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Abstract

This paper proposes the use of a tuned mass-damper-inerter (TMDI) for the mitigation of edge-
wise blade vibrations in wind turbines. The hollow nature of the wind turbine blades is utilized
to install a TMDI at a location close to the tip of each blade. A flexible multi-modal offshore
wind turbine model is developed in order to study the dynamics of wind turbine blade vibra-
tions. Uncontrolled, TMD controlled and TMDI controlled models are derived. These models
are developed using the Euler-Lagrangian approach and lead to time-varying systems with the
possibility of negative damping. Closed-form expressions for the optimal tuning and damping
ratios of blade-mounted TMDIs are derived. Numerical simulations are then presented to demon-
strate the performance of the TMDI controlled blades. The results show that TMDIs can control
edgewise vibrations in wind turbine blades while requiring significantly less damper stroke than
classical TMDs. The inclusion of the inerter in the damper had a significant effect on the damper
stroke with reductions of up to 55% demonstrated. These impressive reductions in damper stroke
come at the cost of very slightly increased blade vibration as compared to the TMD controlled
case. This is a trade-off that must be considered in the design of a wind turbine.

Keywords: TMDI; Inerter; Wind Turbine; Vibration Control; closed-form solution; optimal
design

1. Introduction

Tuned mass dampers (TMDs) are one of the simplest and most effective devices that have
been developed to control the response of civil engineering structures. TMDs have traditionally
been used to mitigate the wind [1], seismic [2] or wave [3] induced response of large, flexible
structures. TMDs consist of a small oscillator (secondary system) attached to the structure (pri-
mary system) which is subjected to dynamic loads. The fundamental idea behind the TMD is
to transfer mechanical energy from the primary system to the secondary system, such that the
primary system only performs moderate vibrations. The secondary system is allowed to un-
dergo vibrations, which are dissipated by the damper. The tuning of the mass damper refers to
the selection of the parameters of the secondary system (mass, damping and stiffness) in a way
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such that maximum mechanical energy is transferred from the primary system to the secondary
system for any given dynamic loading [4]. The concept of using a TMD to control vibrations
dates back over one hundred years to Frahm’s original damper [5]. The frequency of the damper
was tuned to the frequency of the excitation. The damper absorbed the energy from the exci-
tation and underwent vibration, the structure experienced no vibration. Frahm’s device had no
inherent damping and the performance was poor if the excitation frequency differed marginally
from the device’s natural frequency. Since Frahm, many investigations have been carried out to
optimize and improve the performance of mass dampers. Ormondroyd and DenHartog [6] in-
troduced damping into Frahm’s device and observed a noticeable improvement. DenHartog [7]
later developed simple expressions for optimal tuning and damping ratios for TMDs. Fujino
and Abe [8] derived optimal formulas for designing a TMD for various types of loading. These
formulae were expressed as functions of the mass ratio, tuning ratio and damping ratio of the
TMD. Rana and Soong [9] studied the effects of tuning of TMDs. The effect of mistuning was
investigated and the authors enhanced the understanding of some important characteristics of
TMDs. Ghosh and Basu [10] derived a closed form expression for the optimum tuning ratio of a
TMD based on the fixed-point theory of DenHartog [7]. Krenk [11] characterized the damping
properties of TMDs by dynamic amplification analysis as well as identification of the locus of the
complex natural frequencies. Using frequency analysis Krenk derived an optimal TMD damping
parameter which is an improvement on the classical value derived by DenHartog [7].

Over the past decade or so there have also been developments and innovations in TMDs. The
concept of an ‘inerter’ was proposed by Smith [12]. Smith defined this device as a two-node,
one-port mechanical element with the property that the force applied at the nodes is proportional
to the relative acceleration between them - the so called ‘inertance’ is the constant of proportion-
ality. There are many parasitic effects that are typically neglected in this idealized inerter model,
these have been observed in laboratory experiments and in operational inerter devices, such as
ratcheting, backlash and friction phenomena [13]. These parasitic effects can be largely miti-
gated by using the recently proposed fluid inerter [14], which is less popular than the mechanical
inerter but has good potential for vibration control. The fluid inerter can reduce the parasitic
effects that are more pronounced in mechanical devices and also has greater inherent damping
due to the fluid viscosity and density [15]. However, the mechanical inerter is more popular to
date in the literature and in practice.

Recent studies have proposed novel TMD configurations incorporating inerters. Most of
these studies seek to improve upon the performance of classical TMDs by utilising the theoretical
mass amplification effect of the inerter. This mass amplification effect is present when one ter-
minal of the inerter is connected to the ground, referred to in the literature as ‘grounded’. When
grounded, one advantage of an inerter-based damper is to split the inertial properties in a differ-
ent manner compared to a traditional TMD. The performance of the inerter-based damper can be
improved by using a small mass ratio alongside a large inertance ratio, which can be practically
achieved by exploiting the mass-amplification effect of the inerter. It has been demonstrated that
an inerter-based damper with smaller mass ratio can lead to higher vibration control than a TMD
with higher mass ratio, provided a reasonable choice of the inertance ratio is made and the inerter
is grounded [16, 17]. It has also been demonstrated for grounded inerter-based dampers, that us-
ing larger inertance ratios can also improve the robustness of the system and reduce deterioration
of damper performance due to detuning effects [18, 19].

Inerter based TMDs often employ a gearing (via rack and pinion systems or hydraulic de-
vices) that provides an effective mass for the damper much greater than its actual mass. In theory,
since a TMD’s performance is largely related to its mass ratio, inerter based TMDs can achieve
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greater vibration reductions due to the increased effective mass ratio provided by the inerter. Ik-
ago et al. [20] proposed the tuned viscous mass damper (TVMD), a new structural control device
for seismic applications. The device used an inerter (ball-screw mechanism) to achieve a mass
amplification effect. Closed-form expressions were derived for optimal device parameters and
experimental verification was provided by shake table tests. Garrido et al. [21] developed a new
passive vibration control device, the rotational inertia double tuned mass damper (RIDTMD).
The RIDTMD consists of a conventional TMD in which the typical viscous damper is replaced
with a tuned viscous mass damper. The RIDTMD is more effective than a TMD having the
same mass ratio and has a wider suppression band. The tuned mass-damper-inerter (TMDI) was
proposed by Marian and Giaralis [22]. This device utilises the mass amplification effect of the
inerter, in this case a two-terminal flywheel device, to improver upon the classical TMD perfor-
mance. Optimal TMDI parameters were derived in closed-form as functions of the TMD mass
and the inerter constant. The authors concluded that incorporating an inerter in the damper can
either replace part of the TMD vibrating mass to achieve a lightweight damper, or improve upon
the performance of the classical TMD for a given TMD mass. Giaralis and Taflanidis [23] consid-
ered reliability based optimal design of building structures with TMDIs installled under seismic
loading. The TMDI’s frequency, damping ratio, and inertance parameters were optimised subject
to constraints on floor accelerations and TMDI stroke. The enhanced performance of the TMDI
over the classical TMD especially for relatively small additional attached mass was reported.
Lazar et al. [24] also proposed a new mass damper device incorporating an inerter. The focus of
the study was on vibration suppression in base excited structures. The authors demonstrated the
performance improvement achieved by using an inerter device instead of a classical TMD. Lazar
et al. [25] also investigated the use of a tuned-inerter-damper (TID) for vibration suppression in
cables. The device was optimised and a practical design method developed. Hu and Chen [26]
optimised inerter-based dynamic vibration absorbers (IDVAs). IDVAs are developed by replac-
ing the damper in the traditional dynamic vibration absorber (DVA) with an inerter. Four different
IDVAs configurations were proposed by adding an inerter together with a spring to the DVA, and
significant improvement for both the H∞ and H2 performances is obtained. A recent study by
Shen et al. [27] on the application of TIDs to civil engineering structures concluded that TIDs
outperform conventional TMDs on response control of primary structures subjected to dynamic
loads, since the former will not increase the total energy input into the system but the latter will.
TID’s also have the advantage of achieving very large inertance-to-mass ratio without increasing
space demand (or damper stroke).

For the past decade the wind energy industry has been applying the methodologies and tech-
nologies developed in the field of structural control to reduce vibrations in wind turbines. The
reduction of the blade response is a critical concern of manufacturers and infrastructure op-
erators and owners. Modern wind turbine blades are very long (can now be >80m) slender
structures that are subjected to large dynamic loads. Blades are manufactured from lightweight
high-strength materials and as such they are very flexible and lightly damped. Due to these struc-
tural characteristics, they are very susceptible to wind induced vibrations and they may undergo
significant vibration during operation under turbulent aerodynamic loads. Blade vibrations may
slow down wind energy conversion to electrical power and reduce the fatigue life of the turbine
structure [28]. Dueñas-Osorio and Basu [29] investigated wind turbine unavailability as a func-
tion of wind-induced vibrations of the turbine. Blade vibration can lead to the malfunction of
acceleration-sensitive equipment housed in the nacelle of the wind turbine, resulting in reduced
annual wind turbine availability. Blade vibration issues may have a significant impact on the
lifetime of the structural components, and even on the overall integrity of the structural system.
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These impacts will have associated implications for the cost of wind power. Therefore, there is
now increasing interest on reducing the harmful effects of mechanical vibration on wind turbine
blades in the wind energy industry and structural control of wind turbine blades is now an active
area of research.

Passive devices such as Tuned Liquid Dampers [30, 31]; Tuned Liquid Column Dampers
[28]; Circular Liquid Dampers [32]; and Roller Dampers [33] have been proposed for vibration
control of wind turbine blades. Passive tuned mass dampers (TMDs) have been investiagted in
many studies [34, 35]. It should be noted that liquid dampers have been found to perform well
in experimental studies on wind turbine blades [36] and they do not suffer from stroke limita-
tion issues inherent in traditional mass damper devices. Semi-active devices such as variable
stiffness TMDs have been developed for wind turbine applications with algorithms for flapwise
blade vibrations [37], edgewise blade vibrations [38] and tower vibrations [39] developed. Ac-
tive control devices including active mass dampers have also been investigated [40, 41, 42, 43].
Active control devices have also been proposed for non-resonant vibration control of wind tur-
bine blades utilising active tendons [44] or cables [45]. Active individual blade pitch control has
also been proposed as a method of suppressing non-resonant vibrations [46, 47, 48, 49]. Wind
turbine manufacturers are now installing dampers inside wind turbine blades. However, there
remain challenges such as the limited space available inside the hollow blade and concerns about
large damper mass required to suppress vibrations. The tuned mass damper inerter (TMDI) offers
an alternative choice for the designer. Using a TMDI, the damper stroke required for vibration
control may be reduced.

Recent literature has proposed the use of inerter-based dampers in wind turbines. All of the
literature so far concerns installation of these devices in the nacelle or tower with no studies
investigating their application in wind turbine blades. Hu et al. [50] applied an inerter-based
damper to a barge type floating offshore wind turbine. The inerter consisted of a parallel connec-
tion of a spring, a damper, and an inerter-based network. The damper parameters were optimised
and performance improvement over a traditional TMD was noted. Zhang et al. [51] developed
the tuned parallel inerter mass system (TPIMS) for vibration control of wind turbine towers un-
der seismic loads. Damper parameters were again optimised and the primary structure’s response
was reduced compared to results with a classical TMD of the same mass ratio. Ma et al. [52]
proposed an inerter-based device called the tuned heave plate inerter (THPI). The device was
applied to semi submersible platforms which are used as a floating foundation solution for some
offshore wind turbines. The mass amplification effect of the inerter was employed to amplify the
effective damper mass and improvements were thus achieved over conventional structural control
schemes. Ma et al. [53] also developed another novel damper - the hydraulic rotational inertia
damper (RID), to mitigate heave motions of semi submersible platforms. Sarkar and Fitzgerald
[54] recently proposed the use of a TMDI for vibration control of spar type floating offshore
wind turbine towers.

In this paper, TMDIs are proposed to reduce edgewise vibrations in wind turbine blades.
The hollow nature of the wind turbine blades is utilized to install a TMDI at a location close
to the tip of each blade. A flexible offshore wind turbine model is developed in order to study
the dynamics of wind turbine blade vibrations, including the coupling between the edgewise
and the flapwise modes of the blades. A multi-modal representation of the flexible elements
(the three blades and the tower) is adopted. The equations of motion are derived by taking
into account the blade-tower interaction. Uncontrolled, TMD controlled and TMDI controlled
models are derived. These models are developed using the Euler-Lagrangian approach and lead
to time-varying systems with the possibility of negative damping. Closed-form expressions for
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the optimal tuning parameters of blade-mounted TMDIs are derived. Numerical simulations
are then presented to demonstrate the performance of the TMDI controlled blades. The results
indicate encouraging prospects for the use of TMDIs in the control of vibrations of wind turbine
blades with implications for industry.

2. Modeling

2.1. 13-DOF aeroelastic wind turbine model
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Figure 1: The 13-DOF model. (a) DOFs of the blades and tower. (b) DOFs of the flexible drivetrain.

A 13-degree-of-freedom (13-DOF) aeroelastic wind turbine model developed using a modal
approach together with analytical dynamics method [33, 55] is briefly presented in this subsec-
tion, which will be used in the later section for evaluating the performance of the optimal TMDI
in a highly-coupled wind turbine system. This model possesses the most important features
of a wind turbine system, i.e. time-dependent system matrices, coupled tower-blade-drivetrain
vibrations as well as nonlinear aeroelasticity.

Figure 1 shows the definitions of DOFs of this 13-DOF model as well as the coordinate
systems. Each blade is modelled in a moving local (x1, x2, x3)-coordinate system as a rotating
Bernoulli-Euler beam (with both centrifugal stiffening and centripetal softening effects consid-
ered), and is associated with 2 DOFs representing the flapwise vibration and edgewise vibration,
respectively. The tower and the flexible drivetrain are modeled in the fixed global (X1, X2, X3)-
coordinate system, as a Bernoulli-Euler beam and a St. Venant torsional rod, respectively. The
tower vibration is described by 2 translational DOFs q7(t) and q8(t), and 3 rotational DOFs q9(t),
q10(t) and q11(t). Finally, the torsional motion of the flexible drivetrain is described by 2 DOFs
q12(t) and q13(t), signifying the deviations of the rotational angles at the hub and at the gener-
ator from the nominal rotational angles Ω0t and NΩ0t, respectively, where Ω0 is the nominal
rotational speed and N is the gear ratio.

The equations of motion of the 13-DOF model are obtained by substituting the formulated
kinetic and potential energies of the complete wind turbine system into the Euler-Lagrange equa-
tion. For obtaining the aerodynamic loads, rotational sampled turbulence is generated using
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Taylor’s hypothesis of frozen turbulence [55] together with a first-order autoregressive model
[56]. The corrected blade element momentum (BEM) method is then employed to calculate
the aerodynamic loads along each blade. Nonlinear quasi-static aeroelasticity is considered by
incorporating the local deformation velocities of the blade cross-sections into angle of attack
calculation. Furthermore, a collective pitch controller (with time delay modeled by a first-order
filter) and a generator torque controller are also included in the 13-DOF model.

2.2. Definition of the problem: TMDI in a rotating blade
Figure 2 shows the schematic representation of a rotating blade equipped with a tuned mass-

damper-inerter (TMDI). The edgewise vibration of the blade is described in the moving (x1, x2, x3)-
coordinate system. For each blade (assumed to be identical), the mass per unit length and the
bending stiffness in the edgewise direction are denoted µ(x3) and EI(x3), respectively. The ro-
tation of each blade is assumed to take place with a constant rotational speed Ω. For modern
multi-megawatt pitch-regulated wind turbines, the rotational speed is constant (slightly oscillat-
ing around this mean value due to turbulence) when the mean wind speed is between the rated
wind speed and the cut-out wind speed due to the functioning of the pitch controller [57]. Below
rated, the pitch controller is deactivated, and the rotational speed is dependent on the mean wind
speed. Hence, in general the rotational speed can be considered constant for a given wind speed.
Furthermore, Ω here is merely a system parameter, which appears in the closed-form expres-
sions for the optimal frequency tuning and damping ratio of the blade-mounted TMDI, as will be
shown below. This will provide a basis for the possible semi-active control when Ω changes due
to the change of wind speed.

The azimuthal angle Ψ j(t) for blade j is thus given by:

Ψ j(t) = Ωt +
2π
3

( j − 1), j = 1, 2, 3 (1)

X2

X3

x2

x3

q(t)

Ψ(t)
kd

bd

cd

md

x0

aq(t)

ud
(t)

Figure 2: Definition of coordinate systems, geometry and degrees of freedom.

In the following, only blade j = 1 is considered since all three blades have identical geomet-
rical and structural parameters. Hence, Ψ j(t) = Ψ(t) = Ωt. The edgewise vibration of the blade
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is described by the local degree of freedom q(t), representing the tip displacement in the negative
x2− direction. The local edgewise displacement field u2(x3, t) of the rotating blade in the positive
x2− direction can be described by q(t) as:

u2(x3, t) = −Φ(x3)q(t) (2)

where Φ(x3) is the fundamental edgewise eigenmode of the blade, which is normalized to 1 at
the blade tip.

Assuming the TMDI to be installed at the coordinate x3 = x0, the local displacement of the
blade at this position with sign definition in Figure X is written as:

u2(x0, t) = −aq(t) (3)

where a = Φ(x0). a is an important design parameter for TMDI representing the influence of the
damper location.

The TMDI is a device which combines a conventional/classical tuned mass damper (TMD)
with an inerter. The conventional TMD is installed inside the blade at the position x0, which
consists a block mass md attached to the primary structure via a linear spring of stiffness kd and
a viscous damper with damping coefficient cd. One end of the inerter (with inertance bd) is
connected to the TMD, and the other end is connected to the blade structure. The physical mass
of the inerter is negligible compared to the masses md and bd. The displacement of the TMD
block mass relative to the deformed blade is denoted ud(t), as shown in Figure 1. Therefore, q(t)
and ud(t) make up the degrees of freedom of the 2-DOF blade-TMDI system.

2.3. Modeling of the 2-DOF blade-TMDI system

The velocity components of the blade in the moving (x2, x3)-coordinate system can be written
as:

v2(x3, t) = −Ω x3 − Φ(x3) q̇(t)
v3(x3, t) = −Ω Φ(x3)q(t)

 (4)

The components of the position vector and velocity vector of the TMD block mass in the
fixed global (X2, X3)-coordinate system are given by:

X2,d(t) = −x0 sin Ψ − aq cos Ψ − ud cos Ψ

X3,d(t) = x0 cos Ψ − aq sin Ψ − ud sin Ψ

 (5)

V2,d(t) = − (x0Ω + aq̇ + u̇d) cos Ψ + (aq + ud) Ω sin Ψ

V3,d(t) = − (x0Ω + aq̇ + u̇d) sin Ψ − (aq + ud) Ω cos Ψ

 (6)

The total kinetic energy of the system (i.e. one blade and one TMDI including the block mass
and the inerter) becomes:

T (t) =
1
2

∫ L

0
µ(x3)

(
v2

2(x3, t) + v2
3(x3, t)

)
dx3 +

1
2

md

(
V2

2,d(t) + V2
3,d(t)

)
+

1
2

bdu̇2
d

=
1
2

m0

(
q̇2 + Ω2 q2

)
+ m1Ωq̇ +

1
2

Ω2m2 +
1
2

md

[
(x0Ω + aq̇ + u̇d)2 + (aqΩ + udΩ)2

]
+

1
2

bdu̇2
d

(7)
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where m0 =
∫ L

0 µ(x3) Φ2(x3)dx3 denotes the modal mass of the blade. Further, m1 =
∫ L

0 µ(x3) x3Φ(x3)dx3,

m2 =
∫ L

0 µ(x3) x2
3dx3. The total potential energy of the system is:

U(t) = mdg (x0 cos Ψ − aq sin Ψ − ud sin Ψ) +
1
2

k0q2 +
1
2

kdu2
d (8)

where g is the gravitational acceleration. k0 denotes the modal stiffness of the blade including
the geometric stiffness effect from centrifugal accelerations, which is expressed as:

k0 =

∫ L

0

EI(x3)
d2Φ(x3)

dx2
3

2

+ F(x3)
(

dΦ(x3)
dx3

)2 dx3 (9)

with F(x3) = Ω2
∫ L

x3
µ(ξ)ξdξ being the centrifugal axial force per unit length along the blade.

Therefore, the fundamental angular eigenfrequency of the blade is obtained as:

ω0 =

√
k0

m0
(10)

Using Eqs. (7), (8), the equations of motion of the 2-DOF blade-TMDI system can be ob-
tained from the stationarity conditions of the Euler-Lagrange equations [58]:

d
dt

(
∂T
∂q̇

)
−
∂T
∂q

+
∂U
∂q

= f (t) − c0q̇ ⇒

(
m0 + a2md

)
q̈ + amdüd + c0q̇ +

[
k0 −

(
m0 + a2md

)
Ω2

]
q − amdΩ2ud = f (t) + amdg sin Ψ (11)

d
dt

(
∂T
∂u̇d

)
−
∂T
∂ud

+
∂U
∂ud

= −cdu̇d ⇒

amdq̈ + (md + bd) üd + cdu̇d − amdΩ2q +
(
kd − mdΩ2

)
ud = mdg sin Ψ (12)

where f (t) denotes the modal load on the blade due to turbulence and the gravity, which is
calculated using the more sophisticated 13-DOF aeroelastic wind turbine model introduced in
subsetion 2.1. c0 = 2ζ0m0ω0 indicates the modal damping coefficient of the primary structure,
with ζ0 being the corresponding modal damping ratio.

Eqs. (11) and (12) can be combined into matrix form:[
m0 + a2md amd

amd md + bd

] [
q̈
üd

]
+

[
c0 0
0 cd

] [
q̇
u̇d

]
+

[
k0 −

(
m0 + a2md

)
Ω2 −amdΩ2

−amdΩ2 kd − mdΩ2

] [
q
ud

]

=

[
f (t) + amdg sin Ψ

mdg sin Ψ

]
(13)

In the case of a classical TMD, the equations of motion of the 2-DOF blade-TMD system is
obtained directly from Eq. (13) with bd = 0.
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3. Optimal tuning of the bladed-mounted TMDI

For deriving closed-form expressions of the optimal tuning of the blade-mounted TMDI, the
following simplifications are made: (a) The damping of the primary structure is ignored, i.e.
c0 = 0. This makes sense because of the inherently low structural damping of the blade and
the negligible aerodynamic damping of the edgewise mode. (b) The two terms amdg sin Ψ and
mdg sin Ψ in the load vector are negligible comparing with the term f0, since the TMD block
mass is insignificant. On the other hand, the performance of the optimally designed TMDI will
be justified using the original equations of motion through time-domain simulations.

3.1. Normalized amplitude and dynamic amplification

The responses q(t), ud(t) and the load f (t) are represented in terms of harmonic components
with angular frequency ω:

q(t) = q0 eiωt, ud(t) = ud,0 eiωt, f (t) = f0 eiωt (14)

where q0, ud,0 and f0 are the complex amplitudes. i =
√
−1 is the complex unit. Harmonic load

is assumed in order to derive the closed-form expressions for the optimal frequency tuning and
damping ratio of the blade-mounted TMDI. On the other hand, the performance of the optimized
TMDI in a rotating blade will be evaluated using time-domain simulations with turbulent wind
loads as the inputs, as will be shown in subsections 4.3 and 4.4.

Substituting Eq. (14) into Eq. (13), the normalized amplitude of the structural response is
given by:

q0

f0/k0
=

A + 2iζdB
C + 2iζdD

(15)

where

A = (1 + γ)ω2
0

(
ω2

d −
Ω2

1 + γ
− ω2

)
B = (1 + γ)ω2

0ωdω

C =
(
1 + γ + a2β

)
ω4 −

[
(1 + γ)ω2

0 + (1 + γ)
(
1 + a2µ

)
ω2

d −
(
2 + γ + a2β

)
Ω2

]
ω2 +

[
(1 + γ)ω2

0ω
2
d −

(
ω2

0 + (1 + γ)
(
1 + a2µ

)
ω2

d

)
Ω2 + Ω4

]
D = (1 + γ)ωd

[(
ω2

0 −
(
1 + a2µ

)
Ω2

)
ω −

(
1 + a2µ

)
ω3

]
(16)

In Eqs. (15) and (16), the following normalized parameters of the TMDI have been intro-
duced:

µ =
md

m0
, β =

bd

m0
, γ =

bd

md
=
β

µ
, ωd =

√
kd

md + bd
, ζd =

cd

2
√

kd (md + bd)
(17)

where µ and β are the mass ratio and inertance ratio, respectively. ωd and ζd are the angular
natural frequency and damping ratio of the decoupled TMDI, respectively. The corresponding
normalized parameters of a classical TMD are obtained simply by setting bd = 0.

The dynamic amplification of the structural response is the absolute value (module) of Eq. (15),
which is used as the basis for determining the optimal parameters of the blade-mounted TMDI
in the following subsections.
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Similarly, the normalized amplitude of the relative TMD mass block motion is expresses as:

ud,0

f0/k0
=

aω2
0ω

2 + aω2
0Ω2

C + 2iζdD
(18)

Furthermore, the normalized form of the so-called frequency equation (or characteristic poly-
nomial) can be obtained by letting the denominator of Eq. (15) (or Eq. (18)) be zero:

C + 2iζdD = 0 (19)

which essentially determines the complex natural frequencies of the free vibration modes of the
blade-TMDI system. An important case is when ζd → ∞, which implies that the viscous damper
completely constrains the relative TMD motion ud(t), i.e. the TMDI is locked. In this case, the
solution to Eq. (19) becomes real, which represents the natural frequency of the blade with a
locked TMDI:

ω∞ =

√
ω2

0

1 + a2µ
−Ω2 (20)

This natural frequency ω∞ will be used as a reference frequency when deriving the closed-
form expression of the optimal TMDI damping ratio ζd.

As for the case of classical TMD, ω∞ turns out to be exactly the same as in Eq. (20). This
makes sense because when the block mass md is locked, the inertance bd effectively becomes
zero (and thus the TMDI is reduced to TMD) since the relative acceleration between the two
terminals of the inerter is zero.

For optimal design of the blade-mounted TMDI, the optimal values of ωd and ζd need to be
determined when the damper location x0, the mass ratio µ and the inertance ratio β are prescribed.

3.2. Optimal frequency tuning

According to the classical TMD theory [7, 11], around ω0 there are two excitation frequen-
cies ωM and ωN where the dynamic amplifications are independent of the TMD damping ratio
ζd. ωM and ωN are denoted the neutral frequencies or the fixed-point frequencies. It turns out
that the fixed-point frequencies also exist for the present case of a rotating blade equipped with
a TMDI. The classical TMD theory provides the optimal frequency-tuning criterion, i.e. the op-
timal frequency ωd is chosen to ensure the equal dynamic amplification at the two fixed-point
frequencies ωM and ωN . This criterion is also employed in the present paper.

At ωM and ωN , the dynamic amplifications are independent of the TMDI damping ratio ζd.
This leads to the following equation by the use of Eq. (15):

A2

C2 =
B2

D2 ⇒ AD = ±BC (21)

Substituting Eq. (16) into Eq. (21) and recognizing that the plus sign in Eq. (21) only leads
to the trivial solution ω = 0, the polynomial fulfilled by ω = ωM or ω = ωN is obtained:(

2 + a2µ + 2γ + 2a2β
)
ω4 − 2

[
(1 + γ)ω2

0 + (1 + γ)
(
1 + a2µ

)
ω2

d −
(
2 + a2µ + γ + a2β

)
Ω2

]
ω2

+
{
2 (1 + γ)ω2

0ω
2
d − 2

[
ω2

0 + (1 + γ)
(
1 + a2µ

)
ω2

d

]
Ω2 +

(
2 + a2µ

)
Ω4

}
= 0
(22)
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from which we directly have the sum of ω2
M and ω2

N :

ω2
M + ω2

N =
2
[
(1 + γ)ω2

0 + (1 + γ)
(
1 + a2µ

)
ω2

d −
(
2 + a2µ + γ + a2β

)
Ω2

]
2 + a2µ + 2γ + 2a2β

(23)

Next, the property of the fixed-point frequencies implies that we can obtain the dynamic
amplifications at ωM and ωN by letting ζd → ∞ in Eq. (15):∣∣∣∣∣ q0

f0/k0

∣∣∣∣∣
M,N

=
±1

1 −
(
1 + a2µ

)
(Ω/ω0)2 −

(
1 + a2µ

)
(ω/ω0)2 (24)

To ensure equal dynamic amplification at ωM and ωN , we have:

1
1 −

(
1 + a2µ

)
(Ω/ω0)2 −

(
1 + a2µ

)
(ωM/ω0)2 =

−1
1 −

(
1 + a2µ

)
(Ω/ω0)2 −

(
1 + a2µ

)
(ωN/ω0)2

(25)
from which the second equation for ω2

M + ω2
N is obtained as:

ω2
M + ω2

N =
2ω2

0 − 2
(
1 + a2µ

)
Ω2

1 + a2µ
(26)

Comparing Eqs. (23) and (26), the closed-form expression of the optimal frequency of the
blade-mounted TMDI becomes:

(ωd)opt =

√(
1 + γ + a2β

)
ω2

0 −
(
1 + a2µ

) (
γ + a2β

)
Ω2

(1 + γ)
(
1 + a2µ

)2 (27)

which turns out to be not only dependent on the mass ratio µ and the inertance ratio β, but also
dependent on the rotor rotational speed Ω. Once (ωd)opt is determined, the spring stiffness can
be calculated as kd = (ωd)2

opt (md + bd).
As for the classical TMD, the optimal frequency of the blade-mounted TMD can also be

obtained using the same procedure, which is given as (without going into details) [59]:(
ωd,T MD

)
opt =

ω0

1 + a2µ
(28)

It is interesting to see that for the classical TMD, the optimal frequency ratio
(ωd,T MD)opt

ω0
from

Eq. (28) is independent on the rotor rotational speed Ω. By setting β = 0 (and thus γ = 0) in
Eq. (27), Eq. (27) is exactly reduced to Eq. (28).

Furthermore, substituting the optimal frequency (ωd)opt given by Eq. (27) into Eq. (22), the
quadratic equation with ω2

M and ω2
N being the roots becomes:

ω4 − 2
 ω2

0

1 + a2µ
−Ω2

ω2 +

 2
(
1 + γ + a2β

)
ω4

0(
1 + a2µ

)2 (
2 + a2µ + 2γ + 2a2β

) − 2ω2Ω2

1 + a2µ
+ Ω4

 = 0 (29)

Solving ω2
M and ω2

N from Eq. (29) and then inserting them into Eq. (24), the dynamic ampli-
fication at the fixed-point frequencies ωM and ωN can be explicitly written as:∣∣∣∣∣ q0

f0/k0

∣∣∣∣∣
M,N

=

√
2 + a2µ + 2γ + 2a2β

a2µ
(30)
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which is seen to be independent of Ω. This to some extent generalizes the fixed-point theory of
the classical SDOF-TMD system, i.e. independence of both the damping ratio ζd and the rotor
rotational speed Ω are achieved in the present blade-TMDI system.

3.3. Optimal damping tuning

In this subsection, closed-form expression of the optimal TMDI damping ratio is derived
using the criterion proposed in [11]. The idea is that the optimal TMDI damping ratio is chosen
to ensure the dynamic amplifications are equal at three excitation frequencies, ωM , ωN and ω∞.
This means (ζd)opt should be determined in order that the dynamic amplification at ω∞ is equal
to that in Eq. (30).

Substituting Eq. (20) and Eq. (27) into Eq. (15), the normalized amplitude of the structural
response at the excitation frequency ω = ω∞ becomes:

q0

f0/k0
= 1 −

2iζd

(
1 + a2µ

)
a2µω2

0

√√
(1 + γ)

[(
1 + γ + a2β

)
ω4

0 −
(
1 + a2µ

) (
1 + 2γ + 2a2β

)
ω2

0Ω2 +
(
1 + a2µ

)2 (
γ + a2β

)
Ω4

]
1 + a2µ

(31)

which indicates a constant real part regardless of the TMDI parameters. Equalizing the absolute
value of Eq. (31) to Eq. (30), the closed-form expression of the optimal TMDI damping ratio
becomes:

(ζd)opt =

√√
1
2

(
a2µ + a2β + a4µβ

)
(1 + γ)

(
1 + a2µ

) ω4
0(

1 + γ + a2β
)
ω4

0 −
(
1 + a2µ

) (
1 + 2γ + 2a2β

)
ω2

0Ω2 +
(
1 + a2µ

)2 (
γ + a2β

)
Ω4

(32)

As for the case of classical TMD, the same procedure above can be employed, which results
in the following expression of the optimal TMD damping ratio [59]:

(
ζd,T MD

)
opt =

√
1
2

a2µ

1 + a2µ

 ω2
0

ω2
0 −

(
1 + a2µ

)
Ω2

 (33)

By setting β = 0 (and thus γ = 0) in Eq. (32), Eq. (32) is exactly reduced to Eq. (33).

4. Numerical examples

Numerical simulations are carried out to demonstrate the performance of the TMDI compared
with a classical TMD and the uncontrolled blade response. Data from the NREL 5 MW wind
turbine [57] is used to instantiate the structural model of the wind turbine blade. Each blade has
a length of 61.5 m and an overall mass of 17740 kg, with the mass per unit length, the edgewise
bending stiffness and the fundamental edgewise mode shape provided by [57]. The modal mass
m0 is thus calculated as m0 = 1.354× 103 kg. The nominal (rated) rotational speed of the rotor is
Ω0=1.27 rad/s.

4.1. Dynamic amplification

Figure 3 shows the dynamic amplification of the TMDI-controlled structural response (as
a function of the normalized frequency ω/ω0), where the optimal frequency-tuning formula
Eq. (27) is used. The damper is located at a position, x0, 45 m along the blade from the blade
root. The mass ratio µ of the TMDI is 5%, and the inertance ratio β is 5%. Two different rota-
tional speeds have been considered, i.e. Ω = 0 and Ω = Ω0, corresponding to parked condition
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Figure 3: Dynamic amplification of the structural response for x0 = 45 m, µ = 0.05 (md = 67.7 kg) and β = 0.05
(bd = 67.7 kg). Asterisk: the fixed-point frequencies ωM and ωN . Circle: ω∞. (a) Ω = 0 (non-rotating blade). (b)
Ω = Ω0 (1.27 rad/s).

and normal operational condition of the rotor, respectively. For each Ω, three different damping
ratios have been considered, i.e. ζopt given by Eq. (32), 0.5 × ζopt (representing under-optimal
damping) and 2× ζopt (representing over-optimal damping). We can see that regardless of ζd and
Ω, the dynamic amplification at the two fixed-point frequencies ωM and ωN are always equal,
which is in accordance with Eq. (30). When ζopt is used, the dynamic amplification at ω∞ is
identical to that at ωM and ωN , resulting in a fairly flat plateau of the curve. On the other hand,
the curve with under-optimal damping shows two significant peaks and one trough, and the curve
with over-optimal damping has a very large peak at ω∞. Comparing Figure 3(a) with (b), similar
observations are made, except that the curves move towards left when Ω is increased from 0 to
Ω0.

Furthermore, the results corresponding to an optimal classical TMD (tuned by Eqs. (28) and
(33)) with the same mass ratio µ = 0.05 as the TMDI are also included in Figure 3. It is seen that
the optimal TMD outperforms the optimal TMDI in terms of the lowered dynamic amplification
within a certain frequency interval. This makes sense because the inclusion of the inerter actually
constrains the motion of the TMD mass (the absorber), thus reducing the energy absorption by
the TMD mass. Therefore, the TMDI performs slightly worse than the classical TMD in damping
blade vibrations.
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Figure 4: Dynamic amplification of the relative TMD block motion (the damper stroke) for x0 = 45 m, µ = 0.05
(md = 67.7 kg) and β = 0.05 (bd = 67.7 kg). (a) Ω = 0 (non-rotating blade). (b) Ω = Ω0 (1.27 rad/s).

In order to reveal the benefit of the proposed TMDI, Figure 4 shows the dynamic amplifica-
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tion of the relative TMD block motion (the damper stroke), with the same parameters as used
in Figure 3. Again, three different damping ratios of the TMDI have been considered, and ζopt

leads to the most flat behavior of the dynamic amplification of the damper stroke. The results
of the optimal classical TMD are also shown in Figure 4. By comparison, it is observed that
the curve corresponding to the optimal classical TMD is above the curve corresponding to the
optimal TMDI for all frequencies, except at one frequency where the two curves coincide. This
implies that the damper stroke of the TMDI is notably reduced comparing with that of TMD,
which is the main advantage of the TMDI. Similar to the observations in Figure 3, the curves
slightly moves towards left as Ω increases from 0 to Ω0.

4.2. Influence of the inertance ratio and the detuning effect due to the change of rotational speed
More in-depth parametric study is performed in this subsection. First, the influence of mass

ratio µ and inertance ratio β on the control effect and damper stroke of the TMDI are illustrated.
Next, the detuning effects due to the change of rotational speed Ω are investigated.
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Figure 5: Influence of the mass ratio µ and inertance ratio β on the vibration control effect of the TMDI for a rotating
blade, x0 = 45 m, Ω = Ω0 (1.27 rad/s), TMDI optimized. For a given µ, three values of γ are considered (γ = 2, γ = 1,
γ = 0.5). (a) µ = 0.01. (b) µ = 0.03. (c) µ = 0.05.

Figure 5 shows the influence of mass ratio µ and inertance ratio β on the vibration control
effect of the TMDI. µ=0.01, µ=0.03 and µ=0.05 have been considered, as shown in Figure 5(a),
(b) and (c), respectively. These correspond to the absorber mass md = 13.5 kg, md = 40.6 kg
and md = 67.7 kg, respectively. For a given µ, three different values of γ (γ =

β
µ
) have been

considred, i.e. γ=2, γ=1 and γ=0.5. The TMDI is always optimized using Eqs. (27) and (32),
and the results of the optimized TMD are also ploted for comparison. As µ increases (with
fixed γ), the dynamic amplification of the structural response becomes lower and more broad,
indicating a better control effect of the TMDI as expected. For a given mass ratio µ, the increase
of γ (thus β) leads to larger dynamic amplification, implying worse vibration control effect. This
is again explained by the constraint effect from the inerter on the absorber motion. The larger
the inertance ratio is, the more significant constraint effect is exerted to the absorber motion,
thus further reducing the energy absorption by the TMD mass. Therefore, the classic TMD with
the same mass ratio always outperforms the TMDIs. For each given β, a dashed horizontal line
calculated using Eq. (30) is also plotted, which passes through the two fixed-point frequencies
andω∞. Therefore, Eq. (30) can be explicitly used as a performance indicator of vibration control
effect of the blade-mounted TMDI when µ and β are chosen.

Figure 6 shows the corresponding results of the damper stroke. As µ increases with fixed
γ, the dynamic amplification of the damper stroke becomes significantly lower and more broad,
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Figure 6: Influence of the mass ratio µ and inertance ratio β on the damper stroke (installed on a rotating blade), x0 = 45
m, Ω = Ω0 (1.27 rad/s), TMDI optimized. For a given µ, three values of γ considered (γ = 2, γ = 1, γ = 0.5). (a)
µ = 0.01. (b) µ = 0.03. (c) µ = 0.05.

which is again as expected. For a given µ, the increase of γ (and thus β) leads to much more
narrow-banded curve, although the peak value turns out to be unchanged. This implies a smaller
area below the curve as β increases, and thus the damper stroke (as integration of contributions
from all frequencies) decreases as β increases. The damper stroke of the optimal TMD (with the
same mass ratio µ) always acts as the upper limit, i.e. the area below the curve corresponding
to the optimal TMD is always larger than that of TMDI with β > 0. Results in Figure 5 and 6
indicate that the increase of µ always results in a better TMDI performance in terms of both the
control effect and the damper stroke (although µ should be limited due to practical considera-
tions), as already well-known for classical vibration absorbers. On the other hand, the increase
of β leads to improved (reduced) damper stroke at the cost of worse control effect, and hence it
is a tradeoff problem when choosing β.

Eqs. (27) and (32) clearly indicate that the optimal TMDI parameters depend explicitly on
the rotor rotational speed Ω. Hence it is of interest to investigate the performance of a passive
TMDI tuned to non-rotating blade (Ω = 0) on a rotating blade, i.e. the detuning effect due to
change of Ω.

0 0.1 0.2 0.3 0.4
0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4
0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4
0.75

0.8

0.85

0.9

0.95

1
(a) (b) (c)

a2µa2µa2µ

(

ω
d
ω

0

)

o
p
t

(

ω
d
ω

0

)

o
p
t

(

ω
d
ω

0

)

o
p
t

Eq. (??)Eq. (??) Eq. (??)
Ω = 0 in Eq. (??)Ω = 0 in Eq. (??) Ω = 0 in Eq. (??)

Figure 7: Optimal frequency-tuning ratio as a function of the non-dimensional parameter a2µ, Ω = Ω0 (1.27 rad/s). (a)
β = 0.01. (b) β = 0.05. (c) β = 0.08.

Figure 7 shows the optimal frequency-tuning ratio
(
ωd
ω0

)
opt

as a function of a2µ, using Eq. (27)
or Eq. (27) with Ω = 0, for a rotating blade with Ω = Ω0. Three different values of β have been
considered. It is observed that the deviation between the two curves increases as β increases.
Actually, when β = 0 (thus γ = 0), Eq. (27) is reduced to Eq. (28) which is independent on Ω.
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For a given β, the deviation of the two curves increases slightly as a2µ increases. Therefore, when
large µ and β are chosen for the TMDI installed in a rotating blade, significant frequency-tuning
error will be introduced by tuning the TMDI to a non-rotating blade.
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Figure 8: Performance (dynamic amplification of the structural response) comparison when using the optimal TMDI
(Eqs. (27) and (32)) and the TMDI tuned by assuming Ω = 0 in a rotating blade. Ω = Ω0 (1.27 rad/s), x0 = 45 m,
µ = 0.05. (a) β = 0.01. (b) β = 0.05. (c) β = 0.08.

Figure 8 compares the dynamic amplification of the structural response of the optimal TMDI
(Eq. (27) for frequency tuning and Eq. (32) for damping tuning) and the non-optimal TMDI
(tuned by assuming Ω = 0), for a rotating blade. As seen in Figure 8(a), the difference is
insignificant when β = 0.01, in accordance with the observation in Figure 7(a). As β increases,
the error becomes much more noticeable as shown in Figure 8(b) and (c). The optimal TMDI
leads to a completely flat plateau of the curve, while the non-optimal TMDI leads to a skewed
curve with higher amplitude to the left, exhibiting a much higher maximum amplitude of the
structural response. This detunnig effect becomes very significant for β = 0.08. Therefore, semi-
active control strategy is needed for the TMDI with large β, so that the TMDI parameters can be
adjusted according to the rotor rotational speed.
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Figure 9: Performance (dynamic amplification of the relative TMD block motion) comparison when using the optimal
TMDI (Eqs. (27) and (32)) and the TMDI tuned by assuming Ω = 0 in a rotating blade. Ω = Ω0 (1.27 rad/s), x0 = 45 m,
µ = 0.05. (a) β = 0.01. (b) β = 0.05. (c) β = 0.08.

Figure 9 shows the corresponding results of the damper stroke. Similar observations can be
made as in Figure 8, although the detuning effect is less significantly revealed in the damper
stroke. It should also be noted that all the above results are based on the NREL 5 MW wind
turbine with its rotational speed ranging between 0 and Ω0, and for other types of wind turbines
with larger variations of rotor rotational speed, the detuning effect by tuning the TMDI to a
non-rotating blade might be more significant.

16



4.3. Time-domain simulation
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Figure 10: Blade edgewise vibrations without control, with TMDI and with TMD. Normal operational conditions (ζ0 =

0.005). x0 = 45 m, µ = 0.05 and β = 0.05. (a) Time series. (b) Fourier amplitude in semi-logarithmic chart.
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Figure 11: Stroke of the dampers. Normal operational conditions (ζ0 = 0.005). x0 = 45 m, µ = 0.05 and β = 0.05. (a)
Time series. (b) Fourier amplitude in semi-logarithmic chart.

In this subsection, the performance of the TMDI and the TMD are compared in the time
domain by solving Eq. (13). Figure 10 (a) shows the blade edgewise vibration time history
under normal operational conditions with overall damping ζ0 = 0.005. Both the optimal TMDI
and the optimal TMD are used, and same values of x0, µ and β as in Figure 3 are employed.
From the time history response it is clear that the TMD and TMDI can mitigate the edgewise
vibrations of the turbine blade. Peak response reductions and peak-to-peak reductions of 19%
are achieved by the dampers. From these numerical simulations it appears that the proposed
TMDI configuration performs very slightly worse than the TMD (with the same mass ratio) when
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vibration suppression is considered. The plot of the Fourier amplitude of the blade responses in
Figure 10 (b) confirms this time-history behaviour. Two peaks are observed in the frequency
domain plot. The first corresponds to the rotational speed of the blade, Ω = 1.26 rad/s. The
second peak corresponds to the edgewise natural frequency of the blade which is 6.7 rad/s. Both
the TMD and TMDI are successful at suppressing this second peak with the TMD performing
slightly better from a vibration control perspective. However, the benefit of the TMDI is evident
when damper stroke is considered. Figure 11 (a) shows a time history plot of the damper strokes
under normal operating conditions. From this plot is clear that the relative motion of the damper
mass becomes smaller when the inerter is added, i.e. the mass block in the TMDI has smaller
stroke than that of the mass block in the TMD. The stroke of the damper is reduced by up to 40%
due to the addition of the inerter.
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Figure 12: Blade edgewise vibrations without control, with TMDI and with TMD. Total damping ζ0 = 0. x0 = 45 m,
µ = 0.05 and β = 0.05. (a) Time series. (b) Fourier amplitude in semi-logarithmic chart.

A further numerical example is considered with zero blade damping. When considering
edgewise vibrations it is important to check this case due to the fact that the blade is very lightly
damped in the edgewise direction. There is also the possibility of negative aerodynamic damping
in this direction. As a result, the sum of the structural damping and the aerodynamic damping
can be less than zero [60]. For these reasons in design situations edgewise blade damping is
often ignored. Figure 12 (a) shows the blade edgewise vibration time history with total damping
ζ0, x0 = 45 m, µ = 5% and β = 5%. The dampers display excellent performance in this case
with peak vibration reductions of 50% and peak-to-peak reductions of 55%. The frequency plot
in Figure 12 (b) confirms this behaviour and again shows the slightly worse performance of the
TMDI with respect to vibration reduction. Figure 13 (a) shows the damper stroke time history
plot for the case of zero blade damping. The TMDI again has a considerably smaller stroke
requirement than a TMD of the same mass ratio. The TMDI stroke is up to 50% smaller than the
TMD stroke.

Finally, a new scenario where the dampers are mounted at a location closer to the blade tip
(x0 = 55 m) is considered, to further illustrate the benefit of the TMDI in terms of damper
stroke reduction. The vibration frequency corresponding to the edgewise blade mode of floating
offshore wind turbines is normally low, in this case for a 5MW turbine it is approximately 1
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Figure 13: Stroke of the dampers. Total damping ζ0 = 0. x0 = 45 m, µ = 0.05 and β = 0.05. (a) Time series. (b) Fourier
amplitude in semi-logarithmic chart.

Hz. A reasonable stroke is thus required when a damper is applied to control these responses.
This may not be practical due to the limited installation space available inside the blade. To
be most effective the damper should be located as close to the blade tip as possible. However,
this is the location with the least available space inside the blade to accommodate a damper.
Table 1 provides details on the chord length inside the blade at various locations x0 and the blade
thickness, i.e. the maximum distance between upper and lower blade surfaces, at these locations.
It should be noted that the available damper stroke will be significantly less than the chord length
depending on the dimensions of the damper mass and the thickness.

x0 (m) Chord length (m) Thickness (m)
20.0 4.5 1.60
30.0 3.9 1.00
45.0 3.0 0.55
55.0 2.3 0.42
61.6 1.4 0.25

Table 1: Chord lengths and thicknesses of NREL 5MW wind turbine blade [57, 61]

In this case, the mass ratio of the dampers is reduced to µ = 0.03, and the inertance of
the TMDI is increased to β = 0.08. Figure 14 (a) shows the time series of the blade edgewise
vibrations. The behaviour of the blade controlled by a TMDI is very similar in nature to a
blade controlled by a traditional TMD with good vibration reductions observed in both cases.
Figure 14 (b) shows the frequency domain information. It is evident from this that there is a
slight degradation in vibration control performance when the TMDI is used - however, this is not
perceptible from the time series. Figure 14 (c) shows the time series of the damper strokes. In
this case the stroke reduction effect of the TMDI is more significant than in the previous cases
studied. The TMDI has significantly less stroke requirement than the TMD. The TMDI stroke
is reduced by more than 55% compared to the TMD stroke. Figure 14 (d) confirms this stroke
reduction in the frequency domain.
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Figure 14: Performance of the TMDI when mounted closer to blade tip. Total damping ζ0 = 0.005. x0 = 55 m,
µ = 0.03 and β = 0.08. (a) Time series of blade edgewise vibrations. (b) Fourier amplitude of the blade edgewise
vibrations in semi-logarithmic chart. (c) Time series of the damper strokes. (d) Fourier amplitude of the damper strokes
in semi-logarithmic chart.

This is a very significant reduction in damper stroke and has some very practical benefits.
At the location x0 = 55 m the chord length inside the blade is 2.3 m and the blade thickness
is 0.42 m. The available stroke would therefore be significantly less than the chord length. A
traditional TMD would require stroke of up to 1.5 m versus stroke of 0.7 m for the TMDI, see
Figure 14 (c). A traditional TMD would probably not be viable at this location due to the large
stroke requirement. Using a TMDI at this location allows one to take advantage of the greater
vibration mitigation due to closer proximity to the blade tip, while ensuring that the damper
stroke can be accommodated in the blade.

4.4. Evaluation by the 13-DOF aeroelastic model

To verify the applicability of the closed-form optimization for TMDI tuning (Section 3) and
the performance of the damper in a highly coupled wind turbine system, the optimized TMDI
is incorporated into the 13-DOF model. For each blade, a TMDI is installed at the position
of x0 = 45 m, resulting in a 16-DOF system for the wind turbine with totally three dampers
installed. The equations of motion of the wind turbine system is extended by means of Eq. (13),
and are rewritten in the state-space form. Including the first-order filter equation for the pitch
controller, the dynamics of the coupled system is described by a 33-dimensional state vector, and
can be solved using the fourth-order Runge-Kutta method.

Figure 15 shows similar behaviour as in Figures 10 and 11 where the same damper parameters

20



200 220 240 260 280 300
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 Without control

With TMDI

With TMD

2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Without control

With TMDI

With TMD

0 100 200 300 400 500 600
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

TMD

TMDI

2 4 6 8 10
10

-6

10
-4

10
-2

10
0

TMD

TMDI

(a) (b)

(c) (d)

t [s]

t [s]

ω [rad/s]

ω [rad/s]

q
4
(t

)
[m

]

Q
4
(ω

)
[m

s]

u
d
(t

)
[m

]

U
(ω

)
[m

s]

Figure 15: Performance of the TMDI evaluated using the fully-coupled 13-DOF aeroelastic model. Structural damping
ratio of the blade: 0.005. x0 = 45 m, µ = 0.05 and β = 0.05. (a) Time series of blade edgewise vibrations q4(t) of the
13-DOF model. (b) Fourier amplitude of the blade edgewise vibrations q4(t) in semi-logarithmic chart. (c) Time series
of the damper strokes. (d) Fourier amplitude of the damper strokes in semi-logarithmic chart.
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were used in a reduced order model. There is a slight degradation in blade vibration control
noticeable in the frequency domain (Figure 15 (b)). However, the damper stroke required by
the TMDI is substantially less than the stroke required by a traditional TMD (over 50% in some
cases) as confirmed by time series results (Figure 15 (c)) and in the frequency domain (Figure 15
(d)).

5. Conclusions

This paper proposed a novel TMDI for vibration control of offshore wind turbine blades. A
multi degree of freedom offshore wind turbine model was developed with TMDIs incorporated
into the hollow wind turbine blades. Closed-form expressions have been derived for the optimal
tuning and damping ratios of the TMDI. Numerical simulations were performed to determine the
effectiveness of the new damper in controlling edgewise vibrations. The inclusion of the inerter
in the damper had a significant effect on the damper stroke. The inerter reduced the stroke of the
damper by up to 55%. The results clearly show that the TMDI improves the dynamic response
of the blades. The damper significantly reduces blade vibrations. The fundamental compromise
in using the TMDI over a more traditional TMD is evident. It is possible to greatly reduce the
damper stroke at the cost of very slightly increased blade vibration. Reductions in the damper
stroke of over 50% can be achieved with small degradations in blade vibration control perfor-
mance. This is a trade-off that must be considered in the design of a wind turbine. However, it
should be noted that the vibration control performance reduction is very slight and hardly notice-
able in the time domain. Furthermore, since the space available for stroke within wind turbine
blades is very limited, the reduction in the damper stroke is very beneficial and demonstrates a
very practical advantage over classical TMDs for wind turbine blade applications.
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