variance.

To further examine the influence of the ratio κ

M , we now fix κ at 12 and let M in turn take a

value from {15,20,30,60}, making the ratio κ

M take the values {0.2, 0.4, 0.6, 0.8}. With the ran-

domly generated initial belief states (bbb0(1), . . . ,bbb0(M)) being fixed, simulate a Markovian main-

tenance decision process until arriving at time 90, and then calculate the total discounted reward

∑
M
m=1 ∑

90
t=0 θ tRam

t
sm
t

. Repeat the procedure for 1000 times to obtain 1000 total discounted rewards.

Figure 2 plots the 1000 total discounted rewards, where each panel corresponds to a different M

value. Table 2 lists the total EDRs. It is clear from Figure 2 and Table 2 that the performance of

the rate-measure policy and the random policy depends on the ratio κ

M . The approximate-measure
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Figure 2: Total discounted rewards under 1000 repeats; each panel corresponds to a different M

value. The red solid curve corresponds to the approximate-measure policy, the blue dashed curve

corresponds to the rate-measure policy, and the black dotdash curve corresponds to the random

policy.

Table 2: Average of the 1000 total discounted rewards for different M values.

M = 15 M = 20 M = 30 M = 60

Approximate 19902.07 26522.33 38425.85 74462.71

Rate 19903.74 26522.28 38385.00 12174.22

Random 19895.64 26076.25 29840.14 -4998.60

policy outperforms the others when κ

M < 0.5; the large gap between the total discounted rewards of

the random policy and the approximate-measure policy verifies the efficiency of the approximate-

measure policy.

In each panel of Figures 1 and 2, the 1000 total discounted rewards are originated from one

realization of bbb0
1:M. By averaging the 1000 total discounted rewards, we obtain an estimate of the
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function value Vi(bbb0
1:M) or V (bbb0

1:M), i.e., the total EDR. Figure 3 plots the function values Vi(bbb0
1:M)
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Figure 3: Function values of Vi(bbb0) and V (bbb0) for 1000 different bbb0; each panel corresponds to

a different κ value. The red solid curve corresponds to the approximate-measure policy, the blue

dashed curve corresponds to the rate-measure policy, and the black dotdash curve corresponds to

the random policy.

and V (bbb0
1:M) for 1000 different sets of starting belief states. Consistent with Figures 1 and 2, Figure

3 indicates that

• when κ

M is smaller than 0.5, the approximate-measure policy has the best performance;

• when κ

M is larger than 0.5, the approximate-measure policy and the rate-measure policy

have the same performance, but calculating the rate measure is faster than calculating the

approximate measure;

• the large gap between Vi(bbb0
1:M) and V (bbb0

1:M) verifies the exceptional competence of the ap-

proximate measure.
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To decide which importance measure to apply for a particular problem, one can calculate both

the approximate measure and the rate measure for the first few decision epochs. If the two measures

produce very similar total rewards, then it is safe to use only the rate measure for the following

decision epochs. Note that, for either type, the M importance measures for the M systems can be

calculated in parallel.

4.2 Comparing with the Third-Order Approximation

To further reveal the competence of the approximate measure, we here compare the approximate-

measure policy with the myopic policy and the third-order measure policy.

We first fix κ at 12 and let M in turn take a value from {15,20,30,60}. Randomly generate one

set of M starting belief states (bbb0(1), . . . ,bbb0(M)); by simulating 1000 Markovian maintenance de-

cision process, we obtain 1000 total discounted rewards ∑
M
m=1 ∑

90
t=0 θ tRam

t
sm
t

. Figure 4 plots the 1000

total discounted rewards, where each panel corresponds to a different M value. The average of the

1000 total discounted rewards, i.e. the total EDR of the belief states (bbb0(1), . . . ,bbb0(M)), for each

M value is given in Table 3. Instead of one single set of starting belief states, Figure 5 further plots

Table 3: Average of the 1000 total discounted rewards for different M values.

M = 15 M = 20 M = 30 M = 60

Third-Order 19934.66 26517.35 38515.46 71066.91

Approximate 19935.25 26518.42 38623.99 74389.85

Myopic 19932.43 26515.57 38482.29 13237.68

the total EDRs for 1000 different sets of starting belief states. The average of the 1000 total EDRs

for the third-order measure policy is respectively 19768.63 (M=15), 26235.26 (M=20), 37912.11

(M=30), and 70445.24 (M=60); the average for the approximate-measure policy is respectively

19769.50 (M=15), 26237.64 (M=20), 38131.8 (M=30), and 74017.96 (M=60); the average for

the myopic policy is respectively 19767.57 (M=15), 26231.82 (M=20), 37749.03 (M=30), and

11097.95 (M=60). From Figures 4 and 5 and Table 3, it is clear that the approximate-measure

policy frequently gives a higher total EDR than the third-order measure policy. Particularly, when

the ratio κ

M is small, the approximate-measure policy always outmatches the third-order measure

policy in terms of the total EDR. Therefore, we claim that the second-order approximation is supe-

rior to the third-order approximation: the computation for the second-order approximation is much
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Figure 4: Total discounted rewards under 1000 repeats; each panel corresponds to a different M

value. The red solid curve corresponds to the third-order measure policy, the blue dashed curve

corresponds to the approximate-measure policy, and the black dotdash curve corresponds to the

myopic policy.

less demanding. The large gap between the total discounted rewards of the myopic policy and the

approximate-measure policy when κ

M = 0.2 further approves the dominance of the second-order

approximation.

We then fix M at 10, and let κ in turn take a value from {2,4,6,8}. Figure 6 plots the total

EDRs for 1000 different sets of starting belief states. The average of the 1000 total EDRs for the

third-order measure policy is respectively 11796.36 (κ=2), 12569.76 (κ=4), 13084.63 (κ=6), and

13174.30 (κ=8); the average for the approximate-measure policy is respectively 12353.84 (κ=2),

12710.02 (κ=4), 13089.24 (κ=6), and 13179.97 (κ=8); the average for the myopic policy is re-

spectively 2095.81 (κ=2), 12361.72 (κ=4), 13081.00 (κ=6), and 13172.86 (κ=8). Figure 6 further

verifies the exceptional competence of the second-order approximation. The approximate-measure

policy prevails over the third-order measure policy in terms of both total EDR and computational
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Figure 5: Total EDRs for 1000 different bbb0; each panel corresponds to a different M value. The

red solid curve corresponds to the third-order measure policy, the blue dashed curve corresponds

to the approximate-measure policy, and the black dotdash curve corresponds to the myopic policy.

cost. The myopic policy, though better than the random policy, still produces a much lower total

EDR when κ

M = 0.2.

5 Conclusion and Further Research

This paper studies a PSPACE-hard problem: maintaining a collection of M (> 1) multi-state sys-

tems with only κ(< M) repairmen. Two efficient importance measures are developed: the approx-

imate measure and the rate measure. Under either heuristic policy, at each decision epoch, if the

number of positive importance measures is larger than κ , then only κ multi-state systems with

larger importance measures will receive their optimal actions. The two importance measures have

the advantages that (1) they are well defined for POMDPs, and (2) the computation of the two

measures is not demanding. Numerical studies showed that the approximate-measure policy has
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Figure 6: Total EDRs for 1000 different bbb0; each panel corresponds to a different κ value. The

red solid curve corresponds to the third-order measure policy, the blue dashed curve corresponds

to the approximate-measure policy, and the black dotdash curve corresponds to the myopic policy.

exceptional performance, and when the ratio κ

M is large, the rate-measure policy is also outstand-

ing. But calculating the rate measure is faster than calculating the approximate measure. Hence,

the approximate measure and the rate measure can be applied to different settings. To decide which

importance measure to use, one can calculate both importance measures for the first few decision

epochs. If the two measures produce very similar total rewards, then one can switch to the rate

measure for the following decision epochs. R codes for the above numerical study are available on

request.

As future work, it is necessary to further provide provable bounds or establish asymptotic

optimality of the proposed heuristics. Moreover, we found that if the actions can be ordered in

certain way, then the ranking of the approximate importance measures is often the same with

the ranking of the optimal actions; in other words, the rank of the optimal action indicates the

importance of the multi-state system at the decision epoch. More study need be taken to examine
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under which conditions such a relationship holds.

Appendix A A Two-Action Maintenance Problem

We here study a two-action maintenance problem: available maintenance actions are either “do-

ing nothing” or “replacement”. Arrange the states w.r.t. the level of degradation: the first state

represents the worst machine condition, while the last state represents the pristine condition.

In the context of machine maintenance, if the do-nothing action is taken, then the condition

of the machine will degrade. Hence, the transition matrix for the do-nothing action, denoted by

P0 = (p0
ss′), is a lower triangular matrix; the main diagonal entries are smaller than 1 except the

first entry. For a belief state bbb, if we take the non-optimal action a = 0, then at the following epoch,

action a = 0 will still be non-optimal. In other words, if the machine is in need of replacement

but we do nothing, then at the following epoch the machine becomes more deteriorated, and hence

replacement becomes more urgent.

The action “replacement” (labelled by the number 1) restores the machine condition to brand

new. Hence, the transition matrix for the action “replacement”, denoted by P1 = (p1
ss′), has the

structure that the last column is the vector 111 while all the other entries are 0. Then it is readily to

prove that

`(bbb,a = 1,z) =
F1(z)(P1)Tbbb

1T F1(z)(P1)Tbbb
= (0, . . . ,0,1)T , ∀ bbb and z,

where Fa(z) = diag( f a
s (z) : s ∈ S) is a diagonal matrix, 111 = (1, . . . ,1) is the column vector of 1’s,

and T is the transpose operator. That is, after the “replacement” action, our belief state changes

to (0, . . . ,0,1) – we actually know that the machine is now in the pristine state. We write eee as a

notational shorthand for (0, . . . ,0,1).

For the POMDP (S,A,Z, pa
ss′, f a

s (z),R
a
s +wδ (a = 0),θ), define the (stationary) stopping time

tw := min{t : t ≥ 1, the action at time t is replacement.}.

Define two vectors of rewards: ~R0 = (R0
s : s ∈ S) and ~R1 = (R1

s : s ∈ S). Denote ~R0 = ~R0 +w and
~R1 = ~R1. Let π∗w be the optimal policy for the POMDP (S,A,Z, pa

ss′, f a
s (z),R

a
s +wI(a = 0),θ). We

have

Vπ∗w(bbb) = E[Ra0
s0
+θRa1

s1
+ . . .+θ

twR1
stw
|bbb0 = bbb,π∗w]+E[θ tw+1(R

atw+1
stw+1 +θR

atw+2
stw+2 + · · ·)|bbb

0 = bbb,π∗w]

= E[Ra0
s0
+θRa1

s1
+ . . .+θ

twR1
stw
|bbb0 = bbb,π∗w]+E[θ tw+1Vπ∗w(eee)|bbb

0 = bbb,π∗w]

= sup
τ≥1

{
E[Ra0

s0
+θR0

s1
+ . . .+θ

τ−1R0
sτ−1

+θ
τR1

sτ
|bbb0 = bbb,π∗w]+E[θ τ+1|bbb0 = bbb,π∗w]Vπ∗w(eee)

}
.
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If we take the do-nothing action for bbb0 and follow the optimal policy afterwards, then the EDR is

sup
τ≥1
{w1−E[θ τ |bbb0 = bbb]

1−θ
+E[R0

s0
+θR0

s1
+ . . .+θ

τ−1R0
sτ−1

+θ
τR1

sτ
|bbb0 = bbb]+E[θ τ+1|bbb0 = bbb]Vπ∗w(eee)}.

For notational convenience, define

R(bbb,τ) = E[R0
s0
+θR0

s1
+ . . .+θ

τ−1R0
sτ−1

+θ
τR1

sτ
|bbb0 = bbb].

If we take the replacement action for bbb0 and follow the optimal policy afterwards, then the EDR is

〈~R1,bbb〉+θVπ∗w(eee). Hence, action a = 0 is optimal for bbb0 if and only if

sup
τ≥1
{w1−E[θ τ |bbb0 = bbb]

1−θ
+R(bbb,τ)+E[θ τ+1|bbb0 = bbb]Vπ∗w(eee)} ≥ 〈~R

1,bbb〉+θVπ∗w(eee),

which is equivalent to

sup
τ≥1

R(bbb,τ)−〈~R1,bbb〉
1−E[θ τ |bbb0 = bbb]

≥ θVπ∗w(eee)−
w

1−θ
.

The l.h.s. is independent of w, while the r.h.s. is decreasing in w. Therefore, the inactive set

increases with the subsidy w.

Remark 1. For any action a ∈ A, define the action region Da
π = {bbb : π(bbb) = a}. It is easily seen

that the set of belief states where it is optimal to take action 1 is convex (and therefore connected):

For any belief states bbb1,bbb2 ∈ D1
π∗w

and any ρ ∈ [0,1], we have

Vπ∗w(ρbbb1 +(1−ρ)bbb2)≤ ρVπ∗w(bbb1)+(1−ρ)Vπ∗w(bbb2)

= ρ〈~R1,bbb1〉+ρθVπ∗w(eee)+(1−ρ)〈~R1,bbb2〉+(1−ρ)θVπ∗w(eee)

= 〈~R1,ρbbb1 +(1−ρ)bbb2〉+θVπ∗w(eee)

≤Vπ∗w(ρbbb1 +(1−ρ)bbb2),

where we have used the fact that Vπ∗w(·) is a convex function. Thus all the inequalities above are

equalities, and ρbbb1 +(1− ρ)bbb2 ∈ D1
π∗w

. The region D0
π∗w

, however, can be disconnected. Under

suitable conditions, the optimal policy π∗w can be characterized by a single curve, which partitions

the belief state space ∆ into two connected regions D0
π∗w

and D1
π∗w

(Krishnamurthy, 2016, Chapter

12). Then the importance measure for a belief state bbb is the value w making the switching curve

passing through bbb. The curve can be estimated via simulation based stochastic approximation

algorithms.
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Appendix B Proof of Proposition 1

Given bbbt =bbb and at = a, the observation space Z can be divided into |A| different sets {Zã
bbb,a : ã∈A}

such that

max
at+1∈A

〈~Rat+1, `(bbb,a,z)〉= 〈~Rã, `(bbb,a,z)〉, for any z ∈ Zã
bbb,a.

Then we have

V2(bbb) = max
a∈A
{〈~Ra,bbb〉+θ ∑

ã∈A

∫
Zã

bbb,a

Pr(zt+1 = z|bbb,at = a)〈~Rã, `(bbb,a,z)〉dz}

= max
a∈A
{〈~Ra,bbb〉+θ ∑

ã∈A

∫
Zã

bbb,a

〈PaFa(z)~Rã,bbb〉dz}

= max
a∈A
〈~Ra +θPa

∑
ã∈A

Fa(Zã
bbb,a)

~Rã, bbb〉,

where Fa(Zã
bbb,a) is a diagonal matrix with the main diagonal entries {

∫
Zã

bbb,a
f a
s (z)dz : s ∈ S}.

Let the optimal action be denoted by ä: ä = argmaxa∈A〈~Ra +θPa
∑ã∈AFa(Zã

bbb,a)
~Rã, bbb〉. Now

we subsidize action ä by the amount w. Then the observation space Z will be divided into |A| new

sets {Zw,ã
bbb,a : ã ∈A} such that

max
at+1∈A

〈wδ (at+1 = ä)+~Rat+1, `(bbb,a,z)〉=

{
w+ 〈~Rä, `(bbb,a,z)〉, ∀z ∈ Z

w,ä
bbb,a ;

〈~Rã, `(bbb,a,z)〉, ∀z ∈ Z
w,ã
bbb,a and ã 6= ä.

The second-order approximate function V2(bbb;w) can be written into

V2(bbb;w) = max
a∈A

{
wδ (a = ä)+ 〈~Ra +θPa

∑
ã∈A

Fa(Zw,ã
bbb,a)

~Rã +wθPaFa(Zw,ä
bbb,a)111, bbb〉

}
.

If the optimal action is a ∈A/{ä}, then

wθ〈PaFa(Zw,ä
bbb,a)111, bbb〉+ 〈~Ra +θPa

∑
ã∈A

Fa(Zw,ã
bbb,a)

~Rã, bbb〉 ≥ w+ 〈~Rä +θPä
∑

ã∈A
F ä(Zw,ã

bbb,ä)
~Rã +wθPäF ä(Zw,ä

bbb,ä)111, bbb〉.

On one hand, we have

wθ〈PaFa(Zw,ä
bbb,a)111, bbb〉 ≤ wθ〈PaFa(Z)111, bbb〉= wθ < w.
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On the other hand,

〈~Rä +θPä
∑

ã∈A
F ä(Zw,ã

bbb,ä)
~Rã +wθPäF ä(Zw,ä

bbb,ä)111, bbb〉

= 〈~Rä,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = ä) max
at+1∈A

〈wδ (at+1 = ä)+~Rat+1, `(bbb, ä,z)〉dz

≥ 〈~Rä,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = ä) max
at+1∈A

〈~Rat+1 , `(bbb, ä,z)〉dz

≥ 〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a) max
at+1∈A

〈~Rat+1 , `(bbb,a,z)〉dz,

and

〈~Ra +θPa
∑

ã∈A
Fa(Zw,ã

bbb,a)
~Rã, bbb〉 ≤ 〈~Ra,bbb〉+θ

∫
Z

Pr(zt+1 = z|bbb,at = a) max
at+1∈A

〈~Rat+1, `(bbb,a,z)〉dz.

Therefore, we claim that

argmax
a∈A

{
wδ (a = ä)+ 〈~Ra +θPa

∑
ã∈A

Fa(Zw,ã
bbb,a)

~Rã +wθPaFa(Zw,ä
bbb,a)111, bbb〉

}
= ä,

and hence the inactive set P2(w) increases with the subsidy w.
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Tyrväinen, T. (2013). Risk importance measures in the dynamic flowgraph methodology. Relia-

bility Engineering & System Safety, 118:35 – 50.

Whittle, P. (1988). Restless bandits: Activity allocation in a changing world. Journal of Applied

Probability, 25:287–298.

Wu, S., Chen, Y., Wu, Q., and Wang, Z. (2016). Linking component importance to optimisation of

preventive maintenance policy. Reliability Engineering & System Safety, 146:26 – 32.

Yuan, S. and Wang, J. (2012). Sequential selection of correlated ads by pomdps. In Proceedings of

the 21st ACM International Conference on Information and Knowledge Management, pages

515–524.

26


	Introduction
	Problem Formulation
	Two Modified Importance Measures
	Approximate Measure
	Rate Measure

	Numerical Study
	Evaluating the Two Heuristic Policies
	Comparing with the Third-Order Approximation

	Conclusion and Further Research
	A Two-Action Maintenance Problem
	Proof of Proposition 1

