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Summary

The main purpose of this thesis is to provide the precise details of the very onerous

calculations underlying our two published papers [19] and [21]. Thus, the latter

can be better understood and utilised later for future research as the details form

an invaluable archive which for space reasons could not be published in the jour-

nals. These details which are essential for understanding the effect of two body

interactions are provided in the thesis via my comprehensive appendices written in

Chapters 5 and 7. In addition, through the use of Wolfram Mathematica, the results

are corroborated by calculating the complex electrical susceptibility in Figures 2-4

of [19] as well as the integral relaxation time and complex magnetic susceptibility

in Figures 2-4 of [21]. The published papers may be summarised as follows:

In the Budó paper [19] a fractional Smoluchowski equation for the orientational

distribution of dipoles incorporating two body interactions with continuous time

random walk Ansatz for the collision term is obtained for polar molecules. This

equation is written via the non-inertial Langevin equations for the evolution of

the relevant Eulerian angles and their associated Smoluchowski equation for the

orientational probability distribution function. These equations govern the normal

rotational diffusion of an assembly of non-interacting dipolar molecules with similar

internal interacting polar groups hindering their rotation owing to their mutual

potential energy. The resulting fractional Smoluchowski equation is then explicitly

solved in the frequency domain using scalar continued fractions yielding the linear

dielectric response as a function of the fractional parameter for extensive ranges of

the interaction parameter and friction ratios. Thus, the main result is that Budó’s

treatment can possibly be extended to disordered materials.

In the magnetic paper [21], the magnetisation response including dipole-dipole

interactions of a pair of macrospins (single-domain ferromagnetic particles) following

the sudden alteration of a dc magnetic field is calculated from the stochastic Landau-

Lifshitz-Gilbert equation for the magnetisation by reducing the overall task



to an infinite hierarchy of differential-recurrence relations in the time domain for

the statistical moments (averaged products of spherical harmonics in this case).

This is exactly solved in the frequency domain by matrix continued fractions. The

greatest relaxation time and dynamic susceptibility are then compared with the

corresponding results for two exchange-coupled spins using the same exact method.

I believe that this is effectively the first exact treatment of dipole-dipole effects in the

relaxation of macrospins. Generally, both the dielectric and magnetic calculations

are essential as a starting point for the understanding of the effects of two body

interactions on relaxation processes.
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1. Introduction

Long ago Debye proposed a model [1] of dielectric relaxation of an assembly of rigid

non-interacting dipoles which yields a qualitatively acceptable microscopic expla-

nation of the microwave absorption of polar fluids. It was initially posed as an

extension of the work of Einstein [2] (concerning the translational Brownian mo-

tion of particles in a one dimensional extension) to rotation of a typical dipole of

the polar assembly about a space-fixed axis [1] subject to a weak alternating (ac)

electric field at microwave (GHz) frequencies. The calculation was later extended

to rotation [3] in space. We shall call this the first Debye model [3]. Here, the

rotation of a typical polar molecule in a liquid regarded microscopically as an as-

sembly of non-interacting rigid rotators under the influence of both deterministic

and random torques imposed by the surrounding heat bath is treated as rotational

Brownian motion [3]. The theory then qualitatively predicts the observed dispersion

and absorption of microwave (GHz) radiation of polar fluids. This is the principle

underlying the operation of the microwave oven as there the dipoles are unable to

keep in phase with the fast applied field, with the ensuing phase lag causing the

dissipation of the rotational energy contained in the dipoles manifested as friction

in the bath. This energy is dissipated as heat.

The second model considered by Debye is a solid-state like mechanism of re-

laxation which is mainly associated with dielectric relaxation in solids and latterly

with magnetic relaxation of single domain ferromagnetic particles. Here a typical

dipole can stay in either of two directions (parallel or anti-parallel to the applied

field direction) and reverse its direction by crossing over an internal potential bar-

rier through the action of thermal agitation which is again modelled by rotational

Brownian motion. However the relaxation time, which is the time to cross the bar-
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rier from one orientation to another is effectively an Arrhenius process and so is

exponentially long [4]. More details on the theory of dielectric relaxation, the work

of Debye and others will be provided in Chapter 2 of the thesis.

Although the Debye model has been largely successful in accounting for the be-

haviour of the complex susceptibility of polar fluids at low frequencies (GHz), there

remain two limitations. The first is the prediction of infinite integrated absorption

occurring at THz (1012 Hz) frequencies and higher, giving rise to the infamous De-

bye plateau in the loss spectrum (ωχ′′(ω)), where χ′′(ω) is the imaginary part of

the complex susceptibility, leading to the “black water” phenomenon. This flaw was

eliminated by Rocard [5], who showed in a semi-heuristic fashion that the solution

to this problem lies in the neglect of dipole inertial effects on the dynamics which

cause them to become deterministic at very high frequencies. Rocard’s calculations

were later put on a rigorous basis by Sack [6, 7].

The second limitation of the Debye theory is that in formulating it all interac-

tions between the dipolar rotators are ignored, with the sole exceptions being the

Brownian torques due to the bath and the (external) interaction between a typical

dipole of the polar assembly and the applied external time-dependent field. The

inclusion of other interactions poses a very challenging problem in the stochastic

dynamics of rigid bodies. To address this, a heuristic attempt at treating dipo-

lar interactions combined with inertial effects was made via the itinerant oscillator

(cage) model [8–10], where the interaction of a typical dipolar molecule with its

polar cage of neighbours is represented by a cosine potential which has a rotating

centre of torsion oscillation. This model has been reasonably successful in reproduc-

ing the main features of the GHz - THz absorption spectrum which are computed

from the observed data [11]. Simply put the model predicts both the Debye (GHz)

and far-infrared resonance absorption (THz) of polar fluids as well as the necessary

return to transparency at very high frequencies. Despite this success however, the

original form of the model is restricted to rotators which may rotate about a space-

fixed axis only. Therefore a better and more rigorous approach would be to utilise

a molecular model where we address the following:

1. Coupling [11–14] between a pair of dipoles [12] so as to account for their
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hindered rotation.

2. Restriction to molecules rotating about a fixed axis can be removed.

3. Inertial effects can be fully accounted for.

4. Collision mechanisms other than the Brownian Stosszahlansatz (Boltzmann’s

collision number hypothesis that only interactions between two particles are

ever of any importance i.e., molecular chaos) can be taken into consideration.

Now Budó’s work [15, 16] (See the Appendix of Chapter 2 of the thesis, for

an English translation of the paper, “Anomale Dispersion und freie Drehbarkeit,“

Physik. Zeits., vol. 39, p. 706, 1938. by A. Budó [15]) on the dielectric relaxation

of molecules containing rotating polar groups may provide a framework for solv-

ing these problems. Budó has demonstrated how the original Debye theory for the

complex susceptibility χ(ω) valid in the non-inertial limit, is modified for assem-

blies of non-interacting molecules containing such groups. His main result [12,16] is

that the inclusion of the interaction between two groups embedded in a given polar

molecule yields a discrete set of Debye-type relaxation mechanisms for the suscep-

tibility χ(ω) with relaxation times given by the eigenvalues of the Sturm-Liouville

equation appropriate to the potential considered. His results were later corroborated

by Zwanzig [17,18]. He studied in the non-inertial limit, the complex susceptibility

χ(ω) of an assembly of permanent dipoles at relatively high temperatures coupled

by dipole-dipole interactions and arranged at the sites of a simple cubic lattice.

Our purpose is to report progress that has been made in addressing problems

1, 2 and 4 mentioned earlier and to provide an indication of how potential future

research into addressing 3 as well as providing precise details of all the intricate

calculations involved. In doing so we shall also demonstrate how Budó’s [15, 16]

hindered rotation treatment can be generalised to include an anomalous diffusion

Stosszahlansatz in a weak microwave field in the non-inertial limit [19] (More details

on how anomalous diffusion arises and Brownian motion will be given in Chapter 2).

In our treatment [19], a fractional Smoluchowski equation based on the continuous-

time random walk Ansatz is written via the non-inertial (pertaining to anomalous

diffusion in configuration space) Langevin equations for the dynamics of a molecule

consisting of two similar polar groups. However the groups cannot rotate freely
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relatively to one another owing to their mutual potential energy (more details on

the Smoluchowski equation and methods for its solution are provided in Chapter

4). The fractional Smoluchowski equation is shown to be fruitful in describing

the dynamics of complex non-inertial systems governed by anomalous diffusion.

Mathematically, all that is being done is that differentiation with respect to time in

a normal Smoluchowski equation is replaced by fractional derivatives of non-integer

order, representing a Boltzmann Stosszahlansatz for a system interacting with a

thermal bath. Generally speaking interactions between polar molecules, even for

the simple hindered rotation configuration envisaged by Budó, appear to have been

ignored [20] for anomalous diffusion.

In general the (fractional) Smoluchowski equation obtained is converted to a

scalar differential recurrence relation for the statistical moments and then solved

in the frequency domain by use of continued fractions, allowing for the calculation

through successive convergents of the fraction of the linear dielectric response as a

function of the fractional parameter for various ranges of damping, dipole moment

and interaction parameters. Therefore, both the dipole correlation functions and

complex susceptibility are obtained. The latter then comprises a low frequency band

with width depending on the anomalous parameter (more details on linear response

theory are provided in Chapter 2). The solution explained here will expand the scope

of the Budó model for describing the dynamical effects of hindered rotation. Thus

we determine the numerically exact solution for the linear response of that model

for anomalous diffusion [19] and compare it with the previous exact results [12, 16]

for normal diffusion.

In addition to this dielectric relaxation problem, we can also apply our methods

to the solution of the magnetic relaxation of single domain ferromagnetic particles

as used in recording [21]. This in essence uses Debye’s second model to demonstrate

how interactions in the two-magnet-dipole problem (a system with four degrees of

freedom) may be treated analytically via the formally exact solution of the relevant

Langevin or Fokker-Planck equations for the desired observables. These are the

characteristic relaxation times and decay functions. This will be achieved through

extending the exact method of Titov, Kachachi, et al. [22] to study the effect of

4



magnetic dipole-dipole interaction on the magnetisation relaxation over the inter-

nal (to the particle) anisotropy Zeeman energy barrier (note that in [22] exchange

interactions alone were treated). The dipole-dipole coupling is very useful for struc-

tural studies (because it depends only on known physical constants and the dipole

separation) and for its effect on spin relaxation. Thus, magnetic dipole-dipole inter-

actions are exactly treated for the two-spin model hence representing a system with

more than two configurational degrees of freedom [21]. These results are compared

with those of the two-spin system with exchange interaction only [22]. Now unlike

exchange interactions, dipole-dipole interactions are anisotropic. However, as a first

step towards including this anisotropy only parallel easy axes (also parallel to the

direction of the applied dc field) are analysed, because the resulting circularly sym-

metric Hamiltonian drastically simplifies the calculations. For all other orientations

of the anisotropy axes which of course is the most interesting case the calculations are

much more complicated and will lead to varying results arising from the anisotropic

nature of the dipole-dipole interaction. Our calculations are effected by first rewrit-

ing the governing (vector) stochastic Landau-Lifshitz-Gilbert (Langevin) equation

governing the time-dependent magnetisation as scalar Langevin equations for the

products of the spherical harmonics, statistical averages of which are the desired ob-

servables, specifying the orientation of each of the spins [21]. Next (using the theory

of angular momentum in the manner of [2]) averaging them over their realisations in

configuration space in an infinitesimal time given a sharp set of initial orientations.

This time is taken following Einstein [2] as shorter than any characteristic time of

the system but long compared to the time of an adiabatic collision. Thus the time

evolution equation of the sharp values in the form of a partial differential-recurrence

relation in space and time may be determined. Next by postulating an appropriate

spatial distribution of the sharp values and then ensemble averaging over this dis-

tribution one has a hierarchy of differential-recurrence relations for the statistical

moments yielding the observables via rapidly convergent matrix continued fractions

in the frequency domain [2]. Hence, one has in analytic fashion the relaxation time

for effectively all values of the interaction, anisotropy, and applied field parameters

as well as other relevant observables (spectra of the relaxation functions, the com-
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plex susceptibility, etc.). The observables so calculated [21] will then be compared

with the corresponding ones for exchange interaction available in Ref. [22]. It should

be emphasised that uniaxial anisotropy with the external field applied parallel to

the easy Z-axis is supposed. The advantage of this particular anisotropy potential

is that (although obviously subject to many symmetry restrictions) it ultimately

results in a (tractable) recurrence relation (for the observables) in three indexes

only.
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2. Dielectrics, Polarisation and

Dielectric Response

A dielectric or dielectric material is an electrical insulator that can be polarised

by an applied external field. However upon being placed in an electric field, elec-

tric charges do not flow through the material as we would observe in an electrical

conductor (e.g. metals), rather what happens is that they shift from their average

equilibrium positions, resulting in the phenomenon known as dielectric polarisation,

where the positive charges within the dielectric are shifted slightly in the direction

of the electric field, while the negative charges shift in the opposite direction, which

creates an internal electric field within the dielectric which reduces the overall field

within the dielectric itself. Dielectrics are primarily used in the manufacture of

capacitors because they have a permittivity ε that is higher than the permittivity

ε0 of a vacuum (free space, ε0 = 1/36π × 10−9F/m), which leads to a higher ca-

pacitance. Most commercially available capacitors make use of solid materials with

high permittivity. Almost all materials we encounter are dielectrics, some examples

include glass, porcelain, most plastics, gases such as nitrogen, and liquids such as

mineral oil [23].

The measurement of dielectric response is a non-invasive technique that has been

used for the characterisation of materials throughout most of the 20th century. As

such there are a number of books that cover the technique from different perspec-

tives. The most noteworthy of which include Debye [3], Smyth [24], McCrum et

al. [25], Daniels [26], Böttcher and Bordewijk [27], Jonscher [28] Scaife [29] and

Fröhlich [30].

In this chapter, we shall examine the concept of dielectric polarisation on both
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a molecular and macroscopic level, then we will discuss the concept of susceptibility

and dielectric response from the perspective of linear response theory. Then it will

be expedient to explore the historical background of the research associated with

the analysis of dielectric response, from the work of Debye [1,3] to one of the topics

of this thesis, the work of Budó [15, 16].

2.1 Polarisation and Susceptiblity

As mentioned earlier, dielectric polarisation of polar molecules is due to the par-

ticular phenomenon whereby an assembly of dipole moments may rotate due to an

external applied electrical field. But how does polarisation generally occur? To

answer this we need to first consider what happens to an atom when it is placed

under the influence of an external electric field E. An atom consists of a positively

charged nucleus with protons (positively charged) and neutrons (neutral), and a

cloud of negatively charged electrons which surround and orbit it. As a whole,

without the influence of an electric field, the positions of the nucleus and electron

are such that their centres are aligned leading to the atom in its entirety being elec-

trically neutral. Under the influence of an electric field however, what we observe

is a displacement in the positions of the nucleus and the cloud of electrons, where

the nucleus is pulled in the direction of the field, while the cloud of electrons goes

in the opposite direction. As they are pulled apart, they exert a mutual attractive

force due to being polar opposites in order to keep from being separated, eventually

if the field is not strong enough to overcome this attractive force and split them

apart, forming an ion, there will be an equilibrium reached where the nucleus and

electron have their centres kept apart by the field, while their mutual attractive

forces prevent them from separating. This leads to the atom now having a dipole

moment p pointing in the direction of the field E. p and E are related by [31]

p = αE, (2.1)

where α is the atomic polarisability, whose value depends on the structure of the

atom. So here we see that polarisation occurs in the atom due to a displacement
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between the centres of the oppositely charged elements of the atom. However, what

if we are dealing with the polarisation of a molecule? In that case we have to now

take into consideration the orientation of the molecule with respect to the direction

of the electric field, as we will find that molecules tend to have different magnitudes

of polarisation depending on the angle they make with the electric field. In that

case we must now generalise Eq. (2.1) into its components along the molecular axes

xyz [31]

px =αxxEx + αxyEy + αxzEz,

py =αyxEx + αyyEy + αyzEz, (2.2)

pz =αzxEx + αzyEy + αzzEz,

where the constants αij are the polarisabilty tensors for the molecule in question.

So far we have dealt with atoms and molecules where a dipole moment is induced

on them through exposure to an electric field E, where they had none before. But

what about molecules (common examples include H2O,CH2Cl2) which have their

own inherent permanent dipole moments, such as electrets [32] and ferroelectrics?

Such polar molecules under the influence of an electric field will experience a torque

which if they were free to rotate, will swing around until it aligns itself in the di-

rection of the applied field. In the absence of an electric field, the dipole moments

of the molecules all point in random directions, which leads to the average dipole

moment being zero. The torque applied to the polar molecules in question is illus-

trated in Figure 2.1, where if the field is uniform, the force on the positive end of

the molecule, given by F+ = qE, will cancel the force on the negative end of the

molecule, given by F− = −qE, but there will be a torque N given by [31]

N =(r+ × F+) + (r− × F−)

=

[
d

2
× qE

]
+

[
−d

2
×−qE

]
= qd× E. (2.3)
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Figure 2.1: Torque applied to a polar molecule by the field E. (aft. [31])

So ultimately, looking at the phenomena we have just described that occur on an

atomic and molecular level (for both neutral and polar molecules), we can see that

the same basic result is observed, the dipoles end up pointing along the direction of

the electric field being applied to them, i.e., the dielectric material becomes polarised.

So now we can define polarisation P as the dipole moment per unit volume.

Now we can take a look at the relationship between the polarisation of the

dielectric in question and the electric field. For many substances, the polarisation is

proportional to the field provided that it is not too strong through the relationship,

P = χE, (2.4)

where χ = ε0(εr − 1)(ε0 = 1/36π × 10−9F/m) is the electrical susceptibility of the

dielectric in question and εr is the relative permittivity. It should be noted that

E in Eq. (2.4) is the total field that we observe which can occur in part from free

charges and in part from the polarisation itself. In the presence of a field E0, P

cannot be obtained from Eq. (2.4) because the polarisation of the material will

itself produce its own field, and this field contributes to the total field E and we

end up with an infinite regress of the external field polarising the material, the

polarisation in the material producing its own field, which contributes to the total

field, which polarises the material etc. A simple approach to this problem is to

analyse the electric displacement field D of the material in question. Consider a

broad sample of dielectric material of thickness d with electrodes of area A placed

on each opposite surface. The material being a dielectric will mean that effectively

this system behaves as a capacitor storing charges ±Q on the surfaces which have
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a potential V applied. The charge Q on a plate is then given by [33]

Q = CV, (2.5)

where C is called the capacitance of the system in question, which for parallel plate

capacitor considered is given by

C =
ε0εrA

d
, (2.6)

where ε0 is the permittivity of free space, and of course εr is still the permittivity of

the material relative to the permittivity of free space (i.e., the relative permittivity).

The susceptibility χ in Eq. (2.4) is given by

χ = ε0(εr − 1). (2.7)

The electric field for the parallel electrode geometry just described has magnitude

E = V/d, and the magnitude of the electric displacement field D of the material is

given by D = Q/A, then Eqs. (2.5) and (2.6) can be rewritten as

D = ε0εrE = ε0E + χE. (2.8)

This relation is valid for any geometry and is true for linear media.

So far the focus has been on the polarisation χE of the material if we apply a

static electric field where the frequency f = 0. Suppose now that the static field is

replaced with an electric field that oscillates with an angular frequency ω = 2πf ,

then the formula for the polarisation becomes

P(ω) = χ(ω)E(ω), (2.9)

where E(ω) = E0e
iωt. Hence the polarisation P(ω) is now dependent upon the fre-

quency of the electric field (ac field). If we have our material in thermal equilibrium

without an applied electric field, and we were then to suddenly apply the electric

field, what we would observe is the alteration in the net dipole moment density as
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discussed earlier. However, this change in the internal arrangement of positive and

negative charges is not instantaneous. What happens instead is that it will evolve

according to some equation of motion appropriate to the type of charges and dipole

moments that are present. Therefore there is a time period required before the

system can reach equilibrium with the applied field. Formally this time will tend

to infinity (equivalent to an ac frequency of zero), but to all intents and purposes

it can be assumed that the system reaches equilibrium fairly rapidly after some

relevant time scale, τ , with the polarisation approaching the static value P = P (0)

for t� τ . What if then the electric field reverses sign before equilibrium is reached,

such reversal occurring in an ac field at a time t = 1/2f? In such a scenario, it would

be clear that the polarisation will not have reached its equilibrium value before the

field is reversed, thus P (ω) . P (0) and χ(ω) . χ(0). As such the frequency depen-

dence of the dielectric susceptibility χ(ω) is determined via the equation of motion

which governs the evolution of the ensemble of electric dipole moments following

excitation. Generally speaking, χ(ω) may be expressed as a complex function with

a real component χ′(ω), which defines the component of P (ω) that is in phase with

the applied ac field E0 cos(ωt), and an imaginary component −χ′′(ω) defining the

component which is 90
◦

out of phase. The conventional form is given by [2, 33,34]

χ(ω) = χ′(ω)− iχ′′(ω). (2.10)

χ′(ω) corresponds to the net separation of charge with the dielectric in the form of a

macroscopic capacitor. χ′′(ω) also determines the real component of the polarisation

current density in phase with the electric field, i.e., Jpol(ω) which is [33]

Jpol(ω) =χ′′(ω)ωE0 cos(ωt)

=σAC(ω)E0 cos(ωt), (2.11)

where χ′′(ω)ω = σAC is the contribution to the ac conductivity that occurs due

on account of the polarisation response to the electric field. From Joule’s law for

the dissipation of power thermally by an electric current (P = IV ), it is evident

that (1/2)χ′′(ω)ω(E0)2 is the dissipated power per unit volume as a result of the
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generation of a net polarisation by the electric field, in other words, the power

dissipation density. Thus, χ′′(ω) is often called the power dissipation component,

which arises due to the work that the electric field has to exert on the dielectric so

as to produce a net dipole moment density. A part of this energy is stored in the

charge separations, and can be recovered in a manner similar to how elastic energy

stored in a spring can be recovered. The remaining energy however which is used to

overcome the friction which goes against the establishment of the net dipole density,

cannot be recovered, is dissipated in the dielectric.

2.2 Linear Response Theory and Dielectric Re-

laxation

Linear response theory [35] is of fundamental importance to the calculation of the

time behaviour of statistical averages from microscopic evolution equations such as

the Langevin or Fokker-Planck equation in order to obtain the linear response of a

system to a weak applied stimulus. When talking about dielectric relaxation, we are

interested in the linear approximation in a small applied electric field. The origin

of the response is due to the permanent dipoles existing in many molecules (e.g.

H2O) due to the asymmetry of their structure. Moreover atoms exist which while

not possessing a permanent dipole moment, have ion pairs which will also act as

dipoles. Thus an ensemble of permanent dipoles can also exist in such a system

and will obey the laws of statistical mechanics. However, the orientation of the

permanent dipoles in this system in the absence of an electric field will be random,

effectively leading to the net dipole moment of system being zero as discussed ear-

lier in the thesis. However, the description of the thermodynamic ensembles is done

through the use of distributions that allow for fluctuations about the defined average

values. For example canonical ensembles allow for fluctuations in energy about a

defined average energy content, and grand canonical ensembles allow for fluctuations

in the number of effective units. With regard to dipole responses, we are observ-

ing fluctuations involving the orientations of the permanent dipoles, leading to the

formation of a net dipole moment density. As mentioned earlier, the application of
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an electric field to the system leads to the coupling of the permanent dipoles to the

field, whereby a torque applied to the dipoles tries to align them with the electric

field vector at the lowest energy position. This results in an increase in the popu-

lation of the permanent dipole fluctuations with a component oriented in the field

direction in comparison to the ones having components oriented in other directions.

Hence we have a net dipole moment density driven by the frequency of the electric

field [36]. For example we will presently show how the after-effect (i.e., the time

behaviour following the removal of a dc field) and alternating field solutions of the

Smoluchowski equation for the rotational Brownian motion of electrical dipoles can

be obtained. Moreover these can be related via a method given by Scaife [18, 37]

which is also presented in detail in Section 2.8 of the book “The Langevin Equation:

With Applications to Stochastic Problems in Physics, Chemistry and Electrical En-

gineering” [2]. In addition we will further expand upon and explain the individual

steps of Section 2.8 of [2] in order to illustrate the procedure which will be utilised

later in the thesis.

Consider a causal, linear time-invariant system, with input x(t) and output y(t).

Let h(t) and a(t) denote the impulse and unit-step responses respectively. These

functions are related by

a (t) = u (t) ∗ h (t) , (2.12)

where ∗ denotes the convolution operator and u(t) denotes the unit step function.

Using the commutative property of mathematical convolution, we can rewrite Eq.

(2.12) in the opposite manner as

a (t) =h (t) ∗ u (t)

=

∫ ∞

−∞
h (t′)u (t− t′) dt′. (2.13)

We note that the impulse response h (t) = 0 for t < 0, which means the integral can

be rewritten as

a (t) =

∫ ∞

0

h (t′)u (t− t′) dt′. (2.14)

Since the shifted unit step function u (t− t′) = 0 for t′ > t, the integral may be
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written as

a (t) =

∫ t

0

h (t′) dt′. (2.15)

The response y(t) to the input x(t) is obtained by convolving x(t) and h(t)

y (t) =

∫ ∞

−∞
x (τ)h (t− τ) dτ =

∫ t

−∞
x (τ)h (t− τ) dτ , (2.16)

since h (t− τ) = 0 for τ > t. As mathematical convolution is a commutative

operation, we may also obtain y(t) by convolving h(t) and x(t)

y (t) =

∫ ∞

−∞
h (τ)x (t− τ) dτ =

∫ ∞

0

h (τ)x (t− τ) dτ , (2.17)

since h(τ) is causal. If x(t) = 0 for t < 0, then

y (t) =

∫ t

0

x (τ)h (t− τ) dτ =

∫ t

0

h (τ)x (t− τ) dτ . (2.18)

Since h(t) is obviously related to a(t) by

h (t) =
d

dt
a (t) , (2.19)

we can rewrite Eq. (2.18) as

y (t) =

∫ t

0

da (τ)

dτ
x (t− τ) dτ . (2.20)

If we consider at time t = 0 a unit electric field applied to a dielectric body, an

electric dipole moment a(t) will be induced on the body. The unit step response a(t)

is then called the response function of the body. Let m(t) denote the instantaneous

dipole moment of the body. The response to E0u(t), where E0 is a constant vector

and u(t) is the unit-step function, is m(t) = E0a(t). The response to the field being

switched on at time t = 0 is called the rise transient. It can be postulated that

when the field is switched on, there is no instantaneous response, so that a (0) = 0.

Since the system is time-invariant, the response to E0u(t− t0) is E0a(t− t0) where

t0 is a constant. E0a(t − t0) is the response of the body to the electric field being

switched on at time t = t0.
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We shall now consider the case where the electric field is switched on at time

t0 = −∞, E(t) = E0u(t− (−∞)) = E0u(t+∞), m(t) will be equal to E0a(t+∞).

For t ≥ 0 we have m (t) = E0a (∞). If the field is switched on at time t = −∞ and

switched off at time t = 0, we have E (t) = E0 [u (t+∞)− u (t)] and the response

m(t) for t ≥ 0 is equal to E0 [a (∞)− a (t)]. The after-effect function b(t) is defined

by the relation

b(t) =




a(∞)− a(t), t ≥ 0,

0, t < 0,

(2.21)

therefore m (t) = E0b (t) for t ≥ 0.

By superposition the (linear) response of the body to a time-varying field E(t)

that is zero for t < 0 is

m (t) =

∫ t

0

E (t− τ)
d

dτ
a (τ) dτ . (2.22)

Consider now the a.c. response where E(t) is expressed as

E(t) =





Em cos(ωt), t ≥ 0,

0, t < 0,

(2.23)

such that

m (t) =

∫ t

0

E (t− τ)
d

dτ
a (τ) dτ =

∫ t

0

Em cos (ω(t− τ))
d

dτ
a (τ) dτ . (2.24)

Using the trigonometric identity cos (u− v) = cos (u) cos (v) + sin (u) sin (v) Eq.

(2.24) can be rewritten as

m (t) =

∫ t

0

Em [cos (ωt) cos (ωτ) + sin (ωt) sin (ωτ)]
d

dτ
a (τ) dτ , (2.25)

16



which can be split into two integrals

m (t) =

∫ t

0

Em cos (ωt) cos (ωτ)
d

dτ
a (τ) dτ +

∫ t

0

Em sin (ωt) sin (ωτ)
d

dτ
a (τ) dτ .

(2.26)

Taking the constants out from the integrals we obtain,

m (t) = cos (ωt) Em

∫ t

0

cos (ωτ)
da (τ)

dτ
dτ+sin (ωt) Em

∫ t

0

sin (ωτ)
da (τ)

dτ
dτ . (2.27)

If t becomes very large, da(τ)/dτ becomes negligibly small for 1� t ≤ τ ≤ ∞, thus

the integrals

∫ ∞

t

da (τ)

dτ
cos (ωτ) dτ and

∫ ∞

t

da (τ)

dτ
sin (ωτ) dτ , (2.28)

become negligible as well and so we can write

m (t) = Emα
′ (ω) cos (ωt) + Emα

′′ (ω) sin (ωt) , (2.29)

where

α′ (ω) =

∫ ∞

0

da (τ)

dτ
cos (ωτ) dτ , (2.30)

α′′ (ω) =

∫ ∞

0

da (τ)

dτ
sin (ωτ) dτ . (2.31)

The complex polarisability α (ω) = α′ (ω)− iα′′ (ω) can now be defined as

α (ω) =

∫ ∞

0

da (t)

dt
cos (ωt) dt− i

∫ ∞

0

da (t)

dt
sin (ωt) dt

=

∫ ∞

0

da (t)

dt
[cos (ωt)− i sin (ωt)] dt. (2.32)

Using Euler’s formula, we can rewrite this as

α (ω) =

∫ ∞

0

da (t)

dt
e−iωtdt. (2.33)

The derivative of the after-effect function b(t) in Eq. (2.21) with respect to t is given
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by
db (t)

dt
= −da (t)

dt
, (2.34)

which we can substitute back into Eq. (2.33) to get

α (ω) = −
∫ ∞

0

db (t)

dt
e−iωtdt. (2.35)

We can observe from Eqs. (2.30) and (2.31) that α∗ (−ω) = α′ (ω) + iα′′ (ω), where

∗ denotes complex conjugate. Evaluating Eq. (2.35) through integration by parts

where the formula is ∫
uv′ = uv −

∫
u′v, (2.36)

and letting v′ = db (t)/dt and u = e−iωt, we get

∫ ∞

0

db (t)

dt
e−iωtdt = b (t) e−iωt

∣∣∞
0
−
∫ ∞

0

−iωe−iωtb (t) dt

= [0− b (0)] + iω

∫ ∞

0

e−iωtb (t) dt

= −b (0) + iω

∫ ∞

0

e−iωtb (t) dt, (2.37)

which we substitute back into Eq. (2.35) to get

α (ω) = b (0)− iω
∫ ∞

0

e−iωtb (t) dt. (2.38)

Dividing both sides of Eq. (2.38) by b(0), we get

α (ω)

αs
= 1− iω

∫ ∞

0

R (t) e−iωtdt, (2.39)

where R(t) = b(t)/b(0) and αs = α′ (0) = b (0) is the static polarisability. The

alternating and after effect solutions are connected by Eq. (2.39) on the condition

that the response is linear.

In Eq. (2.39), αs is closely connected with the dissipative part of the frequency de-

pendent polarisability α′′(ω). The proof for this comes when we utilise the Kramers-
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Kronig dispersion relations [30].

α′(ω) =
2

π
P

∫ ∞

0

α′′(µ)µdµ

µ2 − ω2
, (2.40)

α′′(ω) =
2

π
P

∫ ∞

0

α′(µ)ωdµ

ω2 − µ2
, (2.41)

where P indicates that the Cauchy principal value [38] of the integral is to be taken.

In Eq. (2.40), let ω = 0, since ω and µ are interchangeable we get

αs = α′(0) =
2

π

∫ ∞

0

α′′(ω)dω

ω
, (2.42)

which gives a fundamental link between the equilibrium and the nonequilibrium

properties of the body and gives a demonstration of one of the most fundamental the-

orems of statistical mechanics, called the fluctuation-dissipation theorem [35,39,40].

The latter is explained through the use of Scaife’s method [18,37] as presented in [2].

The static polarisability of a dielectric body can be given by αs = 〈M2〉0/3kT , where

〈M2〉0 = 〈M·M〉0 is the ensemble average of the square of the fluctuating dipole mo-

ment M of the body in the absence of an external field [30]. It would be opportune

at this point to briefly talk about what is called the ergodic (energy path) hypothesis

as is described in detail in [2]. Maxwell and Boltzmann [41] hoped to justify the

methods of statistical mechanics through showing that the time average [42] of any

quantity pertaining to any single system of interest should agree with the ensem-

ble average for that quantity calculated from statistical mechanics. The postulate

leading to this conclusion was called the ergodic hypothesis by Boltzmann, and by

Maxwell was called the assumption of continuity in phase [2]. It states that the

phase point for any isolated system should pass in succession through every point

compatible with the energy of the system before finally returning to its original po-

sition in phase space. Note that in the form postulated by the founders of statistical

mechanics, this is not strictly true (see pages 63 - 70 of [43]). Consequently, when

calculating average values one has to distinguish between an ensemble average and a

time average. However for a ergodic process where by definition all time dependent

averages are functions only of time difference, in other words the basic mechanisms

underlying the process do not change with the course of time, these two methods of
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averaging will always give the same result. For example, consider the autocorrela-

tion function (ACF) Cx(τ) = x(t)x(t+ τ) which we define as the time average of a

two-time product over an arbitrary range time T ′ [2]

Cx(τ) = lim
T ′→∞

1

T ′

∫ T ′
2

−T ′
2

x(t)x(t+ τ)dt, (2.43)

where for the cases of negative values for τ , it is to be interpreted as |τ |. Ergodicity

therefore means that for a stationary process where

x(t)x(t+ τ) = x(t)x(t− τ), (2.44)

we may also consider ensemble averages where we simultaneously repeat the same

measurement for all copies of the system [44] and calculate averages which yields a

result identical to that seen in Eq. (2.43), i.e.,

〈x(t)x(t+ τ)〉 = x(t)x(t+ τ). (2.45)

So now through the ergodic hypothesis we get [2] (applying it to dipole moments)

〈M2〉0 = lim
T ′→∞

1

T ′

∫ T ′
2

−T ′
2

M(t) ·M(t)dt, (2.46)

then we write the Fourier transform pair

M̃(ω) =

∫ ∞

−∞
M(t)e−iωtdt, M(t) =

1

2π

∫ ∞

−∞
M̃(ω)eiωtdω. (2.47)

Through inserting Eq. (2.47) into Eq. (2.46), we obtain from Parseval’s theorem [42]

and the ergodic hypothesis [2]

〈M2〉0 =
1

2π

∫ ∞

−∞
M(ω)dω, (2.48)

where since M(t) is a real causal function of time

M(ω) = lim
T ′→∞

1

T ′
|M̃(ω)|2, (2.49)
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is the spectral density of the fluctuations in the dipole moment M(t). Note that

M(ω) is an even function of ω. From Eqs. (2.42) and (2.48) we get

αs =
2

π

∫ ∞

0

α′′(ω)dω

ω
=

1

3πkT

∫ ∞

0

M(ω)dω, (2.50)

whence

6kTα′′(ω) = ωM(ω). (2.51)

Effectively, the dissipative part of the frequency-dependent complex polarisability

and the spectral density of the spontaneous fluctuations in the dipole moment of the

body at equilibrium have been related to one another. The autocorrelation function

(ACF) of the dipole moment is the time average of M(t′) with M(t′ + t) given by

Cm(t) = lim
T ′→∞

1

T ′

∫ T ′
2

−T ′
2

M(t′) ·M(t′ + t)dt′. (2.52)

However, we have also the Wiener-Khinchin theorem [2] which states that the ACF

and the spectral density are each other’s Fourier cosine transforms, therefore with

Eq. (2.51) we get

Cm(t) =
1

π

∫ ∞

0

M(ω) cos(ωt)dω =
6kT

π

∫ ∞

0

α′′(ω)

ω
cos(ωt)dω, (2.53)

so that on inversion

α′′(ω) =
ω

3kT

∫ ∞

0

Cm(t) cos(ωt)dt. (2.54)

From Eqs. (2.39) and (2.54), we thus have since b(t) = Cm(t)/(3kT )

α(ω) =
1

3kT

[
〈M ·M〉0 − iω

∫ ∞

0

〈M(t′) ·M(t′ + t)〉0e−iωtdt
]
, (2.55)

where the subscript zero denotes that the average is to be evaluated in the absence

of the driving field (at the equilibrium or stationary state). This is the Kubo relation

[35] and the generalisation of the Fröhlich relation [30] to the dynamical behaviour

of the dielectric.
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We find that there are many situations where 〈M(0)〉0 will not vanish, where

for example if the dielectric is in equilibrium under the action of a steady d.c. field

and that field is then altered by a small perturbation to maintain linearity of the

response. Here the normalised ACF Cm(t) and static polarisability αs are defined

as

Cm(t) =
〈M(0) ·M(t)〉0 − 〈M(0)〉20
〈M2(0)〉0 − 〈M(0)〉20

, (2.56)

and

αs =
〈M2(0)〉0 − 〈M(0)〉20

3kT
. (2.57)

So now Eq. (2.55) can be rewritten as

α(ω)

αs
= 1− iω

∫ ∞

0

Cm(t)eiωtdt. (2.58)

The basic results of linear response theory have been illustrated here via its applica-

tion to dielectric relaxation of a system of electric dipoles. However, linear response

theory can also apply to many other phenomena, where knowledge of the linear

response of a system to a weak external force is required [35, 45, 46]. In particu-

lar all of the above results can be modified to magnetic relaxation of a system of

magnetic dipoles, where the main quantities of interest are the magnetisation, its

characteristic relaxation times, and complex magnetic susceptibility.

2.3 History of Research in the Dielectric Response

In the context of this thesis, it is expedient to briefly highlight the historical re-

search and results in the theory of the static and dynamic dielectric response of polar

molecules over the past decades, starting with the work of Debye [1, 3], then Kirk-

wood [47], Fröhlich [30], and Budó [15,16] (Note that in the Appendix of Chapter 2

of the thesis, we have provided an English translation of the paper, “Anomale Dis-

persion und freie Drehbarkeit,“ Physik. Zeits., vol. 39, p. 706, 1938 by A. Budó [15]).

Upon doing so we can then discuss the more recent advances which have been made

in the analysis of anomalous relaxation. An overview of the classical theory of the

dielectric response of an assembly of polar molecules is provided by Coffey [48].
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2.3.1 The Debye Theory of the Static Permittivity

Following Langevin’s treatment of paramagnetism in 1905, Debye was the first in-

vestigator to give a relation between the static susceptibility χs of a polar substance

and the permanent dipole moment µ of a molecule of the substance.

We select from a macroscopic specimen of dielectric of relative permittivity εs

e.g. the dielectric material between the plates of a capacitor as seen in Figure 2.2,

a spherical region which is large enough to have the same physical properties as the

macroscopic specimen.

Figure 2.2: Spherical region in a dielectric sample. (aft. [49])

A constant negative potential gradient is then produced within the macroscopic

specimen via a battery which will influence a dipolar molecule inside the spherical

region in two ways. First it will perturb the rotational motion of the molecule and

cause it to have a preferred orientation in the direction of the imposed potential

gradient. Secondly it will enlarge the dipole moment of the molecule via elastic

displacement of the constituent charges. The induced dipole moment is denoted by

αf , where α is the polarisability of the molecule and f is the field which acts on the

molecule due to all sources except the molecule itself. Furthermore, the total dipole
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moment of a molecule of the substance may be written as follows:

m = µ+ αf , (2.59)

where µ is the permanent moment of a molecule when isolated. Suppose now that

the molecules are isotropic, then α can be obtained via the relation [50]

α =
3V

4πN

(
ε∞ − 1

ε∞ + 2

)
,

4

3
πa3 =

V

N
, (2.60)

where (4/3)πa3 is the mean volume per molecule, N is the number of molecules in the

sphere, V is the potential, and ε∞ is the relative permittivity at optical frequencies,

which means frequencies where the orientational mechanism of polarisation has

ceased to operate. Using the preliminaries presented in Figure 2.3, Debye’s formula

can be derived by assuming that the density of the polar substance is so low that the

dipolar interaction energy can be considered negligible in comparison to the mean

thermal energy which is of the order of the thermal energy kT per molecule, where

kT is equal to 4.2× 10−21J at room temperature.

Figure 2.3: Notation for molecule with permanent moment µ in presence of E.
(aft. [49])
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The assertion above implies that the local field acting on any molecule within

the specimen is entirely due to sources external to the sphere. It also implies that

the susceptibility χ of the substance is small. Therefore, in mathematical terms

f = E, (2.61)

where E is the uniform negative potential gradient existing in the specimen and

εs−1� 1. If each of the N molecules of the sphere carries a dipole of instantaneous

moment mi, then the total instantaneous dipole moment of the sphere, M, is

M =
N∑

i=1

mi, (2.62)

which implies that mi is the vector sum of the dipole moments of the molecules of

the sphere. The derivation is explained in more detail in Section 3.1.3 of the book

“Molecular Dynamics and the Theory of Broadband Spectroscopy” [49] where the

total susceptibility χs of a polar substance is given by Eq. (3.1.3.14) as

χs = N

(
µ2

3kT
+ α

)
, (2.63)

where n = N/V is the molecular number density.

2.3.2 The Debye Theory of Dielectric Relaxation

In 1913, Debye [3] in order to treat time dependent fields (as alluded to in the

introduction) applied the Smoluchowski equation to the dielectric relaxation of an

assembly of polar molecules, which were each conceived of as a rigid body rotating

about a fixed axis, with the only interaction being due to the external applied

field with the individual dipoles imagined to be rigid Brownian rotators. Later

he extended the theory to rotation in space where the appropriate Smoluchowski

equation is

∂W

∂t
= DR∆W +

1

ζ

[
1

sinϑ

∂

∂ϑ

(
sinϑW

∂V

∂ϑ

)
+

1

sin2ϑ

∂

∂ϕ

(
W
∂V

∂ϕ

)]
, (2.64)
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where DR = kT/ζ is the rotational diffusion coefficient, ζ = 8πηa3 is the viscous

drag coefficient on a spherical rotator, η is the viscosity and a is the radius of the

spherical Brownian particle. A spatially uniform field Eme
iωt is applied along the

polar axis so that the potential V is

V (ϑ, t) = −µ · E(t) = −µEmeiωt cosϑ. (2.65)

Eq. (2.64) represents the random walk of the tip of the dipole vector µ on a sphere

of constant radius |µ| in the diffusion limit where a dipole undergoes a small angular

displacement ∆ in an infinitesimal time τ (Einstein’s hypothesis). Solving Eq. (2.64)

in the linear approximation in the field parameter (ξ = µEm/kT � 1) yields the

mean dipole moment of a sphere which contains N molecules

N〈µ · e〉 = Nµ〈cosϑ〉 =
Nµ2

3kT

Eme
iωt

1 + iωτD
, ξ � 1. (2.66)

Thus the mean dipole moment lags behind the applied field by an angle tan−1 ωτD

and is reduced in amplitude by the frequency dependent factor 1/
√

1 + ω2τ 2
D. The

quadrature part of Eq. (2.66) exhibits a pronounced maximum at ω = 1/τD where

τD = ζ/2kT is called the Debye relaxation time and the drag coefficient ζ is cal-

culated from Stokes’ law for the viscous drag torque on a rotating body in a liquid

with the assumption that it can be applied to molecules so that

ζ = 8πηa3, (2.67)

where η is the viscosity and a is the radius of the spherical Brownian particle.

The Debye theory was later extended to the non-linear response to an applied a.c.

field by Coffey and Paranjape [51] and the non-linear behaviour was experimentally

verified by Jadzyn et al. [52]. So effectively, the Debye theory applies [30] when we

have the following conditions:

1. A dilute solution of dipolar molecules in a non-polar liquid.

2. Axially symmetric molecules - Perrin later generalised to ellipsoidal molecules

[53,54].
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3. Isotropy of the liquid, even on an atomic scale in the time average over an

interval, is small compared with the Debye relaxation time τD.

2.3.3 Onsager’s Theory of the Relative Permittivity of Dipo-

lar Fluids

The static Debye formula (seen in Eq. (2.63)) due to the assumptions made in its

derivation, holds only for polar gases at low densities thus it cannot be applied to

liquids with any accuracy. Onsager was the first to successfully calculate the static

permittivity of a polar liquid. One of the consequences of the assumption that the

interaction energy of the molecules could be neglected in comparison to the mean

thermal energy was that the local field acting on the molecule was equal to the

negative potential gradient (field) imposed on the dielectric. This assumption was

modified by Onsager to account for the effect of the surroundings of a molecule on

the local field at a molecule. The model used by Onsager can effectively take into

account the long-range dipolar interaction, which is a component of the molecular

interaction. To calculate the static relative permittivity of the liquid in question,

Onsager made use of a model which was originally proposed by Bell [55] for a

spherical dipolar molecule. The model consists of a point dipole situated at the

centre of an empty spherical cavity in a continuous dielectric with permittivity

equal to the bulk permittivity εs of the dielectric. The model is shown in Figure

2.4.
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Figure 2.4: Onsager’s model. (aft. [49])

The radius of the cavity is defined by the relation

4

3
πna3 = 1, (2.68)

where n is the molecular number density. Therefore, the volume of the cavity is

defined as the the volume available to each molecule. However the field of the dipole

in the cavity polarises its surroundings. This polarisation of the surroundings leads

µ to induce a homogenous field in the cavity which is referred to as the reaction

field R. Since the cavity is spherical, R has the same direction as µ. If the dipole

is polarisable and possesses a polarisability α, then the reaction field polarises the

dipole and therefore alters the dipole moment. Onsager’s assumptions for the theory

are succinctly stated by Fröhlich [56] as follows:

1. A molecule occupies a sphere of radius a, its polarisability is isotropic and

no saturation effects can take place.

2. The short-range molecular interaction energy is negligible in comparison to

kT .

The second assumption means that the surroundings of the molecule are treated

as a continuous dielectric of relative permittivity εs, equal to the bulk relative per-

mittivity of the liquid because only long range forces are considered. In order to

describe Onsager’s formula, it will be convenient to imagine the dipole with its cav-

ity of radius a to be placed at the centre of a very large dielectric sphere of outer
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radius b and relative permittivity εs (see Figure 2.5).

Figure 2.5: Dipole in a spherical cavity. (aft. [49])

The field within the cavity of this sphere upon being subjected to both a uniform

external field E0, which is parallel to the Z-axis, and to the field of a polarisable

point dipole m, which is situated at the centre of the cavity and making an angle ϑ

with the Z-axis consists of a uniform field given by [18,57]

f = G + R =
9εsE0c

(2εs + 1)(εs + 2)
+

2(εs − 1)

(2εs + 1)

mc

4πε0a3
, (2.69)

where G is referred to as the cavity field because if a macroscopic uniform negative

potential gradient E0 is imposed on the dielectric through external sources, then

a calculation in electrostatics shows that the field G in an empty cavity in the

dielectric will not be equal to E0. R is the reaction field due to m [49]. Note that

c−1 = 1− 2(εs − 1)2a3

b3(εs + 2)(2εs + 1)
. (2.70)

The details of the derivation are again presented in the book [49] in Section 3.1.6

where Onsager’s equation reads as

(εs − ε∞) =

(
3εs

2εs + ε∞

)(
ε∞ + 2

3

)2
N

V ε0

µ2

3kT
. (2.71)
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2.3.4 Fröhlich’s Theory

Kirkwood obtained a general formula for the relative permittivity of a polar liquid

by treating the interactions between the molecules of a large sphere of dielectric by

the methods of classical statistical mechanics. In this thesis, the results of Kirkwood

will be presented in the manner of Fröhlich, who gave general expressions for the

relative permittivity of any substance that is not permanently polarised. Fröhlich’s

general expression for the relative permittivity of a polar substance may be derived

through again taking a very large sphere, and selecting from it a smaller sphere of

radius a. This small (but still macroscopic) sphere is such that it’s just large enough

to have the same properties as the large sphere, while at the same time must be far

removed from the boundaries of the large sphere. Therefore if b is the radius of the

large sphere, then the ratio (a/b)3 � 1. The inner sphere is treated on a discrete

basis, whereas the surrounding shell is treated as a continuous dielectric medium.

It is assumed that this system consisting of the inner sphere and its surrounding

shell obeys the laws of classical statistical mechanics.

We suppose that the inner sphere contains charges and denote the ith charge by

ei. In any given energy state of the system, other than the ground state, all the

charges of the system are displaced from the positions they occupied in the ground

state. The displacements of the charges in the inner sphere are collectively denoted

by X, which is the set

{r1, ..., ri, ..., rN} = {ri}Ni=1 , (2.72)

and ri is the displacement of the ith charge. If it is assumed that the dipole moment

of the substance vanishes in the lowest energy state, then the dipole moment of the

inner sphere when its constituent charges undergo a set of displacements X is

M(X) =
N∑

i=1

eiri. (2.73)

An atom or molecule contains several elementary charges. Through following Fröhlich,

we term an atom or a molecule a cell and label such a cell j. If the cell j contains
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s elementary charges, they are then denoted by the set

{ejk}sk=1 , (2.74)

then the collective displacements of these charges are denoted by the set

m(xj) =
s∑

k=1

ejkrjk, (2.75)

and the total dipole moment of the inner sphere is

M(X) =
∑

j

m(xj) =
s∑

k=1

ejkrjk. (2.76)

The rest of the derivation is explained in Section 3.2 of [49], where the final result

is presented in Eq. (3.2.15) as

(εs − 1) =

(
3εs

2εs + 1

)(
1

vε0

) 〈M2〉0
3kT

. (2.77)

This equation is a perfectly general result as it expresses the permittivity of the

specimen in terms of the mean square fluctuations 〈M2〉0 in the instantaneous dipole

moment M(X) of a spherical (macroscopic) specimen of the dielectric embedded in

a large volume of the same dielectric. These fluctuations in the instantaneous dipole

moment are the total fluctuations in the dipole moment from all causes, because in

a dielectric several mechanisms of polarisation may be operative. Refer to Section

3.2 of [49] for more details.

2.3.5 The Kirkwood-Fröhlich Equation

This equation provides a general expression for the relative permittivity of liquids

which consist of polar molecules which possess a permanent dipole µ and a polaris-

ability α which is given by the Lorenz-Lorentz relation, which means that the effect

of α is accounted for by considering the liquid as a continuous dielectric of relative

permittivity ε∞ in which are embedded dipoles with permanent dipole moments µ.

In order to derive this equation, following the methodology of [49], we consider a
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cell j, (this is discussed in more detail in Section 3.2.3 of the book [49]) such that

it contains just one dipolar molecule, leading to the moment m of the cell being µ.

Hence, the orientations of the dipoles are then the only variables. We define

m∗ = µ∗ (notation used in [49]), (2.78)

where µ∗ is the average moment of the sphere when the dipole µ is held in a fixed

orientation. If

〈m ·m∗〉0 = 〈µ · µ∗〉0, (2.79)

then in a liquid without an applied field all dipolar interactions are equivalent and

〈µ · µ∗〉0 = µ · µ∗, (2.80)

so that with Eq. (3.2.3.15) in [49] we have

εs − ε∞ =
3εs

2εs + ε∞

(
ε∞ + 2

3

)2(
N

vε0

)
µ2
v

3kT
(1 + z 〈cos γ〉) , (2.81)

where z is the average number of nearest neighbours and 〈cos γ〉 is the average of

the cosine of the angle between neighbouring dipoles. More often the equation is

written as follows

εs − ε∞ =
3εs

2εs + ε∞

(
ε∞ + 2

3

)2
N

vε0

gµ2
v, (2.82)

where g is the Kirkwood correction factor written as:

g = 1 + z 〈cos γ〉 . (2.83)
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2.3.6 Generalisation of Fröhlich’s Equations to the Frequency-

Dependent Case

The concept of the autocorrelation function (A.C.F), which as we saw earlier is the

time average M(t) with M(t+ t′) or M(t− t′), that is

Cm (t) = M(t′) ·M(t+ t′) = M(t− t′) ·M(t′). (2.84)

Through the use of the Wiener-Khinchin theorem (details in [49]) we have Fröhlich’s

relation for the frequency dependent case viz.,

α (ω) =
1

3kT

(
M ·M− iω

∫ ∞

0

M(t′) ·M(t+ t′)eiωtdt

)

=
1

3kT

[
〈M ·M〉0 − iω

∫ ∞

0

〈M(t′) ·M(t+ t′)〉0eiωtdt
]
. (2.85)

This is often called the Kubo relation, and is the generalisation of the Fröhlich

relation

αs =
〈M2〉0
3kT

, (2.86)

to cover the dynamical behaviour of the dielectric.

2.4 Budó’s Treatment of Dipole-Dipole Coupling

We have discussed the limitations of the simple dynamical theory of Debye in ex-

plaining the complex susceptibility of polar fluids at low frequencies (GHz) in the

introduction, more specifically the fact that virtually all interactions between the

dipolar molecules are ignored. The sole exceptions are the Brownian torques due

to the bath and the interaction between a typical dipole of the polar assembly and

the applied external field. Here we shall describe how Budó [15, 16], addressed the

neglect of interactions by showing how the results of the original Debye theory valid

in the non-inertial limit are modified for assemblies of non-interacting molecules

containing interacting rotating polar groups. This was published as a full paper in

the Journal of Chemical Physics [16].

The Brownian motion model used by Budó is shown in Figure 2.6
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Figure 2.6: Geometry of the problem. Notation for Euler angles is that of Landau-
Lifshitz. (aft. [58])

He supposes that the dielectric consists of an assembly of dipoles that do not inter-

act with each other electrically, with only internal dipole-dipole coupling between

the members 1 and 2 included. From this can be written the Smoluchowski equa-

tion for the variation in configuration space of the probability distribution function

f (θ, ϕ1, ϕ2, t) which is associated with the orientation of the molecule under the

influence of a time varying electric field. Following Budó, it shall be supposed that

the molecule consists of two groups of equal size with common rotational axis, which

is marked 1 in Figure 2.6. The coefficient of friction arising from the thermal energy

of the surroundings acting on the molecule as a whole he denoted as ζ, which leads

to ζ1 denoting rotations about axis 1, and ζ2 denoting rotations about axis 2. The

components of the dipole moments of the group perpendicular to the molecular axis

(axis 1) will be denoted by µ1, µ2 respectively and µ0 denotes the components of the

dipole moment in the direction of axis 1. We shall obtain the simplest form of the

theory through assuming that µ0 = 0. In the light of the above assumptions, along

with the coordinate system presented in the figure, one can obtain the Smoluchowski

equation for the variation in configuration space of the distribution function f for

a time t after the sudden removal of unidirectional electric field of magnitude E,
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which had been steady up to the time t = 0. The equation is presented as follows

(a detailed derivation is given in the Appendices)

∂f

∂t
=
kT

ζ

[
∂2f

∂θ2
+ cot θ

∂f

∂θ
+

(
cot2θ +

ζ

ζ1

)(
∂2f

∂ϕ2
1

+
∂2f

∂ϕ2
2

)
+ 2cot2θ

∂2f

∂ϕ1∂ϕ2

]

+
∂

∂ϕ1

(
f sin θ

ζ1

∂V

∂ϕ1

)
+

∂

∂ϕ2

(
f sin θ

ζ1

∂V

∂ϕ2

)
. (2.87)

Here, f sin θdθdψdϕ1dϕ2 = f dΩ refers to the number of molecules of dipole mo-

ments µ1 and µ2 in the domain Ω, Ω + dΩ at time t, θ and ψ are the polar angles

which specify the direction of the molecular axis relative to that of E, and ϕ1 and ϕ2

are the azimuthal angles of µ1 and µ2 measured from the plane which contains the

axes 1 and 2. Note that f has no dependence on the angle ψ due to the rotational

symmetry about axis 1. V (ϕ1 − ϕ2) = V is the mutual potential energy of the

dipoles µ1 and µ2 due to dipole-dipole coupling. It should be noted at this point

that the Eq. (2.87) in the way it is written has the assumption that the only portion

of the dipole-dipole interaction taken into account is that between the groups 1 and

2, meaning that we only take into account the coupling between pairs of dipoles.

If this were not done, then one would be forced into considering an intractable

many-body problem.

The principal result of his investigation is that including dipole-dipole interaction

between two groups in a given molecule gives rise to a discrete set of Debye-type

dipole relaxation mechanisms. In the book “Molecular Diffusion and Spectra” by

Coffey, Evans and Grigolini in Section 3.2 [8], it is shown how this equation can

be solved for the relaxation mechanisms of the dipoles and how the problem of

calculating the relaxation times and so on may always be reduced to the solution of

a Sturm-Liouville problem. The summary of the main features of Budó’s treatment

is as follows [8]:

1. The analysis only takes into account the coupling between pairs of dipoles

in a rotating group. Note that the groups are not supposed to interact with

one another.

2. The potential depends only on the relative longitudes of the dipoles.

3. It seems that the effect of dipole–dipole coupling always leads to a denumer-
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able set of relaxation times and a corresponding denumerable set of relaxation

mechanisms.

4. Both dipolar autocorrelation and dipolar cross-correlation functions con-

tribute to the polarisation.

5. In the situation where the dipole-dipole coupling is very strong, the cou-

pling torque B sin 2η , where B is constant, may be replaced by 2Bη to give

closed-form expressions for the dipolar auto-correlation and cross-correlation

functions.

6. Because the theory is based on the Smoluchowski equation, it excludes iner-

tial effects, so that it is invalid at high frequencies.

7. The solution to calculating the relaxation times, etc. can always be reduced

to a Sturm-Liouville problem.

8. The harmonic approximation potential yields a much narrower set of relax-

ation mechanisms than the cosine one.

The principal result that including dipole-dipole interaction between two groups in

a given molecule yields a discrete set of Debye-type dipole relaxation mechanisms

was further corroborated by that of Zwanzig in 1963 [17, 18] who studied, in the

non-inertial limit, the complex susceptibility of an assembly of permanent dipoles

coupled by dipole-dipole interactions and arranged on a simple cubic lattice. More

details on the Smoluchowski equation will be provided in Chapter 4 of the thesis.

2.5 Anomalous Diffusion and Anomalous Dielec-

tric Relaxation

It is opportune to briefly discuss the phenomenon of diffusion, which is generally

described as the net movement of (e.g. atoms, ions, molecules) from a region of

higher concentration to a region of lower concentration. Thus, it is driven by a gra-

dient in concentration which falls into one of two categories, normal and anomalous

diffusion. Normal diffusion processes are often described as resulting from micro-

scopic random walks with independent and identically distributed steps, where the

distribution of step sizes has finite variance and where a characteristic time between
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steps can be defined. Here, the central limit theorem [2] implies that the resulting

distribution of the particle positions, provided via the accumulated sum of steps,

converges to a Gaussian distribution. Hence, the mean squared displacement of

the particles which move in a one dimensional extension x scales linearly with time

according to [35].
〈
(x (t)− x (0))2〉 = 2Dt, (2.88)

where x(t) is the position of a particle at time t, D is the diffusion coefficient and 〈〉 is

the ensemble average operation. Anomalous diffusion is likely to occur if one of the

conditions for the validity of the central limit theorem is violated, due to either the

occurrence of step distributions with infinite variance [59,60] or to the occurrence of

steps that are not statistically independent [61,62] as happens in disordered media.

The deviation from normal diffusion may be characterised by either a vanishing

(sub-diffusion) or a diverging (super-diffusion) coefficient [63]

D = lim
t→∞

1

2t

〈
x2
〉
, (2.89)

where 〈x2〉 ∝ 2Dtα (asymptotically). With this formal statement, we can only define

anomalous regimes asymptotically, which leads to limited practical applications. An

alternative is to characterise an unknown diffusive process through expressing its

variance as a non-linear function of time, with a constant diffusion coefficient for a

fractional (or non-linear) diffusion equation, such that

〈
x2
〉

= 2Dtα. (2.90)

With this generalisation, we can cover both sub-diffusion (α < 1) and super-diffusion

(α > 1) (see Figure 2.7).
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Figure 2.7: Mean squared displacement for different types of anomalous diffusion.

This expression has been applied to studies of both sub-diffusive [64–68] and super-

diffusive behaviours [69–72].

Anomalous diffusion allows one to model diverse physical phenomena in dense

systems or porous media. The mechanisms that underlie anomalous diffusion have

been explored extensively in the literature, including but not limited to, continuous-

time random walks [73–75], fractional Brownian motion [76, 77], diffusion in disor-

dered media [2, 78] etc.

It has been shown earlier how the Debye equation can successfully describe the

low frequency behaviour of the complex susceptibility, but we end up with the

situation where there are a number of amorphous materials which show significant

departure from Debye-like behaviour (in other words, we end up with anomalous

relaxation). As such there have been a number of empirical formulas which have

been used to describe the experimentally observed complex susceptibility. These

include the Cole-Cole formula [29]

χ(ω)

χ′(0)
=

1

1 + (iωτD)α
, 0 < α ≤ 1, (2.91)
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the Cole-Davidson formula [29]

χ(ω)

χ′(0)
=

1

(1 + iωτD)o
, 0 < o ≤ 1, (2.92)

and the Havriliak-Negami formula [29]

χ(ω)

χ′(0)
=

1

(1 + (iωτD)α)o
. (2.93)

These three empirical formulas exhibit anomalous relaxation behaviour, and they

may also be regarded as arising from a distribution of relaxation mechanisms if we

suppose that the complex susceptibility may be written as

χ(ω)

χ′(0)
=

∫ ∞

0

f(τ)

1 + iωτ
dτ. (2.94)

This superposition integral [29] embodies the idea that the dielectric behaves as

though it were a collection of individual Debye time mechanisms with relaxation

time τ and distribution function f(τD). Clearly for the Debye equation [29]

fD(τ) = δ(τ − τD), (2.95)

meaning that only one relaxation mechanism is involved, while for the Cole-Cole

equation

fCC(τ) =
sin πα

πτ
[
( τ
τD

)α + ( τ
τD

)−α + 2 cosπα
] , (2.96)

for the Cole-Davidson equation

fCD(τ) =





(πτ)−1( τD
τ−1

)−o sinπo, τ < τD,

0, τ > τD,

(2.97)

and for the Havriliak-Negami formula

fHN(τ) =

(
τ
τD

)oα ∣∣∣∣sin
(
o arctan

{[(
τ
τD

)α
+ cos πα

]−1

sin πα

})∣∣∣∣

πτ

[(
τ
τD

)2α

+ 2
(

τ
τD

)α
cos πα + 1

] o
2

. (2.98)
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Therefore, the anomalous relaxation behaviour may be characterised by a superpo-

sition of an infinite number of Debye-like relaxation mechanisms with the relaxation

times given by Eqs. (2.95) - (2.98). It is important to investigate whether it is pos-

sible to derive these formulas from a microscopic model of the underlying processes

such as suitable adaptations of the Einstein theory of the Brownian motion under-

lying the work of Debye. If indeed it is possible to achieve this, it would constitute

significant progress in the theory as one then could include both the effects of the

inertia of the molecules and an external potential arising from crystalline anisotropy

or indeed any other mechanism. This topic has in part been investigated for the

Cole-Cole equation by Coffey, Kalmykov and Titov [2], who have shown that the

Cole-Cole equation may be derived from a kinetic equation based on the concept

of a continuous time random walk that is, a walk with a long-tailed distribution of

waiting times between the elementary jumps. This was later extended to include

both inertial effects and an external mean-field potential [2]. An overview of ad-

vances that have been made in the study of anomalous relaxation and the use of

fractional diffusion equations is given by Coffey [2, 48].

2.6 Fractional Diffusion Equations

In order to generalise the various diffusion equations of Brownian dynamics for ex-

plaining anomalous relaxation phenomena, we exploit the fact that the temporal

occurrence of the motion events performed by the random walker is so broadly dis-

tributed that no characteristic waiting time exists [79]. The resulting equations are

called fractional diffusion equations since they generally involve fractional deriva-

tives of the PDF with respect to time. As an example, in fractional diffusion, the

diffusion equation for the Brownian motion of a free particle, (see Eq. (1.4.6) in [2])

becomes
∂f

∂t
=

(
kT

ζ

)α
∂2

∂x2
D1−α
t f, (2.99)
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where α is the anomalous exponent, the fractional operator 0D
1−α
t ≡ ∂

∂t 0D
−α
t in

Eq. (5.8) is defined via the convolution (the Riemann-Liouville definition) [79–82]

0D
−α
t f( Ω, t) =

1

Γ(α)

∫ t

0

f(Ω , t′)dt′

(t− t′)1−α , (2.100)

Γ(α) denoting the gamma function [83]. In Eq. (2.99), if 0 < α < 1 we have sub-

diffusion, if α = 1 normal diffusion and if 1 < α < 2 super diffusion (α = 2 defines

the ballistic limit).
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Appendices

2.A Translation of “Anomalous Dispersion and

Free Rotation”, Physik. Zeits., 39, 706 (1938)

by A. Budó (Budapest)

In dispersion phenomena in polar molecules subjected to high frequency alternating

electric fields, the mean dipole moment can be found from the equation

m =
µ2

3kT

F0e
iωt

1 + iωτ
. (1)

Here µ is the magnitude of the dipole moment, F0 is the amplitude of the electric

field of angular frequency ω and τ is the relaxation time of a molecule. This result

only holds for a rigid dipole and therefore cannot be applied to molecules containing

rotating groups with their own embedded dipole moments.

However, one can following Zahn [1], divide molecules containing rotating groups

into two general classes: molecules where the axis of rotation does not change with

time and molecules where the rotating axis’s location changes with time. Here we

wish to deal with the first class based on elementary model considerations, namely

the case in which the axes of rotation of groups are directed parallel to one another.

We are only concerned with free rotation; therefore, we can disregard any inter-

actions between individual moments. Already electrostatic interactions between

dipoles in equilibrium under the influence of a constant field as treated by Meyer

[2] have led to far reaching results.

In order to calculate the mean moment in a changing field, we must determine

the distribution function. Now in the equilibrium case the rotating groups will

have the Maxwell-Boltzmann distribution so that the mean moments are easily

determined in equilibrium. We think of both the fixed and the moving moment

of the molecule as being divided into two components: the component of the fixed

or moving moment in the direction of the axis of rotation is µa′ or µa′′ and it is

µa′ + µa′′ = µa, the components in the plane perpendicular to the axis of rotation

are µb or µc. If we draw rays parallel to µa, µb, µc for each molecule from the centre
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of the unit sphere, then we can characterise the directions of these moments by the

usual polar coordinates ϑ, ψ, which determine the direction of µa relative to the field

strength, and by the angles of rotation ϕ and χ, which indicate the position of µb

and µc, respectively, in the plane perpendicular to µa; ϕ and χ are measured from

the plane ψ (Fig. 1.).

Fig. 1.

We can now determine the distribution function in the familiar manner of Debye

[3]. In other words, we consider how the moments change their orientations in an

infinitesimal time δt on the unit sphere. The number of molecules of moment µa

which had at time t orientations lying between (ϑ, ψ) and (ϑ+ dϑ, ψ + dψ), µb

between ϕ and ϕ + dϕ, µc between χ and χ + dχ is fdV = f sinϑdϑdψdϕdχ; and

this number changes with time both due to the Brownian rotational movement of

the molecules and also due to the imposed field. The first type of change (i.e.

Brownian) in the time interval δt is

−fdV +

∫
f ′dV ′wdV ,

where integration with respect to (the configuration space) volume element dV ′

yields wdV the (element) of probability whereby a given moment system lying in

the element dV ′ may be found at time t+δt in dV . When f ′ = f (ϑ′, ψ′, ϕ′, χ′, t) then

via (Taylor) series expansion of the integrand in the above expression (Einstein’s
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method) in powers of the increments

ϑ′ − ϑ = ∆ϑ, ϕ′ − ϕ = ∆ϕ, χ′ − χ = ∆χ,

and truncation at the quadratic terms in the increments (note that f for reasons of

rotational symmetry about the polar axis is independent of ψ and that w is a p.d.f.

so that
∫
wdV ′ = 1), yields for the number of molecules at time δt in the volume

element dV

∆N1 =dV

[
∆ϑ

∂f

∂ϑ
+ ∆ϕ

∂f

∂ϕ
+ ∆χ

∂f

∂χ
+

1

2
∆2
ϑ

∂2f

∂ϑ2
+

1

2
∆2
ϕ

∂2f

∂ϕ2
+

1

2
∆2
χ

∂2f

∂χ2

+ ∆ϑ∆ϕ
∂2f

∂ϑ∂ϕ
+ ∆ϑ∆χ

∂2f

∂ϑ∂χ
+ ∆ϕ∆χ

∂2f

∂ϕ∂χ

]
. (2)

The mean values ∆ϑ,∆2
ϑ,∆ϑ∆ϕ are defined via the (usual Einstein) formulas

∆ϑ =

∫
∆ϑwdV

′, ∆2
ϑ =

∫
∆2
ϑwdV

′, ∆ϑ∆ϕ =

∫
∆ϑ∆ϕwdV

′.

Next to determine the change in the number of molecules in the element dV in

a time interval δt due to the imposed field F we decompose that field into the sum

of 3 vectors Fa, Fb, Fc so that at each point in time

Fa = F cosϑ, Fb = −F sinϑ
sinχ

sin (χ− ϕ)
, Fc = F sinϑ

sinϕ

sin (χ− ϕ)
. (3)

then the effective torques acting on the molecule are

Mab = µaFb − µbFa, Mac = µaFc − µcFa. (4)

Now in the particular class of molecules treated the angle between µa and µb like

that between µa and µc is unchanging (equals π/2) and since the torques have no

components in the direction of the axis of rotation of the group, we can consider the

rotation that these torques cause as the rotation of the whole molecule if we make

the usual assumption that the angular velocity of the strain is proportional to the

moments (in our case the resultant of Mab and Mac, denoted by M), the molecule

will rotate during the time δt and the angle

δα =
M

ρ
δt, (5)

which is a single axis whose orientation lies along the direction of M . The drag

coefficient (denoted by ρ) is strictly speaking strongly dependent on the (precise)
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location of the groups inside the molecule; however, we take the drag coefficient

ρ as constant and following Stokes law as applied to the direction of rotation of

the groups. As far as the angle δα is concerned we can with our chosen coordi-

nates (ϑ, ψ, ϕ, χ) resolve our M into three (contravariant) components: Mψ is the

component in the direction of the polar axis, Mϑ is the component in the plane

perpendicular to the polar axis and µa in the same plane and Mϕ in the direction

of the axis of rotation of the group, i.e. in the direction of µa, one then has for the

components of the angles δα

δϑ =
Mϑ

ρ
δt, δψ =

Mψ

ρ
δt, δϕ = δχ =

Mϕ

ρ
δt. (6)

We then find for the torque components following the usual rules of vectors, the

result

Mϑ =Mab cosϕ+Mac cosχ,

Mψ = (Mab sinϕ+Mac sinχ)
1

sinϑ
, (7)

Mϕ = − (Mab sinϕ+Mac sinχ) cotϑ.

It is still necessary to account for the remaining torques viz.,

µbFc sin (χ− ϕ) , and − µcFb sin (χ− ϕ) , (8)

which each act in the direction of the axis of rotation of the group. Because of

the assumed completely free rotation the first of these torques rotates the whole

molecule with the exception of the rotatable group, in contrast the second only

rotates the rotatable group itself. The friction constant during the first type of

rotation we call ρ′, that during the second type independent of the other, we call

ρ′′. We can then write the ensuing rotations during a time δt as

δϕ =
µbFcδt

ρ′
sin (χ− ϕ) ,

δχ = − µcFbδt

ρ′′
sin (χ− ϕ) . (9)

Due to Eqs. (6) and (9) combined with Eqs. (3), (4), and (7), one can now charac-

45



terise the rotation of molecules possessing a rotating group by

δϑ = − Fδt

ρ
[µa sinϑ+ µb cosϑ cosϕ+ µc cosϑ cosχ] ,

δψ = − Fδt

ρ

cosϑ

sinϑ
[µb sinϕ+ µc sinχ] ,

δϕ =Fδt

[
cos2ϑ

ρ sinϑ
(µb sinϕ+ µc sinχ) +

sinϑ

ρ′
µb sinϕ

]
, (10)

δχ =Fδt

[
cos2ϑ

ρ sinϑ
(µb sinϕ+ µc sinχ) +

sinϑ

ρ′′
µc sinχ

]
.

Hence the effective increase in the number of molecules in the volume element dV =

sinϑdϑdψdϕdχ due to the field alone is

∆N2 = −
[
∂

∂ϑ
(f sinϑδϑdψdϕdχ) dϑ+

∂

∂ψ
(fdϑδψdϕdχ) dψ

+
∂

∂ϕ
(f sinϑdϑdψδϕdχ) dϕ+

∂

∂χ
(f sinϑdϑdψdϕδχ) dχ

]

= − dϑdψdϕdχ

[
∂

∂ϑ
(f sinϑδϑ) +

∂

∂ψ
(fδψ) +

∂

∂ϕ
(f sinϑδϕ)

+
∂

∂χ
(f sinϑδχ)

]
. (11)

On the other hand, the change in the total number of the molecules in the elemental

volume dV with time is
∂f

∂t
δtdV.

This relation combined with the total change ∆N = ∆N1 + ∆N2 (see Eqs. (2) and

(11)) yields the partial differential equation for f :

∂f

∂t
=

∆ϑ

δt

∂f

∂ϑ
+

∆ϕ

δt

∂f

∂ϕ
+

∆χ

δt

∂f

∂χ
+

∆2
ϑ

2δt

∂2f

∂ϑ2
+

∆2
ϕ

2δt

∂2f

∂ϕ2
+

∆2
χ

2δt

∂2f

∂χ2
+

∆ϑ∆ϕ

δt

∂2f

∂ϑ∂ϕ

+
∆ϑ∆χ

δt

∂2f

∂ϑ∂χ
+

∆ϕ∆χ

δt

∂2f

∂ϕ∂χ
+

f

ρ sinϑ

{
∂

∂ϑ
[f sinϑ (µa sinϑ + µb cosϑ cosϕ

+ µc cosϑ cosχ)] − ∂

∂ϕ

[
f

[
cos2ϑ (µb sinϕ+ µc sinχ) +

ρ

ρ′
µbsin

2ϑ sinϕ

]]

− ∂

∂χ

[
f

[
cos2ϑ (µb sinϕ+ µc sinχ) +

ρ

ρ′′
µcsin

2ϑ sinχ

]]}
. (12)

Here the term ∂
∂ψ

(fδψ) is absent since f like δψ is independent of ψ.

The constants ∆ϑ

δt
, ... , ∆ϕ∆χ

δt
are determined from the condition that at equilib-

rium
(
∂f
∂t

= 0
)

the function f = e−
u
kT (which the potential energy u leads to) must

be a solution of Eq. (12) where

u = −F (µa cosϑ− µb sinϑ cosϕ− µc sinϑ cosχ) , (13)
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so we have on substitution

f = e
F
kT

(µa cosϑ−µb sinϑ cosϕ−µc sinϑ cosχ),

into Eq. (12) (with ∂f
∂t

= 0) the following explicit results

∆ϑ

δt
=
kT

ρ

cosϑ

sinϑ
,

∆2
ϑ

2δt
=
kT

ρ
,

∆2
ϕ

2δt
=

kT

sin2ϑ

(
cos2ϑ

ρ
+

sin2ϑ

ρ′

)
,

∆2
χ

2δt
=

kT

sin2ϑ

(
cos2ϑ

ρ
+

sin2ϑ

ρ′′

)
,

∆ϕ∆χ

δt
=

2kT

ρ

cos2ϑ

sin2ϑ
, (14)

with all the remaining averages equal to zero.

By substituting the values in Eq. (12) we arrive at the desired form of the dif-

ferential equation (kinetic or Smoluchowski equation) whereby we can determine

the (time dependent) distribution function. When we have all the above quantities,

we see that by taking only terms of the first order in the field strength into ac-

count (linear response), that we can make the assumption (for the time dependent

distribution)

f = 1 + xa (t) cosϑ− xb (t) sinϑ cosϕ− xc (t) sinϑ cosχ, (15)

where the quantities xa (t) , xb (t) , xc (t) are functions of time only. Therefore we

have the following differential equations for the xj (t) terms

dxa
dt

= − kT
2

ρ

(
xa −

µaF

kT

)
,

dxb
dt

= − kT

(
1

ρ
+

1

ρ′

)(
xb −

µbF

kT

)
, (16)

dxc
dt

= − kT

(
1

ρ
+

1

ρ′′

)(
xc −

µcF

kT

)
,

with solutions for sinusoidal fields:

F = F0e
iωt,

which can be written as

xj =
1

1 + iωτj

µjF0e
iωt

kT
,

thus, the “relaxation times” can be explicitly given as

1

τa
=

2kT

ρ
,

1

τb
= kT

(
1

ρ
+

1

ρ′

)
,

1

τc
= kT

(
1

ρ
+

1

ρ′′

)
. (17)
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Thus, we have the explicit solution for the time dependent distribution

f(θ, ϕ, χ, t) = 1+
F0e

iωt

kT

[
µa

1 + iωτa
cosϑ− µb

1 + iωτb
sinϑ cosϕ− µc

1 + iωτc
sinϑ cosχ

]
,

(18)

whence we can calculate the mean moment according to the usual formula

m =

∫ π
0

∫ 2π

0

∫ 2π

0

∫ 2π

0
f [µa cosϑ− µb sinϑ cosϕ− µc sinϑ cosχ] sinϑdϑdψdϕdχ

∫ π
0

∫ 2π

0

∫ 2π

0

∫ 2π

0
f sinϑdϑdψdϕdχ

,

therefore

m =
F0e

iωt

3kT

[
µa

2

1 + iωτa
+

µb
2

1 + iωτb
+

µc
2

1 + iωτc

]
. (19)

These results can immediately be generalised to n rotating groups all with parallel

axes (embedded) in the particular molecule under study. The calculation is the

same, however, one must now specify for each group its own (particular) angle of

rotation. If we denote by µa the sum of all the dipole moment components in the

direction of the axis of rotation and further denote by µ1, ... , µn all the components

of the moments rotating in the plane of the rotation axis itself we have the result

m =
F0e

iωt

3kT

[
µa

2

1 + iωτa
+

µb
2

1 + iωτb
+

µ1
2

1 + iωτ1

+ ... +
µn

2

1 + iωτn

]
, (20)

with
1

τ1

= kT

(
1

ρ
+

1

ρ1

)
, ... ,

1

τn
= kT

(
1

ρ
+

1

ρn

)
. (21)

Here we have denoted the friction coefficients of the various freely rotatable groups

by ρ1, ..., ρn; relations between τa, ρ, or between τb, ρ, ρ
′ apply unchanged (Eq.

(17)).

In the static we can see from Eq. (20) that the mean moment has the form

mstat =
F0

3kT

[
µa

2 + µb
2 + µ1

2 + ... + µn
2
]
,

in agreement with the results of Zahn [1]. From the formula for the average moment

one can calculate the dispersion and absorption indexes as a function of frequency.

Those curves then exhibit several distinct maxima and their position and values in

principle allow one to determine the constants τa, ..., τn. Let us treat for example

the loss, we have for the imaginary part of the mean moment an expression of the

form
µ2
aω

2τa
1 + ω2τa

+ ...+
µ2
nω

2τn
1 + ω2τn

.
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Now at the usual measuring frequencies (ω2τ 2 � 1) the losses should be proportional

to

ω2
[
µ2
aτa + µ2

bτb + ...+ µ2
nτn
]
. (22)

However, (from Eqs. (17) and (21)) τb, τ1, ..., τn are all smaller as compared to τa

(ρ′, ρ1, ..., ρn smaller than ρ) hence Eq. (22) is smaller than

ω2
[
µ2
a + µ2

b + ...+ µ2
n

]
τa.

However since µ2
a+µ2

b+...+µ2
n means the measurable dipole moment, this inequality

states the losses should be smaller than those of a molecule which has the same

dipole moment and is of the same size but does not possess a rotating group. In

other words: if one calculates the molecular volume from the measured loss, this

should be smaller than expected. Some experiments confirm this statement [4], in

the quantitative side one must wait for further experimental confirmation.
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3. Magnetisation Relaxation

Processes and Thermal

Fluctuations

For the analysis of the magnetisation relaxation of fine single domain ferromagnetic

nanoparticles, it is necessary to establish a comprehensive theory of thermal fluc-

tuations and relaxation processes in nanomagnets for the accurate interpretation of

experimental and computer simulation data via the use of rigorous mathematical

models which have a foundation in the principles of non-equilibrium statistical me-

chanics. Fine single-domain ferromagnetic particles are known to exhibit unstable

behaviour of the magnetisation due to thermal agitation, which results in superpara-

magnetism due effectively to each nanoparticle behaving as an enormous Langevin

paramagnet of magnetic moment (∼ 104 − 105 Bohr magnetons µB). The magneti-

sation may spontaneously reverse its direction at temperatures above what is called

the blocking temperature due to thermal fluctuations so that the stable magnetic

behaviour that is characteristic of a ferromagnet is destroyed. Thus the initiation

of thermal instability defined by a time-dependent magnetisation in the magnetic

nanoparticles used has been of great consequence in magnetic recording as they are

constantly being reduced in size in order to provide both increased signal-to-noise

ratio and greater storage density. In addition to this, the aforementioned thermal

instability has provided valuable insight into the subject of paleomagnetism, as the

ability of igneous rock to keep a magnetic record hinges on the fact that the fine

particles within the igneous rock have been able to preserve the direction of the

earth’s magnetic field from the epoch in which the temperature of the environment
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has fallen below the blocking temperature of the particles.

Louis Néel in 1949 [84, 85] codified his theory of magnetisation reversal over a

potential barrier inside a nanoparticle through the implicit adaption of an Ansatz

proposed by Debye through his book [3], in order to explain the dielectric relaxation

of solids which upon melting will yield polar liquids. Debye (A.K.A. Debye’s second

model) has considered an ensemble of non-interacting polar molecules each of which

have the same permanent dipole moment and situated for example each at the

intersection points (sites) of a space lattice. It was further supposed by Debye that

if a uniform field acts on a dipole, then it can orient itself in one of two definite

directions only, either in the same direction as the field, or its opposite. This model is

known as discrete orientation and has been further extended by Fröhlich in 1949 [56]

and by Brown in 1956 [86]. This is in contrast to the more widely known continuous

distribution of orientations model of non-interacting polar molecules representing a

polar liquid also due to Debye (which is his first model). The first model which

as we saw was initially based on a fixed-axis rotator version of Einstein’s theory

of Brownian motion [2] was later extended to rotation in space. In the discrete

orientation model, in which the transition from one orientation to another occurs

in a single big jump, as applied to polar dielectrics the essential difference between

it and the free rotational diffusion one is that the latter (where the transition from

one orientation at time t to another at t+dt occurs by a succession of small jumps)

predicts dispersion and absorption in the microwave region while typically the former

roughly explains the dispersion and absorption in ice occurring at km wavelengths.

Therefore a solid such as ice will behave as if it were a polar liquid with very high

internal friction, and thus will have a very long relaxation time. This time turns

out to be exponentially long as emphasised by Fröhlich due to the fact that the

probability of the jumping of a dipole over a potential barrier is proportional to

the appropriate Boltzmann factor e−∆E. This factor results in Arrhenius behaviour

of the escape rate Γ = Ae−∆E, which is inversely proportional to the overbarrier

relaxation time τ (note that ∆E is a dimensionless potential barrier and A is a

prefactor).

A fundamentally similar result was also found for the longitudinal magneti-
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sation relaxation of a single-domain ferromagnetic nanoparticle over an internal

magnetocrystalline-anisotropy-Zeeman energy potential barrier by Néel [84,85]. This

approach to the magnetisation reversal time mechanism, which is based on statisti-

cal mechanics, was started through his hypothesis that the reversal was governed via

an activation process pertaining to escape over a barrier in the form of the discrete

orientation model. The key difference however from standard reaction rate theory,

since we treat a magnetisation energy density potential, is that the longest relaxation

time of the magnetisation, now depending exponentially on the volume of the par-

ticle, can vary from nanoseconds to geological epochs. The ideas of Néel were later

refined by Brown in 1963 [87]. He builds on his well expressed Handbuch article [86]

on dielectrics, via setting the entire problem in the context of the general theory of

stochastic processes. Thus he involved a form of Boltzmann’s Stosszahlansatz [2]

(of which the Brownian motion is a particular case) as was accomplished by Debye

for dielectric relaxation. Brown’s criticism of Néel’s results for the reversal time of

the magnetisation rests on two irrefutable facts:

1. The relaxing system is not treated explicitly as a gyromagnetic one.

2. It relies on the discrete orientation Ansatz.

Therefore despite the disturbance to the orientational Boltzmann distribution in a

potential well due to the loss of magnetisation (i.e., representative points) at the

barrier that distribution still prevails everywhere in accordance with transition state

theory. The latter assumption is an inherent flaw of the discrete orientation Ansatz

so that it is impossible to calculate accurately the escape rate and thus the relax-

ation time, because the effect of the energy dissipation to the bath on the escape rate

is completely ignored. However, these problems were circumvented by Brown by

formulating from the magnetic Langevin equation, i.e., the Landau-Lifshitz-Gilbert

equation for the magnetisation evolution as supplemented by stochastic terms, the

magnetic Fokker-Planck equation. This equation governs the probability density

W (ϑ, ϕ, t) of the magnetic moment orientations on the unit sphere, where ϑ and ϕ

are, respectively, the polar and azimuthal angles of the spherical polar coordinate

system. Thus, he achieved the goals of both setting the magnetisation stochas-

tic process within the framework of the general theory of the Brownian motion
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and simultaneously removing the difficulties associated with the discrete orientation

Ansatz in effect similar to what Debye has achieved with his continuous distribu-

tion of orientations model with an external applied field. This was later utilised by

Maier and Saupe with the addition of a mean field potential in the analysis of the

dielectric relaxation of nematic liquid crystals [2].

Furthermore, Brown was able to identify the magnetisation reversal time with

the inverse of the smallest non-vanishing eigenvalue of the magnetic Fokker-Planck

equation which governs precession-aided rotational diffusion of the magnetic mo-

ment in the anisotropy-Zeeman energy potential thus for a given potential posing a

Sturm-Liouville problem. The simplest uniaxial potential of the magneto-crystalline

anisotropy-Zeeman energy was the example Brown used (which he intended only

as an indicative example). As such in the longitudinal relaxation, the gyromag-

netic terms are not explicitly involved because they immediately drop out from

the Fokker-Plank equation. Therefore, in this effectively one-dimensional problem

(through suitably adapting the Kramers theory [88] of escape of translating par-

ticles over potential barriers to classical macrospins) Brown found an asymptotic

result which agrees with that of Néel [84, 85] as far as the exponential dependence

of the magnetisation reversal time on the potential barrier height is concerned. As

mentioned earlier, we seek the solution of the Fokker-Planck equation as a Fourier-

Laplace series in the spherical harmonics Ylm(ϑ, ϕ). These serve as an appropriate

basis set for the evaluation of observables such as the magnetisation, and yield a

multi-term differential-recurrence relation for the statistical moments. However,

there is another procedure that we can follow which is completely equivalent. This

involves taking the magnetic Langevin equation and rewriting it as a stochastic

evolution equation for a spherical harmonic of arbitrary rank with the aid of the

theory of angular momentum. The resulting stochastic recurrence relation is then

averaged during an infinitesimal time (i.e., the Ansatz used by Einstein) over an

ensemble of macrospins [2] which at some initial time all had the same orientation

ϑ, ϕ. This procedure leads to the deterministic equation of motion of a spherical

harmonic in terms of the sharp values ϑ and ϕ. However the latter are also random

variables themselves. Thus we make a spatial average over their distribution to yield

53



a time-dependent multi-term ordinary differential-recurrence relation. Upon so do-

ing, the observables are then calculated via rapidly convergent matrix continued

fractions [2].

Next, we shall briefly introduce the foundations of spin Brownian motion, as

well as the kinds of relaxation processes we can observe in magnetic particles.

3.1 The Equations of Motion for Magnetic Mo-

ments and the Magnetic Properties of Solids

3.1.1 Magnetic Dipole Moment and the Larmor Equation

When analysing the magnetic properties of nanomagnets, it is important to under-

stand the origin of the magnetic moment µ.

Currents in wires produce magnetic fields which take the form of concentric

circles around the wire (i.e., the fields are solenoid vectors). The direction of the

magnetic field will be perpendicular to the wire in a manner such that if you were

to curl your fingers around the wire with your thumb pointed in the direction the

current is travelling all with your right hand, the direction of the field is indicated

by the direction of your curled fingers. But what about the magnetic field produced

by a permanent magnet, be it a basic bar magnet or a single domain ferromagnetic

particle etc., and what gives it the shape of that produced by a solenoid? In order to

answer this question, we will need to consider the Bohr model of an atom, where we

have electrons orbiting around the nucleus in a circle. In such a case, the orbiting

electron appears similar to a current solenoidal loop. The existence of this current

loop leads to the electron having an angular momentum J. From this we can

determine the magnetic moment µ viz.,

µ = −γJ

µ0

, (3.1)

where γ is the gyromagnetic ratio constant, where in this case it is associated with

the electron spin, meaning that γ = 2.2 × 105A−1ms−1 and µ0 is the permeability

of free space µ0 = 4π × 10−7 JA−2m−1 in SI units (4π × 10−7H/m).
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Let us consider now what happens when this magnetic moment µ is placed in a

magnetic field H. What we will observe is that it experiences a torque K expressed

in vector form as

K = µ0[µ×H]. (3.2)

This torque will consequently lead to a rate of change of the angular momentum

perpendicular to J viz.,
dJ

dt
= K = µ0[µ×H], (3.3)

leading to µ undergoing a precession about the direction of H. Therefore

dµ

dt
= γ[H× µ]. (3.4)

This is equation is called the Larmor equation [89] and the angular frequency of the

precession is called the Larmor frequency given by

ω = γH, (3.5)

and as is demonstrated mathematically in Eq. (3.5), it is directly proportional to

the applied magnetic field H.

3.1.2 Magnetic Solids and their Properties

Up to this point, we have been studying magnetic moments in isolation, but what

about solid materials with magnetic properties? We find that these can be classified

as either diamagnetic, paramagnetic, or ferromagnetic depending on their response

to an external applied magnetic field.

Diamagnetic materials [31, 34] are those substances which end up being weakly

magnetised when subjected to an applied external magnetic field, in a direction op-

posite to the applied field. Some examples of diamagnetic materials include copper,

gold, silver, lead, mercury, and water.

Paramagnetic materials [31, 34] are those which are weakly magnetised when

subjected to an applied external magnetic field in the same direction as the applied

field. In paramagnetic substances, the orbital and spin magnetic moments of an
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atom are oriented in a manner such that each atom has a permanent magnetic dipole

moment. However, because of thermal motion (fluctuations), the direction of the

magnetic moments of atoms have random orientations, leading to the net magnetic

moment being zero. When subjected to an applied external magnetic field, each of

the atomic magnets (permanent magnetic dipole moment of each atom) will tend to

align in the direction of the field, thus leading to the paramagnetic substance having

a net magnetic moment µL(ξ), where ξ = µH0/kT and L(ξ) = coth ξ− ξ−1 is called

the Langevin function [90] and the theory is a replica of the Debye treatment of the

static electric polarization [49]. Some examples of paramagnetic substances include

aluminium, platinum, chromium, tungsten and lithium.

Ferromagnetic materials are those substances which are strongly magnetised in

an external magnetic field in the same direction as the external applied field and

can retain its magnetic moment even upon removal of the external field. In domain

theory a ferromagnetic substance consists of a large number of smaller regions called

domains. A domain can be defined as an extremely small region containing a large

number of atomic magnets which have magnetic axes aligned in the same direction

due to a strong exchange coupling, leading to each domain having its own magnetic

dipole moment. When a ferromagnetic substance is subjected to an applied external

magnetic field, the permanent alignment of the domain due to a strong interaction

(force) takes place, this force is called exchange coupling (exchange interaction). In

the absence of an external magnetic field, the various domains will have random

orientations, leading to the magnetic moment as a whole being zero. When the field

is switched on, each domain experiences a torque, leading to some domains rapidly

rotating and remaining aligned parallel to the direction of the field (a phenomenon

called domain flipping). The concept of ferromagnetic materials consisting of these

domains was first proposed in 1907 by Weiss [91] who was under the assumption

that the regions coincided with the crystals the material was composed of. This

was later disproven by Frenkel and Dorfman and by Heisenberg and Bloch [91], who

realised that even a single crystal can consist of these magnetic domains. The exact

nature of these domains was later identified by Landau and Lifshitz [91], whom

found them to be in the form of elementary layers.
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It should be noted that generally speaking, a particle of ferromagnetic mate-

rial [92] below a certain critical size (which is usually 150 Å in radius) will con-

stitute a single-domain particle [91], which means that it is in a state of uniform

magnetisation for any applied field. The magnetic dipole moment of such a particle

can be denoted by

µ = vM, (3.6)

where M is the magnetisation and v is the volume of the particle.

Furthermore, we find that in small ferromagnetic nanoparticles, there exists a

form of magnetism called superparamagnetism, whereby the magnetic moment µ

is no longer that of a single atom, rather it is that of a single-domain particle of

volume v which can be of the order of 104 − 105 Bohr magnetons, so that the

magnetic moments involved are very large in magnitude..

In addition to this, the single-domain particles will generally not be isotropic,

but rather will give anisotropic contributions to their total energy associated with

the external shape of the particle, imposed stress or the crystalline structure itself.

This superparamagnetism, or thermal instability of the magnetisation tends to oc-

cur on the condition that the thermal energy kT (where k is Boltzmann’s constant

and T is the temperature) is enough to change the orientation of µ of the entire

particle in spite of the anisotropy potential. As such, the behaviour overall is similar

to an ensemble of paramagnetic atoms, where there is no hysteresis, just saturation

behaviour. Now a useful parameter for describing how much a material will be-

come magnetised in an applied magnetic field is the magnetic susceptibility, which

is a physical quantity that characterises the relation between the magnetic moment

(magnetisation) of a substance and the applied external magnetic field which is di-

mensionless. The static magnetic susceptibility χ of diamagnetic and paramagnetic

(superparamagnetic) substances, can be defined mathematically as

M = χH. (3.7)

Note that in anisotropic solids, M and H are likely not to be parallel to one another,

which means that the magnetic susceptibility will vary with direction in the crystal.
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Notice that in diamagnetic materials, χ < 0, while for paramagnetic materials χ > 0

and ferromagnetic materials will have very large values for χ.

3.1.3 Magnetocrystalline Anisotropy

On the subject of magnetic anisotropy, it should be noted that most ferromagnetic

solids are indeed magnetically anisotropic, meaning that it takes more energy to

magnetise it in certain directions than in others. The main cause of this being the

spin-orbit interactions, which stems from the orbital motion of the electrons coupling

with the crystal electric field, thereby giving rise to the first order contributions to

the magneto-crystalline anisotropy. The second order contribution will arise from

the mutual interaction of the magnetic dipoles.

We find that there are certain crystal systems which exhibit a single axis of high

symmetry, the anisotropy of which is labelled uniaxial anisotropy (see Figure 3.2).

Generally speaking, the magnetocrystalline anisotropy energy is represented in pow-

ers of the direction cosines of the magnetisation (uX , uY , uZ) which are components

of a unit vector u directed along M. For uniaxial anisotropy, with the Z-axis taken

to be the principal axis of the symmetry of the crystal, the free energy density of

the magnetic particle V is

V = K(u2
X + u2

Y ) = K sin2 ϑ, (3.8)

where K is an anisotropy constant, with units of energy density and is dependent

on the composition. If K > 0, then the directions of lowest energy are uZ = ±1(ϑ =

0 and ϑ = π), i.e., the polar axis as seen in Figure 3.1. If the applied dc field H0 is

assumed to be parallel to the polar axis, then the total free energy per unit volume

is

V (ϑ) = K sin2 ϑ− µ0MSH0 cosϑ, (3.9)

where MS is the saturation magnetisation.

58



Figure 3.1: Spherical polar coordinate system. (aft. [34])

Figure 3.2: Uniaxial anisotropy potential given by Eq. (3.8). (aft. [93])

Every anisotropy potential V (ϑ) generates an effective magnetic field H which

is proportional to the negative gradient of the free energy density V , viz.,

H = − 1

µ0

∂V

∂M
or

∂V

∂M
= i

∂V

∂MX

+ j
∂V

∂MY

+ k
∂V

∂MZ

. (3.10)

59



The field H in the usual spherical coordinate basis {er, eϑ, eϕ} is given by

H =− 1

µ0MS

(
∂V

∂ϑ
eϑ +

1

sinϑ

∂V

∂ϕ
eϕ

)

=− 1

µ0MS

(
0,
∂V

∂ϑ
,

1

sinϑ

∂V

∂ϕ

)
. (3.11)

3.1.4 Landau-Lifshitz and Gilbert Equations

The first dynamical model for the precessional motion of the magnetisation M of

a single-domain ferromagnetic particle or macrospin was proposed by Landau and

Lifshitz in 1935 [2, 34, 94]. They asserted that in the absence of damping, the

magnetisation will simply precess about an effective magnetic field H according to

the gyromagnetic equation [34]

u̇ = γ[H× u], H = − 1

µ0MS

∂V

∂u
, (3.12)

where

u =
M

MS

= (sinϑ cosϕ, sinϑ sinϕ, cosϑ), (3.13)

is a unit vector directed along M where we are proceeding under the assumption

that the single-domain ferromagnetic particle is at its saturation magnetisation MS

so that only the orientation of M can change, V is the free energy density consisting

of both an anisotropy potential and the Zeeman energy due to an external magnetic

field, and ∂/∂u is the gradient on the surface of a unit sphere expressed in spherical

coordinates as
∂

∂u
=

∂

∂ϑ
eϑ +

1

sinϑ

∂

∂ϕ
eϕ. (3.14)

Eq. (3.12) is simply the Larmor equation (Eq. (3.4)) for a single spin generalised

to the coherent rotation of a macrospin. As a consequence of this, the evolution of

the magnetisation as described by Eq. (3.12) has no energy loss to the surroundings

through the motion of the magnetisation. What we will effectively observe is that

M will follow paths of constant energy in what are called Stoner-Wohlfarth orbits

[95,96] (See Figure 3.3 [34]), precessing ad infinitum in a well of the potential under

the condition that the energy of the applied magnetic field is less than the barrier
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height.

Figure 3.3: Stoner-Wohlfarth orbits which are encircling an energy minimum along
the polar positive and negative Z-axis (solid lines) or crossing a potential barrier
lying in the XY plane (dashed lines). (aft. [34])

It is at this point that Landau and Lifshitz [2, 34, 94] introduced a damping

torque opposing the precession to model the effect of energy dissipation. Thus the

gyromagnetic equation (Eq. (3.12)) becomes either the Landau-Lifshitz equation [34]

u̇ = γ[H× u]− λ[u× [u×H]], (3.15)

where λ is a dimensionless damping parameter, or the Landau-Lifshitz-Gilbert equa-

tion [34], which was proposed by Gilbert [97]

u̇ = γ[H× u] + α[u× u̇], (3.16)

where α > 0 is the dimensionless damping constant which varies depending on

the material, and which represents the effect of all the the microscopic degrees of

freedom.

In both equations we find now that the energy of the system is no longer con-
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served, rather it is continuously being dissipated by the drag torque. M will now

have a tendency to spiral towards the easy axis in a manner seen in Figure 3.4 [34]

Figure 3.4: Collapse of a Stoner-Wohlfarth orbit until it becomes a singularity
as is captured by the Landau-Lifshitz-Gilbert equation with γHZ(1 + α2)−1 = 1.
(aft. [34])

For our purpose, we will only be using the Landau-Lifshitz-Gilbert equation.

The reasons for doing this are highlighted in a discussion by Coffey, Kalmykov and

Titov in [34].

3.1.5 Néel Relaxation

We shall consider here the magnetic after-effect behaviour of single-domain particles,

through understanding the conditions necessary for an assembly of said particles to

achieve thermal equilibrium. For ferrofluids, this can be accomplished through the

physical rotation of these particles in the liquid they are suspended in. The rate

at which they reach equilibrium here is controlled by the viscosity of the carrying

fluid/medium. The Debye theory of orientational relaxation [2] is suitable for the

modelling of this mechanism, more so than for electric dipoles due to the relatively

larger size of the magnetic particles, which leads to the magnetic particles more

closely approximating idealised Brownian rotators.
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This physical rotation of the particles however cannot take place in solids. Nev-

ertheless it was speculated by Néel [84,85,98] in 1949 that provided a single-domain

particle was sufficiently small, the direction of magnetisation is likely to undergo a

form of Brownian motion, destroying its stable magnetic behaviour, under thermal

fluctuations. The inertia of the particle plays no role into the relaxation of the

magnetic moment since the magnetic moment is inside the particle, and the particle

itself will not undergo physical rotation. The barrier due to the anisotropy-Zeeman

energy prevents the magnet in question from moving from one magnetic state to an-

other and must be overcome by the thermal energy kT as highlighted by Brown [99].

If the barrier is not too large (so that the probability per unit time of a jump over

it is very small) or too small in comparison to the the thermal energy kT , then the

specimen in question neither remains in a single stable state for a long time nor

does it attain thermal equilibrium in a short time after a change in the field. Rather

what happens is that it undergoes a change in magnetisation that lags behind the

field instead of changing instantly. This phenomenon is referred to as the Néel re-

laxation (or magnetic after-effect) [2,34] and only occurs in ferromagnetic particles

deemed sufficiently fine. To demonstrate the Néel mechanism [91], we shall follow

an example from Section 1.4.1 of [34] and consider an assembly of aligned uniaxial

particles which are subjected to a field H, with a potential energy governed by Eq.

(3.9). As such the particles are fully magnetised along the polar axis, which is the

axis of symmetry. Once the field has been switched off for a sufficiently long time,

the remanence will vanish as

Mr(t) = Mr(0)e−
t
τ , (3.17)

where τ is the reversal time of the magnetisation. This is the longest lived mode

of the relaxation process. From transition state theory [100, 101], Néel [84, 85, 98]

suggested that τ may be evaluated as [34]

τ−1 = fAe
−∆E, (3.18)

where fA is the frequency of the gyromagnetic precession [102] and ∆E = E(ϑC)−
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E(ϑA) is the energy barrier (ϑC is the point located at top of the energy barrier

and ϑA is the point situated at the bottom of the potential well) such that, through

varying the volume or the temperature of the particles, τ can be made to vary from

10−9s to millions of years. Brown [87] however criticised Néel’s calculation of τ on

two fronts

1. The system is not explicitly treated as a gyromagnetic one.

2. It relies on a discrete orientation approximation.

Furthermore the dependence of the prefactor on damping is ignored. Brown [87]

proposed that these difficulties can be overcome through construction of the Fokker-

Planck equation for the probability distribution function of magnetic moment orien-

tations on the unit sphere from the appropriate Langevin equation for the evolution

of the magnetisation M. Then by adapting the Kramers theory of escape of particles

over potential barriers to magnetisation of single domain ferromagnetic particles, he

was able to find an approximate formula for τ in the high-barrier for the potential

in Eq. (3.9) which aside from the prefactor fA, agreed with Néel’s formula.

3.2 Linear Response Theory as applied to Mag-

netic Nanoparticles

In Section 2.2 of the thesis, we have demonstrated the use of linear response the-

ory [35] via its application to dielectric relaxation of a system of electric dipoles and

how it can be used to obtain observables such as the complex polarisability of the

electric dipoles. This can be done through solving the relevant matrix differential-

recurrence relations. In the case of magnetic dipoles we can also use linear response

theory to determine the relevant observables, such as the longitudinal and transverse

components of the magnetisation M(t) and their characteristic times, the compo-

nents of the complex magnetic susceptibility tensor χ̂(ω), the equilibrium correlation

functions of the longitudinal and transverse components of the magnetisation etc.

The longitudinal χ‖(ω) and transverse χ⊥(ω) components of the magnetic suscep-
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tibility of a magnetic nanoparticle are defined using linear response theory [35] as

χk (ω)

χk
= 1− iω

∫ ∞

0

e−iωtCk (t) dt, (k =‖,⊥), (3.19)

where Ck(t) are the equilibrium correlation functions given by

Ck (t) =
〈Mk (0)Mk (t)〉0 − 〈Mk (0)〉20
〈M2

k (0)〉0 − 〈Mk (0)〉20
, (k =‖,⊥), (3.20)

and

χk =
v

kT

[〈
M2

k (0)
〉

0
− 〈Mk (0)〉20

]
, (k =‖,⊥), (3.21)

are the components of the static magnetic susceptibility. The angular brackets

denote the equilibrium ensemble average which is given as

〈A〉0 =

∫ 2π

0

∫ π

0

A (ϑ, ϕ)W0 (ϑ, ϕ) sinϑdϑdϕ, (3.22)

where W0 (ϑ, ϕ) = Z−1e−
vV (ϑ,ϕ)
kT is the equilibrium Boltzmann distribution function

and Z is the partition function. The Cartesian components of the magnetisation,

labelled MX ,MY , and MZ , which are expressed as

MX =MS sinϑ cosϕ,

MY =MS sinϑ sinϕ, (3.23)

MZ =MS cosϑ,

where here ϑ is the colatitude and ϕ is the longitude can be written in terms of

spherical harmonics of rank 1 as

MX =MS

√
2π

3
[Y1−1(ϑ, ϕ)− Y11(ϑ, ϕ)] ,

MY =iMS

√
2π

3
[Y1−1(ϑ, ϕ) + Y11(ϑ, ϕ)] , (3.24)

MZ =MS

√
4π

3
Y10(ϑ, ϕ).
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It should be noted that these components are not independent since

M2
X +M2

Y +M2
Z = M2

S. (3.25)

The time behaviour of the equilibrium correlation function Ck(t) can be charac-

terised with the introduction of the integral relaxation time τ kint viz.,

τ kint =

∫ ∞

0

Ck(t)dt, (3.26)

which is essentially the area under the normalised decay curve Ck(t), and the effec-

tive relaxation time τ kef which is given by

τ kef = −1/Ċk(0), (3.27)

which is capable of providing precise information on the initial decay of Ck(t). Fur-

thermore, τ kint and τ kef can be equivalently defined through the use of the eigenvalues

(λkj ) of the Fokker-Planck operator because Ck(t) may formally be written as an

infinite series of decaying exponentials, viz.,

Ck(t) =
∑

j

ckj e
−λkj t, (3.28)

such that from Eqs. (3.26) - (3.28) we get

τ kint =
∑

j

ckj
λkj
, (3.29)

and

τ kef =
1∑
j λ

k
j c
k
j

. (3.30)

These times will contain contributions from all the eigenvalues λkj . Therefore gen-

erally in order to numerically evaluate Ck(t), τ
k
int and τ kef , we require knowledge of

all the λkj and ckj . We can also however evaluate τ kef in terms of equilibrium averages
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from the exact analytic equations [103] given by

τ
‖
ef =2τN

〈
M2
‖

〉
0
−
〈
M‖
〉2

0

M2
S −

〈
M2
‖

〉
0

, (3.31)

τ⊥ef =2τN
〈M2
⊥〉0

2M2
S − 〈M2

⊥〉0
. (3.32)

As can be observed in Eq. (3.19), the behaviour of χk(ω) in the frequency domain

is determined completely by the time behaviour of Ck(t). In addition to this, Eqs.

(3.19) and (3.28) which define Ck(t) allow for the formal writing of the dynamic

susceptibility χk(ω) as an infinite sum of Lorentzians given by

χk(ω)

χk
=
∑

j

ckj
1 + iω/λkj

. (3.33)

Consequently in both the low frequency ω → 0 and high frequency ω → ∞ limits

we have from Eq. (3.33)

χk (ω)

χk
=





1− iωτ kint + ..., ω → 0,

−i/ωτ kef + ..., ω →∞.
(3.34)

Consequently, the low and high-frequency behaviour of χk(ω) are determined com-

pletely by the integral τ kint and effective τ kef relaxation times respectively.
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4. The Langevin and

Fokker-Planck Equations and

Methods of Solution

4.1 The Langevin Equation

The Langevin equation [2, 45, 104, 105] is a stochastic differential equation which

describes the time evolution of a set of degrees of freedom, in our case Brownian

motion obeying the dynamics of a Markov process.

If we were to consider a large particle of mass m (which we will call here a Brow-

nian particle) suspended in a fluid, which itself consists of much smaller particles

(atoms or molecules), then we end up in a situation where the Brownian particle

will be subjected to a force from the collisions of the small particles with the Brow-

nian particle. The force itself consists of two parts, the first part is a deterministic

hydrodynamic drag force Ffr = −ζv(t), where ζ is the friction coefficient and v

is the velocity of the particle, which will resist the motion, and the second part is

a rapidly fluctuating zero-mean force F (t) = 0 due to the collisions of the smaller

particles with the Brownian particle which tries to maintain the motion. The second

force is characterised through a probabilistic description and exhibits the properties

of white noise. Following Newton’s second law of motion, the Langevin equation is

thus [2, 45]

mẍ = −ζv(t) + F (t), (4.1)

where it is assumed that the friction force −ζv is governed by Stokes’ law, which

68



states that the frictional force decelerating a spherical particle of radius a moving

in a one dimensional extension x is −ζv = −6πηav, where η is the viscosity of the

surrounding fluid and v = ẋ. Furthermore since the collisions are so rapid that

they are practically instantaneous they can be expressed by the autocorrelation

function [104]

F (t)F (t+ τ) = 2ζkTδ(τ), (4.2)

where 2ζkT is the spectral density. Now we have already seen that the autocorrela-

tion function of the random variable F (t) is defined as

F (t)F (t+ τ) = lim
T ′→∞

1

T ′

∫ T ′
2

−T ′
2

F (t)F (t+ τ)dt, (4.3)

that is the time average of a two-time product over an arbitrary range time T ′ which

is allowed to become infinite [44]. A detailed description of how Langevin derived

the formula for the mean squared displacement of a Brownian particle is provided

in section 1.3 of [2].

4.2 The Langevin Equation for Magnetic Moments

The Landau-Lifshitz-Gilbert equation discussed earlier in the thesis ignores thermal

fluctuations due to the nanomagnets being maintained at a finite temperature T .

Upon their inclusion, the precessional motion would endure because the heat bath

the nanomagnets are contained in would provide energy. As discussed, Néel [84,85]

initiated the idea of thermal fluctuations of the magnetisation, which was further

developed by Brown [87,99,106] who framed it in the context of the general theory

of stochastic processes.

In order to include thermal fluctuations Brown [87] in 1963 added a random

isotropic noise magnetic field h to the Landau-Lifshitz-Gilbert equation seen in Eq.

(3.16) which in direct contrast to the dissipative field acts as a source of energy to

the system

u̇ = γ [(H + h)× u] + α[u× u̇]. (4.4)

This is called the magnetic Langevin equation. The random magnetic field is re-

69



garded as spatially isotropic Gaussian white noise so that

hi(t1) = 0, hi(t1)hj(t2) = 2Dδijδ(t1 − t2), (4.5)

where D is the noise-strength constant given by

D =
αkT

vγµ0MS

, (4.6)

is determined through imposing the Boltzmann equilibrium distribution of orienta-

tions [2, 87], δij is Kronecker’s delta and i, j = 1, 2, 3 represent the Cartesian axes

of the laboratory coordinate system. The overbars denote statistical averages over

a very large number of moments, which have all started with the same orienta-

tion (ϑ, ϕ) (We are using spherical coordinates as seen in Figure 3.1). The random

field accounts for the thermal fluctuations of the magnetisation of an individual

single-domain particle. Note that according to Eq. (4.4) the magnitude of the mag-

netisation vector M does not fluctuate. However, since the random torque which

arises from the noise field counteracts the damping torque it can, if the tempera-

ture is high enough, reverse the direction of the precession. The time taken for the

reversal of the direction of precession over the ansisotropy-Zeeman energy barrier is

known (as we have seen) as the superparamagnetic (magnetisation) relaxation time.

Eq. (4.4) is often used in the treatment of stochastic magnetisation dynamics.

4.3 The Fokker-Planck Equation

As discussed earlier, the Langevin equation [2,45,104,105] is a stochastic differential

equation which we can use to describe the time evolution of a Brownian particle

undergoing Brownian motion in a thermal bath (fluid) obeying the dynamics of a

Markov process. In solving it we can obtain information on the particle’s trajectory.

However, since the Langevin equation is stochastic, we will get different trajectories

upon repeating the calculations with the same initial conditions. In other words,

since F (t) varies from system to system in the ensemble, the velocity will also

vary from system to system (i.e., the velocity is stochastic). Therefore it would be
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expedient to instead investigate for an ensemble of Brownian particles how many

of them have velocities in the interval (v, v + dv) at time t. Since v is a continuous

variable, we seek the answer to this through a probability distribution function

W (v). Then the interval dv times W (v) is the probability of finding the Brownian

particle in the interval (v, v + dv). This distribution function will be dependent on

both the time t and the initial conditions. The deterministic equation for W (v, t)

us given by
∂W

∂t
= β

∂ (vW )

∂v
+
βkT

m

∂2W

∂v2
, (4.7)

where v = ẋ.

Eq. (4.7) is the Fokker-Planck equation for the distribution function of a free

particle in velocity space and it is one of the simplest forms of that equation. The

Fokker-Planck equation is generally an equation for the time evolution of the prob-

ability distribution function of fluctuating macroscopic variables [45]. It is a spe-

cialised form of the Boltzmann integral equation [45, 107]. The general form of the

Fokker-Planck equation for one variable x is given by [45]

∂W

∂t
= − ∂

∂x
(D(1)(x)W ) +

∂2

∂x2
(D(2)(x)W ), (4.8)

where D(1)(x) is the drift coefficient, and D(2)(x) is the diffusion coefficient [2, 45],

both of which are calculated from the Langevin equation in order to obtain the

Fokker-Planck equation, under the condition that the driving stimulus is Gaussian

white noise in the Langevin equation [2]. Eq. (4.8) may also be generalised to N

variables ξ = ξ1, ..., ξN viz. [45]

∂W

∂t
= −

N∑

i=1

∂

∂ξi

[(
Di

(1)W
)

+
N∑

i,j=1

∂

∂ξj

(
Dij

(2)W
)]

, (4.9)

where W (ξ, t) is the probability distribution function for N macroscopic variables

ξ = ξ1, ..., ξN , and the drift vector D
(1)
i and diffusion tensor D

(2)
ij are themselves

generally dependent on the N macroscopic variables. We shall describe two forms

of the Fokker-Planck equation in the following sub-section.
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4.3.1 The Klein-Kramers and Smoluchowski equations

The Klein-Kramers [45,104] and the Smoluchowski [45,104] equation are both spe-

cial forms of the Fokker-Planck equation. The Klein-Kramers equation is used for

obtaining the distribution functions in both velocity and position space describing

the Brownian motion of particles under the influence of an external force. In the

case of a particle moving in a one dimensional x ∈ R it is given by

∂W (x, v, t)

∂t
=

[
− ∂

∂x
v +

∂

∂v

(
βv − E(x)

m

)
+
βkT

m

∂2

∂v2

]
W (x, v, t), (4.10)

where β = ζ/m is the friction coefficient per unit mass, m is the mass of the

particle, T is the temperature of the fluid in question, k is Boltzmann’s constant,

and E(x) = −mf ′(x) is the external force where mf(x) is the potential.

The system of stochastic differential equations in the phase space (x, v) corre-

sponding to Eq. (4.10) is given by

ẋ = v,

v̇ = −βv + E(x)
m

+ F (t)
m
,

〈F (t′)F (t)〉 = 2ζkTδ(t− t′).





(4.11)

which can be written as the Langevin equation

mẍ+mβẋ = E(x) + F (t). (4.12)

Suppose then that the friction constant β is large, then in Eq. (4.12), we can neglect

mẍ as its value in this situation is negligible. We will end up with the Langevin

equation

mβẋ = E(x) +mF (t), (4.13)

whose corresponding Fokker-Planck equation is given by

∂W (x, t)

∂t
=

1

mβ

[
− ∂

∂x
E(x) + kT

∂2

∂x2

]
W (x, t), (4.14)

where now we have an equation of motion for the distribution function in just
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position space. This is called the Smoluchowski equation, which assumes that the

velocity distribution has reached statistical equilibrium (i.e., It has the Maxwellian

distribution). It was first given in 1905 by Einstein for the special case where

E = 0 [104]. A detailed account of Smoluchowski’s derivation of his equation is

given by Mazo [108]. For the purpose of the thesis, the Smoluchowski equation will

be utilised to discuss the Budó model in the non-inertial case.

4.4 Derivation of the Fokker-Planck Equation from

the Langevin Equation

As discussed earlier, in order to obtain the Fokker-Planck equation from the Langevin

equation, we need to evaluate the drift and diffusion coefficients from the Langevin

equation. Here we will indicate the general form of the derivation process as shown

by Risken [45] for a single stochastic variable ξ(t) (for more information see Sections

1.9 and 1.10 of [2]). Recall that the general Langevin equation with one stochastic

variable ξ(t) is given by

ξ̇ (t) = h (ξ (t) , t) + g (ξ (t) , t)F (t) , (4.15)

and remark that the general form of the multi-variable Fokker-Planck equation is

given by [45]

∂W

∂t
= −

N∑

i=1

∂

∂ξi

[(
Di

(1)W
)

+
N∑

i,j=1

∂

∂ξj

(
Dij

(2)W
)]

, (4.16)

where the drift coefficients D
(1)
i are given by

D
(1)
i = lim

∆t→0

[ξi (t+ ∆t)− xi]
∆t

, (4.17)

and the diffusion coefficients D
(2)
ij are given by

D
(2)
ij = lim

∆t→0

[ξi (t+ ∆t)− xi] [ξj (t+ ∆t)− xj]
2∆t

. (4.18)
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In both the drift and diffusion coefficients, xi are the state variables for initially

sharp values at time t. It should be noted that we have made use of Isserlis’s

theorem [2, 107, 109] and Eq. (4.2) as well as the fact that the fluctuating force is

zero-mean F (t) = 0 in the Langevin equation as discussed earlier. It should be

noted that the drift and diffusion coefficients are themselves the first two terms

of the Kramers-Moyal expansion [45]. As an example we evaluate the drift and

diffusion coefficients from the 1D equation (Eq. (4.15)), we start by following the

procedure of Risken [2, 45] and treating Eq. (4.15) as an integral equation

ξ (t+ ∆t) = ξ (t) +

∫ t+∆t

t

ξ̇ (t′) dt′. (4.19)

Substituting Eq. (4.15) into Eq. (4.19) we get

ξ (t+ ∆t)− x =

∫ t+∆t

t

[h (ξ (t′) , t′) + g (ξ (t′) , t′)F (t′)] dt′, (4.20)

where x is a sharp value of ξ at an initial time t.

Then we expand h (ξ (t) , t) and g (ξ (t) , t) as a Taylor series about the sharp value

x,

h (ξ (t′) , t′) =h (x, t′) + (ξ (t′)− x)
∂

∂x
h (x, t′) + ... ,

g (ξ (t′) , t′) =g (x, t′) + (ξ (t′)− x)
∂

∂x
g (x, t′) + ... . (4.21)

Iterating for (ξ(t′)− x) in Eq. (4.20) yields [45]

ξ (t+ ∆t)− x =

∫ t+∆t

t

h (x, t′) dt′ +

∫ t+∆t

t

∫ t′

t

h (x, t′′)
∂h (x, t′)

∂x
dt′′dt′

+

∫ t+∆t

t

∫ t′

t

g (x, t′′)
∂h (x, t′)

∂x
F (t′′) dt′′dt′ +

∫ t+∆t

t

g (x, t′)F (t′) dt′

+

∫ t+∆t

t

∫ t′

t

h (x, t′′)
∂g (x, t′)

∂x
F (t′) dt′′dt′

+

∫ t+∆t

t

∫ t′

t

g (x, t′′)
∂g (x, t′)

∂x
F (t′′)F (t′) dt′′dt′ + ... , (4.22)

Eq. (4.22) is then simplified mindful of the definition Eq. (4.17). In so doing, we

find that the terms in Eq. (4.22) containing F (t′) or F (t′′) will vanish due to the
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aforementioned fact that F (t) = 0. Furthermore, the second term in Eq. (4.22) can

be ignored as it is of the order (∆t)2. However, the term containing F (t′)F (t′′) can

be rewritten using Eq. (4.2) and the delta function property

∫ b

a

δ (b− x) f (x) dx =
1

2
f (b) , (4.23)

so that

2D

∫ t′

t

g (x, t′′) δ (t′ − t′′) dt′′ = Dg (x, t′) . (4.24)

where D = ζkT .

Thus we get (for the drift coefficient) [45]

D(1) = lim
∆t→0

ξ (t+ ∆t)− x
∆t

= h (x, t) +Dg (x, t)
∂

∂x
g (x, t) , (4.25)

so that the last term on the right hand side is called the noise-induced drift and

Eq. (4.25) may also be considered as an evolution equation for the sharp value x

and so forms the basis of the Langevin method of treating the problem. It should

be noted that due to Isserlis’s theorem [2,107,109] all the higher order terms in Eq.

(4.22) vanish in the limit of an infinitesimally small ∆t. In a similar manner we can

substitute Eq. (4.22) into Eq. (4.18) to get

[ξ (t+ ∆t)− x]2 =

∫ t+∆t

t

∫ t+∆t

t

h (x, t′)h (x, t′′) dt′dt′′

+ 2

∫ t+∆t

t

h (x, t′) dt′
∫ t+∆t

t

g (x, t′) dt′

+

∫ t+∆t

t

∫ t+∆t

t

g (x, t′) g (x, t′′)F (t′)F (t′′) dt′dt′′ + ... . (4.26)

So again the terms which have contributions of the order (∆t)2 in Eq. (4.26) will

vanish and again due to Isserlis’s theorem [2,107,109] all the higher order terms will

vanish. Thus we get

[ξ (t+ ∆t)− x]2 =2D

∫ t+∆t

t

∫ t+∆t

t

g (x, t′) g (x, t′′) δ (t′ − t′′) dt′dt′′ +O(∆t)2

=2Dg2 (x, t+ Θ1∆t) ∆t+O(∆t)2, (4.27)
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where (0 ≤ Θ1 ≤ 1). Thus upon substituting Eq. (4.27) into Eq. (4.18) we get for

the diffusion coefficient [45]

D(2) = lim
∆t→0

[ξ (t+ ∆t)− x]2

2∆t
= Dg2 (x, t) . (4.28)

Thus from our deterministic drift and noise-induced drift Dgg′ (Eq. (4.25)) and

diffusion (Eq. (4.28)) coefficients we have the corresponding Fokker-Planck equation

for W (x, t)
∂W

∂t
= − ∂

∂x

(
h+Dg

∂g

∂x

)
W +D

∂2

∂x2
(g2W ). (4.29)

We shall apply a similar methodology later to obtain the Smoluchowski equation

[2, 45] from the non-inertial Langevin equation [2].

4.5 Obtaining the Differential-Recurrence Rela-

tion from the Fokker-Planck Equation

We have discussed earlier in the thesis the use of linear response theory to determine

the time behaviour of statistical averages from the Langevin equation or the Fokker-

Planck equation in order to obtain the linear response of a system to a weak applied

stimulus. This was done using as example dielectric relaxation, where we are inter-

ested in the response to a small applied electric field. This is irrespective of whether

we are studying the response to a field being switched on at some time t = 0, or the

opposite case where the field was applied at t = −∞ and is then suddenly switched

off at time t = 0. In general, the method of calculating the average properties of

a dynamical system (e.g., mean-square displacement, velocity correlation function,

etc.) used is that once the Fokker-Planck equation (in phase space) is constructed

from the Langevin equation for the random variables representing for example the

position x and velocity v of a Brownian particle (or for the Smoluchowski equation,

just the position), the distribution function is then expanded into a product of a

set of orthogonal functions in the position, and/or an orthogonal set in the veloci-

ties. The coefficients of this (generalised Fourier series) correspond directly to the

averages of the dynamical quantities which one wishes to calculate. This procedure
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leads to a set of differential-recurrence relations for the coefficients of the generalised

Fourier series governing the time behaviour of the averages of the desired dynamical

quantities (observables) in question. To demonstrate this we shall first derive the

differential-recurrence relation for the Smoluchowski equation for an earlier paper

by Coffey et al. published in 1993 [110]. This paper demonstrates “how exact for-

mulas for the longitudinal and transverse dielectric correlation times and complex

polarisability tensor, of a single axis rotator with two equivalent sites may be found.

This is accomplished by writing the Laplace transforms of the dipole autocorrelation

functions as three term recurrence relations and solving them in terms of continued

fractions.”

The Smoluchowski equation for the angular displacement ϕ of the rotator is

∂W

∂t
=

∂

∂ϕ

(
W

ζ

∂V

∂ϕ

)
+

1

τ

∂2W

∂ϕ2
, (4.30)

where W (ϕ, t) is the probability density of orientations of a dipole on the unit circle,

τD is the Debye relaxation time for a fixed axis rotator given by τD = ζ/kT , ζ is

the viscous drag coefficient of the rotator. The potential V (ϕ) is given by

V (ϕ) = U sin2 ϕ− µE cosϕ, (4.31)

where U is the potential barrier between the sites and µ is the dipole moment of

the rotator.

We seek the after-effect solution of the equation (where E is removed at t = 0).

Since the solution of Eq. (4.30) must be periodic in ϕ, it can be assumed that it has

the form of the Fourier series

W (ϕ, t) =
∞∑

p=−∞
ap(t)e

ipϕ. (4.32)

Substituting Eq. (4.32) into Eq. (4.30) we get

∞∑

p=−∞
ȧp(t)e

ipϕ =
σ

τ

∞∑

p=−∞
ap(t)((p+ 2)ei(p+2)ϕ − (p− 2)ei(p−2)ϕ)− p2

τ

∞∑

p=−∞
ap(t)e

ipϕ.

(4.33)
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What we need to do now in order to break down the summation to obtain the

differential-recurrence relation is to take advantage of the orthogonality property of

circular functions

1

2π

∫ 2π

0

e−iqϕeiq
′ϕdϕ =

1

2π

∫ 2π

0

ei(q
′−q)ϕdϕ = δqq′ . (4.34)

To do this we shall multiply both sides of Eq. (4.33) by e−iqϕ and then evaluate the

integrals through exploiting the orthogonality property to get

∞∑

p=−∞

∫ 2π

0

ȧp(t)e
i(p−q)ϕdϕ =

σ

τ

∞∑

p=−∞

∫ 2π

0

ap(t)((p+ 2)ei(p+2−q)ϕ − (p− 2)ei(p−2−q)ϕ)dϕ

− p2

τ

∞∑

p=−∞

∫ 2π

0

ap(t)e
i(p−q)ϕdϕ. (4.35)

Using the orthogonality property of complex exponentials (see Eq. (4.34)) Eq. (4.35)

becomes

∞∑

p=−∞
ȧp(t)δpq =

σ

τ

∞∑

p=−∞
ap(t)((p+ 2)δp−2q − (p− 2))δp+2q −

p2

τ
ap(t)δpq, (4.36)

which by orthogonality leads to the final answer for the differential-recurrence rela-

tion

ȧp(t) =
σp

τ
(ap−2(t)− ap+2(t))− p2

τ
ap(t). (4.37)

The solution of the differential recurrence-relation seen in Eq. (4.37) yields the

correlation times in terms of modified Bessel functions of the first kind as detailed

in [110]. Notice that a differential-recurrence relation is nearly always encountered in

separating the variables in a diffusion equation rather than just simply a differential

equation.
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4.6 Solving Differential-Recurrence Relations via

Continued Fractions

As we have seen, the solution of either the Langevin equation or the Fokker-Planck

equation can be reduced to the solution of an infinite hierarchy of equations for

the moments which describe the dynamics of the system in question. These equa-

tions can consist of three term or higher order differential-recurrence relations, and

so the behaviour of any selected average is coupled to that of all the others. The

solutions to these differential-recurrence relations can be found through the use of

continued fractions [2, 34, 45], where for a scalar three-term recurrence relation, or-

dinary continued fractions can be used. If however the Langevin or Fokker-Planck

equation cannot be reduced to a scalar three-term differential-recurrence relation,

then one can convert a multi-term recurrence relation to a matrix three-term re-

currence relation. This can then be formally solved in terms of matrix continued

fractions [2,34,45,111]. To demonstrate this procedure, we shall refer to section 2.7

of the book “The Langevin Equation: With Applications to Stochastic Problems in

Physics, Chemistry and Electrical Engineering” [2].

Using Risken’s notation [2, 45], we can generally write the three-term matrix

differential-recurrence relation as

τε
d

dt
Cp(t) = Q−p Cp−1(t) + QpCp(t) + Q+

p Cp+1(t), (p ≥ 1), (4.38)

where τε is a characteristic relaxation time, Cp(t) are column vectors formed from

statistical moments with C0(t) = 0 and Q±p ,Qp are time independent non-commutative

matrices. Taking the Laplace transform of Eq. (4.38), we get

Q−p C̃p−1(s) + (Qp − sτεI)C̃p(s) + Q+
p C̃p+1(s) = −τεCp(0), (4.39)

where I is the identity matrix, and

Cp(s) =

∫ ∞

0

Cp(t)e
−stdt. (4.40)
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The desired solution of Eq. (4.39) takes on the form of the sum of a complementary

solution plus a particular integral just like a linear differential equation as

C̃p(s) = Sp(s)C̃p−1(s) + Rp(s), (4.41)

where the matrix Sp(s) is given by

Sp(s) =
[
sτεI−Qp −Q+

p Sp+1(s)
]−1

Q−p , (4.42)

which represents an infinite matrix continued fraction. Substituting Eq. (4.41) into

Eq. (4.39) yields the following result for Rp(s) the particular solution

[sτεI−Qp −Q+
p Sp+1(s)]Rp(s)−Q+

p Rp+1(s) = τεCp(0), (4.43)

therefore we have

Rp(s) = ∆p(s)
[
τεCp(0) + Q+

p Rp+1(s)
]
, (4.44)

where ∆p(s) is the matrix continued fraction given by

∆p(s) =
[
sτεI−Qp −Q+

p ∆p+1(s)Q−p+1

]−1
. (4.45)

Through iteration, we can solve for Eq. (4.44) to get

Rp(s) = τε∆p(s)

[
Cp(0) +

∞∑

n=1

n∏

k=1

Q+
p+k−1∆p+k(s)Cp+n(0)

]
, (4.46)

which can be substituted into Eq. (4.41) to get the formal complete solution [111]

C̃p(s) = Sp(s)C̃p−1(s) + τε∆p(s)

[
Cp(0) +

∞∑

n=1

n∏

k=1

Q+
p+k−1∆p+k(s)Cp+n(0)

]
,

(4.47)

which is the complete solution of Eq. (4.39) rendered in algebraic form as a calculable

sum of products of matrix continued fractions in the s domain. For C̃1(s), the exact
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solution is given by

C̃1(s) = τε∆1(s)

[
C1(0) +

∞∑

n=1

n∏

k=1

Q+
k ∆k+1(s)Cn+1(0)

]
, (4.48)

The initial condition vectors Cp(0) can be expressed in terms of equilibrium (sta-

tionary in the general case) averages. These averages will be solutions of the time

independent vector recurrence relation

Q−p C0
p−1 + QpC

0
p + Q+

p C0
p+1 = 0, (4.49)

where the column vector C0
p is formed from equilibrium (stationary) averages. Since

Eq. (4.49) is tri-diagonal, it is possible to express C0
p in terms of the matrix continued

fraction Sp(0), which is obtained from letting s = 0 in Eq. (4.42). Considering Eq.

(4.49) for p = 1 we have

Q−1 C0
0 + Q1C

0
1 + Q+

1 C0
2 =

[
Q−1 + Q1S1 (0) + Q+

1 S2 (0) S1 (0)
]
C0

0 = 0, (4.50)

where C0
0 is given by

C0
0 =




C1
0

...

CP
0


 . (4.51)

We may always choose a particular element of C0
0 (e.g. CP

0 = 1) because of the nor-

malisation condition. This leads to Eq. (4.50) representing a set of inhomogeneous

linear equations. Therefore C1
0 , C

2
0 , ..., C

P
0 can be determined. The other vectors C0

p

are obtained viz.,

C0
p = Sp (0) Sp−1 (0) ...S1 (0) C0

0. (4.52)
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5. Generalization to Anomalous

Diffusion of Budó’s Treatment of

Polar Molecules containing

Interacting Rotating Groups

5.1 Fractional Smoluchowski Equation for Non-

Interacting Molecules containing Polar Ro-

tating Groups

In Budó’s dynamical treatment [12,16] of hindered rotation a typical rotating polar

molecule of a non-interacting assembly contains two interacting groups, 1 and 2 of

equal size having a common rotational axis (see Figure 5.1) about which the entire

molecule can rotate. The dipole moments µ1 and µ2 of the embedded groups are

also supposed perpendicular to the molecular axis z. We specify the orientation of

each group (denoted by the subscript j = 1, 2) by a set of three Eulerian angles

(Figure 5.1a), namely (θ, ϕ, ψj), which are always functions of time because of the

physical rotation of the molecule due to the external field and Brownian torques.

The Eulerian angles θ and ϕ determine the orientation of the common molecular

axis z and coincide for both groups, while the angle ψj determines the angular

position of µj in the plane perpendicular to the z-axis (Figure 5.1b).
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Figure 5.1: Geometry of the task; (a) Eulerian angles (aft. [58]); (b) the molecule
consisting of two interacting groups. Notation follows that of L.D. Landau and E. M.
Lifshitz, Mechanics, Volume 1 of Course of Theoretical Physics, 3rd Ed., Pergamon,
1976, p. 110, Figure 47. (aft. [58])

Clearly the mutual potential energy of the groups giving rise to the hindered rotation

is then a function of the angular difference ψ1−ψ2 only. We consider [19], following

Budó [16], cosine coupling, and consequently the interaction potential is [16,112]

V (ψ1 − ψ2) = −V0 cos(ψ1 − ψ2). (5.1)

The torque exerted by the dipole µ2 on µ1, is then −V ′(ψ1 − ψ2), where the prime

means differentiation with respect to the argument of V . The system of coupled

non-inertial Langevin equations (involving multiplicative noise) of motion of the

polar groups in a dc field F applied in the Z direction of the space-fixed system

appropriate to the Budó model [16] are (as shown in Appendix 5.B)

θ̇ =−
∑

i=1,2

[
µjF

ξ
cos θ cosψi −

√
kT

2ξ

(
cosψiΛ

(i)
x − sinψiΛ

(i)
y

)
]
, (5.2)

ψ̇j = cot θ
∑

i=1,2

[
µiF

ξ
cos θ sinψi −

√
kT

2ξ

(
sinψiΛ

(i)
x + cosψiΛ

(i)
y

)
]

+
Fµj
ξz

sin θ sinψj + (−1)j
V ′(ψ1 − ψ2)

ξz
+

√
kT

ξz
Λ(j)
z , (5.3)

where k is Boltzmann’s constant, T is the temperature, ξx = ξy = ξ are the drag
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coefficients for rotations about axis 2 (v. Figure 5.1b) while ξz is that for rotations

about axis 1. The projection of µj on F does not depend on the Eulerian angle ϕ

owing to the circular symmetry, while the entire molecule rotates about the direction

of F. Thus, the equation of motion of ϕ is not needed. In Eqs. (5.2) and (5.3) the

white noise torques Λ
(j)
k are supposed to be centred Gaussian random variables with

correlation functions [2]

〈
Λ

(j)
k (t)Λ

(j)
k′ (t′)

〉
= 2δkk′δ(t− t′), k, k′ = x, y, z, (5.4)

where δkk′ is Kronecker’s delta and δ(t) is the Dirac delta function. Notice that

Budó originally treated his model [15] via the appropriate Smoluchowski equation,

which he determined without explicitly mentioning the Langevin equations (5.2)

and (5.3) at all, by suitably adapting the method of Debye for rotation in space as

described in Chapter V of his book Polar Molecules [3]. The Budó model of course

ignores inertial effects and thus is invalid at far-infrared or THz frequencies.

The general method of derivation of the Smoluchowski (Fokker-Planck) equa-

tion in terms of the hydrodynamical derivative of the probability density f(Ω, t) in

the configuration space of orientations Ω (Ω denotes the set of state variables, i.e.,

{θ, ψ1, ψ2}) for normal diffusion from the corresponding Langevin equations [2] (v.

Appendix 5.B) yields that evolution equation in the standard form [2] of a Boltz-

mann equation
df

dt
=
∂f

∂t
+ L̂f = St(f). (5.5)

Here the deterministic operator is defined by (see Appendix 5.C) [2, 15, 16]

L̂f =

{
F

ξ

[
(µ1 sinψ1 + µ2 sinψ2)

cos2θ

sin θ

(
∂

∂ψ1

+
∂

∂ψ2

)

+

((
1 +

ξ

ξz

)
sin θ − cos θ

∂

∂θ

)∑

i=1,2

µi cosψi+
ξ

ξz
sin θ

∑

i=1,2

µi sinψi
∂

∂ψi

]

− V ′(ψ1 − ψ2)

ξz

(
∂

∂ψ1

− ∂

∂ψ2

)
− 2

V ′′(ψ1 − ψ2)

ξz

}
f, (5.6)
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while the collision kernel is

St(f) =
kT

ξ

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ 2cot2θ

∂2

∂ψ1ψ2

+

(
cot2θ +

ξ

ξz

)∑

i=1,2

∂2

∂ψi
2

]
f. (5.7)

To determine the fractional Smoluchowski equation from the general form Eq. (5.5)

we again use as in the entirely different problem of inertial effects in the itinerant

oscillator model as treated in Ref. [20] a method of Barkai and Silbey [113]. This

originally entailed writing a fractional Klein-Kramers equation in phase space (q, p)

for the evolution of the joint probability density function of the positions q and

momenta p of a translating particle from the normal Klein-Kramers equation. How-

ever, we can also apply this method to the problem at hand. Therefore in order to

achieve this in our configuration space Ω of orientations we simply introduce the

fractional operator 0D
1−α
t in the right-hand side of Eq. (5.5), so that this equation

becomes [2, 20] the fractional diffusion equation [19]

∂f

∂t
+ L̂f = τ 1−α

0D
1−α
t St (f) . (5.8)

The fractional operator 0D
1−α
t ≡ ∂

∂t 0D
−α
t in Eq. (5.8) is defined via the convolution

(the Riemann-Liouville definition) [79–82]

0D
−α
t f( Ω, t) =

1

Γ(α)

∫ t

0

f(Ω , t′)dt′

(t− t′)1−α , (5.9)

Γ(α) denoting the gamma function [83]. In selecting the fractional Smoluchowski

equation for the time evolution of the probability density function in configuration

space in this way we should mention that alternative forms of that equation exist and

have been reviewed by Friedrich and coworkers [114–116]. However, the Barkai and

Silbey version, which we have already used [2,20] appears the most suitable for the

explanation of the dielectric susceptibility at microwave frequencies [2]. The reason

is that including inertial effects in their equation as applied to the original Debye

model of non-interacting rotating dipoles then correctly describes the THz behaviour

of the absorption coefficient in so far as optical transparency is regained at those fre-

quencies. Clearly, the fractional derivative is in itself just another Stosszahlansatz
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for the Boltzmann equation for the single particle distribution function of which

Eqs. (5.5) and (5.8) are essentially particular configuration space forms. We now

assert (in essence following Barkai and Silbey who imposed the Maxwell-Boltzmann

distribution as the stationary solution of their fractional Klein-Kramers equation)

that the stationary solution of the fractional Smoluchowski equation is the Boltz-

mann distribution, which must prevail on physical grounds. Hence we require that

the operator 0D
1−α
t in Eq. (5.8) must not act on the deterministic terms in the

convective derivative ḟ so that the conventional form [2] of a Boltzmann equation

with Brownian motion Stosszahlansatz as modified by 0D
1−α
t is preserved. Here

we recall the work of Heymans and Podlubny [117] concerning the choice of initial

conditions on physical grounds. In a normal diffusion process, α = 1. If α > 1, the

phenomenon is called super-diffusion. If α < 1, the particle undergoes sub-diffusion.

5.2 Statistical Moments and Response Functions

To use linear response theory, we suppose as usual that a weak external dc field

F, having been applied to the system in the infinite past (t → −∞), is suddenly

switched off at time t = 0, meaning that we study the relaxation of a typical

molecule with embedded groups, starting from an initial equilibrium state at t = 0

with Boltzmann distribution given by

fF (Ω) = Z−1
F e

(µ1+µ2)·F
kT

+σV cos(ψ1−ψ2), (5.10)

to another equilibrium state as t→∞ with new Boltzmann distribution

f0(Ω) = fF=0(Ω) = Z−1
0 eσV cos(ψ1−ψ2), (5.11)

where σV = V0/kT is the dimensionless interaction parameter. The dynamics of

the molecule immediately following the removal of F may then be described by the

normalised relaxation function (see Appendix 5.D) [8, 29]

C(t) =
µ1c1(t) + µ2c2(t)

µ1c1(0) + µ2c2(0)
=

c1(t) + κc2(t)

c1(0) + κc2(0)
, t > 0, (5.12)
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where µ2 = κµ1 so that κ is the dipole moment ratio and from inspection of Figure

5.1b we have defined individual response (after-effect) functions

ci(t) = 〈sin θ cosψi〉 (t). (5.13)

Here i = 1, 2, the angular brackets 〈A〉 (t) represent the time-dependent ensemble

averages associated with the relaxation of an observable A while 〈A〉0 represents the

equilibrium ensemble averages, namely

〈A〉0 =

∫ 2π

0

∫ 2π

0

∫ π

0

A(θ, ψ1, ψ2)f0(θ, ψ1, ψ2) sin θdθdψ1dψ2. (5.14)

In the linear approximation in F, which requires that the external field parameters

σi = µiF/(kT ) << 1, the initial conditions for the after effect-functions c1(t) and

c2(t) are

ci(0) ≈ σi
〈
sin2θcos2ψi

〉
0

+ σ3−i
〈
sin2θ cosψ1 cosψ2

〉
0
. (5.15)

The complex susceptibility χ (ω) = χ′ (ω) − iχ′′ (ω) can then be determined from

the usual formula of linear response theory [18,29]

χ (ω)

χ
= 1− iω

∫ ∞

0

C(t)e−iωtdt, (5.16)

where χ = χ′ (0) = [µ1c1(0) + µ2c2(0)] /F is the static susceptibility and the nor-

malized relaxation function C(t) is given by Eq. (5.12).

To simplify the fractional diffusion equation Eq. (5.8) we now follow Budó and

introduce the new variables [19] (see Appendix 5.E)

ν =
(ψ1 + ψ2)

2
, η =

(ψ1 − ψ2)

2
. (5.17)

Thus, we have the equation describing the relaxation process for t > 0 (F = 0)
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rendered as [19]

2τ
∂f

∂t
=

{
τ

τz
σV

[
sin 2η

∂

∂η
+ 2 cos 2η

]

+ τ 1−α
0D

1−α
t

[
∆θ,ν +

(
τ

2τz
− 1

)
∂2

∂ν2
+

τ

2τz

∂2

∂η2

]}
f, (5.18)

where ∆θ,ν is the angular part of the Laplacian written in the spherical coordinates

θ and ν, τ = ξ/(2kT ) is the Debye relaxation time for rotations about the x and y

axes and τz = ξz/(2kT ) is the Debye relaxation time for rotation about the z axis.

The form of the fractional Smoluchowski equation (5.18) suggests seeking its

solution as a Fourier-Laplace series [8] rather than reducing it to a Sturm-Liouville

like eigenvalue problem as done by Budó [16] for normal diffusion because this

procedure ultimately leads to the solution for χ(ω) as a scalar continued fraction

which is easily computed, thus

f(θ, ν, η, t) =
1

2π

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη. (5.19)

The Fourier amplitudes f lpq(t) are the statistical moments defined by

f lpq(t) =

∫
Ylp(θ, ν)eiqηf(θ, ν, η, t)dΩ′ =

〈
Ylp(θ, ν)eiqη

〉
(t), (5.20)

where dΩ′ = sin θdθdνdη, Ylp(θ, ν) are the spherical harmonics, l = 0, 1, 2, ..., p =

0,±1, ...,±l and q = 0,±2,±4, ... for even p and q = ±1,±3, ... for odd p.

By substituting Eq. (5.19) into Eq. (5.8), we then have the differential-recurrence

equations for the f lpq(t) in the following three-index (pql) form [19] (see Appendix

5.F)

2τ
d

dt
f lpq(t) =

{
τσV
2τz

q
[
f lpq−2(t)− f lpq+2(t)

]

− τ 1−α
0D

1−α
t

[
l(l + 1) + p2

(
τ

2τz
− 1

)
+ q2 τ

2τz

]
f lpq(t)

}
, (5.21)

which as it stands leads to a three-term matrix differential recurrence relation [2].
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5.3 Continued Fraction Solution of the Fractional

Smoluchowski Equation

The definition of the response function as given by Eq. (5.13) indicates however that

only the Fourier amplitudes f 1
−1q are needed in order to calculate C(t). Therefore,

to facilitate this, we introduce new functions defined by (cf. Eqs. (5.19) and (5.20))

acq(t) = 〈Y1−1 cos qη〉 (t), asq(t) = 〈Y1−1 sin qη〉 (t). (5.22)

Their time behaviour is then described by an equation following directly from Eq.

(5.21), namely [19] (see Appendix 5.G)

2τ
d

dt
aJ2q−1(t) = Q−2q−1a

J
2q−3(t) +Q+

2q−1a
J
2q+1(t) + τ 1−α

0D
1−α
t Q2q−1a

J
2q−1(t), (5.23)

where J = c, s, q = 1, 2, 3, ..., ac−1(t) = ac1(t), as−1(t) = −as1(t), and

Q2q−1 = −1− γ
(
1 + (2q − 1)2) , Q±2q−1 = ∓σV γ(2q − 1), (5.24)

and γ = τ/(2τz) is a ratio of Debye times. However, the new set of Eqs. (5.23)

simply constitutes a single index (q) three-term differential-recurrence equation so

that the calculation of aJq (t) is relatively simple (because its solution may then be

expressed as a scalar continued fraction unlike that of the three-index differential

recurrence relation obtaining when F 6= 0 leading to three-term matrix fractions).

On taking the Laplace transform of Eq. (5.23), we then have an algebraic three-

term recurrence equation in the frequency domain, viz.,

(1− δq1)Q−2q−1ã
J
2q−3(s)+

(
Q̄2q−1(s) + bJδq1

)
ãJ2q−1(s)+Q+

2q−1ã
J
2q+1(s) = −2τaJ2q−1(0),

(5.25)

where bc = γσV , bs = −γσV ,

Q̄q(s) = (τs)1−αQq − 2τs, (5.26)
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and

ãJq (s) =

∫ ∞

0

aJq (t)e−stdt. (5.27)

The initial values are determined from Eqs. (5.10) and (5.22) yielding the closed

form as follows (see Appendix 5.I):

acq(0) =Z−1
F

∫
Y1−1(θ, ν) cos qη e(µ1+µ2)F/kT+σV cos 2ηdΩ′

=
σ1(1 + κ)

4
√

6πI0(σV )

(
I(q+1)/2(σV ) + I(q−1)/2(σV )

)
, (5.28)

and

asq(0) =Z−1
F

∫
Y1−1(θ, ν) sin qη e(µ1+µ2)F/kT+σV cos 2ηdΩ′

=
iσ1 (κ− 1)

4
√

6πI0(σV )

(
I(q+1)/2(σV )− I(q−1)/2(σV )

)
, (5.29)

where the Im(σV ) are the modified Bessel functions of the first kind of order m [83].

By invoking the familiar continued-fraction method for solving scalar three-term

recurrence relations [2], we have the explicit solution for the desired spectrum ãJ1 (s)

in the form of a scalar continued fraction, viz., (see Appendix 5.J)

ãJ1 (s) = 2τ
aJ1 (0) +Q+

1 ∆3(s)
(
aJ3 (0) +Q+

3 ∆5(s)
(
aJ5 (0) + ...

))

−Q̄1(s) + sJγσV −Q+
1 ∆3(s)Q−3

, (5.30)

where sc = −1 and ss = 1. The recurring quantity ∆n(s) (corresponding to the

complementary solution) is calculated by taking successive convergents from its

continued-fraction definition viz.,

∆2n−1(s) =
[
−Q̄2n−1(s)−Q+

2n−1∆2n+1(s)Q−2n+1

]−1
. (5.31)

Having determined ãJ1 (s), we have the spectrum of the relaxation function C(t) from

Eq. (5.12)

C̃(iω) =
c̃1(iω) + κc̃2(iω)

c1(0) + κc2(0)
. (5.32)

The response functions c̃i(iω) are expressed in terms of one-sided Fourier transforms
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of aJ1 (t) as (see Appendix 5.K)

c̃j(ω) =

√
2π

3

(
ãc1(ω) + ãc∗1 (−ω) + (−1)ji (ãs1(ω)− ãs∗1 (−ω))

)
, (5.33)

where the initial conditions are rendered in the closed form (see Appendix 5.L)

cj(0) =

√
2π

3

(
ac1(0) + ac∗1 (0) + (−1)ji (as1(0)− as∗1 (0))

)

=
σ1

3

Ij−1(σV ) + κI2−j(σV )

I0(σV )
. (5.34)

Eqs. (5.30) - (5.34) taken in combination yield the solution for the linear response.

Notice that they also apply to the normal diffusion, entirely avoiding the Sturm-

Liouville problem encountered by Budó.

Appendices - Details of the various calculations

5.A Langevin Equations for a Single Dipole

The equation of motion for a rigid body in the non-inertial case is

ξω (t) = [µ (t)× F (t)] + Γ (t) , (5.35)

where Γ (t) = (Γx (t) , Γy (t) , Γz (t))T is the Gaussian white noise torque arising

from the heat bath and is represented by a Wiener process, the angular velocity

ω (t) = (ωx (t) , ωy (t) , ωz (t))T, [µ (t)× F (t)] is the deterministic external torque

arising from F(t), ξω(t) is the frictional torque and

ξ =





ξx 0 0

0 ξy 0

0 0 ξz




, (5.36)

is the tensor of the friction coefficients, which is diagonal in molecular fixed axes.

Consider a dipole µ with the following components referred to the molecular
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fixed axes

µ = (0, µ, 0) . (5.37)

The electric field F(t) can be expressed as

F (t) = F sin θ sinψ i + F sin θ cosψ j + F cos θ k, (5.38)

where i, j,k are the unit vectors in the directions of the molecular axes x, y, z re-

spectively. The cross product µ (t)× F (t) is given by

[µ (t)× F (t)] = µF cos θ i + 0 j− µF sin θ sinψ k. (5.39)

From the equation of motion in Eq. (5.35), we get

ξxωx =µF cos θ + Γx, (5.40)

ξyωy =Γy, (5.41)

ξzωz =− µF sin θ sinψ + Γz. (5.42)

The Eulerian angles θ, ϕ, ψ are shown in Figure 5.2. These angles connect molecular

fixed axes xyz with laboratory fixed axes XY Z. The angular velocities ωx, ωy, ωz

can now be expressed in terms of these angles and their time derivatives [58].

ωx =ϕ̇ sin θ sinψ + θ̇ cosψ, (5.43)

ωy =ϕ̇ sin θ cosψ − θ̇ sinψ, (5.44)

ωz =ϕ̇ cos θ + ψ̇. (5.45)
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Figure 5.2: Eulerian angles. (aft. [118])

The Gaussian noise torques Γi are given by [2]

Γi =
√
kTξiΛi , i = x, y, z, (5.46)

ξ = ξx = ξy, (5.47)

where Λi are centred Gaussian random variables with correlation functions [2]

〈
Λ

(j)
k (t)Λ

(j)
k′ (t′)

〉
= 2δkk′δ(t− t′), k, k′ = x, y, z, (5.48)

where δkk′ is Kronecker’s delta and δ(t) is the Dirac delta function.

Substituting Eq. (5.46) into Eqs. (5.40) - (5.42), we obtain

ξωx =µF cos θ +
√
kTξΛx, (5.49)

ξωy =
√
kTξΛy, (5.50)

ξzωz =− µF sin θ sinψ +
√
kTξzΛz. (5.51)
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From Eqs. (5.43) - (5.45), and Eqs. (5.49) - (5.51) we have

ϕ̇ sin θ sinψ + θ̇ cosψ =
µF

ξ
cos θ +

√
kT

ξ
Λx, (5.52)

ϕ̇ sin θ cosψ − θ̇ sinψ =

√
kT

ξ
Λy, (5.53)

ϕ̇ cos θ + ψ̇ =− µF

ξz
sin θ sinψ +

√
kT

ξz
Λz. (5.54)

To obtain an expression for θ̇, we shall multiply Eq. (5.53) by sinψ then subtract

it from Eq. (5.52) multiplied by cosψ to get

θ̇ =
µF

ξ
cos θ cosψ +

√
kT

ξ
(Λx cosψ − Λy sinψ) . (5.55)

To obtain an expression for ϕ̇ we shall multiply Eq. (5.52) by sinψ then add it to

Eq. (5.53) multiplied by cosψ to get

ϕ̇ =
µF

ξ

cos θ

sin θ
sinψ +

√
kT

ξ

1

sin θ
(Λx sinψ + Λy cosψ) . (5.56)

To obtain an expression for ψ̇, we substitute Eq. (5.56) into Eq. (5.54) to get

ψ̇ = − µF

ξz
sin θ sinψ

+

√
kT

ξz
Λz −

µF

ξ

cos2θ

sin θ
sinψ −

√
kT

ξ

cos θ

sin θ
(Λx sinψ + Λy cosψ) . (5.57)

94



So for a single dipole, we have the Langevin equations

θ̇ =
µF

ξ
cos θ cosψ +

√
kT

ξ
(Λx cosψ − Λy sinψ) , (5.58)

ϕ̇ =
µF

ξ

cos θ

sin θ
sinψ +

√
kT

ξ

1

sin θ
(Λx sinψ + Λy cosψ) , (5.59)

ψ̇ = − µF

ξz
sin θ sinψ +

√
kT

ξz
Λz − ϕ̇ cos θ. (5.60)

5.B Langevin Equations for Two Interacting Dipoles

We wish to obtain the Langevin equation for two dipoles µ1 and µ2, these can be

expressed from Eqs. (5.58) - Eqs. (5.60) as

θ̇ =
∑

i=1,2

[
µiF

ξ
cos θ cosψi +

√
kT

2ξ

(
cosψiΛ

(i)
x − sinψiΛ

(i)
y

)
]
, (5.61)

ϕ̇ =
∑

i=1,2

[
µiF

ξ

cos θ

sin θ
sinψi +

√
kT

2ξ

1

sin θ

(
sinψiΛ

(i)
x + cosψiΛ

(i)
y

)
]
, (5.62)

ψ̇j =− µjF

ξz
sin θ sinψj +

√
kT

ξz
Λ(j)
z

+
∑

i=1,2

[
−µiF

ξ
cot θ cos θ sinψi −

√
kT

2ξ
cot θ

(
sinψiΛ

(i)
x + cosψiΛ

(i)
y

)
]
, (5.63)

where Λ
(j)
k , k = x, y, z are centred Gaussian random variables with correlation

functions [2] 〈
Λ

(j)
k (t)Λ

(j)
k′ (t′)

〉
= 2δkk′δ(t− t′), k, k′ = x, y, z. (5.64)

We now introduce the effect of interaction between the dipoles µ1 and µ2. Let

V (ψ1 − ψ2) denote the mutual potential energy of the two groups. The moment
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of force exerted by the dipole µ2 on µ1 is then −V ′ (ψ1 − ψ2). The contribution of

the intra-molecular forces in ψ̇1 is given by −V ′ (ψ1 − ψ2)/ξz and similarly in ψ̇2 by

V ′ (ψ1 − ψ2)/ξz (see Budó 1949 [16], page 687), as such since both µ1 and µ2 rotate

about the z-axis on the same plane, Eq. (5.63) can now be written as

ψ̇1 =− µ1F

ξz
sin θ sinψ1 +

√
kT

ξz
Λ(1)
z −

V ′ (ψ1 − ψ2)

ξz

+
∑

i=1,2

[
−µiF

ξ
cot θ cos θ sinψi −

√
kT

2ξ
cot θ

(
sinψiΛ

(i)
x + cosψjΛ

(i)
y

)
]
, (5.65)

ψ̇2 =− µ2F

ξz
sin θ sinψ2 +

√
kT

ξz
Λ(2)
z +

V ′ (ψ1 − ψ2)

ξz

+
∑

i=1,2

[
−µiF

ξ
cot θ cos θ sinψi −

√
kT

2ξ
cot θ

(
sinψiΛ

(i)
x + cosψiΛ

(i)
y

)
]
. (5.66)

5.C Derivation of the Smoluchowski Equation from

the system of Langevin Equations

For N stochastic variables x = {x1, ..., xN} the general form of the Langevin equa-

tion involves multiplicative noise terms and is

ẋi = hi(x, t) + gij(x, t)Λj(t), (5.67)

〈Λi(t)Λj(t
′)〉 = 2δijδ(t− t′), (5.68)

while the corresponding Smoluchowski equation for the distribution function W (x, t)

in turn has the general form

d

dt
W (x, t) =

∂

∂t
W (x, t) + L̂W (x, t) = St {W (x, t)} , (5.69)

where

L̂W (x, t) =
∂

∂xi
hi(x, t)W (x, t), (5.70)
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represents the deterministic drift part of the Smoluchowski equation while

St(W (x, t)) =

(
− ∂

∂xi
[Di(x, t)− hi(x, t)] +

∂2

∂xixj
Dij(x, t)

)
W (x, t), (5.71)

is the collision kernel, corresponding to the free Brownian motion. From Eq. (5.70)

onwards, Einstein’s summation convention is used. Here Di and Dij are the drift

and the diffusion coefficients, respectively. These coefficients can be obtained from

the general form of the Langevin equation in Eq. (5.67) as [2]

Di(x, t) = hi(x, t) + gkj(x, t)
∂

∂xk
gij(x, t), (5.72)

which as usual is the sum of the deterministic and noise induced drift and

Dij(x, t) = gik(x, t)gjk(x, t). (5.73)

We wish to derive the corresponding Smoluchowski equation for the distribution

function W (Ω, t) from the Langevin equations (involving multiplicative noise) of

motion of the polar groups in a dc field F applied in the Z-direction of the space-

fixed system seen in Eqs. (5.61) - (5.63) and Eqs. (5.65) and (5.66). First we seek

to determine the hi(Ω, t) and gkj(Ω, t) functions by comparing the general form of

the Langevin equation in Eq. (5.67) to the aforementioned Langevin equations

θ̇ =hθ + gθx1Λ
(1)
x + gθy1Λ

(1)
y + gθz1Λ

(1)
z + gθx2Λ

(2)
x + gθy2Λ

(2)
y + gθz2Λ

(2)
z , (5.74)

ψ̇1 =hψ1 + gψ1x1Λ
(1)
x + gψ1y1Λ

(1)
y + gψ1z1Λ

(1)
z + gψ1x2Λ

(2)
x + gψ1y2Λ

(2)
y + gψ1z2Λ

(2)
z ,

(5.75)

ψ̇2 =hψ2 + gψ2x1Λ
(1)
x + gψ2y1Λ

(1)
y + gψ2z1Λ

(1)
z + gψ2x2Λ

(2)
x + gψ2y2Λ

(2)
y + gψ2z2Λ

(2)
z ,

(5.76)

ϕ̇ =hϕ + gϕx1Λ
(1)
x + gϕy1Λ

(1)
y + gϕz1Λ

(1)
z + gϕx2Λ

(2)
x + gϕy2Λ

(2)
y + gϕz2Λ

(2)
z . (5.77)
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By comparing Eqs. (5.74) - (5.77) to Eqs. (5.61), (5.62), (5.65) and (5.66) we get

for the deterministic drift components

hθ =
F

ξ
cos θ(µ1 cosψ1 + µ2 cosψ2), (5.78)

hϕ =− F

ξ

cos θ

sin θ
(µ1 sinψ1 + µ2 sinψ2), (5.79)

hψ1 =− F

ξ

cos2θ

sin θ
(µ1 sinψ1 + µ2 sinψ2)− F

ξz
µ1 sin θ sinψ1 −

V ′(ψ1 − ψ2)

ξz
, (5.80)

hψ2 =− F

ξ

cos2θ

sin θ
(µ1 sinψ1 + µ2 sinψ2)− F

ξz
µ2 sin θ sinψ2 +

V ′(ψ1 − ψ2)

ξz
, (5.81)

while the functions needed to calculate the noise induced drift etc. are

gθx1 =

√
kT

2ξ
cosψ1, gθx2 =

√
kT

2ξ
cosψ2, (5.82)

gθy1 =−
√
kT

2ξ
sinψ1, gθy2 =−

√
kT

2ξ
sinψ2, (5.83)

gϕx1 =

√
kT

2ξ

sinψ1

sin θ
, gϕx2 =

√
kT

2ξ

sinψ2

sin θ
, (5.84)

gϕy1 =

√
kT

2ξ

cosψ1

sin θ
, gϕy2 =

√
kT

2ξ

cosψ2

sin θ
, (5.85)

gψ1x1 =gψ2x1 = −
√
kT

2ξ
sinψ1 cot θ, gψ1x2 =gψ2x2 = −

√
kT

2ξ
sinψ2 cot θ, (5.86)

gψ1y1 =gψ2y1 = −
√
kT

2ξ
cosψ1 cot θ, gψ1y2 =gψ2y2 = −

√
kT

2ξ
cosψ2 cot θ, (5.87)

gψ1z1 =

√
kT

ξz
, gψ2z2 =

√
kT

ξz
. (5.88)
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We can now determine the drift Di and diffusion Dij coefficients as

Dθ =hθ + gθx1
∂

∂θ
gθx1 + gϕx1

∂

∂ϕ
gθx1 + gψ1x1

∂

∂ψ1

gθx1 + gψ2x1

∂

∂ψ2

gθx1

+ gθx2
∂

∂θ
gθx2 + gϕx2

∂

∂ϕ
gθx2 + gψ1x2

∂

∂ψ1

gθx2 + gψ2x2

∂

∂ψ2

gθx2

+ gθy1
∂

∂θ
gθy1 + gϕy1

∂

∂ϕ
gθy1 + gψ1y1

∂

∂ψ1

gθy1 + gψ2y1

∂

∂ψ2

gθy1

+ gθy2
∂

∂θ
gθy2 + gϕy2

∂

∂ϕ
gθy2 + gψ1y2

∂

∂ψ1

gθy2 + gψ2y2

∂

∂ψ2

gθy2

=hθ +
kT

2ξ
cot θ

((
sin2ψ1 + cos2ψ1

)
+
(
sin2ψ2 + cos2ψ2

))

=hθ +
kT

ξ
cot θ, (5.89)

Dϕ =hϕ + gθx1
∂

∂θ
gϕx1 + gϕx1

∂

∂ϕ
gϕx1 + gψ1x1

∂

∂ψ1

gϕx1 + gψ2x1

∂

∂ψ2

gϕx1

+ gθx2
∂

∂θ
gϕx2 + gϕx2

∂

∂ϕ
gϕx2 + gψ1x2

∂

∂ψ1

gϕx2 + gψ2x2

∂

∂ψ2

gϕx2

+ gθy1
∂

∂θ
gϕy1 + gϕy1

∂

∂ϕ
gϕy1 + gψ1y1

∂

∂ψ1

gϕy1 + gψ2y1

∂

∂ψ2

gϕy1

+ gθy2
∂

∂θ
gϕy2 + gϕy2

∂

∂ϕ
gϕy2 + gψ1y2

∂

∂ψ1

gϕy2 + gψ2y2

∂

∂ψ2

gϕy2

=hϕ −
kT

2ξ

cosψ1 sinψ1 cot θ

sin θ
− kT

2ξ

sinψ1 cosψ1 cot θ

sin θ

− kT

2ξ

cosψ2 sinψ2 cot θ

sin θ
− kT

2ξ

sinψ2 cosψ2 cot θ

sin θ

+
kT

2ξ

sinψ1 cosψ1 cot θ

sin θ
+
kT

2ξ

cosψ1 sinψ1 cosψ1 cot θ

sin θ

+
kT

2ξ

sinψ2 cosψ2 cot θ

sin θ
+
kT

2ξ

cosψ2 sinψ2 cot θ

sin θ

=hϕ, (5.90)
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Dψ1 =hψ1 + gθx1
∂

∂θ
gψ1x1 + gϕx1

∂

∂ϕ
gψ1x1 + gψ1x1

∂

∂ψ1

gψ1x1 + gψ2x1

∂

∂ψ2

gψ1x1

+ gθx2
∂

∂θ
gψ1x2 + gϕx2

∂

∂ϕ
gψ1x2 + gψ1x2

∂

∂ψ1

gψ1x2 + gψ2x2

∂

∂ψ2

gψ1x2

+ gθy1
∂

∂θ
gψ1y1 + gϕy1

∂

∂ϕ
gψ1y1 + gψ1y1

∂

∂ψ1

gψ1y1 + gψ2y1

∂

∂ψ2

gψ1y1

+ gθy2
∂

∂θ
gψ1y2 + gϕy2

∂

∂ϕ
gψ1y2 + gψ1y2

∂

∂ψ1

gψ1y2 + gψ2y2

∂

∂ψ2

gψ1y2

+ gθz1
∂

∂θ
gψ1z1 + gϕz1

∂

∂ϕ
gψ1z1 + gψ1z1

∂

∂ψ1

gψ1z1 + gψ2z1

∂

∂ψ2

gψ1z1

+ gθz2
∂

∂θ
gψ1z2 + gϕz2

∂

∂ϕ
gψ1z2 + gψ1z2

∂

∂ψ1

gψ1z2 + gψ2z2

∂

∂ψ2

gψ1z2

=hψ1 +
kT

2ξ
sinψ1 cosψ1

(
1 + cot2θ

)
+
kT

2ξ
sinψ1 cosψ1cot2θ

+
kT

2ξ
sinψ2 cosψ2

(
1 + cot2θ

)
+
kT

2ξ
sinψ2 cosψ2cot2θ

− kT

2ξ
sinψ1 cosψ1

(
1 + cot2θ

)
− kT

2ξ
sinψ1 cosψ1cot2θ

− kT

2ξ
sinψ2 cosψ2

(
1 + cot2θ

)
− kT

2ξ
sinψ2 cosψ2cot2θ

=hψ1 , (5.91)

Dψ2 =hψ2 + gθx1
∂

∂θ
gψ2x1 + gϕx1

∂

∂ϕ
gψ2x1 + gψ1x1

∂

∂ψ1

gψ2x1 + gψ2x1

∂

∂ψ2

gψ2x1

+ gθx2
∂

∂θ
gψ2x2 + gϕx2

∂

∂ϕ
gψ2x2 + gψ1x2

∂

∂ψ1

gψ2x2 + gψ2x2

∂

∂ψ2

gψ2x2

+ gθy1
∂

∂θ
gψ2y1 + gϕy1

∂

∂ϕ
gψ2y1 + gψ1y1

∂

∂ψ1

gψ2y1 + gψ2y1

∂

∂ψ2

gψ2y1

+ gθy2
∂

∂θ
gψ2y2 + gϕy2

∂

∂ϕ
gψ2y2 + gψ1y2

∂

∂ψ1

gψ2y2 + gψ2y2

∂

∂ψ2

gψ2y2

+ gθz1
∂

∂θ
gψ2z1 + gϕz1

∂

∂ϕ
gψ2z1 + gψ1z1

∂

∂ψ1

gψ2z1 + gψ2z1

∂

∂ψ2

gψ2z1

+ gθz2
∂

∂θ
gψ2z2 + gϕz2

∂

∂ϕ
gψ2z2 + gψ1z2

∂

∂ψ1

gψ2z2 + gψ2z2

∂

∂ψ2

gψ2z2

=hψ2 , (5.92)
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Dθθ =gθx1gθx1 + gθx2gθx2 + gθy1gθy1 + gθy2gθy2 + gθz1gθz1 + gθz2gθz2

=
kT

2ξ

((
sin2ψ1 + cos2ψ1

)
+
(
sin2ψ2 + cos2ψ2

))

=
kT

ξ
, (5.93)

Dϕϕ =gϕx1gϕx1 + gϕx2gϕx2 + gϕy1gϕy1 + gϕy2gϕy2 + gϕz1gϕz1 + gϕz2gϕz2

=
kT

2ξ

1

sin2θ

[
sin2ψ1 + cos2ψ1 + sin2ψ2 + cos2ψ2

]

=
kT

ξ

1

sin2θ
, (5.94)

Dψ1ψ1 =gψ1x1gψ1x1 + gψ1x2gψ1x2 + gψ1y1gψ1y1 + gψ1y2gψ1y2 + gψ1z1gψ1z1 + gψ1z2gψ1z2

=kT

((
sin2ψ1 + cos2ψ1

)
cot2θ

2ξ
+

(
sin2ψ2 + cos2ψ2

)
cot2θ

2ξ
+

1

ξz

)

=kT

(
cot2θ

ξ
+

1

ξz

)
, (5.95)

Dψ2ψ2 =gψ2x1gψ2x1 + gψ2x2gψ2x2 + gψ2y1gψ2y1 + gψ2y2gψ2y2 + gψ2z1gψ2z1 + gψ2z2gψ2z2

=kT

(
cot2θ

ξ
+

1

ξz

)
, (5.96)
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Dθψ1 =Dψ1θ = gθx1gψ1x1 + gθx2gψ1x2 + gθy1gψ1y1 + gθy2gψ1y2 + gθz1gψ1z1 + gθz2gψ1z2

=− kT

2ξ
sinψ1 cosψ1 cot θ − kT

2ξ
sinψ2 cosψ2 cot θ

+
kT

2ξ
sinψ1 cosψ1 cot θ +

kT

2ξ
sinψ2 cosψ2 cot θ

=0, (5.97)

Dθψ2 =Dψ2θ = gθx1gψ2x1 + gθx2gψ2x2 + gθy1gψ2y1 + gθy2gψ2y2 + gθz1gψ2z1 + gθz2gψ2z2

=0, (5.98)

Dψ1ψ2 =Dψ2ψ1 = gψ1x1gψ2x1 + gψ1x2gψ2x2 + gψ1y1gψ2y1 + gψ1y2gψ2y2 + gψ1z1gψ2z1 + gψ1z2gψ2z2

=
kT

2ξ
cot2θ

((
sin2ψ1 + cos2ψ1

)
+
(
sin2ψ2 + cos2ψ2

))

=
kT

ξ
cot2θ. (5.99)

Now that all the relevant terms have been evaluated the next step is to obtain the

deterministic drift part L̂W (Ω, t) and the collision kernel St(W (Ω, t)). The distribu-

tion function W (θ, ψ1, ψ2, t) may be written as W (θ, ψ1, ψ2, t) = f(θ, ψ1, ψ2, t) sin θ.

We start with the deterministic drift part L̂W (Ω, t):

L̂W (Ω, t) =
∂

∂xi
hi(Ω, t)W (Ω, t)

=

[
∂

∂θ
hθ(Ω, t) +

∂

∂ϕ
hϕ(Ω, t) +

∂

∂ψ1

hψ1(Ω, t) +
∂

∂ψ2

hψ2(Ω, t)

]
W (Ω, t).

(5.100)
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⇒ L̂ (f sin θ) =

[
∂

∂θ

{
F

ξ
cos θ(µ1 cosψ1 + µ2 cosψ2)

}

+
∂

∂ϕ

{
F cos θ

ξ sin θ
(µ1 sinψ1 + µ2 sinψ2)

}

+
∂

∂ψ1

{
−F
ξ

cos2θ

sin θ
(µ1 sinψ1 + µ2 sinψ2)

− F

ξz
µ1 sin θ sinψ1 −

V ′(ψ1 − ψ2)

ξz

}

+
∂

∂ψ2

{
−F
ξ

cos2θ

sin θ
(µ1 sinψ1 + µ2 sinψ2)

− F

ξz
µ2 sin θ sinψ2 +

V ′(ψ1 − ψ2)

ξz

}]
f sin θ. (5.101)

⇒ L̂ (f sin θ) = sin θ

[
−F
ξ

sin θ (µ1 cosψ1 + µ2 cosψ2)

+
F

ξ
cos θ (µ1 cosψ1 + µ2 cosψ2)

∂

∂θ

+
F

ξ

cos2θ

sin θ
(µ1 cosψ1 + µ2 cosψ2)

− F

ξ

cos2θ

sin θ
(µ1 cosψ1)− F

ξz
µ1 sin θ cosψ1 −

V ′′(ψ1 − ψ2)

ξz

+

{
−F
ξ

cos2θ

sin θ
(µ1 sinψ1 + µ2 sinψ2)

− F

ξz
µ1 sin θ sinψ1 −

V ′(ψ1 − ψ2)

ξz

}
∂

∂ψ1

− F

ξ

cos2θ

sin θ
(µ2 cosψ2)− F

ξz
µ2 sin θ cosψ2 −

V ′′(ψ1 − ψ2)

ξz

+

{
−F
ξ

cos2θ

sin θ
(µ1 sinψ1 + µ2 sinψ2)

− F

ξz
µ2 sin θ sinψ2 +

V ′(ψ1 − ψ2)

ξz

}
∂

∂ψ2

]
f. (5.102)

⇒ L̂ (f sin θ) = sin θ

{
−F
ξ

[((
1 +

ξ

ξz

)
sin θ − cos θ

∂

∂θ

)
(µ1 cosψ1 + µ2 cosψ2)

+ (µ1 sinψ1 + µ2 sinψ2)
cos2θ

sin θ

(
∂

∂ψ1

+
∂

∂ψ2

)

+
ξ

ξz
sin θ

(
µ1 sinψ1

∂

∂ψ1

+ µ2 sinψ2
∂

∂ψ2

)

− 2
V ′′(ψ1 − ψ2)

ξz
−V

′(ψ1 − ψ2)

ξz

(
∂

∂ψ1

− ∂

∂ψ2

)}
f. (5.103)
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Next, we will evaluate the collision kernel St(W (Ω, t)):

St(W (Ω, t)) =

(
− ∂

∂xi
[Di(Ω, t)− hi(Ω, t)] +

∂2

∂xixj
Dij(Ω, t)

)
W (Ω, t). (5.104)

⇒ St(f sin θ) =

{
− ∂

∂θ
[Dθ − hθ] +

∂2

∂θ2
Dθθ +

∂2

∂θ∂ϕ

=0

Dθϕ +
∂2

∂θ∂ψ1

=0

Dθψ1 +
∂2

∂θ∂ψ2

=0

Dθψ2

− ∂

∂ϕ

=0

[Dϕ − hϕ] +
∂2

∂ϕ2

=0

Dϕϕ +
∂2

∂ϕ∂θ

=0

Dϕθ +
∂2

∂ϕ∂θ

=0

Dϕψ1 +
∂2

∂ϕ∂ψ2

=0

Dϕψ2

− ∂

∂ψ1

=0

[Dψ1 − hψ1 ] +
∂2

∂ψ1
2Dψ1ψ1 +

∂2

∂ψ1∂θ

=0

Dψ1θ +
∂2

∂ψ1∂ψ2

Dψ1ψ2

− ∂

∂ψ2

=0

[Dψ2 − hψ2 ] +
∂2

∂ψ2
2Dψ2ψ2 +

∂2

∂ψ2∂θ

=0

Dψ2θ +
∂2

∂ψ2∂ψ1

Dψ2ψ1

}
f sin θ

=− ∂

∂θ

(
kT

ξ
cot θ

)
f sin θ +

∂2

∂θ2

(
kT

ξ

)
f sin θ

+
∂2

∂ψ1
2

(
kT

ξ
cot2θ +

kT

ξz

)
f sin θ

+
∂2

∂ψ1∂ψ2

(
kT

ξ
cot2θ

)
f sin θ

+
∂2

∂ψ2
2

(
kT

ξ
cot2θ +

kT

ξz

)
f sin θ

+
∂2

∂ψ2∂ψ1

(
kT

ξ
cot2θ

)
f sin θ

=
kT

ξ
sin θ

[
1− cot θ

∂

∂θ
+

∂2

∂θ2
+ 2 cot θ

∂

∂θ
− 1

+
∂2

∂ψ1
2

(
cot2θ +

ξ

ξz

)

+
∂2

∂ψ1∂ψ2

(
cot2θ

)
+

∂2

∂ψ2
2

(
cot2θ +

ξ

ξz

)
+

∂2

∂ψ2∂ψ1

(
cot2θ

)]
f

=
kT

ξ
sin θ

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ 2cot2θ

∂2

∂ψ1∂ψ2

+

(
cot2θ +

ξ

ξz

) (
∂2

∂ψ1
2 +

∂2

∂ψ2
2

)]
f. (5.105)

Substituting W (θ, ψ1, ψ2, t) = f(θ, ψ1, ψ2, t) sin θ into Eq. (5.69) we have

df

dt
=
∂f

∂t
+ L̂f = St(f), (5.106)
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where the deterministic operator is defined by

L̂f =

{
−F
ξ

[
(µ1 sinψ1 + µ2 sinψ2)

cos2θ

sin θ

(
∂

∂ψ1

+
∂

∂ψ2

)

+

((
1 +

ξ

ξz

)
sin θ − cos θ

∂

∂θ

)∑

i=1,2

µi cosψi

+
ξ

ξz
sin θ

∑

i=1,2

µi sinψi
∂

∂ψi

]

− V ′(ψ1 − ψ2)

ξz

(
∂

∂ψ1

− ∂

∂ψ2

)
− 2

V ′′(ψ1 − ψ2)

ξz

}
f, (5.107)

while the collision kernel is defined by

St(f) =
kT

ξ

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ 2cot2θ

∂2

∂ψ1ψ2

+

(
cot2θ +

ξ

ξz

)(
∂2

∂ψ1
2 +

∂2

∂ψ2
2

)]
f. (5.108)

5.D Linear Response Theory and Initial Values

To use linear response theory, we suppose that a weak external dc field F, having

been applied to the system in the infinite past t→ −∞, is suddenly switched off at

time t = 0 meaning that we study the relaxation of a typical molecule with embed-

ded groups, starting from an initial equilibrium state at t = 0 with a Boltzmann

distribution

fF (Ω) = Z−1
F e(µ1+µ2)·F/kT+σV cos(ψ1−ψ2), (5.109)

to another equilibrium state as t→∞ with a new Boltzmann distribution

f0(Ω) = fF=0(Ω) = Z−1
0 eσV cos(ψ1−ψ2), (5.110)

where σV = V0/kT is the dimensionless interaction parameter. F = F iZ where iZ

is the unit vector in the direction of the positive (fixed) Z-axis. The component

of (µ1 + µ2) in the direction of F is (µ1 sin θ cosψ1 + µ2 sin θ cosψ2) iZ . The time-
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dependent ensemble average of (µ1 sin θ cosψ1 + µ2 sin θ cosψ2) is

〈µ1 sin θ cosψ1 + µ2 sin θ cosψ2〉 (t) = 〈µ1 sin θ cosψ1〉 (t) + 〈µ2 sin θ cosψ2〉 (t)

=µ1c1 (t) + µ2c2 (t) , (5.111)

where

ci (t) = 〈sin θ cosψi〉 (t) , i = 1, 2. (5.112)

Eq. (5.109) can now be written as

fF (Ω) =Z−1
F e(µ1+µ2)·F/kT+σV cos(ψ1−ψ2)

=Z−1
F e(µ1+µ2)·F/kT eσV cos(ψ1−ψ2)

=Z−1
F e(µ1 sin θ cosψ1+µ2 sin θ cosψ2)F/kT eσV cos(ψ1−ψ2)

=Z−1
F e(σ1 sin θ cosψ1+σ2 sin θ cosψ2)eσV cos(ψ1−ψ2), (5.113)

where σi = µiF/kT . Note that (σ1 sin θ cosψ1 + σ2 sin θ cosψ2) � 1 since we

assume that the external field parameters σi � 1. Thus, we can approximate

e(σ1 sin θ cosψ1+σ2 sin θ cosψ2) using the Taylor series expansion as

e(σ1 sin θ cosψ1+σ2 sin θ cosψ2) ≈ 1 + (σ1 sin θ cosψ1 + σ2 sin θ cosψ2) . (5.114)

Substituting Eq. (5.114) into Eq. (5.113) we obtain

fF (Ω) ≈ Z−1
F [1 + (σ1 sin θ cosψ1 + σ2 sin θ cosψ2)] eσV cos(ψ1−ψ2). (5.115)

We now wish to calculate the initial values of the after effect-functions c1(t) and

c2(t) viz.,

ci(0) ≈
∫ 2π

0

∫ 2π

0

∫ π

0

(sin θ cosψi) fF (Ω) sin θdθdψ1dψ2. (5.116)
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Substituting Eq. (5.115) into Eq. (5.116) we obtain

ci(0) ≈ 1

ZF

∫ 2π

0

∫ 2π

0

∫ π

0

(sin θ cosψi)[1 + σ1 sin θ cosψ1

+ σ2 sin θ cosψ2]eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

=
1

ZF

∫ 2π

0

∫ 2π

0

∫ π

0

(sin θ cosψi) e
σV cos(ψ1−ψ2) sin θdθdψ1dψ2

+
1

ZF

∫ 2π

0

∫ 2π

0

∫ π

0

(
σ1sin2θ cosψi cosψ1

)
eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

+
1

ZF

∫ 2π

0

∫ 2π

0

∫ π

0

(
σ2sin2θ cosψi cosψ2

)
eσV cos(ψ1−ψ2) sin θdθdψ1dψ2.

(5.117)

Eq. (5.117) for i = 1, 2 may be written as

ci(0) ≈ 1

ZF

∫ 2π

0

∫ 2π

0

∫ π

0

(sin θ cosψi) e
σV cos(ψ1−ψ2) sin θdθdψ1dψ2

+
1

ZF

∫ 2π

0

∫ 2π

0

∫ π

0

(
σisin

2θcos2ψi
)
eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

+
1

ZF

∫ 2π

0

∫ 2π

0

∫ π

0

(
σ3−isin

2θ cosψ1 cosψ2

)
eσV cos(ψ1−ψ2) sin θdθdψ1dψ2.

(5.118)

Eq. (5.118) may be written as

ci(0) ≈Z0

ZF

[∫ 2π

0

∫ 2π

0

∫ π

0

(sin θ cosψi)
1

Z0

eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

]

+
Z0

ZF

[∫ 2π

0

∫ 2π

0

∫ π

0

(
σisin

2θcos2ψi
) 1

Z0

eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

]

+
Z0

ZF

[∫ 2π

0

∫ 2π

0

∫ π

0

(
σ3−isin

2θ cosψ1 cosψ2

) 1

Z0

eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

]
.

(5.119)
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Now using Eq. (5.110) we can rewrite Eq. (5.119) as

ci(0) ≈Z0

ZF

[
〈sin θ cosψi〉0 + σi

〈
sin2θcos2ψi

〉
0

+ σ3−i
〈
sin2θ cosψ1 cosψ2

〉
0

]
.

(5.120)

⇒ ci(0) ≈Z0

ZF

[
σi
〈
sin2θcos2ψi

〉
0

+ σ3−i
〈
sin2θ cosψ1 cosψ2

〉
0

]
, (5.121)

since 〈sin θ cosψi〉0 = 0.

Note that by definition

Z0 =

∫ 2π

0

∫ 2π

0

∫ π

0

eσV cos(ψ1−ψ2) sin θdθdψ1dψ2, (5.122)

and

ZF =

∫ 2π

0

∫ 2π

0

∫ π

0

e(σ1 sin θ cosψ1+σ2 sin θ cosψ2)eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

≈
∫ 2π

0

∫ 2π

0

∫ π

0

[1 + (σ1 sin θ cosψ1 + σ2 sin θ cosψ2)] eσV cos(ψ1−ψ2) sin θdθdψ1dψ2.

(5.123)

⇒ ZF ≈
∫ 2π

0

∫ 2π

0

∫ π

0

eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

+ Z0

[∫ 2π

0

∫ 2π

0

∫ π

0

(σ1 sin θ cosψ1 + σ2 sin θ cosψ2)
1

Z0

eσV cos(ψ1−ψ2) sin θdθdψ1dψ2

]
.

(5.124)

⇒ ZF ≈Z0 + Z0 [σ1〈sin θ cosψ1〉0 + σ2〈sin θ cosψ2〉0] . (5.125)

Since 〈sin θ cosψi〉0 = 0, i = 1, 2, we get

ZF ≈ Z0. (5.126)
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From Eqs. (5.121) and (5.126) we have

ci(0) ≈ σi
〈
sin2θcos2ψi

〉
0

+ σ3−i
〈
sin2θ cosψ1 cosψ2

〉
0
. (5.127)

Let m (t) denote the instantaneous dipole moment of a body that is in the

direction of F. The constant field F has been operative for a very long time and is

switched off at time t = 0. The relation between m (t) and F is then given by

m (t) = Fb (t) , t ≥ 0, (5.128)

where the function b(t) is called the after-effect function. Normalising Eq. (5.128)

for t = 0 we get
m (t)

m (0)
=

Fb (t)

Fb (0)
=
b (t)

b (0)
t ≥ 0. (5.129)

The normalised relaxation function C(t) is given by

C(t) =
µ1c1(t) + µ2c2(t)

µ1c1(0) + µ2c2(0)
=

c1(t) + κc2(t)

c1(0) + κc2(0)
=
b (t)

b (0)
t ≥ 0, (5.130)

where µ2 = κµ1.

Let α(ω) and χ(ω) denote the complex polarisability and the complex suscepti-

bility of the body respectively. We have [2]

α (ω)

α (0)
= 1− iω

∫ ∞

0

C (t) e−iωtdt, (5.131)

where the normalised relaxation function C(t) is given by Eq. (5.130). As we are

neglecting electrical interaction between the dipolar molecules we get

χ (ω)

χ
=
α (ω)

α (0)
, (5.132)

where χ = χ(0) is the static susceptibility. Substituting Eq. (5.132) into Eq. (5.131)

we get
χ (ω)

χ
= 1− iω

∫ ∞

0

C (t) e−iωtdt. (5.133)
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5.E Substitution of the Symmetric Variables in

the Smoluchowski Equation

Recall that the deterministic operator is defined by

L̂f =

{
−F
ξ

[
(µ1 sinψ1 + µ2 sinψ2)

cos2θ

sin θ

(
∂

∂ψ1

+
∂

∂ψ2

)

+

((
1 +

ξ

ξz

)
sin θ − cos θ

∂

∂θ

)∑

i=1,2

µi cosψi

+
ξ

ξz
sin θ

∑

i=1,2

µi sinψi
∂

∂ψi

]

− V ′(ψ1 − ψ2)

ξz

(
∂

∂ψ1

− ∂

∂ψ2

)
− 2

V ′′(ψ1 − ψ2)

ξz

}
f. (5.134)

Setting F = 0 in Eq. (5.134) we have,

L̂f =

{
−V

′(ψ1 − ψ2)

ξz

(
∂

∂ψ1

− ∂

∂ψ2

)
− 2

V ′′(ψ1 − ψ2)

ξz

}
f. (5.135)

The interaction potential V (ψ1 − ψ2) is given by

V (ψ1 − ψ2) = −V0 cos(ψ1 − ψ2), (5.136)

and its derivatives with respect to (ψ1 − ψ2) are

V ′(ψ1 − ψ2) = V0 sin(ψ1 − ψ2), (5.137)

V ′′(ψ1 − ψ2) = V0 cos(ψ1 − ψ2). (5.138)

Substituting Eqs. (5.137) and (5.138) into Eq. (5.135) we have

L̂f =

{
−V0 sin(ψ1 − ψ2)

ξz

(
∂

∂ψ1

− ∂

∂ψ2

)
− 2

V0 cos(ψ1 − ψ2)

ξz

}
f. (5.139)

With F = 0, the collision kernel St(f) is given by

St(f) =
kT

ξ

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ 2cot2θ

∂2

∂ψ1ψ2

+

(
cot2θ +

ξ

ξz

) ∑

j=1,2

∂2

∂ψj
2

]
f. (5.140)
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The fractional diffusion equation is given by

d

dt
f(Ω, t) =

∂

∂t
f(Ω, t) + L̂f(Ω, t) = τ 1−α

0D
1−α
t St {f(Ω, t)} , (5.141)

which can be rewritten as

∂

∂t
f(Ω, t) = −L̂f(Ω, t) + τ 1−α

0D
1−α
t St {f(Ω, t)} , (5.142)

where the fractional operator, 0D
1−α
t = ∂

∂t0
D−αt in Eq. (5.142) is defined via the

convolution

0D
−α
t f( Ω, t) =

1

Γ(α)

∫ t

0

f(Ω , t′)dt′

(t− t′)1−α . (5.143)

To simplify Eq. (5.142) we now introduce the new variables

ν =
(ψ1 + ψ2)

2
, η =

(ψ1 − ψ2)

2
. (5.144)
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Using the chain rule, we obtain

∂f

∂ψ1

=
∂f

∂ν

∂ν

∂ψ1

+
∂f

∂η

∂η

∂ψ1

=
1

2

∂f

∂ν
+

1

2

∂f

∂η
, (5.145)

∂f

∂ψ2

=
∂f

∂ν

∂ν

∂ψ2

+
∂f

∂η

∂η

∂ψ2

=
1

2

∂f

∂ν
− 1

2

∂f

∂η
, (5.146)

∂f

∂ψ1

− ∂f

∂ψ2

=
∂f

∂η
, (5.147)

∂2f

∂ψ2
1

=
∂

∂ψ1

[
1

2

∂f

∂ν
+

1

2

∂f

∂η

]

=
1

4

[
∂2

∂ν2
+ 2

∂2

∂ν∂η
+

∂2

∂η2

]
f, (5.148)

∂2f

∂ψ2
2

=
∂

∂ψ2

[
1

2

∂f

∂ν
− 1

2

∂f

∂η

]

=
1

4

[
∂2

∂ν2
− 2

∂2

∂ν∂η
+

∂2

∂η2

]
f, (5.149)

∂2f

∂ψ2
1

+
∂2f

∂ψ2
2

=

(
1

4

∂2f

∂ν2
+

1

2

∂2f

∂ν∂η
+

1

4

∂2f

∂η2

)
+

(
1

4

∂2f

∂ν2
− 1

2

∂2f

∂ν∂η
+

1

4

∂2f

∂η2

)

=
1

2

(
∂2

∂ν2
+

∂2

∂η2

)
f, (5.150)

∂2f

∂ψ1∂ψ2

=
∂

∂ψ1

(
∂f

∂ψ2

)

=
1

4

(
∂2

∂ν2
− ∂2

∂η2

)
f. (5.151)
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Substituting Eqs. (5.145) - (5.151) into Eqs. (5.139) and (5.140) we obtain

L̂f =

{
−V0 sin 2η

ξz

∂

∂η
− 2

V0 cos 2η

ξz

}
f , (5.152)

and

St(f) =
kT

ξ

[
∂2

∂θ2
+ cot θ

∂

∂θ
+

2

4
cot2θ

(
∂2

∂ν2
− ∂2

∂η2

)

+
1

2

(
cot2θ +

ξ

ξz

)(
∂2

∂ν2
+

∂2

∂η2

)]
f

=
kT

ξ

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2θ

∂2

∂ν2
+

ξ

2ξz

(
∂2

∂ν2
+

∂2

∂η2

)]
f. (5.153)

Recalling that τ = ξ/(2kT ) is the Debye relaxation time for rotations about the x

and y axes and τz = ξz/(2kT ) is the Debye relaxation time for rotations about the

z-axis, we have

τ

2τz
=

ξ
2kT

2
(
ξz

2kT

)

=
ξ

2ξz
. (5.154)

Using Eqs. (5.152) - (5.154) we can rewrite Eq. (5.141) as

∂

∂t
f −

{
V0 sin 2η

ξz

∂

∂η
+ 2

V0 cos 2η

ξz

}
f

=τ 1−α
0D

1−α
t

{
kT

ξ

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2θ

∂2

∂ν2
+

τ

2τz

(
∂2

∂ν2
+

∂2

∂η2

)]
f

}
.

(5.155)

⇒ ∂

∂t
f =

{
V0

ξz

[
sin 2η

∂

∂η
+ 2 cos 2η

]

+ τ 1−α
(
kT

ξ

)
0D

1−α
t

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2θ

∂2

∂ν2
+

τ

2τz

∂2

∂ν2
+
τ

2τz

∂2

∂η2

]}
f.

(5.156)
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Multiplying both sides of Eq. (5.156) by ξ/(kT ) = 2τ we obtain

2τ
∂

∂t
f =

{(
V0

kT

)(
ξ

ξz

) [
sin 2η

∂

∂η
+ 2 cos 2η

]

+ τ 1−α
0D

1−α
t

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2θ

∂2

∂ν2
+

τ

2τz

∂2

∂ν2
+
τ

2τz

∂2

∂η2

]}
f.

(5.157)

Noting that σV = V0/kT and ξ/ξz = τ/τz we may write Eq. (5.157) as

2τ
∂

∂t
f =

{
τ

τz
σV

[
sin 2η

∂

∂η
+ 2 cos 2η

]

+ τ 1−α
0D

1−α
t

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2θ

∂2

∂ν2
+

τ

2τz

∂2

∂ν2
+
τ

2τz

∂2

∂η2

]}
f

=

{
τ

τz
σV

[
sin 2η

∂

∂η
+ 2 cos 2η

]

+ τ 1−α
0D

1−α
t

[
∂2

∂θ2
+ cot θ

∂

∂θ
+
(
1 + cot2θ

) ∂2

∂ν2
+

(
τ

2τz
− 1

)
∂2

∂ν2
+
τ

2τz

∂2

∂η2

]}
f.

(5.158)

Consider the Laplace operator ∇2 or ∆ written in spherical coordinates

∆f =
1

r2

∂2

∂r2
(rf) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2sin2θ

∂2f

∂ν2
. (5.159)

Note that

1 + cot2θ = 1 +
cos2θ

sin2θ
=

sin2θ + cos2θ

sin2θ
=

1

sin2θ
. (5.160)

With r = 1, the angular part of the Laplacian, ∆θ,ν , is given by

∆θ,νf =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2θ

∂2f

∂ν2

=
1

sin θ

[
cos θ

∂f

∂θ
+ sin θ

∂2f

∂θ2

]
+
(
1 + cot2θ

) ∂2f

∂ν2

= cot θ
∂f

∂θ
+
∂2f

∂θ2
+
(
1 + cot2θ

) ∂2f

∂ν2

=

[
cot θ

∂

∂θ
+

∂2

∂θ2
+
(
1 + cot2θ

) ∂2

∂ν2

]
f. (5.161)
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Using Eq. (5.161) we can rewrite Eq. (5.158) as

2τ
∂

∂t
f =

{
τ

τz
σV

[
sin 2η

∂

∂η
+ 2 cos 2η

]

+ τ 1−α
0D

1−α
t

[
∆θ,ν +

(
τ

2τz
− 1

)
∂2

∂ν2
+
τ

2τz

∂2

∂η2

]}
f. (5.162)

5.F Derivation of the Differential-Recurrence Re-

lation

Recall that the Smoluchowski equation describing the relaxation process at time

t > 0 (F = 0) is

2τ
∂

∂t
f =

{
στ

τz

[
sin 2η

∂

∂η
+ 2 cos 2η

]

+ τ 1−α
0D

1−α
t

[
∆θ,ν +

(
τ

2τz
− 1

)
∂2

∂ν2
+

τ

2τz

∂2

∂η2

]}
f, (5.163)

where ∆θ,ν is the angular part of Laplacian written in terms of θ and ν, τ = ξ/(2kT )

is the Debye relaxation time with respect to rotations about the x and y axes and

τz = ξz/(2kT ) is the Debye relaxation time with respect to rotations about the

z-axis.

We seek the solution of the Smoluchowski equation (5.163) as a Fourier-Laplace

series

f(θ, ν, η, t) =
∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη, (5.164)

where the Fourier amplitudes f lpq(t) are the statistical moments defined by

f lpq(t) =

∫
Ylp(θ, ν)eiqηfdΩ′ =

〈
Ylp(θ, ν)eiqη

〉
(t), (5.165)

where dΩ′ = sin θdθdνdη, Ylp(θ, ν) are spherical harmonics, with l = 0, 1, 2, ...,

p = 0,±1, ...,±l and q = 0,±2,±4, ... for even values of p and q = ±1,±3, ... for

odd values of p.

To obtain the differential-recurrence equation, we start by substituting Eq.
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(5.164) into Eq. (5.163) to get

2τ
∂

∂t

[∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

]
=
στ

τz

[
sin 2η

∂

∂η
+ 2 cos 2η

] [∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

]

+τ 1−α
0D

1−α
t

[
∆θ,ν +

(
τ

2τz
− 1

)
∂2

∂ν2
+

τ

2τz

∂2

∂η2

][∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

]
.

(5.166)

Using Euler’s formula, Eq. (5.166) can be rewritten as

2τ
∂

∂t

[∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

]
=

στ

τz

[(
ei2η − e−i2η

2i

)
∂

∂η
+
(
ei2η + e−i2η

)]
[∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

]

+ τ 1−α
0D

1−α
t

[
∆θ,ν +

(
τ

2τz
− 1

)
∂2

∂ν2
+

τ

2τz

∂2

∂η2

][∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

]
.

(5.167)

We then evaluate the derivatives in Eq. (5.167) to rewrite the equation (see Appendix

5.F.1) as

2τ
∂

∂t

[∑

l,p,q

df lpq(t)

dt
Y ∗lp(θ, ν)e−iqη

]
=
στ

2τz

[ 1∑

l,p,q

(−q) f lpq(t)Y ∗lp(θ, ν)
[
e−i(q−2)η − e−i(q+2)η

]

+

2

2
∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)

[
e−i(q−2)η + e−i(q+2)η

]
]

+ τ 1−α
0D

1−α
t

[ 3∑

l,p,q

f lpq(t) (−l (l + 1))Y ∗lp(θ, ν)e−iqη

+

4∑

l,p,q

(
−p2

)( τ

2τz
− 1

)
f lpq(t)Y

∗
lp(θ, ν)e−iqη

+

5∑

l,p,q

f lpq(t)
(
−q2

)( τ

2τz

)
Y ∗lp(θ, ν)e−iqη

]
.

(5.168)

To obtain the differential-recurrence relation, we multiply both sides of Eq. (5.168)
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by Yl′p′(θ, ν)eiq
′η and then use the orthogonality properties of the spherical harmonics

and the circular functions [2]

∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−iqηYl′p′(θ, ν)eiq
′η sin θdθdνdη = δll′δpp′δqq′2π. (5.169)

Left Hand Side

∫ 2π

0

∫ 2π

0

∫ π

0

(
2τ
∑

l,p,q

df lpq(t)

dt
Y ∗lp(θ, ν)e−iqη

)(
Yl′p′(θ, ν)eiq

′η
)

sin θdθdνdη

=2τ
∑

l,p,q

df lpq(t)

dt

∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−iqηYl′p′(θ, ν)eiq
′η sin θdθdνdη

=2τ
∑

l,p,q

df lpq(t)

dt
δll′δpp′δqq′2π

=2τ (2π)
df l
′
p′q′(t)

dt
. (5.170)

Right Hand Side

1

∫ 2π

0

∫ 2π

0

∫ π

0

στ

2τz

(∑

l,p,q

(−q) f lpq(t)Y ∗lp(θ, ν)
[
e−i(q−2)η − e−i(q+2)η

]
)(

Yl′p′(θ, ν)eiq
′η
)

sin θdθdνdη

=
στ

2τz

∑

l,p,q

(−q) f lpq(t)
∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)
[
e−i(q−2)η − e−i(q+2)η

] (
Yl′p′(θ, ν)eiq

′η
)

sin θdθdνdη

=
στ

2τz

∑

l,p,q

(−q) f lpq(t)
[∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−i(q−2)ηYl′p′(θ, ν)eiq
′η sin θdθdνdη

−
∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−i(q+2)ηYl′p′(θ, ν)eiq
′η sin θdθdνdη

]

=
στ

2τz

[
− (q′ + 2) f l

′
p′q′+2(t)2π + (q′ − 2) f l

′
p′q′−2(t)2π

]
. (5.171)
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2

∫ 2π

0

∫ 2π

0

∫ π

0

στ

2τz

(
2
∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)

[
e−i(q−2)η + e−i(q+2)η

]
)(

Yl′p′(θ, ν)eiq
′η
)

sin θdθdνdη

=
στ

2τz

∑

l,p,q

2f lpq(t)

∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)
[
e−i(q−2)η + e−i(q+2)η

] (
Yl′p′(θ, ν)eiq

′η
)

sin θdθdνdη

=
στ

2τz

∑

l,p,q

2f lpq(t)

[∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−i(q−2)ηYl′p′(θ, ν)eiq
′η sin θdθdνdη

+

∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−i(q+2)ηYl′p′(θ, ν)eiq
′η sin θdθdνdη

]

=
στ

2τz

[
2f l

′
p′q′+2(t) + 2f l

′
p′q′−2(t)

]
2π. (5.172)

3

∫ 2π

0

∫ 2π

0

∫ π

0

(∑

l,p,q

f lpq(t) (−l (l + 1))Y ∗lp(θ, ν)e−iqη
)(

Yl′p′(θ, ν)eiq
′η
)

sin θdθdνdη

=
∑

l,p,q

f lpq(t) (−l (l + 1))

∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−iqηYl′p′(θ, ν)eiq
′η sin θdθdνdη

=
∑

l,p,q

f lpq(t) (−l (l + 1)) δll′δpp′δqq′2π

= (2π) f l
′
p′q′(t) (−l′ (l′ + 1)) . (5.173)

4

∫ 2π

0

∫ 2π

0

∫ π

0

(∑

l,p,q

(
−p2

)( τ

2τz
− 1

)
f lpq(t)Y

∗
lp(θ, ν)e−iqη

)(
Yl′p′(θ, ν)eiq

′η
)

sin θdθdνdη

=
∑

l,p,q

(
−p2

)( τ

2τz
− 1

)
f lpq(t)

∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−iqηYl′p′(θ, ν)eiq
′η sin θdθdνdη

=
∑

l,p,q

(
−p2

)( τ

2τz
− 1

)
f lpq(t)δll′δpp′δqq′2π

= (2π)
(
−p′2

)( τ

2τz
− 1

)
f l
′
p′q′(t). (5.174)
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5

∫ 2π

0

∫ 2π

0

∫ π

0

(∑

l,p,q

f lpq(t)
(
−q2

)( τ

2τz

)
Y ∗lp(θ, ν)e−iqη

)(
Yl′p′(θ, ν)eiq

′η
)

sin θdθdνdη

=
∑

l,p,q

(
−q2

)( τ

2τz

)
f lpq(t)

∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)e−iqηYl′p′(θ, ν)eiq
′η sin θdθdνdη

=
∑

l,p,q

(
−q2

)( τ

2τz

)
f lpq(t)δll′δpp′δqq′2π

= (2π)
(
−q′2

)( τ

2τz

)
f l
′
p′q′(t). (5.175)

Substituting Eqs. (5.171) - (5.175) into Eq. (5.168) we obtain

2τ (2π)
df l
′
p′q′(t)

dt

=
στ

2τz

[
1

− (q′ + 2) f l
′
p′q′+2(t) + (q′ − 2) f l

′
p′q′−2(t) +

2

2f l
′
p′q′+2(t) + 2f l

′
p′q′−2(t)

]
2π

+ τ 1−α
0D

1−α
t

[
3

(2π) f l
′
p′q′(t) (−l′ (l′ + 1)) +

4

(2π)
(
−p′2

)( τ

2τz
− 1

)
f l
′
p′q′(t)

+

5

(2π)
(
−q′2

) ( τ

2τz

)
f l
′
p′q′(t)

]
, (5.176)

Eq. (5.176) can be rewritten as

2τ
d

dt
f lpq(t) =

στ

2τz
q
[
f lpq−2(t)− f lpq+2(t)

]

− τ 1−α
0D

1−α
t [(l (l + 1)) +

(
p2
)( τ

2τz
− 1

)
+
(
q2
)( τ

2τz

)]
f lpq(t).

(5.177)

5.F.1 Evaluation of the partial derivatives in Eq. (5.167)

The spherical harmonics Ylp(θ, ν) are defined by

Ylp (θ, ν) =

√
(2l + 1)

4π

(l − p)!
(l + p)!

eip νP p
l (cos (θ)) |p| ≤ l. (5.178)
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We seek a solution of the fractional Smoluchowski equation as the Fourier-Laplace

series

f(θ, ν, η, t) =
∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη. (5.179)

The partial derivatives of f(θ, ν, η, t) are given by

∂

∂ν
f (θ, ν, η, t) =

∂

∂ν

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

=
∑

l,p,q

f lpq(t)
∂

∂ν
Y ∗lp(θ, ν)e−iqη

=
∑

l,p,q

f lpq(t) (−ip)Y ∗lp(θ, ν)e−iqη, (5.180)

∂2

∂ν2
f (θ, ν, η, t) =

∂2

∂ν2

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

=
∑

l,p,q

f lpq(t)
∂2

∂ν2
Y ∗lp(θ, ν)e−iqη

=
∑

l,p,q

f lpq(t)
(
−p2

)
Y ∗lp(θ, ν)e−iqη, (5.181)

∂

∂η
f (θ, ν, η, t) =

∂

∂η

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

=
∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)

∂

∂η
e−iqη

=
∑

l,p,q

f lpq(t) (−iq)Y ∗lp(θ, ν)e−iqη, (5.182)

∂2

∂η2
f (θ, ν, η, t) =

∂2

∂η2

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

=
∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)

∂2

∂η2
e−iqη

=
∑

l,p,q

f lpq(t)
(
−q2

)
Y ∗lp(θ, ν)e−iqη. (5.183)
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Using the properties of spherical harmonics, ∆θ,νf can be written as [2]

∆θ,νf =∆θ,ν

(∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη

)

=
∑

l,p,q

f lpq(t)
(
∆θ,νY

∗
lp(θ, ν)

)
e−iqη

=
∑

l,p,q

f lpq(t)
(
−l (l + 1)Y ∗lp(θ, ν)

)
e−iqη. (5.184)

5.G Derivation of the Differential-Recurrence Re-

lation in terms of the Functions ac,s2q−1 (t)

The associated Legendre functions P p
l (cos θ) are defined as [2]

P p
l (cos θ) =

(−1)p

2ll!
(sin θ)p

dl+p

d(cos θ)l+p
(
cos2θ − 1

)l
, |p| ≤ l. (5.185)

With l = p = 1, we have

P 1
1 (cos θ) = − sin θ. (5.186)

The spherical harmonics Ylp (θ, ν) are given by [2]

Ylp (θ, ν) =

√
(2l + 1)

4π

(l − p)!
(l + p)!

eip νP p
l (cos θ) . (5.187)

The spherical harmonic Y11 (θ, ν) is given by

Y11 (θ, ν) =

√
2 (1) + 1

4π

(1− 1)!

(1 + 1)!
ei(1)νP 1

1 (cos θ)

=

√
3

8π
eiνP 1

1 (cos θ)

=−
√

3

8π
eiν sin θ. (5.188)

Using the following property of spherical harmonics

Yl−m (θ, ν) = (−1)mY ∗lm (θ, ν) , (5.189)
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we have

Y1−1 (θ, ν) = (−1)1Y ∗11 (θ, ν) =

√
3

8π
e−iν sin θ. (5.190)

Recall that that the Fourier amplitudes f lpq(t) are the statistical moments defined

by

f lpq(t) =

∫
Ylp(θ, ν)eiqηf(θ, ν, η, t)dΩ′ =

〈
Ylp(θ, ν)eiqη

〉
(t), (5.191)

where dΩ′ = sin θdθdνdη, Ylp(θ, ν) are spherical harmonics, with l = 0, 1, 2, ...,

p = 0,±1, ...,±l and q = 0,±2,±4... for even values of p and q = ±1,±3... for odd

values of p. For l = 1 and p = −1 we have

f 1
−1q(t) =

〈
Y1,−1(θ, ν)eiqη

〉
(t)

=
〈
Y1,−1(θ, ν) [cos (qη) + i sin (qη)]

〉
(t)

=
〈
Y1,−1(θ, ν) cos (qη)

〉
(t) + i

〈
Y1,−1(θ, ν) sin (qη)

〉
(t)

=acq (t) + iasq (t) . (5.192)

We recall that the differential-recurrence relation for f lpq(t) is given by

2τ
d

dt
f lpq(t) =

{
τσV
2τz

q
[
f lpq−2(t)− f lpq+2(t)

]

− τ 1−α
0D

1−α
t

[
l(l + 1) + p2

(
τ

2τz
− 1

)
+ q2 τ

2τz

]
f lpq(t)

}
.

(5.193)

Substituting Eq. (5.192) into Eq. (5.193) we obtain

2τ
d

dt

[
acq (t) + iasq (t)

]
=

{
τσV
2τz

q
[[
acq−2 (t) + iasq−2 (t)

]
−
[
acq+2 (t) + iasq+2 (t)

]]

− τ 1−α
0D

1−α
t

[
(1) (1 + 1) + (−1)2

(
τ

2τz
− 1

)
+ q2 τ

2τz

] [
acq (t) + iasq (t)

]}
.

(5.194)

⇒2τ
d

dt

[
acq (t) + iasq (t)

]
=

{
τσV
2τz

q
[[
acq−2 (t) + iasq−2 (t)

]
−
[
acq+2 (t) + iasq+2 (t)

]]

− τ 1−α
0D

1−α
t

[
2 +

(
τ

2τz
− 1

)
+ q2 τ

2τz

] [
acq (t) + iasq (t)

]}
. (5.195)
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From Eq. (5.195) we have

2τ
d

dt
acq (t) =

{
τσV
2τz

q
[
acq−2 (t)− acq+2 (t)

]

− τ 1−α
0D

1−α
t

[
2 +

(
τ

2τz
− 1

)
+ q2 τ

2τz

]
acq (t)

}
, (5.196)

and

2τ
d

dt
iasq (t) =

{
τσV
2τz

q
[
iasq−2 (t)− iasq+2 (t)

]

− τ 1−α
0D

1−α
t

[
2 +

(
τ

2τz
− 1

)
+ q2 τ

2τz

]
iasq (t)

}
.

⇒ 2τ
d

dt
asq (t) =

{
τσV
2τz

q
[
asq−2 (t)− asq+2 (t)

]

− τ 1−α
0D

1−α
t

[
2 +

(
τ

2τz
− 1

)
+ q2 τ

2τz

]
asq (t)

}
. (5.197)

Eqs. (5.196) and (5.197) can be written more compactly as

2τ
d

dt
ac,sq (t) =

{
τσV
2τz

q
[
ac,sq−2 (t)− ac,sq+2 (t)

]

− τ 1−α
0D

1−α
t

[
2 +

(
τ

2τz
− 1

)
+ q2 τ

2τz

]
ac,sq (t)

}
. (5.198)

Replacing q with 2q − 1 in Eq. (5.198) we have

2τ
d

dt
ac,s2q−1 (t) =

{
τσV
2τz

(2q − 1)
[
ac,s(2q−1)−2 (t)− ac,s(2q−1)+2 (t)

]

− τ 1−α
0D

1−α
t

[
2 +

(
τ

2τz
− 1

)
+ (2q − 1)2 τ

2τz

]
ac,s2q−1 (t)

}
.

(5.199)

⇒ 2τ
d

dt
ac,s2q−1 (t) =

{
τσV
2τz

(2q − 1)
[
ac,s2q−3 (t)− ac,s2q+1 (t)

]

− τ 1−α
0D

1−α
t

[
2 +

(
τ

2τz
− 1

)
+ (2q − 1)2 τ

2τz

]
ac,s2q−1 (t)

}
.

(5.200)
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We define Q−2q−1, Q
+
2q−1, and Q2q−1 as

Q−2q−1 =
τσV
2τz

(2q − 1)

=σV

(
τ

2τz

)
(2q − 1)

=σV γ (2q − 1) , (5.201)

Q+
2q−1 =− τσV

2τz
(2q − 1)

=− σV
(
τ

2τz

)
(2q − 1)

=− σV γ (2q − 1) , (5.202)

Q2q−1 =− 2−
(
τ

2τz
− 1

)
− (2q − 1)2 τ

2τz

=− 1− τ

2τz
− (2q − 1)2 τ

2τz

=− 1− γ − (2q − 1)2γ

=− 1− γ
(
1 + (2q − 1)2) . (5.203)

Using Eqs. (5.201) - (5.203) we may write Eq. (5.200) as the ordinary differential-

recurrence relation

2τ
d

dt
ac,s2q−1 (t) = Q−2q−1a

c,s
2q−3 (t)+Q+

2q−1a
c,s
2q+1 (t)+τ 1−α

0D
1−α
t Q2q−1a

c,s
2q−1 (t) . (5.204)
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Taking the Laplace transform of both sides of Eq. (5.204) we have (see Appendix

5.H)

2τ
[
sãc,s2q−1 (s)− ac,s2q−1 (0)

]
= Q−2q−1ã

c,s
2q−3 (s) +Q+

2q−1ã
c,s
2q+1 (s) +

τ 1−α

sα−1
Q2q−1ã

c,s
2q−1 (s) .

(5.205)

⇒− 2τac,s2q−1 (0) =
(
−2τs+ (τs)1−αQ2q−1

)
ãc,s2q−1 (s) +Q−2q−1ã

c,s
2q−3 (s) +Q+

2q−1ã
c,s
2q+1 (s) .

(5.206)

⇒− 2τac,s2q−1 (0) = Q̄2q−1ã
c,s
2q−1 (s) +Q−2q−1ã

c,s
2q−3 (s) +Q+

2q−1ã
c,s
2q+1 (s) , (5.207)

where

Q̄2q−1(s) = (τs)1−αQ2q−1 − 2τs. (5.208)

5.H The Laplace Transform of 0D
1−α
t Q2q−1a

c,s
2q−1 (t)

The fractional operator 0D
1−α
t ≡ ∂

∂t 0D
−α
t is defined in terms of the convolution (the

Riemann-Liouville definition)

0D
−α
t f( Ω, t) =

1

Γ(α)

∫ t

0

f(Ω , t′)dt′

(t− t′)1−α , (5.209)

where Γ(α) denotes the gamma function. Eq. (5.209) can be rewritten as

0D
1−α
t f( Ω, t) =0D

−(α−1)
t f( Ω, t)

=
1

Γ(α− 1)

∫ t

0

f(Ω , t′)dt′

(t− t′)1−(α−1)

=
1

Γ(α− 1)

∫ t

0

f(Ω , t′)dt′

(t− t′)2−α

=
1

Γ(α− 1)

[
f(Ω , t)u (t) ∗ 1

(t)2−αu (t)

]
, (5.210)
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where the asterisk denotes linear convolution and u(t) is the unit step function.

Taking the Laplace transform of 0D
1−α
t f(Ω, t) we get

L
{

0D
1−α
t f( Ω, t)

}
= L

{
1

Γ(α− 1)

[
f(Ω , t)u (t) ∗ 1

(t)2−αu (t)

]}
. (5.211)

Using the convolution property of the Laplace transform we can rewrite Eq. (5.211)

as

L
{

0D
1−α
t f( Ω, t)

}
=

1

Γ(α− 1)

[
L{f(Ω , t)u (t)} × L

{
1

(t)2−αu (t)

}]
. (5.212)

We seek now to obtain the Laplace transform of 1/(t)2−αu (t). From the table of

Laplace transforms [119] we have

L
{

(t)n−1

(n− 1)!
u (t)

}
=

1

sn
, Re {s} > 0. (5.213)

Multiplying both sides of Eq. (5.213) by (n− 1)! we have

L
{

(t)n−1u (t)
}

=
(n− 1)!

sn
, Re {s} > 0. (5.214)

Replacing n by n− 1 in Eq. (5.214) we obtain

L
{

(t)(n−1)−1u (t)
}

=
((n− 1)− 1)!

s(n−1)
, Re {s} > 0. (5.215)

⇒L
{

(t)n−2u (t)
}

=
(n− 2)!

s(n−1)
, Re {s} > 0. (5.216)

With n = α in Eq. (5.216) we get

L
{

1

(t)2−αu (t)

}
= L

{
(t)α−2u (t)

}
=

(α− 2)!

s(α−1)
, Re {s} > 0. (5.217)
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The Laplace transform of the functions acq(t) and asq(t) is given by

L
{

0D
1−α
t Q2q−1a

c,s
2q−1 (t)

}
=Q2q−1L

{
0D

1−α
t ac,s2q−1 (t)

}

=Q2q−1ã
c,s
2q−1 (s)

[
(α− 2)!

sα−1

]
1

Γ (α− 1)
. (5.218)

Noting that Γ (α− 1) = (α− 2)! we get for Eq. (5.218)

L
{

0D
1−α
t Q2q−1a

c,s
2q−1 (t)

}
=Q2q−1ã

c,s
2q−1 (s)

[
(α− 2)!

sα−1

]
1

(α− 2)!

=Q2q−1ã
c,s
2q−1 (s)

1

sα−1
. (5.219)

5.I The Initial Values of the Functions ac,sq (t)

We have for the initial value acq (t)

acq(0) =

∫
Y1−1(θ, ν) cos qη e(σ1 sin θ cos(ν+η)+σ2 sin θ cos(ν−η))+σV cos 2ηdΩ′∫

e(σ1 sin θ cos(ν+η)+σ2 sin θ cos(ν−η))+σV cos 2ηdΩ′

=

∫
Y1−1(θ, ν) cos qη e(σ1 sin θ cos(ν+η)+σ2 sin θ cos(ν−η))eσV cos 2ηdΩ′∫

e(σ1 sin θ cos(ν+η)+σ2 sin θ cos(ν−η))eσV cos 2ηdΩ′
. (5.220)

Since σi � 1, i = 1, 2, we may approximate e(σ1 sin θ cos(ν+η)+σ2 sin θ cos(ν−η)) as

e(σ1 sin θ cos(ν+η)+σ2 sin θ cos(ν−η)) ≈ [1 + σ1 sin θ cos(ν + η) + σ2 sin θ cos(ν − η)] .

(5.221)

Substituting Eq. (5.221) into Eq. (5.220) we get

acq(0) ≈
∫
Y1−1(θ, ν) cos qη [1 + σ1 sin θ cos(ν + η) + σ2 sin θ cos(ν − η)] eσV cos 2ηdΩ′∫

[1 + σ1 sin θ cos(ν + η) + σ2 sin θ cos(ν − η)] eσV cos 2ηdΩ′
.

(5.222)

Eq. (5.222) may be written as

acq(0) ≈
∫
Y1−1(θ, ν) cos qηeσV cos 2ηdΩ′∫

[1 + σ1 sin θ cos(ν + η) + σ2 sin θ cos(ν − η)] eσV cos 2ηdΩ′

+

∫
Y1−1(θ, ν) cos qη [σ1 sin θ cos(ν + η)] eσV cos 2ηdΩ′∫

[1 + σ1 sin θ cos(ν + η) + σ2 sin θ cos(ν − η)] eσV cos 2ηdΩ′

+

∫
Y1−1(θ, ν) cos qη [σ2 sin θ cos(ν − η)] eσV cos 2ηdΩ′∫

[1 + σ1 sin θ cos(ν + η) + σ2 sin θ cos(ν − η)] eσV cos 2ηdΩ′
. (5.223)
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Note that since σi � 1, i = 1, 2, we can rewrite Eqn. (5.223) as

acq(0) ≈
∫
Y1−1(θ, ν) cos qηeσV cos 2ηdΩ′∫

eσV cos 2ηdΩ′

+

∫
Y1−1(θ, ν) cos qη [σ1 sin θ cos(ν + η)] eσV cos 2ηdΩ′∫

eσV cos 2ηdΩ′

+

∫
Y1−1(θ, ν) cos qη [σ2 sin θ cos(ν − η)] eσV cos 2ηdΩ′∫

eσV cos 2ηdΩ′
, (5.224)

which can also be written as

acq(0) ≈〈Y1−1(θ, ν) cos qη〉0 + 〈Y1−1(θ, ν) cos qη [σ1 sin θ cos(ν + η)]〉0
+ 〈Y1−1(θ, ν) cos qη [σ2 sin θ cos(ν − η)]〉0. (5.225)

Since 〈Y1−1(θ, ν) cos qη〉0 = 0 we have

acq(0) ≈σ1〈Y1−1(θ, ν) cos qη sin θ cos(ν + η)〉0
+ σ2〈Y1−1(θ, ν) cos qη sin θ cos(ν − η)〉0. (5.226)

Similarly, we have for the initial value asq(0)

asq(0) ≈〈Y1−1(θ, ν) sin qη〉0 + 〈Y1−1(θ, ν) sin qη [σ1 sin θ cos(ν + η)]〉0
+ 〈Y1−1(θ, ν) sin qη [σ2 sin θ cos(ν − η)]〉0. (5.227)

Since 〈Y1−1(θ, ν) sin qη〉0 = 0 we have

asq(0) ≈σ1〈Y1−1(θ, ν) sin qη sin θ cos(ν + η)〉0
+ σ2〈Y1−1(θ, ν) sin qη sin θ cos(ν − η)〉0. (5.228)
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Using Euler’s formula, we can write Eqs. (5.226) and (5.228) as

acq(0) ≈σ1

2

〈
Y1−1(θ, ν) cos qη sin θ

[
eiνeiη + e−iνe−iη

]〉
0

+
σ2

2

〈
Y1−1(θ, ν) cos qη sin θ

[
eiνe−iη + e−iνeiη

]〉
0
, (5.229)

asq(0) ≈σ1

2

〈
Y1−1(θ, ν) sin qη sin θ

[
eiνeiη + e−iνe−iη

]〉
0

+
σ2

2

〈
Y1−1(θ, ν) sin qη sin θ

[
eiνe−iη + e−iνeiη

]〉
0
. (5.230)

Since the spherical harmonic Y1−1(θ, ν) is given as

Y1−1(θ, ν) =

√
3

8π
sin θe−iν , (5.231)

we have

sin θe−iν =

√
8π

3
Y1−1(θ, ν), (5.232)

whose complex conjugate is given by

sin θeiν =

√
8π

3
Y ∗1−1(θ, ν), (5.233)

where the asterisk denotes complex conjugation. Furthermore, using Eqs. (5.232)

and (5.233) and Euler’s formula, we may write Eq. (5.229) as

acq(0) ≈σ1

4

√
8π

3

(〈
Y1−1(θ, ν)Y ∗1−1(θ, ν)

[
ei(q+1)η + e−i(q−1)η

]

+ Y1−1(θ, ν)Y1−1(θ, ν)
[
ei(q−1)η + e−i(q+1)η

]〉
0

)

+
σ2

4

√
8π

3

(〈
Y1−1(θ, ν)Y ∗1−1(θ, ν)

[
ei(q−1)η + e−i(q+1)η

]

+ Y1−1(θ, ν)Y1−1(θ, ν)
[
ei(q+1)η + e−i(q−1)η

]〉
0

)
. (5.234)
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Similarly using Eqs. (5.232) and (5.233) and Euler’s formula we may write Eq.

(5.230) as

asq(0) ≈σ1

4i

√
8π

3

(〈
Y1−1(θ, ν)Y ∗1−1(θ, ν)

[
ei(q+1)η − e−i(q−1)η

]

+ Y1−1(θ, ν)Y1−1(θ, ν)
[
ei(q−1)η − e−i(q+1)η

]〉
0

)

+
σ2

4i

√
8π

3

(〈
Y1−1(θ, ν)Y ∗1−1(θ, ν)

[
ei(q−1)η − e−i(q+1)η

]

+ Y1−1(θ, ν)Y1−1(θ, ν)
[
ei(q+1)η − e−i(q−1)η

]〉
0

)
. (5.235)

Consider the following properties of spherical harmonics

Yl−p (θ, ν) = (−1)p Y ∗lp, (5.236)

and ∫ 2π

0

∫ π

0

Ylp(θ, ν)[Yl′p′(θ, ν)]∗ sin θdθdν = δll′δpp′ . (5.237)

Using Eqs. (5.236) and (5.237) we may write Eq. (5.234) as

acq(0) ≈σ1

4

√
8π

3

∫ 2π

0

(
ei(q+1)η + e−i(q−1)η

)
eσV cos 2ηdη

4π
∫ 2π

0
eσV cos 2ηdη

+
σ2

4

√
8π

3

∫ 2π

0

(
ei(q−1)η + e−i(q+1)η

)
eσV cos 2ηdη

4π
∫ 2π

0
eσV cos 2ηdη

, (5.238)

and we may write Eq. (5.235) as

asq(0) ≈σ1

4i

√
8π

3

∫ 2π

0

(
ei(q+1)η − e−i(q−1)η

)
eσV cos 2ηdη

4π
∫ 2π

0
eσV cos 2ηdη

+
σ2

4i

√
8π

3

∫ 2π

0

(
ei(q−1)η − e−i(q+1)η

)
eσV cos 2ηdη

4π
∫ 2π

0
eσV cos 2ηdη

. (5.239)

The function eσV cos 2η may be written as the Fourier series [83]

eσV cos 2η =
∞∑

m=−∞
Im (σV ) ei2mη, (5.240)

where Im(σV ) is the modified Bessel function of the first kind of order m. From
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Eq. (5.240), using the orthogonality property of circular functions and noting that

I−m (σV ) = Im (σV ), we have for Eq. (5.238)

acq(0) ≈σ1

4

√
8π

3

∫ 2π

0
ei(q+1)η

[ ∞∑
m=−∞

Im (σV ) ei2mη
]

+ e−i(q−1)η

[ ∞∑
m=−∞

Im (σV ) ei2mη
]
dη

4π
∫ 2π

0

[ ∞∑
m=−∞

Im (σV ) ei2mη
]
dη

+
σ2

4

√
8π

3

∫ 2π

0
ei(q−1)η

[ ∞∑
m=−∞

Im (σV ) ei2mη
]

+ e−i(q+1)η

[ ∞∑
m=−∞

Im (σV ) ei2mη
]
dη

4π
∫ 2π

0

[ ∞∑
m=−∞

Im (σV ) ei2mη
]
dη

.

(5.241)

⇒ acq(0) ≈σ1

4

√
8π

3

∫ 2π

0

[ ∞∑
m=−∞

Im (σV ) ei(q+1+2m)η

]
+

[ ∞∑
m=−∞

Im (σV ) ei(1−q+2m)η

]
dη

4π
∫ 2π

0

[ ∞∑
m=−∞

Im (σV ) ei2mη
]
dη

+
σ2

4

√
8π

3

∫ 2π

0

[ ∞∑
m=−∞

Im (σV ) ei(q−1+2m)η

]
+

[ ∞∑
m=−∞

Im (σV ) ei(−1−q+2m)η

]
dη

4π
∫ 2π

0

[ ∞∑
m=−∞

Im (σV ) ei2mη
]
dη

.

(5.242)

⇒ acq(0) ≈σ1

4

√
8π

3

∞∑
m=−∞

Im (σV )
∫ 2π

0
ei(q+1+2m)ηdη +

∞∑
m=−∞

Im (σV )
∫ 2π

0
ei(1−q+2m)ηdη

4π
∞∑

m=−∞
Im (σV )

∫ 2π

0
ei2mηdη

+
σ2

4

√
8π

3

∞∑
m=−∞

Im (σV )
∫ 2π

0
ei(q−1+2m)ηdη +

∞∑
m=−∞

Im (σV )
∫ 2π

0
ei(−1−q+2m)ηdη

4π
∞∑

m=−∞
Im (σV )

∫ 2π

0
ei2mηdη

.

(5.243)
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⇒ acq(0) ≈σ1

4

√
8π

3

2πI(−(q+1)/2) (σV ) + 2πI((q−1)/2) (σV )

4π (2πI0 (σV ))

+
σ2

4

√
8π

3

2πI(−(q−1)/2) (σV ) + 2πI((q+1)/2) (σV )

4π (2πI0 (σV ))
. (5.244)

⇒ acq(0) ≈σ1

4

√
8π

3

I(−(q+1)/2) (σV ) + I((q−1)/2) (σV )

4π (I0 (σV ))

+
σ2

4

√
8π

3

I(−(q−1)/2) (σV ) + I((q+1)/2) (σV )

4π (I0 (σV ))
. (5.245)

⇒ acq(0) ≈σ1

4

√
8π

3

I((q+1)/2) (σV ) + I((q−1)/2) (σV )

4π (I0 (σV ))

+
σ2

4

√
8π

3

I((q−1)/2) (σV ) + I((q+1)/2) (σV )

4π (I0 (σV ))
. (5.246)

⇒ acq(0) ≈ σ1 + σ2

4 (I0 (σV ) 4π)

√
8π

3

(
I((q+1)/2) (σV ) + I((q−1)/2) (σV )

)

=
σ1 + σ2

4I0 (σV )

√
1

6π

(
I((q+1)/2) (σV ) + I((q−1)/2) (σV )

)
. (5.247)

Similarly, we have for Eq. (5.239)

asq(0) ≈ σ1 − σ2

4i (I0 (σV ) 4π)

√
8π

3

(
I((q+1)/2) (σV )− I((q−1)/2) (σV )

)

=
σ1 − σ2

4iI0 (σV )

√
1

6π

(
I((q+1)/2) (σV )− I((q−1)/2) (σV )

)
. (5.248)

Eq. (5.248) may be written as

asq(0) ≈ i (σ2 − σ1)

4I0 (σV )

√
1

6π

(
I((q+1)/2) (σV )− I((q−1)/2) (σV )

)
. (5.249)
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Eqs. (5.247) and (5.249) may be written more compactly as

acq(0) ≈ σ1(1 + κ)

4
√

6πI0(σV )

(
I(q+1)/2(σV ) + I(q−1)/2(σV )

)
, (5.250)

asq(0) ≈ iσ1 (κ− 1)

4
√

6πI0(σV )

(
I(q+1)/2(σV )− I(q−1)/2(σV )

)
, (5.251)

where κ = µ2/µ1.

5.J Solving the Differential-Recurrence Relation

via Continued Fractions

Recall that the three-term scalar differential recurrence relation is given by

2τ
d

dt
aJ2p−1(t) = Q−2p−1a

J
2p−3(t) +Q+

2p−1a
J
2p+1(t) + τ 1−α

0D
1−α
t Q2p−1a

J
2p−1(t), (5.252)

where J = c, s, p = 1, 2, 3, ..., ac−1(t) = ac1(t), as−1(t) = −as1(t),

Q2q−1 =− 1− γ
(
1 + (2q − 1)2) , (5.253)

Q±2q−1 =∓ σV γ(2q − 1), (5.254)

acp(t) = 〈Y1−1 cos pη〉 (t), (5.255)

asp(t) = 〈Y1−1 sin pη〉 (t). (5.256)

and γ = τ/(2τz) is a ratio of Debye times. Taking the Laplace transform of Eq.

(5.252) we obtained a three-term recurrence relation in the s domain viz.

(1− δp1)Q−2p−1ã
J
2p−3(s)+

(
Q̄2p−1(s) + bJδp1

)
ãJ2p−1(s)+Q+

2p−1ã
J
2p+1(s) = −2τaJ2p−1(0),

(5.257)

where bc = γσV , bs = −γσV ,

Q̄p(s) = (τs)1−αQp − 2τs, (5.258)
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and

ãJp (s) =

∫ ∞

0

aJp (t)e−stdt. (5.259)

We seek the solution of Eq. (5.257) as

ãJ2p−1 (s) = S2p−1 (s) ãJ2p−3 (s) +R2p−1 (s) , (5.260)

where

S2p−1 (s) =
[
−Q̄2p−1(s)− bJδp1 −Q+

2p−1S2p+1 (s)
]−1

Q−2p−1. (5.261)

The particular solution R2p−1 (s) may be found by substituting Eq. (5.260) into Eq.

(5.257) to obtain

(1− δp1)Q−2p−1ã
J
2p−3(s) +

(
Q̄2p−1(s) + bJδp1

) [
S2p−1 (s) ãJ2p−3 (s) +R2p−1 (s)

]

+Q+
2p−1

{
S2p+1 (s) ãJ2p−1 (s) +R2p+1 (s)

}
= −2τaJ2p−1(0), (5.262)

which can be written as

(1− δp1)Q−2p−1ã
J
2p−3(s) +

(
Q̄2p−1(s) + bJδp1

) [
S2p−1 (s) ãJ2p−3 (s) +R2p−1 (s)

]

+Q+
2p−1

{
S2p+1 (s)

[
S2p−1 (s) ãJ2p−3 (s) +R2p−1 (s)

]
+R2p+1 (s)

}
= −2τaJ2p−1(0).

(5.263)

Eq. (5.263) can be further written as

Q−2p−1ã
J
2p−3(s)− δp1Q−2p−1ã

J
2p−3(s)

+
[
S2p−1 (s)

(
Q̄2p−1(s) + bJδp1 +Q+

2p−1S2p+1 (s)
)
ãJ2p−3 (s)

]

+
[
Q̄2p−1(s) + bJδp1 +Q+

2p−1S2p+1 (s)
]
R2p−1 (s) +Q+

2p−1R2p+1 (s) = −2τaJ2p−1(0).

(5.264)

Eq. (5.261) can be written as

S2p−1 (s)
[
Q̄2p−1(s) + bJδp1 +Q+

2p−1S2p+1 (s)
]

= −Q−2p−1. (5.265)
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Substituting Eq. (5.265) into Eq. (5.264) we obtain

Q−2p−1ã
J
2p−3(s)− δp1Q−2p−1ã

J
2p−3(s) +

[
−Q−2p−1ã

J
2p−3 (s)

]

+
[
Q̄2p−1(s) + bJδp1 +Q+

2p−1S2p+1 (s)
]
R2p−1 (s) +Q+

2p−1R2p+1 (s) = −2τaJ2p−1(0).

(5.266)

⇒− δp1Q−2p−1ã
J
2p−3(s) +

[
Q̄2p−1(s) + bJδp1 +Q+

2p−1S2p+1 (s)
]
R2p−1 (s)

+Q+
2p−1R2p+1 (s) = −2τaJ2p−1(0). (5.267)

Since δp1 = 0, p 6= 1, we have

− δp1Q−1 ãJ−1(s) +
[
Q̄2p−1(s) + bJδp1 +Q+

2p−1S2p+1 (s)
]
R2p−1 (s)

+Q+
2p−1R2p+1 (s) = −2τaJ2p−1(0). (5.268)

⇒
[
−Q̄2p−1(s)− bJδp1 −Q+

2p−1S2p+1 (s)
]
R2p−1 (s)

−Q+
2p−1R2p+1 (s) = 2τaJ2p−1(0)− δp1Q−1 ãJ−1(s). (5.269)

We obtain the following expression for R2p−1 (s)

R2p−1 (s) =
2τaJ2p−1(0)− δp1Q−1 ãJ−1(s) +Q+

2p−1R2p+1 (s)[
−Q̄2p−1(s)− bJδp1 −Q+

2p−1S2p+1 (s)
] . (5.270)

With p = 1 we have

R1 (s) =
2τaJ1 (0)−Q−1 ãJ−1(s) +Q+

1 R3 (s)[
−Q̄1(s)− bJ −Q+

1 S3 (s)
]

=
2τaJ1 (0)−Q−1 ãJ−1(s)[
−Q̄1(s)− bJ −Q+

1 S3 (s)
] +

Q+
1 R3 (s)[

−Q̄1(s)− bJ −Q+
1 S3 (s)

] . (5.271)

Let p = 2, in Eq. (5.270)

R3 (s) =
2τaJ3 (0) +Q+

3 R5 (s)[
−Q̄3(s)−Q+

3 S5 (s)
] . (5.272)
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Substituting Eq. (5.272) into Eq. (5.271), we get

R1 (s) =
2τaJ1 (0)−Q−1 ãJ−1(s)[
−Q̄1(s)− bJ −Q+

1 S3 (s)
]+ Q+

1

[
2τaJ3 (0) +Q+

3 R5 (s)
]

[
−Q̄1(s)− bJ −Q+

1 S3 (s)
] [
−Q̄3(s)−Q+

3 S5 (s)
] .

(5.273)

We introduce the continued fraction ∆n (s)

∆2n−1 (s) =
S2n−1 (s)

Q−2n−1 (s)
=
[
−Q̄2n−1 (s)−Q+

2n−1 (s) ∆2n+1 (s)Q−2n+1

]−1
, n ≥ 2.

(5.274)

S2n−1(s) can now be expressed as

S2n−1 (s) = ∆2n−1 (s)Q−2n−1 (s) , n ≥ 2. (5.275)

With n = 2 in Eqs. (5.274) and (5.275) we have

∆3 (s) =
S3 (s)

Q−3 (s)
=

1[
−Q̄3 (s)−Q+

3 (s) ∆5 (s)Q−5 (s)
] , (5.276)

S3 (s) =∆3 (s)Q−3 (s) . (5.277)

Substituting Eqs. (5.276) and (5.277) into Eq. (5.273) we get

R1 (s) =
2τaJ1 (0)−Q−1 ãJ−1(s) +Q+

1 ∆3 (s)
[
2τaJ3 (0)

]
+Q+

1 ∆3 (s)Q+
3 R5 (s)[

−Q̄1(s)− bJ −Q+
1 ∆3 (s)Q−3 (s)

] .

(5.278)

Substituting for R5(s) in Eq. (5.278), and again using Eqs. (5.274) and (5.275) we

obtain

R1 (s) =
2τaJ1 (0)−Q−1 ãJ−1(s) +Q+

1 ∆3 (s)
[
2τaJ3 (0)

]
+Q+

1 ∆3 (s)Q+
3 ∆5 (s)

[
2τaJ5 (0) + ...

]
[
−Q̄1(s)− bJ −Q+

1 ∆3 (s)Q−3 (s)
] .

(5.279)
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Substituting Eq. (5.279) into Eq. (5.260) with p = 1 yields

ãJ1 (s) =S1 (s) ãJ−1 (s) +R1 (s)

=
Q−1 ã

J
−1 (s)[

−Q̄1(s)− bJ −Q+
1 ∆3 (s)Q−3 (s)

]

+
2τaJ1 (0)−Q−1 ãJ−1(s) +Q+

1 ∆3 (s)
[
2τaJ3 (0) +Q+

3 ∆5 (s)
(
2τaJ5 (0) + ...

)]
[
−Q̄1(s)− bJ −Q+

1 ∆3 (s)Q−3 (s)
]

=
Q−1 ã

J
−1 (s)−Q−1 ãJ−1(s) + 2τ

{
aJ1 (0) +Q+

1 ∆3 (s)
[
aJ3 (0) +Q+

3 ∆5 (s)
(
aJ5 (0) + ...

)]}
[
−Q̄1(s)− bJ −Q+

1 ∆3 (s)Q−3 (s)
] .

(5.280)

⇒ ãJ1 (s) =2τ

{
aJ1 (0) +Q+

1 ∆3 (s)
[
aJ3 (0) +Q+

3 ∆5 (s)
(
aJ5 (0) + ...

)]}
[
−Q̄1(s)− bJ −Q+

1 ∆3 (s)Q−3 (s)
] . (5.281)

5.K Derivation of the Response Functions c1(t)

and c2(t)

Consider the spherical harmonic Ylp(θ, ν) for l = 1, p = −1

Y1−1(θ, ν) =

√
3

8π
sin θe−iν . (5.282)

We have

sin (θ) e−iν =

√
8π

3
Y1−1(θ, ν), (5.283)

and

sin (θ) eiν =

√
8π

3
Y ∗1−1(θ, ν), (5.284)

where the asterisk denotes complex conjugation. We will use the following properties

of spherical harmonics

∫ 2π

0

∫ π

0

Y ∗lp(θ, ν)Yl′p′(θ, ν) sin θdθdν = δll′δpp′ , (5.285)

and

Yl−p (θ, ν) = (−1)p Y ∗lp. (5.286)
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With l = 1 and p = 1 in Eq. (5.286), we have

Y1−1 (θ, ν) = (−1)1Y ∗11 (θ, ν) . (5.287)

Taking the complex conjugate of both sides of Eq. (5.287) we get

Y ∗1−1 (θ, ν) = (−1)Y11 (θ, ν) . (5.288)

⇒ Y ∗1−1 (θ, ν) =− Y11 (θ, ν) . (5.289)

The after-effect function c1(t) = 〈sin θ cosψ1〉 (t) may be expressed in terms of the

new variables ν = (ψ1 + ψ2)/2 and η = (ψ1 − ψ2)/2 as

c1(t) = 〈sin θ cos (ν + η)〉 (t)

=
1

2

〈
sin θ

(
eiνeiη + e−iνe−iη

)〉
(t)

=
1

2

〈
sin θeiνeiη + sin θe−iνe−iη

〉
(t). (5.290)

Substituting Eqs. (5.283) and (5.284) into Eq. (5.290) we get

c1(t) =
1

2

〈√
8π

3
Y ∗1−1(θ, ν)eiη +

√
8π

3
Y1−1(θ, ν)e−iη

〉
(t)

=
1

2

〈√
8π

3
Y ∗1−1(θ, ν)eiη

〉
(t) +

1

2

〈√
8π

3
Y1−1(θ, ν)e−iη

〉
(t)

=

√
2π

3

[∫ 2π

0

∫ 2π

0

∫ π

0

Y ∗1−1(θ, ν)eiηf(θ, ν, η, t) sin θdθdνdη

+

∫ 2π

0

∫ 2π

0

∫ π

0

Y1−1(θ, ν)e−iηf(θ, ν, η, t) sin θdθdνdη

]
. (5.291)

Recall the solution for f(θ, ν, η, t) expressed as a Fourier-Laplace series [8]

f(θ, ν, η, t) =
1

2π

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)e−iqη, (5.292)
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where the Fourier amplitudes f lpq(t) are the statistical moments defined by

f lpq(t) =

∫
Ylp(θ, ν)eiqηf(θ, ν, η, t)dΩ′ =

〈
Ylp(θ, ν)eiqη

〉
(t). (5.293)

Substituting Eq. (5.292) into Eq. (5.291), we get

c1(t) =

√
2π

3

[∫ 2π

0

∫ 2π

0

∫ π

0

1

2π

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)Y ∗1−1(θ, ν)e−i(q−1)η sin θdθdνdη

+

∫ 2π

0

∫ 2π

0

∫ π

0

1

2π

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)Y1−1(θ, ν)e−i(q+1)η sin θdθdνdη

]
.

(5.294)

Using Eq. (5.289), this can be rewritten as

c1(t) =

√
2π

3

[∫ 2π

0

∫ 2π

0

∫ π

0

− 1

2π

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν) (Y11(θ, ν)) e−i(q−1)η sin θdθdνdη

+

∫ 2π

0

∫ 2π

0

∫ π

0

1

2π

∑

l,p,q

f lpq(t)Y
∗
lp(θ, ν)Y1−1(θ, ν)e−i(q+1)η sin θdθdνdη

]
.

(5.295)

Using the orthogonality property of spherical harmonics (Eq. (5.285)), we get

c1(t) =

√
2π

3

[∫ 2π

0

− 1

2π

∑

l,p,q

δl1δp1f
l
pq(t)e

−i(q−1)ηdη +

∫ 2π

0

1

2π

∑

l,p,q

δl1δp−1f
l
pq(t)e

−i(q+1)ηdη

]

=

√
2π

3

[∫ 2π

0

− 1

2π
f 1

1q (t) e−i(q−1)ηdη +

∫ 2π

0

1

2π
f 1
−1q (t) e−i(q+1)ηdη

]

=

√
2π

3

[
− 1

2π

(
2πf 1

11 (t)
)

+
1

2π

(
2πf 1

−1−1 (t)
)]

=

√
2π

3

[
−f 1

11 (t) + f 1
−1−1 (t)

]
. (5.296)

Substituting Eq. (5.293) into Eq. (5.296) we get

c1(t) =

√
2π

3

[
−
〈
Y11(θ, ν)eiη

〉
(t) +

〈
Y1−1(θ, ν)e−iη

〉
(t)
]

=

√
2π

3

[〈
−Y11(θ, ν)eiη

〉
(t) +

〈
Y1−1(θ, ν)e−iη

〉
(t)
]
. (5.297)
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Using Euler’s formula and Eq. (5.289), we can rewrite Eq. (5.297) as

c1(t) =

√
2π

3

[〈
Y ∗1−1(θ, ν) (cos (η) + i sin (η))

〉
(t)

+
〈
Y1−1(θ, ν) (cos (η)− i sin (η))

〉
(t)
]

=

√
2π

3

[〈
Y ∗1−1(θ, ν) cos (η)

〉
(t) + i

〈
Y ∗1−1(θ, ν) sin (η)

〉
(t)

+
〈
Y1−1(θ, ν) cos (η)

〉
(t) −i

〈
Y1−1(θ, ν) sin (η)

〉
(t)
]
. (5.298)

Recall the functions

acq(t) = 〈Y1−1 cos qη〉 (t), (5.299)

asq(t) = 〈Y1−1 sin qη〉 (t). (5.300)

The complex conjugates of acq(t) and asq(t) are given by

ac∗q (t) = [〈Y1−1 cos qη〉 (t)]∗ =
〈
Y ∗1−1 cos qη

〉
(t), (5.301)

as∗q (t) = [〈Y1−1 sin qη〉 (t)]∗ =
〈
Y ∗1−1 sin qη

〉
(t). (5.302)

Substituting Eqs. (5.299) - (5.302) into Eq. (5.298) we get

c1(t) =

√
2π

3
[ac1(t) + ac∗1 (t)− ias1(t) + ias∗1 (t)] . (5.303)

With t = 0 we have

c1(0) =

√
2π

3
[ac∗1 (0) + ias∗1 (0) + ac1(0)− ias1(0)] . (5.304)

In a similar manner we obtain the following expression for c2(t)

c2(t) =

√
2π

3
[ac1(t) + ac∗1 (t) + ias1(t)− ias∗1 (t)] . (5.305)
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with t = 0 we have

c2(0) =

√
2π

3
[ac1(0) + ac∗1 (0) + ias1(0)− ias∗1 (0)] . (5.306)

Eqs. (5.304) and (5.306) can be written in terms of the modified Bessel functions of

the first kind (see Appendix 5.L). Next we determine the one sided Fourier transform

of c1(t) given in Eq. (5.303). The Fourier transforms of ac1(t) and as1(t) are given by

ãc1(ω) =

∫ ∞

0

ac1(t)e−iωtdt, (5.307)

ãs1(ω) =

∫ ∞

0

as1(t)e−iωtdt. (5.308)

Taking the complex conjugate of both sides of Eqs. (5.307) and (5.308) we have

[ãc1(ω)]∗ =

[∫ ∞

0

ac1(t)e−iωtdt

]∗

=

∫ ∞

0

ac∗1 (t)eiωtdt, (5.309)

[ãs1(ω)]∗ =

[∫ ∞

0

as1(t)e−iωtdt

]∗

=

∫ ∞

0

as∗1 (t)eiωtdt. (5.310)

Replacing ω with −ω in Eqs. (5.309) and (5.310) we obtain

[ãc1(−ω)]∗ =

∫ ∞

0

ac∗1 (t)e−iωtdt = F {ac∗1 (t)} , (5.311)

[ãs1(−ω)]∗ =

∫ ∞

0

as∗1 (t)e−iωtdt = F {as∗1 (t)} . (5.312)

The Fourier transform of c1(t) in Eq. (5.303) is given by

c̃1(ω) =

√
2π

3
(ãc1(ω) + ãc∗1 (−ω)− i (ãs1(ω)− ãs∗1 (−ω))) . (5.313)
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Similarly the one sided Fourier transform of c2(t) in Eq. (5.305) is given by

c̃2(ω) =

√
2π

3
(ãc1(ω) + ãc∗1 (−ω) + i (ãs1(ω)− ãs∗1 (−ω))) . (5.314)

5.L Response Function Initial Values written as

Modified Bessel Functions of the First Kind

Recall that the initial values for acq(t) and asq(t) are given by

acq(0) =Z−1
F

∫
Y1−1(θ, ν) cos qη e(µ1+µ2)F/kT+σV cos 2ηdΩ′

≈ σ1(1 + κ)

4
√

6πI0(σV )

(
I(q+1)/2(σV ) + I(q−1)/2(σV )

)
, (5.315)

asq(0) =Z−1
F

∫
Y1−1(θ, ν) sin qη e(µ1+µ2)F/kT+σV cos 2ηdΩ′

≈ iσ1 (κ− 1)

4
√

6πI0(σV )

(
I(q+1)/2(σV )− I(q−1)/2(σV )

)
. (5.316)

with q = 1, we have

ac1(0) =
σ1(1 + κ)

4
√

6πI0(σV )
(I1(σV ) + I0(σV )) , (5.317)

as1(0) =
iσ1 (κ− 1)

4
√

6πI0(σV )
(I1(σV )− I0(σV )) . (5.318)

Note that

[as1(0)]∗ = − iσ1 (κ− 1)

4
√

6πI0(σV )
(I1(σV )− I0(σV )) . (5.319)

Recall also that the initial values for cj(t) are given by

cj(0) =

√
2π

3

(
ac1(0) + ac∗1 (0) + (−1)ji (as1(0)− as∗1 (0))

)
, j = 1, 2. (5.320)
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Substituting Eqs. (5.317) and (5.318) into Eq. (5.320) for j = 1 we get

c1(0) =

√
2π

3

(
σ1(1 + κ)

4
√

6πI0(σV )
(I1(σV ) + I0(σV )) +

σ1(1 + κ)

4
√

6πI0(σV )
(I1(σV ) + I0(σV ))

− i
(
iσ1 (κ− 1)

4
√

6πI0(σV )
(I1(σV )− I0(σV )) +

iσ1 (κ− 1)

4
√

6πI0(σV )
(I1(σV )− I0(σV ))

)
.

(5.321)

Eq. (5.321) may be written as

c1(0) =

√
2π

3

(
σ1(1 + κ)

4
√

6πI0(σV )
(2I1(σV ) + 2I0(σV ))

− i
[
iσ1 (κ− 1)

4
√

6πI0(σV )
(2I1(σV )− 2I0(σV ))

])

=

√
2π

3

(
σ1(1 + κ)

4
√

6πI0(σV )
(2I1(σV ) + 2I0(σV ))

+
σ1 (κ− 1)

4
√

6πI0(σV )
(2I1(σV )− 2I0(σV ))

)
. (5.322)

⇒ c1(0) =
σ1

12I0(σV )
[(1 + κ) (2I1(σV ) + 2I0(σV )) + (κ− 1) (2I1(σV )− 2I0(σV ))]

=
σ1

12I0(σV )
[4I0(σV ) + κ4I1(σV )] . (5.323)

⇒ c1(0) =
σ1

3I0(σV )
[I0(σV ) + κI1(σV )] . (5.324)

Similarly for j = 2 in Eq. (5.320) we get

c2(0) =
σ1

3I0(σV )
[I1(σV ) + κI0(σV )] . (5.325)

These Appendices show how very detailed calculations compared to the original

Debye problem are required even for the very simple two body interaction consid-

ered.
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(**************************************************)

(* Q expressions in the recurrence relation

see equations 24 and 26 of the paper "Generalization to anomalous diffusion*)

(*of Budó’s treatment of polar molecules containing interacting rotating groups*)

(*" by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov, M.H.Al Bayyari,

and W.J.Dowling) you can also see Eqs. (5.24) and (5.26) of the thesis.

Furthermore, you can see Appendices 5.F and 5.G for information on how the

differential-recurrence relation needed for the calculation was derived.*)

(* Qq *)

Q[q_, γ_] := -1 - γ * 1 + (q)^2

(* Qq(s) *)

Qhat[q_, γ_, ω_, α_] := (I * ω)^1 - α * Q[q, γ] - 2 * (I * ω)

(* Qq
- *)

Qminus[q_, γ_, σv_] := σv * γ * (q)

(* Qq
+ *)

Qplus[q_, γ_, σv_] := -σv * γ * (q)

(**************************************************)

(* initial values of aq
c0 and aq

s0

see equations 28 and 29 of the paper "Generalization to anomalous diffusion*)

(* of Budó’s treatment of polar molecules containing interacting rotating groups" *)

(* by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,

M.H.Al Bayyari, and W.J.Dowling. The derivation of the formulas

for aq
c0 and aq

s0 is given in Appendix 5.K of the thesis. *)

(* aq
c0 *)

acinitial[q_, σ1_, σ2_, σv_, κ_] := -σ1 * 1 + κ  4 * Sqrt[6 * π] * BesselI[0, σv] *

BesselIq + 1  2, σv + BesselIq - 1  2, σv

(* aq
s0 *)

asinitial[q_, σ1_, σ2_, σv_, κ_] :=

-σ1 * I * κ - 1  4 * Sqrt[6 * π] * BesselI[0, σv] *

BesselIq + 1  2, σv - BesselIq - 1  2, σv

(**************************************************)

(* The following functions works to solve for the laplace

transform of the relaxation function Ciω seen in equation

32 of the paper "Generalization to anomalous diffusion*)

(* of Budó’s treatment of polar molecules containing interacting

rotating groups" by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,

M.H.Al Bayyari, and W.J.Dowling or Eq. (5.32) of the thesis. *)

(*------------------------------------------------*)

(* Continued Fraction from equation 31 of

the paper "Generalization to anomalous diffusion *)

5.M Wolfram Mathematica Code Used for the

Calculation of the Observables
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(* of Budó’s treatment of polar molecules containing interacting

rotating groups" by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,

M.H.Al Bayyari, and W.J.Dowling or Eq. (5.31) of the thesis. *)

(* The purpose of this continued fraction is to provide an explicit solution

for the desired spectrum a

1
J(s) in the form of a scalar continued fraction

viz. Eq. 30 of the paper "Generalization to anomalous diffusion *)

(* of Budó’s treatment of polar molecules containing interacting

rotating groups" by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,

M.H.Al Bayyari, and W.J.Dowling or Eq. (5.30) of the thesis. *)

Δ[n_, t_, γ_, σv_, ω_, α_] := Block{a, i},

a = 0;

(*This for loop evaluates the scalar continued

fraction by starting with the max iteration value i=2*t+1,

and then iterating for decreasing values i=i-2, until we iterate the

necessary number of times to obtain the answer we seek Sn*)

(*For every iteration of the For loop, the variable a stores the

previously evaluated answer so that it can be further iterated on.*)

Fori = 2 * t + 1, i ≥ n, i -= 2,

a = -Qhat[i, γ, ω, α] - Qplus[i, γ, σv] * a * Qminus[i + 2, γ, σv]^-1;

a



(*------------------------------------------------*)

(* The following functions work to solve for the desired spectrum a

1
J(s)

which we will later use to solve for the response functions c

jiω *)

(* These two functions generate the numerator of

Eq.30 of the paper "Generalization to anomalous diffusion *)

(* of Budó’s treatment of polar molecules containing interacting rotating

groups" by S.V. Titov, W.T. Coffey, M. Zarifakis, Y.P. Kalmykov, M.H. Al

Bayyari, and W.J. Dowling or Eq. (5.30) of the thesis. The procedure to *)

(* generate the numerator of Eq.30 is similar to that of Eq. 2.7.11 of the

4th edition of the book "The Langevin Equation: With Applications to Stochastic

Problems in Physics, Chemistry and Electrical Engineering" where *)

(* we are solving for the column vector formed from statistical moments C

1(s) *)

(* Numerator of Eq.30 when solving for a

1
c(s) *)

Ac[n_, t_, γ_, σ1_, σ2_, σv_, ω_, α_, κ_] :=

acinitial[1, σ1, σ2, σv, κ] + Sum[acinitial[2 * i + 1, σ1, σ2, σv, κ] *

Product[Qplus[2 * j - 1, γ, σv] * Δ[2 * j + 1, t, γ, σv, ω, α], {j, 1, i}], {i, 1, n, 1}]

(* Numerator of Eq.30 when solving for a

1
s(s) *)

As[n_, t_, γ_, σ1_, σ2_, σv_, ω_, α_, κ_] :=

asinitial[1, σ1, σ2, σv, κ] + Sum[asinitial[2 * i + 1, σ1, σ2, σv, κ] *

Product[Qplus[2 * j - 1, γ, σv] * Δ[2 * j + 1, t, γ, σv, ω, α], {j, 1, i}], {i, 1, n, 1}]

(*------------------------------------------------*)

(* Eq.30 of the paper "Generalization to anomalous diffusion *)

(* of Budó’s treatment of polar molecules containing interacting rotating groups *)

2     Budo Cors Mohammad Al Bayyari.nb
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(* " by S.V. Titov, W.T. Coffey, M. Zarifakis, Y.P. Kalmykov, M.H. Al Bayyari,

and W.J.Dowling or Eq. (5.30) of the thesis used to solve for a

1
J(s).

These will later be used to solve for the response functions c

j
J(iω) *)

(* Eq.30 when solving for a

1
c(s) *)

a1laplacec[n_, t_, γ_, σ1_, σ2_, σv_, ω_, α_, κ_] :=

2 * Ac[n, t, γ, σ1, σ2, σv, ω, α, κ] 

-Qhat[1, γ, ω, α] - σv * γ - Qplus[1, γ, σv] * Δ[3, t, γ, σv, ω, α] * Qminus[3, γ, σv]

(* Eq.30 when solving for a

1
s(s) *)

a1laplaces[n_, t_, γ_, σ1_, σ2_, σv_, ω_, α_, κ_] :=

2 * As[n, t, γ, σ1, σ2, σv, ω, α, κ] 

-Qhat[1, γ, ω, α] + σv * γ - Qplus[1, γ, σv] * Δ[3, t, γ, σv, ω, α] * Qminus[3, γ, σv]

(*------------------------------------------------*)

(* Here we seek to obtain the initial conditions cj0 of

the response functions c

jiω which are rendered in closed form via

Eq. 34 of the paper "Generalization to anomalous diffusion *)

(* of Budó’s treatment of polar molecules containing interacting

rotating groups" by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,

M.H.Al Bayyari, and W.J.Dowling or Eq. (5.34) of the thesis. *)

c0[i_, σ1_, σ2_, σv_, κ_] :=

-σ1  3 * BesselIi - 1, σv + κ * BesselI2 - i, σv  BesselI[0, σv]

(*------------------------------------------------*)

(* Here we make use of the previously calculated desired

spectrums a

1
J(s) to solve for the response functions c


j
Jiω via

Eq. 33 of the paper "Generalization to anomalous diffusion *)

(* of Budó’s treatment of polar molecules containing interacting

rotating groups" by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,

M.H.Al Bayyari, and W.J.Dowling or Eq. (5.33) of the thesis. *)

claplace[i_, n_, t_, γ_, σ1_, σ2_, σv_, ω_, α_, κ_] :=

Sqrt2 * π  3 * a1laplacec[n, t, γ, σ1, σ2, σv, ω, α, κ] +

Conjugate[a1laplacec[n, t, γ, σ1, σ2, σv, -ω, α, κ]] +

-1^i * I * a1laplaces[n, t, γ, σ1, σ2, σv, ω, α, κ] -

Conjugate[a1laplaces[n, t, γ, σ1, σ2, σv, -ω, α, κ]]

(*------------------------------------------------*)

(* Here we make use of the previously calculated response functions c

j
J

iω to calculate the spectrum of the desired relaxation function Ciω

via Eq. 32 of the paper "Generalization to anomalous diffusion *)

(* of Budó’s treatment of polar molecules containing interacting rotating

groups " by S.V. Titov, W.T. Coffey, M. Zarifakis, Y.P. Kalmykov,

M.H. Al Bayyari, and W.J. Dowling or Eq. (5.32) of the thesis. *)

(* This will be later used to solve for the complex susceptibility χ(ω)=

χ'(ω)-iχ''(ω) via Eq. *)(* 16 of the paper or Eq. 5.16 of the thesis. *)

Claplace[n_, t_, γ_, σ1_, σ2_, σv_, ω_, α_, κ_] :=

Budo Cors Mohammad Al Bayyari.nb     3
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claplace[1, n, t, γ, σ1, σ2, σv, ω, α, κ] + κ * claplace[2, n, t, γ, σ1, σ2, σv, ω, α, κ] 

c0[1, σ1, σ2, σv, κ] + κ * c0[2, σ1, σ2, σv, κ]

(*------------------------------------------------*)

4     Budo Cors Mohammad Al Bayyari.nb

147



6. Frequency Dependent Linear

Response

The equations in Chapter 5 lend themselves to numerical analysis of the (normal-

ized) susceptibility χ(ω)/χ for both the normal and the anomalous diffusion ex-

tension of Budó’s treatment of the dynamical effects on polar molecules containing

rotating polar groups so causing hindered rotation. χ(ω)/χ is calculated through

making use of the differential recurrence relation in Eq. (5.25) by implementing it as

Wolfram language code in the Wolfram Mathematica software package. The Q̄p(s)

and Q±p in Eq. (5.25) are expressed in the code. Upon doing so, Eqs. (5.28) and

(5.29) are then implemented in the Wolfram language to be used as a part of the

calculation of the desired spectrum ãJ1 (s) via Eq. (5.30), which itself requires the

implementation of the continued fraction in Eq. (5.31). We iterate on both Eqs.

(5.30) and (5.31) until we get a converging answer such that the answer will not

change and/or undergo negligible change upon further iteration. Upon doing so,

we then make use of Eqs. (5.32) - (5.34), implemented in the Wolfram language, in

order to obtain the spectrum of the relaxation function C(t) (Eq. (5.33) relies on

the answers given by Eq. (5.30) and Eq. (5.34) relies on the answers given by Eqs.

(5.28)). Once we obtain the desired value for Eq. (5.32), this is then substituted

into Eq. (5.16) (again implemented in the Wolfram language) to obtain the desired

normalised susceptibility. This is done for a range of values of the frequency ω.

Throughout this procedure, we choose values for the ratio of Debye times γ =

τ/(2τz), the dipole moment ratio κ = µ2/µ1, the dimensionless interaction parame-

ter σV = V0/kT , and the anomalous exponent α at our discretion to obtain the plots

seen in Figures 6.1 - 6.3. In Figure 6.1 we show the susceptibility for a selection of
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typical values of the anomalous exponent α.
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Figure 6.1: (Colour on line) Real and imaginary parts of susceptibility vs. ωτ for
various α. Solid lines: numerically exact solution from Eqs. (5.16), (5.32), and
(5.33); symbols: the approximate equation (6.1). The low-frequency (dashed lines)
and high-frequency (dotted lines) asymptotes are calculated from Eq. (6.2).
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Figure 6.2: (Color on line) Real and imaginary parts of susceptibility vs. ωτ for
various σV . Solid lines: numerically exact solution from Eqs. (5.16), (5.32), and
(5.33); symbols: the approximate equation (6.1). The high-frequency (dotted lines)
asymptotes are calculated from Eq. (6.2).
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Figure 6.3: (Color on line) Real and imaginary parts of susceptibility vs. ωτ for
various γ. Solid lines: numerically exact solution from Eqs. (5.16), (5.32), and
(5.33); symbols: the approximate equation (6.1). the low-frequency (dashed lines)
and high-frequency (dotted lines) asymptotes are calculated from Eq. (6.2).

150



In general the spectral characteristics, i.e., the half-width, characteristic fre-

quency and shape, vary significantly with α. For subdiffusion (α = 0.7) the real

part of the susceptibility is smaller at lower frequencies (ωτ < 1) than is so for

normal diffusion (α = 1) while at high frequencies (ωτ > 1) it exceeds that for

normal diffusion. For superdiffusion (α = 1.3) the real part is effectively constant

at low frequencies while for high frequencies it decreases very rapidly. In Figure 6.1

we also perceive how α influences the imaginary part, noting in particular how the

maxima for all α occur near the turnover frequency defined by ωτ = 1. Moreover,

as α increases the maxima become more and more pronounced. Furthermore, by

inspection of Figure 6.1 et seq., the susceptibility can be accurately approximated

for all α by the simple Cole-Cole equation viz.,

χ (ω)

χ
=

1

1 + (iω/ωR)α
, (6.1)

where ωR = τ−1 is the frequency at which the imaginary part of susceptibility attains

it maximum [6]. The advantage of such a simple representation of the susceptibility

is that it may be used to accurately determine both the low and high frequency

asymptotes of our solution using methods described in Chapter 12, Sections 12.3

and 12.4.2 of [2]. We then have from Eq. (5.16) (using the methods alluded to

above) in the low and high frequency limits

χ (ω)

χ
≈





1− (iωτ)ατint/τ, ω → 0,

(iωτ)−ατ/τef , ω →∞,
(6.2)

where
τint

τ
= C̃(0) =

∫ ∞

0

C(t)dt,
τef

τ
= − 1

Ċ(0)
, (6.3)

are the characteristic times of normal diffusion (α = 1), τint is the integral relaxation

time defined as the area under the decay curve C(t), which may be calculated by

taking the zero-frequency limit of Eq. (5.32), and τef is the effective relaxation time

yielding precise information on the initial decay of C(t). The zero-time limit Ċ(0)
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is calculated from Eqs. (5.12) and (5.23) yielding

Ċ(0) =
ċ1(0) + κċ2(0)

c1(0) + κc2(0)

=
(1 + κ)Re[ȧc1(0)] + (1− κ)Im[ȧs1(0)]

(1 + κ)Re[ac1(0)] + (1− κ)Im[as1(0)]
, (6.4)

where

2τ ȧJ1 (0) = (Q1 + bJ)aJ1 (0) +Q+
1 a

J
3 (0), (6.5)

and aJq (0) are given by Eqs. (5.28) and (5.29). By substituting the initial values

Eqs. (5.28), (5.29), and (6.5) into Eq. (6.4) we then have the closed form

τĊ(0) =
κγσV (I0(σV )− I2(σV ))

(1 + κ2)I0(σV ) + 2kI1(σV )
− γ − 1

2
. (6.6)

By inspection of Figures 6.1 - 6.3 it is apparent that the asymptotes so determined

correctly reproduce both the low and high frequency limits of the susceptibility.

Figure 6.2 shows the frequency dependence of the susceptibility for various interac-

tion parameters σV for subdiffusion (α = 0.8, γ = 1, κ = 2). It would appear that

the effects of σV on the shapes of the real and imaginary parts of χ(ω) is small.

With very strong binding (σV = 50 and σV = 70) the real and imaginary plots of

χ(ω) appear to nearly overlap one another while for σV = 1, the real part of χ(ω)

overlaps the plots for σV = 50 and σV = 70 at low frequencies (10−2 ≤ ωτ ≤ 10−1).

The imaginary parts of χ(ω) for all three values of σV all appear to nearly overlap

one another with some discrepancies between σV = 1 and σV = 50, 70 near the

left side of the peak and at frequencies beyond ωτ = 1. The real part, having

attained a maximum value starts to decrease monotonically. For weak interaction

(σV = 1), Eq. (6.1) is obviously a good approximation to the spectra. In Figure

6.3 the spectra for three Debye time ratios γ = τ/(2τz) for subdiffusion is shown.

Clearly small γ has little effect on the plots as the shapes appear similar. However,

for low frequencies we see that the imaginary part decreases with increasing γ. On

the other hand, for higher frequencies the absorption becomes larger. Clearly for

increasing γ, the loss peak shifts to higher frequencies, corresponding, of course, to

a decreasing friction ratio 2ξz/ξ.
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Regarding Figure 3 of the published paper ”Generalization to anomalous diffu-

sion of Budó’s treatment of polar molecules containing interacting rotating groups”

[19] we emphasise that this figure is misleading and should be replaced by Figure

6.2 in that paper. The reason being that an insufficient number of iterations were

originally taken in plotting that figure so as to achieve convergence. More precisely

speaking it turns out that the number of iterations that were originally used for

obtaining Figure 3 were not enough to guarantee convergence (n = 11 was used

for Figure 3 in [19] with the continued fraction being iterated on 17 times). When

I recalculated the same Figure I used n = 51 iterations to ensure that I had con-

vergence, as well as 57 (convergents) iterations of the continued fraction. In the

light of this I took Figure 3 (i.e., Figure 6.2) and I replaced the old data with the

new one in the software package Origin by OriginLab Corporation in order to re-

produce the plot with my answers. In addition to this I have also rewritten the

part of the original discussion of results in the paper [19] in order to talk about the

patterns observed in the new Figure 6.2. The new Figure shows that the simple

Cole-Cole expression accurately reproduces the behaviour of the susceptibility for

moderate to very strong coupling σV unlike the statement in the paper [19] that

this approximation is really only accurate for σV = 1.
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7. Dipole-Dipole and Exchange

Interaction Effects on the

magnetisation Relaxation of Two

Macrospins: Compared

7.1 Transformation of the Stochastic Landau-Lifshitz-

Gilbert (Langevin) Equation to Differential-

Recurrence Relations for the Statistical Mo-

ments

As far as dipole-dipole interaction in magnetic relaxation by traversing a poten-

tial barrier is concerned, we consider [21] the transient response of two interact-

ing macrospins subjected to a uniform external dc magnetic field, which alters in

step-like fashion, i.e., the magnitude of that field suddenly changes by an arbitrary

amount at time t = 0 from HI to a new value HII (the fields HI and HII are as-

sumed to be applied parallel to the Z axis of the laboratory coordinate system).

Consequently, we are treating the transient longitudinal magnetisation relaxation

of two macroscopic interacting spins starting from an equilibrium state I say to a

new equilibrium state II. The magnetic dipole moment of an individual macrospin

is represented by µp(t) = µsp(t), (p = 1, 2), where sp is the unit vector along µp(t)
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defined as

sp = i sinϑp cosϕp + j sinϑp sinϕp + k cosϑp, (7.1)

µ is the nominal value of the magnetic dipole moment, and ϑp and ϕp are the

respective polar and azimuthal angles of spin p. The total normalised free energy

Ei (i = I, II) including dipole-dipole interaction, anisotropy and Zeeman energies

may be compactly written in vector form as [21]

Ei =ς [(s1 · s2)− 3 (ur · s1) (ur · s2)]−
∑

p=1,2

[
ξi (eZ · sp) + σ(eZ · sp)2]

=ς [sinϑ1 sinϑ2 cos(ϕ1 − ϕ2)− 2 cosϑ1 cosϑ2]− ξi (cosϑ1 + cosϑ2)

− σ
(
cos2ϑ1 + cos2ϑ2

)
. (7.2)

Here ur = r/r is a unit vector with r = |r| specifying the separation between the two

spins, eZ is the unit vector along the (polar) Z axis (assuming that eZ ‖ ur), ξi =

µ0µH
i
Z/(kT ) and σ = K/(kT ) are dimensionless field and anisotropy parameters,

respectively, µ0 = 4π · 10−7 J · A−2 ·m−1 in SI units, H i
Z represents the (arbitrary)

magnitude of an external applied (spatially) uniform dc magnetic field Hi
Z , K is the

anisotropy constant, ς = µ0µ
2/(kTr3) is the dimensionless dipole-dipole interaction

parameter, k is the Boltzmann constant, and T is the temperature. The geometry

of the problem for an individual macrospin is shown in Figure 7.1. As mentioned,

the two easy axes of magnetisation are supposed parallel to each other and to the

applied dc field, which is in turn assumed parallel to the reference (Z) axis. Thus,

omitting the dipole-dipole term the problem just represents the well studied [2]

relaxation in a circularly symmetric anisotropy Zeeman energy potential σ cos2 ϑ.

Next the results for the two-spin system above will be compared with those for spins

coupled solely by exchange interaction, namely, for the compact form [22]

Ei = −ς (s1 · s2)−
∑

p=1,2

[
ξi (eZ · sp) + σ(eZ · sp)2], (7.3)

where now ς = µ0µ
2J/(kT ) and J is the exchange coupling constant.
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Figure 7.1: Geometry of the task: uniaxial anisotropy potential E(ϑ) = σ sin2 ϑ with
vertical easy axis (dashed line), a uniform external dc magnetic field H parallel to
the easy axis and the magnetic dipole moment of an individual macrospin µ.

The effective magnetic field Hp acting on a spin comprises the externally applied

crystalline anisotropy and dipole-dipole coupling fields, so that in spherical polar

coordinates

Hp =
kT

µ0µ

(
0,−∂Ei

∂ϑp
,− 1

sinϑp

∂Ei
∂ϕp

)
. (7.4)

In magnetisation relaxation, the relevant observables are obviously time-dependent

orientational ensemble averages involving the spherical harmonics Yl m(ϑ, ϕ), defined

as in our previous chapter by [2, 120]

Yl m(ϑ, ϕ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
eimϕPm

l (cosϑ) |m| ≤ l, (7.5)

where Pm
l (x)(|m| ≤ l) are the associated Legendre functions, consequently we
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rewrite the free energy, Eq. (7.2), as [21] (see Appendix 7.A)

Ei =− 4π

6
ς

1∑

m=−1

(3 + (−1)m)Y1m(ϑ1, ϕ1)Y1−m(ϑ2, ϕ2)

−
∑

p=1,2

[
ξi

√
4π

3
Y1 0(ϑp, ϕp) + σ

4

3

√
π

5
Y2 0(ϑp, ϕp)

]
+ const. (7.6)

The form of the dipole-dipole coupling potential, Eq. (7.6), again suggests as in the

pure exchange interaction studied by Titov et al. [22] introducing as new stochastic

variables the time-dependent product of spherical harmonics of arguments (ϑ1, ϕ1)

and (ϑ2, ϕ2) respectively [21]

Ml1 l2m
= Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2). (7.7)

Eq. (7.7) then represents a complete set of orthogonal functions characterising

the orientational dynamics of the two interacting spins. The equilibrium averages

〈Ml1 l2m〉i, corresponding to the spatial distributions of the initial and final states

of the two-spin system, are given by

〈Ml1 l2m〉i =

∫ 2π

0

∫ 2π

0

∫ π

0

∫ π

0

Ml1 l2mWi(ϑ1, ϕ1, ϑ2, ϕ2) sinϑ2 sinϑ1dϑ2dϑ1dϕ2dϕ1,

(7.8)

where Wi(ϑ1, ϕ1, ϑ2, ϕ2) = Z−1
i e−Ei(ϑ1,ϕ1,ϑ2,ϕ2) are the relevant Boltzmann distribu-

tion functions and Zi are the corresponding partition functions. Now as we saw

the magnetisation dynamics of a typical macrospin are described by the stochas-

tic Landau-Lifshitz-Gilbert equation, i.e., the deterministic Landau-Lifshitz-Gilbert

equation augmented by a random noise field hp(t
′) originating from the thermal

bath fluctuations [2]

ṡp =
µ0µ

2kTτN

(
α−1 [(Hp (t′) + hp (t′))× sp (t′)]

− [sp (t′)× [sp (t′)× (Hp (t′) + hp (t′))]]) , (7.9)

where τN = µ0µ(1 + α2)/(2γαkT ) is a characteristic (free diffusion of the magnetic

moment) time, γ is the gyromagnetic ratio, α is the dimensionless damping parame-
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ter representing the dissipative coupling to the heat bath and hp(t
′) has white noise

properties with zero mean and δ-correlated viz.,

hLp (t′) = 0, hLp (t)hMp (t′) = 2kTα(γµ0µ)−1δLMδ(t− t′). (7.10)

Here the individual hLp (t′) are the components of hp(t) in the laboratory coordinate

system so that L,M = X, Y, Z, δLM is Kronecker’s delta, δ(t − t′) is the Dirac-

delta function, and the overbar denotes the statistical averaging over an ensemble of

dipoles. The vector stochastic differential equation (Eq. (7.9)) as rewritten in spher-

ical polar coordinates then represents a set of coupled non-linear scalar stochastic

differential equations [21] (see Appendix 7.B)

ϑ̇p (t′) =
µ0µ

2kTτN

[
hϑp (t′) + α−1hϕp (t′)

]
− 1

2τN

(
∂Ei
∂ϑp

+
1

α sinϑp (t′)

∂Ei
∂ϕp

)
,

ϕ̇p (t′) =
µ0µ

2kTτN sinϑp

[
hϕp (t′)− α−1hϑp (t′)

]
− 1

2τN

(
1

sin2ϑp (t′)

∂Ei
∂ϕp
− 1

α sinϑp (t′)

∂Ei
∂ϑp

)
,

(7.11)

where hϑp(t′), hϕp(t′) are the spherical components of the random field hp(t) which

can be expressed via the cartesian components hLp (t′) [2]. The set of Eq. (7.11)

is solved by supposing as usual that the solutions {ϑ1(t′), ϕ1(t′), ϑ2(t′), ϕ2(t′)} at a

given time t had the sharp values {ϑ1(t) = ϑ1, ϕ1(t′) = ϕ1, ϑ2(t) = ϑ2, ϕ2(t) = ϕ2},
i.e., all macrospins had the same initial orientations at an earlier time t.

Because the set of Eq. (7.11) are Stratonovich stochastic differential equations,

and since in transformations of such equations one may use the ordinary rules of

calculus [2], we have from Eqs. (7.9) - (7.11) a stochastic differential equation for

the functions Ml1l2m (t′) = Ml1l2m (ϑ1 (t′) , ϕ1 (t′) , ϑ2 (t′) , ϕ2 (t′)) defined by Eq. (7.7)

[21], viz.,

d

dt
Ml1 l2m (t′) =

∑

p=1,2

(
ϑ̇p (t′)

∂Ml1 l2m

∂ϑp
(t′) + ϕ̇p (t′)

∂Ml1 l2m

∂ϕp
(t′)

)
. (7.12)

This stochastic equation will ultimately yield (after many lengthy and tedious

calculations via Appendix 7.D) the deterministic evolution equation for the sharp

values Ml1 l2m at time t. In order to accomplish this we must first average Eq. (7.12)
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over its realizations in configuration space in an infinitesimal time as prescribed by

Einstein and described in [2]. Hence we have a differential-recurrence relation for

Ml1 l2m in the three recurring indices l1, l2,m [21], viz.,

τNṀl1 l2m =
2∑

i,j=−2

1∑

k=−1

dl1 l2ml1+i l2+j m+kMl1+i l2+j m+k. (7.13)

The various expansion coefficients dl1 l2ml1+i l2+j m+k obtained via the theory of angular

momentum again as described in [2] are explicitly given in Appendix 7.C. However,

the Ml1 l2m
so obtained are obviously functions of the sharp values ϑp, ϕp, which are

themselves random variables with spatial distribution function W (ϑ1, ϕ1, ϑ2, ϕ2, t).

Hence taking the ensemble (i.e., spatial) average of Eq. (7.13) overW (ϑ1, ϕ1, ϑ2, ϕ2, t),

we finally have an infinite hierarchy of differential-recurrence relations (in the man-

ner described in [2, 121] for non-interacting magnetic dipoles) for the observables,

namely, the relaxation functions cl1 l2m(t) = 〈Ml1 l2m〉 (t)−〈Ml1 l2m〉II of the two-spin

system, viz.,

τN ċl1 l2m =
2∑

i,j=−2

1∑

k=−1

dl1 l2ml1+i l2+j m+kcl1+i l2+j m+k, (7.14)

where the angular brackets 〈〉(t) denote ensemble averaging of the sharp values

over W (ϑ1, ϕ1, ϑ2, ϕ2, t). In writing Eq. (7.14) we have also used the fact that the

equilibrium averages 〈Ml1 l2m〉i satisfy the time-independent recurrence relation:

2∑

i,j=−2

1∑

k=−1

dl1 l2ml1+i l2+j m+k〈Ml1+i l2+j m+k〉i = 0. (7.15)

The hierarchy of recurrence relations for the relaxation functions cl1 l2m(t) must

be solved subject to the initial conditions cl1 l2m(0) = 〈Ml1 l2m〉I−〈Ml1 l2m〉II, where

the equilibrium averages 〈Ml1,l2,m〉i can be evaluated either from Eq. (7.15) or from

Eq. (7.8).
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Next continuing with the solution of Eq. (7.14), we introduce the column vectors

Cn(t) =




c2n−10(t)

c2n−21(t)
...

c02n−1(t)

c2n0(t)

c2n−11(t)
...

c02n(t)




4n2+2n+1

, cnm(t) =




cnm−r(t)

cnm−r+1(t)
...

cnmr(t)



, (7.16)

(r = min[n,m]) indicating that Eq. (7.14) can be transformed into the tractable [2]

tridiagonal vector recurrence relation (admitting of a formally exact matrix contin-

ued fraction solution in the frequency domain, e.g., Eq. (7.18) below)

τN
d

dt
Cn(t) = Q−nCn−1(t) + QnCn(t) + Q+

nCn+1(t), (7.17)

with C0(t) = 0. The matrix coefficients Qn, Q+
n , Q−n are explicitly given in Ap-

pendix 7.E and derived in Appendix 7.F. Eq. (7.17) then yields [2] the formal

solution for the Laplace transform C̃1(s), which is exactly rendered as a rapidly

converging sum of products of matrix continued fractions just like the dielectric

case

C̃1(s) = τN∆1(s)

{
C1(0) +

∞∑

n=2

(
n∏

k=2

Q+
k−1∆k(s)

)
Cn(0)

}
, (7.18)

where the matrix continued fraction ∆n(s) is defined [2] by the algebraic recurrence

equation

∆n(s) =
[
sτNI−Qn −Q+

n∆n+1(s)Q−n+1

]−1
, (7.19)

and the tilde denotes the Laplace transform, viz.,

C̃1(s) =

∫ ∞

0

C1(t)e−stdt. (7.20)

The initial value column vector Cn(0) in Eq. (7.18) can also be calculated via

continued fractions (see Ref. [22]). In solving Eq. (7.18) the summation is restricted
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by selecting an nmax, which is large enough to ensure convergence. For the param-

eters used in our calculations nmax = 15 is sufficient to arrive at an accuracy of not

less than 5 significant digits in the majority of cases.

7.2 Calculation of Observables for Two Interact-

ing Spins Coupled by Dipole-Dipole Interac-

tion

The response of spin p immediately following a step-like alteration of the dc field is

represented via the normalised (by the final equilibrium value) relaxation function

fp(t) =
〈sp · eZ〉 (t)− 〈sp · eZ〉II
〈sp · eZ〉I − 〈sp · eZ〉II

. (7.21)

Thus with C̃1(s) obtained from the numerical solution of Eq. (7.18), which as

mentioned already will in general comprise an infinite set of decaying exponentials

characterized by a set of distinct eigenvalues of the system matrix and their corre-

sponding amplitudes, we have the integral relaxation time τint [2], namely the area

under decay curve fp(t) [2, 22]

τint =

∫ ∞

0

f1(t)dt =

∫ ∞

0

f2(t)dt =
c̃1 0 0(0)

c1 0 0(0)
. (7.22)

The integral relaxation time contains contributions from all the eigenvalues of

the two spin system. The individual relaxation functions f1(t) or f2(t) and the

(global) τint describe the transient response of the longitudinal component of the

magnetic moment of the two-spin system because the Z component of the total

dipole moment mZ(t) = µ 〈(s1 + s2) · eZ〉 (t) may always be written as

mZ(t) = 2µ [〈s1 · eZ〉II + (〈s1 · eZ〉I − 〈s1 · eZ〉II) f1(t)] . (7.23)

This (in general) non-linear response contains as a special case the linear response to

infinitesimally small step changes in the strength of the (arbitrarily) strong applied
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dc field HI
Z , i.e., for HII

Z = HI
Z − κ as κ → 0, where κ is regarded as a small

external perturbation. Hence f1(t) as defined by Eq. (7.21) then coincides with the

normalised longitudinal dipole equilibrium correlation function C‖(t), that is

lim
κ→0

f1(t) = C‖(t) =
〈mZ(0)mZ(t)〉II − 〈mZ(0)〉2II
〈m2

Z(0)〉II − 〈mZ(0)〉2II
. (7.24)

Thus according to linear response theory (see, e.g., [2]), via the one-sided Fourier

transform C̃‖(iω) [i.e., the spectrum of C‖(t)], we have τint for linear response, viz.

the correlation time τ = C̃‖(0), and also the normalised dynamic susceptibility

χ(ω) = χ′(ω)− iχ′′(ω) [2] since

χ(ω) = 1− iωC̃‖(iω) = 1− iω c̃1 0 0(iω)

c1 0 0(0)
. (7.25)

Furthermore, the asymptotic behaviour of χ(ω) in the extrema of very low and

very high frequencies is explicitly given by [2, 22],

χ(ω) ∼





1− iω
∫∞

0
C‖(t)dt = 1− iωτint + ..., ω → 0,

− Ċ‖(0)

iω
+ ... = − i

ωτef‖
+ ..., ω →∞,

(7.26)

where (see Appendix 7.H)

τef = − 1

Ċ‖(0)
= 2τN

〈
(cosϑ1 + cosϑ2)2〉

II
− 〈cosϑ1 + cosϑ2〉2II〈

sin2ϑ1 + sin2ϑ2

〉
II

, (7.27)

is the effective relaxation time governing the initial decay of C‖(0). Here τint and

τef [2] characterize the global and the short-time behaviour of C‖(t) respectively.

The time τef is evaluated (see Appendix 7.H) in terms of equilibrium averages as

in [22]. Moreover if the potential wells are approximately equivalent (as is true [2]

for a small external field), τint is approximately the magnetisation reversal time τ

(see Figure 8.2 below) τint ≈ τ = 1/λ1 so that the response is now dominated by the

slow reversal-over-barrier mode. Here λ1 is the smallest non-vanishing eigenvalue of

the system matrix, corresponding to the hierarchy of differential-recurrence relations

seen in Eq. (7.14) [2]. Using matrix continued fractions, we then have λ1 numerically
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from the secular equation of the two-spin system [2], namely

det
[
λ1τNI + Q1 + Q+

1 ∆2(−λ1)Q−2
]

= 0. (7.28)

The inverse τ = 1/λ1 characterises the long-time behaviour of C‖(t) [2]. Moreover,

λ1 can also be determined either from the half-width of the spectrum C̃‖(iω) or,

equivalently, from the low-frequency maximum of the loss spectrum χ′′(ω).

Appendices - Details of the various calculations

7.A The Total Normalised Free Energy Equation

in terms of Spherical Harmonics

Recall that the total normalised free energy Ei (i = I,II) including dipole-dipole

interaction, anisotropy and Zeeman energies may be written in terms of spherical

harmonics Yl m(ϑ, ϕ) as

Ei =− 4π

6
ς

1∑

m=−1

(3 + (−1)m)Y1m(ϑ1, ϕ1)Y1−m(ϑ2, ϕ2)

−
∑

p=1,2

[
ξi

√
4π

3
Y1 0(ϑp, ϕp) + σ

4

3

√
π

5
Y2 0(ϑp, ϕp)

]
+ const.

=− 4π

6
ς [(3− 1)Y1−1(ϑ1, ϕ1)Y1 1(ϑ2, ϕ2) + (3 + 1)Y1 0(ϑ1, ϕ1)Y1 0(ϑ2, ϕ2)

+ (3− 1)Y1 1(ϑ1, ϕ1)Y1− 1(ϑ2, ϕ2)]

−
[
ξi

√
4π

3
Y1 0(ϑ1, ϕ1) + σ

4

3

√
π

5
Y2 0(ϑ1, ϕ1) + ξi

√
4π

3
Y1 0(ϑ2, ϕ2)

+ σ
4

3

√
π

5
Y2 0(ϑ2, ϕ2)

]
+ const. (7.29)

The spherical harmonics Yl m(ϑ, ϕ) are given by

Yl m(ϑ, ϕ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
eimϕPm

l (cosϑ) |m| ≤ l, (7.30)
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where Pm
l (x)(|m| ≤ l) are the associated Legendre functions.

I will now show that Eq. (7.29) is equivalent to Eq. (7.2). We substitute the

following spherical harmonics Yl m(ϑp, ϕp), (p = 1, 2) into Eq. (7.29)

Y1−1 (ϑp, ϕp) =
1

2

√
3

2π
e−iϕ sinϑ, (7.31)

Y11 (ϑp, ϕp) =− 1

2

√
3

2π
eiϕ sinϑ, (7.32)

Y10 (ϑp, ϕp) =
1

2

√
3

π
cosϑ, (7.33)

Y20 (ϑp, ϕp) =
1

4

√
5

π

(
3cos2ϑ− 1

)
, (7.34)

to get

Ei =− 4π

6
ς

[
(2)

(
1

2

√
3

2π
e−iϕ1 sinϑ1

)(
−1

2

√
3

2π
eiϕ2 sinϑ2

)

+ (4)

(
1

2

√
3

π
cosϑ1)

)(
1

2

√
3

π
cosϑ2)

)

+ (2)

(
−1

2

√
3

2π
eiϕ1 sinϑ1

)(
1

2

√
3

2π
e−iϕ2 sinϑ2

)]

−
[
ξi

√
4π

3

(
1

2

√
3

π
cosϑ1

)
+ σ

4

3

√
π

5

(
1

4

√
5

π

(
3cos2ϑ1 − 1

)
)

+ ξi

√
4π

3

(
1

2

√
3

π
cosϑ2

)
+ σ

4

3

√
π

5

(
1

4

√
5

π

(
3cos2ϑ2 − 1

)
)]

, (7.35)
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which can be written as

Ei =− 4π

6
ς

[
2

(
− 3

8π
ei(ϕ2−ϕ1) sinϑ1 sinϑ2

)

+ 4

(
3

4π

)
cosϑ1 cosϑ2

+ 2

(
− 3

8π
ei(ϕ1−ϕ2) sinϑ1 sinϑ2

)]

− ξi (cosϑ1 + cosϑ2)

− σ
(

cos2ϑ1 + cos2ϑ2 −
2

3

)
.

⇒ Ei =ς

[
1

2

(
ei(ϕ2−ϕ1) + ei(ϕ1−ϕ2)

)
sinϑ1 sinϑ2 − 2 cosϑ1 cosϑ2

]

− ξi (cosϑ1 + cosϑ2)− σ
(

cos2ϑ1 + cos2ϑ2 −
2

3

)

=ς

[
1

2

(
e−i(ϕ1−ϕ2) + ei(ϕ1−ϕ2)

)
sinϑ1 sinϑ2 − 2 cosϑ1 cosϑ2]

]

− ξi (cosϑ1 + cosϑ2)− σ
(

cos2ϑ1 + cos2ϑ2 −
2

3

)
. (7.36)

Using Euler’s formula

eix = cosx+ i sinx, (7.37)

e−ix = cos (−x) + i sin (−x) = cos x− i sinx, (7.38)

we can rewrite Eq. (7.36) as

Ei =ς

[
1

2
(cos (ϕ1 − ϕ2) − i sin (ϕ1 − ϕ2)

+ cos (ϕ1 − ϕ2) + i sin (ϕ1 − ϕ2)) sinϑ1 sinϑ2 − 2 cosϑ1 cosϑ2

]

− ξi (cosϑ1 + cosϑ2)− σ
(

cos2ϑ1 + cos2ϑ2 −
2

3

)
, (7.39)
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which can be written as

Ei =ς [sinϑ1 sinϑ2 cos (ϕ1 − ϕ2)− 2 cosϑ1 cosϑ2]]

− ξi (cosϑ1 + cosϑ2)− σ
(
cos2ϑ1 + cos2ϑ2

)
+

2

3
σ. (7.40)

Note that the constant in Eq. (7.29) is −(2/3)σ.

7.B Derivation of the Two Coupled Scalar Stochas-

tic Differential Equations

The magnetic dipole moment of an individual macrospin is represented by µp(t) =

µsp(t) (p = 1, 2), where sp is the unit vector along µp defined as

sp = i sinϑp cosϕp + j sinϑp sinϕp + k cosϑp, (7.41)

or

s1 = i sinϑ1 cosϕ1 + j sinϑ1 sinϕ1 + k cosϑ1, (7.42)

s2 = i sinϑ2 cosϕ2 + j sinϑ2 sinϕ2 + k cosϑ2, (7.43)

µ is the nominal value of the magnetic dipole moment, and ϑp and ϕp are the

respective polar and azimuthal angles of spin p. The dot product of Eqs. (7.42) and

(7.43) is given by

s1 · s2 = sinϑ1 sinϑ2 cosϕ1 cosϕ2 + sinϑ1 sinϑ2 sinϕ1 sinϕ2 + cosϑ1 cosϑ2

= sinϑ1 sinϑ2 [cosϕ1 cosϕ2 + sinϕ1 sinϕ2] + cosϑ1 cosϑ2

= sinϑ1 sinϑ2 cos(ϕ1 − ϕ2) + cosϑ1 cosϑ2. (7.44)

Recall that the total normalised free energy Ei (i = I, II) including dipole-dipole

interaction, anisotropy and Zeeman energies may be compactly written in vector
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form as

Ei = ς [(s1 · s2)− 3 (ur · s1) (ur · s2)]−
∑

p=1,2

[
ξi (eZ · sp) + σ(eZ · sp)2], (7.45)

where ur = r/r is a unit vector with r = |r| specifying the separation between the

two spins, eZ is the unit vector along the (polar) Z axis (assuming that eZ ‖ ur).

Since it is assumed that eZ ‖ ur, we have

ur · s1 = |ur| |s1| cosϑ1 = cosϑ1, (7.46)

eZ · s1 = |eZ | |s1| cosϑ1 = cosϑ1, (7.47)

and

ur · s2 = |ur| |s2| cosϑ2 = cosϑ2, (7.48)

eZ · s2 = |eZ | |s2| cosϑ2 = cosϑ2. (7.49)

Substituting Eqs. (7.46) - (7.49) into Eq. (7.45), we have

Ei =ς [(s1 · s2)− 3 (ur · s1) (ur · s2)]

−
∑

p=1,2

[
ξi (eZ · sp) + σ(eZ · sp)2]

=ς sinϑ1 sinϑ2 cos(ϕ1 − ϕ2) + ς cosϑ1 cosϑ2 − 3ς cosϑ1 cosϑ2

− ξi (cosϑ1 + cosϑ2)− σ
(
cos2ϑ1 + cos2ϑ2

)

=ς [sinϑ1 sinϑ2 cos(ϕ1 − ϕ2)− 2 cosϑ1 cosϑ2]

− ξi (cosϑ1 + cosϑ2)− σ
(
cos2ϑ1 + cos2ϑ2

)
. (7.50)

We describe the dynamics of the magnetic moments Mp(t) (p = 1, 2) by the

system of stochastic Landau-Lifshitz-Gilbert equations

Ṁp + γη
[
Mp × Ṁp

]
=γ [Mp × (Hp + hp)] , (7.51)

where γ is the gyromagnetic ratio, and η is the damping parameter specifying the
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dissipative coupling between the spin and its thermal bath. The magnetic field

Hp(t) acting on the particle may consist of externally applied magnetic fields, the

crystalline anisotropy field and a field produced by the other nanoparticles. The

random Gaussian white noise field hp(t) has the properties

hLp (t′) = 0, hLp (t)hMp (t′) = 2kTα(γµ0µ)−1δLMδ(t− t′). (7.52)

Cross multiplying both sides of Eq. (7.51) by Mp we obtain

Mp × Ṁp + γη
[
Mp ×

(
Mp × Ṁp

)]
= γ [Mp × {Mp × (Hp + hp)}] . (7.53)

⇒Mp × Ṁp = γ [Mp × {Mp × (Hp + hp)}]− γη
[
Mp ×

(
Mp × Ṁp

)]
. (7.54)

Using the vector identity

a× (b× c) = (a · c) b− (a · b) c, (7.55)

we may write

Mp ×
(
Mp × Ṁp

)
=
(
Mp · Ṁp

)
Mp − (Mp ·Mp) Ṁp

=−M2
SṀp, (7.56)

since Mp · Ṁp = 0. Using Eq. (7.56), we may rewrite Eq. (7.53) as

Mp × Ṁp = γ [Mp × {Mp × (Hp + hp)}] + γηM2
SṀp. (7.57)

Using Eq. (7.57) we can substitute for Mp × Ṁp in Eq. (7.51) to obtain

Ṁp + γ2η [Mp × {Mp × (Hp + hp)}] + γ2η2M2
SṀp=γ [Mp × (Hp + hp)] . (7.58)

⇒Ṁp =
γ

1 + γ2η2M2
S

[Mp × (Hp + hp)]−
γ2η

1 + γ2η2M2
S

[Mp × {Mp × (Hp + hp)}] .

(7.59)
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Eq. (7.59) may be written as

Ṁp =
bMS

α
[Mp × (Hp + hp)]− b [Mp × {Mp × (Hp + hp)}] , (7.60)

where MS is the saturation magnetisation of the nanoparticle and

α = γηMS, b =
β

2τN
, τN =

βMS(1 + α2)

2γα
. (7.61)

To analyse the dynamics of magnetisation, it is convenient to introduce polar

coordinates

Mp = MS (sinϑp cosϕp, sinϑp sinϕp, cosϑp) . (7.62)

If the free energy per unit volume V of the single domain particle is expressed as a

function of components of Mp, then

Hp = − ∂V

∂Mp

=
1

MS

(
0,− ∂V

∂ϑp
,− 1

sinϑp

∂V

∂ϕp

)
, (7.63)

where
∂V

∂Mp

=
∂V

∂MX

i +
∂V

∂MY

j +
∂V

∂MZ

k. (7.64)

Note that

Mp (t) =µp (t) = µsp (t) , (p = 1, 2) , (7.65)

Ṁp (t) =µ̇p (t) = µṡp (t) , (p = 1, 2) , (7.66)

µ =MS. (7.67)

Using Eqs. (7.65) - (7.67) we can rewrite Eq. (7.60) as

µṡp =
bµ

α
[µsp × (Hp + hp)]− b [µsp × {µsp × (Hp + hp)}] . (7.68)
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Noting that A×B = −B×A we may rewrite Eq. (7.68) as

ṡp =− bµ

α
[(Hp + hp)× sp]− bµ [sp × {sp × (Hp + hp)}]

=− µ0µ

2kTτN

(
1

α
[(Hp + hp)× sp] + [sp × {sp × (Hp + hp)}]

)
, (7.69)

where sp is a unit vector, which in spherical coordinates is given by

sp =




1

0

0


 , (7.70)

ṡp =




0

ϑ̇p

sinϑpϕ̇p


 . (7.71)

Note that

Hp = − kT
µ0µ

∂Ep
∂sp

, (7.72)

where ∂/∂sp is the gradient on the surface of a unit sphere explicitly defined in

spherical coordinates as

∂

∂sp
=

∂

∂ϑp
eϑp +

1

sinϑp

∂

∂ϕp
eϕp . (7.73)

Substituting Eq. (7.73) into Eq. (7.72) we get

Hp = − kT
µ0µ




0

∂Ep
∂ϑp

1
sinϑp

∂Ep
∂ϕp


 . (7.74)

Furthermore

hp = hrperp + hϑpeϑp + hϕpeϕp , (7.75)
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which can be written as

hp =




hrp

hϑp

hϕp


 . (7.76)

Thus

Hp + hp =




hrp(
− kT
µ0µ

)(
∂Ei
∂ϑp

)
+ hϑp(

− kT
µ0µ

)(
1

sinϑp

∂Ei
∂ϕp

)
+ hϕp


 , (7.77)

(Hp + hp)× sp =




hrp(
− kT
µ0µ

)(
∂Ei
∂ϑp

)
+ hϑp(

− kT
µ0µ

)(
1

sinϑp

∂Ep
∂ϕp

)
+ hϕp


×




1

0

0




=

[(
− kT
µ0µ

)(
1

sinϑp

∂Ei
∂ϕp

)
+ hϕp

]
eϑp +

[(
kT

µ0µ

)(
∂Ei
∂ϑp

)
− hϑp

]
eϕp ,

(7.78)

sp × (Hp + hp) =




1

0

0


×




hrp(
− kT
µ0µ

)(
∂Ei
∂ϑp

)
+ hϑp(

− kT
µ0µ

)(
1

sinϑp

∂Ei
∂ϕp

)
+ hϕp




=

[(
kT

µ0µ

)(
1

sinϑp

∂Ei
∂ϕp

)
− hϕp

]
eϑp +

[(
− kT
µ0µ

)(
∂Ei
∂ϑp

)
+ hϑp

]
eϕp ,

(7.79)

sp × [sp × (Hp + hp)] =




1

0

0


×




0(
kT
µ0µ

)(
1

sinϑp

∂Ei
∂ϕp

)
− hϕp(

− kT
µ0µ

)(
∂Ei
∂ϑp

)
+ hϑp




=

[(
kT

µ0µ

)(
∂Ei
∂ϑp

)
− hϑp

]
eϑp +

[(
kT

µ0µ

)(
1

sinϑp

∂Ei
∂ϕp

)
− hϕp

]
eϕp .

(7.80)

171



Substituting Eqs. (7.71), (7.78) and (7.80) into Eq. (7.69) we have




0

ϑ̇p

sinϑpϕ̇p


 =

µ0µ

2kTτN




1

α




0(
− kT
µ0µ

)(
1

sinϑp

∂Ei
∂ϕp

)
+ hϕp(

kT
µ0µ

)(
∂Ei
∂ϑp

)
− hϑp


−




0(
kT
µ0µ

)(
∂Ei
∂ϑp

)
− hϑp(

kT
µ0µ

)(
1

sinϑp

∂Ei
∂ϕp

)
− hϕp





 ,

(7.81)

which can be written as

ϑ̇p =
µ0µ

2kTτN

(
hϑp + α−1hϕp

)
− 1

2τN

(
∂Ei
∂ϑp

+
1

α sinϑp

∂Ei
∂ϕp

)
, (7.82)

ϕ̇p =
µ0µ

2kTτN sinϑp

(
hϕp − α−1hϑp

)
− 1

2τN

(
1

sin2ϑp

∂Ei
∂ϕp
− 1

α sinϑp

∂Ei
∂ϑp

)
. (7.83)

7.C Coefficients dl1 l2ml1+i l2+j m+k

From the methods described in [2] and [22] using the theory of angular momentum

and the Clebsch-Gordan series as well as the expansion of the potential Ei in terms

of spherical harmonics, Eq. (7.5), we have after lengthy calculations (given in detail

in Appendix 7.D) the various coefficients dl1 l2ml1+i l2+j m+k for dipole-dipole interaction,

which are

dl1 l2ml1 l2m
=pl1 l2m = −

∑

l=l1,l2

(
1

2
l(l + 1)− σ l(l + 1)− 3m2

(2l − 1)(2l + 3)

)
,

dl1 l2ml1+2 l2m
=ūl1 l2m = −σ l1

2l1 + 3

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 1)(2l1 + 5)
,

dl1 l2ml1 l2+2m =ūl2 l1m = −σ l2
2l2 + 3

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

(2l2 + 1)(2l2 + 5)
,

dl1 l2ml1−2 l2m
=v̄l2 l1m = σ

l1 + 1

2l1 − 1

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 + 1)(2l1 − 3)
,
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dl1 l2ml1 l2−2m =v̄l1 l2m = σ
l2 + 1

2l2 − 1

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 + 1)(2l2 − 3)
,

dl1 l2ml1+1 l2m
=(sl1 l2m)∗ = −

(
ξII

2
l1 −

i(σ − ς)
α

m

)√
(l1 + 1)2 −m2

4(l1 + 1)2 − 1
,

dl1 l2ml1 l2+1m =sl2 l1m = −
(
ξII

2
l2 +

i(σ − ς)
α

m

)√
(l2 + 1)2 −m2

4(l2 + 1)2 − 1
,

dl1 l2ml1−1 l2m
=rl2 l1m =

(
ξII

2
(l1 + 1) +

i(σ − ς)
α

m

)√
l21 −m2

4l21 − 1
,

dl1 l2ml1 l2−1m =(rl1 l2m)∗ =

(
ξII

2
(l2 + 1)− i(σ − ς)

α
m

)√
l22 −m2

4l22 − 1
,

dl1 l2ml1+1 l2+1m =ul1 l2m = −ς(l1 + l2)

√
((l1 + 1)2 −m2)((l2 + 1)2 −m2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
,

dl1 l2ml1−1 l2−1m =vl1 l2m = ς(l1 + l2 + 2)

√
(l21 −m2)(l22 −m2)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
,

dl1 l2ml1+1 l2−1m =p̄l1 l2m = ς(l2 − l1 + 1)

√
((l1 + 1)2 −m2)(l22 −m2)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
,

dl1 l2ml1−1 l2+1m =p̄l2 l1m = ς(l1 − l2 + 1)

√
((l2 + 1)2 −m2)(l21 −m2)

(2l2 + 1) (2l2 + 3) (2l1 − 1) (2l1 + 1)
,

dl1 l2ml1+1 l2+1m±1 =u±l1 l2m = −1

4
ς(l1 + l2)

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
,

dl1 l2ml1+1 l2−1m±1 =p̄±l1 l2m = −1

4
ς(l2 − l1 + 1)

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
,

dl1 l2ml1−1 l2+1m±1 =p̄±l2 l1m = −1

4
ς(l1 − l2 + 1)

√
(l2 ±m+ 1) (l2 ±m+ 2) (l1 ∓m− 1) (l1 ∓m)

(2l2 + 1) (2l2 + 3) (2l1 − 1) (2l1 + 1)
,

dl1 l2ml1−1 l2−1m±1 =v±l1 l2m =
1

4
ς(l1 + l2 + 2)

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
,

dl1 l2ml1+1 l2m±1 =
(
s±l1 l2m

)∗
= ± iς

4α

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ±m+ 1)(l2 ∓m)

(2l1 + 1) (2l1 + 3)
,

dl1 l2ml1 l2+1m±1 =s±l2 l1m = ∓ iς

4α

√
(l2 ±m+ 1) (l2 ±m+ 2) (l1 ±m+ 1)(l1 ∓m)

(2l2 + 1) (2l2 + 3)
,

dl1 l2ml1 l2−1m±1 =
(
r±l1 l2m

)∗
= ± iς

4α

√
(l1 ±m+ 1)(l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l2 − 1) (2l2 + 1)
,

dl1 l2ml1−1 l2m±1 =r±l2 l1m = ∓ iς

4α

√
(l2 ±m+ 1)(l2 ∓m) (l1 ∓m− 1) (l1 ∓m)

(2l1 − 1) (2l1 + 1)
.
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We note that

d
li lj m
li+x lj+ym±1 =

(
d
lj lim
lj+y li+xm±1

)∗
. (7.84)

It is useful to compare the coefficients for dipole-dipole coupling with the corre-

sponding ones for exchange interaction [22] (Eq. (7.3)). We have

dl1 l2ml1 l2m
=pl1 l2m = −

∑

l=l1,l2

(
1

2
l(l + 1)− σ l(l + 1)− 3m2

(2l − 1)(2l + 3)

)
,

dl1 l2ml1+2 l2m
=ūl1 l2m = −σ l1

2l1 + 3

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 1)(2l1 + 5)
,

dl1 l2ml1 l2+2m =ūl2 l1m = −σ l2
2l2 + 3

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

(2l2 + 1)(2l2 + 5)
,

dl1 l2ml1−2 l2m
=v̄l2 l1m = σ

l1 + 1

2l1 − 1

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 + 1)(2l1 − 3)
,

dl1 l2ml1 l2−2m =v̄l1 l2m = σ
l2 + 1

2l2 − 1

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 + 1)(2l2 − 3)
,

dl1 l2ml1+1 l2m
=(sl1 l2m)∗ = −

(
ξII

2
l1 −

i(2σ − ς)
2α

m

)√
(l1 + 1)2 −m2

4(l1 + 1)2 − 1
,

dl1 l2ml1 l2+1m =sl2 l1m = −
(
ξII

2
l2 +

i(2σ − ς)
2α

m

)√
(l2 + 1)2 −m2

4(l2 + 1)2 − 1
,

dl1 l2ml1−1 l2m
=rl2 l1m =

(
ξII

2
(l1 + 1) +

i(2σ − ς)
2α

m

)√
l21 −m2

4l21 − 1
,

dl1 l2ml1 l2−1m =(rl1 l2m)∗ =

(
ξII

2
(l2 + 1)− i(2σ − ς)

2α
m

)√
l22 −m2

4l22 − 1
,

dl1 l2ml1+1 l2+1m =ul1 l2m = −1

2
ς(l1 + l2)

√
((l1 + 1)2 −m2)((l2 + 1)2 −m2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
,

dl1 l2ml1−1 l2−1m =vl1 l2m =
1

2
ς(l1 + l2 + 2)

√
(l21 −m2)(l22 −m2)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
,

dl1 l2ml1+1 l2−1m =p̄l1 l2m =
1

2
ς(l2 − l1 + 1)

√
((l1 + 1)2 −m2)(l22 −m2)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
,

dl1 l2ml1−1 l2+1m =p̄l2 l1m =
1

2
ς(l1 − l2 + 1)

√
((l2 + 1)2 −m2)(l21 −m2)

(2l2 + 1) (2l2 + 3) (2l1 − 1) (2l1 + 1)
,
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dl1 l2ml1+1 l2+1m±1 =u±l1 l2m =
1

4
ς(l1 + l2)

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
,

dl1 l2ml1+1 l2−1m±1 =p̄±l1 l2m =
1

4
ς(l2 − l1 + 1)

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
,

dl1 l2ml1−1 l2+1m±1 =p̄±l2 l1m =
1

4
ς(l1 − l2 + 1)

√
(l2 ±m+ 1) (l2 ±m+ 2) (l1 ∓m− 1) (l1 ∓m)

(2l2 + 1) (2l2 + 3) (2l1 − 1) (2l1 + 1)
,

dl1 l2ml1−1 l2−1m±1 =v±l1 l2m = −1

4
ς(l1 + l2 + 2)

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
,

dl1 l2ml1+1 l2m±1 =
(
s±l1 l2m

)∗
= ∓ iς

4α

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ±m+ 1)(l2 ∓m)

(2l1 + 1) (2l1 + 3)
,

dl1 l2ml1 l2+1m±1 =s±l2 l1m = ± iς

4α

√
(l2 ±m+ 1) (l2 ±m+ 2) (l1 ±m+ 1)(l1 ∓m)

(2l2 + 1) (2l2 + 3)
,

dl1 l2ml1 l2−1m±1 =
(
r±l1 l2m

)∗
= ∓ iς

4α

√
(l1 ±m+ 1)(l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l2 − 1) (2l2 + 1)
,

dl1 l2ml1−1 l2m±1 =r±l2 l1m = ± iς

4α

√
(l2 ±m+ 1)(l2 ∓m) (l1 ∓m− 1) (l1 ∓m)

(2l1 − 1) (2l1 + 1)
.

We describe in detail how the above results are obtained in Appendix 7.D.

7.D Deriving the expansion Coefficients dl1 l2ml1+i l2+j m+k

Recall that the normalised free energy, Ei is given by

Ei =− 4π

6
ς

1∑

m=−1

(3 + (−1)m)Y1m(ϑ1, ϕ1)Y1−m(ϑ2, ϕ2)

−
∑

p=1,2

[
ξi

√
4π

3
Y10(ϑp, ϕp) + σ

4

3

√
π

5
Y20(ϑp, ϕp)

]
+ const., i = I, II. (7.85)

We define (because we wish to use a general expression provided by Coffey, Kalmykov

and Titov. (see Eq. (1.103) of [34]) See Eq. (7.95) below)
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E
(p)
i =E

(p)
i,+ + E

(p)
i,−,

E
(p)
i,+ =

∞∑

R=1

R∑

S=0

v
(p)
RSY

(p)
RS (ϑp, ϕp),

E
(p)
i,− =

∞∑

R=1

−1∑

S=−R
v

(p)
RSY

(p)
RS (ϑp, ϕp), (7.86)

p =1, 2.

From Eq. (7.86) we have for Eq. (7.85):

E
(1)
i =− 4π

6
ς

1∑

m=−1

(3 + (−1)m)Y1m(ϑ1, ϕ1)Y1−m(ϑ2, ϕ2)

− ξi
√

4π

3
Y10(ϑ1, ϕ1)− σ4

3

√
π

5
Y20(ϑ1, ϕ1)

=− 4π

6
ς [2Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) + 4Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+2Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)]

− ξi
√

4π

3
Y10(ϑ1, ϕ1)− σ4

3

√
π

5
Y20(ϑ1, ϕ1), (7.87)

E
(2)
i =− 4π

6
ς [2Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) + 4Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ 2Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)]

− ξi
√

4π

3
Y10(ϑ2, ϕ2)− σ4

3

√
π

5
Y20(ϑ2, ϕ2), (7.88)

E
(1)
i,+ =− 4π

6
ς [4Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2) + 2Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)]

− ξi
√

4π

3
Y10(ϑ1, ϕ1)− σ4

3

√
π

5
Y20(ϑ1, ϕ1)

=− 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

− ξi
√

4π

3
Y10(ϑ1, ϕ1)− σ4

3

√
π

5
Y20(ϑ1, ϕ1)

=A
(1)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2) + A

(1)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

+ A
(1)
1,0,0Y10(ϑ1, ϕ1) + A

(1)
2,0,0Y20(ϑ1, ϕ1), (7.89)
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E
(1)
i,− =− 4π

6
ς [2Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)]

=− 4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

=A
(1)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2), (7.90)

E
(2)
i,+ =− 4π

6
ς [2Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) + 4Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)]

− ξi
√

4π

3
Y10(ϑ2, ϕ2)− σ4

3

√
π

5
Y20(ϑ2, ϕ2)

=− 4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)− 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− ξi
√

4π

3
Y10(ϑ2, ϕ2)− σ4

3

√
π

5
Y20(ϑ2, ϕ2)

=A
(2)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) + A

(2)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ A
(2)
0,1,0Y10(ϑ2, ϕ2) + A

(2)
0,2,0Y20(ϑ2, ϕ2), (7.91)

E
(2)
i,− =− 4π

6
ς [2Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)]

=− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

=A
(2)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2). (7.92)

Having written the split potentials as products of spherical harmonics of arguments

(ϑ1, ϕ1) and (ϑ2, ϕ2), we now introduce as new variables (whose form is suggested

by the potential) the time dependent product of spherical harmonics of arguments

(ϑ1, ϕ1) and (ϑ2, ϕ2) respectively expressed as

Ml1 l2m
= Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2). (7.93)

The stochastic equation of motion for the functions Ml1 l2m
(t) is given by

d

dt
Ml1 l2m =

∑

p=1,2

ϑ̇p
∂Ml1 l2m

∂ϑp
+ ϕ̇p

∂Ml1 l2m

∂ϕp
. (7.94)

Upon averaging Eq. (7.94) over its realisations in an infinitesimal time, we obtain

by essentially adapting the formal method of Coffey, Kalmykov and Titov (See Eq.
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(1.102) of [34])

τNṀl1l2m =
2∑

i=1

1

4

[(
L(p)

)2
(
E

(p)
i Ml1l2m

)
− E(p)

i

(
L(p)

)2
Ml1l2m

− Ml1l2m

(
L(p)

)2
E

(p)
i

]
− 1

2

2∑

i=1

(
L(p)

)2
Ml1l2m

+
2∑

i=1

i

4α

√
3

2π

{(
Y

(p)
1,1

)−1 [(
L

(p)
Z Ei

(p)
+

)(
L

(p)
+ Ml1l2m

)

−
(
L

(p)
+ E

(p)
i+

)(
L

(p)
Z Ml1l2m

)]

+
(
Y

(i)
1,−1

)−1 [(
L

(p)
Z E

(p)
i−

)(
L

(p)
− Ml1l2m

)

−
(
L

(p)
− E

(p)
i−

)(
L

(p)
Z Ml1l2m

)]}
, (7.95)

where

(
L(p)

)2
=− 1

sinϑp

∂

∂ϑp

(
sinϑp

∂

∂ϑp

)
− 1

sin2ϑp

∂2

∂ϕ2
p

, (7.96)

L
(p)
Z =− i ∂

∂ϕp
, (7.97)

L
(p)
± =e±ϕp

(
± ∂

∂ϑp
+ i cotϑp

∂

∂ϕp

)
, (7.98)

are the orbital angular momentum operators [34,120]. Using Eqs. (7.87) - (7.92) we

may substitute for the free energy terms in Eq. (7.95) to obtain
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τNṀl1l2m =

1

4

1[(
L(1)

)2
((
−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) − 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)− ξi

√
4π

3
Y10(ϑ1, ϕ1)

−σ2

3

√
4π

5
Y20(ϑ1, ϕ1)

)
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
2(

−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) − 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)− ξi

√
4π

3
Y10(ϑ1, ϕ1)

− σ
2

3

√
4π

5
Y20(ϑ1, ϕ1)

)
(
L(1)

)2
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

−
3

Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)
(
L(1)

)2
(
−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

− 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)− ξi

√
4π

3
Y10(ϑ1, ϕ1)− σ

2

3

√
4π

5
Y20(ϑ1, ϕ1)

)

+

4

(
L(2)

)2
((
−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) − 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)− ξi

√
4π

3
Y10(ϑ2, ϕ2)

− σ
2

3

√
4π

5
Y20(ϑ2, ϕ2)

)
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
5(

−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) − 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)− ξi

√
4π

3
Y10(ϑ2, ϕ2)

− σ
2

3

√
4π

5
Y20(ϑ2, ϕ2)

)
(
L(2)

)2
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)
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−
6

Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)
(
L(2)

)2
(
−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

− 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

−ξi
√

4π

3
Y10(ϑ2, ϕ2)− σ

2

3

√
4π

5
Y20(ϑ2, ϕ2)

)]

− 1

2

7[(
L(1)

)2
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2) +

(
L(2)

)2
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

]

+

8

i

4α

√
3

2π

{(
Y

(1)
1,1

)−1 [(
L

(1)
Z

(
A

(1)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ A
(1)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2) + A

(1)
1,0,0Y10(ϑ1, ϕ1)

+ A
(1)
2,0,0Y20(ϑ1, ϕ1)

))(
L

(1)
+ Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
9(

L
(1)
+

(
A

(1)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ A
(1)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2) + A

(1)
1,0,0Y10(ϑ1, ϕ1)

+ A
(1)
2,0,0Y20(ϑ1, ϕ1)

)) (
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

+

10(
Y

(1)
1,−1

)−1 [(
L

(1)
Z

(
A

(1)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

))(
L

(1)
− Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
L

(1)
−

(
A

(1)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

))(
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

+

11(
Y

(2)
1,1

)−1 [(
L

(2)
Z

(
A

(2)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) + A

(2)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ A
(2)
0,1,0Y10(ϑ2, ϕ2) + A

(2)
0,2,0Y20(ϑ2, ϕ2)

))(
L

(2)
+ Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
12(

L
(2)
+

(
A

(2)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2) + A

(2)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ A
(2)
0,1,0Y10(ϑ2, ϕ2) + A

(2)
0,2,0Y20(ϑ2, ϕ2)

)) (
L

(2)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

+

13(
Y

(2)
1,−1

)−1 [(
L

(2)
Z

(
A

(2)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

))(
L

(2)
− Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
L

(2)
−

(
A

(2)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

))(
L

(2)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]}
.

(7.99)
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In the following sections, we shall use the following identities for the product of two

spherical harmonics [2]

√
8π

3
Y1±1Ylm =

√
(l ±m+ 1) (l ±m+ 2)

(2l + 1) (2l + 3)
Yl+1m±1

−
√

(l ∓m− 1) (l ∓m)

(2l − 1) (2l + 1)
Yl−1m±1,

⇒ Y1±1Ylm =

√
3

8π

√
(l ±m+ 1) (l ±m+ 2)

(2l + 1) (2l + 3)
Yl+1m±1

−
√

3

8π

√
(l ∓m− 1) (l ∓m)

(2l − 1) (2l + 1)
Yl−1m±1, (7.100)

√
4π

3
Y10Ylm =

√
(l +m+ 1) (l −m+ 1)

(2l + 1) (2l + 3)
Yl+1m

+

√
(l −m) (l +m)

(2l − 1) (2l + 1)
Yl−1m,

⇒ Y10Ylm =

√
3

4π

√
(l +m+ 1) (l −m+ 1)

(2l + 1) (2l + 3)
Yl+1m

+

√
3

4π

√
(l −m) (l +m)

(2l − 1) (2l + 1)
Yl−1m, (7.101)

√
4π

5
Y20Ylm =

l(l + 1)− 3m2

(2l − 1)(2l + 3)
Ylm

+
3
√

(l2 −m2)((l − 1)2 −m2)

2(2l − 1)
√

(2l + 1)(2l − 3)
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Furthermore, the action of the angular momentum operator L2 on a spherical har-

monic Ylm is given by

L2Ylm = l (l + 1)Ylm. (7.103)

We shall now evaluate the effects of the various operators on the components of Eq.

(7.99) individually
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Thus the first term ‘1’ on the RHS of Eq. (7.99) has been expressed as a linear

combination of the desired products M . Likewise all the other terms follow, whence

we can can by orthogonality hive off the expansion coefficients in the Fourier-Laplace

series. Notice that in general it is much easier to use the Clebsch-Gordan coefficients

which exist in Mathematica in order to avoid those complicated calculations. We

have for the second term ‘2’:
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(2l1 − 1) (2l1 + 1)
Yl1−1m+1

]
×

[√
3

8π

√
(l2 +m+ 1) (l2 +m+ 2)

(2l2 + 1) (2l2 + 3)
Yl2+1−m−1

−
√

3

8π

√
(l2 −m− 1) (l2 −m)

(2l2 − 1) (2l2 + 1)
Yl2−1−m−1

]

+

[
ξi

√
π

3

√
3

4π

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
Yl2+1−m

+ ξi

√
π

3

√
3

4π

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
Yl2−1−m

]
Yl1m
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+

[
σ

2

3

3

2

l2(l2 + 1)− 3m2

(2l2 − 1)(2l2 + 3)
Yl2−m

+ σ
3

2

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)
Yl2−2−m

+ σ
3

2

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

(2l2 + 3)
√

(2l2 + 1)(2l2 + 5)
Yl2+2−m


Yl1m

=
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
Ml1 +1l2+1m−1

− 1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 +m− 1) (l2 +m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
Ml1 +1l2−1m−1

− 1

4
ς

√
(l1 +m− 1) (l1 +m) (l2 −m+ 1) (l2 −m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
Ml1−1l2+1m−1

+
1

4
ς

√
(l1 +m− 1) (l1 +m) (l2 +m− 1) (l2 +m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
Ml1−1l2−1m−1

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
Ml1 +1l2+1m

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
Ml1 +1l2−1m

+ ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
Ml1−1l2+1m

+ ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
Ml1−1l2−1m

+
1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
Ml1 +1l2+1m+1

− 1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 −m− 1) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
Ml1+1 l2−1m+1

− 1

4
ς

√
(l1 −m− 1) (l1 −m) (l2 +m+ 1) (l2 +m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
Ml1−1l2+1m+1

+
1

4
ς

√
(l1 −m− 1) (l1 −m) (l2 −m− 1) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
Ml1−1l2−1m+1

204



+
1

2
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
Ml1 l2+1m

+
1

2
ξi

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
Ml1 l2−1m

+ σ
l2(l2 + 1)− 3(−m)2

(2l2 − 1)(2l2 + 3)
Ml1 l2m

+ σ
3
√

(l22 − (−m)2)((l2 − 1)2 − (−m)2)

2(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)
Ml1 l2−2m

+ σ
3
√

((l2 + 1)2 − (−m)2)((l2 + 2)2 − (−m)2)

2(2l2 + 3)
√

(2l2 + 1)(2l2 + 5)
Ml1 l2+2m. (7.109)

7

− 1

2

[(
L(1)

)2
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2) +

(
L(2)

)2
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

]

=− 1

2

(
L(1)

)2
Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)− 1

2
Yl1m(ϑ1, ϕ1)

(
L(2)

)2
Yl2−m(ϑ2, ϕ2)

=− 1

2
l1 (l1 + 1)Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)− 1

2
l2 (l2 + 1)Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2).

(7.110)

8

In this section as well as the following sections, we shall use the following property

of the product of two spherical harmonics [2]

(Y1±1)−1Yl±m =

√
8π (2l + 1) (l −m)!

3 (l +m)!

l−1∑

L=m−εlm

√
(2L+ 1) (L+m− 1)!

(L−m+ 1)!
YL±(m−1),

(7.111)

where ∆L = 2. We will also make use of the spherical harmonic

Y00(ϑp, ϕp) =

√
1

4π
⇒
√

4πY00(ϑp, ϕp) = 1, p = 1, 2. (7.112)

Furthermore, the actions of the angular momentum operators L± and LZ on a

spherical harmonic Ylm are given by

L±Ylm =
√
l (l + 1)−m (m± 1)Ylm±1, (7.113)

LZYlm =m. (7.114)
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Thus we get

i

4α

√
3

2π

(
Y

(1)
11

)−1 (
L

(1)
Z

(
A

(1)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ A
(1)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

+ A
(1)
1,0,0Y10(ϑ1, ϕ1) + A

(1)
2,0,0Y20(ϑ1, ϕ1)

))(
L

(1)
+ Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
3

2π

(
Y

(1)
1,1

)−1
(
−8π

3
ςL

(1)
Z Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ςL

(1)
Z Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

− ξi
√

4π

3
L

(1)
Z Y10(ϑ1, ϕ1)

−σ4

3

√
π

5
L

(1)
Z Y20(ϑ1, ϕ1)

)(
L

(1)
+ Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
3

2π

(
Y

(1)
1,1

)−1
(
−8π

3
ς (0)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ς (1)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

− ξi
√

4π

3
(0)Y10(ϑ1, ϕ1)

− σ
4

3

√
π

5
(0)Y20(ϑ1, ϕ1)

)
×

(√
l1 (l1 + 1)−m (m+ 1)Yl1m+1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
3

2π

√
l1 (l1 + 1)−m (m+ 1)

(
Y

(1)
1,1

)−1

×
[(
−4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

)
(Yl1m+1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

=
i

4α

√
3

2π

(
Y

(1)
11

)−1
((
−4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

))
×

(√
l1 (l1 + 1)−m (m+ 1)Yl1m+1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
3

2π

((
−4π

3
ς

[√
8π(2 (1) + 1)(1− 1)!

3(1 + 1)!
Y0(1−1)(ϑ1, ϕ1)

]
Y1−1(ϑ2, ϕ2)

))
×

(√
l1 (l1 + 1)−m (m+ 1)Yl1m+1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)
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=
i

4α

√
3

2π

((
−4π

3
ς

[√
8π(3)(1)

3(2)
Y00(ϑ1, ϕ1)

]
Y1−1(ϑ2, ϕ2)

))
×

(√
l1 (l1 + 1)−m (m+ 1)Yl1m+1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
3

2π

((
−4π

3
ς
√

4πY00Y1−1(ϑ2, ϕ2)

))
×

(√
l1 (l1 + 1)−m (m+ 1)Yl1m+1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
3

2π

((
−4π

3
ςY1−1(ϑ2, ϕ2)

))
×

(√
l1 (l1 + 1)−m (m+ 1)Yl1m+1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=− i

4α

√
8π

3
ς
√
l1 (l1 + 1)−m (m+ 1)Yl1m+1(ϑ1, ϕ1)×

(Y1−1(ϑ2, ϕ2)Yl2−m(ϑ2, ϕ2))

=− i

4α

√
8π

3
ς
√
l1 (l1 + 1)−m (m+ 1)Yl1m+1(ϑ1, ϕ1)×

[√
3

8π

√
(l2 +m+ 1) (l2 +m+ 2)

(2l2 + 1) (2l2 + 3)
Yl2+1−m−1(ϑ2, ϕ2)

−
√

3

8π

√
(l2 −m− 1) (l2 −m)

(2l2 − 1) (2l2 + 1)
Yl2−1−m−1(ϑ2, ϕ2)

]

=− i

4α
ς

√
l1 (l1 + 1)−m (m+ 1) (l2 +m+ 1) (l2 +m+ 2)

(2l2 + 1) (2l2 + 3)
×

Yl1m+1(ϑ1, ϕ1)Yl2+1−m−1(ϑ2, ϕ2)

+
i

4α
ς

√
l1 (l1 + 1)−m (m+ 1) (l2 −m− 1) (l2 −m)

(2l2 − 1) (2l2 + 1)
×

Yl1m+1(ϑ1, ϕ1)Yl2−1−m−1(ϑ2, ϕ2)

=− i

4α
ς

√
l1 (l1 + 1)−m (m+ 1) (l2 +m+ 1) (l2 +m+ 2)

(2l2 + 1) (2l2 + 3)
Ml1 l2+1m+1

+
i

4α
ς

√
l1 (l1 + 1)−m (m+ 1) (l2 −m− 1) (l2 −m)

(2l2 − 1) (2l2 + 1)
Ml1 l2−1m+1. (7.115)
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9

− i

4α

√
3

2π

(
Y

(1)
11

)−1 (
L

(1)
+

(
A

(1)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ A
(1)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

+ A
(1)
1,0,0Y10(ϑ1, ϕ1) + A

(1)
2,0,0Y20(ϑ1, ϕ1)

))(
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=− i

4α

√
3

2π

(
Y

(1)
11

)−1
(
L

(1)
+

(
−8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

− ξi
√

4π

3
Y10(ϑ1, ϕ1)− σ

4

3

√
π

5
Y20(ϑ1, ϕ1)

))(
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=− i

4α

√
3

2π

(
Y

(1)
11

)−1
(
−8π

3
ς
√

1 (1 + 1)− 0 (0 + 1)Y1(0+1)(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ς
√

1 (1 + 1)− 1 (1 + 1)Y1(1+1)(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

− ξi
√

4π

3

√
1 (1 + 1)− 0 (0 + 1)Y1(0+1)(ϑ1, ϕ1)

− σ
4

3

√
π

5

√
2 (2 + 1)− 0 (0 + 1)Y2(0+1)(ϑ1, ϕ1)

)
(mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

=− i

4α

√
3

2π

(
Y

(1)
11

)−1
(
−8π

3
ς
√

2Y11(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− 4π

3
ς
√

0Y12(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

− ξi
√

4π

3

√
2Y11(ϑ1, ϕ1)− σ

4

3

√
π

5

√
6Y21(ϑ1, ϕ1)

)
(mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

=− i

4α

√
3

2π

(
Y

(1)
11

)−1
(
−8
√

2π

3
ςY11(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− ξi
√

8π

3
Y11(ϑ1, ϕ1)− σ

√
32π

15
Y21(ϑ1, ϕ1)

)
(mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

=− i

4α

√
3

2π

{
−8
√

2π

3
ς

[√
8π (2 (1) + 1) (1− 1)!

3 (1 + 1)!
Y0(1−1)(ϑ1, ϕ1)

]
Y10(ϑ2, ϕ2)

− ξi
√

8π

3

[√
8π (2 (1) + 1) (1− 1)!

3 (1 + 1)!
Y0(1−1)(ϑ1, ϕ1)

]

− σ
√

32π

15

[√
8π (2 (2) + 1) (2− 1)!

3 (2 + 1)!

√
(2 (1) + 1) (1 + 1− 1)!

(1− 1 + 1)!
Y1(1−1)(ϑ1, ϕ1)

]}
×

(mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))
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=− i

4α

√
3

2π

{
−8
√

2π

3
ς

[√
8π (3) (0)!

3 (2)!
Y00(ϑ1, ϕ1)

]
Y10(ϑ2, ϕ2)

− ξi
√

8π

3

[√
8π (3) (0)!

3 (2)!
Y00(ϑ1, ϕ1)

]

− σ
√

32π

15

[√
8π (5) (1)!

3 (3)!

√
(3) (1)!

(1)!
Y10(ϑ1, ϕ1)

]}
(mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

=− i

4α

√
3

2π

{
−8
√

2π

3
ς
[√

4πY00(ϑ1, ϕ1)
]
Y10(ϑ2, ϕ2)

− ξi
√

8π

3

[√
4πY00(ϑ1, ϕ1)

]

− σ
√

32π

15

[√
20π

3
Y10(ϑ1, ϕ1)

]}
(mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

=− i

4α

√
3

2π

{
−8
√

2π

3
ς Y10(ϑ2, ϕ2)− ξi

√
8π

3

− σ
√

32π

15

[√
20π

3
Y10(ϑ1, ϕ1)

]}
(mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

=
i

4α
mς

√
64π

3
Yl1m(ϑ1, ϕ1)Y10(ϑ2, ϕ2)Yl2−m(ϑ2, ϕ2)

+
i

2α
mξiYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

+
i

4α
mσ

√
64π

3
Y10(ϑ1, ϕ1)Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

=
i

4α
mς

√
64π

3

[√
3

4π

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
Yl2+1−m(ϑ2, ϕ2)

+

√
3

4π

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
Yl2−1−m(ϑ2, ϕ2)

]
Yl1m(ϑ1, ϕ1)

+
i

2α
mξiYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

+
i

4α
mσ

√
64π

3

[√
3

4π

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
Yl1+1m(ϑ1, ϕ1)

+

√
3

4π

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
Yl1−1,m(ϑ1, ϕ1)

]
Yl2−m(ϑ2, ϕ2)
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=
i

α
mς

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
Yl1m(ϑ1, ϕ1)Yl2+1−m(ϑ2, ϕ2)

+
i

α
mς

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
Yl1m(ϑ1, ϕ1)Yl2−1−m(ϑ2, ϕ2)

+
i

2α
mξiYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

+
i

α
mσ

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
Yl1+1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

+
i

α
mσ

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
Yl1−1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

=
i

α
mς

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
Ml1 l2+1m

+
i

α
mς

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
Ml1 l2−1m

+
i

2α
mξiMl1 l2m

+
i

α
mσ

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
Ml1+1 l2m

+
i

α
mσ

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
Ml1−1 l2m

. (7.116)
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i

4α

√
3

2π

(
Y

(1)
1−1

)−1 [(
L

(1)
Z

(
A

(1)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

))
×

(
L

(1)
− Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
L

(1)
−

(
A

(1)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

))
×

(
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

(
Y

(1)
1−1

)−1
[(
L

(1)
Z

(
−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

))
×

(
L

(1)
− Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
L

(1)
−

(
−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

))

×
(
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]
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=
i

4α

√
3

2π

(
Y

(1)
1−1

)−1
[(
−4π

3
ςL

(1)
Z Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(
L

(1)
− Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
−4π

3
ςL

(1)
− Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

(
Y

(1)
1−1

)−1
[(
−4π

3
ς (−1)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(√
l1 (l1 + 1)−m (m− 1)Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
−4π

3
ς
√

1 (1 + 1) + 1 (−1− 1)Y1(−1−1)(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

(
Y

(1)
1−1

)−1
[(

4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(√
l1 (l1 + 1)−m (m− 1)Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
−4π

3
ς
√

0Y1(−1−1)(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(
L

(1)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

(
Y

(1)
1−1

)−1
[(

4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(√
l1 (l1 + 1)−m (m− 1)Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
(
Y

(1)
1−1

)−1
[(

i

4α

√
8π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(√
l1 (l1 + 1)−m (m− 1)Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
i

4α

√
8π

3
ς

[√
8π (2 (1) + 1) (1− 1)!

3 (1 + 1)!
Y0−(1−1)(ϑ1, ϕ1)

]
Y11(ϑ2, ϕ2)×

(√
l1 (l1 + 1)−m (m− 1)Yl1m−1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
8π

3
ς

[√
8π (3) (0)!

3 (2)!
Y00(ϑ1, ϕ1)

]
Y11(ϑ2, ϕ2)×

(√
l1 (l1 + 1)−m (m− 1)Yl1m−1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)
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=
i

4α

√
8π

3
ς
[√

4πY00(ϑ1, ϕ1)
]
Y11(ϑ2, ϕ2)×

(√
l1 (l1 + 1)−m (m− 1)Yl1m−1(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
8π

3
ς
√
l1 (l1 + 1)−m (m− 1)×

Yl1m−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)Yl2−m(ϑ2, ϕ2)

=
i

4α

√
8π

3
ς
√
l1 (l1 + 1)−m (m− 1)Yl1m−1(ϑ1, ϕ1)×

[√
3

8π

√
(l2 −m+ 1) (l2 −m+ 2)

(2l2 + 1) (2l2 + 3)
Yl2+11−m(ϑ2, ϕ2)

−
√

3

8π

√
(l2 +m− 1) (l2 +m)

(2l2 − 1) (2l2 + 1)
Yl2−11−m(ϑ2, ϕ2)

]

=
i

4α
ς

√
l1 (l1 + 1)−m (m− 1) (l2 −m+ 1) (l2 −m+ 2)

(2l2 + 1) (2l2 + 3)
×

Yl1m−1(ϑ1, ϕ1)Yl2+11−m(ϑ2, ϕ2)

− i

4α
ς

√
l1 (l1 + 1)−m (m− 1) (l2 +m− 1) (l2 +m)

(2l2 − 1) (2l2 + 1)
×

Yl1m−1(ϑ1, ϕ1)Yl2−11−m(ϑ2, ϕ2)

=
i

4α
ς
√
l1 (l1 + 1)−m (m− 1)

√
(l2 −m+ 1) (l2 −m+ 2)

(2l2 + 1) (2l2 + 3)
Ml1 l2+1m−1

− i

4α
ς
√
l1 (l1 + 1)−m (m− 1)

√
(l2 +m− 1) (l2 +m)

(2l2 − 1) (2l2 + 1)
Ml1 l2−1m−1. (7.117)

11

i

4α

√
3

2π

(
Y

(2)
11

)−1 (
L

(2)
Z

(
A

(2)
1,1,−1 (ς)Y1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

+ A
(2)
1,1,0 (ς)Y10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

+ A
(2)
0,1,0Y10(ϑ2, ϕ2) + A

(2)
0,2,0Y20(ϑ2, ϕ2)

))
×

(
L

(2)
+ Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)
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=
i

4α

√
3

2π

(
Y

(2)
11

)−1
(
−4π

3
ςY1−1(ϑ1, ϕ1)L

(2)
Z Y11(ϑ2, ϕ2)

− 8π

3
ςY10(ϑ1, ϕ1)L

(2)
Z Y10(ϑ2, ϕ2)

− ξi
√

4π

3
L

(2)
Z Y10(ϑ2, ϕ2)− σ

4

3

√
π

5
L

(2)
Z Y20(ϑ2, ϕ2)

)
×

(
L

(2)
+ Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

=
i

4α

√
3

2π

(
Y

(2)
11

)−1
(
−4π

3
ςY1−1(ϑ1, ϕ1) (1)Y11(ϑ2, ϕ2)

− 8π

3
ςY10(ϑ1, ϕ1) (0)Y10(ϑ2, ϕ2)

− ξi
√

4π

3
(0)Y10(ϑ2, ϕ2)− σ

4

3

√
π

5
(0)Y20(ϑ2, ϕ2)

)
×

(√
l2 (l2 + 1) +m (−m+ 1)Yl1m(ϑ1, ϕ1)Yl2−m+1(ϑ2, ϕ2)

)

=
i

4α

√
3

2π

(
Y

(2)
11

)−1
(
−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

)
×

(√
l2 (l2 + 1) +m (−m+ 1)Yl1m(ϑ1, ϕ1)Yl2−m+1(ϑ2, ϕ2)

)

=− i

4α

√
8π

3
ςY1−1(ϑ1, ϕ1)

[√
8π (2 (1) + 1) (1− 1)!

3 (1 + 1)!
Y0−(1−1)(ϑ2, ϕ2)

]
×

(√
l2 (l2 + 1) +m (−m+ 1)Yl1m(ϑ1, ϕ1)Yl2−m+1(ϑ2, ϕ2)

)

=− i

4α

√
8π

3
ςY1−1(ϑ1, ϕ1)

[√
8π (3) (0)!

3 (2)!
Y00(ϑ2, ϕ2)

]
×

(√
l2 (l2 + 1) +m (−m+ 1)Yl1m(ϑ1, ϕ1)Yl2−m+1(ϑ2, ϕ2)

)

=− i

4α

√
8π

3
ςY1−1(ϑ1, ϕ1)

[√
4πY00(ϑ2, ϕ2)

]
×

(√
l2 (l2 + 1) +m (−m+ 1)Yl1m(ϑ1, ϕ1)Yl2−m+1(ϑ2, ϕ2)

)

=− i

4α

√
8π

3
ς
√
l2 (l2 + 1) +m (−m+ 1)×

Y1−1(ϑ1, ϕ1)Yl1m(ϑ1, ϕ1)Yl2−m+1(ϑ2, ϕ2)
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=− i

4α

√
8π

3
ς
√
l2 (l2 + 1) +m (−m+ 1)×

[√
3

8π

√
(l1 −m+ 1) (l1 −m+ 2)

(2l1 + 1) (2l1 + 3)
Yl1+1m−1(ϑ1, ϕ1)

−
√

3

8π

√
(l1 +m− 1) (l1 +m)

(2l1 − 1) (2l1 + 1)
Yl1−1m−1(ϑ1, ϕ1)

]
Yl2−m+1(ϑ2, ϕ2)

=− i

4α
ς
√
l2 (l2 + 1) +m (−m+ 1)

√
(l1 −m+ 1) (l1 −m+ 2)

(2l1 + 1) (2l1 + 3)
Ml1+1 l2m−1

+
i

4α
ς
√
l2 (l2 + 1) +m (−m+ 1)

√
(l1 +m− 1) (l1 +m)

(2l1 − 1) (2l1 + 1)
Ml1−1 l2m−1. (7.118)

12

− i

4α

√
3

2π

(
Y

(2)
11

)−1
[(
L

(2)
+

(
−4π

3
ςY1−1(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

− 8π

3
ςY10(ϑ1, ϕ1)Y10(ϑ2, ϕ2)

− ξi
√

4π

3
Y10(ϑ2, ϕ2)− σ

4

3

√
π

5
Y20(ϑ2, ϕ2)

))(
L

(2)
Z Ml1l2,m

)]

=− i

4α

√
3

2π

(
Y

(2)
11

)−1
[(
−4π

3
ςY1−1(ϑ1, ϕ1)L

(2)
+ Y11(ϑ2, ϕ2)

− 8π

3
ςY10(ϑ1, ϕ1)L

(2)
+ Y10(ϑ2, ϕ2)

− ξi
√

4π

3
L

(2)
+ Y10(ϑ2, ϕ2)− σ

4

3

√
π

5
L

(2)
+ Y20(ϑ2, ϕ2)

)
×

(
L

(2)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=− i

4α

√
3

2π

(
Y

(2)
11

)−1

×
[(
−4π

3
ςY1−1(ϑ1, ϕ1)

√
(1) (1 + 1)− (1) (1 + 1)Y11+1(ϑ2, ϕ2)

− 8π

3
ςY10(ϑ1, ϕ1)

√
(1) (1 + 1)− (0) (0 + 1)Y10+1(ϑ2, ϕ2)

− ξi
√

4π

3

√
(1) (1 + 1)− (0) (0 + 1)Y10+1(ϑ2, ϕ2)

− σ
4

3

√
π

5

√
(2) (2 + 1)− (0) (0 + 1)Y20+1(ϑ2, ϕ2)

)
×

(−mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))]
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=− i

4α

√
3

2π

(
Y

(2)
11

)−1
[(
−4π

3
ςY1−1(ϑ1, ϕ1)

√
0Y12(ϑ2, ϕ2)

− 8π

3
ςY10(ϑ1, ϕ1)

√
2Y11(ϑ2, ϕ2)

− ξi
√

4π

3

√
2Y11(ϑ2, ϕ2)

− σ
4

3

√
π

5

√
6Y21(ϑ2, ϕ2)

)
(−mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

]

=− i

4α

√
3

2π

(
Y

(2)
11

)−1
[(
−8
√

2π

3
ςY10(ϑ1, ϕ1)Y11(ϑ2, ϕ2)

− ξi
√

8π

3
Y11(ϑ2, ϕ2)

− σ

√
32π

15
Y21(ϑ2, ϕ2)

)
(−mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

]

=− i

4α

√
3

2π

[(
−8
√

2π

3
ςY10(ϑ1, ϕ1)

[√
8π (2 (1) + 1) (1− 1)!

3 (1 + 1)!
Y0(1−1)(ϑ2, ϕ2)

]

− ξi
√

8π

3

[√
8π (2 (1) + 1) (1− 1)!

3 (1 + 1)!
Y0(1−1)(ϑ2, ϕ2)

]

− σ

√
32π

15

[√
8π (2 (2) + 1) (2− 1)!

3 (2 + 1)!

√
(2 (1) + 1) (1 + 1− 1)!

(1− 1 + 1)!
Y1(1−1)(ϑ2, ϕ2)

])
×

(−mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))]

=− i

4α

√
3

2π

[(
−8
√

2π

3
ςY10(ϑ1, ϕ1)

[√
4πY00(ϑ2, ϕ2)

]

− ξi
√

8π

3

[√
4πY00(ϑ2, ϕ2)

]

− σ

√
32π

15

[√
20π

3
Y10(ϑ2, ϕ2)

])
(−mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))

]

=− i

4α

√
3

2π

[(
−8
√

2π

3
ςY10(ϑ1, ϕ1) − ξi

√
8π

3
− σ

8
√

2π

3
Y10(ϑ2, ϕ2)

)
×

(−mYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2))]
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=− i

4α

√
64π

3
ςmY10(ϑ1, ϕ1)Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

− i

2α
ξimYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

− i

4α

√
64π

3
σmYl1m(ϑ1, ϕ1)Y10(ϑ2, ϕ2)Yl2−m(ϑ2, ϕ2)

=− i

4α

√
64π

3
ςm

[√
3

4π

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
Yl1+1m(ϑ1, ϕ1)

+

√
3

4π

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
Yl1−1m(ϑ1, ϕ1)

]
Yl2−m(ϑ2, ϕ2)

− i

2α
ξimYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

− i

4α

√
64π

3
σm

[√
3

4π

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
Yl2+1−m(ϑ2, ϕ2)

+

√
3

4π

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
Yl2−1−m(ϑ2, ϕ2)

]
Yl1m(ϑ1, ϕ1)

=− i

α
ςm

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
Ml1+1 l2m

− i

α
ςm

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
Ml1−1 l2m

− i

2α
ξimYl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

− i

α
σm

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
Ml1 l2+1m

− i

α
σm

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
Ml1 l2−1m. (7.119)
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13

i

4α

√
3

2π

(
Y

(2)
1,−1

)−1 [(
L

(2)
Z

(
A

(2)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

))
×

(
L

(2)
− Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
L

(2)
−

(
A

(2)
1,1,1 (ς)Y11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

))

×
(
L

(2)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

(
Y

(2)
1,−1

)−1
[(
−4π

3
ςY11(ϑ1, ϕ1)L

(2)
Z Y1−1(ϑ2, ϕ2)

)
×

(
L

(2)
− Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)

−
(
−4π

3
ςY11(ϑ1, ϕ1)L

(2)
− Y1−1(ϑ2, ϕ2)

)
×

(
L

(2)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

(
Y

(2)
1−1

)−1
[(
−4π

3
ςY11(ϑ1, ϕ1) (−1)Y1−1(ϑ2, ϕ2)

)
×

(√
l2 (l2 + 1) +m (−m− 1)Yl1m(ϑ1, ϕ1)Yl2−m−1(ϑ2, ϕ2)

)

−
(
−4π

3
ςY11(ϑ1, ϕ1)

√
1 (1 + 1) + 1 (−1− 1)Y1−1−1(ϑ2, ϕ2)

)
×

(
L

(2)
Z Yl1m(ϑ1, ϕ1)Yl2−m(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

(
Y

(2)
1,−1

)−1
[(

4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

)
×

(√
l2 (l2 + 1) +m (−m− 1)Yl1m(ϑ1, ϕ1)Yl2−m−1(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

(
Y

(2)
1−1

)−1
[(

4π

3
ςY11(ϑ1, ϕ1)Y1−1(ϑ2, ϕ2)

)
×

(√
l2 (l2 + 1) +m (−m− 1)Yl1m(ϑ1, ϕ1)Yl2−m−1(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

[(
4π

3
ςY11(ϑ1, ϕ1)

[√
8π (2 (1) + 1) (1− 1)!

3 (1 + 1)!
Y0−(1−1)(ϑ2, ϕ2)

])
×

(√
l2 (l2 + 1) +m (−m− 1)Yl1m(ϑ1, ϕ1)Yl2−m−1(ϑ2, ϕ2)

)]

=
i

4α

√
3

2π

[(
4π

3
ςY11(ϑ1, ϕ1)

[√
4πY00(ϑ2, ϕ2)

])
×

(√
l2 (l2 + 1) +m (−m− 1)Yl1m(ϑ1, ϕ1)Yl2−m−1(ϑ2, ϕ2)

)]
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=
i

4α

√
8π

3
ς
√
l2 (l2 + 1) +m (−m− 1)×

[√
3

8π

√
(l1 +m+ 1) (l1 +m+ 2)

(2l1 + 1) (2l1 + 3)
Yl1+1m+1(ϑ1, ϕ1)

−
√

3

8π

√
(l1 −m− 1) (l1 −m)

(2l1 − 1) (2l1 + 1)
Yl1−1m+1(ϑ1, ϕ1)

]
Yl2−m−1(ϑ2, ϕ2)

=
i

4α
ς
√
l2 (l2 + 1) +m (−m− 1)

√
(l1 +m+ 1) (l1 +m+ 2)

(2l1 + 1) (2l1 + 3)
×

Yl1+1m+1(ϑ1, ϕ1)Yl2−m−1(ϑ2, ϕ2)

− i

4α
ς
√
l2 (l2 + 1) +m (−m− 1)

√
(l1 −m− 1) (l1 −m)

(2l1 − 1) (2l1 + 1)
×

Yl1−1m+1(ϑ1, ϕ1)Yl2−m−1(ϑ2, ϕ2)

=
i

4α
ς
√
l2 (l2 + 1) +m (−m− 1)

√
(l1 +m+ 1) (l1 +m+ 2)

(2l1 + 1) (2l1 + 3)
Ml1+1 l2m+1

− i

4α
ς
√
l2 (l2 + 1) +m (−m− 1)

√
(l1 −m− 1) (l1 −m)

(2l1 − 1) (2l1 + 1)
Ml1−1 l2m+1. (7.120)

On the next pages we shall evaluate for each functionMl1+i l2+j m+k the associated

coefficients dl1 l2ml1+i l2+j m+k which make up the total differential-recurrence relation.

Ml1 l2m

dl1l2ml1l2m
Ml1 l2m

=
[
−σ1

6

l1(l1 + 1)− 3m2

(2l1 − 1)(2l1 + 3)
l1 (l1 + 1) + σ

1

6

l1(l1 + 1)− 3m2

(2l1 − 1)(2l1 + 3)
l1 (l1 + 1)

+ σ
l1(l1 + 1)− 3m2

(2l1 − 1)(2l1 + 3)
− σ1

6

l2(l2 + 1)− 3(−m)2

(2l2 − 1)(2l2 + 3)
l2 (l2 + 1)

+ σ
1

6

l2(l2 + 1)− 3(−m)2

(2l2 − 1)(2l2 + 3)
l2 (l2 + 1) + σ

l2(l2 + 1)− 3(−m)2

(2l2 − 1)(2l2 + 3)

− 1

2
l1 (l1 + 1)− 1

2
l2 (l2 + 1) + ξi

i

2α
m −ξi

i

2α
m

]
Ml1 l2m

,

dl1l2ml1l2m
=

[
−1

2
l1 (l1 + 1)− 1

2
l2 (l2 + 1) + σ

l1(l1 + 1)− 3m2

(2l1 − 1)(2l1 + 3)
+ σ

l2(l2 + 1)− 3m2

(2l2 − 1)(2l2 + 3)

]
.

(7.121)
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Ml1+2 l2m

dl1l2ml1+2l2m
Ml1 +2l2m

=

−1

4
σ

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)
(l1 + 2) ((l1 + 2) + 1)

+
1

4
σ

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)
l1 (l1 + 1)

+ σ
3
√

((l1 + 1)2 −m2)((l1 + 2)2 −m2)

2(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)


Ml1 +2l2m

=


−1

4
σ

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)
(l1 + 2) (l1 + 3)

+
1

4
σ

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)
l1 (l1 + 1)

+ σ
3
√

((l1 + 1)2 −m2)((l1 + 2)2 −m2)

2(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)


Ml1 +2l2m

=


−σ

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)
l1

− 3

2
σ

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)

+
3

2
σ

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)


Ml1 +2l2m

=


−σ

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

(2l1 + 3)
√

(2l1 + 1)(2l1 + 5)
l1


Ml1 +2l2m

,

dl1l2ml1+2l2m
=


−σ l1

2l1 + 3

√
((l1 + 1)2 −m2)((l1 + 2)2 −m2)

√
(2l1 + 1)(2l1 + 5)


 . (7.122)
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Ml1 l2+2m

dl1l2ml1l2+2mMl1 l2+2m =

−σ1

4

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)

(l2 + 2) ((l2 + 2) + 1)

+
1

4
σ

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)

l2 (l2 + 1)

+ σ
3
√

((l2 + 1)2 −m2)((l2 + 2)2 −m2)

2(2l2 + 3)
√

(2l2 + 1)(2l2 + 5)


Ml1 l2+2m

=


−σ1

4

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)

(l2 + 2) (l2 + 3)

+ σ
1

4

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)

l2 (l2 + 1)

+ σ
3

2

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)


Ml1 l2+2m

=


−σ

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)

l2

− σ3

2

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)

+ 6
3

2
σ

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)


Ml1 l2+2m

=


−σ

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)

l2


Ml1 l2+2m,

dl1l2ml1l2+2m =


−σ l2

2l2 + 3

√
((l2 + 1)2 −m2)((l2 + 2)2 −m2)

√
(2l2 + 1)(2l2 + 5)


 . (7.123)
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Ml1−2 l2m

dl1l2ml1−2l2m
Ml1−2 l2m

=

−1

4
σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)
(l1 − 2) ((l1 − 2) + 1)

+
1

4
σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)
l1 (l1 + 1)

+ σ
3
√

(l21 −m2)((l1 − 1)2 −m2)

2(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)


Ml1−2 l2m

=


−1

4
σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)
(l1 − 2) (l1 − 1)

+
1

4
σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)
l1 (l1 + 1)

+
3

2
σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)


Ml1−2 l2m

=


σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)
l1

− 1

2
σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)

+
3

2
σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)


Ml1−2 l2m

=


σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)
l1 + σ

√
(l21 −m2)((l1 − 1)2 −m2)

(2l1 − 1)
√

(2l1 + 1)(2l1 − 3)


Ml1−2 l2m

,

dl1l2ml1−2l2m
=


 l1 + 1

(2l1 − 1)
σ

√
(l21 −m2)((l1 − 1)2 −m2)
√

(2l1 + 1)(2l1 − 3)


 . (7.124)
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Ml1 l2−2m

dl1l2ml1l2−2mMl1 l2−2m =

−σ1

4

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)
(l2 − 2) ((l2 − 2) + 1)

+
1

4
σ

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)
l2 (l2 + 1)

+ σ
3
√

(l22 −m2)((l2 − 1)2 −m2)

2(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)


Ml1 l2−2m

=


−σ1

4

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)
(l2 − 2) (l2 − 1)

+
1

4
σ

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)
l2 (l2 + 1)

+
3

2
σ

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)


Ml1 l2−2m

=


σ

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)
l2

− 1

2
σ

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)

+
3

2
σ

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)


Ml1 l2−2m

=


σ

√
(l22 −m2)((l2 − 1)2 − (−m)2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)
l2 + σ

√
(l22 −m2)((l2 − 1)2 −m2)

(2l2 − 1)
√

(2l2 + 1)(2l2 − 3)


Ml1 l2−2m,

dl1l2ml1l2−2m =


 l2 + 1

2l2 − 1
σ

√
(l22 −m2)((l2 − 1)2 −m2)
√

(2l2 + 1)(2l2 − 3)


 . (7.125)

222



Ml1+1l2m

dl1l2ml1+1l2m
Ml1+1l2m

=
[
−1

4
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
(l1 + 1) ((l1 + 1) + 1)

+
1

4
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
l1 (l1 + 1)

+
1

2
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
+ σm

i

α

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

− i

α
mς

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

]
Ml1+1l2m

=−
[

1

4
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
(l1 + 1) ((l1 + 1) + 1)

− 1

4
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
l1 (l1 + 1)

− 1

2
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

−mσ i
α

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

+ mς
i

α

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

]
Ml1+1l2m

=−
[

1

4
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
(l1 + 1) (l1 + 2)

− 1

4
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
l1 (l1 + 1)

− 1

2
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

+
i

α
m (−σ + ς)

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

]
Ml1+1l2m

223



=−
[

1

2
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
l1

+
1

2
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

− 1

2
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

− i

α
m (σ − ς)

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

]
Ml1+1l2m

=−
[

1

2
ξi

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)
l1

− m
i (σ − ς)

α

√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

]
Ml1+1l2m

,

dl1l2ml1+1l2m
= −

[(
ξi
2
l1 −m

i (σ − ς)
α

)√
(l1 +m+ 1) (l1 −m+ 1)

(2l1 + 1) (2l1 + 3)

]
. (7.126)

Ml1l2+1m

dl1l2ml1l2+1mMl1l2+1m =
[
−1

4
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
(l2 + 1) ((l2 + 1) + 1)

+
1

4
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

+
1

2
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
+mς

i

α

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

− i

α
mσ

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

]
Ml1 l2+1m
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=−
[
ξi

1

4

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
(l2 + 1) ((l2 + 1) + 1)

− 1

4
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

− 1

2
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
−mς i

α

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

+
i

α
mσ

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

]
Ml1 l2+1m

=−
[
ξi

1

4

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
(l2 + 1) (l2 + 2)

− 1

4
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

− 1

2
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

+m
i (−ς + σ)

α

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

]
Ml1 l2+1m

=−
[
ξi

1

2

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
l2

+
1

2
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

− 1

2
ξi

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

+m
i (σ − ς)

2α

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

]
Ml1 l2+1m

=−
[
ξi

1

2

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)
l2

+m
i (σ − ς)

α

√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

]
Ml1 l2+1m,

dl1l2ml1l2+1m = −
[(

ξi
1

2
l2 +m

i (σ − ς)
α

)√
(l2 −m+ 1) (l2 +m+ 1)

(2l2 + 1) (2l2 + 3)

]
. (7.127)

225



Ml1−1l2m

dl1l2ml1−1l2m
Ml1−1l2m

=
[
−1

4
ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
(l1 − 1) ((l1 − 1) + 1)

+
1

4
ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
l1 (l1 + 1) +

1

2
ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)

+ σm
i

α

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
− i

α
mς

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)

]
Ml1−1l2m

=

[
−1

4
ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
(l1 − 1) (l1) +

1

4
ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
l1 (l1 + 1)

+
1

2
ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
+ m

i (σ − ς)
α

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)

]
Ml1−1l2m

=

[
l1

1

2
ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
+

1

2
ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)

+ m
i (σ − ς)

α

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)

]
Ml1−1l2m

=

[
1

2
(l1 + 1) ξi

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)
+ m

i (σ − ς)
α

√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)

]
Ml1−1l2m

,

dl1l2ml1−1l2m
=

[(
ξi
2

(l1 + 1) +m
i (σ − ς)

α

)√
(l1 −m) (l1 +m)

(2l1 − 1) (2l1 + 1)

]
. (7.128)
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Ml1 l2−1m

dl1l2ml1l2−1mMl1 l2−1m =
[
−1

4
ξi

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
(l2 − 1) ((l2 − 1) + 1)

+
1

4
ξi

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

+
1

2
ξi

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
+mς

i

α

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)

− i

α
mσ

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)

]
Ml1 l2−1m

=

[
−ξi

1

4

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
(l2 − 1) (l2)

+
1

4
ξi

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

+
1

2
ξi

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
+ m

i (−σ + ς)

α

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)

]
Ml1 l2−1m

=

[
1

2
ξil2

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
+

1

2
ξi

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)

− m
i (σ − ς)

α

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)

]
Ml1 l2−1m

=

[
1

2
(l2 + 1) ξi

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)
− m

i (σ − ς)
α

√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)

]
Ml1 l2−1m,

dl1l2ml1l2−1m =

[(
ξi
2

(l2 + 1)−mi (σ − 4)

α

)√
(l2 +m) (l2 −m)

(2l2 − 1) (2l2 + 1)

]
. (7.129)
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Ml1+1l2+1m

dl1l2ml1+1l2+1mMl1+1l2+1m =
[
−1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 + (−m) + 1) (l2 − (−m) + 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l1 + 1) ((l1 + 1) + 1)

+
1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l2 + 1) ((l2 + 1) + 1)

+
1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m

=

[
−l1ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 + (−m) + 1) (l2 − (−m) + 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− ς
√

(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− l2ς
√

(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− ς
√

(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m
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=

[
−l1ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− l2ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m,

dl1l2ml1+1l2+1m =

[
−ς (l1 + l2)

√
(l1 +m+ 1) (l1 −m+ 1) (l2 −m+ 1) (l2 +m+ 1)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
.

(7.130)

Ml1−1l2−1m

dl1l2ml1−1l2−1mMl1−1l2−1m =
[
−1

2
ς

√
(l1 −m) (l1 +m) (l2 − (−m)) (l2 + (−m))

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
(l1 − 1) ((l1 − 1) + 1)

+
1

2
ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
l1 (l1 + 1)

+ ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

− 1

2
ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
(l2 − 1) ((l2 − 1) + 1)

+
1

2
ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

+ ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
Ml1−1l2−1m

=

[
−1

2
ς

√
(l1 −m) (l1 +m) (l2 − (−m)) (l2 + (−m))

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
(l1 − 1) (l1)

+
1

2
ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
l1 (l1 + 1)

+ ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

229



− 1

2
ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
(l2 − 1) (l2)

+
1

2
ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

+ ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
Ml1−1l2−1m

=

[
l1ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

+ l2ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

+ 2ς

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
Ml1−1l2−1m,

dl1l2ml1−1l2−1m =

[
ς (l1 + l2 + 2)

√
(l1 −m) (l1 +m) (l2 +m) (l2 −m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
. (7.131)

Ml1+1l2−1m

dl1l2ml1+1l2−1mMl1+1l2−1m =
[
−1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 − (−m)) (l2 + (−m))

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
(l1 + 1) ((l1 + 1) + 1)

+
1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
l1 (l1 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

− 1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
(l2 − 1) ((l2 − 1) + 1)

+
1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
Ml1+1l2−1m
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=

[
−1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 − (−m)) (l2 + (−m))

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
(l1 + 1) (l1 + 2)

+
1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
l1 (l1 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

− 1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
(l2 − 1) (l2)

+
1

2
ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
Ml1+1l2−1m

=

[
−l1ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 − (−m)) (l2 + (−m))

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

− ς
√

(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

+ l2ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
Ml1+1l2−1m

=

[
−l1ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

+ l2ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

+ ς

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
Ml1+1l2−1m,

dl1l2ml1+1l2−1m =

[
ς (l2 − l1 + 1)

√
(l1 +m+ 1) (l1 −m+ 1) (l2 +m) (l2 −m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
.

(7.132)
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Ml1−1l2+1m

dl1l2ml1−1l2+1mMl1−1l2+1m =
[
−1

2
ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
(l1 − 1) ((l1 − 1) + 1)

+
1

2
ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

+ ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

− 1

2
ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
(l2 + 1) ((l2 + 1) + 1)

+
1

2
ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

+ ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
Ml1−1l2+1m

=

[
−1

2
ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
(l1 − 1) (l1)

+
1

2
ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

+ ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

− 1

2
ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
(l2 + 1) (l2 + 2)

+
1

2
ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

+ ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
Ml1−1l2+1m

232



=

[
l1ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

+ ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

− l2ς
√

(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

− ς
√

(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

+ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
Ml1−1l2+1m

=

[
l1ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

− l2ς
√

(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

+ ς

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
Ml1−1l2+1m,

dl1l2ml1−1l2+1m =

[
ς (l1 − l2 + 1)

√
(l1 −m) (l1 +m) (l2 −m+ 1) (l2 +m+ 1)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
.

(7.133)
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Ml1+1l2+1m−1

dl1l2ml1+1l2+1m−1Ml1+1l2+1m−1 =
[
−1

8
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l1 + 1) ((l1 + 1) + 1)

+
1

8
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

+
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

8
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l2 + 1) ((l2 + 1) + 1)

+
1

8
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

+
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m−1

=

[
−1

8
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l1 + 1) (l1 + 2)

+
1

8
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

+
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

8
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l2 + 1) (l2 + 2)

+
1

8
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

+
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m−1
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=

[
−l1

1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

+
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− l2
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

+
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m−1

=

[
−l1

1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− l2
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m−1,

dl1l2ml1+1l2+1m−1 =

[
−1

4
ς (l1 + l2)

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
.
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Ml1+1l2+1m+1

dl1l2ml1+1l2+1m+1Ml1+1l2+1m+1 =
[
−1

8
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l1 + 1) ((l1 + 1) + 1)

+
1

8
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

+
1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

8
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l2 + 1) ((l2 + 1) + 1)

+
1

8
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

+
1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m+1

=

[
−1

8
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l1 + 1) (l1 + 2)

+
1

8
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

+
1

4
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 −m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

8
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
(l2 + 1) (l2 + 2)

+
1

8
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

+
1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m+1
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=

[
−l1

1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

+
1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− l2
1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− 1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

+
1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m+1

=

[
−l1

1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

− l2
1

4
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
Ml1+1l2+1m+1,

dl1l2ml1+1l2+1m+1 =

[
−1

4
ς (l1 + l2)

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 +m+ 2)

(2l1 + 1) (2l1 + 3) (2l2 + 1) (2l2 + 3)

]
.
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Ml1+1l2−1m±1

dl1l2ml1+1l2+1m±1Ml1+1l2−1m±1 =
[

1

8
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
(l1 + 1) ((l1 + 1) + 1)

− 1

8
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
l1 (l1 + 1)

− 1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

+
1

8
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
(l2 − 1) ((l2 − 1) + 1)

− 1

8
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

− 1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
Ml1+1l2−1m±1

=

[
1

8
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
(l1 + 1) (l1 + 2)

− 1

8
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
l1 (l1 + 1)

− 1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

+
1

8
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
(l2 − 1) (l2)

− 1

8
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

− 1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
Ml1+1l2−1m±1

=

[
l1

1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

+
1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)
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− 1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

− l2
1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

− 1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
Ml1+1l2−1m±1

=

[
l1

1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

− l2
1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

− 1

4
ς

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
Ml1+1l2−1m±1,

dl1l2ml1+1l2+1m±1 =

[
−1

4
ς (l2 − l1 + 1)

√
(l1 ±m+ 1) (l1 ±m+ 2) (l2 ∓m− 1) (l2 ∓m)

(2l1 + 1) (2l1 + 3) (2l2 − 1) (2l2 + 1)

]
.

(7.134)

Ml1−1l2+1m±1

dl1l2ml1−1l2+1m±1Ml1−1l2+1m±1 =
[

1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
(l1 − 1) ((l1 − 1) + 1)

− 1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

− 1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

+
1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
(l2 + 1) ((l2 + 1) + 1)

− 1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

− 1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
Ml1−1l2+1m±1
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=

[
1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
(l1 − 1) (l1)

− 1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
l1 (l1 + 1)

− 1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

+
1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
(l2 + 1) (l2 + 2)

− 1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)
l2 (l2 + 1)

− 1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
Ml1−1l2+1m±1

=

[
−l1

1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

− 1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

+ l2
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

+
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

− 1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
Ml1−1l2+1m±1

=

[
−l1

1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

− 1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

+ l2
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
Ml1−1l2+1m±1,

dl1l2ml1−1l2+1m±1 =

[
−1

4
ς (l1 − l2 + 1)

√
(l1 ∓m− 1) (l1 ∓m) (l2 ±m+ 1) (l2 ±m+ 2)

(2l1 − 1) (2l1 + 1) (2l2 + 1) (2l2 + 3)

]
.

(7.135)
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Ml1−1l2−1m±1

dl1l2ml1−1l2−1m±1Ml1−1l2−1m±1 =
[
−1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
(l1 − 1) ((l1 − 1) + 1)

+
1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
l1 (l1 + 1)

+
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

− 1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
(l2 − 1) ((l2 − 1) + 1)

+
1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

+
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
Ml1−1l2−1m±1

=

[
−1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
(l1 − 1) (l1)

+
1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
l1 (l1 + 1)

+
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

− 1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
(l2 − 1) (l2)

+
1

8
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
l2 (l2 + 1)

+
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
Ml1−1l2−1m±1

=

[
l1

1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

+
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)
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l2
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

+
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
Ml1−1l2−1m±1

=

[
l1

1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

+ l2
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

+ 2
1

4
ς

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
Ml1−1l2−1m±1,

dl1l2ml1−1l2−1m±1 =

[
1

4
ς (l1 + l2 + 2)

√
(l1 ∓m− 1) (l1 ∓m) (l2 ∓m− 1) (l2 ∓m)

(2l1 − 1) (2l1 + 1) (2l2 − 1) (2l2 + 1)

]
.

(7.136)

Ml1+1l2m−1

dl1l2ml1+1l2m−1Ml1+1l2m−1 =
[
− i

4α
ς
√
l2 (l2 + 1) +m (−m+ 1)

√
(l1 −m+ 1) (l1 −m+ 2)

(2l1 + 1) (2l1 + 3)

]
Ml1+1l2m−1

=

[
− i

4α
ς
√

(l2 −m+ 1) (l2 +m)

√
(l1 −m+ 1) (l1 −m+ 2)

(2l1 + 1) (2l1 + 3)

]
Ml1+1l2m−1,

dl1l2ml1+1l2m−1 =

[
− i

4α
ς

√
(l1 −m+ 1) (l1 −m+ 2) (l2 −m+ 1) (l2 +m)

(2l1 + 1) (2l1 + 3)

]
. (7.137)
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Ml1+1l2m+1

dl1l2ml1+1l2m+1Ml1+1l2m+1 =
[
i

4α
ς
√
l2 (l2 + 1) +m (−m− 1)

√
(l1 +m+ 1) (l1 +m+ 2)

(2l1 + 1) (2l1 + 3)

]
Ml1+1 l2m+1

=

[
i

4α
ς
√

(l2 +m+ 1) (l2 −m)

√
(l1 +m+ 1) (l1 +m+ 2)

(2l1 + 1) (2l1 + 3)

]
Ml1+1 l2m+1,

dl1l2ml1+1l2m+1 =

[
i

4α
ς

√
(l1 +m+ 1) (l1 +m+ 2) (l2 +m+ 1) (l2 −m)

(2l1 + 1) (2l1 + 3)

]
. (7.138)

Ml1l2+1m+1

dl1l2ml1l2+1m+1Ml1 l2+1m+1 =
[
− i

4α
ς
√
l1 (l1 + 1)−m (m+ 1)

√
(l2 +m+ 1) (l2 +m+ 2)

(2l2 + 1) (2l2 + 3)

]
Ml1 l2+1m+1,

dl1l2ml1l2+1m+1 =

[
− iς

4α

√
(l1 +m+ 1) (l1 −m) (l2 +m+ 1) (l2 +m+ 2)

(2l2 + 1) (2l2 + 3)

]
. (7.139)

Ml1l2+1m−1

dl1l2ml1l2+1m−1Ml1 l2+1m−1 =
[
i

4α
ς
√
l1 (l1 + 1)−m (m− 1)

√
(l2 −m+ 1) (l2 −m+ 2)

(2l2 + 1) (2l2 + 3)

]
Ml1 l2+1m−1,

dl1l2ml1l2+1m−1 =

[
i

4α
ς

√
(l2 −m+ 1) (l2 −m+ 2) (l1 −m+ 1) (l1 +m)

(2l2 + 1) (2l2 + 3)

]
. (7.140)
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Ml1l2−1m+1

dl1l2ml1l2−1m+1Ml1 l2−1m+1 =
[
i

4α
ς
√
l1 (l1 + 1)−m (m+ 1)

√
(l2 −m− 1) (l2 −m)

(2l2 − 1) (2l2 + 1)

]
Ml1 l2−1m+1

=

[
i

4α
ς
√

(l1 +m+ 1) (l1 −m)

√
(l2 −m− 1) (l2 −m)

(2l2 − 1) (2l2 + 1)

]
Ml1 l2−1m+1,

dl1l2ml1l2−1m+1 =

[
i

4α
ς

√
(l1 +m+ 1) (l1 −m) (l2 −m− 1) (l2 −m)

(2l2 − 1) (2l2 + 1)

]
. (7.141)

Ml1l2−1m−1

dl1l2ml1l2−1m−1Ml1 l2−1m−1 =
[
− i

4α
ς
√
l1 (l1 + 1)−m (m− 1)

√
(l2 +m− 1) (l2 +m)

(2l2 − 1) (2l2 + 1)

]
Ml1 l2−1m−1

=

[
− i

4α
ς
√

(l1 −m+ 1) (l1 +m)

√
(l2 +m− 1) (l2 +m)

(2l2 − 1) (2l2 + 1)

]
Ml1 l2−1m−1,

dl1l2ml1l2−1m−1 =

[
− i

4α
ς

√
(l1 −m+ 1) (l1 +m) (l2 +m− 1) (l2 +m)

(2l2 − 1) (2l2 + 1)

]
. (7.142)

Ml1−1l2m+1

dl1l2ml1−1 l2m+1Ml1−1 l2m+1 =
[
− i

4α
ς
√
l2 (l2 + 1) +m (−m− 1)

√
(l1 −m− 1) (l1 −m)

(2l1 − 1) (2l1 + 1)

]
Ml1−1 l2m+1

=

[
− i

4α
ς
√

(l2 +m+ 1) (l2 −m)

√
(l1 −m− 1) (l1 −m)

(2l1 − 1) (2l1 + 1)

]
Ml1−1 l2m+1,

dl1l2ml1−1 l2m+1 =

[
− iς

4α

√
(l2 +m+ 1) (l2 −m) (l1 −m− 1) (l1 −m)

(2l1 − 1) (2l1 + 1)

]
. (7.143)
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Ml1−1l2m−1

dl1l2ml1−1 l2m−1Ml1−1 l2m−1 =
[
i

4α
ς
√
l2 (l2 + 1) +m (−m+ 1)

√
(l1 +m− 1) (l1 +m)

(2l1 − 1) (2l1 + 1)

]
Ml1−1 l2m−1

=

[
i

4α
ς
√

(l2 −m+ 1) (l2 +m)

√
(l1 +m− 1) (l1 +m)

(2l1 − 1) (2l1 + 1)

]
Ml1−1 l2m−1,

dl1l2ml1−1 l2m−1 =

[
iς

4α

√
(l2 −m+ 1) (l2 +m) (l1 +m− 1) (l1 +m)

(2l1 − 1) (2l1 + 1)

]
. (7.144)

7.E The Matrices Qn and Q±n

The matrices Qn, Q+
n , Q−n in Eq. (7.17) have the form (see Appendix 7.F for the

derivation of Qn, Q+
n , Q−n )

Q−n =


 V2n−1 R2n−1

0 V2n


 , Qn =


 P2n−1 S2n−1

R2n P2n


 , Q+

n =


 U2n−1 0

S2n U2n


 ,

(7.145)

where

Pm =




pm 0 p̄0m
. . . 0

p̄m−1 1 pm−1 1
. . . . . .

. . . . . . . . . p̄m−1 1

0
. . . p̄0m p0m



,

Rm =




r∗0m 0
. . . 0

rm−1 1 r∗1m−1
. . . . . .

0 rm−2 2
. . . 0

. . . . . . . . . r∗m−1 1

0
. . . 0 r0m




,
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Sm =




sm 0 s∗0m 0
. . . 0

0 sm−1 1 s∗1m−1
. . . . . .

. . . . . . . . . . . . 0

0
. . . 0 s0m s∗m 0



,

Vm =




v̄0m 0
. . . 0

vm−1 1 v̄1m−1
. . . . . .

v̄m−2 2 vm−2 2
. . . 0

0 v̄m−3 3
. . . v̄m−2 2

. . . . . . . . . v1m−1

0
. . . 0 v̄0m




,

Um =




ūm 0 um 0 ū0m 0
. . . 0

0 ūm−1 1 um−1 1 ū1m−1
. . . . . .

. . . . . . . . . . . . . . . 0

0
. . . 0 ū0m u0m ūm 0



,

The matrices pnm, ūnm, v̄nm have the form

xnm =




. . . . . . . . . . . . 0

. . . xnm−1 0
. . . . . .

. . . 0 xnm 0 0
. . .

. . . . . . 0 xnm 1
. . .

0
. . . . . . . . . . . .




(2r+1)×(2rx+1)

, (7.146)

and the matrices p̄nm, snm, rnm,unm,vnm have the form

xnm =




. . . . . . . . . . . . 0

. . . xnm−1 x+
nm−1 0

. . .

. . . x−nm 0 xnm 0 x+
nm 0

. . .

. . . 0 x−nm 1 xnm 1
. . .

0
. . . . . . . . . . . .




(2r+1)×(2rx+1)

. (7.147)

Here x denotes one of the submatrices pnm, p̄nm, snm, rnm,unm, ūnm,vnm, v̄nm. All

the submatrices have the same number of rows, namely, 2r+1, where r = min[n,m].
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The number of columns also can be found as 2rx + 1, however each submatrix now

has its own number rx, namely

rp = min[n,m],

rs = min[n+ 1,m],

rv = min[n− 1,m− 1],

rv̄ = min[n,m− 2],

rp̄ = min[n+ 1,m− 1],

rr = min[n,m− 1],

ru = min[n+ 1,m+ 1],

rū = min[n+ 2,m].

The initial value vectors Cn(0) in Eq. (7.18) are calculated in the following

manner. We introduce the vector

Fi
n =




f i2n−1 0

f i2n−1 1

...

f i0 2n−1

f i2n 0

f i2n−1 1

...

fγ0 2n




, fγn,m =




M i
nm−r

M i
nm−r+1

...

M i
nmr



, (7.148)

where r = min[n,m] and the index i = I, II corresponds to the fields HI
Z and HII

Z .

Therefore we may transform Eq. (7.15) to the three term super-matrix recursion

formula

Q−nFi
n−1 + QnF

i
n + Q+

nFi
n+1 = 0. (7.149)

The solution of this equation is rendered by the matrix product [2]

Fi
n = ∆i

n (0) Q−nFi
n−1 =

1

4π
∆i

n (0) Q−n∆i
n−1 (0) Q−n . . .∆

i
1 (0) Q−1 . (7.150)

Here, we have used Fi
0 = 1/(4π). Thus, we can write the initial vectors Cn (0) as

Cn (0) = FI
n − FII

n . (7.151)

For more details on the derivation of Eq. (7.151) see Appendix 7.G.
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7.F Derivation of the Matrices Qn, Q±n and their

Submatrices

Recall that the differential-recurrence relation for the observables, namely, the re-

laxation functions cl1 l2m(t) = 〈Ml1 l2m〉 (t) − 〈Ml1 l2m〉II of the two-spin system is

given by

τN ċl1 l2m =
2∑

i=−2

2∑

j=−2

1∑

k=−1

dl1 l2ml1+i l2+j m+kcl1+i l2+j m+k, (7.152)

where the angular brackets 〈〉 (t) denote ensemble averaging over the sharp values

and 〈〉i, i = I, II denotes the equilibrium ensemble averages corresponding to the

initial (I) and final states (II) of the two-spin system, evaluated from

〈Ml1 l2m〉i =

∫ 2π

0

∫ 2π

0

∫ π

0

∫ π

0

Ml1 l2mWi(ϑ1, ϕ1, ϑ2, ϕ2) sinϑ2 sinϑ1dϑ2dϑ1dϕ2dϕ1.

(7.153)

In writing Eq. (7.152) we have also used the fact that the equilibrium averages

〈Ml1 l2m〉i satisfy the time-independent recurrence relation

2∑

i=−2

2∑

j=−2

1∑

k=−1

dl1 l2ml1+i l2+j m+k〈Ml1+i l2+j m+k〉i = 0. (7.154)

As stated earlier, the hierarchy of recurrence relations Eq. (7.152) for the relax-

ation functions cl1 l2m(t) must be solved subject to the initial conditions cl1 l2m(0) =

〈Ml1 l2m〉I − 〈Ml1 l2m〉II. To achieve this, we shall write Eq. (7.152) as a tractable

tridiagonal vector recurrence relation. Consider the one-sided pentadiagonal recur-

rence relation

τN ċn = Vncn−2 + Rncn−1 + Pncn + Sncn+1 + Uncn+2, (7.155)

and then write it down for even and odd indices n

τN ċ2n−1 =V2n−1c2n−3 + R2n−1c2n−2 + P2n−1c2n−1 + S2n−1c2n + U2n−1c2n+1,

(7.156)

τN ċ2n =V2nc2n−2 + R2nc2n−1 + P2nc2n + S2nc2n+1 + U2nc2n+2, (7.157)
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where

c2n =




c2n,0,0

c(2n−1),1,−1

c(2n−1),1,0

c(2n−1),1,1

c(2n−2),2,−2

c(2n−2),2,−1

c(2n−2),2,0

c(2n−2),2,1

c(2n−2),2,2

...

c0,2n,0




, c2n−1 =




c(2n−1),0,0

c(2n−2),1,−1

c(2n−2),1,0

c(2n−2),1,1

c(2n−3),2,−2

c(2n−3),2,−1

c(2n−3),2,0

c(2n−3),2,1

c(2n−3),2,2

...

c0,(2n−1),0




, c2n−2 =




c(2n−2),0,0

c(2n−3),1,−1

c(2n−3),1,0

c(2n−3),1,1

c(2n−4),2,−2

c(2n−4),2,−1

c(2n−4),2,0

c(2n−4),2,1

c(2n−4),2,2

...

c0,(2n−2),0




,

c2n−3 =




c(2n−3),0,0

c(2n−4),1,−1

c(2n−4),1,0

c(2n−4),1,1

c(2n−5),2,−2

c(2n−5),2,−1

c(2n−5),2,0

c(2n−5),2,1

c(2n−5),2,2

...

c0,(2n−3),0




, c2n+1 =




c(2n+1),0,0

c2n,1,−1

c2n,1,0

c2n,1,1

c(2n−1),2,−2

c(2n−1),2,−1

c(2n−1),2,0

c(2n−1),2,1

c(2n−1),2,2

...

c0,(2n+1),0




, c2n+2 =




c(2n+2),0,0

c(2n+1),1,−1

c(2n+1),1,0

c(2n+1),1,1

c2n,2,−2

c2n,2,−1

c2n,2,0

c2n,2,1

c2n,2,2

...

c0,(2n+2),0




.

(7.158)
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The elements of the matrices V2n,R2n,P2n,S2n,U2n can be determined from equa-

tions (7.152), (7.156) and (7.157). We start by introducing the column vectors

Cn =


 c2n−1

c2n


 =




c2n−1 0

c2n−2 1

...

c0 2n−1

c2n 0

c2n−1 1

...

c0 2n




, cnm(t) =




cnm−r

cnm−r+1

...

cnmr



, (7.159)

where (r = min[n,m]). Using Eq. (7.159) we can write Eqs. (7.156) and (7.157) into

a tractable tridiagonal vector recurrence relation viz.,


 τN ċ2n−1

τN ċ2n


 =


 V2n−1 R2n−1

0 V2n




 c2n−3

c2n−2


+


 P2n−1 S2n−1

R2n P2n




 c2n−1

c2n




+


 U2n−1 0

S2n U2n




 c2n+1

c2n+2


 , (7.160)

which can be more compactly written as

τNĊn = Q−nCn−1 + Qn Cn + Q+
nCn+1, (7.161)

where

Q−n =


 V2n−1 R2n−1

0 V2n


 , Qn =


 P2n−1 S2n−1

R2n P2n


 , Q+

n =


 U2n−1 0

S2n U2n


 .

(7.162)

The non-zero coefficients in the right hand side of Eq. (7.152) are listed in Appendix

7.C. We seek now to derive the submatrices V2n,R2n,P2n,S2n,U2n in order to

demonstrate their general structure for all values of 2n and 2n− 1 in the tractable

tridiagonal vector recurrence relation in Eq. (7.160), which will thus allow for its
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implementation in Wolfram Mathematica code. To do this, we shall determine the

non-zero elements of the matrices V2n,R2n,P2n,S2n,U2n from Eq. (7.152). Then

using Eqs. (7.157), and (7.158), we shall determine their positions in the matrices

V2n,R2n,P2n,S2n,U2n and then generalise their structures for all values of n. From

Eq. (7.157) we have

τN ċ2n =




τN ċ2n,0,0

τN ċ(2n−1),1,−1

τN ċ(2n−1),1,0

τN ċ(2n−1),1,1

τN ċ(2n−2),2,−2

τN ċ(2n−2),2,−1

τN ċ(2n−2),2,0

τN ċ(2n−2),2,1

τN ċ(2n−2),2,2

...

τN ċ0,2n,0




. (7.163)

From this we can determine from Eq. (7.152) and the list of the non-zero coefficients

in Appendix 7.C the following:

l1 = 2n, l2 = 0, m = 0

τN ċ2n 0 0 =

d2n 0 0
2n 0 0c2n 0 0 + d2n 0 0

2n−1 1−1c2n−1 1−1 + d2n 0 0
2n−1 1 0c2n−1 1 0

+d2n 0 0
2n−1 1 1c2n−1 1 1 + d2n 0 0

2n−1 0 0c2n−1 0 0 + d2n 0 0
2n+1 0 0c2n+1 0 0 + d2n 0 0

2n 1−1c2n 1−1

+d2n 0 0
2n 1 0c2n 1 0 + d2n 0 0

2n 1 1c2n 1 1 + d2n 0 0
2n+2 0 0c2n+2 0 0 + d2n 0 0

2n+1 1−1c2n+1 1−1

+d2n 0 0
2n+1 1 0c2n+1 1 0 + d2n 0 0

2n+1 1 1c2n+1 1 1 + d2n 0 0
2n 2 0c2n 2 0 + d2n 0 0

2n−2 0 0c2n−2 0 0. (7.164)
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l1 = 2n− 1, l2 = 1, m = −1

τN ċ2n−1 1−1 =

d2n−1 1−1
2n 0 0 c2n 0 0 + d2n−1 1−1

2n−1 1−1c2n−1 1−1 + d2n−1 1−1
2n−2 2−2c2n−2 2−2

+d2n−1 1−1
2n−2 2−1c2n−2 2−1 + d2n−1 1−1

2n−2 2 0 c2n−2 2 0 + d2n−1 1−1
2n−1 0 0 c2n−1 0 0 + d2n−1 1−1

2n−2 1−1c2n−2 1−1

+d2n−1 1−1
2n−2 1 0 c2n−2 1 0 + d2n−1 1−1

2n 1−1 c2n 1−1 + d2n−1 1−1
2n 1 0 c2n 1 0 + d2n−1 1−1

2n−1 2−2c2n−1 2−2

+d2n−1 1−1
2n−1 2−1c2n−1 2−1 + d2n−1 1−1

2n−1 2 0 c2n−1 2 0 + d2n−1 1−1
2n+1 1−1c2n+1 1−1 + d2n−1 1−1

2n 2−2 c2n 2−2

+d2n−1 1−1
2n 2−1 c2n 2−1 + d2n−1 1−1

2n 2 0 c2n 2 0 + d2n−1 1−1
2n−1 3−1c2n−1 3−1 + d2n−1 1−1

2n−2 0 0 c2n−2 0 0

+d2n−1 1−1
2n−3 1−1c2n−3 1−1. (7.165)

l1 = 2n− 1, l2 = 1, m = 0

τN ċ2n−1 1 0 =

d2n−1 1 0
2n 0 0 c2n 0 0 + d2n−1 1 0

2n−1 1 0c2n−1 1 0 + d2n−1 1 0
2n−2 2−1c2n−2 2−1

+d2n−1 1 0
2n−2 2 0c2n−2 2 0 + d2n−1 1 0

2n−2 2 1c2n−2 2 1 + d2n−1 1 0
2n−1 0 0c2n 0 0 + d2n−1 1 0

2n−2 1−1c2n−2 1−1

+d2n−1 1 0
2n−2 1 0c2n−2 1 0 + d2n−1 1 0

2n−2 1 1c2n−2 1 1 + d2n−1 1 0
2n 1−1 c2n 1−1 + d2n−1 1 0

2n 1 0 c2n 1 0

+d2n−1 1 0
2n 1 1 c2n 1 1 + d2n−1 1 0

2n−1 2−1c2n−1 2−1 + d2n−1 1 0
2n−1 2 0c2n−1 2 0 + d2n−1 1 0

2n−1 2 1c2n−1 2 1

+d2n−1 1 0
2n+1 1 0c2n+1 1 0 + d2n−1 1 0

2n 2−1 c2n 2−1 + d2n−1 1 0
2n 2 0 c2n 2 0 + d2n−1 1 0

2n 2 1 c2n 2 1

+d2n−1 1 0
2n−1 3 0c2n−1 3 0 + d2n−1 1 0

2n−2 0 0c2n−2 0 0 + d2n−1 1 0
2n−3 1 0c2n−3 1 0. (7.166)

l1 = 2n− 1, l2 = 1, m = 1

τN ċ2n−1 1 1 =

d2n−1 1 1
2n 0 0 c2n 0 0 + d2n−1 1 1

2n−1 1 1c2n−1 1 1 + d2n−1 1 1
2n−2 2 0c2n−2 2 0

+d2n−1 1 1
2n−2 2 1c2n−2 2 1 + d2n−1 1 1

2n−2 2 2c2n−2 2 2 + d2n−1 1 1
2n−1 0 0c2n 0 0 + d2n−1 1 1

2n−2 1 0c2n−2 1 0

+d2n−1 1 1
2n−2 1 1c2n−2 1 1 + d2n−1 1 1

2n 1 0 c2n 1 0 + d2n−1 1 1
2n 1 1 c2n 1 1 + d2n−1 1 1

2n−1 2 0c2n−1 2 0

+d2n−1 1 1
2n−1 2 1c2n−1 2 1 + d2n−1 1 1

2n−1 2 2c2n−1 2 2 + d2n−1 1 1
2n+1 1 1c2n+1 1 1 + d2n−1 1 1

2n 2 0 c2n 2 0

+d2n−1 1 1
2n 2 1 c2n 2 1 + d2n−1 1 1

2n 2 2 c2n 2 2 + d2n−1 1 1
2n−1 3 1c2n−1 3 1 + d2n−1 1 1

2n−2 0 0c2n−2 0 0

+d2n−1 1 1
2n−3 1 1c2n−3 1 1. (7.167)
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l1 = 2n− 2, l2 = 2, m = −2

τN ċ2n−2 2−2 =

d2n−2 2−2
2n−1 1−1c2n−1 1−1 + d2n−2 2−2

2n−2 2−2c2n−2 2−2 + d2n−2 2−2
2n−3 3−3c2n−3 3−3

+d2n−2 2−2
2n−3 3−2c2n−3 3−2 + d2n−2 2−2

2n−3 3−1c2n−3 3−1 + d2n−2 2−2
2n−2 1−1c2n−2 1−1 + d2n−2 2−2

2n−3 2−2c2n−3 2−2

+d2n−2 2−2
2n−3 2−1c2n−3 2−1 + d2n−2 2−2

2n−1 2−2c2n−1 2−2 + d2n−2 2−2
2n−1 2−1c2n−1 2−1 + d2n−2 2−2

2n−2 3−3c2n−3 3−3

+d2n−2 2−2
2n−2 3−2c2n−3 3−2 + d2n−2 2−2

2n−2 3−1c2n−3 3−1 + d2n−2 2−2
2n 2−2 c2n 2−2 + d2n−2 2−2

2n−1 3−3c2n−1 3−3

+d2n−2 2−2
2n−1 3−2c2n−1 3−2 + d2n−2 2−2

2n−1 3−1c2n−1 3−1 + d2n−2 2−2
2n−2 4−2c2n−2 4−2 + d2n−2 2−2

2n−3 1−1c2n−3 1−1

+d2n−2 2−2
2n−4 2−2c2n−4 2−2. (7.168)

l1 = 2n− 2, l2 = 2, m = −1

τN ċ2n−2 2−1 =

d2n−2 2−1
2n−1 1−1c2n−1 1−1 + d2n−2 2−1

2n−1 1 0 c2n−1 1 0 + d2n−2 2−1
2n−2 2−1c2n−2 2−1

+d2n−2 2−1
2n−3 3−2c2n−3 3−2 + d2n−2 2−1

2n−3 3−1c2n−3 3−1 + d2n−2 2−1
2n−3 3 0 c2n−3 3 0 + d2n−2 2−1

2n−2 1−1c2n−2 1−1

+d2n−2 2−1
2n−2 1 0 c2n−2 1 0 + d2n−2 2−1

2n−3 2−2c2n−3 2−2 + d2n−2 2−1
2n−3 2−1c2n−3 2−1 + d2n−2 2−1

2n−3 2 0 c2n−3 2 0

+d2n−2 2−1
2n−1 2−2c2n−1 2−2 + d2n−2 2−1

2n−1 2−1c2n−1 2−1 + d2n−2 2−1
2n−1 2 0 c2n−1 2 0 + d2n−2 2−1

2n−2 3−2c2n−2 3−2

+d2n−2 2−1
2n−2 3−1c2n−2 3−1 + d2n−2 2−1

2n−2 3 0 c2n−2 3 0 + d2n−2 2−1
2n 2−1 c2n 2−1 + d2n−2 2−1

2n−1 3−2c2n−1 3−2

+d2n−2 2−1
2n−1 3−1c2n−1 3−1 + d2n−2 2−1

2n−1 3 0 c2n−1 3 0 + d2n−2 2−1
2n−2 4−1c2n−2 4−1 + d2n−2 2−1

2n−3 1−1c2n−3 1−1

+d2n−2 2−1
2n−3 1 0 c2n−3 1 0 + d2n−2 2−1

2n−4 2−1c2n−4 2−1. (7.169)
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l1 = 2n− 2, l2 = 2, m = 0

τN ċ2n−2 2 0 =

d2n−2 2 0
2n−1 1−1c2n−1 1−1 + d2n−2 2 0

2n−1 1 0c2n−1 1 0 + d2n−2 20
2n−1 1 1c2n−1 1 1

+d2n−2 2 0
2n−2 2 0c2n−2 2 0 + d2n−2 2 0

2n−3 3−1c2n−3 3−1 + d2n−2 2 0
2n−3 3 0c2n−3 3 0 + d2n−2 2 0

2n−3 3 1c2n−3 3 1

+d2n−2 2 0
2n−2 1−1c2n−2 1−1 + d2n−2 2 0

2n−2 1 0c2n−2 1 0 + d2n−2 2 0
2n−2 1 1c2n−2 1 1 + d2n−2 2 0

2n−3 2−1c2n−3 2−1

+d2n−2 2 0
2n−3 2 0c2n−3 2 0 + d2n−2 2 0

2n−3 2 1c2n−3 2 1 + d2n−2 2 0
2n−1 2−1c2n−1 2−1 + d2n−2 2 0

2n−1 2 0c2n−1 2 0

+d2n−2 2 0
2n−1 2 1c2n−1 2 1 + d2n−2 2 0

2n−2 3−1c2n−2 3−1 + d2n−2 2 0
2n−2 3 0c2n−2 3 0 + d2n−2 2 0

2n−2 3 1c2n−3 3 1

+d2n−2 2 0
2n 2 0 c2n 2 0 + d2n−2 2 0

2n−1 3−1c2n−1 3−1 + d2n−2 2 0
2n−1 3 0c2n−1 3 0 + d2n−2 2 0

2n−1 3 1c2n−1 3 1

+d2n−2 2 0
2n−2 4 0c2n−2 4 0 + d2n−2 2 0

2n−2 0 0c2n−2 0 0 + d2n−2 2 0
2n−3 1−1c2n−3 1−1 + d2n−2 2 0

2n−3 1 0c2n−3 1 0

+d2n−2 2 0
2n−3 1 1c2n−3 1 1 + d2n−2 2 0

2n−4 2 0c2n−4 2 0. (7.170)

l1 = 2n− 2, l2 = 2, m = 1

τN ċ2n−2 2 1 =

d2n−2 2 1
2n−1 1 0c2n−1 1 0 + d2n−2 2 1

2n−1 1 1c2n−1 1 1 + d2n−2 2 1
2n−2 2 1c2n−2 2 1

+d2n−2 2 1
2n−3 3 0c2n−3 3 0 + d2n−2 2 1

2n−3 3 1c2n−3 3 1 + d2n−2 2 1
2n−3 3 2c2n−3 3 2 + d2n−2 2 1

2n−2 1 0c2n−2 1 0

+d2n−2 2 1
2n−2 1 1c2n−2 1 1 + d2n−2 2 1

2n−3 2 0c2n−3 2 0 + d2n−2 2 1
2n−3 2 1c2n−3 2 1 + d2n−2 2 1

2n−3 2 2c2n−3 2 2

+d2n−2 2 1
2n−1 2 0c2n−1 2 0 + d2n−2 2 1

2n−1 2 1c2n−1 2 1 + d2n−2 2 1
2n−1 2 2c2n−1 2 2 + d2n−2 2 1

2n−2 3 2

+d2n−2 2 1
2n 2 1 c2n 2 1 + d2n−2 2 1

2n−1 3 0c2n−1 3 0 + d2n−2 2 1
2n−1 3 1c2n−1 3 1 + d2n−2 2 1

2n−1 3 2c2n−1 3 2

+d2n−2 2 1
2n−2 4 1c2n−2 4 1 + d2n−2 2 1

2n−3 1 0c2n−3 1 0 + d2n−2 2 1
2n−3 1 1c2n−3 1 1 + d2n−2 2 1

2n−4 2 1c2n−4 2 1. (7.171)
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l1 = 2n− 2, l2 = 2, m = 2

τN ċ2n−2 2 2 =

d2n−2 2 2
2n−1 1 1c2n−1 1 1 + d2n−2 2 2

2n−2 2 2c2n−2 2 2 + d2n−2 2 2
2n−3 3 1c2n−3 3 1

+d2n−2 2 2
2n−3 3 2c2n−3 3 2 + d2n−2 2 2

2n−3 3 3c2n−3 3 3 + d2n−2 2 2
2n−2 1 1c2n−2 1 1 + d2n−2 2 2

2n−3 2 1c2n−3 2 1

+d2n−2 2 2
2n−3 2 2c2n−3 2 2 + d2n−2 2 2

2n−1 2 1c2n−1 2 1 + d2n−2 2 2
2n−1 2 2c2n−1 2 2 + d2n−2 2 2

2n−2 3 1c2n−2 3 1

+d2n−2 2 2
2n−2 3 2c2n−2 3 2 + d2n−2 2 2

2n−2 3 3c2n−2 3 3 + d2n−2 2 2
2n 2 2 c2n 2 2 + d2n−2 2 2

2n−1 3 1c2n−1 3 1

+d2n−2 2 2
2n−1 3 2c2n−1 3 2 + d2n−2 2 2

2n−1 3 3c2n−1 3 3 + d2n−2 2 2
2n−2 4 2c2n−2 4 2 + d2n−2 2 2

2n−3 1 1c2n−3 1 1

+d2n−2 2 2
2n−4 2 2c2n−4 2 2. (7.172)

l1 = 0, l2 = 2n, m = 0

τN ċ0 2n 0 =

d0 2n 0
1 2n−1−1c1 2n−1−1 + d0 2n 0

1 2n−1 0c1 2n−1 0 + d0 2n 0
1 2n−1 1c1 2n−1 1

+d0 2n 0
0 2n 0c0 2n 0 + d0 2n 0

0 2n−1 0c0 2n−1 0 + d0 2n 0
0 2n+1 0c0 2n+1 0 + d0 2n 0

1 2n−1c1 2n−1

+d0 2n 0
1 2n 0c1 2n 0 + d0 2n 0

1 2n 1c1 2n 1 + d0 2n 0
0 2n+2 0c0 2n+2 0 + d0 2n 0

1 2n+1 1c1 2n+1 1

+d0 2n 0
1 2n+1 0c1 2n+1 0 + d0 2n 0

1 2n+1−1c1 2n+1−1 + d0 2n 0
2 2n 0c2 2n 0 + d0 2n 0

0 2n−2 0c0 2n−2 0. (7.173)

l1 = 1, l2 = 2n− 1, m = 1

τN ċ1 2n−1 1 =

d1 2n−1 1
0 2n 0 c0 2n 0 + d1 2n−1 1

1 2n−1 1c1 2n−1 1 + d1 2n−1 1
2 2n−2 0c2 2n−2 0

+d1 2n−1 1
2 2n−2 1c2 2n−2 1 + d1 2n−1 1

2 2n−2 2c2 2n−2 2 + d1 2n−1 1
0 2n−1 0c0 2n−1 0 + d1 2n−1 1

1 2n−2 0c0 2n−2 0

+d1 2n−1 1
1 2n−2 1c0 2n−2 1 + d1 2n−1 1

1 2n 0 c1 2n 0 + d1 2n−1 1
1 2n 1 c1 2n 1 + d1 2n−1 1

2 2n−1 0c2 2n−1 0

+d1 2n−1 1
2 2n−1 1c2 2n−1 1 + d1 2n−1 1

2 2n−1 2c2 2n−1 2 + d1 2n−1 1
1 2n+1 1c1 2n+1 1 + d1 2n−1 1

2 2n 2 c2 2n 2

+d1 2n−1 1
2 2n 1 c2 2n 1 + d1 2n−1 1

2 2n 0 c2 2n 0 + d1 2n−1 1
3 2n−1 1c3 2n−1 1 + d1 2n−1 1

0 2n−2 0c0 2n−2 0

+d1 2n−1 1
1 2n−3 1c1 2n−3 1. (7.174)
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l1 = 1, l2 = 2n− 1, m = 0

τN ċ1 2n−1 0 =

d1 2n−1 0
0 2n 0 c0 2n 0 + d1 2n−1 0

1 2n−1 0c1 2n−1 0 + d1 2n−1 0
2 2n−2 0c2 2n−2−1

+d1 2n−1 0
2 2n−2 0c2 2n−2 0 + d1 2n−1 0

2 2n−2 1c2 2n−2 1 + d1 2n−1 0
0 2n−1 0c0 2n−1 0 + d1 2n−1 0

1 2n−2−1c0 2n−2−1

+d1 2n−1 0
1 2n−2 0c0 2n−2 0 + d1 2n−1 0

1 2n−2 1c0 2n−2 1 + d1 2n−1 0
1 2n−1 c1 2n−1 + d1 2n−1 0

1 2n 0 c1 2n 0

+d1 2n−1 0
1 2n 1 c1 2n 1 + d1 2n−1 0

2 2n−1−1c2 2n−1−1 + d1 2n−1 0
2 2n−1 0c2 2n−1 0 + d1 2n−1 0

2 2n−1 1c2 2n−1 1

+d1 2n−1 0
1 2n+1 0c1 2n+1 0 + d1 2n−1 0

2 2n 1 c2 2n 1 + d1 2n−1 0
2 2n 0 c2 2n 0 + d1 2n−1 0

2 2n−1 c2 2n−1

+d1 2n−1 0
3 2n−1 0c3 2n−1 0 + d1 2n−1 0

0 2n−2 0c0 2n−2 0 + d1 2n−1 0
1 2n−3 0c1 2n−3 0. (7.175)

l1 = 1, l2 = 2n− 1, m = −1

τN ċ1 2n−1−1 =

d1 2n−1−1
0 2n 0 c0 2n 0 + d1 2n−1−1

1 2n−1−1c1 2n−1−1 + d1 2n−1−1
2 2n−2−2c2 2n−2−2

+d1 2n−1−1
2 2n−2−1c2 2n−2−1 + d1 2n−1−1

2 2n−2 0 c2 2n−2 0 + d1 2n−1−1
0 2n−1 0 c0 2n−1 0 + d1 2n−1−1

1 2n−2−1c0 2n−2−1

+d1 2n−1−1
1 2n−2 0 c0 2n−2 0 + d1 2n−1−1

1 2n−1 c1 2n−1 + d1 2n−1−1
1 2n 0 c1 2n 0 + d1 2n−1−1

2 2n−1−2c2 2n−1−2

+d1 2n−1−1
2 2n−1−1c2 2n−1−1 + d1 2n−1−1

2 2n−1 0 c2 2n−1 0 + d1 2n−1−1
1 2n+1−1c1 2n+1−1 + d1 2n−1−1

2 2n 0 c2 2n 0

+d1 2n−1−1
2 2n−1 c2 2n−1 + d1 2n−1−1

2 2n−2 c2 2n−2 + d1 2n−1−1
3 2n−1−1c3 2n−1−1 + d1 2n−1−1

0 2n−2 0 c0 2n−2 0

+d1 2n−1−1
1 2n−3−1c1 2n−3−1. (7.176)
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From Eq. (7.157) we have

τN ċ2n =




τN ċ2n,0,0

τN ċ(2n−1),1,−1

τN ċ(2n−1),1,0

τN ċ(2n−1),1,1

τN ċ(2n−2),2,−2

τN ċ(2n−2),2,−1

τN ċ(2n−2),2,0

τN ċ(2n−2),2,1

τN ċ(2n−2),2,2

...

τN ċ0,2n,0




= V2nc2n−2 +R2nc2n−1 +P2nc2n+S2nc2n+1 +U2nc2n+2,

(7.177)

where from Eq. (7.158) and Eqs. (7.164) - (7.176), we have

257



V
2
n

=

                                 

d
2
n
0
0

2
n
−
2
0
0

0
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

0

d
2
n
−
1
1
−
1

2
n
−
2
0
0

d
2
n
−
1
1
−
1

2
n
−
3
1
−
1

0
0

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

d
2
n
−
1
1
0

2
n
−
2
0
0

0
d
2
n
−
1
1
0

2
n
−
3
1
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

d
2
n
−
1
1
1

2
n
−
2
0
0

0
0

d
2
n
−
1
1
1

2
n
−
3
1
1

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
d
2
n
−
2
2
−
2

2
n
−
3
1
−
1

0
0

d
2
n
−
2
2
−
2

2
n
−
4
2
−
2

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

0
d
2
n
−
2
2
−
1

2
n
−
3
1
−
1
d
2
n
−
2
2
−
1

2
n
−
3
1
0

0
0

d
2
n
−
2
2
−
1

2
n
−
4
2
−
1

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

d
2
n
−
2
2
0

2
n
−
2
0
0
d
2
n
−
2
2
0

2
n
−
3
1
−
1
d
2
n
−
2
2
0

2
n
−
3
1
0
d
2
n
−
2
2
0

2
n
−
3
1
1

0
0

d
2
n
−
2
2
0

2
n
−
4
2
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

d
2
n
−
2
2
1

2
n
−
3
1
0
d
2
n
−
2
2
1

2
n
−
3
1
1

0
0

0
d
2
n
−
2
2
1

2
n
−
4
2
1

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
d
2
n
−
2
2
2

2
n
−
3
1
1

0
0

0
0

d
2
n
−
2
2
2

2
n
−
4
2
2

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
d
1
2
n
−
1
−
1

1
2
n
−
3
−
1

0
0

d
1
2
n
−
1
−
1

0
2
n
−
2
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
d
1
2
n
−
1
0

1
2
n
−
3
0

0
d
1
2
n
−
1
0

0
2
n
−
2
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

d
1
2
n
−
1
1

1
2
n
−
3
1
d
1
2
n
−
1
1

0
2
n
−
2
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

d
0
2
n
0

0
2
n
−
2
0

                                 

,
(7

.1
79

)

w
h
ic

h
in

th
e

n
ot

at
io

n
of

A
p
p

en
d
ix

7.
B

ca
n

b
e

w
ri

tt
en

as

V
2
n

=

                                 

v̄
0
2
n
0

0
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

0

v
+ 2
n
−
1
1
−
1
v̄
1
2
n
−
1
−
1

0
0

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

v
2
n
−
1
1
0

0
v̄
1
2
n
−
1
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

v
− 2
n
−
1
1
1

0
0

v̄
1
2
n
−
1
1

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
v
+ 2
n
−
2
2
−
2

0
0

v̄
2
2
n
−
2
−
2

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

0
v
2
n
−
2
2
−
1
v
+ 2
n
−
2
2
−
1

0
0

v̄
2
2
n
−
2
−
1

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

v̄
2
n
−
2
2
0

v
− 2
n
−
2
2
0

v
2
n
−
2
2
0
v
+ 2
n
−
2
2
0

0
0

v̄
2
2
n
−
2
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

v
− 2
n
−
2
2
1
v
2
n
−
2
2
1

0
0

0
v̄
2
2
n
−
2
1

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
v
− 2
n
−
2
2
2

0
0

0
0

v̄
2
2
n
−
2
2

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
v̄
1
2
n
−
1
−
1

0
0

v
+ 1
2
n
−
1
−
1

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
v̄
1
2
n
−
1
0

0
v
1
2
n
−
1
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

v̄
1
2
n
−
1
1
v
− 1
2
n
−
1
1

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

v̄
0
2
n
0

                                 

,
(7

.1
80

)

25
8



or

V
2
n
c 2
n
−

2
=

             

v̄
0

2
n

0
. .

.
0

v
2
n
−

1
1

v̄
1

2
n
−

1
. .

.
. .

.

v̄
2
n
−

2
2

v
2
n
−

2
2

. .
.

0

0
. .

.
. .

.
v̄

2
n
−

2
2

. .
.

. .
.

. .
.

v
1

2
n
−

1

0
. .

.
0

v̄
0

2
n

             

,
(7

.1
81

)

w
h
er

e
fo

r
ex

am
p
le

v̄
0

2
n

=
(v̄

0
2
n

0
)
,

v
2
n
−

1
1

=

    

v
+ 2
n
−

1
1
−

1

v 2
n
−

1
1

0

v
− 2
n
−

1
1

1

    
,

v̄
2
n
−

2
2

=

          

0 0

v̄ 2
n
−

2
2

0

0 0

          

,
v̄

1
2
n
−

1
=

    

v̄ 1
2
n
−

1
−

1
0

0

0
v̄ 1

2
n
−

1
0

0

0
0

v̄ 1
2
n
−

1
1

    
,

v
2
n
−

2
2

=

          

v
+ 2
n
−

2
2
−

2
0

0

v 2
n
−

2
2
−

1
v

+ 2
n
−

2
2
−

1
0

v
− 2
n
−

2
2

0
v 2
n
−

2
2

0
v

+ 2
n
−

2
2

0

0
v
− 2
n
−

2
2

1
v 2
n
−

2
2

1

0
0

v
− 2
n
−

2
2

2

          

,
(7

.1
82

)

25
9



R
2
n

=

                                 

d
2
n
0
0

2
n
−
1
0
0

0
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

0

d
2
n
−
1
1
−
1

2
n
−
1
0
0

d
2
n
−
1
1
−
1

2
n
−
2
1
−
1
d
2
n
−
1
1
−
1

2
n
−
2
1
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

d
2
n
−
1
1
0

2
n
−
1
0
0
d
2
n
−
1
1
0

2
n
−
2
1
−
1
d
2
n
−
1
1
0

2
n
−
2
1
0
d
2
n
−
1
1
0

2
n
−
2
1
1

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

d
2
n
−
1
1
1

2
n
−
1
0
0

0
d
2
n
−
1
1
1

2
n
−
2
1
0
d
2
n
−
1
1
1

2
n
−
2
1
1

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
d
2
n
−
2
2
−
2

2
n
−
2
1
−
1

0
0

d
2
n
−
2
2
−
2

2
n
−
3
2
−
2
d
2
n
−
2
2
−
2

2
n
−
3
2
−
1

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
d
2
n
−
2
2
−
1

2
n
−
2
1
−
1
d
2
n
−
2
2
−
1

2
n
−
2
1
0

0
d
2
n
−
2
2
−
1

2
n
−
3
2
−
2
d
2
n
−
2
2
−
1

2
n
−
3
2
−
1
d
2
n
−
2
2
−
1

2
n
−
3
2
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

0
d
2
n
−
2
2
0

2
n
−
2
1
−
1
d
2
n
−
2
2
0

2
n
−
2
1
0
d
2
n
−
2
2
0

2
n
−
2
1
1

0
d
2
n
−
2
2
0

2
n
−
3
2
−
1
d
2
n
−
2
2
0

2
n
−
3
2
0
d
2
n
−
2
2
0

2
n
−
3
2
1

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

d
2
n
−
2
2
1

2
n
−
2
1
0
d
2
n
−
2
2
1

2
n
−
2
1
1

0
0

d
2
n
−
2
2
1

2
n
−
3
2
0
d
2
n
−
2
2
1

2
n
−
3
2
1
d
2
n
−
2
2
1

2
n
−
3
2
2

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
d
2
n
−
2
2
2

2
n
−
2
1
1

0
0

0
d
2
n
−
2
2
2

2
n
−
3
2
1
d
2
n
−
2
2
2

2
n
−
3
2
2

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
d
1
2
n
−
1
−
1

1
2
n
−
2
−
1
d
1
2
n
−
1
−
1

1
2
n
−
2
0

0
d
1
2
n
−
1
−
1

0
2
n
−
1
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
d
1
2
n
−
1
0

1
2
n
−
2
−
1
d
1
2
n
−
1
0

1
2
n
−
2
0
d
1
2
n
−
1
0

1
2
n
−
2
1
d
1
2
n
−
1
0

0
2
n
−
1
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
d
1
2
n
−
1
1

1
2
n
−
2
0
d
1
2
n
−
1
1

1
2
n
−
2
1
d
1
2
n
−
1
1

0
2
n
−
1
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

d
0
2
n
0

0
2
n
−
1
0

                                 

,
(7

.1
83

)

w
h
ic

h
in

th
e

n
ot

at
io

n
of

A
p
p

en
d
ix

7.
B

ca
n

b
e

w
ri

tt
en

as

R
2
n

=

                                  

(r
0
2
n
0
)∗

0
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

0

r
+ 2
n
−
1
1
−
1

(r
1
2
n
−
1
−
1
)∗

(r
+ 1
2
n
−
1
−
1
)∗

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

r 2
n
−
1
1
0

(r
− 1
2
n
−
1
0
)∗

(r
1
2
n
−
1
0
)∗

(r
+ 1
2
n
−
1
0
)∗

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

r
− 2
n
−
1
1
1

0
(r

− 1
2
n
−
1
1
)∗

(r
1
2
n
−
1
1
)∗

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
r
+ 2
n
−
2
2
−
2

0
0

(r
2
2
n
−
2
−
2
)∗

(r
+ 2
2
n
−
2
−
2
)∗

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
r 2

n
−
2
2
−
1

r
+ 2
n
−
2
2
−
1

0
(r

− 2
2
n
−
2
−
1
)∗

(r
2
2
n
−
2
−
1
)∗

(r
+ 2
2
n
−
2
−
1
)∗

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

0
r
− 2
n
−
2
2
0

r 2
n
−
2
2
0

r
+ 2
n
−
2
2
0

0
(r

− 2
2
n
−
2
0
)∗

(r
2
2
n
−
2
0
)∗

(r
+ 2
2
n
−
2
0
)∗

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

r
− 2
n
−
2
2
1

r 2
n
−
2
2
1

0
0

(r
− 2
2
n
−
2
1
)∗

(r
2
2
n
−
2
1
)∗

(r
+ 2
2
n
−
2
1
)∗

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
r
− 2
n
−
2
2
2

0
0

0
(r

− 2
2
n
−
2
2
)∗

(r
2
2
n
−
2
2
)∗

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
r 1

2
n
−
1
−
1
r
+ 1
2
n
−
1
−
1

0
(r

+ 2
n
−
1
1
−
1
)∗

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
r
− 1
2
n
−
1
0

r 1
2
n
−
1
0
r
+ 1
2
n
−
1
0

(r
2
n
−
1
1
0
)∗

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
r
− 1
2
n
−
1
1
r 1

2
n
−
1
1

(r
− 2
n
−
1
1
1
)∗

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

r 0
2
n
0

                                  

,
(7

.1
84

)

26
0



or

R
2
n

=

                

r∗ 0
2
n

0
0

0
. .

.
0

r 2
n
−

1
1

r∗ 1
2
n
−

1
0

0
. .

.
. .

.

0
r 2
n
−

2
2

r∗ 2
2
n
−

2
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

r 1
2
n
−

1
r∗ 2
n
−

1
1

0
. .

.
. .

.
. .

.
0

r 0
2
n

                

,
(7

.1
85

)

w
h
er

e
fo

r
ex

am
p
le

r∗ 0
2
n

=
((
r 0

2
n

0
)∗ )

,
r 2
n
−

1
1

=

    

r+ 2
n
−

1
1
−

1

r 2
n
−

1
1

0

r− 2
n
−

1
1

1

    
,

r∗ 1
2
n
−

1
=

    

( r
1

2
n
−

1
−

1

) ∗
( r

+ 1
2
n
−

1
−

1

) ∗
0

( r
− 1

2
n
−

1
0

) ∗
( r

1
2
n
−

1
0

) ∗
( r

+ 1
2
n
−

1
0

) ∗

0
( r

− 1
2
n
−

1
1

) ∗
( r

1
2
n
−

1
1

) ∗

    
,

r 2
n
−

2
2

=

          

r+ 2
n
−

2
2
−

2
0

0

r 2
n
−

2
2
−

1
r+ 2
n
−

2
2
−

1
0

r− 2
n
−

2
2

0
r 2
n
−

2
2

0
r+ 2
n
−

2
2

0

0
r− 2
n
−

2
2

1
r 2
n
−

2
2

1

0
0

r− 2
n
−

2
2

2

          

,
r∗ 2

2
n
−

2
=

          

( r
2

2
n
−

2
−

2

) ∗
( r

+ 2
2
n
−

2
−

2

) ∗
0

0
0

( r
− 2

2
n
−

2
−

1

) ∗
( r

2
2
n
−

2
−

1

) ∗
( r

+ 2
2
n
−

2
−

1

) ∗
0

0

0
( r

− 2
2
n
−

2
0

) ∗
( r

2
2
n
−

2
0

) ∗
( r

+ 2
2
n
−

2
0

) ∗
0

0
0

( r
− 2

2
n
−

2
1

) ∗
( r

2
2
n
−

2
1

) ∗
( r

+ 2
2
n
−

2
1

) ∗

0
0

0
( r

− 2
2
n
−

2
2

) ∗
( r

2
2
n
−

2
2

) ∗

          

,
(7

.1
86

)

26
1



P
2
n

=

                                 

d
2
n
0
0

2
n
0
0

d
2
n
0
0

2
n
−
1
1
−
1
d
2
n
0
0

2
n
−
1
1
0
d
2
n
0
0

2
n
−
1
1
1

0
0

0
0

0
0

0
0

0
0

0
0

. .
.

0

d
2
n
−
1
1
−
1

2
n
0
0

d
2
n
−
1
1
−
1

2
n
−
1
1
−
1

0
0

d
2
n
−
1
1
−
1

2
n
−
2
2
−
2
d
2
n
−
1
1
−
1

2
n
−
2
2
−
1
d
2
n
−
1
1
−
1

2
n
−
2
2
0

0
0

0
0

0
0

0
0

0
. .

.
. .

.

d
2
n
−
1
1
0

2
n
0
0

0
d
2
n
−
1
1
0

2
n
−
1
1
0

0
0

d
2
n
−
1
1
0

2
n
−
2
2
−
1
d
2
n
−
1
1
0

2
n
−
2
2
0
d
2
n
−
1
1
0

2
n
−
2
2
1

0
0

0
0

0
0

0
0

. .
.

. .
.

d
2
n
−
1
1
1

2
n
0
0

0
0

d
2
n
−
1
1
1

2
n
−
1
1
1

0
0

d
2
n
−
1
1
1

2
n
−
2
2
0
d
2
n
−
1
1
1

2
n
−
2
2
1
d
2
n
−
1
1
1

2
n
−
2
2
2

0
0

0
0

0
0

0
. .

.
. .

.

0
d
2
n
−
2
2
−
2

2
n
−
1
1
−
1

0
0

d
2
n
−
2
2
−
2

2
n
−
2
2
−
2

0
0

0
0

d
2
n
−
2
2
−
2

2
n
−
3
3
−
3
d
2
n
−
2
2
−
2

2
n
−
3
3
−
2
d
2
n
−
2
2
−
2

2
n
−
3
3
−
1

0
0

0
0

. .
.

. .
.

0
d
2
n
−
2
2
−
1

2
n
−
1
1
−
1
d
2
n
−
2
2
−
1

2
n
−
1
1
0

0
0

d
2
n
−
2
2
−
1

2
n
−
2
2
−
1

0
0

0
0

d
2
n
−
2
2
−
1

2
n
−
3
3
−
2
d
2
n
−
2
2
−
1

2
n
−
3
3
−
1
d
2
n
−
2
2
−
1

2
n
−
3
3
0

0
0

0
. .

.
. .

.

0
d
2
n
−
2
2
0

2
n
−
1
1
−
1
d
2
n
−
2
2
0

2
n
−
1
1
0
d
2
n
−
2
2
0

2
n
−
1
1
1

0
0

d
2
n
−
2
2
0

2
n
−
2
2
0

0
0

0
0

d
2
n
−
2
2
0

2
n
−
3
3
−
1
d
2
n
−
2
2
0

2
n
−
3
3
0
d
2
n
−
2
2
0

2
n
−
3
3
1

0
0

. .
.

. .
.

0
0

d
2
n
−
2
2
1

2
n
−
1
1
0
d
2
n
−
2
2
1

2
n
−
1
1
1

0
0

0
d
2
n
−
2
2
1

2
n
−
2
2
1

0
0

0
0

d
2
n
−
2
2
1

2
n
−
3
3
0
d
2
n
−
2
2
1

2
n
−
3
3
1
d
2
n
−
2
2
1

2
n
−
3
3
2

0
. .

.
. .

.

0
0

0
d
2
n
−
2
2
2

2
n
−
1
1
1

0
0

0
0

d
2
n
−
2
2
2

2
n
−
2
2
2

0
0

0
0

d
2
n
−
2
2
2

2
n
−
3
3
1
d
2
n
−
2
2
2

2
n
−
3
3
2
d
2
n
−
2
2
2

2
n
−
3
3
3

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

d
1
2
n
−
1
−
1

2
2
n
−
2
−
2
d
1
2
n
−
1
−
1

2
2
n
−
2
−
1
d
1
2
n
−
1
−
1

2
2
n
−
2
0

0
0

d
1
2
n
−
1
−
1

1
2
n
−
1
−
1

0
0

d
1
2
n
−
1
−
1

0
2
n
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
d
1
2
n
−
1
0

2
2
n
−
2
−
1
d
1
2
n
−
1
0

2
2
n
−
2
0

d
1
2
n
−
1
0

2
2
n
−
2
1

0
0

d
1
2
n
−
1
0

1
2
n
−
1
0

0
d
1
2
n
−
1
0

0
2
n
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

d
1
2
n
−
1
1

2
2
n
−
2
0

d
1
2
n
−
1
1

2
2
n
−
2
1
d
1
2
n
−
1
1

2
2
n
−
2
2

0
0

d
1
2
n
−
1
1

1
2
n
−
1
1
d
1
2
n
−
1
1

0
2
n
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

0
0

d
0
2
n
0

1
2
n
−
1
−
1
d
0
2
n
0

1
2
n
−
1
0
d
0
2
n
0

1
2
n
−
1
1

d
0
2
n
0

0
2
n
0

                                 

,
(7

.1
87

)

w
h
ic

h
in

th
e

n
ot

at
io

n
of

A
p
p

en
d
ix

7.
B

ca
n

b
e

w
ri

tt
en

as

P
2
n

=

                                 

p
2
n
0
0

p̄
− 0
2
n
0

p̄
0
2
n
0

p̄
+ 0
2
n
0

0
0

0
0

0
0

0
0

0
0

0
0

. .
.

0

p̄
+ 2
n
−
1
1
−
1
p
2
n
−
1
1
−
1

0
0

p̄
− 1
2
n
−
1
−
1
p̄
1
2
n
−
1
−
1
p̄
+ 1
2
n
−
1
−
1

0
0

0
0

0
0

0
0

0
. .

.
. .

.

sp̄
2
n
−
1
1
0

0
p
2
n
−
1
1
0

0
0

p̄
− 1
2
n
−
1
0

p̄
1
2
n
−
1
0
p̄
+ 1
2
n
−
1
0

0
0

0
0

0
0

0
0

. .
.

. .
.

p̄
− 2
n
−
1
1
1

0
0

p
2
n
−
1
1
1

0
0

p̄
− 1
2
n
−
1
1
p̄
1
2
n
−
1
1
p̄
+ 1
2
n
−
1
1

0
0

0
0

0
0

0
. .

.
. .

.

0
p̄
+ 2
n
−
2
2
−
2

0
0

p
2
n
−
2
2
−
2

0
0

0
0

p̄
− 2
2
n
−
2
−
2
p̄
2
2
n
−
2
−
2
p̄
+ 2
2
n
−
2
−
2

0
0

0
0

. .
.

. .
.

0
p̄
2
n
−
2
2
−
1
p̄
+ 2
n
−
2
2
−
1

0
0

p
2
n
−
2
2
−
1

0
0

0
0

p̄
− 2
2
n
−
2
−
1
p̄
2
2
n
−
2
−
1
p̄
+ 2
2
n
−
2
−
1

0
0

0
. .

.
. .

.

0
p̄
− 2
n
−
2
2
0

p̄
2
n
−
2
2
0
p̄
+ 2
n
−
2
2
0

0
0

p
2
n
−
2
2
0

0
0

0
0

p̄
− 2
2
n
−
2
0

p̄
2
2
n
−
2
0
p̄
+ 2
2
n
−
2
0

0
0

. .
.

. .
.

0
0

p̄
− 2
n
−
2
2
1
p̄
2
n
−
2
2
1

0
0

0
p
2
n
−
2
2
1

0
0

0
0

p̄
− 2
2
n
−
2
1
p̄
2
2
n
−
2
1
p̄
+ 2
2
n
−
2
1

0
. .

.
. .

.

0
0

0
p̄
− 2
n
−
2
2
2

0
0

0
0

p
2
n
−
2
2
2

0
0

0
0

p̄
− 2
2
n
−
2
2
p̄
2
2
n
−
2
2
p̄
+ 2
2
n
−
2
2

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

p̄
− 1
2
n
−
1
−
1
p̄
1
2
n
−
1
−
1
p̄
+ 1
2
n
−
1
−
1

0
0

p
1
2
n
−
1
−
1

0
0

p̄
+ 2
n
−
1
1
−
1

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
p̄
− 1
2
n
−
1
0

p̄
1
2
n
−
1
0

p̄
+ 1
2
n
−
1
0

0
0

p
1
2
n
−
1
0

0
p̄
2
n
−
1
1
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

p̄
− 1
2
n
−
1
1

p̄
1
2
n
−
1
1
p̄
+ 1
2
n
−
1
1

0
0

p
1
2
n
−
1
1
p̄
− 2
n
−
1
1
1

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

0
0

p̄
− 0
2
n
0

p̄
0
2
n
0

p̄
+ 0
2
n
0

p
0
2
n
0

                                 

,
(7

.1
88

)

26
2



or

P
2
n

=

                

p
2
n

0
p̄

0
2
n

0
0

. .
.

. .
.

0

p̄
2
n
−

1
1

p
2
n
−

1
1

p̄
1

2
n
−

1
0

. .
.

. .
.

. .
.

0
p̄

2
n
−

2
2

p
2
n
−

2
2

p̄
2

2
n
−

2
. .

.
. .

.
. .

.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

p̄
1

2
n
−

1
p

1
2
n
−

1
p̄

2
n
−

1
1

0
. .

.
. .

.
. .

.
0

p̄
0

2
n

p
0

2
n

                

,
(7

.1
89

)

w
h
er

e
fo

r
ex

am
p
le

p
2
n

0
=

(p
2
n

0
0
)
,

p̄
2
n
−

1
1

=

    

p̄+ 2
n
−

1
1
−

1

p̄ 2
n
−

1
1

0

p̄− 2
n
−

1
1

1

    
,

p̄
0

2
n

=
(
p̄− 0

2
n

0
p̄ 0

2
n

0
p̄+ 0

2
n

0

) ,
p

2
n
−

1
1

=

    

p 2
n
−

1
1
−

1
0

0

0
p 2
n
−

1
1

0
0

0
0

p 2
n
−

1
1

1

    
,

p̄
2
n
−

2
2

=

          

p̄+ 2
n
−

2
2
−

2
0

0

p̄ 2
n
−

2
2
−

1
p̄+ 2
n
−

2
2
−

1
0

p̄− 2
n
−

2
2

0
p̄ 2
n
−

2
2

0
p̄+ 2
n
−

2
2

0

0
p̄− 2
n
−

2
2

1
p̄ 2
n
−

2
2

1

0
0

p̄− 2
n
−

2
2

2

          

,
p̄

1
2
n
−

1
=

    

p̄− 1
2
n
−

1
−

1
p̄ 1

2
n
−

1
−

1
p̄+ 1

2
n
−

1
−

1
0

0

0
p̄− 1

2
n
−

1
0

p̄ 1
2
n
−

1
0

p̄+ 1
2
n
−

1
0

0

0
0

p̄− 1
2
n
−

1
1

p̄ 1
2
n
−

1
1
p̄+ 1

2
n
−

1
1

    
,

p
2
n
−

2
2

=

          

p 2
n
−

2
2
−

2
0

0
0

0

0
p 2
n
−

2
2
−

1
0

0
0

0
0

p 2
n
−

2
2

0
0

0

0
0

0
p 2
n
−

2
2

1
0

0
0

0
0

p 2
n
−

2
2

2

          

,

p̄
2

2
n
−

2
=

          

p̄− 2
2
n
−

2
−

2
p̄ 2

2
n
−

2
−

2
p̄+ 2

2
n
−

2
−

2
0

0
0

0

0
p̄− 2

2
n
−

2
−

1
p̄ 2

2
n
−

2
−

1
p̄+ 2

2
n
−

2
−

1
0

0
0

0
0

p̄− 2
2
n
−

2
0

p̄ 2
2
n
−

2
0

p̄+ 2
2
n
−

2
0

0
0

0
0

0
p̄− 2

2
n
−

2
1

p̄ 2
2
n
−

2
1
p̄+ 2

2
n
−

2
1

0

0
0

0
0

p̄− 2
2
n
−

2
2
p̄ 2

2
n
−

2
2
p̄+ 2

2
n
−

2
2

          

,
(7

.1
90

)

26
3



S
2
n

=

                                     

d
2
n

0
0

2
n

+
1

0
0

d
2
n

0
0

2
n

1
−

1
d

2
n

0
0

2
n

1
0

d
2
n

0
0

2
n

1
1

0
0

0
0

0
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0

0
d

2
n
−

1
1
−

1
2
n

1
−

1
d

2
n
−

1
1
−

1
2
n

1
0

0
d

2
n
−

1
1
−

1
2
n
−

1
2
−

2
d

2
n
−

1
1
−

1
2
n
−

1
2
−

1
d

2
n
−

1
1
−

1
2
n
−

1
2

0
0

0
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
d

2
n
−

1
1

0
2
n

1
−

1
d

2
n
−

1
1

0
2
n

1
0

d
2
n
−

1
1

0
2
n

1
1

0
d

2
n
−

1
1

0
2
n
−

1
2
−

1
d

2
n
−

1
1

0
2
n
−

1
2

0
d

2
n
−

1
1

0
2
n
−

1
2

1
0

0
0

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

d
2
n
−

1
1

1
2
n

1
0

d
2
n
−

1
1

1
2
n

1
1

0
0

d
2
n
−

1
1

1
2
n
−

1
2

0
d

2
n
−

1
1

1
2
n
−

1
2

1
d

2
n
−

1
1

1
2
n
−

1
2

2
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
0

d
2
n
−

2
2
−

2
2
n
−

1
2
−

2
d

2
n
−

2
2
−

2
2
n
−

1
2
−

1
0

0
0

d
2
n
−

2
2
−

2
2
n
−

2
3
−

3
d

2
n
−

2
2
−

2
2
n
−

2
3
−

2
d

2
n
−

2
2
−

2
2
n
−

2
3
−

1
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
0

d
2
n
−

2
2
−

1
2
n
−

1
2
−

2
d

2
n
−

2
2
−

1
2
n
−

1
2
−

1
d

2
n
−

2
2
−

1
2
n
−

1
2

0
0

0
0

d
2
n
−

2
2
−

1
2
n
−

2
3
−

2
d

2
n
−

2
2
−

1
2
n
−

2
3
−

1
d

2
n
−

2
2
−

1
2
n
−

2
3

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
0

0
d

2
n
−

2
2

0
2
n
−

1
2
−

1
d

2
n
−

2
2

0
2
n
−

1
2

0
d

2
n
−

2
2

0
2
n
−

1
2

1
0

0
0

d
2
n
−

2
2

0
2
n
−

2
3
−

1
d

2
n
−

2
2

0
2
n
−

2
3

0
d

2
n
−

2
2

0
2
n
−

2
3

1
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
0

0
0

d
2
n
−

2
2

1
2
n
−

1
2

0
d

2
n
−

2
2

1
2
n
−

1
2

1
d

2
n
−

2
2

1
2
n
−

1
2

2
0

0
0

d
2
n
−

2
2

1
2
n
−

2
3

0
d

2
n
−

2
2

1
2
n
−

2
3

1
d

2
n
−

2
2

1
2
n
−

2
3

2
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
0

0
0

0
d

2
n
−

2
2

2
2
n
−

1
2

1
d

2
n
−

2
2

2
2
n
−

1
2

2
0

0
0

0
d

2
n
−

2
2

2
2
n
−

2
3

1
d

2
n
−

2
2

2
2
n
−

2
3

2
d

2
n
−

2
2

2
2
n
−

2
3

3
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
d

1
2
n
−

1
−

1
2

2
n
−

1
−

2
d

1
2
n
−

1
−

1
2

2
n
−

1
−

1
d

1
2
n
−

1
−

1
2

2
n
−

1
0

0
0

d
1

2
n
−

1
−

1
1

2
n
−

1
d

1
2
n
−

1
−

1
1

2
n

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

d
1

2
n
−

1
0

2
2
n
−

1
−

1
d

1
2
n
−

1
0

2
2
n
−

1
0

d
1

2
n
−

1
0

2
2
n
−

1
1

0
d

1
2
n
−

1
0

1
2
n
−

1
d

1
2
n
−

1
0

1
2
n

0
d

1
2
n
−

1
0

1
2
n

1
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

d
1

2
n
−

1
1

2
2
n
−

1
0

d
1

2
n
−

1
1

2
2
n
−

1
1
d

1
2
n
−

1
1

2
2
n
−

1
2

0
d

1
2
n
−

1
1

1
2
n

0
d

1
2
n
−

1
1

1
2
n

1
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

0
0

d
0

2
n

0
1

2
n
−

1
d

0
2
n

0
1

2
n

0
d

0
2
n

0
1

2
n

1
d

0
2
n

0
0

2
n

+
1

0

                                     

,
(7

.1
91

)

w
h
ic

h
in

th
e

n
ot

at
io

n
of

A
p
p

en
d
ix

7.
B

ca
n

b
e

w
ri

tt
en

as

S
2
n

=

                                     

s 2
n

0
0

( s
− 0

2
n

0

) ∗
(s

0
2
n

0
)∗

( s
+ 0

2
n

0

) ∗
0

0
0

0
0

0
0

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
s 2
n
−

1
1
−

1
s+ 2
n
−

1
1
−

1
0

( s
− 1

2
n
−

1
−

1

) ∗
( s

1
2
n
−

1
−

1

) ∗
( s

+ 1
2
n
−

1
−

1

) ∗
0

0
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
s− 2
n
−

1
1

0
s 2
n
−

1
1

0
s+ 2
n
−

1
1

0
0

( s
− 1

2
n
−

1
0

) ∗
( s

1
2
n
−

1
0

) ∗
( s

+ 1
2
n
−

1
0

) ∗
0

0
0

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

s− 2
n
−

1
1

1
s 2
n
−

1
1

1
0

0
( s

− 1
2
n
−

1
1

) ∗
( s

1
2
n
−

1
1

) ∗
( s

+ 1
2
n
−

1
1

) ∗
0

0
0

0
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
0

s 2
n
−

2
2
−

2
s+ 2
n
−

2
2
−

2
0

0
0

( s
− 2

2
n
−

2
−

2

) ∗
( s

2
2
n
−

2
−

2

) ∗
( s

+ 2
2
n
−

2
−

2

) ∗
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
0

s− 2
n
−

2
2
−

1
s 2
n
−

2
2
−

1
s+ 2
n
−

2
2
−

1
0

0
0

( s
− 2

2
n
−

2
−

1

) ∗
( s

2
2
n
−

2
−

1

) ∗
( s

+ 2
2
n
−

2
−

1

) ∗
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
0

0
s− 2
n
−

2
2

0
s 2
n
−

2
2

0
s+ 2
n
−

2
2

0
0

0
0

( s
− 2

2
n
−

2
0

) ∗
( s

2
2
n
−

2
0

) ∗
( s

+ 2
2
n
−

2
0

) ∗
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
0

0
0

s− 2
n
−

2
2

1
s 2
n
−

2
2

1
s+ 2
n
−

2
2

1
0

0
0

( s
− 2

2
n
−

2
1

) ∗
( s

2
2
n
−

2
1

) ∗
( s

+ 2
2
n
−

2
1

) ∗
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
0

0
0

0
s− 2
n
−

2
2

2
s 2
n
−

2
2

2
0

0
0

0
( s

− 2
2
n
−

2
2

) ∗
( s

2
2
n
−

2
2

) ∗
( s

+ 2
2
n
−

2
2

) ∗
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
s− 1

2
n
−

1
−

1
s 1

2
n
−

1
−

1
s+ 1

2
n
−

1
−

1
0

0
( s

2
n
−

1
1
−

1

) ∗
( s

+ 2
n
−

1
1
−

1

) ∗
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

s− 1
2
n
−

1
0

s 1
2
n
−

1
0

s+ 1
2
n
−

1
0

0
( s

− 2
n
−

1
1

0

) ∗
( s

2
n
−

1
1

0

) ∗
( s

+ 2
n
−

1
1

0

) ∗
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

s− 1
2
n
−

1
1

s 1
2
n
−

1
1
s+ 1

2
n
−

1
1

0
( s

− 2
n
−

1
1

1

) ∗
( s

2
n
−

1
1

1

) ∗
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

0
0

s− 0
2
n

0
s 0

2
n

0
s+ 0

2
n

0
(s

2
n

0
0
)∗                                     

,
(7

.1
92

)

or

S
2
n

=

          

s 2
n

0
s∗ 0

2
n

0
0

. .
.

0

0
s 2
n
−

1
1

s∗ 1
2
n
−

1
0

. .
.

. .
.

0
0

s 2
n
−

2
2

s∗ 2
2
n
−

2
. .

.
. .

.

. .
.

. .
.

. .
.

. .
.

. .
.

0

0
. .

.
. .

.
0

s 0
2
n

s∗ 2
n

0

          

,
(7

.1
93

)

26
4



w
h
er

e
fo

r
ex

am
p
le

s 2
n

0
=

(s
2
n

0
0
)
,

s∗ 0
2
n

=
(
( s

− 0
2
n

0

) ∗
(s

0
2
n

0
)∗

( s
+ 0

2
n

0

) ∗
) ,

s 2
n
−

1
1

=

    

s 2
n
−

1
1
−

1
s+ 2
n
−

1
1
−

1
0

s− 2
n
−

1
1

0
s 2
n
−

1
1

0
s+ 2
n
−

1
1

0

0
s− 2
n
−

1
1

1
s 2
n
−

1
1

1

    
,

s∗ 1
2
n
−

1
=

    

( s
− 1

2
n
−

1
−

1

) ∗
( s

1
2
n
−

1
−

1

) ∗
( s

+ 1
2
n
−

1
−

1

) ∗
0

0

0
( s

− 1
2
n
−

1
0

) ∗
( s

1
2
n
−

1
0

) ∗
( s

+ 1
2
n
−

1
0

) ∗
0

0
0

( s
− 1

2
n
−

1
1

) ∗
( s

1
2
n
−

1
1

) ∗
( s

+ 1
2
n
−

1
1

) ∗

    
,

s 2
n
−

2
2

=

          

s 2
n
−

2
2
−

2
s+ 2
n
−

2
2
−

2
0

0
0

s− 2
n
−

2
2
−

1
s 2
n
−

2
2
−

1
s+ 2
n
−

2
2
−

1
0

0

0
s− 2
n
−

2
2

0
s 2
n
−

2
2

0
s+ 2
n
−

2
2

0
0

0
0

s− 2
n
−

2
2

1
s 2
n
−

2
2

1
s+ 2
n
−

2
2

1

0
0

0
s− 2
n
−

2
2

2
s 2
n
−

2
2

2

          

,

s∗ 2
2
n
−

2
=

          

( s
− 2

2
n
−

2
−

2

) ∗
( s

2
2
n
−

2
−

2

) ∗
( s

+ 2
2
n
−

2
−

2

) ∗
0

0
0

0

0
( s

− 2
2
n
−

2
−

1

) ∗
( s

2
2
n
−

2
−

1

) ∗
( s

+ 2
2
n
−

2
−

1

) ∗
0

0
0

0
0

( s
− 2

2
n
−

2
0

) ∗
( s

2
2
n
−

2
0

) ∗
( s

+ 2
2
n
−

2
0

) ∗
0

0

0
0

0
( s

− 2
2
n
−

2
1

) ∗
( s

2
2
n
−

2
1

) ∗
( s

+ 2
2
n
−

2
1

) ∗
0

0
0

0
0

( s
− 2

2
n
−

2
2

) ∗
( s

2
2
n
−

2
2

) ∗
( s

+ 2
2
n
−

2
2

) ∗

          

,
(7

.1
94

)

26
5



an
d

U
2
n

=

                                     

d
2
n

0
0

2
n

+
2

0
0
d

2
n

0
0

2
n

+
1

1
−

1
d

2
n

0
0

2
n

+
1

1
0
d

2
n

0
0

2
n

+
1

1
1

0
0

d
2
n

0
0

2
n

2
0

0
0

0
d

2
n
−

1
1
−

1
2
n

+
1

1
−

1
0

0
d

2
n
−

1
1
−

1
2
n

2
−

2
d

2
n
−

1
1
−

1
2
n

2
−

1
d

2
n
−

1
1
−

1
2
n

2
0

0
0

0
0

d
2
n
−

1
1

0
2
n

+
1

1
0

0
0

d
2
n
−

1
1

0
2
n

2
−

1
d

2
n
−

1
1

0
2
n

2
0

d
2
n
−

1
1

0
2
n

2
1

0

0
0

0
d

2
n
−

1
1

1
2
n

+
1

1
1

0
0

d
2
n
−

1
1

1
2
n

2
0

d
2
n
−

1
1

1
2
n

2
1

d
2
n
−

1
1

1
2
n

2
2

0
0

0
0

d
2
n
−

2
2
−

2
2
n

2
−

2
0

0
0

0

0
0

0
0

0
d

2
n
−

2
2
−

1
2
n

2
−

1
0

0
0

0
0

0
0

0
0

d
2
n
−

2
2

0
2
n

2
0

0
0

0
0

0
0

0
0

0
d

2
n
−

2
2

1
2
n

2
1

0

0
0

0
0

0
0

0
0

d
2
n
−

2
2

2
2
n

2
2

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
0

0
0

0
0

0

0
0

d
2
n
−

1
1
−

1
2
n
−

1
3
−

1
0

0
0

0
0

0

0
0

0
d

2
n
−

1
1

0
2
n
−

1
3

0
0

0
0

0
0

0
0

0
0

d
2
n
−

1
1

1
2
n
−

1
3

1
0

0
0

0

d
2
n
−

2
2
−

2
2
n
−

1
3
−

3
d

2
n
−

2
2
−

2
2
n
−

1
3
−

2
d

2
n
−

2
2
−

2
2
n
−

1
3
−

1
0

0
0

0
0

0

0
d

2
n
−

2
2
−

1
2
n
−

1
3
−

2
d

2
n
−

2
2
−

1
2
n
−

1
3
−

1
d

2
n
−

2
2
−

1
2
n
−

1
3

0
0

0
0

0
0

0
0

d
2
n
−

2
2

0
2
n
−

1
3
−

1
d

2
n
−

2
2

0
2
n
−

1
3

0
d

2
n
−

2
2

0
2
n
−

1
3

1
0

0
0

0

0
0

0
d

2
n
−

2
2

1
2
n
−

1
3

0
d

2
n
−

2
2

1
2
n
−

1
3

1
d

2
n
−

2
2

1
2
n
−

1
3

2
0

0
0

0
0

0
0

d
2
n
−

2
2

2
2
n
−

1
3

1
d

2
n
−

2
2

2
2
n
−

1
3

2
d

2
n
−

2
2

2
2
n
−

1
3

3
0

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

d
2
n
−

2
2
−

2
2
n
−

2
4
−

2
0

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
d

2
n
−

2
2
−

1
2
n
−

2
4
−

1
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

d
2
n
−

2
2

0
2
n
−

2
4

0
0

0
. .

.
. .

.
. .

.
. .

.
. .

.

0
0

0
d

2
n
−

2
2

1
2
n
−

2
4

1
0

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

0
0

d
2
n
−

2
2

2
2
n
−

2
4

2
. .

.
. .

.
. .

.
. .

.
. .

.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.
d

1
2
n
−

1
−

1
3

2
0
n
−

1
−

1
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
d

1
2
n
−

1
0

3
2
n
−

1
0

0
0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
0

d
1

2
n
−

1
1

3
2
n
−

1
1

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
0

0
0

0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.
. .

.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0
d

1
2
n
−

1
−

1
2

2
n
−

2
d

1
2
n
−

1
−

1
2

2
n
−

1
d

1
2
n
−

1
−

1
2

2
n

0
0

0
d

1
2
n
−

1
−

1
1

2
n

+
1
−

1
0

0
0

0
0

d
1

2
n
−

1
0

2
2
n
−

1
d

1
2
n
−

1
0

2
2
n

0
d

1
2
n
−

1
0

2
2
n

1
0

0
d

1
2
n
−

1
0

1
2
n

+
1

0
0

0

0
0

0
d

1
2
n
−

1
1

2
2
n

0
d

1
2
n
−

1
1

2
2
n

1
d

1
2
n
−

1
1

2
2
n

2
0

0
d

1
2
n
−

1
1

1
2
n

+
1

1
0

0
0

0
d

0
2
n

0
2

2
n

0
0

0
d

0
2
n

0
1

2
n

+
1
−

1
d

0
2
n

0
1

2
n

+
1

0
d

0
2
n

0
1

2
n

+
1

1
d

0
2
n

0
0

2
n

+
2

0

                                     

,
(7

.1
95

)

w
h
ic

h
in

th
e

n
ot

at
io

n
of

A
p
p

en
d
ix

7.
B

ca
n

b
e

w
ri

tt
en

as

U
2
n

=

                                     

ū
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ū
2
n
−

1
1

0
0

0
u
− 2
n
−

1
1

0
u

2
n
−

1
1

0
u

+ 2
n
−

1
1

0
0

0
0

0
ū
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ū

0
2
n

u
0

2
n

ū
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7.G Calculation of the Initial Value Vectors Cn(0)

Recall that the equilibrium averages 〈Ml1 l2m〉i satisfy the time-independent recur-

rence relation

τN

〈
Ṁl1 l2m

〉
i

=
2∑

i,j=−2

1∑

k=−1

dl1 l2ml1+i l2+j m+k〈Ml1+i l2+j m+k〉i = 0. (7.199)

We introduce the vector

Fi
n =




f i2n−1 0

f i2n−2 1

...

f i0 2n−1

f i2n 0

f i2n−1 1

...

f i0 2n




, f in,m =




M i
nm−r

M i
nm−r+1

...

M i
nmr



, (7.200)

where r = min[n,m] and the index i = I, II corresponds to the fields HI
Z and HII

Z .

We may thus transform Eq. (7.199) to the three term supermatrix recursion formula

τN
d

dt
Fi
n = Q−nFi

n−1 + QnF
i
n + Q+

nFi
n+1 = 0. (7.201)

We seek the solution of Eq. (7.201) as

Fi
n = Ti

nF
i
n−1, (7.202)

where Ti
n is a transformation matrix. Using Eq. (7.202) we may rewrite Eq. (7.201)

as

Q−nFi
n−1 + QnT

i
nF

i
n−1 + Q+

nTi
n+1T

i
nF

i
n−1 = 0, (7.203)
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which can be rewritten as

[
Q−n + QnT

i
n + Q+

nTi
n+1T

i
n

]
Fi
n−1 = 0. (7.204)

⇒
[
Q−n + QnT

i
n + Q+

nTi
n+1T

i
n

]
= 0. (7.205)

⇒Q−n =
[
−Qn −Q+

nTi
n+1

]
Ti
n. (7.206)

Multiplying both sides of Eq. (7.206) by
[
−Qn −Q+

nTi
n+1

]−1
we get

[
−Qn −Q+

nTi
n+1

]−1
Q−n = Ti

n. (7.207)

Recall from Eq. (4.42) that

Sn(s) =
[
sτNI−Qn −Q+

nSn+1(s)
]−1

Q−n = ∆n(s)Q−n , (7.208)

where ∆n(s) is given by

∆n(s) =
[
sτNI−Qn −Q+

nSn+1(s)
]−1

=
[
sτNI−Qn −Q+

n∆n+1(s)Q−n+1

]−1
, (7.209)

since

Sn+1(s) = ∆n+1(s)Q−n+1. (7.210)

With s = 0 in Eq. (7.208) we have

Sn(0) =
[
−Qn −Q+

nSn+1(0)
]−1

Q−n = ∆n(0)Q−n . (7.211)

By comparing Eqs. (7.207) and (7.211) we can see that

Ti
n = Sn(0) = ∆n(0)Q−n . (7.212)
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Substituting Eq. (7.212) into Eq. (7.202) we get

Fi
n = ∆n(0)Q−nFi

n−1. (7.213)

Let n = 0 in Eq. (7.200)

Fi
0 =

(
f i0 0

)

=
(
M i

0 0 0

)

= (Y0 0(ϑ1, ϕ1)Y0 0(ϑ2, ϕ2))

=

(√
1

4π

√
1

4π

)

=

(
1

4π

)
. (7.214)

Using Eq. (7.214) we can rewrite Eq. (7.213) as

Fi
n = ∆n(0)Q−nFi

n−1 = ∆i
n (0) Q−n∆i

n−1 (0) Q−n . . .∆
i
1 (0) Q−1

1

4π
, (7.215)

Thus, we can write the initial vectors Cn (0) as

Cn (0) = FI
n − FII

n . (7.216)

7.H The Effective Relaxation Time τef

We suppose that a weak external magnetic field, having been applied to the system

in the infinite past, t→ −∞, is suddenly switched off at time t = 0. We study the

relaxation of a pair of macrospins, including the effect of dipole-dipole interaction,

starting from an initial equilibrium state at t = 0. The effective relaxation time is

defined as

τef = −f(0)

ḟ(0)
, (7.217)

where the relaxation function, f(t) is given by

f(t) = 〈cosϑ1〉 (t) + 〈cosϑ2〉 (t)− 〈cosϑ1〉0 − 〈cosϑ2〉0. (7.218)
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The initial value f(0) is given by

f(0) = 〈cosϑ1〉ξ + 〈cosϑ2〉ξ − 〈cosϑ1〉0 − 〈cosϑ2〉0, (7.219)

where 〈cosϑp〉ξ and 〈cosϑp〉0 are the equilibrium ensemble averages corresponding

to the Boltzmann distribution functions with the external field

Wξ = Z−1
ξ e

[∑
p

(σcos2ϑp+ξ cosϑp)−ς cos Ξ

]
, (7.220)

and without the external field

W0 = Z−1
0 e

[∑
p
σcos2ϑp+ς cos Ξ

]
, (7.221)

respectively. Here cos Ξ is by spherical trigonometry

cos Ξ = 2 cosϑ1 cosϑ2 − sinϑ1 sinϑ2 cos(ϕ1 − ϕ2). (7.222)

Using Eq. (7.217) we may write

τN

τef

= −τN
ḟ(0)

f(0)
. (7.223)

We consider the case of switching off the small permanent magnetic field (theory of

linear response) at time t = 0. We have from the Landau-Lifshitz-Gilbert equation

(see Eq. (2.404) in [34])

∑

p

[
τN

d

dt
〈cosϑp〉 (t) + 〈cosϑp〉 (t)

]
=
∑

p

[〈
sinϑp

2

∂E

∂ϑp

〉
(t) +

〈
1

2α

∂E

∂ϕp

〉
(t)

]
,

(7.224)
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where E = −∑
p

σcos2ϑp − ς cos Ξ. Using Eq. (7.224), we may write

∑

p

[
τN

d

dt

(
〈cosϑp〉 (t)− 〈cosϑp〉0

)
+ 〈cosϑp〉 (t)− 〈cosϑp〉0

]

=
∑

p

[〈
sinϑp

2

∂E

∂ϑp

〉
(t)−

〈
sinϑp

2

∂E

∂ϑp

〉

0

+

〈
1

2α

∂E

∂ϕp

〉
(t)−

〈
1

2α

∂E

∂ϕp

〉

0

]
.

(7.225)

Using Eqs. (7.218) and (7.225) we have

τN ḟ(t) =
∑

p

τN
d

dt
[〈cosϑp〉 (t) − 〈cosϑp〉0

]

=
∑

p

[
−〈cosϑp〉 (t) + 〈cosϑp〉0 +

〈
sinϑp

2

∂E

∂ϑp

〉
(t)

−
〈

sinϑp
2

∂E

∂ϑp

〉

0

+

〈
1

2α

∂E

∂ϕp

〉
(t) −

〈
1

2α

∂E

∂ϕp

〉

0

]
. (7.226)

By taking t = 0 in Eq. (7.226) and noting that ∂ϕ1E = −∂ϕ2E, we can substitute

Eqs. (7.226) and (7.219) into Eq. (7.223) to get

τN

τef

= −τNḟ(0)

f(0)
=

∑
p

[
〈cosϑp〉ξ − 〈cosϑp〉0 −

〈
sinϑp

2
∂E
∂ϑp

〉
ξ

+
〈

sinϑp
2

∂E
∂ϑp

〉
0

]

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

+

∑
p

[
−
〈

1
2α

∂E
∂ϕp

〉
ξ

+
〈

1
2α

∂E
∂ϕp

〉
0

]

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

=
〈cosϑ1〉ξ − 〈cosϑ1〉0 + 〈cosϑ2〉ξ − 〈cosϑ2〉0

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

+
−
〈

sinϑ1
2

∂E
∂ϑ1

〉
ξ

+
〈

sinϑ1
2

∂E
∂ϑ1

〉
0
−
〈

sinϑ2
2

∂E
∂ϑ2

〉
ξ

+
〈

sinϑ2
2

∂E
∂ϑ2

〉
0

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

+
−
〈

1
2α

∂E
∂ϕ1

〉
ξ

+
〈

1
2α

∂E
∂ϕ1

〉
0
−
〈

1
2α

∂E
∂ϕ2

〉
ξ

+
〈

1
2α

∂E
∂ϕ2

〉
0

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

272



=
〈cosϑ1〉ξ − 〈cosϑ1〉0 + 〈cosϑ2〉ξ − 〈cosϑ2〉0

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

+
−
〈

sinϑ1
2

∂E
∂ϑ1

〉
ξ

+
〈

sinϑ1
2

∂E
∂ϑ1

〉
0
−
〈

sinϑ2
2

∂E
∂ϑ2

〉
ξ

+
〈

sinϑ2
2

∂E
∂ϑ2

〉
0

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

+
−
〈

1
2α

∂E
∂ϕ1

〉
ξ

+
〈

1
2α

∂E
∂ϕ1

〉
0

+
〈

1
2α

∂E
∂ϕ1

〉
ξ
−
〈

1
2α

∂E
∂ϕ1

〉
0

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

=
〈cosϑ1〉ξ − 〈cosϑ1〉0 + 〈cosϑ2〉ξ − 〈cosϑ2〉0

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

+
−
〈

sinϑ1
2

∂E
∂ϑ1

〉
ξ

+
〈

sinϑ1
2

∂E
∂ϑ1

〉
0
−
〈

sinϑ2
2

∂E
∂ϑ2

〉
ξ

+
〈

sinϑ2
2

∂E
∂ϑ2

〉
0

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

)

=

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0 −

〈
sinϑp

2
∂E
∂ϑp

〉
ξ

+
〈

sinϑp
2

∂E
∂ϑp

〉
0

)

∑
p

(
〈cosϑp〉ξ − 〈cosϑp〉0

) . (7.227)

For an arbitrary function A we have

〈A〉ξ − 〈A〉0
=〈A− 〈A〉0〉ξ

=
1

Zξ

∫ π

0

∫ π

0

[A− 〈A〉0] e

(∑
p

(σcos2ϑp+ξ cosϑp)+ς cos Ξ

)
sinϑ1 sinϑ2dϑ1dϑ2

=
1

Zξ

∫ π

0

∫ π

0

[A− 〈A〉0] e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
e[ξ(cosϑ1+cosϑ2)] sinϑ1 sinϑ2dϑ1dϑ2.

(7.228)

Since the external field parameter ξ � 1, we can approximate exp [ξ (cosϑ1 + cosϑ2)]

using the Taylor series expansion as

e[ξ(cosϑ1+cosϑ2)] ≈ 1 + ξ (cosϑ1 + cosϑ2) . (7.229)
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Substituting Eq. (7.229) into Eq. (7.228) we obtain

〈A〉ξ − 〈A〉0

≈ 1

Zξ

∫ π

0

∫ π

0

[A− 〈A〉0] e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
[1 + ξ (cosϑ1 + cosϑ2)] sinϑ1 sinϑ2dϑ1dϑ2

=
1

Zξ

∫ π

0

∫ π

0

[A− 〈A〉0] e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
sinϑ1 sinϑ2dϑ1dϑ2

+ ξ
1

Zξ

∫ π

0

∫ π

0

[A− 〈A〉0] e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
(cosϑ1 + cosϑ2) sinϑ1 sinϑ2dϑ1dϑ2.

(7.230)

Note that

Z0 =

∫ π

0

∫ π

0

e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
sinϑ1 sinϑ2dϑ1dϑ2, (7.231)

and

Zξ =

∫ π

0

∫ π

0

e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
e[ξ(cosϑ1+cosϑ2)] sinϑ1 sinϑ2dϑ1dϑ2

≈
∫ π

0

∫ π

0

e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
[1 + ξ (cosϑ1 + cosϑ2)] sinϑ1 sinϑ2dϑ1dϑ2

≈
∫ π

0

∫ π

0

e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
sinϑ1 sinϑ2dϑ1dϑ2, (7.232)

since ξ � 1. Since from Eq. (7.232) we find that Zξ ≈ Z0 (through comparison of

Eqs. (7.231) and (7.232)), Eq. (7.230) can be written as

〈A〉ξ − 〈A〉0 ≈
1

Z0

∫ π

0

∫ π

0

[A− 〈A〉0] e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
sinϑ1 sinϑ2dϑ1dϑ2

+ ξ
1

Z0

∫ π

0

∫ π

0

[A− 〈A〉0] e

[∑
p

(σcos2ϑp)+ς cos Ξ

]
(cosϑ1 + cosϑ2) sinϑ1 sinϑ2dϑ1dϑ2.

=

∫ π

0

∫ π

0

[A− 〈A〉0]W0 sinϑ1 sinϑ2dϑ1dϑ2

+ ξ

∫ π

0

∫ π

0

[A− 〈A〉0] (cosϑ1 + cosϑ2)W0 sinϑ1 sinϑ2dϑ1dϑ2.

=〈A− 〈A〉0〉0 + ξ〈(A− 〈A〉0) (cosϑ1 + cosϑ2)〉0. (7.233)
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Note that 〈A− 〈A〉0〉0 = 〈A〉0 − 〈A〉0 = 0. Thus

〈A〉ξ − 〈A〉0 ≈ξ〈(A− 〈A〉0) (cosϑ1 + cosϑ2)〉0
=ξ〈A (cosϑ1 + cosϑ2)− 〈A〉0 (cosϑ1 + cosϑ2)〉0
=ξ〈A (cosϑ1 + cosϑ2)〉0 − ξ〈A〉0〈cosϑ1 + cosϑ2〉0. (7.234)

By using Eq. (7.234) we have for the denominator in Eq. (7.227)

∑

p

[
〈cosϑp〉ξ − 〈cosϑp〉0

]

=
∑

p

[
ξ〈cosϑp (cosϑ1 + cosϑ2)〉0 − ξ〈cosϑp〉0〈cosϑ1 + cosϑ2〉0

]

=ξ
(〈

(cosϑ1 + cosϑ2)2〉
0
− 〈cosϑ1 + cosϑ2〉20

)
. (7.235)

Moreover we have (see numerator of Eq. (7.227))

〈
sinϑp

2

∂E

∂ϑp

〉

ξ

−
〈

sinϑp
2

∂E

∂ϑp

〉

0

=ξ

(〈
(cosϑ1 + cosϑ2)

sinϑp
2

∂E

∂ϑp

〉

0

−
〈

sinϑp
2

∂E

∂ϑp

〉

0

〈cosϑ1 + cosϑ2〉0
)
. (7.236)

Eq. (7.227) may now be written as

τN

τef

=

〈
(cosϑ1 + cosϑ2)2〉

0
− 〈cosϑ1 + cosϑ2〉20〈

(cosϑ1 + cosϑ2)2〉
0
− 〈cosϑ1 + cosϑ2〉20

−

∑
p

〈
(cosϑ1 + cosϑ2) sinϑp

2
∂E
∂ϑp

〉
0
−∑

p

〈
sinϑp

2
∂E
∂ϑp

〉
0
〈cosϑ1 + cosϑ2〉0

〈
(cosϑ1 + cosϑ2)2〉

0
− 〈cosϑ1 + cosϑ2〉20

.

(7.237)

The Maxwell-Boltzmann distribution W0 is given by

W0 =
e−E

Z0

. (7.238)
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Differentiating W0 with respect to ϑp we have

∂W0

∂ϑp
=

∂

∂ϑp

[
e−E

Z0

]

=
1

Z0

[
e−E

(
− ∂E
∂ϑp

)]

=−W0
∂E

∂ϑp
. (7.239)

Using Eq. (7.239) and integrating by parts, we have

∑

p

〈
(cosϑ1 + cosϑ2)

sinϑp
2

∂E

∂ϑp

〉

0

=
∑

p

∫ π

0

∫ π

0

(cosϑ1 + cosϑ2)
sinϑp

2

∂E

∂ϑp
W0 sinϑ1 sinϑ2dϑ1dϑ2

=−
∑

p

∫ π

0

∫ π

0

(cosϑ1 + cosϑ2)
sinϑp

2

∂W0

∂ϑp
sinϑ1 sinϑ2dϑ1dϑ2

=−
∫ π

0

[∫ π

0

(cosϑ1 + cosϑ2)
sin2ϑ1

2

∂W0

∂ϑ1

dϑ1

]
sinϑ2dϑ2

−
∫ π

0

[∫ π

0

(cosϑ1 + cosϑ2)
sin2ϑ2

2

∂W0

∂ϑ2

dϑ2

]
sinϑ1dϑ1

= −1

2

∫ π

0

(cosϑ1 + cosϑ2) sin2ϑ1W0

∣∣∣∣
π

ϑ1=0

sinϑ2dϑ2

+
1

2

∫ π

0

∫ π

0

W0
d

dϑ1

[
(cosϑ1 + cosϑ2) sin2ϑ1

]
dϑ1 sinϑ2dϑ2

−1

2

∫ π

0

(cosϑ1 + cosϑ2) sin2ϑ2W0

∣∣∣∣
π

ϑ2=0

sinϑ1dϑ1

+
1

2

∫ π

0

∫ π

0

W0
d

dϑ2

[
(cosϑ1 + cosϑ2) sin2ϑ2

]
dϑ2 sinϑ1dϑ1

=
1

2

∫ π

0

∫ π

0

W0
d

dϑ1

[
(cosϑ1 + cosϑ2) sin2ϑ1

]
dϑ1 sinϑ2dϑ2

+
1

2

∫ π

0

∫ π

0

W0
d

dϑ2

[
(cosϑ1 + cosϑ2) sin2ϑ2

]
dϑ2 sinϑ1dϑ1

=
1

2

∫ π

0

∫ π

0

W0

[
(− sinϑ1) sin2ϑ1 + (cosϑ1 + cosϑ2) 2 sinϑ1 cosϑ1

]
dϑ1 sinϑ2dϑ2

+
1

2

∫ π

0

∫ π

0

W0

[
(− sinϑ2) sin2ϑ2 + (cosϑ1 + cosϑ2) 2 sinϑ2 cosϑ2

]
dϑ2 sinϑ1dϑ1
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=
1

2

∫ π

0

∫ π

0

W0

[
−sin2ϑ1 + (cosϑ1 + cosϑ2) 2 cosϑ1

]
sinϑ1 sinϑ2dϑ1dϑ2

+
1

2

∫ π

0

∫ π

0

W0

[
−sin2ϑ2 + (cosϑ1 + cosϑ2) 2 cosϑ2

]
sinϑ2 sinϑ1dϑ2dϑ1

=
1

2

〈
−sin2ϑ1 + 2cos2ϑ1 + 2 cosϑ1 cosϑ2

〉
0

+
1

2

〈
−sin2ϑ2 + 2cos2ϑ2 + 2 cosϑ1 cosϑ2

〉
0

=
1

2

〈
−sin2ϑ1 − sin2ϑ2 + 2cos2ϑ1 + 4 cosϑ1 cosϑ2 + 2cos2ϑ2

〉
0

=
1

2

〈
−sin2ϑ1 − sin2ϑ2 + 2(cosϑ1 + cosϑ2)2〉

0

=− 1

2

〈
sin2ϑ1 + sin2ϑ2

〉
0

+
〈
(cosϑ1 + cosϑ2)2〉

0
. (7.240)

In a similar manner we obtain

∑

p

〈
sinϑp

2

∂E

∂ϑp

〉

0

= −
∑

p

∫ π

0

∫ π

0

sinϑp
2

∂W0

∂ϑp
sinϑ1dϑ1 sinϑ2dϑ2

= −1

2

∫ π

0

sin2ϑ1W0

∣∣∣∣
π

ϑ1=0

sinϑ2dϑ2 +
1

2
Z−1

0

∫ π

0

∫ π

0

W0
d

dϑ

(
sin2ϑ1

)
dϑ1 sinϑ2dϑ2

−1

2

∫ π

0

sin2ϑ2W0

∣∣∣∣
π

ϑ2=0

sinϑ1dϑ1 +
1

2
Z−1

0

∫ π

0

∫ π

0

W0
d

dϑ

(
sin2ϑ2

)
dϑ2 sinϑ1dϑ1

=〈cosϑ1 + cosϑ2〉0. (7.241)

Substituting Eqs. (7.240) and (7.241) into Eq. (7.237) we obtain

τN

τef

=
1
2

〈
sin2ϑ1 + sin2ϑ2

〉
0〈

(cosϑ1 + cosϑ2)2〉
0
− 〈cosϑ1 + cosϑ2〉20

. (7.242)

The effective relaxation time τef is thus given by

τef = 2τN

〈
(cosϑ1 + cosϑ2)2〉

0
− 〈cosϑ1 + cosϑ2〉20〈

sin2ϑ1 + sin2ϑ2

〉
0

. (7.243)
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(*////////////////////////////////////////////////*)

(*

From the methods described in Appendix (7.D) of the

thesis using the theory of angular momentum and the Clebsch-

Gordan series as well as the expansion of the potential Ei
in terms of spherical harmonics Eq. (7.5) of thesis,

these are the various coefficients dl1+i,l2+j,m+k
l1,l2,m for dipole-

dipole interaction they are listed in appendix 7.B of the thesis.

Note that the variable I corresponds to the imaginary number √-1 = i.

*)

(* dl1,l2,m
l1,l2,m = pl1,l2,m *)

p[l1_, l2_, m_, σ_] :=

-1  2 * l1 * l1 + 1 - σ * l1 * l1 + 1 - 3 * m^2  2 * l1 - 1 * 2 * l1 + 3 -

1  2 * l2 * l2 + 1 - σ * l2 * l2 + 1 - 3 * m^2  2 * l2 - 1 * 2 * l2 + 3;

(* dl1+2,l2,m
l1,l2,m = ul1,l2,m *)

uhat[l1_, l2_, m_, σ_] := -σ * l1  2 * l1 + 3 *

Sqrtl1 + 1^2 - m^2 * l1 + 2^2 - m^2  2 * l1 + 1 * 2 * l1 + 5;

(* dl1,l2-2,m
l1,l2,m = vl1,l2,m *)

vhat[l1_, l2_, m_, σ_] := σ * l2 + 1  2 * l2 - 1 *

Sqrtl2^2 - m^2 * l2 - 1^2 - m^2  2 * l2 + 1 * 2 * l2 - 3;

(* dl1,l2+1,m
l1,l2,m = sl2,l1,m *)

s[l2_, l1_, m_, σ_, ξ_, ς_, α_] := -(ξ)  2 * l2 + ((I * (σ - ς)) / (α)) * m *

Sqrtl2 + 1^2 - m^2  4 * l2 + 1^2 - 1;

(* dl1-1,l2,m
l1,l2,m = rl2,l1,m *)

r1[l2_, l1_, m_, σ_, ξ_, ς_, α_] := (ξ)  2 * l1 + 1 + ((I * (σ - ς)) / (α)) * m *

Sqrtl1^2 - m^2  4 * l1^2 - 1;

(* dl1+1,l2+1,m
l1,l2,m = ul1,l2,m *)

u[l1_, l2_, m_, σ_, ς_] := -ς * l1 + l2 * Sqrtl1 + 1^2 - m^2 * l2 + 1^2 - m^2 

2 * l1 + 1 * 2 * l1 + 3 * 2 * l2 + 1 * 2 * l2 + 3;

(* dl1-1,l2-1,m
l1,l2,m = vl1,l2,m *)

v[l1_, l2_, m_, σ_, ς_] := ς * l1 + l2 + 2 * Sqrtl1^2 - m^2 * l2^2 - m^2 

2 * l1 - 1 * 2 * l1 + 1 * 2 * l2 - 1 * 2 * l2 + 1;

(* dl1+1,l2-1,m
l1,l2,m = pl1,l2,m *)

phat[l1_, l2_, m_, σ_, ς_] :=

ς * l2 - l1 + 1 * Sqrtl1 + 1^2 - m^2 * l2^2 - m^2 

2 * l1 + 1 * 2 * l1 + 3 * 2 * l2 - 1 * 2 * l2 + 1;

(* Note that the variable pm only has values of ±1 where for example if pm =

1 we get dl1+1,l2+1,m+1
l1,l2,m = ul1,l2,m

+ and when pm = -1 we get dl1+1,l2+1,m-1
l1,l2,m = ul1,l2,m

- *)

(* dl1+1,l2+1,m±1
l1,l2,m = ul1,l2,m

± *)

upm[l1_, l2_, m_, σ_, ς_, pm_] := -1  4 * ς * l1 + l2 *

Sqrtl1 + (pm) * m + 1 * l1 + (pm) * m + 2 * l2 + (pm) * m + 1 * l2 + (pm) * m + 2 

7.I Wolfram Mathematica Code Used for the Cal-

culation of the Observables
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        

2 * l1 + 1 * 2 * l1 + 3 * 2 * l2 + 1 * 2 * l2 + 3;

(* dl1+1,l2-1,m±1
l1,l2,m = pl1,l2,m

± *)

phatpm[l1_, l2_, m_, σ_, ς_, pm_] := -1  4 * ς * l2 - l1 + 1 *

Sqrtl1 + (pm) * m + 1 * l1 + (pm) * m + 2 * l2 + (-pm) * m - 1 * l2 + (-pm) * m 

2 * l1 + 1 * 2 * l1 + 3 * 2 * l2 - 1 * 2 * l2 + 1;

(* dl1-1,l2-1,m±1
l1,l2,m = vl1,l2,m

± *)

vpm[l1_, l2_, m_, σ_, ς_, pm_] := 1  4 * ς * l1 + l2 + 2 *

Sqrtl1 + (-pm) * m - 1 * l1 + (-pm) * m * l2 + (-pm) * m - 1 * l2 + (-pm) * m 

2 * l1 - 1 * 2 * l1 + 1 * 2 * l2 - 1 * 2 * l2 + 1;

(* dl1,l2+1,m±1
l1,l2,m = sl2,l1,m

± *)

spm[l2_, l1_, m_, σ_, ς_, α_, pm_] := -pm * ((I * ς) / (4 * α)) *

Sqrtl2 + (pm) * m + 1 * l2 + (pm) * m + 2 * l1 + (pm) * m + 1 * l1 + (-pm) * m 

2 * l2 + 1 * 2 * l2 + 3;

(* dl1-1,l2,m±1
l1,l2,m = rl2,l1,m

± *)

rpm[l2_, l1_, m_, σ_, ς_, α_, pm_] := -pm * ((I * ς) / (4 * α)) *

Sqrtl2 + (pm) * m + 1 * l2 + (-pm) * m * l1 + (-pm) * m - 1 * l1 + (-pm) * m 

2 * l1 - 1 * 2 * l1 + 1;

(*////////////////////////////////////////////////*)

(*The following functions make use of the coefficients dl1+i,l2+j,m+k
l1,l2,m for dipole-

dipole interaction defined earlier to generate the submatrices pn,m, pn,m, sn,m,

rn,m, un,m, un,m, vn,m, vn,m as defined in Eqs. 7.73 and (7.74) of the thesis.

These will later in the code be used to generate the submatrices Pm,

Rm, Sm, Vm, Um which make up the tridiagonal matrices Qn
-,

Qn and Qn
+ in the matrix three term recurrence relation *)

(* pn,m *)

pmatrix[n_, m_, σ_] :=

Block{A, r, rp, a, b, middlerow, middlecolumn},

(* This variable controls the number of rows the submatrix will have. The

Min[x1,x2,...] function yields the numerically smallest value of the xi. *)

r = Min[n, m];

(*This variable controls the number of columns the

submatrix will have. As described in appendix 7.C of the thesis,

all the submatrices will have the same number of rows, namely,

2*r+1. The number of columns is given as 2*rx+1,

however each submatrix defined has its own number rx=Min[n+i,m+j],

where the integers i and j will have different values

for each submatrix as defined in appendix 7.C *)

rp = Min[n, m];

(* a and b are varables which will store the

number of rows and columns respectively as calculated earlier.*)

a = 2 * r + 1;

b = 2 * rp + 1;

(* A is defined here as a zero matrix to initialise the submatrix before
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assigning the coefficients to their appropriate positions in the matrix *)

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

(*Here we make use of the Switch[expr,form1,value1,form2,value2,…] function

which evaluates expr, then compares it with each of the formi in turn,

evaluating and returning the valuei corresponding to the first match found

to assign the pl1,l2,m coefficients to their appropriate positions in the

pn,m submatrix.*)

(*In the case of the Switch function here,

it is placed in a Table[expr,{i,imin,imax},{j,jmin,jmax}] function which

will generate a nested list of the values of expr where i is outermost

when i runs from imin to imax and for each i,j runs from jmin

-jmax.*)

(*The output of this is a matrix

containing all the evaluated terms based on the expr defined.*)

(*The Switch function used here evaluates the difference between the values i

and j for all their values through the execution of the Table function. If i-

j = 0, then the Switch function will output the p[n,m,i,σ]

function with the appropriate value of i that meets this condition,

otherwise the insertion of the form, _ , means that if i-j≠0,

then we output 0.*)

A = Table[Switch[i - j, 0, p[n, m, i, σ], _, 0], {i, -r, r}, {j, -rp, rp}];

(*The function will return the matrix A.*)

A

 ;

(*----------------------------------------------*)

(* pn,m *)

phatmatrix[n_, m_, σ_, ς_, α_] :=

Block{A, r, rphat, a, b, middlerow, middlecolumn},

r = Min[n, m];

rphat = Min[n + 1, m - 1];

a = 2 * r + 1;

b = 2 * rphat + 1;

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

(*As was done previously,

the Switch function used here evaluates the difference between the values i

and j for all their values through the execution of the Table function.*)

(*If i-j = 0, then the Switch function will output the p[n,m,i,σ]
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function with the appropriate value of i that meets this condition.*)

(*This time however we have two other conditions to consider.*)

(*If i-j = -1,

then the function will output phatpm[n,m,i,σ,ς,1] which is pn,m,i
+  and if i-j =

1, the function will output phatpm[n,m,i,σ,ς,-1] which is pn,m,i
- .*)

(*For the resulting matrix these two conditions will have the consequence

of placing placing phatpm[n,m,i,σ,ς,-1] one row above phat[n,m,i,σ,ς] if

the condition for it is met i-j = -1 and placing phatpm[n,m,i,σ,ς,1]

one row below phat[n,m,i,σ,ς] if the condition for it is met i-j = 1*)

A = Table[Switch[i - j, 0, phat[n, m, i, σ, ς], -1, phatpm[n, m, i, σ, ς, 1],

1, phatpm[n, m, i, σ, ς, -1], _, 0], {i, -r, r}, {j, -rphat, rphat}];

A

 ;

(* The basic procedure for constructing the submatrices pn,m,

pn,m described earlier apply to the rest of the submatrices sn,m,

rn,m, un,m, un,m, vn,m, vn,m*)

(*----------------------------------------------*)

(* un,m *)

uhatmatrix[n_, m_, σ_] :=

Block{A, r, ruhat, a, b, middlerow, middlecolumn},

r = Min[n, m];

ruhat = Min[n + 2, m];

a = 2 * r + 1;

b = 2 * ruhat + 1;

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

A = Table[Switch[i - j, 0, uhat[n, m, i, σ], _, 0], {i, -r, r}, {j, -ruhat, ruhat}];

A

 ;

(*----------------------------------------------*)

(* vn,m *)

vhatmatrix[n_, m_, σ_] :=

Block{A, r, rvhat, a, b, middlerow, middlecolumn},

r = Min[n, m];

rvhat = Min[n, m - 2];

a = 2 * r + 1;

b = 2 * rvhat + 1;

A = ConstantArray[0, {a, b}];
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middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

A = Table[Switch[i - j, 0, vhat[n, m, i, σ], _, 0], {i, -r, r}, {j, -rvhat, rvhat}];

A

 ;

(*----------------------------------------------*)

(* sn,m *)

smatrix[n_, m_, σ_, ξ_, ς_, α_] :=

Block{A, r, rs, a, b, middlerow, middlecolumn},

r = Min[n, m];

rs = Min[n + 1, m];

a = 2 * r + 1;

b = 2 * rs + 1;

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

A = Table[Switch[i - j, 0, s[n, m, i, σ, ξ, ς, α], -1, spm[n, m, i, σ, ς, α, 1],

1, spm[n, m, i, σ, ς, α, -1], _, 0], {i, -r, r}, {j, -rs, rs}];

A

 ;

(*----------------------------------------------*)

(* sn,m
* *)

sasterixmatrix[n_, m_, σ_, ξ_, ς_, α_] :=

Block{A, r, rs, a, b, middlerow, middlecolumn},

r = Min[n, m];

rs = Min[n + 1, m];

a = 2 * r + 1;

b = 2 * rs + 1;

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

A = Table[Switch[i - j, 0,

Conjugate[s[n, m, i, σ, ξ, ς, α]], -1, Conjugate[spm[n, m, i, σ, ς, α, 1]],

1, Conjugate[spm[n, m, i, σ, ς, α, -1]], _, 0], {i, -r, r}, {j, -rs, rs}];

A
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 ;

(*----------------------------------------------*)

(* rn,m *)

rmatrix[n_, m_, σ_, ξ_, ς_, α_] :=

Block{A, r, rr, a, b, middlerow, middlecolumn},

r = Min[n, m];

rr = Min[n, m - 1];

a = 2 * r + 1;

b = 2 * rr + 1;

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

A = Table[Switch[i - j, 0, r1[n, m, i, σ, ξ, ς, α], -1, rpm[n, m, i, σ, ς, α, 1],

1, rpm[n, m, i, σ, ς, α, -1], _, 0], {i, -r, r}, {j, -rr, rr}];

A

 ;

(*----------------------------------------------*)

(* rn,m
* *)

rasterixmatrix[n_, m_, σ_, ξ_, ς_, α_] :=

Block{A, r, rr, a, b, middlerow, middlecolumn},

r = Min[n, m];

rr = Min[n, m - 1];

a = 2 * r + 1;

b = 2 * rr + 1;

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

A = Table[Switch[i - j, 0,

Conjugate[r1[n, m, i, σ, ξ, ς, α]], -1, Conjugate[rpm[n, m, i, σ, ς, α, 1]],

1, Conjugate[rpm[n, m, i, σ, ς, α, -1]], _, 0], {i, -r, r}, {j, -rr, rr}];

A

 ;

(*----------------------------------------------*)

(* un,m *)

umatrix[n_, m_, σ_, ς_] :=
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Block{A, r, ru, a, b, middlerow, middlecolumn},

r = Min[n, m];

ru = Min[n + 1, m + 1];

a = 2 * r + 1;

b = 2 * ru + 1;

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

A = Table[Switch[i - j, 0, u[n, m, i, σ, ς], -1, upm[n, m, i, σ, ς, 1],

1, upm[n, m, i, σ, ς, -1], _, 0], {i, -r, r}, {j, -ru, ru}];

A

 ;

(*----------------------------------------------*)

(* vn,m *)

vmatrix[n_, m_, σ_, ς_] :=

Block{A, r, rv, a, b, middlerow, middlecolumn},

r = Min[n, m];

rv = Min[n - 1, m - 1];

a = 2 * r + 1;

b = 2 * rv + 1;

A = ConstantArray[0, {a, b}];

middlerow = a - 1  2 + 1;

middlecolumn = b - 1  2 + 1;

A = Table[Switch[i - j, 0, v[n, m, i, σ, ς], -1, vpm[n, m, i, σ, ς, 1],

1, vpm[n, m, i, σ, ς, -1], _, 0], {i, -r, r}, {j, -rv, rv}];

A

 ;

(*////////////////////////////////////////////////*)

(*Here we define the submatrices Pm, Rm, Sm,

Vm, Um which make up the Matrices Qn
- , Qn

+, Qn*)

(*As was done previously in the case of the generation of submatrices pn,m,

pn,m, sn,m, rn,m, un,m, un,m, vn,m, vn,m,

the Switch function used here evaluates the difference between the values

i and j for all their values through the execution of the Table function,

leading to the creation of a matrix. This time however,

the output for each condition in the switch function will be a submatrix,

leading to the creation of a matrix of matrices. The result is then converted to a

single flattened matrix through the use of the ArrayFlatten[...] function.*)
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(* See Appendix 7.C for information on the structures of the matrices Pm,

Rm, Sm, Vm, Um *)

(* Pm *)

P[m_, σ_, ς_, α_] :=

Block[{A, i, j},

A = ArrayFlatten[

Table[Switch[i - j, 0, pmatrix[m - i, i, σ], -1, phatmatrix[i, m - i, σ, ς, α],

1, phatmatrix[m - i, i, σ, ς, α], _, 0], {i, 0, m}, {j, 0, m}]];

A

]

(*----------------------------------------------*)

(* Rm *)

R[m_, σ_, ξ_, ς_, α_] :=

Block[{A, i, j},

A = ArrayFlatten[Table[Switch[j - i, 0, rmatrix[i, m - i, σ, ξ, ς, α], -1,

rasterixmatrix[m - i, i, σ, ξ, ς, α], _, 0], {i, 0, m}, {j, 0, m - 1}]];

A

]

(*----------------------------------------------*)

(* Sm *)

S[m_, σ_, ξ_, ς_, α_] :=

Block[{A, i, j},

A = ArrayFlatten[Table[Switch[j - i, 0, sasterixmatrix[m - i, i, σ, ξ, ς, α],

1, smatrix[i, m - i, σ, ξ, ς, α], _, 0], {i, 0, m}, {j, 0, m + 1}]];

A

]

(*----------------------------------------------*)

(* Vm *)

V[m_, σ_, ς_] :=

Block[{A, i, j},

A = ArrayFlatten[

Table[Switch[j - i, 0, vhatmatrix[i, m - i, σ], -1, vmatrix[m - i, i, σ, ς],

-2, vhatmatrix[m - i, i, σ], _, 0], {i, 0, m}, {j, 0, m - 2}]];

A

]

(*----------------------------------------------*)

(* Um *)
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U[m_, σ_, ς_] :=

Block[{A, i, j},

A = ArrayFlatten[

Table[Switch[i - j, 0, uhatmatrix[m - i, i, σ], -1, umatrix[m - i, i, σ, ς],

-2, uhatmatrix[i, m - i, σ], _, 0], {i, 0, m}, {j, 0, m + 2}]];

A

]

(*////////////////////////////////////////////////*)

(*Here we use the ArrayFlatten function again to construct the Qn
- ,

Qn
+, Qn matrices from the submatrices Pm, Rm,

Sm, Vm, Um in the manner seen in appendix 7.C*)

Qminus[n_, σ_, ξ_, ς_, α_] :=

ArrayFlatten[{{V[2 * n - 1, σ, ς], R[2 * n - 1, σ, ξ, ς, α]}, {0, V[2 * n, σ, ς]}}];

(*----------------------------------------------*)

Q[n_, σ_, ξ_, ς_, α_] := ArrayFlatten[{{P[2 * n - 1, σ, ς, α], S[2 * n - 1, σ, ξ, ς, α]},

{R[2 * n, σ, ξ, ς, α], P[2 * n, σ, ς, α]}}];

(*----------------------------------------------*)

Qplus[n_, σ_, ξ_, ς_, α_] :=

ArrayFlatten[{{U[2 * n - 1, σ, ς], 0}, {S[2 * n, σ, ξ, ς, α], U[2 * n, σ, ς]}}];

(*////////////////////////////////////////////////*)

(*Here we define the two matrix continued fractions which

are used in solving the differential-recurrence relation using

the techniques described in section 4.6 of the the thesis. *)

(*The matrix continued fraction Sn represents Eq. 4.42 in the thesis where s = 0,

meaning that we solve for Sp0.*)

(*The purpose of this matrix continued fraction

which is Eq. 2.7.5 in the 4th edition of the book

"The Langevin Equation: With Applications to Stochastic Problems in

Physics, Chemistry and Electrical Engineering" is to solve for

the initial conditions vector Cn0 through the use of Eqs. 2.7.15

which is equivalent to Eq. (7.77) in the thesis in the

Langevin equation book and Eq. 7.78 in the thesis.*)

(* Sn *)

S[n_, t_, σ_, ξ_, ς_, α_] :=

Block{B1, j},

(*We start by defining a zero square matrix which will have

the dimensions 4t+12 + 2t+1 + 1 × 4t+12 + 2t+1 + 1*)

(*t is an integer which defines for any matrix continued fraction Sn the

number of iterations of the continued fraction that we see to evaluate,

i.e. the continued fraction will iterate t-i times. For example,

if we seek to evaluate S1 and we set t=10, then the continued fraction will
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be iterated on 10 times, whereas if we seek to evaluate S2 with t=10,

the continued fraction will be iterated on 9 times *)

B1 = Table0, 4 * t + 1^2 + 2 * t + 1 + 1, 4 * t^2 + 2 * t + 1;

(*This for loop evaluates the matrix

continued fraction by starting with the max iteration value j=t,

and then iterating for decreasing values j=j-1, until we iterate the

necessary number of times to obtain the answer we seek Sn*)

(*For every iteration of the For loop, the variable B1 stores the

previously evaluated answer so that it can be further iterated on.*)

For[j = t, j ≥ n, j--,

B1 = Inverse[-Q[j, σ, ξ, ς, α] - Qplus[j, σ, ξ, ς, α].B1].Qminus[j, σ, ξ, ς, α];

];

B1

 ;

(*----------------------------------------------*)

(*The matrix continued fraction Δn represents Eq. 7.19 in the thesis *)

(* Δn is later used in Eq. 7.18 of the thesis to solve for C

1iω*)

(* Δn *)

Δ[n_, t_, ω_, σ_, ξ_, ς_, α_] :=

Block{B1, j},

B1 = Table0, 4 * t + 1^2 + 2 * t + 1 + 1, 4 * t + 1^2 + 2 * t + 1 + 1;

For[j = t, j ≥ n, j--,

B1 = Inverse[I * ω * IdentityMatrix[4 * j^2 + 2 * j + 1] -

Q[j, σ, ξ, ς, α] - Qplus[j, σ, ξ, ς, α].B1.Qminus[j + 1, σ, ξ, ς, α]]

];

B1

 ;

(*////////////////////////////////////////////////*)

(* This function allows us to evaluate the initial value column vector Cn0 *)

(*It is based on Eq. 7.78 in the thesis, *)

(*where we utilise Eq. 2.7.15 in the 4th edition of the

book "The Langevin Equation: With Applications to Stochastic

Problems in Physics, Chemistry and Electrical Engineering"

to solve for Fn
I and Fn

II to ultimately obtain Cn0*)

(*This function will output a vector which will contain calculations of Cn0 from n=

1 to n=nm and them store them all in a single column vector of column vectors*)

C1[nm_, t_, σ_, ξI_, ξII_, ς_, α_] := 

Block{C1, C2, CV1, CV2, CR, res, k, l},

(* This will store out evaluations of Cn0 from n=1 to n=nm*)

CR = {};
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(* These correspond to Fn
i=1(4π) *)

CV1 = 1  (4 * π); CV2 = 1  (4 * π);

(*This do function evaluates Fn
I and Fn

II and then using the Join function,

the difference between them is stored in the vector CR. this is done from i=

1 to i=nm, and the final result is that CR will

contain all the evalations of Cn0 up to Cnm0*)

Do[

CV1 = S[i, t, σ, ξI, ς, α].CV1;

CV2 = S[i, t, σ, ξII, ς, α].CV2;

CR = Join[CR, CV1 - CV2], {i, 1, nm}];

(*For[k=1,k≤ nm,k++,

CV1 = S[k,t,σ,ξI,ς,α].CV1;

CV2 = S[k,t,σ,ξII,ς,α].CV1;

CR=Join[CR,CV1-CV2];

];*)

CR



(*----------------------------------------------*)

(*This function make use of Eqs. 7.18,

7.19 and 7.25 in the thesis to calculate

the complex susceptibility χ(ω)=χ'(ω)-iχ''(ω)*)

χ[nm_, t_, σ_, ξI_, ξII_, ς_, α_, ω_] := 

Block{C1laplace, c1, Cn, res},

(*This vector will store the output of C1 which is a

vector that contains calculations of Cn0 from n=1 to n=nm*)

c1 = C1[nm, t, σ, ξI, ξII, ς, α];

C1laplace = Table{0}, 4 * nm + 12 + 2 * nm + 1 + 1;

Do

(*The vector which the function C1 is a vector contain the vectors C10 to Cnm

0, *)(*but for every iteration we need one of them at a time, *)

(*so we use the Take function to extract the individual vectors C10

to Cnm0 so that they can *)(*be used at the appropriate times in the

calculation. In order to do this however, *)(*we need to know the range

of values in the storage vector Cn that correspond to the each Cn0 *)

(*vector. The length of the vector Cn0 is 4n2+2n+1, so if nm = 2, *)

(*C20 will have 21 entries and C10 will have 7 entries, *)

(*meaning that the vector that stores these entires will have

28 entries. So for the first iteration *)(*of the Do function,

we take entries 28 to 8 in the Cn vector to extract , *)

(*then for the second and final iteration, we take entries 7 to 1.*)
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(*To generalise this process for any nm value,

for the first iteration onwards, *)(*we take entries j*

2-3*j+4*j23 to j*8+9*j+4*j23 where j=nm,nm-1,nm-2,...,1 *)

Cn = Takec1, j * 2 - 3 * j + 4 * j2  3, j * 8 + 9 * j + 4 * j2  3;

Print[TimeObject[]];

(* Here we perform the calculation for C

1iω through the use of Eq. 7.18. *)

C1laplace = Δ[j, t, ω, σ, ξII, ς, α].Cn + Qplus[j, σ, ξII, ς, α].C1laplace,

{j, nm, 1, -1};

(* Here we use Eq. 7.25 to obtain the desired observable χ(ω)=χ'(ω)-iχ''(ω) *)

res = 1 - ⅈ * ω * C1laplace[[1, 1]]  c1[[1, 1]];

res



(*----------------------------------------------*)

(*This function make use of Eqs. 7.18,

7.19 and 7.22 in the thesis to calculate the integral

relaxation time τint. The procedure for this this is similar to

the procedure for calculating χ(ω) in the previous function,

with the key differences being that now we are solving for C

10 ω=0 and

the calculation at the end makes use of Eq. 7.22 instead of Eq. 7.25 *)

τint[nm_, t_, σ_, ξI_, ξII_, ς_, α_] := 

Block{C1laplace, c1, Cn, res},

c1 = C1[nm, t, σ, ξI, ξII, ς, α];

C1laplace = Table{0}, 4 * nm + 12 + 2 * nm + 1 + 1;

Do

Cn = Takec1, j * 2 - 3 * j + 4 * j2  3, j * 8 + 9 * j + 4 * j2  3;

Print[TimeObject[]];

C1laplace = Δ[j, t, 0., σ, ξII, ς, α].Cn + Qplus[j, σ, ξII, ς, α].C1laplace,

{j, nm, 1, -1};

(* Here we use Eq. 7.22 to obtain the desired observable τint *)

res = C1laplace[[1, 1]]  c1[[1, 1]];

res


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8. Comparison of the Response for

Dipole-Dipole Interaction to the

Response for Exchange Interaction

We now compare the results of the response for dipole-dipole interaction with those

for exchange interaction for the same value of the interaction parameter ς. Figure

8.1a shows the effect of ς on τint in linear response, i.e., the correlation time. Clearly

the effect of increasing ς is generally to increase the relaxation time. However,

for the particular circularly symmetric configuration studied the effect of dipole-

dipole coupling is much more pronounced than that of exchange coupling for the

same ς. Indeed, increase of ς exceeding ∼ 1 causes a marked increase in τint for

dipole-dipole coupling as compared to exchange coupling. A similar increase also

occurs with exchange interaction. However, a much larger value of ς would now be

needed relative to that for dipole-dipole coupling. Figure 8.1b shows the relaxation

time as a function of ς, with the anisotropy or inverse temperature as a parameter.

Again, for both types of interaction the tendency is to markedly increase the integral

relaxation time with the enhancement effect being much greater for dipole-dipole

rather than exchange interaction.

Figure 8.2 shows both τint and τ = 1/λ1 vs. the anisotropy (or inverse tem-

perature) parameter σ. Without the external field, i.e., hII = 0, the temperature

dependence of τint (like τ = 1/λ1) has the customary Arrhenius behaviour, i.e.,

exponentially increasing with decreasing temperature (see Figure 8.2a), while the

slopes of both τint(T
−1) and τ(T−1) markedly depend on ς.
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Figure 8.1: Integral relaxation time τint/τN as a function of the interaction parameter
ς (a) for various external field parameters hII subject to the linear response condition
hI − hII = 0.001 and (b) for various σ and hI = 0.101, hII = 0.1; α = 0.5. Solid and
dashed lines: the matrix continued fraction solution for dipole-dipole and exchange
interaction, respectively. Note the pronounced effect of dipole-dipole interaction
(for the particular geometry considered), which for large ς greatly increases the
relaxation time as compared to exchange interaction.
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Figure 8.2: Integral relaxation time τint/τN (solid and dashed lines) and inverse
smallest non-vanishing eigenvalue (λ1τN)−1(circles and asterisks) vs. the anisotropy
(inverse temperature) parameter σ (a) for various interaction parameters ς and
hII = 0 and (b) for various external field parameters hII = 0, 0.2, 0.5 and ς =
3 subject to the linear response condition hI − hII = 0.001. Solid and dashed
lines: τint/τN calculated via the matrix continued fraction solution for dipole-dipole
and exchange interactions, respectively; circles and asterisks: (λ1τN)−1 calculated
via the analytic matrix continued fraction solution for dipole-dipole and exchange
interactions, respectively.
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Notice that τint and τ = 1/λ1 increase as the interaction parameter is raised, with

the effect of dipole-dipole interaction again dominating. Furthermore with hII = 0,

τint provides an accurate approximation to the magnetization reversal time τ = 1/λ1.

However, as the dc field increases, so that, taking zero exchange coupling described

by a bistable potential as a particular example, the wells of the interaction potential

now become markedly nonequivalent then τint can decrease with increasing σ (see

Figure 8.2b). Thus the (global) τint may differ exponentially from the reversal time.

This effect was first reported in [122, 123] and was qualitatively explained in [124]

for an assembly of noninteracting uniaxial nanomagnets, i.e., for ς = 0. In the low

temperature limit, the effect is due to the depletion of the population of the shallower

potential well consequent on the escape of many particles from that well and their

subsequent descent to the deeper well from which it is very difficult for them to

escape due to the high energy barrier. Thus τint can now deviate considerably from

the reversal time τ = 1/λ1 and so is no longer a good approximation to the latter

(see Figure 8.2b).

The role played by interactions in the behaviour of the real χ′(ω) and imaginary

χ′′(ω) parts of the dynamic susceptibility χ(ω) is shown in Figure 8.3a. The spectra

χ′(ω) and χ′′(ω) for dipole-dipole interaction resemble those for exchange interac-

tion. Like noninteracting magnetic dipoles [2, 122], two distinct peaks appear in

the spectra of the magnetic loss χ′′(ω). Their characteristic frequencies, i.e., where

χ′′(ω) attains local maxima, are τ−1 and ωpr where ωpr is the precession frequency of

the magnetic moment in the effective magnetic field near the bottom of the deepest

well. The high-frequency peak is due to the (fast) near-degenerate intrawell modes

which are virtually indistinguishable in the spectrum appearing as a single high

frequency band. For small dc fields, the amplitude of the high-frequency peak is far

weaker than that of the low-frequency one (see Figure 8.3b). However, in a strong

dc field, the high-frequency intrawell modes can ultimately dominate the spectrum

because as hII increases, the magnitude of the low frequency band decreases and

may even disappear altogether (curves 3).
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Figure 8.3: The real χ′(ω) and imaginary χ′′(ω) parts of the complex susceptibility
vs. ωτN (a) for α = 1, σ = 7, hII = 0, and various interaction parameters ς =
0.01, 1.0, and 3 and (b) for various external field parameters hII = 0, 0.2, 0.5 and
α = 1, σ = 10, ς = 3. Solid and dashed lines: the analytic matrix continued
fraction solution for dipole-dipole and exchange interactions, respectively (the solid
and dashed lines for ς = 0.01 lie on top of each other).
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This is again due to the depletion effect, which may be succinctly described as

follows: in strong fields, at some critical value of hII, the relaxation switches from

being dominated by the slowest barrier-crossing or reversal mode to being dominated

by the fast intrawell modes. As the low-frequency behaviour of χ′′(ω) is due to

the exponentially slow barrier-crossing relaxation mode, the reversal time τ can be

evaluated from the characteristic frequency ωmax, where χ′′(ω) attains a maximum,

and/or the bandwidth ∆ω of the spectrum of χ′′(ω) as

τ ≈ ωmax ≈ ∆ω. (8.1)

Comparison of τ as extracted from the spectra χ′′(ω) via Eq. (8.1) with τ = 1/λ1

as determined by an entirely independent method, viz. numerical calculation of

the smallest non-vanishing eigenvalue λ1 of the system, by solving the secular Eq.

(7.28), demonstrates that both results are identical. In accordance with the previous

figures, this maximum χ′′(ω) exhibits a more pronounced shift to lower frequencies

for dipole-dipole interactions than for exchange ones.
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9. Conclusions

It has been demonstrated how Budó’s generalisation of the microscopic Debye theory

of relaxation to a dielectric composed of complex molecules containing interacting

rotating polar groups can be applied to anomalous diffusion in the presence of a

weak microwave field in the non-inertial limit [19]. This is a good example of the

role played by 2 body interactions in relaxation processes.

A second example is the relaxation of single-domain ferromagnetic particles.

Here the relative effects of dipole-dipole and exchange interaction on the relaxation

process have been considered, albeit in the most simple case where both easy axes

of magnetisation are parallel to each other and also to the direction of the applied

dc field [21]. Moreover the latter is taken as parallel to the reference Z-axis while

the anisotropy is represented by the simplest possible uniaxial potential. This cir-

cumvents some of the considerable mathematical difficulties which are otherwise

encountered. In both cases we commence with the appropriate Langevin equa-

tions and then for polar molecules, write a fractional Smoluchowski equation for the

orientation distribution based on the continuous-time random walk Ansatz. This is

accomplished via the non-inertial Langevin equations for the dynamics of a molecule

consisting of two similar polar groups. These cannot rotate freely relative to one

another owing to their mutual potential energy (causing hindered rotation). The

fractional Smoluchowski equation is then converted to a scalar differential-recurrence

relation for the statistical moments.

Furthermore for single-domain ferromagnetic particles, an exact system of equa-

tions for the statistical moments is derived. This is achieved by directly averaging

(in the manner of Einstein) the Landau-Lifshitz-Gilbert equations with appropriate

changes of variable as suggested by the form of the potential for the motion of the
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magnetisation augmented by a random field due to the heat bath over its realisa-

tions. Hence the calculation of the response is again reduced to solving a system of

linear differential-recurrence relations for the statistical moments (averaged prod-

ucts of spherical harmonics). Once the respective differential-recurrence relations

are obtained, one can then solve them by calculating successive convergents of con-

tinued fractions in the frequency domain for the appropriate relaxation responses.

Furthermore, I have via the Appendices in Chapters 5 and 7 elaborated (in step by

step fashion) on the derivation of all the relevant differential-recurrence relations

from the respective Langevin equations. Moreover, I have shown in detail how they

are solved via matrix continued fractions.

In particular for dielectrics, restriction to the linear response (following Budó)

is enough to describe many dielectric phenomena in a liquid. The main advance

consists in writing the appropriate non-inertial Langevin equations, thereby allow-

ing consideration of two interacting dipole moments including anomalous diffusion.

I have also given in detail the exact complex susceptibility for both normal and

anomalous diffusion, now written as an easily calculated scalar continued fraction

rather than as a sum of Debye or Cole-Cole mechanisms. Furthermore, as observed

in Figures 6.1 and 6.3, the single mode Cole-Cole approximation provides a good

representation of the exact susceptibility. Moreover the corrected Figure 6.2 alias

of Figure 3 of the paper [19] shows this approximation is accurate for all σV of

interest. The continued fraction solution also avoids the Sturm-Liouville problem

encountered by Budó. As far as comparison with experiment, ample evidence exists

of Cole-Cole like behaviour (as in Figure 6.2) in the low frequency dispersion and

absorption of viscous liquids. See Chapter 5 of [49]. Notice that the version of the

fractional Smoluchowski equation obtained is one where the jump lengths have a

distribution with a finite variance. Also the waiting times are scale-free, with power-

law exponent α. The latter determines the order of the fractional derivative. For

such fractional models the relaxation of modes changes from exponential (α = 1) to

a Mittag-Leffler function decay, with power-law long-time tail in accordance with

experimental observations in [49]. In the frequency domain this corresponds to the

Cole-Cole equation [2]. For a discussion of alternative models see [125].
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For single-domain ferromagnetic particles, it can be seen that the solution is

subject to considerable symmetry-based restrictions. Therefore, it can be reason-

ably argued that such a model cannot provide a reliable description of the many

spin relaxation problem. Nevertheless, even that drastically simplified configuration

exemplifies the relative roles of dipole-dipole and exchange interactions. The main

conclusion is that including them causes a marked increase in the reversal time.

As we noted the particular case of parallel easy axes (also parallel to the direction

of the applied dc field) is analysed merely to simplify the calculations. Then the

dipole-dipole interaction between the particles increases the effective energy barrier

for the magnetisation reversal leading to the results described above. However due

to the anisotropic nature of that interaction one may expect completely different

behaviour if the external magnetic field makes an arbitrary angle with respect to

the line connecting the particle centres. This conclusion may be justified along the

following lines. In linear response the reversal time is effectively the correlation

time, i.e., a global feature of the response indicating that additional high frequency

modes (due to exchange and dipole interactions over and above those appearing

without such interactions) now contribute to the magnetisation decay. This con-

clusion is analytically supported by that of Zwanzig [17] (based on a lattice model)

that dipole-dipole interactions give rise to a discrete set of relaxation times. For ex-

ample, in his model [17] permanent point electric dipoles of moment µ are located

at the sites of a rigid cubic lattice. Consequently, one finds from his Eq. (6) for

the complex susceptibility at high temperatures that (in his notation) the integral

relaxation time is given by

τint

τ
≈ 1 +

4

3
πρα +

[
16π2

9
+

(
5

6
− 3

128π2

)
R

]
(ρα)2

+

[
64π3

27
+

(
68π

27
− 1

24π

)
R

]
(ρα)3 +O(ρα)4. (9.1)

Here ρ is the number of dipoles per unit volume of the lattice, R is a certain

lattice sum which is about 16.8 for a simple cubic lattice α = µ2/(3kT ) and τ

is the relaxation time associated with the rotational Brownian motion of a non-

interacting dipole (Debye 1st model). Although the Néel (overbarrier) mechanism is
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blocked, the value of this expression in the magnetic relaxation context is that it

may be directly applied to dipole-dipole coupling effects by simply replacing electric

quantities by the corresponding magnetic ones. This obviously cannot be done if

the Néel mechanism is active because then the dipole-dipole coupling will affect the

overbarrier process. Similar conclusions were drawn by Déjardin [126] via Berne’s

theory of interacting electric dipoles [127] adapted to spins. A reference made by

Zwanzig [17] to unpublished calculations of J.I. Lauritzen, where the elementary

process is the flip of a single dipole and all other dipole interactions are ignored,

save electrostatic ones, is highly relevant to this case.

The theory presented may serve as a basis for future development. For the Budó

model utilised for polar dielectrics, future researchers may seek to extend it to in-

clude inertial effects for both normal and anomalous diffusion via the Fokker-Planck

equation in the phase space of configurations and momenta. In other words the rota-

tional Klein-Kramers equation obtained from the inertial Langevin equations rather

than the non-inertial ones which suffice for the low frequencies considered here. Such

a procedure allows one to consider high-frequency effects such as the resonant (or

Poley) absorption [2] in the far infrared due to the inertia of the molecules. This

absorption could then be ascribed to hindered rotation combined with inertia giving

rise to small oscillations of the groups relative to each other.

For single-domain ferromagnetic particles, it should be reiterated that through-

out the calculations the two-spin problem is treated where the two easy axes are

both parallel to each other and to the applied field. The general situation of an ar-

bitrary angle between the easy axes (when the symmetry is broken) can be treated

in like manner, however with much more difficulty because of the extra index in

the governing recurrence relations. Nevertheless, even the simplified solution will

provide a useful benchmark with which the more general solution must agree in the

appropriate limit. Thus the calculations outlined can serve as a precursor to analysis

of the high temperature dipole lattice including the anisotropy-Zeeman energy.

Notice that only a bare outline of the many involved calculations in both the

dielectric and magnetic cases has been given in the two published papers:

(a) Generalization to anomalous diffusion of Budó’s treatment of polar molecules
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containing interacting rotating groups by Serguey V. Titov, William T.

Coffey, Marios Zarifakis, Yuri P. Kalmykov, Mohammad H. Al Bayyari,

and William J. Dowling, published by ”The Journal Of Chemical Physics”

(Volume 153, Issue 4, Page 044128) in 2020.

(b) Dipole-dipole and exchange interaction effects on the magnetization re-

laxation of two macrospins: Compared by Yuri P. Kalmykov, Serguey V.

Titov, Declan J. Byrne, William T. Coffey, Marios Zarifakis, and Moham-

mad H. Al Bayyari, published by the ”Journal of Magnetism and Magnetic

Materials” (Volume 507, Page 166814) in 2020.

Thus our main objective of providing an archived record of the calculations has been

achieved.
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10. Future Perspectives:

Outstanding two Body Problems:

Combined Rotational Diffusion of

a Superparamagnetic Particle and

Its Magnetic Moment: Solution of

the Kinetic Equation - Brief

Summary of the work of I.S.

Poperechny

As previously discussed Brown has made crucial contributions to the formulation of

a statistical approach which explicitly accounts for the thermal fluctuations of the

magnetic moment in the analysis of the magnetic response of superparamagnets.

We saw that he introduced using the general ideas of Brownian motion theory, the

concept of a random magnetic field, simulating thermal fluctuations, and wrote down

stochastic Langevin equations for the magneto-dynamics of an isolated mechanically

fixed nanosized particle. Upon doing so, Brown then (under the assumption that

the stochastic field has the statistical properties of white noise) obtained a kinetic

equation in the form of the Fokker-Planck equation for the distribution functions

of orientations of the particle’s magnetic moment. Thus he obtained an asymptotic
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expression for the greatest relaxation time for the particular simple case where the

applied field is coincident with the easy axis of magnetisation of the single domain

ferromagnetic nanoparticles. However in a ferrofluid which is a colloidal suspension

of single domain particles (i.e., they are in a liquid matrix) the particles undergo a

rotational Brownian motion under the influence of random torques imposed by the

molecules of the surrounding media. Thus even if we don’t take into consideration

the dipole-dipole interaction of the particles, the kinetics of the magnetic moments

of all the dispersed particles do not obey the Brown Fokker-Planck equation for

immobilised particles and therefore need to be generalised.

The answer to this question was partly provided by Stepanov and Shliomis

[128,129], who obtained an equation for the joint distribution function of the orien-

tations of the anisotropy axis and magnetic moment of the particle and have found

solutions to said equation in certain limited cases. Stepanov and Shliomis called

their theory the “egg model”, where the internal magnetisation dynamics coupled

to the Brownian rotation of a magnetic nanoparticle is analogous to an egg, with

the magnetic moment represented by the yolk and the mechanical rotational motion

of the particle body represented by the shell. However, integration of the equation

for arbitrary values of parameters is difficult due to the high dimensionality (4 polar

angles are involved) of the configuration space. This equation was later derived by

others [130,131], who followed the general procedure of deriving the Fokker-Planck

equation from the Langevin ones.

Essentially the Langevin simulation (Langevin dynamics) method sidesteps the

complexity of the kinetic equation in the description of magneto-dynamics subjected

to thermal noise. In this method, a direct numerical integration of the equations of

the rotational dynamics of the particles body and its magnetic moment in the pres-

ence of random torques and fields [132–135] is performed. The main advantage of

this is that it uses a well-developed computational procedure (e.g. [136]). However,

severe limitations to this procedure exist:

1. There is a requirement for multiple repetitions of simulations in order to

obtain a time sweep of the average (observed) magnetisation, which involves

considerable computational costs, especially in the analysis of low frequency
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and/or high temperature processes.

2. The Langevin dynamics method precludes the closed form calculation and

analysis of the dependence of the relaxation spectrum of a system on the

applied magnetic field.

We now summarise Poperechny’s theory of rotation diffusion of a uniaxial super-

paramagnetic particle, suspended in a fluid [137]. A kinetic equation for the joint

distribution function of orientations of anisotropy axis and magnetic moment of

the particle is analysed and a consistent method of its solution is described. The

approach introduces a kinetic operator that generates the time evolution of the dis-

tribution function, and using quantum-mechanical formalism. In particular, aspects

of representation theory and the addition of angular momenta. The matrix of the

kinetic operator is specified to have a sparse, close to diagonal form. The evolution

equation takes the form of a linear differential-recurrence relation for statistical mo-

ments of the distribution function. Numerical integration can then be performed via

the standard methods, giving the average (observed) magnetisation of the system for

any instant of time. It is assumed in the proposed methodology that the frequency

of an applied magnetic field is well below the ferromagnetic resonance range, which

does not impose any other restrictions on the field amplitude, material parameters

of the particle, viscosity of the fluid or temperature. This paper can serve as the

theoretical basis for a consistent description of the relaxation spectrum, dynamic

magnetic susceptibility and non-linear magnetic response of a dilute magnetic fluid

while considering the interplay between mechanical and magnetic degrees of freedom

of suspended nanoparticles. It can also provide for cross-checking of approximate

models.

The kinetic equation obtained has the general form (which at first glance seems

irreconcilable with the earlier treatment of a frozen or immobilised particle grain by

Brown, we shall show however that this is not the case)

∂W

∂t
+
(
Ĵn + Ĵe

)
· (ΩW ) =

T

6ηV

(
Ĵn + Ĵe

)
·W

(
Ĵn + Ĵe

)(U
T

+ lnW

)

+
αγT

(1 + α2)µ
Ĵe ·W Q̂e

(
U

T
+ lnW

)
. (10.1)
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Here W is the joint distribution function W (e,n, t) of the orientation of the mag-

netic moment of the particle and its anisotropy axis, e = µ/µ is the magnetic

moment unit vector (µ is the magnetic moment) directed along the direction of the

easy axis n fixed inside the particle, Ĵn = n× ∂
∂n

and Ĵe = e× ∂
∂e

are infinitesimal

rotation operators, α is the phenomenological precession damping parameter, γ is

the gyromagnetic ratio for electrons, η is the fluid viscosity, T is the temperature,

Ω is the local angular velocity of rotation of the liquid, Q̂e = Ĵe + 1
α
∂
∂e

, U is the

orientation-dependent part of the magnetic energy of the particle in an external

magnetic field H viz.,

U = −KV (e · n)2 − µH (e · h) . (10.2)

This consists of the anisotropy energy (first term) and the Zeeman energy (second

term). HereK is the particle (uniaxial) anisotropy constant, V is the particle volume

and h is the unit vector along the direction of the applied field. This kinetic equation

of the particle is identical to that written by Stepanov and Shliomis [134, 135].

Furthermore Poperechny assumed that there is no external flow (i.e., the fluid in

which the particle is suspended is at rest), meaning that in Eq. (10.1), Ω = 0. The

resulting evolution equation is then

∂W

∂t
= K̂W, (10.3)

where K̂ is the kinetic operator given by

K̂W =
1

2τB

(
Ĵn + Ĵe

)
·W

(
Ĵn + Ĵe

)(U
T

+ lnW

)
+

1

2τD
Ĵe ·W Ĵe

(
U

T
+ lnW

)
,

(10.4)

where

τB =
3ηV

T
and τD =

(1 + α2)µ

2αγT
. (10.5)

Note that if the frequency of the applied field is far below the Ferromagnetic res-

onance region ( 1GHz), then we can neglect the role of gyration in the magnetic

response of the system and consider only the relaxation processes. This is done

formally through excluding the precessional term in the operator Q̂e via making
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the damping constant α → ∞ in the operator Q̂e, leading to Q̂e transforming to

the operator Ĵe.

10.1 Comparison with our notation accompany-

ing notes on I.S. Poperechny Journal of Molec-

ular Liquids, 2019

We first consider Eq. (1.17.12) of [2], which pertains to a frozen Brownian mechanism

∂W

∂t
= k′∆W +

h′

α
u ·
(
∂

∂u
V × ∂

∂u
W

)
+ h′

∂

∂u
·
(
W

∂

∂u
V

)
, (10.6)

where ∆ is the angular part of the Laplacian

∆ =
1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2ϑ

∂2

∂ϕ2
, (10.7)

the operator ∂/∂u means the gradient operator on the surface of the unit sphere

(1, ϑ, ϕ)
∂

∂u
=

∂

∂ϑ
eϑ +

1

sinϑ

∂

∂ϕ
eϕ, (10.8)

W (ϑ, ϕ, t)dΩ is the probability that M has orientation (ϑ, ϕ) within solid angle

dΩ = sinϑdϑdϕ, ϑ ∈ [0, π], ϕ ∈ [0, 2π] and

k′ =
kTh′

v
=

1

2τN

, τN =
vMS(1 + α2)

2kTγα
. (10.9)

We are considering a statistical ensemble of superparamagnetic particles. In terms

of τN Eq. (10.6) reads as

∂W

∂t
=

1

2τN

∆W +
1

2ατN

u ·
(
∂

∂u

vV

kT
× ∂

∂u
W

)
+

1

2τN

∂

∂u
·
(
W

∂

∂u

vV

kT

)
, (10.10)
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In analysing Eq. (10.10) and comparing it with equation Eq. (33) of [137] for an

immobilized particle (pure Néel relaxation)

∂W

∂t
=

1

2τN

Ĵe ·W Ĵe

(
V

kT
+ lnW

)

=
1

2τN

(
Ĵ2
eW + Ĵe ·W Ĵe

V

kT

)
(10.11)

=
1

2τN

(
Ĵ2
eW +W Ĵ2

e

V

kT
+ ĴeW · Ĵe

V

kT

)
,

where

V = −KV
(
e · n)2

)
− µH (e · h) , (10.12)

and

e = µ/µ. (10.13)

We need to show that Eqs. (10.6) and (10.11) are identical.

It is important that we establish the exact definition of the various operators.

Here

Ĵe =e× ∂

∂e
, (10.14)

Ĵn =n× ∂

∂n
, (10.15)

are infinitesimal rotation operators for e and n. Note that in Eq. (10.8) we also

have used the infinitesimal rotation operator. Recall that rotational operators are

very useful because such operators are merely the angular momentum operators of

quantum mechanics ([34], page 137). The classical angular momentum of a particle

is

L = r× p. (10.16)

In quantum mechanics the orbital angular momentum may be defined in the coor-

dinate representation as the dimensionless operator

L = −i (r×∇) , (10.17)
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where ∇ is the vector differential operator with the cartesian components in the

laboratory coordinate system

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (10.18)

Clearly, the rotation operators used in [137] are just particular form of the angu-

lar momentum operator of quantum mechanics (specifically J = −iL). This fact

considerably eases subsequent calculations because we can make use of the relations

L2Ylm =l(l + 1)Ylm, (10.19)

LzYlm =mYlm, (10.20)

and so on. Ultimately we are going to expand W in spherical harmonics Ylm so we

have to rearrange the Eq. (10.11) into a form so that only simple products of Ylm,

which may be expanded in Clebsch-Gordan series, are involved. We have (via the

Lemma proved)

ĴeW · Ĵe
V

kT
=

1

2

{
Ĵ2
e

(
W

V

kT

)
− V

kT
Ĵ2
eW −W Ĵ2

e

V

kT

}
. (10.21)

Hence we have from Eq. (10.11)

∂W

∂t
=

1

2τN

(
Ĵ2
eW +W Ĵ2

e

V

kT
+

1

2

{
Ĵ2
e

(
W

V

kT

)
− V

kT
Ĵ2
eW −W Ĵ2

e

V

kT

})

=
1

2τN

(
Ĵ2
eW +

1

2
W Ĵ2

e

V

kT
+

1

2
Ĵ2
e

(
W

V

kT

)
− 1

2

V

kT
Ĵ2
eW

)
. (10.22)

This is Eq. (35) of [137], cf. Eq. (10.11) above which only involves the squared

operator Ĵ2
e.

Lemma

2∇v · ∇f = ∆ (vf)− v∆f − f∆v, (10.23)

where

∆ = ∇2 = −L2 = J2
e. (10.24)
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Proof

∆ (vf) =∇ · (v∇f + f∇v)

=∇v · ∇f + v∆f +∇v · ∇f + f∆v

=v∆f + 2∇v · ∇f + f∆v. (10.25)
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ment of dielectric relaxation in polar molecules: Application to the FIR spec-

trum of acetonitrile and hexanone-2,” Chem. Phys. Lett., vol. 129, pp. 375–

381, 1986.

[10] W. T. Coffey, G. P. Johari, Y. P. Kalmykov, and S. V. Titov, “Complex

susceptibility of the cage model of polar liquids,” J. Phys.: Condens. Matter,

vol. 15, no. 19, pp. 2961–2977, 2003.

[11] W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, “Itinerant oscillator models

of fluids,” Adv. Chem. Phys., vol. 126, pp. 131–186, 2003.

[12] W. T. Coffey, “On the calculation of orientational correlation functions for

simple models of molecular reorientation in the presence of dipole-dipole in-

teraction,” Mol. Phys., vol. 37, no. 2, pp. 473–487, 1979.

[13] W. T. Coffey, “Inertial effects and dipole-dipole coupling,” Mol. Phys., vol. 39,

no. 1, pp. 227–238, 1980.

[14] G. Joos, Theoretical Physics. Glasgow: Blackie, 1934.
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stein, and G. J. Lapeyre, “Nonergodic subdiffusion from brownian motion

in an inhomogeneous medium,” Physical review letters, vol. 112, no. 15, p.

150603, 2014.

[67] M. Palombo, A. Gabrielli, V. D. P. Servedio, G. Ruocco, and S. Capuani,

“Structural disorder and anomalous diffusion in random packing of spheres,”

Scientific reports, vol. 3, no. 1, pp. 1–7, 2013.

[68] M. J. Saxton, “Anomalous subdiffusion in fluorescence photobleaching recov-

ery: a monte carlo study,” Biophysical journal, vol. 81, no. 4, pp. 2226–2240,

2001.

[69] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A lévy flight for light,”
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contribution of the Brownian and Néel relaxational processes,” Journal

of Magnetism and Magnetic Materials, vol. 122, no. 1, pp. 196 – 199,

321



1993. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

030488539391071E

[130] R. Taukulis and A. Cēbers, “Coupled stochastic dynamics of magnetic

moment and anisotropy axis of a magnetic nanoparticle,” Phys. Rev. E,

vol. 86, p. 061405, Dec 2012. [Online]. Available: https://link.aps.org/doi/

10.1103/PhysRevE.86.061405

[131] J. Weizenecker, “The Fokker–Planck equation for coupled Brown–Néel-
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