Dipole-Dipole Coupling and Other
Interaction Effects in Polar Dielectrics
and Magnetic Relaxation of Single

Domain Ferromagnetic Nanoparticles

Mohammad H. Al Bayyari

Thesis submitted to the University of Dublin

for the degree of Doctor of Philosophy

Department of Electronic and Electrical Engineering
Trinity College Dublin
2021



Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this

or any other university and unless otherwise stated it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional
repository or allow the Library to do so on my behalf, subject to Irish Copyright

Legislation and Trinity College Library conditions of use and acknowledgement.

I consent to the examiner retaining a copy of the thesis beyond the examining period,

should they so wish (EU GDPR May 2018).

Mohammad Al Bayyari

A/

/



Summary

The main purpose of this thesis is to provide the precise details of the very onerous
calculations underlying our two published papers [19] and [21]. Thus, the latter
can be better understood and utilised later for future research as the details form
an invaluable archive which for space reasons could not be published in the jour-
nals. These details which are essential for understanding the effect of two body
interactions are provided in the thesis via my comprehensive appendices written in
Chapters 5 and 7. In addition, through the use of Wolfram Mathematica, the results
are corroborated by calculating the complex electrical susceptibility in Figures 2-4
of [19] as well as the integral relaxation time and complex magnetic susceptibility
in Figures 2-4 of [21]. The published papers may be summarised as follows:

In the Budé paper [19] a fractional Smoluchowski equation for the orientational
distribution of dipoles incorporating two body interactions with continuous time
random walk Ansatz for the collision term is obtained for polar molecules. This
equation is written via the non-inertial Langevin equations for the evolution of
the relevant Eulerian angles and their associated Smoluchowski equation for the
orientational probability distribution function. These equations govern the normal
rotational diffusion of an assembly of non-interacting dipolar molecules with similar
internal interacting polar groups hindering their rotation owing to their mutual
potential energy. The resulting fractional Smoluchowski equation is then explicitly
solved in the frequency domain using scalar continued fractions yielding the linear
dielectric response as a function of the fractional parameter for extensive ranges of
the interaction parameter and friction ratios. Thus, the main result is that Budd’s
treatment can possibly be extended to disordered materials.

In the magnetic paper [21], the magnetisation response including dipole-dipole
interactions of a pair of macrospins (single-domain ferromagnetic particles) following
the sudden alteration of a dc magnetic field is calculated from the stochastic Landau-

Lifshitz-Gilbert equation for the magnetisation by reducing the overall task



to an infinite hierarchy of differential-recurrence relations in the time domain for
the statistical moments (averaged products of spherical harmonics in this case).
This is exactly solved in the frequency domain by matrix continued fractions. The
greatest relaxation time and dynamic susceptibility are then compared with the
corresponding results for two exchange-coupled spins using the same exact method.
I believe that this is effectively the first exact treatment of dipole-dipole effects in the
relaxation of macrospins. Generally, both the dielectric and magnetic calculations
are essential as a starting point for the understanding of the effects of two body

interactions on relaxation processes.
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1. Introduction

Long ago Debye proposed a model [1] of dielectric relaxation of an assembly of rigid
non-interacting dipoles which yields a qualitatively acceptable microscopic expla-
nation of the microwave absorption of polar fluids. It was initially posed as an
extension of the work of Einstein [2] (concerning the translational Brownian mo-
tion of particles in a one dimensional extension) to rotation of a typical dipole of
the polar assembly about a space-fixed axis [1] subject to a weak alternating (ac)
electric field at microwave (GHz) frequencies. The calculation was later extended
to rotation [3] in space. We shall call this the first Debye model [3]. Here, the
rotation of a typical polar molecule in a liquid regarded microscopically as an as-
sembly of non-interacting rigid rotators under the influence of both deterministic
and random torques imposed by the surrounding heat bath is treated as rotational
Brownian motion [3]. The theory then qualitatively predicts the observed dispersion
and absorption of microwave (GHz) radiation of polar fluids. This is the principle
underlying the operation of the microwave oven as there the dipoles are unable to
keep in phase with the fast applied field, with the ensuing phase lag causing the
dissipation of the rotational energy contained in the dipoles manifested as friction
in the bath. This energy is dissipated as heat.

The second model considered by Debye is a solid-state like mechanism of re-
laxation which is mainly associated with dielectric relaxation in solids and latterly
with magnetic relaxation of single domain ferromagnetic particles. Here a typical
dipole can stay in either of two directions (parallel or anti-parallel to the applied
field direction) and reverse its direction by crossing over an internal potential bar-
rier through the action of thermal agitation which is again modelled by rotational

Brownian motion. However the relaxation time, which is the time to cross the bar-



rier from one orientation to another is effectively an Arrhenius process and so is
exponentially long [4]. More details on the theory of dielectric relaxation, the work
of Debye and others will be provided in Chapter 2 of the thesis.

Although the Debye model has been largely successful in accounting for the be-
haviour of the complex susceptibility of polar fluids at low frequencies (GHz), there
remain two limitations. The first is the prediction of infinite integrated absorption
occurring at THz (10'? Hz) frequencies and higher, giving rise to the infamous De-
bye plateau in the loss spectrum (wx”(w)), where x”(w) is the imaginary part of
the complex susceptibility, leading to the “black water” phenomenon. This flaw was
eliminated by Rocard [5], who showed in a semi-heuristic fashion that the solution
to this problem lies in the neglect of dipole inertial effects on the dynamics which
cause them to become deterministic at very high frequencies. Rocard’s calculations
were later put on a rigorous basis by Sack [6,7].

The second limitation of the Debye theory is that in formulating it all interac-
tions between the dipolar rotators are ignored, with the sole exceptions being the
Brownian torques due to the bath and the (external) interaction between a typical
dipole of the polar assembly and the applied external time-dependent field. The
inclusion of other interactions poses a very challenging problem in the stochastic
dynamics of rigid bodies. To address this, a heuristic attempt at treating dipo-
lar interactions combined with inertial effects was made via the itinerant oscillator
(cage) model [8-10], where the interaction of a typical dipolar molecule with its
polar cage of neighbours is represented by a cosine potential which has a rotating
centre of torsion oscillation. This model has been reasonably successful in reproduc-
ing the main features of the GHz - THz absorption spectrum which are computed
from the observed data [11]. Simply put the model predicts both the Debye (GHz)
and far-infrared resonance absorption (THz) of polar fluids as well as the necessary
return to transparency at very high frequencies. Despite this success however, the
original form of the model is restricted to rotators which may rotate about a space-
fixed axis only. Therefore a better and more rigorous approach would be to utilise

a molecular model where we address the following:

1. Coupling [11-14] between a pair of dipoles [12] so as to account for their



hindered rotation.

2. Restriction to molecules rotating about a fixed axis can be removed.

3. Inertial effects can be fully accounted for.

4. Collision mechanisms other than the Brownian Stosszahlansatz (Boltzmann’s
collision number hypothesis that only interactions between two particles are
ever of any importance i.e., molecular chaos) can be taken into consideration.

Now Budd’s work [15,16] (See the Appendix of Chapter 2 of the thesis, for

an English translation of the paper, “Anomale Dispersion und freie Drehbarkeit,
Physik. Zeits., vol. 39, p. 706, 1938. by A. Budé [15]) on the dielectric relaxation
of molecules containing rotating polar groups may provide a framework for solv-
ing these problems. Budé has demonstrated how the original Debye theory for the
complex susceptibility y(w) valid in the non-inertial limit, is modified for assem-
blies of non-interacting molecules containing such groups. His main result [12,16] is
that the inclusion of the interaction between two groups embedded in a given polar
molecule yields a discrete set of Debye-type relaxation mechanisms for the suscep-
tibility y(w) with relaxation times given by the eigenvalues of the Sturm-Liouville
equation appropriate to the potential considered. His results were later corroborated
by Zwanzig [17,18]. He studied in the non-inertial limit, the complex susceptibility
X(w) of an assembly of permanent dipoles at relatively high temperatures coupled
by dipole-dipole interactions and arranged at the sites of a simple cubic lattice.

Our purpose is to report progress that has been made in addressing problems

1, 2 and 4 mentioned earlier and to provide an indication of how potential future
research into addressing 3 as well as providing precise details of all the intricate
calculations involved. In doing so we shall also demonstrate how Budd’s [15, 16]
hindered rotation treatment can be generalised to include an anomalous diffusion
Stosszahlansatz in a weak microwave field in the non-inertial limit [19] (More details
on how anomalous diffusion arises and Brownian motion will be given in Chapter 2).
In our treatment [19], a fractional Smoluchowski equation based on the continuous-
time random walk Ansatz is written via the non-inertial (pertaining to anomalous
diffusion in configuration space) Langevin equations for the dynamics of a molecule

consisting of two similar polar groups. However the groups cannot rotate freely



relatively to one another owing to their mutual potential energy (more details on
the Smoluchowski equation and methods for its solution are provided in Chapter
4). The fractional Smoluchowski equation is shown to be fruitful in describing
the dynamics of complex non-inertial systems governed by anomalous diffusion.
Mathematically, all that is being done is that differentiation with respect to time in
a normal Smoluchowski equation is replaced by fractional derivatives of non-integer
order, representing a Boltzmann Stosszahlansatz for a system interacting with a
thermal bath. Generally speaking interactions between polar molecules, even for
the simple hindered rotation configuration envisaged by Budé, appear to have been
ignored [20] for anomalous diffusion.

In general the (fractional) Smoluchowski equation obtained is converted to a
scalar differential recurrence relation for the statistical moments and then solved
in the frequency domain by use of continued fractions, allowing for the calculation
through successive convergents of the fraction of the linear dielectric response as a
function of the fractional parameter for various ranges of damping, dipole moment
and interaction parameters. Therefore, both the dipole correlation functions and
complex susceptibility are obtained. The latter then comprises a low frequency band
with width depending on the anomalous parameter (more details on linear response
theory are provided in Chapter 2). The solution explained here will expand the scope
of the Bud6 model for describing the dynamical effects of hindered rotation. Thus
we determine the numerically exact solution for the linear response of that model
for anomalous diffusion [19] and compare it with the previous exact results [12, 16]
for normal diffusion.

In addition to this dielectric relaxation problem, we can also apply our methods
to the solution of the magnetic relaxation of single domain ferromagnetic particles
as used in recording [21]. This in essence uses Debye’s second model to demonstrate
how interactions in the two-magnet-dipole problem (a system with four degrees of
freedom) may be treated analytically via the formally exact solution of the relevant
Langevin or Fokker-Planck equations for the desired observables. These are the
characteristic relaxation times and decay functions. This will be achieved through

extending the exact method of Titov, Kachachi, et al. [22] to study the effect of



magnetic dipole-dipole interaction on the magnetisation relaxation over the inter-
nal (to the particle) anisotropy Zeeman energy barrier (note that in [22] exchange
interactions alone were treated). The dipole-dipole coupling is very useful for struc-
tural studies (because it depends only on known physical constants and the dipole
separation) and for its effect on spin relaxation. Thus, magnetic dipole-dipole inter-
actions are exactly treated for the two-spin model hence representing a system with
more than two configurational degrees of freedom [21]. These results are compared
with those of the two-spin system with exchange interaction only [22]. Now wunlike
exchange interactions, dipole-dipole interactions are anisotropic. However, as a first
step towards including this anisotropy only parallel easy axes (also parallel to the
direction of the applied dc field) are analysed, because the resulting circularly sym-
metric Hamiltonian drastically simplifies the calculations. For all other orientations
of the anisotropy axes which of course is the most interesting case the calculations are
much more complicated and will lead to varying results arising from the anisotropic
nature of the dipole-dipole interaction. Our calculations are effected by first rewrit-
ing the governing (vector) stochastic Landau-Lifshitz-Gilbert (Langevin) equation
governing the time-dependent magnetisation as scalar Langevin equations for the
products of the spherical harmonics, statistical averages of which are the desired ob-
servables, specifying the orientation of each of the spins [21]. Next (using the theory
of angular momentum in the manner of [2]) averaging them over their realisations in
configuration space in an infinitesimal time given a sharp set of initial orientations.
This time is taken following Einstein [2] as shorter than any characteristic time of
the system but long compared to the time of an adiabatic collision. Thus the time
evolution equation of the sharp values in the form of a partial differential-recurrence
relation in space and time may be determined. Next by postulating an appropriate
spatial distribution of the sharp values and then ensemble averaging over this dis-
tribution one has a hierarchy of differential-recurrence relations for the statistical
moments yielding the observables via rapidly convergent matrix continued fractions
in the frequency domain [2]. Hence, one has in analytic fashion the relaxation time
for effectively all values of the interaction, anisotropy, and applied field parameters

as well as other relevant observables (spectra of the relaxation functions, the com-



plex susceptibility, etc.). The observables so calculated [21] will then be compared
with the corresponding ones for exchange interaction available in Ref. [22]. It should
be emphasised that uniaxial anisotropy with the external field applied parallel to
the easy Z-axis is supposed. The advantage of this particular anisotropy potential
is that (although obviously subject to many symmetry restrictions) it ultimately
results in a (tractable) recurrence relation (for the observables) in three indexes

only.



2. Dielectrics, Polarisation and

Dielectric Response

A dielectric or dielectric material is an electrical insulator that can be polarised
by an applied external field. However upon being placed in an electric field, elec-
tric charges do not flow through the material as we would observe in an electrical
conductor (e.g. metals), rather what happens is that they shift from their average
equilibrium positions, resulting in the phenomenon known as dielectric polarisation,
where the positive charges within the dielectric are shifted slightly in the direction
of the electric field, while the negative charges shift in the opposite direction, which
creates an internal electric field within the dielectric which reduces the overall field
within the dielectric itself. Dielectrics are primarily used in the manufacture of
capacitors because they have a permittivity € that is higher than the permittivity
g of a vacuum (free space, g = 1/367 x 107°F/m), which leads to a higher ca-
pacitance. Most commercially available capacitors make use of solid materials with
high permittivity. Almost all materials we encounter are dielectrics, some examples
include glass, porcelain, most plastics, gases such as nitrogen, and liquids such as
mineral oil [23].

The measurement of dielectric response is a non-invasive technique that has been
used for the characterisation of materials throughout most of the 20th century. As
such there are a number of books that cover the technique from different perspec-
tives. The most noteworthy of which include Debye [3], Smyth [24], McCrum et
al. [25], Daniels [26], Bdttcher and Bordewijk [27], Jonscher [28] Scaife [29] and
Frohlich [30].

In this chapter, we shall examine the concept of dielectric polarisation on both



a molecular and macroscopic level, then we will discuss the concept of susceptibility
and dielectric response from the perspective of linear response theory. Then it will
be expedient to explore the historical background of the research associated with
the analysis of dielectric response, from the work of Debye [1,3] to one of the topics

of this thesis, the work of Budé [15,16].

2.1 Polarisation and Susceptiblity

As mentioned earlier, dielectric polarisation of polar molecules is due to the par-
ticular phenomenon whereby an assembly of dipole moments may rotate due to an
external applied electrical field. But how does polarisation generally occur? To
answer this we need to first consider what happens to an atom when it is placed
under the influence of an external electric field E. An atom consists of a positively
charged nucleus with protons (positively charged) and neutrons (neutral), and a
cloud of negatively charged electrons which surround and orbit it. As a whole,
without the influence of an electric field, the positions of the nucleus and electron
are such that their centres are aligned leading to the atom in its entirety being elec-
trically neutral. Under the influence of an electric field however, what we observe
is a displacement in the positions of the nucleus and the cloud of electrons, where
the nucleus is pulled in the direction of the field, while the cloud of electrons goes
in the opposite direction. As they are pulled apart, they exert a mutual attractive
force due to being polar opposites in order to keep from being separated, eventually
if the field is not strong enough to overcome this attractive force and split them
apart, forming an ion, there will be an equilibrium reached where the nucleus and
electron have their centres kept apart by the field, while their mutual attractive
forces prevent them from separating. This leads to the atom now having a dipole

moment p pointing in the direction of the field E. p and E are related by [31]
p =aE, (2.1)

where « is the atomic polarisability, whose value depends on the structure of the

atom. So here we see that polarisation occurs in the atom due to a displacement



between the centres of the oppositely charged elements of the atom. However, what
if we are dealing with the polarisation of a molecule? In that case we have to now
take into consideration the orientation of the molecule with respect to the direction
of the electric field, as we will find that molecules tend to have different magnitudes
of polarisation depending on the angle they make with the electric field. In that
case we must now generalise Eq. (2.1) into its components along the molecular axes

xyz [31]

Dz :amem + amyEy + aszz;
Py =0 By + oy By + oy B (2.2)

Y2 :aszx + @zyEy + OézzEzv

where the constants «;; are the polarisabilty tensors for the molecule in question.
So far we have dealt with atoms and molecules where a dipole moment is induced
on them through exposure to an electric field E, where they had none before. But
what about molecules (common examples include HoO, CH,Cly) which have their
own inherent permanent dipole moments, such as electrets [32] and ferroelectrics?
Such polar molecules under the influence of an electric field will experience a torque
which if they were free to rotate, will swing around until it aligns itself in the di-
rection of the applied field. In the absence of an electric field, the dipole moments
of the molecules all point in random directions, which leads to the average dipole
moment being zero. The torque applied to the polar molecules in question is illus-
trated in Figure 2.1, where if the field is uniform, the force on the positive end of
the molecule, given by F, = ¢E, will cancel the force on the negative end of the

molecule, given by F_ = —¢E, but there will be a torque N given by [31]

N=(r, xF,)+ (r_ xF_)

_ E « qE} + {_g x —qE} _(dxE. (2.3)



E

Figure 2.1: Torque applied to a polar molecule by the field E. (aft. [31])

So ultimately, looking at the phenomena we have just described that occur on an
atomic and molecular level (for both neutral and polar molecules), we can see that
the same basic result is observed, the dipoles end up pointing along the direction of
the electric field being applied to them, i.e., the dielectric material becomes polarised.
So now we can define polarisation P as the dipole moment per unit volume.

Now we can take a look at the relationship between the polarisation of the
dielectric in question and the electric field. For many substances, the polarisation is

proportional to the field provided that it is not too strong through the relationship,

P = yE, (2.4)

where x = gg(e, — 1)(g9 = 1/367 x 107°F/m) is the electrical susceptibility of the
dielectric in question and ¢, is the relative permittivity. It should be noted that
E in Eq. (2.4) is the total field that we observe which can occur in part from free
charges and in part from the polarisation itself. In the presence of a field Eq, P
cannot be obtained from Eq. (2.4) because the polarisation of the material will
itself produce its own field, and this field contributes to the total field E and we
end up with an infinite regress of the external field polarising the material, the
polarisation in the material producing its own field, which contributes to the total
field, which polarises the material etc. A simple approach to this problem is to
analyse the electric displacement field D of the material in question. Consider a
broad sample of dielectric material of thickness d with electrodes of area A placed
on each opposite surface. The material being a dielectric will mean that effectively

this system behaves as a capacitor storing charges +(¢) on the surfaces which have

10



a potential V applied. The charge @) on a plate is then given by [33]
Q=CV, (2.5)

where C'is called the capacitance of the system in question, which for parallel plate

capacitor considered is given by

gogr A

C
d Y

(2.6)

where g is the permittivity of free space, and of course ¢, is still the permittivity of
the material relative to the permittivity of free space (i.e., the relative permittivity).

The susceptibility y in Eq. (2.4) is given by
X = ¢o(er — 1). (2.7)

The electric field for the parallel electrode geometry just described has magnitude
E =V/d, and the magnitude of the electric displacement field D of the material is
given by D = /A, then Egs. (2.5) and (2.6) can be rewritten as

D = ¢y, E = ¢oE + xE. (2.8)

This relation is valid for any geometry and is true for linear media.

So far the focus has been on the polarisation yE of the material if we apply a
static electric field where the frequency f = 0. Suppose now that the static field is
replaced with an electric field that oscillates with an angular frequency w = 27 f,

then the formula for the polarisation becomes
P(w) = x(w)E(w), (2.9)

where E(w) = Eqe™'. Hence the polarisation P(w) is now dependent upon the fre-
quency of the electric field (ac field). If we have our material in thermal equilibrium
without an applied electric field, and we were then to suddenly apply the electric

field, what we would observe is the alteration in the net dipole moment density as

11



discussed earlier. However, this change in the internal arrangement of positive and
negative charges is not instantaneous. What happens instead is that it will evolve
according to some equation of motion appropriate to the type of charges and dipole
moments that are present. Therefore there is a time period required before the
system can reach equilibrium with the applied field. Formally this time will tend
to infinity (equivalent to an ac frequency of zero), but to all intents and purposes
it can be assumed that the system reaches equilibrium fairly rapidly after some
relevant time scale, 7, with the polarisation approaching the static value P = P(0)
for t > 7. What if then the electric field reverses sign before equilibrium is reached,
such reversal occurring in an ac field at a time ¢ = 1/2f7 In such a scenario, it would
be clear that the polarisation will not have reached its equilibrium value before the
field is reversed, thus P(w) < P(0) and x(w) < x(0). As such the frequency depen-
dence of the dielectric susceptibility x(w) is determined via the equation of motion
which governs the evolution of the ensemble of electric dipole moments following
excitation. Generally speaking, x(w) may be expressed as a complex function with
a real component x'(w), which defines the component of P(w) that is in phase with
the applied ac field Eycos(wt), and an imaginary component —x”(w) defining the

component which is 90° out of phase. The conventional form is given by [2, 33, 34]

X(w) = X'(w) = ix"(w). (2.10)

X' (w) corresponds to the net separation of charge with the dielectric in the form of a
macroscopic capacitor. x”(w) also determines the real component of the polarisation

current density in phase with the electric field, i.e., J,y(w) which is [33]

Jpor(w) =x" (w)wEp cos(wt)

=0 a0 (w)Ey cos(wt), (2.11)

where x”(w)w = o4¢ is the contribution to the ac conductivity that occurs due
on account of the polarisation response to the electric field. From Joule’s law for
the dissipation of power thermally by an electric current (P = IV), it is evident

that (1/2)x"(w)w(Ep)? is the dissipated power per unit volume as a result of the
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generation of a net polarisation by the electric field, in other words, the power
dissipation density. Thus, x”(w) is often called the power dissipation component,
which arises due to the work that the electric field has to exert on the dielectric so
as to produce a net dipole moment density. A part of this energy is stored in the
charge separations, and can be recovered in a manner similar to how elastic energy
stored in a spring can be recovered. The remaining energy however which is used to
overcome the friction which goes against the establishment of the net dipole density,

cannot be recovered, is dissipated in the dielectric.

2.2 Linear Response Theory and Dielectric Re-
laxation

Linear response theory [35] is of fundamental importance to the calculation of the
time behaviour of statistical averages from microscopic evolution equations such as
the Langevin or Fokker-Planck equation in order to obtain the linear response of a
system to a weak applied stimulus. When talking about dielectric relaxation, we are
interested in the linear approximation in a small applied electric field. The origin
of the response is due to the permanent dipoles existing in many molecules (e.g.
H,0) due to the asymmetry of their structure. Moreover atoms exist which while
not possessing a permanent dipole moment, have ion pairs which will also act as
dipoles. Thus an ensemble of permanent dipoles can also exist in such a system
and will obey the laws of statistical mechanics. However, the orientation of the
permanent dipoles in this system in the absence of an electric field will be random,
effectively leading to the net dipole moment of system being zero as discussed ear-
lier in the thesis. However, the description of the thermodynamic ensembles is done
through the use of distributions that allow for fluctuations about the defined average
values. For example canonical ensembles allow for fluctuations in energy about a
defined average energy content, and grand canonical ensembles allow for fluctuations
in the number of effective units. With regard to dipole responses, we are observ-
ing fluctuations involving the orientations of the permanent dipoles, leading to the

formation of a net dipole moment density. As mentioned earlier, the application of
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an electric field to the system leads to the coupling of the permanent dipoles to the
field, whereby a torque applied to the dipoles tries to align them with the electric
field vector at the lowest energy position. This results in an increase in the popu-
lation of the permanent dipole fluctuations with a component oriented in the field
direction in comparison to the ones having components oriented in other directions.
Hence we have a net dipole moment density driven by the frequency of the electric
field [36]. For example we will presently show how the after-effect (i.e., the time
behaviour following the removal of a dc field) and alternating field solutions of the
Smoluchowski equation for the rotational Brownian motion of electrical dipoles can
be obtained. Moreover these can be related via a method given by Scaife [18, 37]
which is also presented in detail in Section 2.8 of the book “The Langevin Equation:
With Applications to Stochastic Problems in Physics, Chemistry and Electrical En-
gineering” [2]. In addition we will further expand upon and explain the individual
steps of Section 2.8 of [2] in order to illustrate the procedure which will be utilised
later in the thesis.

Consider a causal, linear time-invariant system, with input x(¢) and output y(¢).
Let h(t) and a(t) denote the impulse and unit-step responses respectively. These

functions are related by

a(t)=u(t)*h(t), (2.12)

where * denotes the convolution operator and u(t) denotes the unit step function.
Using the commutative property of mathematical convolution, we can rewrite Eq.

(2.12) in the opposite manner as

a(t) =h(t)*xu(t)

- / TR ult— 1)t (2.13)

o0

We note that the impulse response h (t) = 0 for ¢ < 0, which means the integral can

be rewritten as

a(t) = /OOO h(t)u(t—t")dt'. (2.14)

Since the shifted unit step function u (t —¢') = 0 for ¢ > ¢, the integral may be
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written as
t
oft) = [ ne)dr. (2.15)
0

The response y(t) to the input x(t) is obtained by convolving z(t) and h(t)

y(t)z/_ooa:(T)h(t—T)dT:/ z(T)h(t —71)dr, (2.16)

[e.e] —00

since h(t —7) = 0 for 7 > t. As mathematical convolution is a commutative

operation, we may also obtain y(t) by convolving h(t) and z(t)

y(t):/OOh(T)x(t—T)dT:/Oooh(T)x(t—T)dT, (2.17)

—00

since h(7) is causal. If z(t) = 0 for ¢t < 0, then

y(t):/ox(T)h(t—T)dT:/O h(r)z(t —7)dr (2.18)

h(t) = %a (t), (2.19)
we can rewrite Eq. (2.18) as
y (1) = /0 d‘;(:)x (t— 1) dr. (2.20)

If we consider at time ¢ = 0 a unit electric field applied to a dielectric body, an
electric dipole moment a(t) will be induced on the body. The unit step response a(t)
is then called the response function of the body. Let m(¢) denote the instantaneous
dipole moment of the body. The response to Egu(t), where Ej is a constant vector
and wu(t) is the unit-step function, is m(t) = Eqa(t). The response to the field being
switched on at time ¢ = 0 is called the rise transient. It can be postulated that
when the field is switched on, there is no instantaneous response, so that a (0) = 0.
Since the system is time-invariant, the response to Egu(t — tg) is Epa(t — t¢) where
to is a constant. Ega(t — tg) is the response of the body to the electric field being

switched on at time t = ;.
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We shall now consider the case where the electric field is switched on at time
to = —00, E(t) = Equ(t — (—o0)) = Equ(t 4+ 00), m(t) will be equal to Eqa(t + co).
For t > 0 we have m (t) = Ega (c0). If the field is switched on at time ¢ = —oo and
switched off at time ¢t = 0, we have E (t) = Eq [u (t + 00) — u ()] and the response
m(t) for t > 0 is equal to Eq [a (00) — a (t)]. The after-effect function b(t) is defined

by the relation
b(t) = B (2.21)

therefore m (t) = Eqb (¢) for ¢t > 0.
By superposition the (linear) response of the body to a time-varying field E(t)

that is zero for ¢t < 0 is

T

t
d
m (1) = / B(t—7) *a(r)dr (2.22)
0
Consider now the a.c. response where E(t) is expressed as

E,, cos(wt), t >0,

E(t) = (2.23)
0, t <0,
such that
m(t) = /0 E(t—71) %a (1)dr = /o E,, cos (w(t — 7)) %a (1)dr. (2.24)

Using the trigonometric identity cos(u —v) = cos (u)cos (v) + sin (u) sin (v) Eq.

(2.24) can be rewritten as

m (t) = /0 E,, [cos (wt) cos (wT) + sin (wt) sin (wT)] %a (1) dr, (2.25)
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which can be split into two integrals

m(t) = /0 E,, cos (wt) cos (wT) %a (1)dr + /0 E,, sin (wt) sin (w7) dia (1)dr.

-
(2.26)
Taking the constants out from the integrals we obtain,
t t
m (t) = cos (wt) Em/ cos (wT) da <T)d7+sin (wt) Em/ sin (wT) da (T)dT. (2.27)
0 T 0 T

If t becomes very large, da(7)/dr becomes negligibly small for 1 < ¢ < 7 < 00, thus

the integrals

/too dc;(:) cos (wT) dr and /too dc;(:) sin (wT) dT, (2.28)

become negligible as well and so we can write

m (t) = E,,a’ (w) cos (wt) + E,” (w) sin (wt) (2.29)

where
o (w) = /OOO dC;TT) cos (wT) dr, (2.30)
o’ (w) = /000 dC;E_T) sin (wr) dr. (2.31)

The complex polarisability a (w) = o (w) — ia” (w) can now be defined as

a(w) = /000 dczb(ft) cos (wt) dt — i/ooo dih(f) sin (wt) dt

= /OO da (t) [cos (wt) — isin (wt)] dt. (2.32)

dt
Using Euler’s formula, we can rewrite this as

da (t)

= OO—*Mdt. 2.33
atw) = [~ e (2.33)

The derivative of the after-effect function b(t) in Eq. (2.21) with respect to t is given
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by
db(t)  da(t)

= 2.34
dt dt -’ ( )
which we can substitute back into Eq. (2.33) to get
*db(t) _.
a(w) = —/ ie‘“‘”lit. (2.35)
T

We can observe from Egs. (2.30) and (2.31) that o* (—w) = o/ (w) + ia” (w), where
* denotes complex conjugate. Evaluating Eq. (2.35) through integration by parts

/uv' = uv — /u’v, (2.36)

and letting v' = db (t)/dt and u = e~ we get

where the formula is

< db(t) _,, it |0 Py
/0 € tdt = b(t)e t’() —/O —iwe b (t) dt

=1[0—0(0)] +iw /Ooo e ™ (t) dt

=—b(0) + iw/ e ™' (t) dt, (2.37)
0
which we substitute back into Eq. (2.35) to get
a(w) =b(0) —iw / e ™ (t) dt. (2.38)
0

Dividing both sides of Eq. (2.38) by b(0), we get

a(w)

=1—iw / R (t) e ™dt, (2.39)
0

as

where R(t) = b(t)/b(0) and oy = o/ (0) = b(0) is the static polarisability. The
alternating and after effect solutions are connected by Eq. (2.39) on the condition
that the response is linear.

In Eq. (2.39), aj is closely connected with the dissipative part of the frequency de-

pendent polarisability o’ (w). The proof for this comes when we utilise the Kramers-

18



Kronig dispersion relations [30].

) 2, [ d" (ppdu
e e] /
o' (w) = 2p M, (2.41)
T 0 w2 — MQ

where P indicates that the Cauchy principal value [38] of the integral is to be taken.
In Eq. (2.40), let w = 0, since w and pu are interchangeable we get

as =a'(0) = 2 /OOO M, (2.42)

™ W

which gives a fundamental link between the equilibrium and the nonequilibrium
properties of the body and gives a demonstration of one of the most fundamental the-
orems of statistical mechanics, called the fluctuation-dissipation theorem [35,39,40].
The latter is explained through the use of Scaife’s method [18,37] as presented in [2].
The static polarisability of a dielectric body can be given by oy = (M?)o/3kT, where
(M?)y = (M-M), is the ensemble average of the square of the fluctuating dipole mo-
ment M of the body in the absence of an external field [30]. It would be opportune
at this point to briefly talk about what is called the ergodic (energy path) hypothesis
as is described in detail in [2]. Maxwell and Boltzmann [41] hoped to justify the
methods of statistical mechanics through showing that the time average [42] of any
quantity pertaining to any single system of interest should agree with the ensem-
ble average for that quantity calculated from statistical mechanics. The postulate
leading to this conclusion was called the ergodic hypothesis by Boltzmann, and by
Maxwell was called the assumption of continuity in phase [2]. It states that the
phase point for any isolated system should pass in succession through every point
compatible with the energy of the system before finally returning to its original po-
sition in phase space. Note that in the form postulated by the founders of statistical
mechanics, this is not strictly true (see pages 63 - 70 of [43]). Consequently, when
calculating average values one has to distinguish between an ensemble average and a
time average. However for a ergodic process where by definition all time dependent
averages are functions only of time difference, in other words the basic mechanisms

underlying the process do not change with the course of time, these two methods of
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averaging will always give the same result. For example, consider the autocorrela-
tion function (ACF) C,(7) = z(t)z(t + 7) which we define as the time average of a

two-time product over an arbitrary range time 7" [2]

Cor) = Tim — [ a()n(t + )t (2.43)

T'—o00 T" _ T
2

where for the cases of negative values for 7, it is to be interpreted as |7|. Ergodicity

therefore means that for a stationary process where

z(t)x(t+71) =x(t)x(t — 1), (2.44)

we may also consider ensemble averages where we simultaneously repeat the same
measurement for all copies of the system [44] and calculate averages which yields a

result identical to that seen in Eq. (2.43), i.e.,
(x(t)x(t+ 7)) = z(t)z(t + 7). (2.45)

So now through the ergodic hypothesis we get [2] (applying it to dipole moments)

TI

1 2
(M) = lim / © M) - Mty (2.46)

then we write the Fourier transform pair
~ o0 ) 1 oo )
M(w) :/ M(t)e ™' dt, M(t) = 2—/ M (w)e™!dw. (2.47)
oo T J) oo

Through inserting Eq. (2.47) into Eq. (2.46), we obtain from Parseval’s theorem [42]
and the ergodic hypothesis [2]

1 [e.@]
(M?)g = —/ M(w)dw, (2.48)
2m J_ o
where since M(?) is a real causal function of time

M(w) = lim —|M(w)|?, (2.49)



is the spectral density of the fluctuations in the dipole moment M(¢). Note that
M(w) is an even function of w. From Eqgs. (2.42) and (2.48) we get

2 [ a" (w)dw 1 e
s== = M(w)dw, 2.50
“ 7r/0 w 37TkT/O () (2.50)
whence
6kTa" (w) = wM(w). (2.51)

Effectively, the dissipative part of the frequency-dependent complex polarisability
and the spectral density of the spontaneous fluctuations in the dipole moment of the
body at equilibrium have been related to one another. The autocorrelation function

(ACF) of the dipole moment is the time average of M(t') with M(¢' + ¢) given by
2
Cn(t) = lim — M(t") - M(t' + t)dt'. (2.52)
However, we have also the Wiener-Khinchin theorem [2] which states that the ACF

and the spectral density are each other’s Fourier cosine transforms, therefore with

Eq. (2.51) we get

1 o.9] T o0 7
Cn(t) = —/ M(w) cos(wt)dw = OKT () cos(wt)dw, (2.53)
T Jo ™ Jo w
so that on inversion
" w >
= — t dt. 2.54
o (w) T, Chn(t) cos(wt) (2.54)

From Egs. (2.39) and (2.54), we thus have since b(t) = C,,,(t)/(3kT)

alw) = SkLT [(M - M)y — iw /OOO<M(t’) Mt +t))oe “dt| , (2.55)

where the subscript zero denotes that the average is to be evaluated in the absence
of the driving field (at the equilibrium or stationary state). This is the Kubo relation
[35] and the generalisation of the Frohlich relation [30] to the dynamical behaviour

of the dielectric.
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We find that there are many situations where (M(0))o will not vanish, where
for example if the dielectric is in equilibrium under the action of a steady d.c. field
and that field is then altered by a small perturbation to maintain linearity of the

response. Here the normalised ACF C,,(t) and static polarisability a; are defined

(M(0) - M(t))o — (M(0))3
= ey, - M) 20
and
(M2(0))o — (M(0))5
= 35T : (2.57)
So now Eq. (2.55) can be rewritten as
O‘S’) = 1w / e (b)ett. (2.58)

The basic results of linear response theory have been illustrated here via its applica-
tion to dielectric relaxation of a system of electric dipoles. However, linear response
theory can also apply to many other phenomena, where knowledge of the linear
response of a system to a weak external force is required [35,45,46]. In particu-
lar all of the above results can be modified to magnetic relaxation of a system of
magnetic dipoles, where the main quantities of interest are the magnetisation, its

characteristic relaxation times, and complex magnetic susceptibility.

2.3 History of Research in the Dielectric Response

In the context of this thesis, it is expedient to briefly highlight the historical re-
search and results in the theory of the static and dynamic dielectric response of polar
molecules over the past decades, starting with the work of Debye [1,3], then Kirk-
wood [47], Frohlich [30], and Budé [15,16] (Note that in the Appendix of Chapter 2
of the thesis, we have provided an English translation of the paper, “Anomale Dis-
persion und freie Drehbarkeit, “ Physik. Zeits., vol. 39, p. 706, 1938 by A. Budé [15]).
Upon doing so we can then discuss the more recent advances which have been made
in the analysis of anomalous relaxation. An overview of the classical theory of the

dielectric response of an assembly of polar molecules is provided by Coffey [48].
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2.3.1 The Debye Theory of the Static Permittivity

Following Langevin’s treatment of paramagnetism in 1905, Debye was the first in-
vestigator to give a relation between the static susceptibility x, of a polar substance
and the permanent dipole moment p of a molecule of the substance.

We select from a macroscopic specimen of dielectric of relative permittivity e,
e.g. the dielectric material between the plates of a capacitor as seen in Figure 2.2,
a spherical region which is large enough to have the same physical properties as the

macroscopic specimen.

SPHERICAL
REGION

'

Figure 2.2: Spherical region in a dielectric sample. (aft. [49])

A constant negative potential gradient is then produced within the macroscopic
specimen via a battery which will influence a dipolar molecule inside the spherical
region in two ways. First it will perturb the rotational motion of the molecule and
cause it to have a preferred orientation in the direction of the imposed potential
gradient. Secondly it will enlarge the dipole moment of the molecule via elastic
displacement of the constituent charges. The induced dipole moment is denoted by
af, where « is the polarisability of the molecule and f is the field which acts on the

molecule due to all sources except the molecule itself. Furthermore, the total dipole
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moment of a molecule of the substance may be written as follows:
m = u + af, (2.59)

where p is the permanent moment of a molecule when isolated. Suppose now that

the molecules are isotropic, then « can be obtained via the relation [50]

o — 3V (e —1
4N \e +2)]
4 .V
—WG—N,

(2.60)

where (4/3)ma? is the mean volume per molecule, N is the number of molecules in the
sphere, V' is the potential, and e, is the relative permittivity at optical frequencies,
which means frequencies where the orientational mechanism of polarisation has
ceased to operate. Using the preliminaries presented in Figure 2.3, Debye’s formula
can be derived by assuming that the density of the polar substance is so low that the
dipolar interaction energy can be considered negligible in comparison to the mean
thermal energy which is of the order of the thermal energy kT per molecule, where

kT is equal to 4.2 x 10721 at room temperature.

y

Figure 2.3: Notation for molecule with permanent moment p in presence of E.
(aft. [49])
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The assertion above implies that the local field acting on any molecule within
the specimen is entirely due to sources external to the sphere. It also implies that

the susceptibility y of the substance is small. Therefore, in mathematical terms
f=E, (2.61)

where E is the uniform negative potential gradient existing in the specimen and
es—1 < 1. If each of the N molecules of the sphere carries a dipole of instantaneous

moment m;, then the total instantaneous dipole moment of the sphere, M, is

N
M=) m;, (2.62)
=1

which implies that m; is the vector sum of the dipole moments of the molecules of
the sphere. The derivation is explained in more detail in Section 3.1.3 of the book
“Molecular Dynamics and the Theory of Broadband Spectroscopy” [49] where the
total susceptibility y, of a polar substance is given by Eq. (3.1.3.14) as

2

— N[
Xs =N (%T + a) (2.63)

where n = N/V is the molecular number density.

2.3.2 The Debye Theory of Dielectric Relaxation

In 1913, Debye [3] in order to treat time dependent fields (as alluded to in the
introduction) applied the Smoluchowski equation to the dielectric relaxation of an
assembly of polar molecules, which were each conceived of as a rigid body rotating
about a fixed axis, with the only interaction being due to the external applied
field with the individual dipoles imagined to be rigid Brownian rotators. Later
he extended the theory to rotation in space where the appropriate Smoluchowski
equation is

ow 10 1 0 ov 1 0 ov
8t = DRAW+ g |: a— <SIHQ9W 819> Sm%?% (W@)] s (264)
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where Dp = kT/C is the rotational diffusion coefficient, ¢ = 8mna® is the viscous
drag coefficient on a spherical rotator, n is the viscosity and a is the radius of the

t

spherical Brownian particle. A spatially uniform field E,,e*" is applied along the

polar axis so that the potential V' is

V(,t) = —u-E(t) = —pE,e™" cosd. (2.65)

Eq. (2.64) represents the random walk of the tip of the dipole vector p on a sphere
of constant radius || in the diffusion limit where a dipole undergoes a small angular
displacement A in an infinitesimal time 7 (Einstein’s hypothesis). Solving Eq. (2.64)
in the linear approximation in the field parameter (§ = pFE,,/kT < 1) yields the
mean dipole moment of a sphere which contains N molecules

N2 E,et

Niu-e)l =N = L 1. 2.
(1-e) = Nyufeosv) =zl = — ¢ < (2.66)

Thus the mean dipole moment lags behind the applied field by an angle tan=! wrp
and is reduced in amplitude by the frequency dependent factor 1/ m . The
quadrature part of Eq. (2.66) exhibits a pronounced maximum at w = 1/7p where
Tp = (/2kT is called the Debye relaxation time and the drag coefficient ¢ is cal-
culated from Stokes’ law for the viscous drag torque on a rotating body in a liquid

with the assumption that it can be applied to molecules so that
¢ = 8mna®, (2.67)

where 7 is the viscosity and a is the radius of the spherical Brownian particle.

The Debye theory was later extended to the non-linear response to an applied a.c.
field by Coffey and Paranjape [51] and the non-linear behaviour was experimentally
verified by Jadzyn et al. [52]. So effectively, the Debye theory applies [30] when we
have the following conditions:

1. A dilute solution of dipolar molecules in a non-polar liquid.

2. Axially symmetric molecules - Perrin later generalised to ellipsoidal molecules

53, 54].
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3. Isotropy of the liquid, even on an atomic scale in the time average over an

interval, is small compared with the Debye relaxation time 7p.

2.3.3 Onsager’s Theory of the Relative Permittivity of Dipo-
lar Fluids

The static Debye formula (seen in Eq. (2.63)) due to the assumptions made in its
derivation, holds only for polar gases at low densities thus it cannot be applied to
liquids with any accuracy. Onsager was the first to successfully calculate the static
permittivity of a polar liquid. One of the consequences of the assumption that the
interaction energy of the molecules could be neglected in comparison to the mean
thermal energy was that the local field acting on the molecule was equal to the
negative potential gradient (field) imposed on the dielectric. This assumption was
modified by Onsager to account for the effect of the surroundings of a molecule on
the local field at a molecule. The model used by Onsager can effectively take into
account the long-range dipolar interaction, which is a component of the molecular
interaction. To calculate the static relative permittivity of the liquid in question,
Onsager made use of a model which was originally proposed by Bell [55] for a
spherical dipolar molecule. The model consists of a point dipole situated at the
centre of an empty spherical cavity in a continuous dielectric with permittivity
equal to the bulk permittivity ¢, of the dielectric. The model is shown in Figure
2.4.
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Figure 2.4: Onsager’s model. (aft. [49])
The radius of the cavity is defined by the relation
4
gwnag =1, (2.68)

where n is the molecular number density. Therefore, the volume of the cavity is
defined as the the volume available to each molecule. However the field of the dipole
in the cavity polarises its surroundings. This polarisation of the surroundings leads
p to induce a homogenous field in the cavity which is referred to as the reaction
field R. Since the cavity is spherical, R has the same direction as u. If the dipole
is polarisable and possesses a polarisability «, then the reaction field polarises the
dipole and therefore alters the dipole moment. Onsager’s assumptions for the theory

are succinctly stated by Frohlich [56] as follows:

1. A molecule occupies a sphere of radius a, its polarisability is isotropic and
no saturation effects can take place.

2. The short-range molecular interaction energy is negligible in comparison to
kT.

The second assumption means that the surroundings of the molecule are treated

as a continuous dielectric of relative permittivity e, equal to the bulk relative per-

mittivity of the liquid because only long range forces are considered. In order to

describe Onsager’s formula, it will be convenient to imagine the dipole with its cav-

ity of radius a to be placed at the centre of a very large dielectric sphere of outer
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radius b and relative permittivity e, (see Figure 2.5).

Figure 2.5: Dipole in a spherical cavity. (aft. [49])

The field within the cavity of this sphere upon being subjected to both a uniform
external field Eq, which is parallel to the Z-axis, and to the field of a polarisable
point dipole m, which is situated at the centre of the cavity and making an angle

with the Z-axis consists of a uniform field given by [18,57]

9esEoc 2(es— 1) mc
fF—Q4+R = 2.
i (2e5 + 1)(es + 2) - (25 + 1) dmegad’ (2:69)

where G is referred to as the cavity field because if a macroscopic uniform negative
potential gradient Ey is imposed on the dielectric through external sources, then
a calculation in electrostatics shows that the field G in an empty cavity in the

dielectric will not be equal to Eq. R is the reaction field due to m [49]. Note that

2(e, — 1)%a®
bi(es +2)(2es + 1)

cl=1- (2.70)

The details of the derivation are again presented in the book [49] in Section 3.1.6

where Onsager’s equation reads as

3¢, to+2\° N 2
s — Eo) = . 2.71
(8s — o) (255+5oo)< 3 ) Vo 3kT ( )
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2.3.4 Frohlich’s Theory

Kirkwood obtained a general formula for the relative permittivity of a polar liquid
by treating the interactions between the molecules of a large sphere of dielectric by
the methods of classical statistical mechanics. In this thesis, the results of Kirkwood
will be presented in the manner of Frohlich, who gave general expressions for the
relative permittivity of any substance that is not permanently polarised. Frohlich’s
general expression for the relative permittivity of a polar substance may be derived
through again taking a very large sphere, and selecting from it a smaller sphere of
radius a. This small (but still macroscopic) sphere is such that it’s just large enough
to have the same properties as the large sphere, while at the same time must be far
removed from the boundaries of the large sphere. Therefore if b is the radius of the
large sphere, then the ratio (a/b)® < 1. The inner sphere is treated on a discrete
basis, whereas the surrounding shell is treated as a continuous dielectric medium.
It is assumed that this system consisting of the inner sphere and its surrounding
shell obeys the laws of classical statistical mechanics.

We suppose that the inner sphere contains charges and denote the it charge by
e;. In any given energy state of the system, other than the ground state, all the
charges of the system are displaced from the positions they occupied in the ground
state. The displacements of the charges in the inner sphere are collectively denoted

by X, which is the set
{ry, eyt = {r (2.72)

and r; is the displacement of the i** charge. If it is assumed that the dipole moment
of the substance vanishes in the lowest energy state, then the dipole moment of the

inner sphere when its constituent charges undergo a set of displacements X is
N
M(X) =) er;. (2.73)

=1

An atom or molecule contains several elementary charges. Through following Frohlich,

we term an atom or a molecule a cell and label such a cell j. If the cell j contains
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s elementary charges, they are then denoted by the set

{ejntimr (2.74)

then the collective displacements of these charges are denoted by the set

m(x;) = Zejkrjk, (2.75)
k=1

and the total dipole moment of the inner sphere is

M(X) = Z m(x;) = Y el (2.76)

k=1

The rest of the derivation is explained in Section 3.2 of [49], where the final result

is presented in Eq. (3.2.15) as

(65— 1) = (251 1) (U—;) %20. (2.77)

This equation is a perfectly general result as it expresses the permittivity of the

specimen in terms of the mean square fluctuations (M?), in the instantaneous dipole
moment M(X) of a spherical (macroscopic) specimen of the dielectric embedded in
a large volume of the same dielectric. These fluctuations in the instantaneous dipole
moment are the total fluctuations in the dipole moment from all causes, because in
a dielectric several mechanisms of polarisation may be operative. Refer to Section

3.2 of [49] for more details.

2.3.5 The Kirkwood-Frohlich Equation

This equation provides a general expression for the relative permittivity of liquids
which consist of polar molecules which possess a permanent dipole u and a polaris-
ability a which is given by the Lorenz-Lorentz relation, which means that the effect
of a is accounted for by considering the liquid as a continuous dielectric of relative
permittivity ., in which are embedded dipoles with permanent dipole moments p.

In order to derive this equation, following the methodology of [49], we consider a
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cell 7, (this is discussed in more detail in Section 3.2.3 of the book [49]) such that
it contains just one dipolar molecule, leading to the moment m of the cell being p.

Hence, the orientations of the dipoles are then the only variables. We define
m" = p* (notation used in [49]), (2.78)

where p* is the average moment of the sphere when the dipole u is held in a fixed

orientation. If

(m-m®)o = (- 1o, (2.79)

then in a liquid without an applied field all dipolar interactions are equivalent and
(W-pho=p-p, (2.80)

so that with Eq. (3.2.3.15) in [49] we have

3es [ +2\° [/ N\ p
s — Coo — — (1 s 2.81
s T fo T o +5OO( 3 ) (v50> 3k:T( + 2 {cos ) (2:81)

where z is the average number of nearest neighbours and (cos~) is the average of
the cosine of the angle between neighbouring dipoles. More often the equation is

written as follows

€s — €oo

3e, <5oo +2

2
N 2
= - 2.82
265 + €co 3 )vaogu”’ ( )

where ¢ is the Kirkwood correction factor written as:

g=1+4z(cos7). (2.83)
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2.3.6 Generalisation of Frohlich’s Equations to the Frequency-
Dependent Case

The concept of the autocorrelation function (A.C.F), which as we saw earlier is the

time average M(t) with M(t 4+ t') or M(¢ — t'), that is

Co (£) = M(t') - M(t + ) = M(t — t') - MI(1/). (2.84)

Through the use of the Wiener-Khinchin theorem (details in [49]) we have Frohlich’s

relation for the frequency dependent case viz.,

a(w) :3/% (W — W /OOO M(#) - M(t + t’)e“tdt>
:%LT {(M ‘M), — z’w/ooo (M(t) - M(t—i—t’»oei”tdt} : (2.85)

This is often called the Kubo relation, and is the generalisation of the Frohlich
relation
(M?),

_ o 9.
VYA (2.86)

to cover the dynamical behaviour of the dielectric.

2.4 Budéd’s Treatment of Dipole-Dipole Coupling

We have discussed the limitations of the simple dynamical theory of Debye in ex-
plaining the complex susceptibility of polar fluids at low frequencies (GHz) in the
introduction, more specifically the fact that virtually all interactions between the
dipolar molecules are ignored. The sole exceptions are the Brownian torques due
to the bath and the interaction between a typical dipole of the polar assembly and
the applied external field. Here we shall describe how Budé [15,16], addressed the
neglect of interactions by showing how the results of the original Debye theory valid
in the non-inertial limit are modified for assemblies of non-interacting molecules
containing interacting rotating polar groups. This was published as a full paper in
the Journal of Chemical Physics [16].

The Brownian motion model used by Budé is shown in Figure 2.6
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Figure 2.6: Geometry of the problem. Notation for Euler angles is that of Landau-
Lifshitz. (aft. [58])

He supposes that the dielectric consists of an assembly of dipoles that do not inter-
act with each other electrically, with only internal dipole-dipole coupling between
the members 1 and 2 included. From this can be written the Smoluchowski equa-
tion for the variation in configuration space of the probability distribution function
f (0,01, p9,t) which is associated with the orientation of the molecule under the
influence of a time varying electric field. Following Budé, it shall be supposed that
the molecule consists of two groups of equal size with common rotational axis, which
is marked 1 in Figure 2.6. The coefficient of friction arising from the thermal energy
of the surroundings acting on the molecule as a whole he denoted as (, which leads
to (1 denoting rotations about axis 1, and (, denoting rotations about axis 2. The
components of the dipole moments of the group perpendicular to the molecular axis
(axis 1) will be denoted by py, u, respectively and p, denotes the components of the
dipole moment in the direction of axis 1. We shall obtain the simplest form of the
theory through assuming that p, = 0. In the light of the above assumptions, along
with the coordinate system presented in the figure, one can obtain the Smoluchowski
equation for the variation in configuration space of the distribution function f for

a time t after the sudden removal of unidirectional electric field of magnitude F,
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which had been steady up to the time t = 0. The equation is presented as follows

(a detailed derivation is given in the Appendices)

OF _*T {ﬁ + cot Ga—f + (cot29 + £> <62f + 82_f> + 2(:ot2(9aai

ot ¢ |02 00 ) \0p?  0p3 0109
0 (fsinf 8V) 0 <fsin0 8V)
+ + . 2.87
9, < G 0p) TPm\ G o (2:87)

Here, fsinf@dfdydpdes = fdS2 refers to the number of molecules of dipole mo-
ments p; and p, in the domain €, Q + d€) at time ¢, 6 and v are the polar angles
which specify the direction of the molecular axis relative to that of E, and ¢ and ¢
are the azimuthal angles of pu; and p, measured from the plane which contains the
axes 1 and 2. Note that f has no dependence on the angle ¢ due to the rotational
symmetry about axis 1. V (p; — p2) = V is the mutual potential energy of the
dipoles p; and p, due to dipole-dipole coupling. It should be noted at this point
that the Eq. (2.87) in the way it is written has the assumption that the only portion
of the dipole-dipole interaction taken into account is that between the groups 1 and
2, meaning that we only take into account the coupling between pairs of dipoles.
If this were not done, then one would be forced into considering an intractable
many-body problem.

The principal result of his investigation is that including dipole-dipole interaction
between two groups in a given molecule gives rise to a discrete set of Debye-type
dipole relaxation mechanisms. In the book “Molecular Diffusion and Spectra” by
Coffey, Evans and Grigolini in Section 3.2 [8], it is shown how this equation can
be solved for the relaxation mechanisms of the dipoles and how the problem of
calculating the relaxation times and so on may always be reduced to the solution of
a Sturm-Liouville problem. The summary of the main features of Budé’s treatment
is as follows [§]:

1. The analysis only takes into account the coupling between pairs of dipoles
in a rotating group. Note that the groups are not supposed to interact with
one another.

2. The potential depends only on the relative longitudes of the dipoles.

3. It seems that the effect of dipole—dipole coupling always leads to a denumer-
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able set of relaxation times and a corresponding denumerable set of relaxation
mechanisms.

4. Both dipolar autocorrelation and dipolar cross-correlation functions con-
tribute to the polarisation.

5. In the situation where the dipole-dipole coupling is very strong, the cou-
pling torque Bsin2n , where B is constant, may be replaced by 2Bn to give
closed-form expressions for the dipolar auto-correlation and cross-correlation
functions.

6. Because the theory is based on the Smoluchowski equation, it excludes iner-
tial effects, so that it is invalid at high frequencies.

7. The solution to calculating the relaxation times, etc. can always be reduced
to a Sturm-Liouville problem.

8. The harmonic approximation potential yields a much narrower set of relax-

ation mechanisms than the cosine one.

The principal result that including dipole-dipole interaction between two groups in
a given molecule yields a discrete set of Debye-type dipole relaxation mechanisms
was further corroborated by that of Zwanzig in 1963 [17, 18] who studied, in the
non-inertial limit, the complex susceptibility of an assembly of permanent dipoles
coupled by dipole-dipole interactions and arranged on a simple cubic lattice. More

details on the Smoluchowski equation will be provided in Chapter 4 of the thesis.

2.5 Anomalous Diffusion and Anomalous Dielec-
tric Relaxation

It is opportune to briefly discuss the phenomenon of diffusion, which is generally
described as the net movement of (e.g. atoms, ions, molecules) from a region of
higher concentration to a region of lower concentration. Thus, it is driven by a gra-
dient in concentration which falls into one of two categories, normal and anomalous
diffusion. Normal diffusion processes are often described as resulting from micro-
scopic random walks with independent and identically distributed steps, where the

distribution of step sizes has finite variance and where a characteristic time between
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steps can be defined. Here, the central limit theorem [2] implies that the resulting
distribution of the particle positions, provided via the accumulated sum of steps,
converges to a Gaussian distribution. Hence, the mean squared displacement of
the particles which move in a one dimensional extension x scales linearly with time
according to [35].

{(z(t) — 2 (0))*) = 2Dt, (2.88)

where z(t) is the position of a particle at time ¢, D is the diffusion coefficient and () is
the ensemble average operation. Anomalous diffusion is likely to occur if one of the
conditions for the validity of the central limit theorem is violated, due to either the
occurrence of step distributions with infinite variance [59,60] or to the occurrence of
steps that are not statistically independent [61,62] as happens in disordered media.
The deviation from normal diffusion may be characterised by either a vanishing

(sub-diffusion) or a diverging (super-diffusion) coefficient [63]
N
D = lim — (2%), (2.89)

where (%) oc 2Dt* (asymptotically). With this formal statement, we can only define
anomalous regimes asymptotically, which leads to limited practical applications. An
alternative is to characterise an unknown diffusive process through expressing its
variance as a non-linear function of time, with a constant diffusion coefficient for a

fractional (or non-linear) diffusion equation, such that
(2*) = 2Dt*. (2.90)

With this generalisation, we can cover both sub-diffusion (o < 1) and super-diffusion

(v > 1) (see Figure 2.7).
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Figure 2.7: Mean squared displacement for different types of anomalous diffusion.

This expression has been applied to studies of both sub-diffusive [64-68] and super-
diffusive behaviours [69-72].

Anomalous diffusion allows one to model diverse physical phenomena in dense
systems or porous media. The mechanisms that underlie anomalous diffusion have
been explored extensively in the literature, including but not limited to, continuous-
time random walks [73-75], fractional Brownian motion [76,77], diffusion in disor-
dered media [2,78] etc.

It has been shown earlier how the Debye equation can successfully describe the
low frequency behaviour of the complex susceptibility, but we end up with the
situation where there are a number of amorphous materials which show significant
departure from Debye-like behaviour (in other words, we end up with anomalous
relaxation). As such there have been a number of empirical formulas which have
been used to describe the experimentally observed complex susceptibility. These

include the Cole-Cole formula [29]

- : C0<a<l, 2.91
X'(0) 1+ (iwrp)® ( )
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the Cole-Davidson formula [29]

x(w) 1
- L 0<o<l, 2.92
X'(0) (14 idwrp)e - (2:92)
and the Havriliak-Negami formula [29]
1
xw) _ . (2.93)

X'(0) (14 (iwrp)>)°

These three empirical formulas exhibit anomalous relaxation behaviour, and they
may also be regarded as arising from a distribution of relaxation mechanisms if we

suppose that the complex susceptibility may be written as

2.94
1+ 2wt ( )

RO /w f(r)

This superposition integral [29] embodies the idea that the dielectric behaves as
though it were a collection of individual Debye time mechanisms with relaxation

time 7 and distribution function f(7p). Clearly for the Debye equation [29]

fo(r) =d(r —7p), (2.95)

meaning that only one relaxation mechanism is involved, while for the Cole-Cole

equation
feo(r) = ki : (2.96)
T [(%)a + ()% + 2 cos 7TO(]
for the Cole-Davidson equation
(WT)_l(TTTD)_OSinWO, T < Tp,
fop(T) = ! (2.97)
0, T > Tp,
and for the Havriliak-Negami formula
oa « -1
(%) sin <0 arctan { [(%) + cos Wa] sin Wa}) ‘
fun(T) = : (2.98)

2a o %
7TT|:(L> +2<i) cosma + 1]
™D ™D
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Therefore, the anomalous relaxation behaviour may be characterised by a superpo-
sition of an infinite number of Debye-like relaxation mechanisms with the relaxation
times given by Egs. (2.95) - (2.98). It is important to investigate whether it is pos-
sible to derive these formulas from a microscopic model of the underlying processes
such as suitable adaptations of the Einstein theory of the Brownian motion under-
lying the work of Debye. If indeed it is possible to achieve this, it would constitute
significant progress in the theory as one then could include both the effects of the
inertia of the molecules and an external potential arising from crystalline anisotropy
or indeed any other mechanism. This topic has in part been investigated for the
Cole-Cole equation by Coffey, Kalmykov and Titov [2], who have shown that the
Cole-Cole equation may be derived from a kinetic equation based on the concept
of a continuous time random walk that is, a walk with a long-tailed distribution of
waiting times between the elementary jumps. This was later extended to include
both inertial effects and an external mean-field potential [2]. An overview of ad-
vances that have been made in the study of anomalous relaxation and the use of

fractional diffusion equations is given by Coffey [2,48].

2.6 Fractional Diffusion Equations

In order to generalise the various diffusion equations of Brownian dynamics for ex-
plaining anomalous relaxation phenomena, we exploit the fact that the temporal
occurrence of the motion events performed by the random walker is so broadly dis-
tributed that no characteristic waiting time exists [79]. The resulting equations are
called fractional diffusion equations since they generally involve fractional deriva-
tives of the PDF with respect to time. As an example, in fractional diffusion, the

diffusion equation for the Brownian motion of a free particle, (see Eq. (1.4.6) in [2])

0 KT\® 0?
8_{ = (T) @D}*O‘f, (2.99)

becomes
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where « is the anomalous exponent, the fractional operator (D} ® = 2 OD

Eq. (5.8) is defined via the convolution (the Riemann-Liouville deﬁnitlon) [79-82]

fﬂ t)dt’

t,la’

oD f( Q1) (2.100)

I'(a) denoting the gamma function [83]. In Eq. (2.99), if 0 < @ < 1 we have sub-
diffusion, if @ = 1 normal diffusion and if 1 < a < 2 super diffusion (o = 2 defines

the ballistic limit).
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Appendices

2.A Translation of “Anomalous Dispersion and
Free Rotation”, Physik. Zeits., 39, 706 (1938)
by A. Budé (Budapest)

In dispersion phenomena in polar molecules subjected to high frequency alternating
electric fields, the mean dipole moment can be found from the equation

,u2 Foeiwt
3ET 1+ dwr

(1)

m =

Here p is the magnitude of the dipole moment, Fj is the amplitude of the electric
field of angular frequency w and 7 is the relaxation time of a molecule. This result
only holds for a rigid dipole and therefore cannot be applied to molecules containing
rotating groups with their own embedded dipole moments.

However, one can following Zahn [1], divide molecules containing rotating groups
into two general classes: molecules where the axis of rotation does not change with
time and molecules where the rotating axis’s location changes with time. Here we
wish to deal with the first class based on elementary model considerations, namely
the case in which the axes of rotation of groups are directed parallel to one another.
We are only concerned with free rotation; therefore, we can disregard any inter-
actions between individual moments. Already electrostatic interactions between
dipoles in equilibrium under the influence of a constant field as treated by Meyer
2] have led to far reaching results.

In order to calculate the mean moment in a changing field, we must determine
the distribution function. Now in the equilibrium case the rotating groups will
have the Maxwell-Boltzmann distribution so that the mean moments are easily
determined in equilibrium. We think of both the fixed and the moving moment
of the molecule as being divided into two components: the component of the fixed
or moving moment in the direction of the axis of rotation is . or p.s and it is
Lo + Har = lq, the components in the plane perpendicular to the axis of rotation

are i, or ji.. If we draw rays parallel to g, s, pe for each molecule from the centre
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of the unit sphere, then we can characterise the directions of these moments by the
usual polar coordinates ¥, ¢, which determine the direction of y, relative to the field
strength, and by the angles of rotation ¢ and y, which indicate the position of
and pi., respectively, in the plane perpendicular to p,; ¢ and y are measured from

the plane ¢ (Fig. 1.).

Fig. 1.

We can now determine the distribution function in the familiar manner of Debye
[3]. In other words, we consider how the moments change their orientations in an
infinitesimal time 0t on the unit sphere. The number of molecules of moment p,
which had at time t orientations lying between (¥,1) and (9 + dv, ¢ + dv),
between ¢ and ¢ + dy, u. between y and yx + dy is fdV = fsinddddiydedy; and
this number changes with time both due to the Brownian rotational movement of
the molecules and also due to the imposed field. The first type of change (i.e.

Brownian) in the time interval dt is
—fdv + /f’dV’de,

where integration with respect to (the configuration space) volume element dV’
yields wdV the (element) of probability whereby a given moment system lying in
the element dV’ may be found at time t+6t in dV. When ' = f (¢, ¢, ¢, X', t) then

via (Taylor) series expansion of the integrand in the above expression (Einstein’s
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method) in powers of the increments
V' —d=208y, ¢ —p=A4, X -x=A4

and truncation at the quadratic terms in the increments (note that f for reasons of
rotational symmetry about the polar axis is independent of ¢ and that w is a p.d.f.

so that [wdV’ = 1), yields for the number of molecules at time d¢ in the volume

element dV
2 2 2
o f f o f
-+ AﬁA@aﬁa -+ AﬂAXaﬁa + A@AX&D—({)X . (2)

The mean values Ay, A_?g, AyA, are defined via the (usual Einstein) formulas
Ay = / AgwdV', A2 = / A2wdV', AyA, = / ApA wdV'

Next to determine the change in the number of molecules in the element dV in
a time interval ot due to the imposed field F' we decompose that field into the sum

of 3 vectors F,, Fy, F,. so that at each point in time

F,=Fcosv, F,=-F sinﬁ&, F. = Fsml‘}& (3)
sin (x — ) sin (x — )
then the effective torques acting on the molecule are
Mab - ,uan - ,ubFaa Mac = /fLaFc - /chFa' (4)

Now in the particular class of molecules treated the angle between p, and py like
that between p, and p. is unchanging (equals 7/2) and since the torques have no
components in the direction of the axis of rotation of the group, we can consider the
rotation that these torques cause as the rotation of the whole molecule if we make
the usual assumption that the angular velocity of the strain is proportional to the
moments (in our case the resultant of M,, and M,., denoted by M), the molecule
will rotate during the time dt and the angle

M
oo = —dt, 5
p (5)

which is a single axis whose orientation lies along the direction of M. The drag

coefficient (denoted by p) is strictly speaking strongly dependent on the (precise)
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location of the groups inside the molecule; however, we take the drag coefficient
p as constant and following Stokes law as applied to the direction of rotation of
the groups. As far as the angle da is concerned we can with our chosen coordi-
nates (9,1, ¢, x) resolve our M into three (contravariant) components: M, is the
component in the direction of the polar axis, My is the component in the plane
perpendicular to the polar axis and p, in the same plane and M, in the direction
of the axis of rotation of the group, i.e. in the direction of p,, one then has for the

components of the angles d«

M, M, M
59 = =25t o = —L8t, Sp =6y = —24t. (6)
p p p
We then find for the torque components following the usual rules of vectors, the

result

My =My, cos p + M. cos X,

1
My = (Mgpsin g + M, sin ) g’ (7)

M, = — (Mgpsin ¢ + M, sin ) cot ¥.
It is still necessary to account for the remaining torques viz.,

pplesin(x —¢), and  — pFysin(x — ), (8)

which each act in the direction of the axis of rotation of the group. Because of
the assumed completely free rotation the first of these torques rotates the whole
molecule with the exception of the rotatable group, in contrast the second only
rotates the rotatable group itself. The friction constant during the first type of
rotation we call p/, that during the second type independent of the other, we call

p”. We can then write the ensuing rotations during a time Jt as

/Lchdt .
- sin (x — ).,

Jpot .
5x=—“p,? sin (x — ) . (9)

dep

Due to Egs. (6) and (9) combined with Eqs. (3), (4), and (7), one can now charac-
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terise the rotation of molecules possessing a rotating group by

Fot
0 = — —— [pa sind + pp cos V¥ cos o + pu. cos ¥ cos x| ,
p
Fét cos ) )
oY = — ——— [wsing + pesin ],
p sind
2y in v
do =Fdt [ CO.S (p Sin @ + pesin x) + sm/ Lip SIN gp} , (10)
psind P
29 in ¢
ox =Fot [ CO_S (p Sin @ + pesin x) + SIL/LC sin X} :
psind o’

Hence the effective increase in the number of molecules in the volume element dV =

sin 9dddvdpdy due to the field alone is

AN, = — {% (f sin ¥969dipdpdy) dv + % (fdOopdpdy) dip
+ % (f sinddidipdpdy) d + % (f sinddddpdpdx) dx}

= — didydpdy {8% (fsin¥dd) + % (foy) + % (fsinddp)

+ &(fsinz%x)] : (11)
On the other hand, the change in the total number of the molecules in the elemental

volume dV with time is

of
5 0tdV.

This relation combined with the total change AN = AN; + AN, (see Egs. (2) and
(11)) yields the partial differential equation for f:
0f _Xos Boop Bof mos Ror Ny KB, 0
ot 0t oY 6t dp Ot Ox 20t 00? 20t 0p? 25t Ox? dt  0Y0¢
ApA, O*f AN, O*f f
ot O0vox ot O0pdx  psind

{% [fsin®d (prgsin® + p, cos ¥ cos ¢

9,
+ pecostcosy)] — — [f [cos219 (p Sin @ + pesin x) + ﬁ,,ubsinQﬁ sin gp} }
0

dp
a 2 . . 1% .9 .
— — | [ |cos™¥ (up sin g + pesin x) + — pesin“d sin x : (12)
oY o'
Here the term % (fov) is absent since f like d¢ is independent of ).
The constants %, - A‘gtAX are determined from the condition that at equilib-
rium (% =0) the function f = e~#r (which the potential energy u leads to) must

be a solution of Eq. (12) where
u=—F (g cost — ppsind cos ¢ — pi.sind cos ), (13)
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so we have on substitution

L (11a cos 0—pp sin 9 cos o — e sin 9 cos )

f=er ,

into Eq. (12) (with %—{ = () the following explicit results

g kT cos¥ g kT E kT (008219 N sin219)
5t  psind’ 20t  p’ 20t sin®Y p o)’
A_i kT [cos®®  sin®d A,A, 2kT cos*d
20t sin?y ( p o' ) ’ st p sin®0’

(14)

with all the remaining averages equal to zero.

By substituting the values in Eq. (12) we arrive at the desired form of the dif-
ferential equation (kinetic or Smoluchowski equation) whereby we can determine
the (time dependent) distribution function. When we have all the above quantities,
we see that by taking only terms of the first order in the field strength into ac-
count (linear response), that we can make the assumption (for the time dependent

distribution)
f=1+m,(t)cost) —xp (t)sinv cos ¢ — x. (t) sind cos x, (15)

where the quantities x, (t), xy (t), z.(t) are functions of time only. Therefore we

have the following differential equations for the x; (t) terms

dl'a 2 ,U/aF
Y = ,
dt . (x KT )

dxy L1 o F
S0 kT 2+ = - 16
= (o) ). <>

d(L’C 1 1 MCF
=— kT (=4 =) (2 - :
dt (p " p”) (x KT )

with solutions for sinusoidal fields:

F = Foeiwt

Y

which can be written as '
1 1 Foeuut
xr; = ,
J 1 + iWTj kT
thus, the “relaxation times” can be explicitly given as

1 2kT 1 1 1 1 1 1
= —_kT<—+—,), —_kT(—+—). (17)
Ta P Ty p P
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Thus, we have the explicit solution for the time dependent distribution

F wt u
f0,p,x,t) =1+ 0¢ H cos v Ho

He .
_ _He i
KT |1+ iwT, 1+ iwT o, HUCOSXY

sin ¥ cos ¢ — T
TwT,
(18)

whence we can calculate the mean moment according to the usual formula

f7r 2r r2w 27

o Jo Jo Sy flacos? — pysind cos o — p.sind cos x| sin ddidipdpdy

S 2T T F sinddddipdipdy

m= ,

therefore
Feiwt 2 2 2
= N LN——C (19)
kT |14+ iwr, 1+iwwn 1+iwT,

These results can immediately be generalised to n rotating groups all with parallel
azes (embedded) in the particular molecule under study. The calculation is the
same, however, one must now specify for each group its own (particular) angle of
rotation. If we denote by u, the sum of all the dipole moment components in the
direction of the axis of rotation and further denote by 1, ..., u, all the components

of the moments rotating in the plane of the rotation azis itself we have the result

Fyeit 112 e 11?2 .
m = e +——, 20
m 3kT {1 +iwt, 14 iwn * 14 iwn + * 1+ iwT, (20)
with
1 1 1 1 1 1
—:kT(—+—),...,—:kT(—+—). 21)
7 pp Tn P Pn

Here we have denoted the friction coefficients of the various freely rotatable groups
by p1, ..., pn; relations between 7,, p, or between 7,, p, p’ apply unchanged (Eq.
(17)).

In the static we can see from Eq. (20) that the mean moment has the form

Mistat = ;;—OT (1o + e + pa® + o+ ]

in agreement with the results of Zahn [1]. From the formula for the average moment
one can calculate the dispersion and absorption indexes as a function of frequency.
Those curves then exhibit several distinct maxima and their position and values in

principle allow one to determine the constants 7,,...,7,. Let us treat for example

the loss, we have for the imaginary part of the mean moment an expression of the

form
2,2 2,2
MW Tq Py W™ Ty,
14+w?r, — 14+w?r,
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Now at the usual measuring frequencies (w?7? < 1) the losses should be proportional

to

w? [UoTe + pyTy + oo+ [T - (22)

However, (from Eqgs. (17) and (21)) 7,7, ..., 7, are all smaller as compared to 7,

(0, p1,..., pn smaller than p) hence Eq. (22) is smaller than
w? [ + e ] Ta

However since 2+ 2 +...+p2 means the measurable dipole moment, this inequality
states the losses should be smaller than those of a molecule which has the same
dipole moment and is of the same size but does not possess a rotating group. In
other words: if one calculates the molecular volume from the measured loss, this
should be smaller than expected. Some experiments confirm this statement [4], in
the quantitative side one must wait for further experimental confirmation.
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3. Magnetisation Relaxation
Processes and Thermal

Fluctuations

For the analysis of the magnetisation relaxation of fine single domain ferromagnetic
nanoparticles, it is necessary to establish a comprehensive theory of thermal fluc-
tuations and relaxation processes in nanomagnets for the accurate interpretation of
experimental and computer simulation data via the use of rigorous mathematical
models which have a foundation in the principles of non-equilibrium statistical me-
chanics. Fine single-domain ferromagnetic particles are known to exhibit unstable
behaviour of the magnetisation due to thermal agitation, which results in superpara-
magnetism due effectively to each nanoparticle behaving as an enormous Langevin
paramagnet of magnetic moment (~ 10* — 10° Bohr magnetons pp). The magneti-
sation may spontaneously reverse its direction at temperatures above what is called
the blocking temperature due to thermal fluctuations so that the stable magnetic
behaviour that is characteristic of a ferromagnet is destroyed. Thus the initiation
of thermal instability defined by a time-dependent magnetisation in the magnetic
nanoparticles used has been of great consequence in magnetic recording as they are
constantly being reduced in size in order to provide both increased signal-to-noise
ratio and greater storage density. In addition to this, the aforementioned thermal
instability has provided valuable insight into the subject of paleomagnetism, as the
ability of igneous rock to keep a magnetic record hinges on the fact that the fine
particles within the igneous rock have been able to preserve the direction of the

earth’s magnetic field from the epoch in which the temperature of the environment
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has fallen below the blocking temperature of the particles.

Louis Néel in 1949 [84, 85] codified his theory of magnetisation reversal over a
potential barrier inside a nanoparticle through the implicit adaption of an Ansatz
proposed by Debye through his book [3], in order to explain the dielectric relaxation
of solids which upon melting will yield polar liquids. Debye (A.K.A. Debye’s second
model) has considered an ensemble of non-interacting polar molecules each of which
have the same permanent dipole moment and situated for example each at the
intersection points (sites) of a space lattice. It was further supposed by Debye that
if a uniform field acts on a dipole, then it can orient itself in one of two definite
directions only, either in the same direction as the field, or its opposite. This model is
known as discrete orientation and has been further extended by Frohlich in 1949 [56]
and by Brown in 1956 [86]. This is in contrast to the more widely known continuous
distribution of orientations model of non-interacting polar molecules representing a
polar liquid also due to Debye (which is his first model). The first model which
as we saw was initially based on a fixed-axis rotator version of Einstein’s theory
of Brownian motion [2] was later extended to rotation in space. In the discrete
orientation model, in which the transition from one orientation to another occurs
in a single big jump, as applied to polar dielectrics the essential difference between
it and the free rotational diffusion one is that the latter (where the transition from
one orientation at time ¢ to another at ¢ + dt occurs by a succession of small jumps)
predicts dispersion and absorption in the microwave region while typically the former
roughly explains the dispersion and absorption in ice occurring at km wavelengths.
Therefore a solid such as ice will behave as if it were a polar liquid with very high
internal friction, and thus will have a very long relaxation time. This time turns
out to be exponentially long as emphasised by Frohlich due to the fact that the
probability of the jumping of a dipole over a potential barrier is proportional to
the appropriate Boltzmann factor e *F. This factor results in Arrhenius behaviour
of the escape rate I' = Ae 2F which is inversely proportional to the overbarrier
relaxation time 7 (note that AE is a dimensionless potential barrier and A is a
prefactor).

A fundamentally similar result was also found for the longitudinal magneti-
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sation relaxation of a single-domain ferromagnetic nanoparticle over an internal
magnetocrystalline-anisotropy-Zeeman energy potential barrier by Néel [84,85]. This
approach to the magnetisation reversal time mechanism, which is based on statisti-
cal mechanics, was started through his hypothesis that the reversal was governed via
an activation process pertaining to escape over a barrier in the form of the discrete
orientation model. The key difference however from standard reaction rate theory,
since we treat a magnetisation energy density potential, is that the longest relaxation
time of the magnetisation, now depending exponentially on the volume of the par-
ticle, can vary from nanoseconds to geological epochs. The ideas of Néel were later
refined by Brown in 1963 [87]. He builds on his well expressed Handbuch article [86]
on dielectrics, via setting the entire problem in the context of the general theory of
stochastic processes. Thus he involved a form of Boltzmann’s Stosszahlansatz [2]
(of which the Brownian motion is a particular case) as was accomplished by Debye
for dielectric relaxation. Brown’s criticism of Néel’s results for the reversal time of

the magnetisation rests on two irrefutable facts:

1. The relaxing system is not treated explicitly as a gyromagnetic one.

2. It relies on the discrete orientation Ansatz.

Therefore despite the disturbance to the orientational Boltzmann distribution in a
potential well due to the loss of magnetisation (i.e., representative points) at the
barrier that distribution still prevails everywhere in accordance with transition state
theory. The latter assumption is an inherent flaw of the discrete orientation Ansatz
so that it is impossible to calculate accurately the escape rate and thus the relax-
ation time, because the effect of the energy dissipation to the bath on the escape rate
15 completely ignored. However, these problems were circumvented by Brown by
formulating from the magnetic Langevin equation, i.e., the Landau-Lifshitz-Gilbert
equation for the magnetisation evolution as supplemented by stochastic terms, the
magnetic Fokker-Planck equation. This equation governs the probability density
W (9, p,t) of the magnetic moment orientations on the unit sphere, where ¥ and ¢
are, respectively, the polar and azimuthal angles of the spherical polar coordinate
system. Thus, he achieved the goals of both setting the magnetisation stochas-

tic process within the framework of the general theory of the Brownian motion
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and simultaneously removing the difficulties associated with the discrete orientation
Ansatz in effect similar to what Debye has achieved with his continuous distribu-
tion of orientations model with an external applied field. This was later utilised by
Maier and Saupe with the addition of a mean field potential in the analysis of the
dielectric relaxation of nematic liquid crystals [2].

Furthermore, Brown was able to identify the magnetisation reversal time with
the inverse of the smallest non-vanishing eigenvalue of the magnetic Fokker-Planck
equation which governs precession-aided rotational diffusion of the magnetic mo-
ment in the anisotropy-Zeeman energy potential thus for a given potential posing a
Sturm-Liouville problem. The simplest uniaxial potential of the magneto-crystalline
anisotropy-Zeeman energy was the example Brown used (which he intended only
as an indicative example). As such in the longitudinal relaxation, the gyromag-
netic terms are not explicitly involved because they immediately drop out from
the Fokker-Plank equation. Therefore, in this effectively one-dimensional problem
(through suitably adapting the Kramers theory [88] of escape of translating par-
ticles over potential barriers to classical macrospins) Brown found an asymptotic
result which agrees with that of Néel [84,85] as far as the exponential dependence
of the magnetisation reversal time on the potential barrier height is concerned. As
mentioned earlier, we seek the solution of the Fokker-Planck equation as a Fourier-
Laplace series in the spherical harmonics Yy, (¢, ¢). These serve as an appropriate
basis set for the evaluation of observables such as the magnetisation, and yield a
multi-term differential-recurrence relation for the statistical moments. However,
there is another procedure that we can follow which is completely equivalent. This
involves taking the magnetic Langevin equation and rewriting it as a stochastic
evolution equation for a spherical harmonic of arbitrary rank with the aid of the
theory of angular momentum. The resulting stochastic recurrence relation is then
averaged during an infinitesimal time (i.e., the Ansatz used by Einstein) over an
ensemble of macrospins [2] which at some initial time all had the same orientation
¥, . This procedure leads to the deterministic equation of motion of a spherical
harmonic in terms of the sharp values ¥ and ¢. However the latter are also random

variables themselves. Thus we make a spatial average over their distribution to yield
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a time-dependent multi-term ordinary differential-recurrence relation. Upon so do-
ing, the observables are then calculated via rapidly convergent matrix continued
fractions [2].

Next, we shall briefly introduce the foundations of spin Brownian motion, as

well as the kinds of relaxation processes we can observe in magnetic particles.

3.1 The Equations of Motion for Magnetic Mo-

ments and the Magnetic Properties of Solids

3.1.1 Magnetic Dipole Moment and the Larmor Equation

When analysing the magnetic properties of nanomagnets, it is important to under-
stand the origin of the magnetic moment p.

Currents in wires produce magnetic fields which take the form of concentric
circles around the wire (i.e., the fields are solenoid vectors). The direction of the
magnetic field will be perpendicular to the wire in a manner such that if you were
to curl your fingers around the wire with your thumb pointed in the direction the
current is travelling all with your right hand, the direction of the field is indicated
by the direction of your curled fingers. But what about the magnetic field produced
by a permanent magnet, be it a basic bar magnet or a single domain ferromagnetic
particle etc., and what gives it the shape of that produced by a solenoid? In order to
answer this question, we will need to consider the Bohr model of an atom, where we
have electrons orbiting around the nucleus in a circle. In such a case, the orbiting
electron appears similar to a current solenoidal loop. The existence of this current
loop leads to the electron having an angular momentum J. From this we can

determine the magnetic moment p viz.,

J
p=—1", (3.1)

Ho

where 7y is the gyromagnetic ratio constant, where in this case it is associated with

1

the electron spin, meaning that v = 2.2 x 10°A"'ms™! and pq is the permeability

of free space o = 47 x 1077 JA™>m~! in SI units (47 x 10~"H/m).
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Let us consider now what happens when this magnetic moment p is placed in a
magnetic field H. What we will observe is that it experiences a torque K expressed

in vector form as

K = pio[p x H]. (3.2)

This torque will consequently lead to a rate of change of the angular momentum
perpendicular to J viz.,
dJ

=K =l x H) (3.3)

leading to u undergoing a precession about the direction of H. Therefore

dp

— =~H . 3.4

B Hx W (3.4
This is equation is called the Larmor equation [89] and the angular frequency of the

precession is called the Larmor frequency given by
w = vH, (3.5)

and as is demonstrated mathematically in Eq. (3.5), it is directly proportional to

the applied magnetic field H.

3.1.2 Magnetic Solids and their Properties

Up to this point, we have been studying magnetic moments in isolation, but what
about solid materials with magnetic properties? We find that these can be classified
as either diamagnetic, paramagnetic, or ferromagnetic depending on their response
to an external applied magnetic field.

Diamagnetic materials [31,34] are those substances which end up being weakly
magnetised when subjected to an applied external magnetic field, in a direction op-
posite to the applied field. Some examples of diamagnetic materials include copper,
gold, silver, lead, mercury, and water.

Paramagnetic materials [31,34] are those which are weakly magnetised when
subjected to an applied external magnetic field in the same direction as the applied

field. In paramagnetic substances, the orbital and spin magnetic moments of an
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atom are oriented in a manner such that each atom has a permanent magnetic dipole
moment. However, because of thermal motion (fluctuations), the direction of the
magnetic moments of atoms have random orientations, leading to the net magnetic
moment being zero. When subjected to an applied external magnetic field, each of
the atomic magnets (permanent magnetic dipole moment of each atom) will tend to
align in the direction of the field, thus leading to the paramagnetic substance having
a net magnetic moment pL(€), where € = uHy/kT and L(§) = coth& — &1 is called
the Langevin function [90] and the theory is a replica of the Debye treatment of the
static electric polarization [49]. Some examples of paramagnetic substances include
aluminium, platinum, chromium, tungsten and lithium.

Ferromagnetic materials are those substances which are strongly magnetised in
an external magnetic field in the same direction as the external applied field and
can retain its magnetic moment even upon removal of the external field. In domain
theory a ferromagnetic substance consists of a large number of smaller regions called
domains. A domain can be defined as an extremely small region containing a large
number of atomic magnets which have magnetic axes aligned in the same direction
due to a strong exchange coupling, leading to each domain having its own magnetic
dipole moment. When a ferromagnetic substance is subjected to an applied external
magnetic field, the permanent alignment of the domain due to a strong interaction
(force) takes place, this force is called exchange coupling (exchange interaction). In
the absence of an external magnetic field, the various domains will have random
orientations, leading to the magnetic moment as a whole being zero. When the field
is switched on, each domain experiences a torque, leading to some domains rapidly
rotating and remaining aligned parallel to the direction of the field (a phenomenon
called domain flipping). The concept of ferromagnetic materials consisting of these
domains was first proposed in 1907 by Weiss [91] who was under the assumption
that the regions coincided with the crystals the material was composed of. This
was later disproven by Frenkel and Dorfman and by Heisenberg and Bloch [91], who
realised that even a single crystal can consist of these magnetic domains. The exact
nature of these domains was later identified by Landau and Lifshitz [91], whom

found them to be in the form of elementary layers.
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It should be noted that generally speaking, a particle of ferromagnetic mate-
rial [92] below a certain critical size (which is usually 150 A in radius) will con-
stitute a single-domain particle [91], which means that it is in a state of uniform
magnetisation for any applied field. The magnetic dipole moment of such a particle
can be denoted by

u=ovM, (3.6)

where M is the magnetisation and v is the volume of the particle.

Furthermore, we find that in small ferromagnetic nanoparticles, there exists a
form of magnetism called superparamagnetism, whereby the magnetic moment pu
is no longer that of a single atom, rather it is that of a single-domain particle of
volume v which can be of the order of 10* — 10° Bohr magnetons, so that the
magnetic moments involved are very large in magnitude..

In addition to this, the single-domain particles will generally not be isotropic,
but rather will give anisotropic contributions to their total energy associated with
the external shape of the particle, imposed stress or the crystalline structure itself.
This superparamagnetism, or thermal instability of the magnetisation tends to oc-
cur on the condition that the thermal energy kT (where k is Boltzmann’s constant
and T is the temperature) is enough to change the orientation of p of the entire
particle in spite of the anisotropy potential. As such, the behaviour overall is similar
to an ensemble of paramagnetic atoms, where there is no hysteresis, just saturation
behaviour. Now a useful parameter for describing how much a material will be-
come magnetised in an applied magnetic field is the magnetic susceptibility, which
is a physical quantity that characterises the relation between the magnetic moment
(magnetisation) of a substance and the applied external magnetic field which is di-
mensionless. The static magnetic susceptibility y of diamagnetic and paramagnetic

(superparamagnetic) substances, can be defined mathematically as
M = yH. (3.7)

Note that in anisotropic solids, M and H are likely not to be parallel to one another,

which means that the magnetic susceptibility will vary with direction in the crystal.
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Notice that in diamagnetic materials, y < 0, while for paramagnetic materials x > 0

and ferromagnetic materials will have very large values for .

3.1.3 Magnetocrystalline Anisotropy

On the subject of magnetic anisotropy, it should be noted that most ferromagnetic
solids are indeed magnetically anisotropic, meaning that it takes more energy to
magnetise it in certain directions than in others. The main cause of this being the
spin-orbit interactions, which stems from the orbital motion of the electrons coupling
with the crystal electric field, thereby giving rise to the first order contributions to
the magneto-crystalline anisotropy. The second order contribution will arise from
the mutual interaction of the magnetic dipoles.

We find that there are certain crystal systems which exhibit a single axis of high
symmetry, the anisotropy of which is labelled wuniazial anisotropy (see Figure 3.2).
Generally speaking, the magnetocrystalline anisotropy energy is represented in pow-
ers of the direction cosines of the magnetisation (ux, uy,uz) which are components
of a unit vector u directed along M. For uniaxial anisotropy, with the Z-axis taken
to be the principal axis of the symmetry of the crystal, the free energy density of

the magnetic particle V' is
V = K(u% +u}) = Ksin®9, (3.8)

where K is an anisotropy constant, with units of energy density and is dependent
on the composition. If K > 0, then the directions of lowest energy are uy = £1(J =
0 and ¥ = ), i.e., the polar axis as seen in Figure 3.1. If the applied dc field Hy is
assumed to be parallel to the polar axis, then the total free energy per unit volume
is

V(¥) = K sin? 9 — pugMgHg cos 1, (3.9)

where Mg is the saturation magnetisation.
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Figure 3.1: Spherical polar coordinate system.

Figure 3.2: Uniaxial anisotropy potential given by Eq. (3.8). (aft. [93])

Every anisotropy potential V(1) generates an effective magnetic field H which

is proportional to the negative gradient of the free energy density V', viz.,

OV _ OV OV I (3.10)

1 0V L
oMy o, T oy,

H:—— =
10 OM ' OM
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The field H in the usual spherical coordinate basis {e,, ey, e,} is given by

H-— L (I, LV,
T Mg \ 09 " T sind op ?

1 ov. 1 oV
= (0, %’—smﬁ%) . (3.11)

3.1.4 Landau-Lifshitz and Gilbert Equations

The first dynamical model for the precessional motion of the magnetisation M of
a single-domain ferromagnetic particle or macrospin was proposed by Landau and
Lifshitz in 1935 [2,34,94]. They asserted that in the absence of damping, the
magnetisation will simply precess about an effective magnetic field H according to

the gyromagnetic equation [34]

1 oV
1=yH H=- — 12
where
u=— = (sin¥ cos p, sin ¥ sin ¢, cos V), (3.13)
Mg

is a unit vector directed along M where we are proceeding under the assumption
that the single-domain ferromagnetic particle is at its saturation magnetisation Mg
so that only the orientation of M can change, V' is the free energy density consisting
of both an anisotropy potential and the Zeeman energy due to an external magnetic
field, and 0/0u is the gradient on the surface of a unit sphere expressed in spherical

coordinates as

5% = %eg + ﬁ%e@. (3.14)

Eq. (3.12) is simply the Larmor equation (Eq. (3.4)) for a single spin generalised
to the coherent rotation of a macrospin. As a consequence of this, the evolution of
the magnetisation as described by Eq. (3.12) has no energy loss to the surroundings
through the motion of the magnetisation. What we will effectively observe is that
M will follow paths of constant energy in what are called Stoner-Wohlfarth orbits
[95,96] (See Figure 3.3 [34]), precessing ad infinitum in a well of the potential under

the condition that the energy of the applied magnetic field is less than the barrier
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height.

Figure 3.3: Stoner-Wohlfarth orbits which are encircling an energy minimum along
the polar positive and negative Z-axis (solid lines) or crossing a potential barrier
lying in the XY plane (dashed lines). (aft. [34])

It is at this point that Landau and Lifshitz [2,34, 94| introduced a damping
torque opposing the precession to model the effect of energy dissipation. Thus the

gyromagnetic equation (Eq. (3.12)) becomes either the Landau-Lifshitz equation [34]

u=~vH Xxu] —Aux [ux H], (3.15)

where A is a dimensionless damping parameter, or the Landau-Lifshitz-Gilbert equa-

tion [34], which was proposed by Gilbert [97]

u=7H x u]+afuxu, (3.16)

where a > 0 is the dimensionless damping constant which varies depending on
the material, and which represents the effect of all the the microscopic degrees of
freedom.

In both equations we find now that the energy of the system is no longer con-
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served, rather it is continuously being dissipated by the drag torque. M will now

have a tendency to spiral towards the easy axis in a manner seen in Figure 3.4 [34]

4

X

Figure 3.4: Collapse of a Stoner-Wohlfarth orbit until it becomes a singularity
as is captured by the Landau-Lifshitz-Gilbert equation with yHz(1 + o?)™! = 1.
(aft. [34])

For our purpose, we will only be using the Landau-Lifshitz-Gilbert equation.
The reasons for doing this are highlighted in a discussion by Coffey, Kalmykov and
Titov in [34].

3.1.5 Néel Relaxation

We shall consider here the magnetic after-effect behaviour of single-domain particles,
through understanding the conditions necessary for an assembly of said particles to
achieve thermal equilibrium. For ferrofluids, this can be accomplished through the
physical rotation of these particles in the liquid they are suspended in. The rate
at which they reach equilibrium here is controlled by the viscosity of the carrying
fluid/medium. The Debye theory of orientational relaxation [2] is suitable for the
modelling of this mechanism, more so than for electric dipoles due to the relatively
larger size of the magnetic particles, which leads to the magnetic particles more

closely approximating idealised Brownian rotators.
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This physical rotation of the particles however cannot take place in solids. Nev-
ertheless it was speculated by Néel [84,85,98] in 1949 that provided a single-domain
particle was sufficiently small, the direction of magnetisation is likely to undergo a
form of Brownian motion, destroying its stable magnetic behaviour, under thermal
fluctuations. The inertia of the particle plays no role into the relaxation of the
magnetic moment since the magnetic moment is inside the particle, and the particle
itself will not undergo physical rotation. The barrier due to the anisotropy-Zeeman
energy prevents the magnet in question from moving from one magnetic state to an-
other and must be overcome by the thermal energy k7T as highlighted by Brown [99].
If the barrier is not too large (so that the probability per unit time of a jump over
it is very small) or too small in comparison to the the thermal energy k7', then the
specimen in question neither remains in a single stable state for a long time nor
does it attain thermal equilibrium in a short time after a change in the field. Rather
what happens is that it undergoes a change in magnetisation that lags behind the
field instead of changing instantly. This phenomenon is referred to as the Néel re-
laxzation (or magnetic after-effect) [2,34] and only occurs in ferromagnetic particles
deemed sufficiently fine. To demonstrate the Néel mechanism [91], we shall follow
an example from Section 1.4.1 of [34] and consider an assembly of aligned uniaxial
particles which are subjected to a field H, with a potential energy governed by Eq.
(3.9). As such the particles are fully magnetised along the polar axis, which is the
axis of symmetry. Once the field has been switched off for a sufficiently long time,

the remanence will vanish as
M,(t) = M,(0)e™~, (3.17)

where 7 is the reversal time of the magnetisation. This is the longest lived mode
of the relaxation process. From transition state theory [100,101], Néel [84, 85, 98]

suggested that 7 may be evaluated as [34]
77l = fae RF, (3.18)
where f, is the frequency of the gyromagnetic precession [102] and AE = E(¥¢) —
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E(¥4) is the energy barrier (J¢ is the point located at top of the energy barrier
and 4 is the point situated at the bottom of the potential well) such that, through
varying the volume or the temperature of the particles, 7 can be made to vary from
10~%s to millions of years. Brown [87] however criticised Néel’s calculation of 7 on

two fronts

1. The system is not explicitly treated as a gyromagnetic one.

2. It relies on a discrete orientation approximation.

Furthermore the dependence of the prefactor on damping is ignored. Brown [87]
proposed that these difficulties can be overcome through construction of the Fokker-
Planck equation for the probability distribution function of magnetic moment orien-
tations on the unit sphere from the appropriate Langevin equation for the evolution
of the magnetisation M. Then by adapting the Kramers theory of escape of particles
over potential barriers to magnetisation of single domain ferromagnetic particles, he
was able to find an approximate formula for 7 in the high-barrier for the potential

in Eq. (3.9) which aside from the prefactor fa, agreed with Néel’s formula.

3.2 Linear Response Theory as applied to Mag-
netic Nanoparticles

In Section 2.2 of the thesis, we have demonstrated the use of linear response the-
ory [35] via its application to dielectric relaxation of a system of electric dipoles and
how it can be used to obtain observables such as the complex polarisability of the
electric dipoles. This can be done through solving the relevant matrix differential-
recurrence relations. In the case of magnetic dipoles we can also use linear response
theory to determine the relevant observables, such as the longitudinal and transverse
components of the magnetisation M(¢) and their characteristic times, the compo-
nents of the complex magnetic susceptibility tensor x(w), the equilibrium correlation
functions of the longitudinal and transverse components of the magnetisation etc.

The longitudinal x| (w) and transverse x, (w) components of the magnetic suscep-
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tibility of a magnetic nanoparticle are defined using linear response theory [35] as

Xk (W)
Xk

=1- iw/ e MOy (t) dt, (k =||, L), (3.19)
0

where Cj(t) are the equilibrium correlation functions given by

(Mj (0) My (1)) — (M3 (0))q

CO=0r 0, - anopz - FT 520

and

x = 77 [(M2 (0))y = (M (0], (k=I|, L), (3.21)

are the components of the static magnetic susceptibility. The angular brackets

denote the equilibrium ensemble average which is given as

(A)y = /0 ' /OFA (9, ) Wo (9, @) sin vdddep, (3.22)

where Wy (9, p) = Z7te™ 2377 s the equilibrium Boltzmann distribution function

and Z is the partition function. The Cartesian components of the magnetisation,

labelled Mx, My, and My, which are expressed as

Mx =Mg sin ¥ cos p,
My =Mg sin 9 sin ¢, (3.23)

My =Mg cos?,

where here 9 is the colatitude and ¢ is the longitude can be written in terms of

spherical harmonics of rank 1 as

My :MS\/% Yi1(9,0) = Y (9, 0)],

) 21
My =iMsy[ 5 Mia(d,9) + Va0, 9)], (3:24)

A7
Mz =Ms\ | ?5/10(?9790)-
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It should be noted that these components are not independent since
M3 + My + M3 = M. (3.25)

The time behaviour of the equilibrium correlation function Cy(t) can be charac-

terised with the introduction of the integral relazation time 7f, viz.,

ko / Ch(t)dt, (3.26)
0

which is essentially the area under the normalised decay curve Cy(t), and the effec-

tive relazation time 7% which is given by
Th = —1/Cy(0), (3.27)

which is capable of providing precise information on the initial decay of Cy(t). Fur-

thermore, 7%, and 7% can be equivalently defined through the use of the eigenvalues

int
(M%) of the Fokker-Planck operator because C(t) may formally be written as an

infinite series of decaying exponentials, viz.,

C(t) = che™, (3.28)

such that from Eqs. (3.26) - (3.28) we get

k
c”
T = D3 (3.29)
j J
and
1
k
P p—— (3.30)
2 )‘? C?

These times will contain contributions from all the eigenvalues )\;? . Therefore gen-
erally in order to numerically evaluate Cy(t), 7%, and 7%, we require knowledge of

1

all the )\f and cj?. We can also however evaluate 7% in terms of equilibrium averages
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from the exact analytic equations [103] given by

Top =27 (3.31)
2 2
Mg <M”>o
M2
Th =27y (M), (3.32)

As can be observed in Eq. (3.19), the behaviour of yx(w) in the frequency domain
is determined completely by the time behaviour of Cy(t). In addition to this, Eqs.
(3.19) and (3.28) which define Cj(t) allow for the formal writing of the dynamic

susceptibility xx(w) as an infinite sum of Lorentzians given by

Xk (w) ¢
= _— 3.33

Consequently in both the low frequency w — 0 and high frequency w — oo limits

we have from Eq. (3.33)

ok
Xk (W) _ 1 —wri, +..., w—0, (3.34)

—ijwtk + ..., w— oo.

Xk

Consequently, the low and high-frequency behaviour of x,(w) are determined com-

pletely by the integral 7%, and effective 7% relaxation times respectively.

1
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4. The Langevin and
Fokker-Planck Equations and
Methods of Solution

4.1 The Langevin Equation

The Langevin equation [2,45,104,105] is a stochastic differential equation which
describes the time evolution of a set of degrees of freedom, in our case Brownian
motion obeying the dynamics of a Markov process.

If we were to consider a large particle of mass m (which we will call here a Brow-
nian particle) suspended in a fluid, which itself consists of much smaller particles
(atoms or molecules), then we end up in a situation where the Brownian particle
will be subjected to a force from the collisions of the small particles with the Brow-
nian particle. The force itself consists of two parts, the first part is a deterministic
hydrodynamic drag force Ffy, = —(v(t), where ¢ is the friction coefficient and v
is the velocity of the particle, which will resist the motion, and the second part is
a rapidly fluctuating zero-mean force W = 0 due to the collisions of the smaller
particles with the Brownian particle which tries to maintain the motion. The second
force is characterised through a probabilistic description and exhibits the properties
of white noise. Following Newton’s second law of motion, the Langevin equation is
thus [2,45]

mi = —Cu(t) + F(t), (4.1)

where it is assumed that the friction force —(v is governed by Stokes’ law, which
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states that the frictional force decelerating a spherical particle of radius a moving
in a one dimensional extension x is —(v = —67nav, where 7 is the viscosity of the
surrounding fluid and v = 2. Furthermore since the collisions are so rapid that
they are practically instantaneous they can be expressed by the autocorrelation
function [104]

F(&)F(t+7) = 2CkT4(r), (4.2)

where 2CkT is the spectral density. Now we have already seen that the autocorrela-

tion function of the random variable F'(t) is defined as

/

- 1 [7
F)F(t+7)= lim — / F(t)F(t+ 7)dt, (4.3)

T —00 1" _%’
that is the time average of a two-time product over an arbitrary range time 7" which
is allowed to become infinite [44]. A detailed description of how Langevin derived

the formula for the mean squared displacement of a Brownian particle is provided

in section 1.3 of [2].

4.2 The Langevin Equation for Magnetic Moments

The Landau-Lifshitz-Gilbert equation discussed earlier in the thesis ignores thermal
fluctuations due to the nanomagnets being maintained at a finite temperature 7'
Upon their inclusion, the precessional motion would endure because the heat bath
the nanomagnets are contained in would provide energy. As discussed, Néel [84,85]
initiated the idea of thermal fluctuations of the magnetisation, which was further
developed by Brown [87,99,106] who framed it in the context of the general theory
of stochastic processes.

In order to include thermal fluctuations Brown [87] in 1963 added a random
isotropic noise magnetic field h to the Landau-Lifshitz-Gilbert equation seen in Eq.
(3.16) which in direct contrast to the dissipative field acts as a source of energy to
the system

u=7v[H+h)xu]+auxal. (4.4)

This is called the magnetic Langevin equation. The random magnetic field is re-
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garded as spatially isotropic Gaussian white noise so that

hi(t) = 0, ha(t)h;(t2) = 2D6,;8(t1 — L), (4.5)

where D is the noise-strength constant given by

D_ akT

_ ok 4.6
vypoMs (4.6)

is determined through imposing the Boltzmann equilibrium distribution of orienta-
tions [2,87], ¢;; is Kronecker’s delta and i, j = 1,2, 3 represent the Cartesian axes
of the laboratory coordinate system. The overbars denote statistical averages over
a very large number of moments, which have all started with the same orienta-
tion (¢, ) (We are using spherical coordinates as seen in Figure 3.1). The random
field accounts for the thermal fluctuations of the magnetisation of an individual
single-domain particle. Note that according to Eq. (4.4) the magnitude of the mag-
netisation vector M does not fluctuate. However, since the random torque which
arises from the noise field counteracts the damping torque it can, if the tempera-
ture is high enough, reverse the direction of the precession. The time taken for the
reversal of the direction of precession over the ansisotropy-Zeeman energy barrier is
known (as we have seen) as the superparamagnetic (magnetisation) relaxation time.

Eq. (4.4) is often used in the treatment of stochastic magnetisation dynamics.

4.3 The Fokker-Planck Equation

As discussed earlier, the Langevin equation [2,45,104,105] is a stochastic differential
equation which we can use to describe the time evolution of a Brownian particle
undergoing Brownian motion in a thermal bath (fluid) obeying the dynamics of a
Markov process. In solving it we can obtain information on the particle’s trajectory.
However, since the Langevin equation is stochastic, we will get different trajectories
upon repeating the calculations with the same initial conditions. In other words,
since F'(t) varies from system to system in the ensemble, the velocity will also

vary from system to system (i.e., the velocity is stochastic). Therefore it would be
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expedient to instead investigate for an ensemble of Brownian particles how many
of them have velocities in the interval (v, v + dv) at time ¢. Since v is a continuous
variable, we seek the answer to this through a probability distribution function
W (v). Then the interval dv times W (v) is the probability of finding the Brownian
particle in the interval (v, v + dv). This distribution function will be dependent on
both the time ¢ and the initial conditions. The deterministic equation for W (v, t)

us given by

W _ W) | BRT W
ot ov m  Ov?’

(4.7)
where v = 7.

Eq. (4.7) is the Fokker-Planck equation for the distribution function of a free
particle in velocity space and it is one of the simplest forms of that equation. The
Fokker-Planck equation is generally an equation for the time evolution of the prob-
ability distribution function of fluctuating macroscopic variables [45]. It is a spe-
cialised form of the Boltzmann integral equation [45,107]. The general form of the
Fokker-Planck equation for one variable x is given by [45]

82

ow 0 L
0x?

el —%(D(l)(ﬁ)w)

(D@ ()W), (4.8)

where D (z) is the drift coefficient, and D®(z) is the diffusion coefficient [2,45],
both of which are calculated from the Langevin equation in order to obtain the
Fokker-Planck equation, under the condition that the driving stimulus is Gaussian
white noise in the Langevin equation [2]. Eq. (4.8) may also be generalised to N

variables & = i, ..., {y viz. [45]

%_‘At/ == aiy [(D,-(”W) + f: a% (Dij@)W)] , (4.9)

where W (&, t) is the probability distribution function for N macroscopic variables
& =&, ...,&N, and the drift vector DZQ) and diffusion tensor fo ) are themselves
generally dependent on the N macroscopic variables. We shall describe two forms

of the Fokker-Planck equation in the following sub-section.
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4.3.1 The Klein-Kramers and Smoluchowski equations

The Klein-Kramers [45,104] and the Smoluchowski [45,104] equation are both spe-
cial forms of the Fokker-Planck equation. The Klein-Kramers equation is used for
obtaining the distribution functions in both velocity and position space describing
the Brownian motion of particles under the influence of an external force. In the

case of a particle moving in a one dimensional x € R it is given by

ow o 0 E KT
(;;U,t) _ {—%U + % (ﬁv — ;:)> + Bm w} W(x,v,t), (4.10)

where = (/m is the friction coefficient per unit mass, m is the mass of the
particle, T is the temperature of the fluid in question, k is Boltzmann’s constant,
and F(z) = —mf'(x) is the external force where mf(z) is the potential.

The system of stochastic differential equations in the phase space (z,v) corre-

sponding to Eq. (4.10) is given by

T = v,
0= —pu+ 2B 4 FO (4.11)

m

(F(¢)F(t)) = 2CkTS(t — ).

which can be written as the Langevin equation
mi +mpi = E(x) + F(t). (4.12)

Suppose then that the friction constant f3 is large, then in Eq. (4.12), we can neglect
md as its value in this situation is negligible. We will end up with the Langevin
equation

mpi = E(x) + mF(t), (4.13)
whose corresponding Fokker-Planck equation is given by

oW(x,t) 1 [ 0 0
o =g | ae B T W) (4.14)

where now we have an equation of motion for the distribution function in just
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position space. This is called the Smoluchowski equation, which assumes that the
velocity distribution has reached statistical equilibrium (i.e., It has the Maxwellian
distribution). It was first given in 1905 by Einstein for the special case where
E = 0 [104]. A detailed account of Smoluchowski’s derivation of his equation is
given by Mazo [108]. For the purpose of the thesis, the Smoluchowski equation will

be utilised to discuss the Bud6 model in the non-inertial case.

4.4 Derivation of the Fokker-Planck Equation from
the Langevin Equation

As discussed earlier, in order to obtain the Fokker-Planck equation from the Langevin
equation, we need to evaluate the drift and diffusion coefficients from the Langevin
equation. Here we will indicate the general form of the derivation process as shown
by Risken [45] for a single stochastic variable £(¢) (for more information see Sections
1.9 and 1.10 of [2]). Recall that the general Langevin equation with one stochastic
variable £(t) is given by

EW) =h(E®), 1) +g(E),1) F(t), (4.15)

and remark that the general form of the multi-variable Fokker-Planck equation is

given by [45]

o 1 CUED 9F A CHT] RETE

where the drift coefficients DZ(I) are given by

D = i SEFAY Z @] (4.17)
At—0 At
and the diffusion coefficients Dg) are given by
@ _ g G (t+ A — ] [§ (E+ At) — 2]
o = dm, v - e
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In both the drift and diffusion coefficients, x; are the state variables for initially
sharp values at time ¢. It should be noted that we have made use of Isserlis’s
theorem [2,107,109] and Eq. (4.2) as well as the fact that the fluctuating force is
Zero-mean W = 0 in the Langevin equation as discussed earlier. It should be
noted that the drift and diffusion coefficients are themselves the first two terms
of the Kramers-Moyal expansion [45]. As an example we evaluate the drift and
diffusion coefficients from the 1D equation (Eq. (4.15)), we start by following the
procedure of Risken [2,45] and treating Eq. (4.15) as an integral equation

t+At .
E(t+ At) = £(t) +/t £t dt'. (4.19)

Substituting Eq. (4.15) into Eq. (4.19) we get

t+At
£(t+ Aty — 1z = / h(EW) . E) T g€ (). O)F (), (420

where z is a sharp value of ¢ at an initial time ¢.
Then we expand h (£ (t),t) and g (£ (t),t) as a Taylor series about the sharp value

z,

h(E@),t) =h(z,t')+ (E(t) — ) a%h(gn,t’) +

9E(). 1) =g e, t) + (€ () —2) g (o t) (1.21)

Iterating for ({(t') — ) in Eq. (4.20) yields [45]

t+At t+At h t/
E(t+ At) —x _/ h(z,t')dt +/ / ”)Mdt"dt’

ox
as ) t+AL
/ / 3h l‘ t)F<t”) dt//dt,+/ g(ﬂj,t/)F(t,) dt/
ox t
t+At g (x,t)
// 9 X / "dt
— L F (¢ dt'dt
/ / ox ®)
t+AL
/ / G L‘)F(t VE (&) de"dt + ... | (4.22)

Eq. (4.22) is then simplified mindful of the definition Eq. (4.17). In so doing, we
find that the terms in Eq. (4.22) containing F(t') or F'(t") will vanish due to the
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aforementioned fact that F'(t) = 0. Furthermore, the second term in Eq. (4.22) can
be ignored as it is of the order (At)?. However, the term containing F(t')F (") can
be rewritten using Eq. (4.2) and the delta function property

/5(b—x)f(x)dx:%f(b), (4.23)

so that
t/
QD/ gz, t") ot —t")dt" = Dg(x,t'). (4.24)
t

where D = CkT.
Thus we get (for the drift coefficient) [45]

DU — lim E(t+ At) —x

0
lim A7 = h(x,t) + Dg (z,t)

%g (z,t), (4.25)

so that the last term on the right hand side is called the noise-induced drift and
Eq. (4.25) may also be considered as an evolution equation for the sharp value z
and so forms the basis of the Langevin method of treating the problem. It should
be noted that due to Isserlis’s theorem [2,107,109] all the higher order terms in Eq.
(4.22) vanish in the limit of an infinitesimally small A¢. In a similar manner we can

substitute Eq. (4.22) into Eq. (4.18) to get

t+At t+At
[E(t+ At) — ) = / / h(x,t') h(x, t") dt'dt”
' t+tAt t+At
+2/ h(z,t") dt’/ g (z,t")dt’
t

ti—At t+AL
+ / / g (2, ) g (z,") F (£) F (¢) dt'dt" + .. . (4.26)
t t

So again the terms which have contributions of the order (At)? in Eq. (4.26) will
vanish and again due to Isserlis’s theorem [2,107,109] all the higher order terms will

vanish. Thus we get

AL At
(€ (t+ At) — 2] :2D/ / g(x,t") g (x,t")6 (' —t")dt'dt" + O(At)?
¢ t

=2Dg? (x,t + O,At) At + O(At)?, (4.27)
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where (0 < ©; < 1). Thus upon substituting Eq. (4.27) into Eq. (4.18) we get for
the diffusion coefficient [45]

2
@) _ 1 € (t + At) — 2] — N2
D Al}er_rgo AL Dg* (z,t). (4.28)

Thus from our deterministic drift and noise-induced drift Dgg’ (Eq. (4.25)) and
diffusion (Eq. (4.28)) coefficients we have the corresponding Fokker-Planck equation
for W (z,t)

ow 0

— = h+D@ W+Da—2( W) (4.29)
ot oz o o2\ ‘

We shall apply a similar methodology later to obtain the Smoluchowski equation

[2,45] from the non-inertial Langevin equation [2].

4.5 Obtaining the Differential-Recurrence Rela-
tion from the Fokker-Planck Equation

We have discussed earlier in the thesis the use of linear response theory to determine
the time behaviour of statistical averages from the Langevin equation or the Fokker-
Planck equation in order to obtain the linear response of a system to a weak applied
stimulus. This was done using as example dielectric relaxation, where we are inter-
ested in the response to a small applied electric field. This is irrespective of whether
we are studying the response to a field being switched on at some time ¢t = 0, or the
opposite case where the field was applied at t = —oo and is then suddenly switched
off at time ¢ = 0. In general, the method of calculating the average properties of
a dynamical system (e.g., mean-square displacement, velocity correlation function,
etc.) used is that once the Fokker-Planck equation (in phase space) is constructed
from the Langevin equation for the random variables representing for example the
position x and velocity v of a Brownian particle (or for the Smoluchowski equation,
just the position), the distribution function is then expanded into a product of a
set of orthogonal functions in the position, and/or an orthogonal set in the veloci-
ties. The coefficients of this (generalised Fourier series) correspond directly to the

averages of the dynamical quantities which one wishes to calculate. This procedure
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leads to a set of differential-recurrence relations for the coefficients of the generalised
Fourier series governing the time behaviour of the averages of the desired dynamical
quantities (observables) in question. To demonstrate this we shall first derive the
differential-recurrence relation for the Smoluchowski equation for an earlier paper
by Coffey et al. published in 1993 [110]. This paper demonstrates “how exact for-
mulas for the longitudinal and transverse dielectric correlation times and complex
polarisability tensor, of a single axis rotator with two equivalent sites may be found.
This is accomplished by writing the Laplace transforms of the dipole autocorrelation
functions as three term recurrence relations and solving them in terms of continued
fractions.”

The Smoluchowski equation for the angular displacement ¢ of the rotator is

1 2
ow 9 (W@V) oW (430

Ot Op\COp) T O
where W (i, t) is the probability density of orientations of a dipole on the unit circle,

7p is the Debye relaxation time for a fixed axis rotator given by 7p = (/kT, C is

the viscous drag coefficient of the rotator. The potential V() is given by
V(p) = Usin® ¢ — uE cos ¢, (4.31)

where U is the potential barrier between the sites and p is the dipole moment of
the rotator.

We seek the after-effect solution of the equation (where F is removed at t = 0).
Since the solution of Eq. (4.30) must be periodic in ¢, it can be assumed that it has

the form of the Fourier series

o0

Wi t)= > a,t)e"”. (4.32)

p=—00

Substituting Eq. (4.32) into Eq. (4.30) we get

o0 o0

oo 2
. . o . Lo p .
HePy — — ¢ NP2 _ (1 _ 9)eilp=2)¢y _ L Het? .
3 il =2 3 a0+ 2)e (=262 =% 3 alte

(4.33)
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What we need to do now in order to break down the summation to obtain the
differential-recurrence relation is to take advantage of the orthogonality property of

circular functions

1 2T ) ) 1 2T y
Py i e e Pdp = Py i e—D¢qdp = dqq'- (4.34)

To do this we shall multiply both sides of Eq. (4.33) by €% and then evaluate the

integrals through exploiting the orthogonality property to get

o0 2w 00 o
Z / ap(t)ei(p—q)wdsp :g Z / a,(t)((p + 2)6i(p+2—q)w —(p— 2)6i(p—2—q)ap)dgp
0 0

p=—00 p=—00
p2 2w ( )
- — t)e"\ P V%, 4.35
=Dl AOE (4.35)
p=—00
Using the orthogonality property of complex exponentials (see Eq. (4.34)) Eq. (4.35)
becomes
Z ap(t)dpq = = ap(t)(p + 2)0p—2g — (P — 2))0p+2qg — ?@p(t)(qu? (4.36)
p=—00 p=—00

which by orthogonality leads to the final answer for the differential-recurrence rela-
tion
op 2

ap(t) = 2 (ap-a(t) = apra(t)) — a0, (4:37)

-
The solution of the differential recurrence-relation seen in Eq. (4.37) yields the
correlation times in terms of modified Bessel functions of the first kind as detailed
in [110]. Notice that a differential-recurrence relation is nearly always encountered in
separating the variables in a diffusion equation rather than just simply a differential

equation.
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4.6 Solving Differential-Recurrence Relations via
Continued Fractions

As we have seen, the solution of either the Langevin equation or the Fokker-Planck
equation can be reduced to the solution of an infinite hierarchy of equations for
the moments which describe the dynamics of the system in question. These equa-
tions can consist of three term or higher order differential-recurrence relations, and
so the behaviour of any selected average is coupled to that of all the others. The
solutions to these differential-recurrence relations can be found through the use of
continued fractions [2,34,45], where for a scalar three-term recurrence relation, or-
dinary continued fractions can be used. If however the Langevin or Fokker-Planck
equation cannot be reduced to a scalar three-term differential-recurrence relation,
then one can convert a multi-term recurrence relation to a matrix three-term re-
currence relation. This can then be formally solved in terms of matrix continued
fractions [2,34,45,111]. To demonstrate this procedure, we shall refer to section 2.7
of the book “The Langevin Equation: With Applications to Stochastic Problems in
Physics, Chemistry and Electrical Engineering” [2].

Using Risken’s notation [2,45], we can generally write the three-term matrix

differential-recurrence relation as

d

R 2Ct) = QG () + QG + QI Crn(®), (= 1), (438)

where 7. is a characteristic relaxation time, C,(¢) are column vectors formed from
statistical moments with Cy(¢) = 0 and Q;,t, Q, are time independent non-commutative

matrices. Taking the Laplace transform of Eq. (4.38), we get
Q;Cp—1<5) + (Qp - STEI)CP(S) + Q;Cp—i-l(s) = _Tecp(o)v (439)

where I is the identity matrix, and

C,(s) = /O T, (et (4.40)
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The desired solution of Eq. (4.39) takes on the form of the sum of a complementary

solution plus a particular integral just like a linear differential equation as
C,(s) = S,(s)C,_1(s) + Ry(s), (4.41)

where the matrix S,(s) is given by

1

S,(s) = [s.1— Q, — Q/S,(s)] ' Q. (4.42)

which represents an infinite matrix continued fraction. Substituting Eq. (4.41) into

Eq. (4.39) yields the following result for R, (s) the particular solution

[s7el - Q, — Q;Sp—kl(s)]Rp(S) - Q;RPH(S) = 7.C,(0), (4.43)
therefore we have

Rp(s) = AP(S) [TECP(O> + Q;RP—H(S)} ) (4'44>

where A, (s) is the matrix continued fraction given by

-1

AP(S) = [37&1 -Qp— Q;Apﬂ (S)Q;H] (4.45)
Through iteration, we can solve for Eq. (4.44) to get
R, (s) = 7.A,( ) + Z H Qp+k 1 p+k(s>cp+n<0)] ) (4.46)
n=1 k=1

which can be substituted into Eq. (4.41) to get the formal complete solution [111]

Cy(s) = Sp(s)ép— (s) + A (

10 9)) CENPNEET )
n=1 k=1
(4.47)
which is the complete solution of Eq. (4.39) rendered in algebraic form as a calculable

sum of products of matrix continued fractions in the s domain. For Cy(s), the ezact
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solution is given by

oo n

Ci(s) = 7A1(s) [C1(0) + > [ Qi Aks1(5)Cria(0) | (4.48)

n=1 k=1

The initial condition vectors C,(0) can be expressed in terms of equilibrium (sta-
tionary in the general case) averages. These averages will be solutions of the time

independent vector recurrence relation
Q;Cgfl + Qpcg + QZC;)H =0, (4-49)

where the column vector C is formed from equilibrium (stationary) averages. Since
Eq. (4.49) is tri-diagonal, it is possible to express Cg in terms of the matrix continued
fraction S,(0), which is obtained from letting s = 0 in Eq. (4.42). Considering Eq.
(4.49) for p =1 we have

Q Co+QiCY+ Qi Cy = [Qr +QuS: (0) +QFS,(0)S: (0)] Cy =0,  (4.50)
where CJ is given by

Co=1 : |. (4.51)

We may always choose a particular element of C{ (e.g. C = 1) because of the nor-

malisation condition. This leads to Eq. (4.50) representing a set of inhomogeneous

linear equations. Therefore Cj, Cg, ..., C§” can be determined. The other vectors C

are obtained viz.,

C’=5S,(0)S,_1(0)...S; (0) C). (4.52)

p
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5. Generalization to Anomalous
Diffusion of Budd’s Treatment of
Polar Molecules containing

Interacting Rotating Groups

5.1 Fractional Smoluchowski Equation for Non-
Interacting Molecules containing Polar Ro-
tating Groups

In Budd’s dynamical treatment [12,16] of hindered rotation a typical rotating polar
molecule of a non-interacting assembly contains two interacting groups, 1 and 2 of
equal size having a common rotational axis (see Figure 5.1) about which the entire
molecule can rotate. The dipole moments p; and p, of the embedded groups are
also supposed perpendicular to the molecular axis z. We specify the orientation of
each group (denoted by the subscript j = 1,2) by a set of three Eulerian angles
(Figure 5.1a), namely (6, p,1;), which are always functions of time because of the
physical rotation of the molecule due to the external field and Brownian torques.
The Eulerian angles ¢ and ¢ determine the orientation of the common molecular
axis z and coincide for both groups, while the angle 1; determines the angular

position of p; in the plane perpendicular to the z-axis (Figure 5.1Db).
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(b)

Figure 5.1: Geometry of the task; (a) Eulerian angles (aft. [58]); (b) the molecule
consisting of two interacting groups. Notation follows that of L.D. Landau and E. M.
Lifshitz, Mechanics, Volume 1 of Course of Theoretical Physics, 3" Ed., Pergamon,
1976, p. 110, Figure 47. (aft. [58])

Clearly the mutual potential energy of the groups giving rise to the hindered rotation
is then a function of the angular difference 1); — 1) only. We consider [19], following

Bud6 [16], cosine coupling, and consequently the interaction potential is [16,112]

V(1 —1b2) = Vo cos(pr — 1a). (5.1)

The torque exerted by the dipole u, on p,, is then —V’(¢; — 1),), where the prime
means differentiation with respect to the argument of V. The system of coupled
non-inertial Langevin equations (involving multiplicative noise) of motion of the
polar groups in a dc field F applied in the Z direction of the space-fixed system
appropriate to the Bud6 model [16] are (as shown in Appendix 5.B)

0=~ Z [% cos 6 cos ; — ];_Z (cos Al —singiAf)) |, (5:2)
i=1,2
z/}j —cotd Z [MEF cosfsingy; — 4| Z—? (sin A + cos wé”)
1=1,2
+ Fg” sin Osin ob; + (—1)j LWL~ Y2) wlg Va) | N Z—TA&’), (5.3)

where £ is Boltzmann’s constant, 7" is the temperature, &, = §, = £ are the drag
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coefficients for rotations about axis 2 (v. Figure 5.1b) while £, is that for rotations
about axis 1. The projection of p; on F does not depend on the Eulerian angle ¢
owing to the circular symmetry, while the entire molecule rotates about the direction
of F. Thus, the equation of motion of ¢ is not needed. In Egs. (5.2) and (5.3) the
white noise torques A,(Cj ) are supposed to be centred Gaussian random variables with

correlation functions [2]
<Ag><t)A§j>(t')> = 25t — 1), kK =,y 2, (5.4)

where 0y is Kronecker’s delta and 6(¢) is the Dirac delta function. Notice that
Budo originally treated his model [15] via the appropriate Smoluchowski equation,
which he determined without explicitly mentioning the Langevin equations (5.2)
and (5.3) at all, by suitably adapting the method of Debye for rotation in space as
described in Chapter V of his book Polar Molecules [3]. The Bud6 model of course
ignores inertial effects and thus is invalid at far-infrared or THz frequencies.

The general method of derivation of the Smoluchowski (Fokker-Planck) equa-
tion in terms of the hydrodynamical derivative of the probability density f(€2,t) in
the configuration space of orientations €2 (€2 denotes the set of state variables, i.e.,
{0,11,19}) for normal diffusion from the corresponding Langevin equations [2] (v.
Appendix 5.B) yields that evolution equation in the standard form [2] of a Boltz-
mann equation

daf _of

% = E +Lf= St(f)- (5‘5)

Here the deterministic operator is defined by (see Appendix 5.C) [2,15,16]

A 2
Lf:{g[(Mlsmwl—i‘ﬂzsmwz)c?s 8( 0 + 0 >

sinf \ Oy Oy
i ((1 + é) sin @ — cos 6%)2;2 i coswﬁé sin&izzmm Sinwiﬁiw,-]
V(@1 — ) ( g 0 )_ V"1 = 4n)
- G o) E }f : (5.6)

84



while the collision kernel is

St(f) = k?T 88_; + cot 9% + 2C0t2987f12¢2 + (c0t26’ + é) 1;2 3?22] fo (5.7)
To determine the fractional Smoluchowski equation from the general form Eq. (5.5)
we again use as in the entirely different problem of inertial effects in the itinerant
oscillator model as treated in Ref. [20] a method of Barkai and Silbey [113]. This
originally entailed writing a fractional Klein-Kramers equation in phase space (g, p)
for the evolution of the joint probability density function of the positions ¢ and
momenta p of a translating particle from the normal Klein-Kramers equation. How-
ever, we can also apply this method to the problem at hand. Therefore in order to
achieve this in our configuration space €2 of orientations we simply introduce the
fractional operator oD}~ in the right-hand side of Eq. (5.5), so that this equation

becomes [2,20] the fractional diffusion equation [19]

o .
a_{ +Lf =7 DSt (f). (5.8)

The fractional operator (D} * = 2 (D;* in Eq. (5.8) is defined via the convolution

9

ot

(the Riemann-Liouville definition) [79-82]
1 [P f(Q,t)dt

F(Oé) 0 (t — t/)l_a ,

oD f(821) = (5.9)

['(«v) denoting the gamma function [83]. In selecting the fractional Smoluchowski
equation for the time evolution of the probability density function in configuration
space in this way we should mention that alternative forms of that equation exist and
have been reviewed by Friedrich and coworkers [114-116]. However, the Barkai and
Silbey version, which we have already used [2,20] appears the most suitable for the
explanation of the dielectric susceptibility at microwave frequencies [2]. The reason
is that including inertial effects in their equation as applied to the original Debye
model of non-interacting rotating dipoles then correctly describes the THz behaviour
of the absorption coefficient in so far as optical transparency is regained at those fre-

quencies. Clearly, the fractional derivative is in itself just another Stosszahlansatz
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for the Boltzmann equation for the single particle distribution function of which
Egs. (5.5) and (5.8) are essentially particular configuration space forms. We now
assert (in essence following Barkai and Silbey who imposed the Maxwell-Boltzmann
distribution as the stationary solution of their fractional Klein-Kramers equation)
that the stationary solution of the fractional Smoluchowski equation is the Boltz-
mann distribution, which must prevail on physical grounds. Hence we require that
the operator ¢D; * in Eq. (5.8) must not act on the deterministic terms in the
convective derivative f so that the conventional form [2] of a Boltzmann equation
with Brownian motion Stosszahlansatz as modified by (D}~ is preserved. Here
we recall the work of Heymans and Podlubny [117] concerning the choice of initial
conditions on physical grounds. In a normal diffusion process, a = 1. If a > 1, the

phenomenon is called super-diffusion. If o < 1, the particle undergoes sub-diffusion.

5.2 Statistical Moments and Response Functions

To use linear response theory, we suppose as usual that a weak external dc field
F, having been applied to the system in the infinite past (¢ — —o0), is suddenly
switched off at time t = 0, meaning that we study the relaxation of a typical
molecule with embedded groups, starting from an initial equilibrium state at t = 0

with Boltzmann distribution given by

Fr(Q) = Zzte ™ F +ov costin—ia), (5.10)
to another equilibrium state as t — oo with new Boltzmann distribution

fo(Q) = froo(Q) = Zy eV costhr=v2) (5.11)

where oy = Vy/kT is the dimensionless interaction parameter. The dynamics of
the molecule immediately following the removal of F may then be described by the

normalised relaxation function (see Appendix 5.D) [8,29]

_ ma(t) +peca(t)  al(t) + rea(t) £>0 (5.12)

e = pr1¢1(0) + pr2c2(0)  ¢1(0) + Kea(0)
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where s = Ky so that k is the dipole moment ratio and from inspection of Figure

5.1b we have defined individual response (after-effect) functions
¢;(t) = (sinf cos ;) (t). (5.13)

Here ¢ = 1,2, the angular brackets (A) (t) represent the time-dependent ensemble
averages associated with the relaxation of an observable A while (A), represents the

equilibrium ensemble averages, namely

/ / / 0,161, 12) fol6, 1, ) sin 0dBdipydipy.  (5.14)

In the linear approximation in F, which requires that the external field parameters
o; = wiF/(kKT) << 1, the initial conditions for the after effect-functions ¢;(¢) and
co(t) are

ci(0) =~ 0i<sin2(900$2@/)i>0 + 03_i<sin26’ COS 11 COS ¢2>0. (5.15)

The complex susceptibility y (w) = x' (w) — ix” (w) can then be determined from

the usual formula of linear response theory [18,29]

M— — W h et
. =1 /0 C(t) dt, (5.16)

where x = X' (0) = [u1¢1(0) 4 p2ce(0)] /F is the static susceptibility and the nor-
malized relaxation function C'(¢) is given by Eq. (5.12).

To simplify the fractional diffusion equation Eq. (5.8) we now follow Budé and
introduce the new variables [19] (see Appendix 5.E)

_ (Y1 + o) n = (1 — o) 1/12)

1
2, . (5.17)

Thus, we have the equation describing the relaxation process for t > 0 (F = 0)
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rendered as [19]

of T _ 0
27 E —{T—ZJV {sm 27]6—77 + 2 cos 27]}

1-a_pl-a U WA
+ 717Dy {Ag,ﬁ(% 1) 57+ 2557 /i (5.18)

where Ay, is the angular part of the Laplacian written in the spherical coordinates

0 and v, T = £/(2kT) is the Debye relaxation time for rotations about the x and y
axes and 7, = £, /(2kT) is the Debye relaxation time for rotation about the z axis.

The form of the fractional Smoluchowski equation (5.18) suggests seeking its
solution as a Fourier-Laplace series [8] rather than reducing it to a Sturm-Liouville
like eigenvalue problem as done by Budé [16] for normal diffusion because this
procedure ultimately leads to the solution for y(w) as a scalar continued fraction

which is easily computed, thus

f(6,v,m,0) ij,q £)Y;5 (0, v)e . (5.19)

lpq

The Fourier amplitudes f!, (t) are the statistical moments defined by

F(t) = / Y, (0.0)¢ £(8, 0,7, )Y = (Y, (6. 0)e™) (1), (5.20)

where d€Y = sindfdvdn, Y,,(0,v) are the spherical harmonics, [ = 0,1,2,..., p =
0,+£1,...,4+l and ¢ = 0,42, +4, ... for even p and ¢ = +1,+£3, ... for odd p.

By substituting Eq. (5.19) into Eq. (5.8), we then have the differential-recurrence
equations for the f (t) in the following three-index (pgl) form [19] (see Appendix
5.F)

d , TOV ; .
27-% pq(t) :{2_7_zq[ pq—2<t) - pq+2(t)}

- -« T T l
— 7= D} {l(l+ 1)+ p? (2@ — 1> +q22_TJ pq(t)}, (5.21)

which as it stands leads to a three-term matrix differential recurrence relation [2].

88



5.3 Continued Fraction Solution of the Fractional
Smoluchowski Equation

The definition of the response function as given by Eq. (5.13) indicates however that
only the Fourier amplitudes fllq are needed in order to calculate C(t). Therefore,

to facilitate this, we introduce new functions defined by (cf. Egs. (5.19) and (5.20))

ag(t) = (Yi—icosqn) (), ag(t) = (Yi1singn) (¢). (5.22)

Their time behaviour is then described by an equation following directly from Eq.

(5.21), namely [19] (see Appendix 5.G)
d _ —a pl-a
27’Eagq,1(t) = Qqulaé]qf?;(t) + Q;q—laé]qﬂ(t) + 7' ODt1 Qqulaijqfl(t% (5.23)
where J =¢,s, ¢=1,2,3,..., a®(t) = aj(t), a®,(t) = —aj(t), and

Qo1 =—1—7(1+(2¢—1)%), Q3,1 = Fovy(2q — 1), (5.24)

and v = 7/(27,) is a ratio of Debye times. However, the new set of Egs. (5.23)
simply constitutes a single index (q) three-term differential-recurrence equation so
that the calculation of a] () is relatively simple (because its solution may then be
expressed as a scalar continued fraction unlike that of the three-index differential
recurrence relation obtaining when F # 0 leading to three-term matrix fractions).
On taking the Laplace transform of Eq. (5.23), we then have an algebraic three-

term recurrence equation in the frequency domain, viz.,

(1 —6q1) ngfléé]qﬂ(s)"‘ (Q2q71<5) + deql) dZJqfl(s>+Q§rq71&L2]q+l(s> = _27a5q71<0)7
(5.25)

where 0¢ = yoy, b®° = —yoy,

Qq(s) = (75)'7Qy — 27s, (5.26)
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and
~J _ J -5
a;(s) = /0 ay (t)e*dt. (5.27)

The initial values are determined from Egs. (5.10) and (5.22) yielding the closed

form as follows (see Appendix 5.1):

a,C(O) :ZEl /}/11(07 V) Ccos qn e(ulJrHQ)F/kTJrUV cosQndQ/

q

Z% (Ig+n/2(0v) + Ig-1)/2(0v)) (5.28)

and

aq (0) :Zgl /}/1_1(9, I/) sin qn e(”1+u2)F/kT+JV cos QUdQ/

q
ioy (K —1)

= orl(oy) (Ig+1y/2(0v) = Iig-1y2(0v)) , (5.29)

where the I,,,(oy) are the modified Bessel functions of the first kind of order m [83].
By invoking the familiar continued-fraction method for solving scalar three-term
recurrence relations [2], we have the explicit solution for the desired spectrum af (s)

in the form of a scalar continued fraction, viz., (see Appendix 5.J)

a1 (0) + Q1 Ay(s) (a3 (0) + Q3 As(s) (aZ(0) + ...))
—Q1(s) + syyov — Q7 Ag(s)Q3 ’

al(s) =27 (5.30)
where s, = —1 and s; = 1. The recurring quantity A, (s) (corresponding to the
complementary solution) is calculated by taking successive convergents from its

continued-fraction definition viz.,

Ag1(8) = [~Qan1(5) = Q31 Dyt (8)Qsa] (5.31)

Having determined aj (s), we have the spectrum of the relaxation function C(t) from

Eq. (5.12)
C1 (0) + HCQ(O) ' '

The response functions ¢;(iw) are expressed in terms of one-sided Fourier transforms
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of ai(t) as (see Appendix 5.K)

6i(w) =\ 5 (a5w) + 5" (—w) + (-1i @) - @' (—w) . (5:33)

where the initial conditions are rendered in the closed form (see Appendix 5.L)

(0) =\/§ (a£(0) +a5°(0) + (- 1)1 (a}(0) - a}"(0)))
_011j—1(ov) + kl>_;(ov)
N 3 [O(Jv) '

(5.34)

Egs. (5.30) - (5.34) taken in combination yield the solution for the linear response.
Notice that they also apply to the normal diffusion, entirely avoiding the Sturm-

Liouville problem encountered by Budo.

Appendices - Details of the various calculations

5.A Langevin Equations for a Single Dipole

The equation of motion for a rigid body in the non-inertial case is
Ew (1) = [n() x F ()] + T (1), (5.35)

where T'(t) = (T, (t), Ty (t), T, (t))" is the Gaussian white noise torque arising
from the heat bath and is represented by a Wiener process, the angular velocity
W (t) = (we (1), wy (), w. (1), [u(t) x F(t)] is the deterministic external torque

arising from F(t), Ew(t) is the frictional torque and

& 0 0
E=4 0 ¢ 0 ¢, (5.36)
0 0 &

is the tensor of the friction coefficients, which is diagonal in molecular fixed axes.

Consider a dipole pu with the following components referred to the molecular
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fized axes

u=(0, u, 0). (5.37)

The electric field F(t) can be expressed as

F(t) = Fsinfsiny i+ Fsinfcosvy j+ Fcosf k, (5.38)

where i, j, k are the unit vectors in the directions of the molecular axes z,v, z re-

spectively. The cross product pu () x F (t) is given by

m(t) xF(t)] = pFcosfi+0j— pFsinfsiny k. (5.39)

From the equation of motion in Eq. (5.35), we get

Eowy =pF cos + T, (5.40)
Eywy =Ty, (5.41)
Sw, =—puFsinfsiny +T',. (5.42)

The Eulerian angles 6, ¢, 1 are shown in Figure 5.2. These angles connect molecular
fixed axes xyz with laboratory fixed axes XY Z. The angular velocities w,, w,, w,

can now be expressed in terms of these angles and their time derivatives [58].

wy =¢@sinfsine + 0 cosy, (5.43)
wy =@ sinfcosy — 0 sin 1), (5.44)
w, =pcos f + 1. (5.45)
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>
X
Y
X 6
Figure 5.2: Eulerian angles. (aft. [118])
The Gaussian noise torques I'; are given by [2]
Iy = VETEN, , =2y, 2, (5.46)
E=6 =6, (5.47)

where A; are centred Gaussian random variables with correlation functions [2]
<A§j>(t)A§j>(t'>> — 25t — 1), kK =y, 2, (5.48)

where 0y is Kronecker’s delta and §(t) is the Dirac delta function.

Substituting Eq. (5.46) into Eqgs. (5.40) - (5.42), we obtain

Cwy =pF cos @ + \/kTEN,, (5.49)
€w, =/ETEA,, (5.50)
Ew, = — uF'sinfsiny + /kTEA,. (5.51)
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From Egs. (5.43) - (5.45), and Egs. (5.49) - (5.51) we have

. F kT

psinfsiny + 0 cos :% cosf + ?Ax, (5.52)
. kT

psinfcosy — Osiny = ?Ay, (5.53)

pcosh 4 1h = —

[kT
’éF sin 6 sin ¢ + ki_Az' (5.54)

To obtain an expression for §, we shall multiply Eq. (5.53) by sin® then subtract
it from Eq. (5.52) multiplied by cos ) to get

9:%cos@comﬁjt”k%(Axcosw—/\ysinw). (5.55)

To obtain an expression for ¢ we shall multiply Eq. (5.52) by sin® then add it to
Eq. (5.53) multiplied by cos 1) to get
wF cosf | kT

P e MY T e

(Agsiny 4+ Ay cosp) . (5.56)

To obtain an expression for 1, we substitute Eq. (5.56) into Eq. (5.54) to get

)= — ZF sin @ sin v

z

KT pF cos® kT cos @ _
A A\ A, A _ ,
& A § sind siny ¢ sinf (Agsing + A, cos ) (5.57)
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So for a single dipole, we have the Langevin equations

6 = %cos@cosw—l—”k?T(Amcosw—Aysinw), (5.58)
. chosH ) kKT 1 )
o= £ g iny + ¢ s (Agsiney + A, cosv), (5.59)

. F T
= —/2 sin @ sin ¢ + lz A, — ¢cosh. (5.60)

z z

5.B Langevin Equations for Two Interacting Dipoles

We wish to obtain the Langevin equation for two dipoles @1 and o, these can be

expressed from Egs. (5.58) - Egs. (5.60) as

) F ET , ) .
0= Z [MT cos f cosi; + \/ 2% (COS ;A — sin @ZziA;Z))] , (5.61)
i=1,2

i wi COSQ ) kT 1
= .62
’ ¢ sing g + 2¢ sin (Sl Vil + cospih)) | (5.62)
. F kT
P =— il sin @ sinvy; + A
& £
F kT , .
+ Z [— 'uzé_ cot f cosfsingy; — 4 | 2—5 cot 6 (sin U AD + cos wiAé’)) , (5.63)
i=1,2
where A,(Cj ), k = x,y,z are centred Gaussian random variables with correlation
functions [2]
<A§3>(t)A§j>(t')> — 20t — 1), kK =y, 2. (5.64)

We now introduce the effect of interaction between the dipoles p; and ps. Let

V (11 — 12) denote the mutual potential energy of the two groups. The moment
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of force exerted by the dipole ps on py is then —V’ (1 — b9). The contribution of
the intra-molecular forces in vy is given by —V” (11 — 19) /€, and similarly in U by
V' (11 — 19) /€. (see Budd 1949 [16], page 687), as such since both p; and us rotate

about the z-axis on the same plane, Eq. (5.63) can now be written as

by = ,U&F sin fsiny; + IZ?A (1) _ W

_[RT : i i
+ Z [ % cot  (sin ;ALY + cos Q/JjA;))] , (5.65)
o F kT

1=1,2
Uy = — . sin 0sin ¢y + £ZA 2) W

+ Z [ =4/ Z—? cot 6 (sin wiAg) + cos z/JiAgj)) :

5.C Derivation of the Smoluchowski Equation from

(5.66)

the system of Langevin Equations

For N stochastic variables x = {xy,...,zx} the general form of the Langevin equa-

tion involves multiplicative noise terms and is

& = hi(x,t) + g;5(x, t) A (1), (5.67)
(OA(E)) = 26,6(t — 1), (5.68)

while the corresponding Smoluchowski equation for the distribution function W (x,t)

in turn has the general form

d 0 A
ZW 1) = = W(x, 1) + LIW(x, 1) = St {W(x, 1)} (5.69)

where
LW (x.0) = 5 hi(x, OW (x. ) (5:70)
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represents the deterministic drift part of the Smoluchowski equation while

2

8.Ti$j

0 [D;(x,t) — hi(x,t)] +

St(W (x,1)) = (— s Dij(x, t)) W(x,t), (5.71)

is the collision kernel, corresponding to the free Brownian motion. From Eq. (5.70)
onwards, Einstein’s summation convention is used. Here D; and D;; are the drift
and the diffusion coefficients, respectively. These coefficients can be obtained from

the general form of the Langevin equation in Eq. (5.67) as [2]

ig,~j()<, t), (5.72)

Di(xv t) = hi(x7 t) + gkj(X, t) 8xk

which as usual is the sum of the deterministic and noise induced drift and
Dij(x,t) = gin(x,t)gjn(x, 1). (5.73)

We wish to derive the corresponding Smoluchowski equation for the distribution
function W (€2,¢) from the Langevin equations (involving multiplicative noise) of
motion of the polar groups in a dc field F applied in the Z-direction of the space-
fixed system seen in Eqs. (5.61) - (5.63) and Egs. (5.65) and (5.66). First we seek
to determine the h;(€2, ) and gi;(€2,t) functions by comparing the general form of

the Langevin equation in Eq. (5.67) to the aforementioned Langevin equations

9 :h6’ + gazlAg(gl) + 9oy, Agl) + gGZlAgl) + g9:v2A:(z:2) + gngA( =+ 9922A( ) (‘574)

77[)1 :h¢1 + gwm/\(xl) + gwlylAg(;l) + g¢1Z1A,(zl) + gwlszg(f) + gwlyzAg(;Z) + g¢122A,E;2)a
(5.75)

@ZJ? =hy, + 9w2x1A§cl) + gw2y1A§/1) + g¢221A( )+ gwgmzA( )+ g¢2y2A(2) + 9¢2Z2A,(32)a
(5.76)

¢ =h, + gwmAa(n )+ gwy1Ag(; )+ gsohAg )+ g<P$2A(x )+ gwaA;g + g<p22A(2)~ (5.77)
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By comparing Eqs. (5.74) - (5.77) to Egs. (5.61), (5.62), (5.65) and (5.66) we get

for the deterministic drift components

F
he :€ cos O( 1 cos 1 + pig cos g), (5.78)
Fcos6 ) .
he = — € sind (1 8in 9y + pg sinyhy), (5.79)
F cos®6 _ _ F . . Vv’ —
hy, = — E sin 0 (psinepr + po sinahp) — gul sin @ sin ¢y — %7 (5.80)
F cos®0 F V' (¢ —
hy, = o8 (pq sin g + pg sinahg) — 6—/12 sin € sin 1y + VIG = vs) (5.81)

¢ sind £, ’

while the functions needed to calculate the noise induced drift ete. are

90z, = \/%COS Y1, 9o, —\/gcos o, (5.82)
Goy, = — \/%Sifl (e Goy, = — \/gsin Yy, (5.83)
o = \/gssiinn@gl’ Jiwa :\/gssiinniﬂ;’ (5:84)
o= |20 o =22 539
Gunzy =Gupozy = —\/%sin U1 cotl,  Gyrwy =Gy = —\/gsin 1y cot 6, (5.86)
Gy =Gupoyys = —\/gcos P1¢ot 0, Gyrys =Gipoys = —\/gcos Yo cotf,  (5.87)

G121 ?7 Gipozo = 5 . (588)
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We can now determine the drift D; and diffusion D;; coefficients as

0 0 0 0
Dy =hg + Gos, 56 90= + Gur %99;181 + 912y a—wlgem + Gy, a—wzgem

0 0 0 0
+ Gows 75 9w + gm%ge@ + Gy 8—%01999[;2 + Gyoas 8—%9%2
0 0 0 0
+ Yoy, g0 T Gy %gem + G 3—%9@1 + oy 8—%9@1
0 0 0 0
+ 9oys ag90v + Goys %Qew T Gyrys a—%geyz T Guoys a_%gl%lz
=hy + Z—? cot 0 ((sinzwl + COSle) + (sin2¢2 + COSng))

T
=hgy + % cot 0,

0 0 0 0
D<P :hw + G0, %gwwl + Gy %gwﬂl + Gy 21 a_%gSDI'l + Gipozq a_%g%’xl

0 0 0 0

+ 9oz, %gvxz + [ %gwﬁz + Gipras a_d}lgwm + Gpoza a_%gsozz
0 0 0 0

+ 9oy %gwyl + oy %gs@m + Gy a_wlg%w + Gypon a_wzgsoyl

0 0 0 0
+ Goys %990112 t oy %gwm t Gyrye a_wlg%z t Gyaye 6_%9%2
_h kT cosy siniyy cot @ KT sin 1)y cos )y cot 6
=h, — — -

2¢ sin ¢ 2¢ sin ¢

kT cos g sinig cot @ kT sin 1), cos 1) cot 6

B 2_5 sin 6 B 2_5 sin ¢
kT siny cosy cot @ kT costy sin )y cos Yy cot
E sin 6 % sin
kT sin g cosg cot @ KT cos g sin 1, cot 6
f sin + % sin

—h,,
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0 0 0 0
D#’l :hwl + 9ou, %gwm + Gpz, %me + Gy a—%%m + Gypoa 8_%91!1111

+ gegm%gwm + gm%gwwg t Gyras aiwlgwm + gw2x28iw29w1m
0 0 0 0

+ oy %leyl + oy %g%yl + Gy a_wlgwlyl t Gy a_%gdnw
0 0 0 0

+ 9oy, %gwlw + Jpys %g%m t Gvrye 6_170191#1?42 t Gnys 6_%91#'1?;2
0 0 0 0

+ 962 %g%zl 1 Yoz %gwlzl + Gy a_wlglblzl t Gyoz a_%gwlzl

0 0 0 0
+ 9oz, %gwle + G2y %914’122 + Gipy 2o a_wlgwIZQ + Gipozo a_%gdu@

kT kT
=hy, + = sin by cos ¢ (1 + cot?d) + = sin ¢y cos ¢ycot®d

28 28

T T

+ l;—g sin 1), coS g (1 + cot29) + l;—g sin 1), cos Yacot?6
kT kT

- 2—§ sin ¥ cos Y1 (1 + cot20) — E sin 1, cos 1y cot?
kT kT

— — sin ¢, cos Yo (1 + c0t26) — — sin 4, cos ycot?l
2¢ 2€

i, (5.91)

Dy =l + Goms o Gimns + G2 Gunes + 0 + 0
po =y T G0zq aeg¢2x1 Yoz, 89097/)2901 G121 8w1 Gpox1 T Gypoxy aw2 Yoy
0 0 0 0
+ Gbxs %gd&m + Yozo %gdam + Gyp1zo 8_#)197112062 + Gypozo a_%glbzm
0 0 0 0
+ 9oy %ngyl + Gou %ngyl + Gy a_wlngyl + Gyous a_%ngyl

0 0 0 0
+ Yoy, %91/}21& + Yeoya %ngyz + Grys a_wlngyz t Gyays 8_%91#23/2

0 0 0 0
+ 9oz, %glﬂzh + oz %glﬂ'zn + G121 a_wlglﬂzn + Gipoa a_%g#JzZl

0 0 0 0
+ 9oz, %g¢2z2 + Yoz %g#)z@ + G122 a_wlgd&@ + Gipozo a_%gd&@

—hy,, (5.92)
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Dog =901 9oy + 9059022 + Goys Goy + GoysGoys + 90219021 + 9020902
T . .
:E ((Sm2¢1 + cos2¢1) + (stwQ + 00321/12))
kT
- (5.93)

Dy =9pa19pur T GowsGprs + Jou oy T Gy Goys + Jpz1 Jpzr + Jpzo Gz
kT 1

=2 %0 [sin®yy + cos®iby + sin®thy + cos®ys ]
KT 1

"¢ sinf’

(5.94)

lelbl =912 G124 + 91229122 + G1y1 Gy + G1y2Gipryo + Gp121G4p1 21 + 912090122

T <(sin2¢1 + cos?t; ) cot?d N (sin¢y + cos?tbz) cot?6
= %

1
% '+€)
LT (cot2c9 1 )

e e

(5.95)

D’t/&wz =Gpoz1 Yoy + Gpaza Gipazs + Gpoy1 Gpayn + Gpoy2 Gapayo + Gipoz1 Gapaz + Gipo20Gipaza

cot?0 1
—k -
T(& +@>’

(5.96)
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Dewl :D¢1¢9 = 9021 Yyprar T 902 Gyras T 90y Gipiyr T 90y2Giprya T 9021 Guprzr T 962090 20

kT kT
= — E sin 1)1 cos Yy cot O — % sin 1y cos ¥y cot 6
kT kT
+ — sin )y cos ¥y cot @ + — sin 1 cos s cot O
2€ 28
=0, (5.97)

Dewz :D1,1129 = 90z, Gypoay + 9025 Gpoxo + 96y1 Gipoyn + 90ys Gapoyo + 9621 Gipo 21 + 9025 Gepazo
0, (5.98)

D¢1¢2 :D’t/)ﬂln = Gyrar Gpoxy T GpraaGpowa + Gprys Gvayn + Gbrya Giays T Gupr21Gpazt T Giprzo Gupozo
kT
:¥c0t ?60 ((sin®¥y + cos™y) + (sin’ths + cos®ty))

:k—Tcot 20. (5.99)

§

Now that all the relevant terms have been evaluated the next step is to obtain the
deterministic drift part LW (€2, t) and the collision kernel St(1W(£2,¢)). The distribu-
tion function W (0, 1,19, t) may be written as W (0,11, 1,t) = f(0, 11,19, t) sinb.
We start with the deterministic drift part I:W(Q, t):

LW (Q,t) = ai hi(Q, W (2, 1)
0 0
= | 55he(,0) + 890@(9,@ 5 h%(Q 0+ 5 hw(ﬂ | ws,b).

(5.100)
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:>ﬁ(fsin9) %{E OS@(M1COS¢1+M2COS¢2)}

F cos 9

0 ) .
0_ (p1 siney + po Slﬂ%)}

2
61/11 { 1 cos 9(#1 sin 1 + pig sin1y)

f sin ¢
—g—zulsinﬁsingbl— W}

0 F cos?0
+a_¢2{_2 sind

— gug sin 6 sin ¢, + MH fsinf. (5.101)

(pr sinapy + po sinay)

= L(fsin0) =sinf [—? sin @ (11 cos ¥y + pug cos )

F
+ E cos 6 (11 cos Yy + g cos g) 90
F cos?0
E =0 (1 cosy + g cos o)

2 M (alyy —
F o050 (i cos ) gul sinf cos ¢y — L YL Y2)

B E sin ¢ &,
2
+ { ? CS(I):I@H(M sin vy + po sin 1)
I A _V(¢1—¢2)} 9
. f41 sin 6 sin ¢y 3 0
2 " _
- ?Z?Z; (f12 cos 1hg) — gﬂz sin 6 cos 1y — W
2
{ }g (;(13390< 18Ny + pig 8in 1)
- g,ug sin 6 sin ¢y + /(wlgz_ %)} 8?/12] f (5.102)

= L (fsin#) :sinﬁ{ l; [((1 + é) Sln@—COS@%) (1 cos iy + pg cos )

20 0 0
+(M1Slﬂ¢1+ﬂ231n¢2)098 (aw +8¢ )
1 )

ésme <,u1 Sln¢10¢1 + po sm@b i )
V=) V(i — ) < R )}
S e \ow om0
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Next, we will evaluate the collision kernel St(W (€2,?)):

0 0?
St(W(Q,t)) = <— [D;(2,t) — hiy(Q, )] + —Di'(ﬂ,t)) W(,t). (5.104)
8951- &%’ixj J
0 0? 0% =0 0% =0 9% =0
t(fsinf) =< —— [Dg — h —D D Dyy, +——— D
= St(fsing) { gy (Do = hol & 53 Doo + 5557 Doe + a5 Povs + g, Dovs
0 =0 0% =0 0% =0 0% =0 0? =0
——I[D,—h,|+== D D D — D
agp[ ¢ ]+8g02 <P<P+a 90 <P9+a o0 ¢w1+8¢8¢2 P2
0 =0 0 0> =0 0
— — Dy, — hy) | +—=Dyypy, + == Dyo +=——=—Dy, 4,
%1[ — o2 Do ¥ g Dot g a0, Do
0 =0 0? 9% =0 0?
__DQ_h2+—D22+—D2+—D21 in 0
80, Dvr = Mal 553 Do ¥ 55 g Doan ¥ g, Do }f o
o (kT 0% (kT .
=~ 2 <?cot9) fsinf + 20 <?> fsind
2
+ % <k?Tcot29+ Z—) fsind
1 z

* aw?;wz (k?TCOtZQ) fom?
+ % <I%Tc 20 + %) fsiné
N %;wl <%00t 9) fing
:k—Tsm@ [1 — cotﬁ% + 802 +200t0% -1
+ % (cot29 + gc—z)
b g (cot0) + 0 (ot &) 4 2O (o) 5
:% sin 0 {aa—; + cot 9% + 2cot 08¢?;¢2
+ (Cot29 + f) (818;12 + 8?:22)} f. (5.105)

Substituting W (0, ¢y, 19, t) = f(0,11,1,t)sin 6 into Eq. (5.69) we have

df _of
- =5 TLF=8u(f), (5.106)
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where the deterministic operator is defined by

. F b(0 0
Lf= {—g {(ul Sin v+ a2 sin ) o (awl i aw)

0
+ ((1 + é) sin 6 —COSH%> Z J4; COS s

=12
+ %sin@ ;2 14; Sin zpia%]
e G ) K 100
while the collision kernel is defined by
St(f) :%T {aa_; + cot 9% + 200‘529%12%
+ (Cot29 + gé) (8?22 + %)} /- (5.108)

5.D Linear Response Theory and Initial Values

To use linear response theory, we suppose that a weak external dc field F, having
been applied to the system in the infinite past ¢ — —o0, is suddenly switched off at
time ¢ = 0 meaning that we study the relaxation of a typical molecule with embed-
ded groups, starting from an initial equilibrium state at ¢ = 0 with a Boltzmann

distribution

fr(Q2) = Z};le(ulJrUz)-F/kTJrUv cos(pp1—1h2) ’ (5.109)

to another equilibrium state as t — oo with a new Boltzmann distribution
fo(Q) = fro(R) = Zy eV eostin=va), (5.110)

where oy = Vi /kT is the dimensionless interaction parameter. F = F'iy where iy
is the unit vector in the direction of the positive (fixed) Z-axis. The component

of (1; + Hy) in the direction of F is (uqsinf costy + pgsinf costhy)iy. The time-
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dependent ensemble average of (py sin @ cos by + po sin @ cos ) is

(1 8in 6 cos 1y + g sin @ coshy) (t) = (g sinf cos 1) (t) + (g sin 6 cos ¥y) (t)

=p1cy () 4 poca (1), (5.111)

where

¢ (t) = (sinfcosyy) (t), i =1,2. (5.112)
Eq. (5.109) can now be written as
fr(Q2) :Z;le(ul‘l'pQ)'F/kT""UV cos (Y1 —2)
:ZI;le(m-i-llz)'F/kTer cos(¥1—1)2)

_Zfle(ul sin 6 cos 11 +p2 sin 6 cos z/JQ)F/kTeUV cos(¢1—12)
—“F

:Zgle("l sin 6 cos 11 +02 sin 6 cos wz)eov COS(’L/J1—’L[}2)’ (5113)

where o; = p;F/kET. Note that (o;sinfcosi; + ogsinfcosty) < 1 since we

assume that the external field parameters o; < 1. Thus, we can approximate

elorsinfcosrtozsinfeosys) yyging the Taylor series expansion as

eloisinbcosrtoasinbeosyn) o 1 4 (o1 8in6 cos g + o9 8in 6 coshy) . (5.114)
Substituting Eq. (5.114) into Eq. (5.113) we obtain
fr(Q) ~ Zz' 1+ (0ysin 0 cos 1)y + oy sin 6 cos ihy)] €7V 51 =v2), (5.115)

We now wish to calculate the initial values of the after effect-functions ¢;(¢) and
Co (t) ViZ.7

2m 21 ™
¢(0) %/0 /0 /0 (sin 0 cos ;) fr(S2) sin OdOdyr dips. (5.116)
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Substituting Eq. (5.115) into Eq. (5.116) we obtain

1 27 2 s
¢i(0) =— / / / (sinf cos ;)1 + oy siné cos ¢y
ZrJo Jo Jo

+ 09 8in 6 cos g€V cos(W1=v2) gin OdOdi) dips
1 2T 2T T
= / / / (sin 6 cos ;) €7V V1Y) sin OdOdip, dpy

1
/ / 0151026 cos 1; cos wl) eV cos(¥1=v2) gipy OdOda drpy

o Jo Jo
1
/ / / agsinQQ COS 1); COS @/12) eV S W1=v2) gin OdHdi)y dips.
o Jo Jo
(5.117)

Eq. (5.117) for ¢ = 1,2 may be written as

1 2 27 T
~— sin 0 cos ;) €7V s W1=¥2) gipy 0dOdadrpy

Z

F
1
/ / azstHcos ) ov cos(¥1=v2) gipy 0dOda1drpy
o Jo Jo

1
/ / / 03_;5in%6 cos 1y cos ¢2) v eosW1=v2) gin OdOda), dibs.
o Jo Jo
(5.118)

Eq. (5.118) may be written as

2T 27 T 1
—0 sin 6 cos ;) —eV cos(¥1-92) gip OdOdi dipy
Z
0 0
ZO 2m 2 ™ . ) 1 cos(r—)
+ — (aism fcos wi) 760‘/ 17%2) sin OdOdi), dipy
o Jo Jo 0

Zp
Z 27 27 s ]_
+ Z_O [/ / / (03-isin®6 cos ¥y cos 1y) 760‘/ cos(¥1=¥2) gjp Gdﬁdwldwg} .
rlJo Jo Jo 0
(5.119)
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Now using Eq. (5.110) we can rewrite Eq. (5.119) as

Z
¢i(0) %Z—O [(sin@ cos ;) + ai<sin2«900s2wi>0 + 03_i<sin29 CoS 11 COs 1/12>0] )
F
(5.120)
Zo s 2 2 )
= ¢(0) %Z— [ai<sm fcos 1/11»>0 + 03,1-<sm 0 cos 1y cos ¢2>0} , (5.121)
F
since (sin @ cos¢;), = 0.
Note that by definition
27 2T T
Zo = / / / eV cSW1=v2) gin 0dOdi)y dips, (5.122)
o Jo Jo

and

Q
c\%

/ / (01 sin 6 cos 11 +02 sin 6 cos P2) eV cos(1h1—12) sin «9d9d@/}1d¢2
0

0

2T 2T
/ / [1 4 (o1sin6costy + ogsin 6 cos b)) e cos(¥1=v2) gin OdOda) dips.
o Jo

(5.123)

27 27 T
= Ip ~ / / / 7V s(1=Y2) gin OdOdip, dibs
0 0 0

27 21 T 1
+ Zy [/ / / (o1 sin 0 cos by + o9 sin 0 cos 1y) 76”‘/ cos(¥1=v2) gin dOdipydibs | .
0 0 0

(5.124)

= Zp ~=Zy+ Zy [o1(sin @ cos 1), + o2(sin f cos 1a),] . (5.125)
Since (sin @ cos;), =0, i = 1,2, we get

Zp = Zo. (5.126)
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From Eqgs. (5.121) and (5.126) we have
¢;(0) ~ ai<sin200052wi>0 + 03_i<sin29 cos 1y cos ¢2>0. (5.127)

Let m (¢) denote the instantaneous dipole moment of a body that is in the
direction of F. The constant field F has been operative for a very long time and is

switched off at time ¢ = 0. The relation between m (¢) and F is then given by
m (t) = Fb(t), t >0, (5.128)

where the function b(t) is called the after-effect function. Normalising Eq. (5.128)

for t =0 we get
m (¢)
m (0)

_Fb(t) _b(¥)
=~ o) " 50 L 2 0. (5.129)

The normalised relaxation function C(t) is given by

_ malt) +pee(t)  at) +re(t)  b(@) t>0, (5.130)

U= e 0) + 2ea(0) ~ e1(0) + real0) ~ B (0)

where (1o = K.
Let a(w) and y(w) denote the complex polarisability and the complex suscepti-

bility of the body respectively. We have [2]
alw) 1— iw/ C (t) e ™dt, (5.131)
0

where the normalised relaxation function C(t) is given by Eq. (5.130). As we are

neglecting electrical interaction between the dipolar molecules we get
= — (5.132)

where x = x(0) is the static susceptibility. Substituting Eq. (5.132) into Eq. (5.131)
we get

X(W)_ —iw = ot
Eant! /0 C (t) et (5.133)
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5.E  Substitution of the Symmetric Variables in
the Smoluchowski Equation

Recall that the deterministic operator is defined by

A . 29 0 0
Lf = {_2 {ml sin i o+ i sin ) <8¢1 " 3@”2)

0
+ ((1+ é) sin@—cosé’%) Z i COS

z i=1,2

§ . _ 0
+ = sin# g ;Sin Y, —
gz z‘:l,QM ¢ 5%]

_V/Wl—wz)( o 0 >_ V”(%-%)}
& \owm o) & gt (5.134)

Setting F' = 0 in Eq. (5.134) we have,

co [ Vi —we) (0 0 V(1 — )
L _{ 3 (c‘wl aw) e }f' (5135)

The interaction potential V(¢ — 1)9) is given by

V(1h — 4hg) = = Vo cos(yyy — 1), (5.136)

and its derivatives with respect to ()1 — 15) are

V(1 —1ba) = Vo sin(vy — 1b2), (5.137)
V" (1h1 = aha) = Vi cos(hr — ). (5.138)

Substituting Eqs. (5.137) and (5.138) into Eq. (5.135) we have

o Vesin(i—w) (0 9\ Vocos(@bl—%)}
Lyt (0 0y et}

With F' = 0, the collision kernel St(f) is given by

kT [ O 0 2, 07 2, € 0
St(f) = 3 {ﬁ + cotf5 + et + (cot 0+ 5—) ];2 8%2] . (5.140)
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The fractional diffusion equation is given by
d d r 11—« -«

which can be rewritten as

0 R
af(ﬂ,t) = —Lf(Q,t) +77%D; St {f(2,1)}, (5.142)
where the fractional operator, D} = %OD;O‘ in Eq. (5.142) is defined via the
convolution
1 [Tf(Q,t)dt
DOf( Q1) = il auadl 5.143
0t f( ) F(Oz) 0 (t—t/)l_a ( )
To simplify Eq. (5.142) we now introduce the new variables
V= (wlg#}Z)’ 77: (¢1;¢2> (5144)
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Using the chain rule, we obtain

of of v

of on

Iy

af

N ov 8w1

_1of
20

_Of ov

n Oy
1of
20n’

af on

Oy

of
I

of
by

0*f

o

02 f

03

o*f  O*f

Oy Oy

_ 2
Oy

|

82

n Oy

Lof

19f
200 2

255}
0? 0?

i

1
_ 2
Ot

ov? +

|

82

10f 10f

281/87} * on?
20v  20n

0? 02

i

4

ov?

10%f

B 28%977 * on?

1 9°f

10%f

(5.145)

(5.146)

(5.147)

(5.148)

|+

(5.149)

s

182 1 &*f 19°f

902 "+ 842

92 f

(

1
-2

(

0

4002

0

a2 o

2 dvdn

62
)i

2

of

0101y

e

i

4

0

oz

(

)

62
an?

Oy

2

)

4002

)+ )

(5.150)

4012 20v0n | 402

(5.151)
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Substituting Eqgs. (5.145) - (5.151) into Egs. (5.139) and (5.140) we obtain

. Vosin2n 0 VbcosQn}

Lf={- 002 07 malt ¢ 5.152
d { & O & / (5:152)
and

kKT [ 0 g 2 0? 0?
St(f) =5 {@ —i—cot@% + Cot29 (a s — 8—772)
1 9 £ (92 82
+ 5 (COt 0+ £Z> ( f
0? 19

8 ) 82 82
I? @“t%mt@w*z@ oz tap)|f O

Recalling that 7 = £/(2kT') is the Debye relaxation time for rotations about the z
and y axes and 7, = £, /(2kT) is the Debye relaxation time for rotations about the

z-axis, we have

T mr
27, 2 (Q%T)
RS
“3¢ (5.154)
Using Eqs. (5.152) - (5.154) we can rewrite Eq. (5.141) as
0 Vo sin 2n 8 Vo cos 2n
I 9 04
R TR
0? T [ O 0?
l—a l1—a
=T ODt { {%—FCOJEQ— +C0t 9m+27_z (w—}—%)] f}
(5.155)
0 Vo | . 0
=020 lsinon— +2
= BT { . {sm n an + 2 cos 27]]
kT 02 9, 02 T 0* 1T
l1-o v l—a | 7 i 29 7 o o
+7 ( ¢ ) oD, [802 —l—cot@ae + cot 981/2 + o7, 07 +2Tzan2”f
(5.156)
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Multiplying both sides of Eq. (5.156) by &£/(kT') = 27 we obtain

0 Ve 0
2’7'&]‘? = { <k_;> <§—Z) [sin 2778—77 + 2cos2n

0? 0 0? T 0? T 0?
1-a l-a | ¥ i 2p ~ _ R
+7 %D, {8624—001;989 + cot 981/2+27'Z8V2 +2Tzan2]}f.

(5.157)

Noting that oy = Vo/kT and /€, = 7/7, we may write Eq. (5.157) as

0 T 0
21— f =49 — in2n— + 2 2
"o f {Tz oy [sm n an + 2cos 77]

0? 0 0? T 0? T 0?
1—a lea -~ 2 _
+ 7% Dy {—892+Cot080 + cot 63V2+27'Z8V2 +2728n2]}f

0
= {1 oy [sin 2n—= + 2cos 27]]
In

T
0? 9, 02 T * 1 0
1-« l—a | ¥ e 2p\ _ — N
+ 77D, LW +cotfoz + (14 cot0) R (QTz 1) 572 +2Tzan2”f.
(5.158)

Consider the Laplace operator V2 or A written in spherical coordinates

1 9 1 a( 8f> 1 8%

Af = —— ————— | sinf— _—
/ r2 Or? (rf) + r2sin 6 00 St r2sin6 Ov?

0 (5.159)

Note that
cos20  sin?6 + cos?d 1
1 t20 = 1 = = . 5.160
+eo * sin%6 sin’6 sin’6 ( )

With r = 1, the angular part of the Laplacian, Ay, is given by

Ng,f =——— | sinfh—= —
ovf sin 6 00 St sin%f Ov?

19 af 1 82f
( a@>+

_1 of . Pf o O2f
=m0 {COSQ% + sin Qw] + (1 + cot 9) a7
of

of 0*f
ov?
2

=cotf—- +—+ (1 + cot20)
o 0 0
= [cot 0— + = + (1 + cot®d) ﬁ} /- (5.161)

20 90
90 o2 T
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Using Eq. (5.161) we can rewrite Eq. (5.158) as

0 T ) 0
QTaf = {T_z oy [sm 2778—77 + 2cos 277]

T N9, T
+7 %D, [A97,,+<QTZ 1> 52 +27z0772 f. (5.162)

5.F Derivation of the Differential-Recurrence Re-
lation
Recall that the Smoluchowski equation describing the relaxation process at time

t>0(F =0) is

ot ,
o i T 0? T 0?
+7 %D, {Aaﬂj + <2Tz 1) 92 + — o 87] f, (5.163)

where Ay, is the angular part of Laplacian written in terms of # and v, 7 = £/(2kT)

272]” = {ﬂ {sin 2772 + 2cos 277}
on

is the Debye relaxation time with respect to rotations about the z and y axes and
T, = &, /(2kT) is the Debye relaxation time with respect to rotations about the
z-axis.

We seek the solution of the Smoluchowski equation (5.163) as a Fourier-Laplace

series

FO, v, 8) =Y L (0)Yn(0,v)e ", (5.164)

Lp,gq
where the Fourier amplitudes fll,q(t) are the statistical moments defined by

L (1) = / Y, (0,v)e" " fdQ = (Y, (6,v)e' ") (), (5.165)

)

where dQ) = sinfdfdvdn, Y,(0,v) are spherical harmonics, with | = 0,1,2, ...,
p=0,%+1,..., £l and ¢ = 0,42, +4, ... for even values of p and ¢ = £+1,43, ... for
odd values of p.

To obtain the differential-recurrence equation, we start by substituting Eq.
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(5.164) into Eq. (5.163) to get

0
27'— [Z qu )Y (0,v _’q”] S [sm 27]a + 2cos 277}

> OV, v)e i]

TZ
lip.q lLp.a
(92 T 02 ,
- Dl—a A , T — 1) — ! Y*@ —an .
T ol [ bw + (2@ ov? ZTZan ;qu V)
(5.166)
Using Euler’s formula, Eq. (5.166) can be rewritten as
2 0 L (Y0, v)e | =
Ta prq() lp( 71/)6 -
Lpg
oT e — e 1N\ 0 i2 —i2 l * —i
T—z{(Q—i)a—n+(en+e 77] prq Y (0,v)e "
lipq
82 T 02 ~
l—a Dl—a A . T -1 l Y* Q —wn|
T ol [ ow + (27Z 81/2 27, 877 ;qu V)
(5.167)

We then evaluate the derivatives in Eq. (5.167) to rewrite the equation (see Appendix
5.F.1) as

df! or 1 | |
2T a [Z f];]t( )YE;‘)(Q ) _“177] — [Z (_Q) Il)q(t)n;(g’ V) [e—l(q—Q)n _ e—z(q.;_g)n}

27,
L,p,q Lp,q
2
+2 Z féq Y50, v ) e —ilg=2)n . efi(q+2)n} ]
Lp.g
3
D Fg) (Z11 4 1) Y (8, v)e

L,p,q

locha

4

+§; ( 1) L (£)YE(0, v)e '

5

T * —1
#3100 (<) (5 ) Vot ] .
Lp,g N

(5.168)
To obtain the differential-recurrence relation, we multiply both sides of Eq. (5.168)
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by Yy (6,v)e ' and then use the orthogonality properties of the spherical harmonics

and the circular functions [2]
2 27 L ) L
/ / / Y (0,v)e” Yy (0, v)e" " sin 0dOdvdn = dyr6ppgq 27 (5.169)
o Jo Jo
Left Hand Side
27 27 ) L
/ / / —LLY (0, v)e (Y}/p/(G,V)e“] ’7) sin OdOdvdn
dféq
:27'2 / / / 2 (0.0)e " Yy (0, v)e ' sin OdOdvdn
Lip,g

dfq(t)
=927 Z I;;t 6ll’6pp’ (qu/QTF

l,p,q

4y (0

=27 (27) pm

(5.170)

Right Hand Side

/ / / 5 ( —q) [, (t)Y (0, v) [e7 70727 — e—i(m»q) (Yl,p,(e,y)eiq'n) sin 0d0dvdn
Tz Lp,g
21 .
:2@ Foa( / / / (0, v) [em a2 — gmilat2m] (y,,p,(e, y)ew") sin 0dfdvdn
l,p,q
oT 2m y
= {/ / / Y (0,v) Je =AY, (0, v)e' " sin OdOdvdn

27’Z

271' 2m
/ / / Y (0, v)e Y, (0, v)e' M sin Gdedydn]

—272[ (¢ +2) fygi2(t)2m + (¢ = 2) ,ﬁiq/fz(t)%]. (5.171)
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2
27 2 ) o
/ / / 5 2 Z fll,q v) [e” Ha=2n 1 eﬂ(q”)"} (Yl/p/(Q, v)e' ”) sin fdfdvdn
0 0 z

L,p.q

27
27_ Z f,lgq / / / a0 v) e (a=2)n 4 o=ilat2)n ] (Y}/p/(e,y)eiq/”> sin OdOdvdn

_QT U / / (0, v)e DYy (0, ) sin §dfdydy
/ / / w(0,v) —Uat 2y, (0,v)e' " sin Qdedydn}

2f£q/+2( )+ 2fl o(t )] 2. (5.172)

ZQTZ [

/ / / (Zféq z+1))37;§(9,u)e—iq"> (Yo (8, v)e'" ) sin 6y

Lp,g
_Zlew L(l+1)) / / / (0, v)e” Y, (0, v)e M sin 0dfdvdn
Lpg
- Z le?q L+ 1)) 0w bppy Ogqr 27
Lpg
= (27) fh () (U (I +1)). (5.173)

/ / ( > (=) (2: —1) ,iq(t)iﬁ;(e,u)e—"q"> (Y (6, )e) sin 0dbdvn
( ) / / / (0, 0)e 7 Y, (0, )€ sin 0ddvdn
") (i
) (5

s
> (-
>

) f ( )5”’ pp’équQﬂ'

=) ( d (5.174)

Tz
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15)
7 27T ! l 2 T * —1 iq’ .
/0 /0 /0 (Z Foa(t) (—q ) (2_7_2) Y, (0,v)e lqn) <Y2/p/(9, v)e q”) sin 0dfdvdn

l,p,q

2 2 ™
:Z (—¢°) <%> féq(t)/o /0 /0 Y};(Q,y)e_iq”Y/p/(é,V)eiq/" sin dfdvdn

l,p,q

:Z (_QQ) <%> f;iq(t)(Sll’fszujfﬂ(sq{l’%r

l,p,q

T ’
= (2m) (_q/2) (;) fhg (). (5.175)
Substituting Eqgs. (5.171) - (5.175) into Eq. (5.168) we obtain

’
27 (2) Uye ) p;;(t)

1

2
agT ’ ’ ’ ’
=5 [— (@ +2) flrgro(t) + (4 —2) flg_o(t) + 21 ya(t) +2 f;,q,_Q(t)] o

i gDl [m) 10 (4 1) + (2n) () (2; - 1) b (1)

+ (2n) (—q'2> (%) o (t)} , (5.176)

Eq. (5.176) can be rewritten as

27 11a0) =3 [Fhg-o(t) — S]]
- Dt 0 1)+ 67) (5 1) +6) ()] o

(5.177)

5.F.1 Evaluation of the partial derivatives in Eq. (5.167)

The spherical harmonics Y;,(6,v) are defined by

Y, (6,) = \/ SN e s @) bl <L (Gam
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We seek a solution of the fractional Smoluchowski equation as the Fourier-Laplace

series

FO.v.m.t) =" fl1)Y, e, (5.179)

l,p,q

The partial derivatives of f(6,v,n,t) are given by

a l * —1
oo O t) = prqyey a
lpq
=3 SO Vi 0
Lp.q
=Y f1,(t) Yy (0, v)e ", (5.180)
lp.q

82 82 l * —iqn
8V2f (0 v, n’ w prq(t)}/ip(07 V)e

l,p.q
-Y 1, o
l,p.q
= f1,(t) Yy (0, v)e ", (5.181)
Lp.q
0 l * —iqn
5o f O t) = prqyey
" lpq
8
AU AP
lp.q 77
=> 1,0 Y (0, v)e ", (5.182)
lp.q
0” l |
53f (0 v t) = Zf,,q 1Y (0, v)e "
" Lp.q

2

o
=Y (Y0, v)5 e
on

l,p,q

=Y f1,(t) Vi (0, v)e . (5.183)

L,p,q
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Using the properties of spherical harmonics, Ay, f can be written as [2]

Ao f =Dg, <Z fr (DY, y)e—iqn)

l,p,q

- Z fziq(t) (Ae,le;(Q, y)) e tan

l,p,q

=D fou® (LT + D) Y(6,0)) e, (5.184)

l,p,q

5.G Derivation of the Differential-Recurrence Re-
lation in terms of the Functions ay, , (t)

The associated Legendre functions P/ (cosf) are defined as [2]

PP (cosf) = (=1)” (sin Q)pL(COSQQ — l)l Ip| <1 (5.185)
! o2 d(cos 0)"7 = '
With [ = p =1, we have
P! (cosf) = —sin6. (5.186)

The spherical harmonics Y}, (6, v) are given by [2]

Yi, (6,v) = \/ (254; Y 8 - g;iefp'fpf (cos ). (5.187)

The spherical harmonic Y3, (0, v) is given by

— 1) .
Y-ll (9’ V) _\/2 (1) +1 (1 " 1)'61(1)11}-)11 (COS 9)

3
=1/ geZ”Pf (cos0)
3 .
=—1/ 8—6“’ sin 6. (5.188)
m

Using the following property of spherical harmonics

Yiom (9’ V) = (_1)mY};‘jn (‘9’ V) ) (5189)
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we have
Vi (0,v) = (—=1)'Y}, (6, v) = \/ge“’ sin 6. (5.190)
Recall that that the Fourier amplitudes f;q(t) are the statistical moments defined
by
() = / Y, (0, 0)e (6, v, 1, 1)dSY = (Y,,(6, )™ (1), (5.191)
where dQ¥ = sin@dfdvdn, Y, (0,v) are spherical harmonics, with | = 0,1,2,...,

p=0,%£1,...,+l and ¢ = 0,£2, +4... for even values of p and ¢ = +1,+£3... for odd

values of p. For [ =1 and p = —1 we have

fLig() = (Y121 (8, v)e"") (2)
= (Y, _1(6,v) [cos (qn) + isin (qn)]) (t)
= (Y1 1(0,v) cos (qn)) (t) + i (Y1 (0, v) sin (qn)) ()
—a (t) + ia (1) (5.192)

We recall that the differential-recurrence relation for f} (t) is given by

TOy

2r 840 = { 20 [y 20~ )

1—a pPl-a of T 2o T l
— T ODt [l(l+1)+p <2TZ—1)+Q 2—7_2:| pq(t)}.

(5.193)
Substituting Eq. (5.192) into Eq. (5.193) we obtain
2 d c . s . TOV c . s c . s
0 g (1) + iy (0] = { 7 [ (6) 050 ()] — [0 0) + 0 9]
— e [+ -0 (1) ] [0+ i 0]
(5.194)

;»27% [a¢ (t) + i (1)] = {T“Vq [[aS_s (£) + a5y (£)] — [0S s (£) + ia5s (£)]]

— 7Dl [2 - (2: - 1) + ¢ 2” [0 (£) + da, (1) } (5.195)



From Eq. (5.195) we have

2r % at (1) = {Tavq |42 (8) — g2 (8]

dt ? 2,
_ ,l-a Olea 2 4+ T -1+ q2 T a’ (t) (5196)
! 2 2r,] )7

Tz

and

d. . TOV . s
27%2% (t) = { o7 q [zaq_Q () — iy 4o (t)]

11—« l—« T 2 T L]
-7 %D, [2—1— <2TZ—1>+q 27’;,] zaq(t)}.

d < TOVy s s
= 27%% () = { 27, q [aqﬂ (t) — agis (tﬂ

_ i, pi-e {QJF ( T 1) + ] a: (t)}_ (5.197)

2T, 2T,

Egs. (5.196) and (5.197) can be written more compactly as

d c,s TOv c,s c,s
21 (0= { Ea o0 - it 0)

— 7l ple {2 + ( - 1) +q°5- } ay” (t)}- (5.198)

27, 2T,

Replacing ¢ with 2¢ — 1 in Eq. (5.198) we have

d s TOV

—Tl_a ODtl—a |:2+ (27'

Tz

(20— 1) ags, 1) 5 (1) = afz ). (1)

- 1) +(2q — 1)2§] ase (t)} .

z

(5.199)

d C,S8
= QTEGQLJA (t) = {

TOVy
2T,

_Tl—a ODtl—oz |:2+ (27_

T

(2 — 1) [ag; 5 (t) — a3y, (1)]

- 1) +(2¢ — 1)2%] agl (t)} .

z

(5.200)

123



We define @5, ;, Q;q_l, and Q241 as

TOy

Q21 =or (2¢—1)
=0y <27; > (2¢ - 1)
=oyy (29— 1), (5.201)
Qi1 =5 (24-1)
= — 0y (2;) (2 —1)
=—oyy(2¢—1), (5.202)

=2 (1) -7

27, T,
T 2 T
——1-——(2¢—-1
2T, (24 )27'Z
——1—7-(2¢—1)*
=—1—7(1+(2¢-1)7%). (5.203)

Using Egs. (5.201) - (5.203) we may write Eq. (5.200) as the ordinary differential-

recurrence relation

d Cc,S8 —_ C,S8 Cc,S8 — —Q Cc,S8
27%“2’(1—1 () = Q21035 (1) + @3, 1a5741 () +7' 70Dy Qag-1a5, 4 () . (5.204)
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Taking the Laplace transform of both sides of Eq. (5.204) we have (see Appendix
5.1)

Tl—a

27 [5&5’;—1 (s) — a2q , (0 )] Q2q 1&35 3(s) + Q2+q 1d§;+1 (s) + Go—1 QQ(]*I&E’;—l (s)-

(5.205)

= - 27@5571 (0) = (_27'3 + (TS)I_OCQZq—l) d;; 1 (8) + Q2_q 1&55 3(s) + Q;_q 15L§qs+1 (s).

(5.206)

= —27ay, , (0) = Qaq- 18541 (8) + Q21025 (s) + Q;q 105041 (8) (5.207)
where

Q2q-1(5) = (75)' 7 Q2q-1 — 275, (5.208)

5.H The Laplace Transform of (D} “Qy,_1a5,_; (t)

The fractional operator (D} ~* = % oD; % is defined in terms of the convolution (the

Riemann-Liouville definition)

oD f(Q,1) = F(la) /0 ](Ct((_z ;,t)?di/, (5.209)

where I'(«) denotes the gamma function. Eq. (5.209) can be rewritten as

oD} f(Q, ) =D, " ”f Q1)

/ F(Q )t
(a—1) Jo (t—t)D

L t)dt
Dla—1) Jy (t—t)""

famp @ e
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where the asterisk denotes linear convolution and w(t) is the unit step function.

Taking the Laplace transform of oD} ®f(€2,t) we get

L{oD; " f(2,1)} :/:{F L

m[f(n,t)u@)* 1au<t>”. (5.211)

(t)*

Using the convolution property of the Laplace transform we can rewrite Eq. (5.211)

as

1
(t)Z—a

L{oDf(2,1)} = ﬁ [ﬁ{f(ﬂ Ju ()} x c{ u(t)H . (5.212)

We seek now to obtain the Laplace transform of 1/(¢)* “u (). From the table of

Laplace transforms [119] we have

c { (T(f)_nll)!u (t)} _ Sin Re {s} > 0. (5.213)

Multiplying both sides of Eq. (5.213) by (n — 1)! we have

et (n—1)!
LA u(t)} = T Re {s} > 0. (5.214)

Replacing n by n — 1 in Eq. (5.214) we obtain

L {(t)”“”*lu (t)} - w Re {s} > 0. (5.215)
=L{()" Pu(t)) = % Re {s} > 0. (5.216)

With n = a in Eq. (5.216) we get
L { (t;au (t)} =L{)" Pu(t)) = % Re {s} > 0. (5.217)
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The Laplace transform of the functions af(t) and aj(t) is given by

L{ 0D} *Qagra5, 4 (1)} =Qog1 L { 0Dy a5, (1)}
1

—Qag 15 (5) PO‘S;?!] NCES (5.218)

Noting that I' (v — 1) = (o — 2)! we get for Eq. (5.218)

—2)! 1
£ Quaesi 0} =Quaiig 0| S

1

=Qaq-1851 (8) o1 (5.219)

5. The Initial Values of the Functions ag* (t)

We have for the initial value a ()

f Yi—l (0’ I/) cos qn 6(01 sin 6 cos(v+n)+o2 sin 0 cos(v—n))+oy cos 24
- f e(o1sin @ cos(v+n)+o2 sin 6 cos(v—n))+ov cos 2n )/

f lefl (9’ I/) cos qn 6(01 sin 0 cos(v+mn)+o2 sin 0 cos(u—n))eov cos 2 )/
- f e(o1sin@ cos(v+n)+o2sinf cos(v—n)) gov cos 2 )/

ag(0)

(5.220)

Since 0; < 1, i = 1,2, we may approximate e(715m0costn)+ozsingcos(v=mn)) gq

elorsinfeos(van)+ozsinbeosv=n) ~ 1 4 5 sin @ cos(v + 1) + o2 sin @ cos(v — )] .
(5.221)
Substituting Eq. (5.221) into Eq. (5.220) we get

_JYia(0,v)cosqn [l + o1 sinf cos(v +n) + o sin 6§ cos(v — n)] €7V <>1dSY

(0
aq(0) J 1+ o1sinf cos(v + n) + o9 sin b cos(v — n)] e7v <0321y
(5.222)
Eq. (5.222) may be written as
C(O) N f }/'1_1(9, V) CcOS qneav cos277dQ/
K Nf [1 4 oysinfcos(v + n) + o9 sin 6 cos(v — n)] e7v cos2ndY
+ [ Y1-1(0,v) cos qn [o1 sin 0 cos(v + )] 7V 5214y
[ 1+ o1sinfcos(v +n) + o9 sin b cos(v — n)] e7v cos2ndY
n f Y1_1(0,v) cos qn [0 sin 0 cos(v — n)] eV <214 (5.223)

J 1+ oysinfcos(v +n) + ogsinf cos(v — n)] e7v s21dQYy
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Note that since o; < 1, i = 1,2, we can rewrite Eqn. (5.223) as

Nf }/171(9, V) CcOSs qneUV COSanQ/

CLq(O) f oV Ccos QUdQ/
f Y1_1(0,v) cos qn [0 sin 0 cos(v + n)] eV <=2
+ f eov cos 2ndQ/
f }/1—1(6, V) cos gn [0’2 sin 6 COS(V — ,,7)] OV €08 21 J()/
+ f eov cosQndQ/ y

which can also be written as
ag(0) ~=(Y1-1(0,v) cos qn)o + (Y1-1(0, V) cos gn [o1 sin 0 cos(v +1)]),

+ (Y1-1(0,v) cos qn [o2 sin 6 cos(v — n)]),,-

Since (Y1_1(60,v) cos qn), = 0 we have

ag(0) =o1(Y1-1(0,v) cos qnsind cos(v + n)),

+ 09(Y1-1(0, v) cos gnsin 0 cos(v — 1)),
Similarly, we have for the initial value a;(0)

aZ(O) ~(Y1-1(0,v)singn), + (Y1-1(0, v) singn [o1 sin 6 cos(v + 1)]),

+ (Y1-1(0,v) singn [o2 sin 6 cos(v — n)]),,.

Since (Yi_1(0, v)singn), = 0 we have

ag(0) o1 (Y1-1(0, v) singnsin 0 cos(v + 1)),

+ 02(Y1-1(0,v) singnsin 0 cos(v — n)),.
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Using Euler’s formula, we can write Eqs. (5.226) and (5.228) as

ag(0) %%@/1_1(9, v)cosqnsin® [e”e +e e )

+ %<Y1_1(9, v) cos qn sin 0 [eiVe—in + e_"”ei”} >07

aZ(O) z%<Y1_1(9, V) sin gn sin 0 [ei”ei” + e—ive—in] >0

+ %<Y1_1(9, V) sin ¢n sin 6 [e“’e—in + e‘“’ei’?} >0‘

Since the spherical harmonic Y;_;1(0,v) is given as

Yi1(6,v) = “83 sin e,
m
sinfe™" = \/%Yl_l(é’, v),

whose complex conjugate is given by

sin fe”” = 1 / 8%3/1*_1(0, v),

we have

(5.229)

(5.230)

(5.231)

(5.232)

(5.233)

where the asterisk denotes complex conjugation. Furthermore, using Eqgs. (5.232)

and (5.233) and Euler’s formula, we may write Eq. (5.229) as

/8 4 '
a;(o) %% ?ﬂ (<Y1_1(9, 1/)}/1*_1(9,”) [€Z(q+1)n + e—l(q—l)n]

+Y14(0,v)Y11(0,v) [ei(qil)n + eii(qﬂ)n} >0)

8 . .
+ 5045 (M@ 4 (0p) [0 4 ]
+Y14(0,v)Y11(0,v) [ei(qﬂ)n + eii(qil)n} >o) :
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Similarly using Eqgs. (5.232) and (5.233) and Euler’s formula we may write Eq.

(5.230) as

8 ‘ A
ag(0) “Z_; \ 3 = ((Yi_1(6, )Y (0, v) [el(‘”l)’? — e—l(q—l)n]

+ Vi1 (0, ) Vi (8, v) [ellamDn — emilarbn]) )
T 5 (Na(0)Yi, (6,0) [0 — e
+ Y110, ) Y11 (0,v) [T — g7l

Consider the following properties of spherical harmonics

Yip (0,v) = (=1)"Y;,

lp>

and

2 T
/ / Yip (0, ) [Yiry (0, v)]" sin 0d0dy = 6/,
0 0

Using Eqgs. (5.236) and (5.237) we may write Eq. (5.234) as

St f27r( i(g+1)n + efz(q 1)7]) eov cos277d77
4 3 477] eov C03277d77

8 f ( i(g—1)n + e~ (q+1)n) e0V cos Qndn
+ 4 3 2 ’
At f(] eIV €os ndn

and we may write Eq. (5.235) as

ac(0) ~2L

87Tf ( i(g+1)n —e i(qfl)n) 60’\/00827]d,’7
q< ) 42 3 4_7'(f eov CObQ??d*r/

1 f ( i(g—1)m _ e~ i(g+1)n ) OV cos ann
—f- - \/
44 3 At f eIV €os 21) dn

The function eV 527 may be written as the Fourier series [83]

[e.e]

g0V €08 2n _ E Im (UV) ezZmn,

m=—0Q

(5.235)

(5.236)

(5.237)

(5.238)

(5.239)

(5.240)

where I,,(oy) is the modified Bessel function of the first kind of order m. From
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Eq. (5.240), using the orthogonality property of circular functions and noting that
I_., (oy) = I (ov), we have for Eq. (5.238)

27 6i(f1+1)77 |: i [m (OV) eian:| + efi(qfl)n |: Z [m (UV) eiZmn:| d77

. o1 8770 m=—oo m=—00
aq(O) %Z ? 9 )
Am [" [ S Ly (ov) eiQTm?] dn
. - 027r ei(q_l)n |: Z -[m (UV) €i2mn:| + e—i(q+1)n [ Z ]m (UV) ei2mn} d77
2 m=—00 m=—o00
4\ 3 - :
3 47 f02 [ > I (oy) 612"”7} dn

(5.241)

o [ S I (ov) ez’(q+1+2m)n] + [ S L (ov) ei(l—q+2m)77:| dn

q 00
4 3 A f027r |: Z Im (UV) ez‘2m17:| dn
027r |: Z Im (UV) ei(q—1+2m)n:| + |: Z [m (UV) 6i(—l—q—&-2m)77:| d77
g9 87T m=—o00 m=—o00
IV =
dr [T { S L (o) eizmﬁ} dn

(5.242)

o

o, |87 _Z I (ov) fOZTr eHati2mndy 4 _Z: Iy, (ov) fozw eill=g+2mmg,)
= aZ(O) wzl ?m_*oo _ me=—oo
4 Z Im (O'V) f027r eiand,r]

m=—0Q

Z ]m (O'V) f0271' ei(q—l—+—2m)nd77 + Z ]m (UV) f027r 61’(—1—q—+—2m)nd77

Oy 8T m=—co m=—o00

2

4V 3 dr 3 Iy (ov) [, e?mndn

m=—00

(5.243)
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c(0) 2Ly /3T 2 iy (0v) + 2l (ov)
3 A 271y (ov))

4V 3 A (27l (ov))

= a5(0) 222/ %ﬂ I~ (g+v/2) (ov) + Lig-1)/2) (0v)

! 4 47 (]0 (Uv))
L @ 87 Iy (0v) + Digryyz (ov)
4V 3 4 (1o (ov)) '
= ac(0) ~ 2t 8 Lig+v)/2) (o) + Iia-1/2) (ov)
I 4 3 47 (IO (Uv))
L 02 8T Iig-nyy2) (0) + Iig4ny ) (9v)
4V3 4r (1o (ov)) '

o1+ 09 8w
() m—at %2 T T
= ag(0) T in V3 (Igr1y/2) (0v) + Iig-1y/2) (0v))

_O'1+0'2 1

“ 41y (ov) V 67 Utarn2) (0v) + Tig-1)/2) (ov))

Similarly, we have for Eq. (5.239)

01 — 09 8w

a,(0) %W 3 (Lg+1)/2) (0v) = Ii(g=1)/2) (0v))

01 — 09 1

" 4il, (av) V 67 (Tiarny2 (0v) = Lig-1y2) (ov)) -

Eq. (5.248) may be written as

i(UQ—Ul) 1

W0~ o0 Ver (Larny2) (0v) = Iig-1y2) (0v)) -

q
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03 |87 2ml(—(-v)/2) (0v) + 2T L(q+1)2) (Ov)

(5.244)

(5.245)

(5.246)

(5.247)

(5.248)

(5.249)



Egs. (5.247) and (5.249) may be written more compactly as

o1(1+ k)

CL;(O) ~ m ([(q+1)/2(0\/) + [(q,l)/g(av)) , (5.250)
a(0) m 2T g (00) = Ty al(o) (5.251)
I 4\/6_71'[0(0'\/) ! I ’

where kK = /1.

5.J Solving the Differential-Recurrence Relation
via Continued Fractions

Recall that the three-term scalar differential recurrence relation is given by

d _ —a pl-a
27’%%@4@) = QprlaLQ]pfS(t> + Q;rpfla’é]p+1<t> + 717D, Qprlagpfl(t% (5.252)

where J =¢,s,p=1,2,3,..., a®(t) = a§(t), a®(t) = —aj(t),

Qo1 =—1—7(1+(2¢-1)%), (5.253)
Q3,1 =Fovy(20— 1), (5.254)
a,(t) = (Y11 cospn) (1), ( )
(5.256)

as(t) = (Y11 sinpn) (t).

and v = 7/(27,) is a ratio of Debye times. Taking the Laplace transform of Eq.

(5.252) we obtained a three-term recurrence relation in the s domain viz.

(1 —0p) Qz_p—légp—3(3)+ <Q2p—1(3) + bjépl) d;p—l('s)_l_Q;_p—l&gp—‘rl(S) = _QTagp—l(())?
(5.257)

where 0¢ = yoy, b° = —yoy,

Qp(s) = (75)'7Q, — 275, (5.258)
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and
~J _ J -5
a,(s) = /0 aj (t)e*dt. (5.259)

We seek the solution of Eq. (5.257) as

ay, 1 (s) = Sap_1(s) g, 5 (s) + Rop_1 (s, (5.260)

where

Sop-1(5) = [~Qap1(5) = b701 — Q1 Sopi1 ()] Qs (5.261)

The particular solution Rs,_1 (s) may be found by substituting Eq. (5.260) into Eq.
(5.257) to obtain

(1= 0p1) Qzp 183, 5(s) + (Qop—1(s) + b7 6p1) [Sop—1 (5) @3, 5 (5) + Rop_1 (s)]
+ Q31 {S9p11 (5) Ay (5) + Ropyr (5)} = —27az, ,(0), (5.262)

which can be written as

(1= 6p1) Qzp 103, 5(5) + (Qop—1(5) + 0701 [Sop—1 (5) @3, 5 (5) + Rap_1 (s)]

+ Q2p 1 {SQP—H [8217 1 ( )CLQJp—3 (3) + Rop1 (s ( } + R2p+1 } Ta’2p 1 0)
(5.263)

Eq. (5.263) can be further written as

Q2_p71a2‘]p73(5) - 6P1Q2_p71a2(]p73(8>
+ [Sap1(8) (Qap-1(8) + b7 0p1 + Q31 S2p11 (5)) s, (5)]

+ [Qop-1(5) + 0701 + Q3,1 Sap1 (5)] Rop—1 (5) + Q3 Raps1 (s) = —27az, (0).
(5.264)

Eq. (5.261) can be written as

Sap-1(5) [Qap-1(5) + 6701 + Q3,_ 199511 (5)] = —Q3p_1- (5.265)
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Substituting Eq. (5.265) into Eq. (5.264) we obtain

QQp 1a’2p 5(5) _5p1Q2_p ICLQJp 5(s) + [ QQp la’Zp 3(5)]

+ [Qap-1(8) + 0761 + Q3,1 S2p11 (5)] Rop—1 () + Q3,1 Rops1 (s) =

= — 6,1Q3, 183, 5(s) + [Qap—1(s) + b7 6p1 + QF, 15211 ()] Rapi (s)
+ Q;pflRQP-I-l (8) = —27'0/‘2]1)71(0).

Since 0,1 = 0, p # 1, we have

— 0,1Q1a’ () 4 [Qap-1(5) +b70p1 + Q3,1 Sops1 (5)] Ropi (s)

+ Q3,1 Ropy (5) = 2703, ,(0).

= [=Qap-1(5) = 70,1 — Q3,1 Sop11 (5)] Rap1 (s)
- QS;ARZHI (s) = 2Ta’gp71(0> - 5p1QfC~l{1(S).

We obtain the following expression for Ry, (s)

27—a2p 1(0) = 6,1Qra’ (s) + Q;p—lRQP‘i‘l (s)
[ sz 1(8) =076, — Q;}y—lSQP"Fl (5)]

R2p 1()

With p =1 we have

2ral (0) — Q;a 1(s) + Qf R3 (s)
[~Qi(s) — b7 — QF S35 (s)]
27a] (0) — Q1 a’,(s) + QT R; (s)

R1 (S) =

Q) -0 - QIS ()] T [~ Quls) — b —Qf S5 (s)]

Let p =2, in Eq. (5.270)

27a3(0) + Qf Rs (s)

B ) = 2o, = ars )]
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(5.266)

(5.267)

(5.268)

(5.269)

(5.270)

(5.271)

(5.272)



Substituting Eq. (5.272) into Eq. (5.271), we get

2ral(0) — Q7a’ ,(s) QT [27a§(0) + QF Rs (s)]

[—Q1(5) — b/ — Q1+S3 (3)] * [_Ql(s> - b - Qf53 (5)} [—Qs(s) - Q;S5 (5)] '
(5.273)

R1 (S) =

We introduce the continued fraction A, (s)

Agp1 (s) = Sz_n_ll ((Z)) = [~ Q201 (5) = @3y (8) Dony1 (8) Q] 1 > 2.
. (5.274)
Son—1(s) can now be expressed as

Son—1(8) = Aop_1(8) Q3,1 (8), n > 2. (5.275)

With n = 2 in Egs. (5.274) and (5.275) we have

) — Sg (S) _ 1

SO e T ae —demee e O
Ss (s) =As(s) Q3 (s). (5.277)

Substituting Eqs. (5.276) and (5.277) into Eq. (5.273) we get

_ 27a{(0) — Qrd’,(s) + @ Az (s) [27a5(0)] + QY As (s) Q5 R (s)
[ :

Ry (s) = —01(5) — b — QT Ay (5) Q5 ()
(5.278)

Substituting for R;(s) in Eq. (5.278), and again using Eqs. (5.274) and (5.275) we

obtain

_ 2raf(0) = QU () + QF s (5) [2raf (0)] + QT A4 (5) QF A5 (5) [2rad(0) + ]

Ry (s) = [—Q1<3) -0/ — Q7 As(s) Q3 (5)}
(5.279)
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Substituting Eq. (5.279) into Eq. (5.260) with p = 1 yields

af (s) =51 (s)a’, (s) + Ri (s)
Q;ail (5)
[—Q1(s) = b7 — Q7 Az (s) Q5 (s)]
L 2raf(0) — Qraly(s) + QT Ay (5) [2rai(0) + QF As (s) (27a5(0) + .|
[—Q1(s) — b7 — Q7 Az (s) Q5 (s)]
_Qral,y (s) — Qraly(s) + 21 {af(0) + QT As (s) [a§(0) + QF As (s) (af(0) + ..)] }

- [—Qi(s) = b — Q7 Az (5) Q3 (s)]
(5.280)

_, £al(0) + QF Ay (5) [d(0) + QF As (5) (ad(0) + )]}
Q) — b — Qi 8 () Qs (5)] |

(5.281)

5.K Derivation of the Response Functions c¢(t)
and cy(t)

Consider the spherical harmonic Y,(6,v) for [ =1, p = —1

Yi1(0,v) = ,/% sin fe ™. (5.282)

We have
. i 8T
sin (§) e™ = 31/’1,1(9, v), (5.283)
and
. ; 8T
sin (0) e = 4/ ?Yf‘fl(ﬁ, v), (5.284)

where the asterisk denotes complex conjugation. We will use the following properties

of spherical harmonics
2 s
/ / Y;2(6, )iy (0, 1) sin 6d0du = 506, (5.285)
o Jo

and

Yi, (0.v) = (~1) ;. (5.286)
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With [ =1 and p =1 in Eq. (5.286), we have
Vi (0,v) = (=1)'Y75 (6,v). (5.287)
Taking the complex conjugate of both sides of Eq. (5.287) we get

Vi (6,0) = (~1) iy (6,0). (5.288)

=Y, (0,v) ==Y (0,v). (5.289)

The after-effect function ¢;(t) = (sinf cos) (t) may be expressed in terms of the

new variables v = (¢ +102)/2 and n = (11 — 1) /2 as

c1(t) = (sinfcos (v + 1)) (t)
= (s (e + e em)) (1

=3 (sinfe™ e + sinfe” Ve ") (1). (5.290)

Substituting Eqgs. (5.283) and (5.284) into Eq. (5.290) we get

< 8%}/’1*1(9, v)e + \/%3/11(9, ,/)ein> (t)
1 8 ‘ 1 8 ;
:\/? [/0% /027r /07r Y (0,0)e™f(0,v,n,t)sin dOdvdn

2m 2m g
+/ / / Yi_1(0,v)e" " f(0,v,n,t) Sinﬁdé’dudn} (5.291)
o Jo Jo

Recall the solution for f(0,v,n,t) expressed as a Fourier-Laplace series [8]

F(0,0m,1) = % S 1L Y6, e, (5.202)

l,p,q
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where the Fourier amplitudes fll,q(t) are the statistical moments defined by

Il)q(t) = /YEP(H, V) f(0,v,n,t)dY = <Y}p(9, V)eiq”> (t). (5.293)

Substituting Eq. (5.292) into Eq. (5.291), we get

\/gl / / / prq Y (6, v)e U= gin OdOdvdn

/ / / prq 9 v Yi 1(0 V) ia+1)n Sln@dgdydn

(5.294)

Using Eq. (5.289), this can be rewritten as

0=5 [/ / = 7 2 Fn Y02 ((0,0)) 077 sin by

/ / / Zféq Yi(0,0)Y1-1(0, v)e @t sm@d&dudn]

lpq

(5.295)

Using the orthogonality property of spherical harmonics (Eq. (5.285)), we get

NS

C1 (t)

/ __Z(S“ Plqu (ql)ndnJr/ Z‘S“ p= 1qu i(q“)”d??]

L l,p,q lpq

— 2_7T - 27r__ 1 —i(g—1)n ZWL 1 —i(g+1)n

V[ s e [T ey

Vo o Cnsho) + 5 enrti )]

=T )+ 0] (5.296)

Substituting Eq. (5.293) into Eq. (5.296) we get

a(t) = [— (Y110, 0)e™) () + (Y1, (0, v)e™™) (t)]

(=Y (0. 2)e) (1) + (Y11 (0, 1)) (1)] - (5.297)

3
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Using Euler’s formula and Eq. (5.289), we can rewrite Eq. (5.297) as

) =/ 2 [(4408,9) (eos o) + s ) (0
+ (Y1_1(0, v) (cos (n) — isin (n))) ()]
L0 cos ) ) + (5,0, sn () 0

(Y10, cos (n) (1) —i (¥;_4 (8. v)sin () (1) (5.208)

Recall the functions

ag(t) = (Y11 cosqn) (1), (5.299)
ag(t) = (Yi_1singn) (t). (5.300)

The complex conjugates of af(t) and aj(t) are given by
ag(t) = [(Yioy cos gn) ()]" = (Y7 cosqn) (t), (5.301)
ag’(t) = [(Yi-isingn) (1)]" = (Vi singn) (t). (5.302)
Substituting Egs. (5.299) - (5.302) into Eq. (5.298) we get

e(t) = \/? [aS(£) + a*(t) — iaS (t) + ias (2] . (5.303)

With ¢t = 0 we have

c1(0) = \/% [a7*(0) +iai*(0) + af(0) —iaj(0)]. (5.304)

In a similar manner we obtain the following expression for cy(t)

co(t) = \/? [a$(t) + af*(t) +iai(t) —iai*(t)] . (5.305)
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with ¢ = 0 we have

c2(0) = \/? [a$(0) + a7*(0) 4 iaf(0) — iai*(0)]. (5.306)

Egs. (5.304) and (5.306) can be written in terms of the modified Bessel functions of
the first kind (see Appendix 5.L). Next we determine the one sided Fourier transform

of ¢1(t) given in Eq. (5.303). The Fourier transforms of a$(t) and af(t) are given by

06 (w) = /0 af (et dt, (5.307)

a5 (w) = /0 h ai(t)e “dt. (5.308)

Taking the complex conjugate of both sides of Eqs. (5.307) and (5.308) we have

*

) =| [ aeal

= / aS* (t)e™'dt, (5.309)
0

o) = [ e ]

= / as* (t)e™tdt. (5.310)
0

Replacing w with —w in Egs. (5.309) and (5.310) we obtain

el = [ af e = F (a0}, (5.311)

[a;(—w)]" = /OOO ai*(t)e ™dt = F {a*(t)} . (5.312)

The Fourier transform of ¢, (¢) in Eq. (5.303) is given by

a(w) = \/? (a5 (w) + a7 (-w) —i(af(w) — a7 (-w))). (5.313)
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Similarly the one sided Fourier transform of ¢y(¢) in Eq. (5.305) is given by
~ 2m ~c ~cx s~ ~ 5%
C2(w) =4/ 5 (@1(w) + a7 (—w) + i (ai(w) — a7 (-w))). (5.314)

5.LL Response Function Initial Values written as

Modified Bessel Functions of the First Kind

Recall that the initial values for ag(t) and a}(t) are given by

q

GC(O) :Z;l /Y’ll<0, I/) cos qn e(#l+#2)F/kT+O'V cos 217 1)/

o1(1+ k)
~————— (] ov)+ I,— ov)), 5.315
orlo(oy) (Lig+1)/2(0v) + Lig—1y2(0v)) ( )

CLS(O) :Z;l /}/’1109’ V) sin qn €(M1+u2)F/kT+UV cos 21 1¢)!

q

ioy (k — 1)

N (Igsyy2(0v) = Ig-1y2(0v)) - (5.316)
with ¢ = 1, we have
a5 (0) =% (Iifov) + olov) (5.317)
3 (0) :#ﬂi)) (Iiov) — To(ov). (5318)
Note that
500" =~ (o) = o). (5319)

Recall also that the initial values for ¢;(t) are given by

(0) =[5 (45(0) + a5 (0) + (~1Vi @(0) ' (0)) . j =12 (5.320)
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Substituting Eqgs. (5.317) and (5.318) into Eq. (5.320) for j = 1 we get

_ 2w o1(1+ k) - - o1(1 + k) o o

) =5 (T o)+ Bl ) + 1A (o) + Do)
oy (k—1) ioy (k — 1)

—1 <m (Ii(ov) = Io(ov)) + m (Ii(ov) — fo(Uv))) :

(5.321)

Eq. (5.321) may be written as

_j2m [ o(1+K) ” ”
a(0) _\/; (4\/6_7T]0(Uv) (2h{ov) + 2halov))

i {% (2L(ov) — 2[0(0\/))})

_j2m [ o(1++K) ” ”
_\/; (4\/6_7T]0(UV) (2h{ov) + 2halov))

o1 (k—1)
+ m (2L(oy) — 2]0(0v))) : (5.322)

~12Iy(oy)
- 12Iy(oy)

= ¢1(0) [(1+ k) (2L (ov) + 21h(ov)) + (k= 1) (211 (ov) — 2Lo(ov))]

[4Io(ov) + k411 (o). (5.323)

01

" 31y(ov)

= (31(()) [IO(UV) + /i[1<0'v)] . (5324)

Similarly for 7 = 2 in Eq. (5.320) we get

01

- 3lo(ov) [Li(ov) + klo(ov)] .- (5.325)

CQ(O)

These Appendices show how very detailed calculations compared to the original
Debye problem are required even for the very simple two body interaction consid-

ered.
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5.M Wolfram Mathematica Code Used for the
Calculation of the Observables

(**************************************************)
(* Q expressions in the recurrence relation
(see equations (24) and (26) of the paper "Generalization to anomalous diffusionx)
(xof Budé’s treatment of polar molecules containing interacting rotating groupsx)
(*" by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov, M.H.Al Bayyari,
and W.J.Dowling) you can also see Eqs. (5.24) and (5.26) of the thesis.
Furthermore, you can see Appendices 5.F and 5.G for information on how the
differential-recurrence relation needed for the calculation was derived.x)

(* Qq *)

QLa_, ¥_1 :=-1-yx (1+(a)"2)

(* Qq(s) *)

Qhat[q_, ¥_, w_, a_] := (((I*w)~(1-a)) *Qld, ¥1) -2+ (I*w)
(» Qg *)

Qminus[q_, y_, oV_] = oV ¥« (q)

(*» Q@ *)

Qplus[q_, y_, ov_] := -oVxy* (q)

(**************************************************)

(» initial values of ag(e) and aj(e)

(see equations (28) and (29) of the paper "Generalization to anomalous diffusions)
(» of Budé’s treatment of polar molecules containing interacting rotating groups" x)
(» by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,

M.H.Al Bayyari, and w.J.Dowling). The derivation of the formulas
for ag(@) and aj(e) is given in Appendix 5.K of the thesis. )

(* ag(e) *)
acinitial[q_, o1_, 02_, ov_, x_] i= (-ol# ((1+x) / (4%Sqrt[6«x] «BesselI[0, ov])))
(BesselI[(q+1) /2, ov] +BesselI[(q-1) /2, ov])

(* ag(e) *)
asinitial[q_, ol1_, 02_, ov_, x_] :=
(—01* ((I* (K—l))/ (4*Sqr‘t[6*7r] * BesselI[O, ov]))) *
(BesselI[(q+1) /2, ov] -BesselI[(q-1) /2, ov])

(**************************************************)

(» The following functions works to solve for the laplace
transform of the relaxation function C(iw) seen in equation
(32) of the paper "Generalization to anomalous diffusionx)
(* of Budé’s treatment of polar molecules containing interacting
rotating groups"” by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,
M.H.Al Bayyari, and W.J.Dowling or Eq. (5.32) of the thesis. x)

(» Continued Fraction from equation (31) of
the paper "Generalization to anomalous diffusion =x)
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(*» of Budé’s treatment of polar molecules containing interacting
rotating groups"” by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,
M.H.Al Bayyari, and W.J.Dowling or Eq. (5.31) of the thesis. x)

(* The purpose of this continued fraction is to provide an explicit solution
for the desired spectrum &a;(s) in the form of a scalar continued fraction
viz. Eq. (39) of the paper "Generalization to anomalous diffusion =)

(» of Budé’s treatment of polar molecules containing interacting

rotating groups"” by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,

M.H.Al Bayyari, and W.J.Dowling or Eq. (5.30) of the thesis. x)

A[n_, t_,¥_, ov_, w_, a_] := (Block[{a, i},
a=o;

(*This for loop evaluates the scalar continued
fraction by starting with the max iteration value i=2xt+1,
and then iterating for decreasing values i=i-2, until we iterate the
necessary number of times to obtain the answer we seek (Sn)*)
(xFor every iteration of the For loop, the variable a stores the
previously evaluated answer so that it can be further iterated on.x)

For[i=2xt+1,iz2n,i-=2,
a= (-Qnhat[i, ¥, w, a] -Qplus[i, ¥, ov] »a+Qminus[i+2, ¥, ovl)~(-1)];

(* The following functions work to solve for the desired spectrum 3] (s)
which we will later use to solve for the response functions Ej(iw) *)

(» These two functions generate the numerator of

Eq.(30) of the paper "Generalization to anomalous diffusion =)

(» of Budé’s treatment of polar molecules containing interacting rotating

groups" by S.V. Titov, W.T. Coffey, M. Zarifakis, Y.P. Kalmykov, M.H. Al
Bayyari, and W.J. Dowling or Eq. (5.30) of the thesis. The procedure to )

(* generate the numerator of Eq.(30) is similar to that of Eq. 2.7.11 of the

4th edition of the book "The Langevin Equation: With Applications to Stochastic
Problems in Physics, Chemistry and Electrical Engineering" where x)

(* we are solving for the column vector formed from statistical moments El(s) *)

(* Numerator of Eq.(3@) when solving for &{(s) *)
Ac[n_, t_,¥y ,0l_,02_,0v_,w_,a_,x_] :=
acinitial[l, ol, 02, ov, x] +Sum[acinitial[2*i+1, ol, 02, oV, x] *
Product[Qplus[2%j-1, ¥, ov] *A[2xj+1, t, ¥, oV, 0w, al, {j, 1, i}], {i, 1, n, 1}]

(* Numerator of Eq.(3@) when solving for &i(s) *)
As[n_, t_,¥y _,0l_,02_,0v_,w_,a_,x_] :=
asinitial[1, o1, 02, ov, x] +Sum[asinitial[2+1i+1, o1, 02, oV, K] *
Product[Qplus[Z*j—l, ¥, oVv] *A[z*j"‘l’ t, ¥, ov, 0, a], {JJ 1, i}], {i, 1, n, 1}]

(* Eq.(30) of the paper "Generalization to anomalous diffusion x)
(» of Budé’s treatment of polar molecules containing interacting rotating groups =)
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(* " by S.V. Titov, W.T. Coffey, M. Zarifakis, Y.P. Kalmykov, M.H. Al Bayyari,
and W.J.Dowling or Eq. (5.30) of the thesis used to solve for &](s).
These will later be used to solve for the response functions E;f(iw) *)

(* Eq.(3@) when solving for &{(s) *)
allaplacec[n_, t_, ¥y_, 0l_, 02_,0vVv_,w_, a_, x_] :=
2+ ((Ac[n, t, ¥, 01, 02, oV, w, a, x]) /
(-Qhat[1, ¥, w, a] -ov*¥-Qplus[l, ¥, ov] *A[3, t, ¥, oV, w, a] »Qminus[3, ¥, ov]))

(* Eq.(30) when solving for &(s) *)
allaplaces[n_, t_, ¥y ,0l_,02_,0Vv_,w_,a_, x_] :=
2+ ((As[n, t, ¥, o1, 02, ov, w, a, x]) /
(-Qnat[1, ¥, w, a] +ov*y-Qplus[1, ¥, ov] xA[3, t, ¥, oV, w, a] *Qminus[3, ¥, ov]))

(* Here we seek to obtain the initial conditions (cj(@)) of

the response functions Ej(iw) which are rendered in closed form via

Eq. (34) of the paper "Generalization to anomalous diffusion x)

(» of Budé’s treatment of polar molecules containing interacting

rotating groups" by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,
M.H.Al Bayyari, and W.J.Dowling or Eq. (5.34) of the thesis. )

c0[i_, 01_, 02_, ov_, x_] :=
-((o1) / (3)) » ((Besselr[(i-1), ov] +x BesselI[(2-1i), ov]) / (BesselI[@, ov]))

(* Here we make use of the previously calculated desired

spectrums 3] (s) to solve for the response functions Eg(iw) via

Eq. (33) of the paper "Generalization to anomalous diffusion )

(*» of Budé’s treatment of polar molecules containing interacting

rotating groups"” by S.V.Titov, W.T.Coffey, M.Zarifakis, Y.P.Kalmykov,
M.H.Al Bayyari, and W.J.Dowling or Eq. (5.33) of the thesis. x)

claplace[i_,n_,t_,v¥_,0l_,02_,0v_,w_,a_, k_] :=
sart[ (2« x) /3] » (allaplacec[n, t, ¥, o1, 02, oV, w, a, x] +
Conjugate[allaplacec[n, t, ¥, ol, 02, oV, -w, a, x]] +
((-1)~i) » I+ (allaplaces[n, t, ¥, o1, 02, oV, 0, a, x] -
Conjugate[allaplaces[n, t, ¥, o1, 02, oV, -w, a, x1]))

J
J

(* Here we make use of the previously calculated response functions c;
i)

c
(iw) to calculate the spectrum of the desired relaxation function C(
via Eq. (32) of the paper "Generalization to anomalous diffusion x)
(*» of Budé’s treatment of polar molecules containing interacting rotating
groups " by S.V. Titov, W.T. Coffey, M. Zarifakis, Y.P. Kalmykov,

M.H. Al Bayyari, and W.J. Dowling or Eq. (5.32) of the thesis. )

(* This will be later used to solve for the complex susceptibility x (w)=
X (0)-ix''(w) via Eq. %) (» (16) of the paper or Eq. (5.16) of the thesis. x)

Claplace[n_, t_,y_,o0l_,02_,0v_,w_,a_, x_] =
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(claplace[1, n, t, ¥, o1, 02, oV, w, a, x] +x * claplace[2, n, t, ¥, 01, 02, oV, w, a, x]) /
(CO[I, ol, 02, ov, k] +x*€0O[2, ol, 02, oV, K])
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6. Frequency Dependent Linear

Response

The equations in Chapter 5 lend themselves to numerical analysis of the (normal-
ized) susceptibility y(w)/x for both the normal and the anomalous diffusion ex-
tension of Budd’s treatment of the dynamical effects on polar molecules containing
rotating polar groups so causing hindered rotation. y(w)/x is calculated through
making use of the differential recurrence relation in Eq. (5.25) by implementing it as
Wolfram language code in the Wolfram Mathematica software package. The Q,(s)
and QF in Eq. (5.25) are expressed in the code. Upon doing so, Egs. (5.28) and
(5.29) are then implemented in the Wolfram language to be used as a part of the
calculation of the desired spectrum af(s) via Eq. (5.30), which itself requires the
implementation of the continued fraction in Eq. (5.31). We iterate on both Egs.
(5.30) and (5.31) until we get a converging answer such that the answer will not
change and/or undergo negligible change upon further iteration. Upon doing so,
we then make use of Eqgs. (5.32) - (5.34), implemented in the Wolfram language, in
order to obtain the spectrum of the relaxation function C(t) (Eq. (5.33) relies on
the answers given by Eq. (5.30) and Eq. (5.34) relies on the answers given by Egs.
(5.28)). Omnce we obtain the desired value for Eq. (5.32), this is then substituted
into Eq. (5.16) (again implemented in the Wolfram language) to obtain the desired
normalised susceptibility. This is done for a range of values of the frequency w.
Throughout this procedure, we choose values for the ratio of Debye times v =
7/(27,), the dipole moment ratio k = ps/p;, the dimensionless interaction parame-
ter oy = Vy/kT, and the anomalous exponent « at our discretion to obtain the plots

seen in Figures 6.1 - 6.3. In Figure 6.1 we show the susceptibility for a selection of
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typical values of the anomalous exponent .

Figure 6.1: (Colour on line) Real and imaginary parts of susceptibility vs. wr for
various a. Solid lines: numerically exact solution from Egs. (5.16), (5.32), and
(5.33); symbols: the approximate equation (6.1). The low-frequency (dashed lines)
and high-frequency (dotted lines) asymptotes are calculated from Eq. (6.2).
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Figure 6.2: (Color on line) Real and imaginary parts of susceptibility vs. wr for
various oy. Solid lines: numerically exact solution from Egs. (5.16), (5.32), and
(5.33); symbols: the approximate equation (6.1). The high-frequency (dotted lines)
asymptotes are calculated from Eq. (6.2).
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Figure 6.3: (Color on line) Real and imaginary parts of susceptibility vs. wr for
various . Solid lines: numerically exact solution from Egs. (5.16), (5.32), and
(5.33); symbols: the approximate equation (6.1). the low-frequency (dashed lines)
and high-frequency (dotted lines) asymptotes are calculated from Eq. (6.2).
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In general the spectral characteristics, i.e., the half-width, characteristic fre-
quency and shape, vary significantly with «. For subdiffusion (o = 0.7) the real
part of the susceptibility is smaller at lower frequencies (wr < 1) than is so for
normal diffusion (o = 1) while at high frequencies (w7 > 1) it exceeds that for
normal diffusion. For superdiffusion (o = 1.3) the real part is effectively constant
at low frequencies while for high frequencies it decreases very rapidly. In Figure 6.1
we also perceive how « influences the imaginary part, noting in particular how the
maxima for all & occur near the turnover frequency defined by wr = 1. Moreover,
as « increases the maxima become more and more pronounced. Furthermore, by
inspection of Figure 6.1 et seq., the susceptibility can be accurately approximated

for all o by the simple Cole-Cole equation viz.,

X (W) 1
x 14 (iw/wr)®’ (6.1)

where wp = 771 is the frequency at which the imaginary part of susceptibility attains
it maximum [6]. The advantage of such a simple representation of the susceptibility
is that it may be used to accurately determine both the low and high frequency
asymptotes of our solution using methods described in Chapter 12, Sections 12.3
and 12.4.2 of [2]. We then have from Eq. (5.16) (using the methods alluded to

above) in the low and high frequency limits

X (w) N 1 — (iwT)* i /7, w — 0, (62)
X (iwT) "7/ Tet, w — 00,
where
Tt _ &(0) = / Clyar, = 1 (6.3)
T 0 T C(0)

are the characteristic times of normal diffusion (o = 1), 7, is the integral relaxation
time defined as the area under the decay curve C(t), which may be calculated by
taking the zero-frequency limit of Eq. (5.32), and 7 is the effective relaxation time

yielding precise information on the initial decay of C'(t). The zero-time limit C'(0)
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is calculated from Egs. (5.12) and (5.23) yielding

CO) =210 F rea(0)
:(1 + k)Rela$(0)] + (1 — x)Im[as(0)] (6.4)
(14 x)Rela$(0)] 4+ (1 — x)Im[a$(0)]’ '
where
27 (0) = (@ + b")al (0) + QF a3 (0), (6.5)

and a;(0) are given by Eqgs. (5.28) and (5.29). By substituting the initial values
Egs. (5.28), (5.29), and (6.5) into Eq. (6.4) we then have the closed form
Koy (lo(ov) — Ix(ov)) 1

mC(0) = 1+ ) o(ov) + 2kL(oy) | 2 (6.6)

By inspection of Figures 6.1 - 6.3 it is apparent that the asymptotes so determined
correctly reproduce both the low and high frequency limits of the susceptibility.
Figure 6.2 shows the frequency dependence of the susceptibility for various interac-
tion parameters oy for subdiffusion (« = 0.8,y = 1,k = 2). It would appear that
the effects of oy on the shapes of the real and imaginary parts of x(w) is small.
With very strong binding (oy = 50 and oy = 70) the real and imaginary plots of
X(w) appear to nearly overlap one another while for oy = 1, the real part of y(w)
overlaps the plots for o = 50 and oy = 70 at low frequencies (1072 < wr < 1071).
The imaginary parts of y(w) for all three values of oy all appear to nearly overlap
one another with some discrepancies between oy = 1 and o, = 50,70 near the
left side of the peak and at frequencies beyond wr = 1. The real part, having
attained a maximum value starts to decrease monotonically. For weak interaction
(oy = 1), Eq. (6.1) is obviously a good approximation to the spectra. In Figure
6.3 the spectra for three Debye time ratios v = 7/(27,) for subdiffusion is shown.
Clearly small v has little effect on the plots as the shapes appear similar. However,
for low frequencies we see that the imaginary part decreases with increasing v. On
the other hand, for higher frequencies the absorption becomes larger. Clearly for
increasing v, the loss peak shifts to higher frequencies, corresponding, of course, to

a decreasing friction ratio 2¢, /€.
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Regarding Figure 3 of the published paper ”Generalization to anomalous diffu-
sion of Budé’s treatment of polar molecules containing interacting rotating groups”
[19] we emphasise that this figure is misleading and should be replaced by Figure
6.2 in that paper. The reason being that an insufficient number of iterations were
originally taken in plotting that figure so as to achieve convergence. More precisely
speaking it turns out that the number of iterations that were originally used for
obtaining Figure 3 were not enough to guarantee convergence (n = 11 was used
for Figure 3 in [19] with the continued fraction being iterated on 17 times). When
I recalculated the same Figure I used n = 51 iterations to ensure that I had con-
vergence, as well as 57 (convergents) iterations of the continued fraction. In the
light of this I took Figure 3 (i.e., Figure 6.2) and I replaced the old data with the
new one in the software package Origin by OriginLab Corporation in order to re-
produce the plot with my answers. In addition to this I have also rewritten the
part of the original discussion of results in the paper [19] in order to talk about the
patterns observed in the new Figure 6.2. The new Figure shows that the simple
Cole-Cole expression accurately reproduces the behaviour of the susceptibility for
moderate to very strong coupling oy unlike the statement in the paper [19] that

this approximation is really only accurate for o, = 1.
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7. Dipole-Dipole and Exchange
Interaction Effects on the
magnetisation Relaxation of Two

Macrospins: Compared

7.1 Transformation of the Stochastic Landau-Lifshitz-
Gilbert (Langevin) Equation to Differential-
Recurrence Relations for the Statistical Mo-
ments

As far as dipole-dipole interaction in magnetic relaxation by traversing a poten-
tial barrier is concerned, we consider [21] the transient response of two interact-
ing macrospins subjected to a uniform external dc magnetic field, which alters in
step-like fashion, i.e., the magnitude of that field suddenly changes by an arbitrary
amount at time ¢ = 0 from H' to a new value H" (the fields H' and H" are as-
sumed to be applied parallel to the Z axis of the laboratory coordinate system).
Consequently, we are treating the transient longitudinal magnetisation relaxation
of two macroscopic interacting spins starting from an equilibrium state I say to a
new equilibrium state II. The magnetic dipole moment of an individual macrospin

is represented by w,(t) = us,(t), (p = 1,2), where s, is the unit vector along j,(t)
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defined as
s, = isind, cos p, + jsin v, sin ¢, + k cos J,, (7.1)

t is the nominal value of the magnetic dipole moment, and ¥, and ¢, are the
respective polar and azimuthal angles of spin p. The total normalised free energy
E; (i = LII) including dipole-dipole interaction, anisotropy and Zeeman energies

may be compactly written in vector form as [21]

E; =¢|[(s1-s2) —3(u, -s1) (0, - s2)] — Z [fz (ez-sp) tolez- Sp)Q}

p=1,2
=¢ [sin 1 sin ¥y cos(p1 — pa) — 2 cos ¥y cos¥y| — &; (cos ¥y + cosvy)

— 0 (cos®d, + cos®V,) . (7.2)

Here u, = r/r is a unit vector with r = |r| specifying the separation between the two
spins, ez is the unit vector along the (polar) Z axis (assuming that ez || u,), & =
poHy /(kKT) and ¢ = K/(kT) are dimensionless field and anisotropy parameters,
respectively, po = 47 - 1077 J- A=2 - m~! in SI units, H}, represents the (arbitrary)
magnitude of an external applied (spatially) uniform dc magnetic field H,, K is the
anisotropy constant, ¢ = pou?/(kTr?) is the dimensionless dipole-dipole interaction
parameter, k is the Boltzmann constant, and 7' is the temperature. The geometry
of the problem for an individual macrospin is shown in Figure 7.1. As mentioned,
the two easy axes of magnetisation are supposed parallel to each other and to the
applied dc field, which is in turn assumed parallel to the reference (Z) axis. Thus,
omitting the dipole-dipole term the problem just represents the well studied [2]
relaxation in a circularly symmetric anisotropy Zeeman energy potential o cos® 9.
Next the results for the two-spin system above will be compared with those for spins

coupled solely by ezchange interaction, namely, for the compact form [22]

E=—c(si-s) =y [&les-s,) +oles-s,)7], (7.3)

p=1,2

where now ¢ = pou?J/(kT) and J is the exchange coupling constant.

155



Figure 7.1: Geometry of the task: uniaxial anisotropy potential E (1)) = o sin®) with
vertical easy axis (dashed line), a uniform external dc magnetic field H parallel to
the easy axis and the magnetic dipole moment of an individual macrospin .

The effective magnetic field H,, acting on a spin comprises the externally applied
crystalline anisotropy and dipole-dipole coupling fields, so that in spherical polar

coordinates

H

_g( oE, 1 8Ei)

— — — 4
Lol 09,” sind, dp, (7.4)

P

In magnetisation relaxation, the relevant observables are obviously time-dependent
orientational ensemble averages involving the spherical harmonics Y}, (9, ), defined

as in our previous chapter by [2,120]

U+ D)1 =m)!
iy A (cosd) fml < (75)

Yim(V, ) = (—1)m\/

where P"(x)(|m| < ) are the associated Legendre functions, consequently we
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rewrite the free energy, Eq. (7.2), as [21] (see Appendix 7.A)

1

4 m
E; =— EG B+ (=1)")Y1m (U1, 1)Y1 —m (Y2, p2)
m=—1
47 4 |r
_ Z [gm/?Yw(ﬁp,%) + Ug\/;}go(ﬁp,gop) + const. (7.6)
p=1,2

The form of the dipole-dipole coupling potential, Eq. (7.6), again suggests as in the
pure exchange interaction studied by Titov et al. [22] introducing as new stochastic
variables the time-dependent product of spherical harmonics of arguments (91, 1)

and (Vq, pa) respectively [21]

Ml1 lom = Y21m<7917901)Y22 7m(1927§02>~ (77)

Eq. (7.7) then represents a complete set of orthogonal functions characterising
the orientational dynamics of the two interacting spins. The equilibrium averages
(M, 1,m);, corresponding to the spatial distributions of the initial and final states

of the two-spin system, are given by

2 2w opw
(M, 1,m); = / / / / My, 1, mWi(01, 1, V2, 2) sin ¥y sin 1 didad) dadipy,

o Jo Jo Jo (78)
where W;(¥1, 1,02, p2) = Zi_le*Ei(ﬂl’“"l’ﬁQ’m) are the relevant Boltzmann distribu-
tion functions and Z; are the corresponding partition functions. Now as we saw
the magnetisation dynamics of a typical macrospin are described by the stochas-
tic Landau-Lifshitz-Gilbert equation, i.e., the deterministic Landau-Lifshitz-Gilbert
equation augmented by a random noise field h,(t') originating from the thermal

bath fluctuations [2]

. Holb 1 / / ’
Sy =gl (o [(H, (1) + 1y () x5, (1)

= [sp (t') x [, () x (H, (#') + by, (£)]]) , (7.9)

where 7y = pop(1 4+ a?)/(2yakT) is a characteristic (free diffusion of the magnetic

moment) time, 7 is the gyromagnetic ratio, « is the dimensionless damping parame-
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ter representing the dissipative coupling to the heat bath and h,(#') has white noise

properties with zero mean and J-correlated viz.,

RE(E) = 0, REORM () = 2kTa(ypop) " Spa6(t — t). (7.10)

Here the individual h(t') are the components of h,(t) in the laboratory coordinate
system so that L, M = X,Y,Z, dpa is Kronecker’s delta, §(t — t') is the Dirac-
delta function, and the overbar denotes the statistical averaging over an ensemble of
dipoles. The vector stochastic differential equation (Eq. (7.9)) as rewritten in spher-
ical polar coordinates then represents a set of coupled non-linear scalar stochastic

differential equations [21] (see Appendix 7.B)

8 , _ , 1 OFE; 1 oF;
Dy (¢) ==L Thy (#) + 0 hy, (£)] — ( ; )

2kTTy 27y \ 0V, asind, (t') 0p,
. ’ Mot ’ _1 ’ 1 1 aEZ 1 8EZ
)y =—"t9 _Th () —athy (t)] — -
o (1) =Sy s, gy (#) = 0" ha, (#)] = 5 <s1n219p () dp, asind, () 00,)’
(7.11)

where hg, 1y, b,y are the spherical components of the random field hy,(¢) which
can be expressed via the cartesian components hl(t') [2]. The set of Eq. (7.11)
is solved by supposing as usual that the solutions {01 (t'), v1 ('), V2(t'), p2(t')} at a
given time t had the sharp values {9, (t) = U1, p1(t') = ¢1,V2(t) = D2, a(t) = 2},
i.e., all macrospins had the same initial orientations at an earlier time t.

Because the set of Eq. (7.11) are Stratonovich stochastic differential equations,
and since in transformations of such equations one may use the ordinary rules of
calculus [2], we have from Egs. (7.9) - (7.11) a stochastic differential equation for
the functions My, 1,m (t') = My im (V1 (), 01 ('), 92 ('), 0o (t')) defined by Eq. (7.7)
[21], viz.,

d n o ; / 8Ml1l2m / . / aMhlzm /
@Mhlmm—p;(m(ﬂa—ﬁp(ww(t)a—%m) (7.12)

This stochastic equation will ultimately yield (after many lengthy and tedious
calculations via Appendix 7.D) the deterministic evolution equation for the sharp

values My, 1, at time ¢. In order to accomplish this we must first average Eq. (7.12)
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over its realizations in configuration space in an infinitesimal time as prescribed by
Einstein and described in [2]. Hence we have a differential-recurrence relation for

My, 1, m in the three recurring indices Iy, lo, m [21], viz.,

2 1
) _ l1lom
INMym = Y Y R Mt mek (7.13)

ij=—2k=—1

1lam

| ilytjmak Obtained via the theory of angular

The various expansion coefficients df
momentum again as described in [2] are explicitly given in Appendix 7.C. However,

the M, so obtained are obviously functions of the sharp values 9,, ¢,, which are

1lam
themselves random variables with spatial distribution function W (01, @1, Vs, pa,t).
Hence taking the ensemble (i.e., spatial) average of Eq. (7.13) over W (1, ¢1, U2, @2, ),
we finally have an infinite hierarchy of differential-recurrence relations (in the man-
ner described in [2,121] for non-interacting magnetic dipoles) for the observables,

namely, the relaxation functions ¢;, i, m (t) = (M, 1,m) (£) — (M, 15 m)1; Of the two-spin

system, viz.,
2

1
; _ l1 lzm
TNClY lym = E E Skl m ks (7.14)

ij=—2 k=—1
where the angular brackets ()(¢) denote ensemble averaging of the sharp values
over W (1, p1, U2, pa,t). In writing Eq. (7.14) we have also used the fact that the

equilibrium averages (M, 1, ), satisfy the time-independent recurrence relation:

2 1
11
Z Z dlifl’z+jm+k<Ml1+il2+jm+k>i = 0. (715)
ij=—2 k=—1
The hierarchy of recurrence relations for the relaxation functions ¢, 1, (t) must
be solved subject to the initial conditions ¢, 1,m(0) = (M, 1,m); — (M1, 1 m )1y, Where
the equilibrium averages (M, 1, ,); can be evaluated either from Eq. (7.15) or from

Eq. (7.8).
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Next continuing with the solution of Eq. (7.14), we introduce the column vectors

Can—10(1)
Con—21(t)
Crm—r(t)
C,(t) = Com-100)  Com(t) = C"m*f“(t) , (7.16)
Cano(t) :
Con-11(%) Crmer(t)
Cozn(t) 4n242n+1

(r = min[n, m]) indicating that Eq. (7.14) can be transformed into the tractable [2]
tridiagonal vector recurrence relation (admitting of a formally ezact matrix contin-

ued fraction solution in the frequency domain, e.g., Eq. (7.18) below)

a
TN’d

tCn(t) =Q,C, () + Q,C.(t) + QC,.1 (1), (7.17)

with Cy(t) = 0. The matrix coefficients Q,,, Q;", Q, are explicitly given in Ap-
pendix 7.E and derived in Appendix 7.F. Eq. (7.17) then yields [2] the formal
solution for the Laplace transform él(s), which is exactly rendered as a rapidly
converging sum of products of matrix continued fractions just like the dielectric

case

Ci(s) = nAy(s) {cl<o> +) <H Q;_lAk(s)> Cn(O)} : (7.18)

where the matrix continued fraction A, (s) is defined [2] by the algebraic recurrence
equation

A, (s) = [stal = Q, = QA 1 (5)Qu] s (7.19)
and the tilde denotes the Laplace transform, viz.,

Ci(s) = /000 Ci(t)e *dt. (7.20)

The initial value column vector C,,(0) in Eq. (7.18) can also be calculated via

continued fractions (see Ref. [22]). In solving Eq. (7.18) the summation is restricted
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by selecting an n,,.., which is large enough to ensure convergence. For the param-
eters used in our calculations n,., = 15 is sufficient to arrive at an accuracy of not

less than 5 significant digits in the majority of cases.

7.2 Calculation of Observables for Two Interact-
ing Spins Coupled by Dipole-Dipole Interac-
tion

The response of spin p immediately following a step-like alteration of the dc field is

represented via the normalised (by the final equilibrium value) relaxation function

(sp-ez) (t) — (s, ez)y
(sp-ez);—(sp-ez)y

Fo(t) = (7.21)

Thus with C;(s) obtained from the numerical solution of Eq. (7.18), which as
mentioned already will in general comprise an infinite set of decaying exponentials
characterized by a set of distinct eigenvalues of the system matrix and their corre-
sponding amplitudes, we have the integral relazation time Ty [2], namely the area
under decay curve f,(t) [2,22]

¢100(0)

Tint — /Ooo fl(t>dt = /Doo fg(t)dt = 0100(0) . (722)

The integral relaxation time contains contributions from all the eigenvalues of
the two spin system. The individual relaxation functions fi(¢) or fy(¢t) and the
(global) 7y, describe the transient response of the longitudinal component of the
magnetic moment of the two-spin system because the Z component of the total

dipole moment myz(t) = p{(s1 + s2) - ez) (t) may always be written as

mz(t) = 2u[(s1 - ez)y + ({s1-ez); — (s1-ez)y) f1(1)] - (7.23)

This (in general) non-linear response contains as a special case the linear response to

infinitesimally small step changes in the strength of the (arbitrarily) strong applied
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dc field HY, i.e., for H} = H, — k as k — 0, where & is regarded as a small
external perturbation. Hence f;(t) as defined by Eq. (7.21) then coincides with the

normalised longitudinal dipole equilibrium correlation function Cj(t), that is

(mz(0)mz(t))y — <mz(0)>f1‘
(m%,(0))y; — (mz(0))5;

lim f1(t) = (1) = (7.24)

Thus according to linear response theory (see, e.g., [2]), via the one-sided Fourier
transform Cj(iw) [i.e., the spectrum of C}(t)], we have 7y for linear response, viz.

the correlation time 7 = Cj(0), and also the normalised dynamic susceptibility

V(@) = ¥(w) — ix"(w) [2] since

. 5100(iw)

X(w) =1—-iwC)(iw) =1 —iw c100(0) (7.25)

Furthermore, the asymptotic behaviour of y(w) in the extrema of very low and

very high frequencies is explicitly given by [2,22],

1 —w fooo Ci(t)dt =1 — iwTipg + ..., w — 0,

v ~{ | (7.26)
—C'l.‘—u()o)—i—...:— SR w — 00,
W’TH
where (see Appendix 7.H)
1 cosy + cos ). — (cosidy + cosdy)>
= ot =gy Aleosd - cos 2 Ju - eos b, 2 (7.27)
CH(O) <sm ¥y + sin 192>H

is the effective relaxation time governing the initial decay of Cj(0). Here 7y and
Tef (2] characterize the global and the short-time behaviour of C}(t) respectively.
The time 7. is evaluated (see Appendix 7.H) in terms of equilibrium averages as
in [22]. Moreover if the potential wells are approximately equivalent (as is true [2]
for a small external field), 7, is approximately the magnetisation reversal time 7
(see Figure 8.2 below) Ty, & 7 = 1/A; so that the response is now dominated by the
slow reversal-over-barrier mode. Here \; is the smallest non-vanishing eigenvalue of
the system matrix, corresponding to the hierarchy of differential-recurrence relations

seen in Eq. (7.14) [2]. Using matrix continued fractions, we then have A; numerically
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from the secular equation of the two-spin system [2], namely
det [M7al+ Q; + QF Ay (—X11)Q3 ] = 0. (7.28)

The inverse 7 = 1/A; characterises the long-time behaviour of Cj(t) [2]. Moreover,
A; can also be determined either from the half-width of the spectrum C(iw) or,

equivalently, from the low-frequency maximum of the loss spectrum y”(w).

Appendices - Details of the various calculations

7.A The Total Normalised Free Energy Equation
in terms of Spherical Harmonics

Recall that the total normalised free energy F; (i = LII) including dipole-dipole
interaction, anisotropy and Zeeman energies may be written in terms of spherical

harmonics Y, (9, ¢) as

P m
B =— FC B+ (=1)")Y1m (D1, 01)Y1 — (Y2, 92)

m=—1

4
— Z [fi\/gylo(ﬂpa@p) +U§\/§§/20(19p,g0p)

p=1,2

47

=— F§ [(B=1)Y)_1(V1,01)Y11(V2, 02) + (3+ 1) Yio(F1, 1) Y10(F2, 2)

+ (3= 1) Y11(J1, 1) Y1-1(J2, ¢2)]

[4m 4 | 47
- [& ?3/10(7917801) +0-§\/gy20<1917901)+§i ?3/10(1927902)

4
+ 05\/§YQO(192, 302):| + const. (7.29)

-+ const.

The spherical harmonics Y;,,(19, ¢) are given by

(2l +1)(I —m)
A (1 +m)!

([
Yim(0, ) = (—1>m\/ " P (cos ) [m| <1, (7.30)
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where P/"(z)(Jm| <) are the associated Legendre functions.
I will now show that Eq. (7.29) is equivalent to Eq. (7.2). We substitute the
following spherical harmonics Y,,,(9,, ¢,), (p = 1,2) into Eq. (7.29)

1 /3 ..
Yie1 (9, 0p) =5\ g€  sind, (7.31)
Yii (9, ¢p) = — 3\ / 7.¢ ?sin v, (7.32)
1 /3
Yio (¥, ¢p) 25\/;COS v, (7.33)
Yoo (Y, p) =1\~ (3cos®d — 1), (7.34)

A 1 /3 _.. . L /3 i
E; =— EC [(2) (5 %6_"“ sin 191> <—§ %6 #2 sin 192)
1 . 1 3
+(2) (—5 %ewl sin 191> (5\/ %6_“"2 sin 192)]

dr (1 /3 4 |7 (1 |5 9
_ [& 5 (5\/;COSQ91> +J§ 5 (Z\/;(?)COS ¥ — 1))
1 /3 4 |7 (1 /5
5\ cos 192) + o3\ E (Z\/; (3cos®Ys — 1))] ) (7.35)
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which can be written as

4 3

E,=— —7T 2 [ ——¢i¥2—¢1) gip 94 sin ¥y
6 8

3

ym cos U1 cos ¥s

i
(i

+
[\

(1=¢2) gin 9, sin 192) ]
8w

— & (cos v + costy)

2
— o | cos®; + cos®Vy — §> )

1 . .
= FE;, =¢ {5 (ez(‘pr“’l) + 61(5017‘02)) sin ¥ sin Yy — 2 cos 1 cos 192]
2
— & (costy + costhy) — o (cos2191 + cos?)y — §)
1 . .
= {5 (e_z(“"l_‘”) + ez(“pl_‘”)) sin ¥ sin ¥y — 2 cos Y4 cos 192]}

2
— & (cost + costy) — o (Coszﬁl + cos?9y — §) ) (7.36)

Using Euler’s formula

e =cosx +isinu, (7.37)

e " =cos(—x) +isin(—z) = cosz —isinz, (7.38)
we can rewrite Eq. (7.36) as

1 .
Ei =¢ |5 (cos (p1 — @) —isin(p1 —2)
+ cos (1 — p2) + isin (1 — p2)) sin )y sin ¥y — 2 cos ¥y cos 192]

2
— & (cost + costy) — o (C082191 + cos?Vy — 5) , (7.39)
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which can be written as

E; =¢ [sin?; sin s cos (¢1 — ) — 2 cos )y cos s

2
— & (costy + costhy) — o (0032191 + COS2?92) + 50' (7.40)

Note that the constant in Eq. (7.29) is —(2/3)0.

7.B Derivation of the Two Coupled Scalar Stochas-
tic Differential Equations

The magnetic dipole moment of an individual macrospin is represented by w,(t) =

psy(t) (p = 1,2), where s, is the unit vector along p, defined as

s, = isind, cos , + jsin v, sin p, + kcosv,, (7.41)
or

s1 = isin; cos 1 + jsin v sin o1 + k cos ¥, (7.42)

So = isin s cos @y + jsin ¥, sin g + k cos 5, (7.43)

i is the nominal value of the magnetic dipole moment, and ¥, and ¢, are the
respective polar and azimuthal angles of spin p. The dot product of Eqgs. (7.42) and
(7.43) is given by

S1 - S9 =sin v sin Yy cos 1 €os Yo + sin ¥ sin Y5 sin ;1 sin o + cos ¥ cos vy
= sin ¢ sin 5 [cos 1 cos @y + sin ¢ sin ps] + cos ¥4 cos Uy

=sin ¢ sin ¥ cos(p1 — ¢2) + cos vy cos V. (7.44)

Recall that the total normalised free energy E; (i = I,1I) including dipole-dipole

interaction, anisotropy and Zeeman energies may be compactly written in vector
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form as

Ei=c[(s1-82) —3(u,-s1) (uy-s9)] — Y [&i(ez-s,) +0(ez-s,)"],  (7.45)
p=1,2

where u, = r/r is a unit vector with r = |r| specifying the separation between the

two spins, ez is the unit vector along the (polar) Z axis (assuming that ez || u,).

Since it is assumed that ey || u,, we have

u, - s; = |u,|[s1| cos ¥y = cos vy, (7.46)

ey - 81 =lez||s1]| cos ) = cosdy, (7.47)
and

u, - sy = |u,|[s2| cosy = cos s, (7.48)

ez - Sy =|ez| [sa| cos Uy = cos V. (7.49)

Substituting Eqs. (7.46) - (7.49) into Eq. (7.45), we have

E; =¢[(s1-s2) — 3 (u, - 81) (0, - 89)]
= > [Gi(ez-sy) +ales-s)’]

p=1,2
=¢ sin ¥y sin ¥y cos(p1 — p2) + ¢ cos ¥ cos ¥y — 3¢ cos ¥y cos Py
— & (cos vy + cosy) — o (cos”Y; + cos’d,)
=¢ [sin 11 sin Y5 cos(p1 — pa) — 2 cos Y1 cos Jq]

— & (cos ¥y + cos¥y) — o (cos’d; + cos®V,) . (7.50)

We describe the dynamics of the magnetic moments M,(t) (p = 1,2) by the

system of stochastic Landau-Lifshitz-Gilbert equations
Mp +m [Mp x Mp} =7 [M,, x (Hp +hy)], (7.51)

where 7 is the gyromagnetic ratio, and 7 is the damping parameter specifying the
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dissipative coupling between the spin and its thermal bath. The magnetic field

H, () acting on the particle may consist of externally applied magnetic fields, the

crystalline anisotropy field and a field produced by the other nanoparticles. The

random Gaussian white noise field h,(¢) has the properties

RE(E) = 0, RE@RIT(E) = 2kTa(ypion)~ Seard(t — ).

Cross multiplying both sides of Eq. (7.51) by M,, we obtain

M, x M, + 71 [Mp X (Mp X Mp)} =7 M x {M, x (Hy + hy)}].

=M, x Mp =7 [M, x {M, x (H, + hy)}] = [Mp X (Mp X Mp)} :

Using the vector identity
ax(bxc)=(a-c)b—(a-b)c,
we may write

M, x (M, x M, ) = (M, - M, ) M,, — (M, - M) M,

= Mg‘Mpv
since M, - Mp = 0. Using Eq. (7.56), we may rewrite Eq. (7.53) as

M, x Mp =7 [Mp X {Mp X (Hp + hp)}] + 'WMEMP'

Using Eq. (7.57) we can substitute for M, x M,, in Eq. (7.51) to obtain

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

(7.57)

Mp + 7277 [Mp X {Mp X (Hp + hp)H + 72772M52*Mp:7 [Mp X (Hp + hp)] . (7'58)

o

=M, = ——————
Tl M

1M
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M, x (H, + b)) — — M, x {M, x (H, + h,)}].

(7.59)



Eq. (7.59) may be written as

M, = P8 (M, x (H, 4 hy)] — b[M, x (M, % (H, + b)), (7.60)

where Mg is the saturation magnetisation of the nanoparticle and

_ ﬂMs(l —+ 062)

7.61
7o (7.61)

B
a=ynMg, b= E, TN

To analyse the dynamics of magnetisation, it is convenient to introduce polar
coordinates

M, = Mg (sind, cos g, sin v, sin ¢, cos J,,) . (7.62)

If the free energy per unit volume V' of the single domain particle is expressed as a

function of components of M,,, then

ov 1 oV 1 oV
H. = — - — — .
P oM,  Msg (O7 29, sind, 8g0p) ’ (7.63)
where
ov ov ov v

= i j k. .64
oM,  OMx oMLY OM, (7.64)

Note that
M, (t) =, () = i, (£), (p = 1,2), (7.65)
M, (t) =1, () = 3, (t), (p=1,2), (7.66)
4 =Ms. (7.67)

Using Egs. (7.65) - (7.67) we can rewrite Eq. (7.60) as

bp

. [usp x (Hy 4+ hy)] = bus, x {us, x (H, +hy)}H]. (7.68)

Sp
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Noting that A x B = —B x A we may rewrite Eq. (7.68) as

Sy = = [, + hy) x 5] — b s, x {5y % (I, + b))

- % (é [(H, + hy,) x sp] + [sp, x {s, x (H, + hp)}]) : (7.69)

where s, is a unit vector, which in spherical coordinates is given by

1
s,=1 0 |, (7.70)
0
0
Sp = 0, (7.71)
sin ¥,¢,
Note that
H, = —%Z—f}f, (7.72)

where 0/0s, is the gradient on the surface of a unit sphere explicitly defined in

spherical coordinates as

0 0 1 0
a—sp = a_ﬁpeﬁp + —Sinﬁp 8—%8%. (773)

Substituting Eq. (7.73) into Eq. (7.72) we get

0
kT
H,=—-—— % : (7.74)
Hott ?
1 O0E,
sind, 0pp
Furthermore
h, = h, e, + hgey, +h,e, (7.75)
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which can be written as

hrp
h, — hﬁp (7.76)
h‘ﬂp
Thus
hrp
Hyeh = | () (38) +h |, o
kT 1 OF;
_m> <sin19p Bapp> + h"DP
he, 1
(B, 1) sy = | (=) (35) +ha | x| 0
kT 1 O0E,
_uou> (Smﬁp 8_‘%) Ry !
- , kT E;
() () e [(2) )
L\ Hop sin v, Iy Hopt 0y
(7.78)
1 hrp
s, X (H,+h,) =] 0 | x (—,ii)—i) (35;) + hy,
0E;
o) \ () (s 58) + e
- (kT) ( 1 8Ez-> ) }e N K_ﬂ) (aE") +h ]e
_ MOIM Sin/&p a(pp ©p Ip /,[,0/_1/ aﬁp Fp Pp)
(7.79)
1 0
Sp X [Sp X (Hp + hp)] = 0 X (%) (sinlﬁp gf;) - h@p
kT oE;
0 (=% (88) + o,
(kT) (aEi) . } N KkT) ( 1 8Ei) 5 ]e
— _— - € 1 N ’
L\ kop ) \ 90U, ) Hop ) \sinty, dp, T
(7.80)
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Substituting Eqgs. (7.71), (7.78) and (7.80) into Eq. (7.69) we have

0 0 0
) _ Hop 1 kT 1 9E; T oF;
191’ B 2kTTy E <_m> <Sin1917 a@p> + hcpp - (m) <8_19p> — hﬁp
. : OF; kT dE;
o ﬂp@p <%> <319p> o hﬂp (m) (sinlﬂp a¢p> - h@p
(7.81)

which can be written as

9, = h he ) — 7.82
P2k Try ( ot ‘p”) 27N <819p * asind, 0y, ’ ( )

=~ (h, — hy ) — — ) 7.83
vp 2kTTy sinv,, (hey —a™"ha,) 2TN <sin219p dp, asind, v, (7.83)

7.C Coefficients d/'2™

l1+ilo+7 m+k

From the methods described in [2] and [22] using the theory of angular momentum
and the Clebsch-Gordan series as well as the expansion of the potential E; in terms

of spherical harmonics, Eq. (7.5), we have after lengthy calculations (given in detail

in Appendix 7.D) the various coefficients dﬁfﬁ; +imk for dipole-dipole interaction,
which are
1 [(l+1) — 3m?
drlm —gy = — —I(1+1) -
higm —Phls 2 (2 (t+1) TRI—1)20+3))°

I=l1,l2

l (I +1)% -
lilam — 1 1
dlilegm :ull lom = _02l1 + 3\/ 2[1

P —m2)(
@i+ 1)(

. L \/<<z2+1>2—m2><<z2+2>2—m2>
(20 + 1)(

:fa = —0
1 l124+2m lolim 2[2 + 3

L—2lym ~Ylblym = 0211 1 (21 + 1)(2l; — 3) 7

g o _ i+l \/<Z%—m2><<h—1>2—m2>
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l1lom
l1lo—2m

l1lom
dll+1 lom

l1lom
dll lo+1m

l1lom
dl1—1 lom

l1lom
l1la—1m

l1lom
dll—l-l lo+1m

1 lom
dl1—1 lo—1m

l1lom
dl1+1 lo—1m

l1lom
dl1—1 lo+1m

dll lam
l1+1la+1m=1

dll lom
I1+1lo—1m=*1

dl1 lom
l1—1l+1m=1

l1lom
dll—l lo—1m=1

l1lam
dl1+1 lom=1

l1lam
dll lo+1m=1

l1lam
dll lo—1m=1

l1lam
dll—l lom=1

“Uhlom =

=(St1am)” = — (

=S lim T T (
=Titim — (

=My tym)” = (

:ull lom — _g(ll + l2)\/<

:Ull lom — g(ll + 12 + 2)\/

(13 =m?)((la = 1)* = m?)

(lo+1) — Mm)

2 +1)(2—3)

@h_ﬁ%fﬁm)¢@*4f—m2

4l +1)° =17

'U—S“)m) (lo + 1)* — m?
o 4y +1)° =17

13 — m?
412 - 1°

o),

I3 — m?
412 - 17

«

(L +1)* =m?)((l2 +1)* —m?)

200+ 1) (20 + 3) (2l + 1) (2l + 3)°

(iF —m?)(13 —m?)
(20 — 1) (24 +1) (2l — 1) (2 + 1)’

(L +1)° = m?) (13 —m?)

=27 = l _l 1
Piy iy m = S(l2 1+)\/(2zl+1>(2zl+3>(2lz—1><2l2+1)’

(2 +1)° = m?) (1§ —m?)

=20 = l —l 1
Pyt m = s(h 2*)\/(2z2+1>(212+3><2h—1><2l1+1)’

1

=U; ) 0 = —Zc(h + lz)\/
1

:ﬁilzm = —Z§(52 — i+ 1)\/(

~ 1
:pillm = _Zg(h —ly+ 1)\/

lg(ll+l2+2)\/(l1qﬁm—1)(l1:Fm)(l2:Fm—1)([2:Fm)
4

__,E _
_Ull lom —

:(Sibm)* =+

(2L +1) (2L +3) (2l + 1) (212 + 3)

(20 + 1) (20, +3) (20, — 1) (20 + 1)

(2lo4+1) (2l +3) (2l — 1) (21, + 1)

@l —1) 2L +1) (2 —1) (2 +1)

(2l + 1) (21, + 3) ’

Szt = (2l + 1) (20 + 3) ’

)= _\/(llzl:m—i—l)(llqim)(lgq:m—1)([22Fm)
frlzm (20, — 1) (20, + 1) ’
n is [(loxm+1D)(leFm)(lyFm—1) Fm)

“um = Ty :

(20, — 1) (2, + 1)
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We note that

lil;m o ilim *
dl,-—i—xlj—l—ym:tl - (dlj—&-yli-‘rwmﬂ:l : (784)

It is useful to compare the coefficients for dipole-dipole coupling with the corre-

sponding ones for exchange interaction [22] (Eq. (7.3)). We have

1 I(1+1) — 3m?
A —p = — “1(1+1) -
lilam Pry i, l; (2 ( + ) 0(21—1)(2l+3)>’
=l1,l2

hizm - - l (4 1) = m2) (I +2)* — m?)
dl1+2l2m U jom — =0 5
20 +3 (2l + 1)(20; + 5)
hism - _ 2 ((la + 1) — m2)((I + 2)* — m?)
dll la+2m _ulg lim — —0 )
205+ 3 (2l + 1)(2l5 + 5)
l1lam = _ ll +1 (l% B m2)<<l1 - 1)2 - mZ)
dl172l2m _Ulg lim — o . _ ;
2l —1 (21, +1)(20; — 3)

g s h+1¢@—mw@—nﬁww

Lila—2m —Vlilom = 0212 —1 (25 + 1)(213 — 3) ’

. 2
Liam e (&, i(20 =) (b +1)"—m?
dl1+1l2m _(Sll ZQW) - ( 9 ll 20 m 4([1 + 1)2 1 ’

I l2m & i(20 — <) (I + 1)2 — m?
dl1l§+1m =Slplim = — (712 + Tm) \/4([2 + 1)2 _1 )

m fH 2(20' — C) l2 — m?

dr By =T lm = (3@1 +1) + o M il% 1
l1lom * SH Z(QU - §) l% — m?
B =) = (1) = 27

1 ((h+1)* =m?)((la + 1)* = m?)
dll lam — m = —=<({ l
e = 2“1+”¢@h+n@h+a@&+n@b+w’

wm 1 (3 —m?) (I3 — m?)
dllfllzflm =Vlom = 2§(l1 + l2 + 2) (2[1 N 1) (2[1 + 1) (2[2 . 1) (212 + 1)7

_ 1 (I + 1)* = m2)(12 — m?)
aren = =—¢(la—lL +1 2
nit-tm =Piam = 5ol =l + )\/(211 +1) (2L +3) (2, — 1) (20, + 1)

_ 1 ((Iy 4+ 1)* = m2)(12 — m?)
= =—¢(lh—lh+1 !
n-tirim “Panm = 5olh =l + )\/(212+1) (21 +3) (20, — 1) (21, + 1)’
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Jhlem —uE :lg(l1+l2) (htm+1)(hxm+2)(bEm+1)(s£m+2)
l1+11la+1m=E1 lilam 4 (2[1 + 1) (2[1 + 3) (2[2 -+ 1) (2[2 + 3) ’

_ 1 LLxm+1)(lLEm+2)(loFm—1) (s Fm)
dirtzm =, = q(ly—1, +1
bittmi TPim = ol —hot )\/ @+ 1) (20 +3) (2 —1) (2 +1)

_ 1 (oxm+1)(loEtm+2)(l1Fm—1)(; Fm)
lilam + 2 2

= — — 1

=ttar1mer =Piatym 4g(l1 l2 )\/ (2l +1) (2 +3) (2L — 1) (2L + 1) ’

) (
1 LLFm -1l Fm)(laFm—1) (s Fm)

I1lam 1 1
IVt ZVhipm = sl Tl ¥ 2)\/ (2L —1) (20 +1) (2 = 1) (2l +1) 7

dl1l2m :(Si )*::F£ (ll:i:m+1) (ll:l:m+2) (ZZim—i_l)(lz:Fm)
li+11y mEl lilam 4o (2l + 1) (21, + 3) 7
dhlzm :si :j:i_g (lQim+1) <l2im+2) (llim+1)<l1:Fm>
l1 lo+1m+1 lalym 4oy (2[2 —+ 1) (2[2 + 3) ,
dhlzm :(Ti )*::'ZE (ll:i:m—i_l)(ll:':m) (l2:':m_1) (12:Fm)
I la—1ml lilam Ao (2l — 1) (2l + 1) ’
Jalam —pE :j:i_g (l2j:m+1)<12:':m) <11:Fm_1) al:':m)
l1—11lsm=%1 lalim Aoy (2[1 — 1) <2l1 + 1)

We describe in detail how the above results are obtained in Appendix 7.D.

l1lom

7.D  Deriving the expansion Coefficients dj, ot j bk

Recall that the normalised free energy, F; is given by

A < m
Ei = — Fg (3 + <_1) )}/j[m(ﬁla @1)%77)1(7927 @2)

m=—1

4 4
- Z [@\/gylo(ﬁpa Pp) + Ug \/éYQO(ﬁpa ©p)

p=1,2

+const., i=LII. (7.85)

We define (because we wish to use a general expression provided by Coffey, Kalmykov

and Titov. (see Eq. (1.103) of [34]) See Eq. (7.95) below)
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E.i(p) _g® 4 p®

i,—|— i,—
oo R
El(7p+) = Z Z U%@Y}gg (Vp, 0p),
R=1 5=0
00 -1
EP =3 visYi (9, 0p), (7.86)
R=1S=—R
p=1,2.

From Eq. (7.86) we have for Eq. (7.85):

4 m
EM = _ gg 3+ (=1)")Yim (U1, 91)Y1-m (02, 02)
m=—1
A7 4 |
— &\/ ?meh ©1) — Ug\/gym(ﬂlv ©1)
41

= — < 211 (01, 90) Y (92, 02) + 4Y00 (01, 1) Yo (02, 2)

+2Y711 (Y1, 1) Y11 (Y2, @2)]

47{' 4 T
— &/ ?Ym(ﬁl» e1) — o3 33/20(1917 ©1), (7.87)
g®__ 47 9 Yio(91, 1) Yio (¥
i = 5 Ym0 00) Y (92, 02) + 4Y10(01, 01) Y10 (U2, 02)

+ 2Y11 (01, 01)Y1-1(V2, 2)]

[4m 4
— e V(0 g
fz 3 10( 27902) 03

BE

%0(7927902)7 (788)

47

E) =— 5 < [4Y10(01,01)Y10(J2, 92) + 2V (1, 91)Y1-1(02, 2]
A7 4 |
=&\ 5 Y1) — o5y /= Yoo (P1, 1)
8w

47
= — ?§Y10(?917801>Y10(192,%02) - ggYu(l%, p1)Y1-1(2, o)

Am 4 |m
=&\ 5 Y1) — o0y /=Yoo (P 1)

=AT 0 (9) Yio(01. 01) Vo0, 02) + ALy (6) Yar (91, 00) Yica (V. 02)

+ AU Yo, 1) + ALY 0 Yoo (91, 1), (7.89)
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4
Ez(},) = — Fg [2}/1 1('(91, 901))/11(1927 @2)]

47

=— ?dﬁ 1(91, 01) Y11 (Y2, 02)

:Aﬁ,q (<) Yi—1(h, 1) Y11 (D2, 02), (7.90)

47

El(%z == %" [2Y1-1(V1, 1) Y11 (P2, 02) + 4Y10(01, 1) Yi0(V2, ©2)]

47 4 |
—fz\/ 3 —Yi0(V2, @2) — 03\/;3/20(192>302)

4

8
=— ?§Y1 1(01, 1) Y11 (02, o) — ?§Y10(1917901)Y10(?92, ©2)

4
—fz\/ 5/10(?927902) 3\/§Y20(192#P2)

:Aﬁ,—l (§) Yi_1(01, 1) Y11 (D2, 2) + Aﬁ,o (s) Yio(91, 1) Y10(V2, 02)

+ A 0Yi0 (U2, 2) + AGD Yoo (D2, ), (7.91)

47
E'l(,z_) = — F@ [2Y11(01, 01)Y1-1(D2, 02)]

4

= — ?§Y11(191, ©01)Y1-1(2, p2)

:Aﬁg () Y11 (91, 1) Y1-1(V2, 2). (7.92)

Having written the split potentials as products of spherical harmonics of arguments
(91, ¢1) and (Y9, ¢2), we now introduce as new variables (whose form is suggested
by the potential) the time dependent product of spherical harmonics of arguments

(91, ¢1) and (9, o) respectively expressed as

Ml1 lom — }/llm(ﬁla 801)}/22—771(1927 902) (793)

The stochastic equation of motion for the functions M, , .. (t) is given by

8M m . OM 1m
L M = 3 0,2t (794

¥p
p=1,2 Oy

Upon averaging Eq. (7.94) over its realisations in an infinitesimal time, we obtain

by essentially adapting the formal method of Coffey, Kalmykov and Titov (See Eq.

177



(1.102) of [34])

2

TN M 1m Zi [(L(p))2 (Ez(p)Mthm) — EP(L@)* My,
=1
12
— Mym (L(p))ZE(P)} -5 Z (L(p))2Ml1l2m

v 3 -1
2 i {050 (25 (1 20)

where
LW = _ —- (sin? -
( ) sin v, 0V, (sm P99, sin?, 3@,2,’
0
L(P) - _ 1‘_’
z 89010
o 9
L(ip) —oter (iﬁ_ﬂp + 7 cot 19pa—%) )

(7.95)

(7.96)
(7.97)

(7.98)

are the orbital angular momentum operators [34,120]. Using Eqs. (7.87) - (7.92) we

may substitute for the free energy terms in Eq. (7.95) to obtain
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TNMllem =

1
1 2 4m 87
1 {(L(l)) ((—?giﬁ—l(ﬂh%)yn(ﬁm%) - ?gylo(ﬁl’wl)ylo(ﬂ?vW)

4 47
— ?§Y11(1917901)Y1—1(1927902) — fi\/ ?Ym(ﬂl, ©1)

2 |4rw
_U§ 31/20(1917 901)) Yiﬂn(ﬁl? 901)}/22—7”(192’ SOQ))

2

A7 8T
— (—?g}ql(ﬁl7(ﬂl)}ql(ﬁ2>@2> - ?§3ﬂ0(1917901)§/10(1927‘p2)

47 47
— ?§Y11(191, ©1)Y1-1(V2, p2) — fz'\/ ?Ym(ﬁh ©1)

2 [4rn 2
— o3 35/20(191,8010 (L(l)) Yom(01,01)Yip-m(J2, ¢2)
an (4
- Y21m(7917 901)}/22—m(1927 SOQ) (L ) _?§}/1—1(1917 901>}/11(192’ 802)
8w

— ?§Y10(1917 901)}/10(1927 902)

A7 47 2 47
- ?g}/ll(ﬁh@l)yl—l(ﬁ%@?) =&y ?Yw(ﬁlv 1) — 73V EYQO(Q%’ 4,01)>

4
At 8
+ (L(Z))Z ((—?Qﬁl(ﬁl, ©1)Y11(d2, ¢2) — ?§Y10(191>901)Y10<192’ ¥2)

47 47
— ?gyn(ﬁl, ©1)Y1-1(V2, p2) — fz‘\/ ?Yw(’ﬁm ©2)

2 [4rm
— O'g ?}60(&27@2)) nlm(ﬂ17¢1)n2—m(02’(‘02)>

5

4 8
— (—§<Y1—1(1917901)Y11(1927<P2) - ggYN(ﬁMpl)Ym(ﬁ%@?)

47 47
— ?§Y11(1917 ©1)Y1-1(V2, p2) — §iy/ ?Ym(?%, ©2)

2 4w
— o3y EYzo(ﬂz,wﬁ) (L) Yium (01, 91)Yia o (P2, 02)
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6
2 4
— Yim (U1, 01)Yiy—m (U2, ¥2) (L(Q)) (—?dﬁ 101, 01) Y11 (02, 2)

8T

47
— —Y10(91, ¢1)Yi0(V2, p2) — ?§Y11(191, ©1)Y1-1(V2, 2)

3
—& \/?3/10(1927802) g\/fmo(ﬂ%@z))]
1

7

= 5 [ (D) Vim0 i (P2, 02) + (L2) Vi (91, 01) Vi (02, 22)

8
i [3 -1
+ 1aV o {(5/1(11)> [(L(Zl) <Aﬁ,o () Yio(¥1, 1) Y10(V2, 02)
+ AN () Y1, 1) Y11 (92, ¢2) + ALY gYio(01, 1)

+ Ag%%,o}éo(ﬁlan’l))) (L Yium (91, ¢1) lg—m(ﬁ%@z))
9

— <L(+1) (Aﬂ,o (<) Yo (Y1, 1) Y10(V2, 2)
+ AN (6) Vi (91, 1) Ya1 (9, 02) + AL g Yio(01, 1)

+ Ag()],oym(ﬁl,%))) (L Hlm(§1,901)yl2—m(192,902)>]

10
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In the following sections, we shall use the following identities for the product of two

spherical harmonics [2]
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Furthermore, the action of the angular momentum operator L? on a spherical har-

monic Y}, is given by

LY = L(14 1) Yy (7.103)

We shall now evaluate the effects of the various operators on the components of Eq.

(7.99) individually
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Thus the first term ‘1" on the RHS of Eq. (7.99) has been expressed as a linear
combination of the desired products M. Likewise all the other terms follow, whence
we can can by orthogonality hive off the expansion coefficients in the Fourier-Laplace
series. Notice that in general it is much easier to use the Clebsch-Gordan coefficients
which exist in Mathematica in order to avoid those complicated calculations. We

have for the second term ‘2’:
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7.E The Matrices Q, and fo

The matrices Q,,, QF, Q. in Eq. (7.17) have the form (see Appendix 7.F for the
derivation of Q,, QF, Q)

_ V2n—1 R2n—1 P2n—1 SQn—l U2n—1 0
Qn = 5 Qn = ) ;r =
0 V2n R2n P2n S2n U2n
(7.145)
where
pm 0 I_)O m - ° O
P, — Pm-11 Pm-11 ’
I_)mfl 1
0 p(]m pOm
o 0 . 0
Im-11 I'T m—1
R, = 0 I'm—22 0 )
11
0 0 Yom
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Sm0  Som 0 .0
*
0 Sm11 Sipm
Sm == )
0
0 0 Som S0
Vom 0 0
V11 Vig-1
Vin—22 Vm-22 0
Vi = _ _ )
0 Vin-33 m-22
Vim—1
0 0 vy,
0 U, ;1 Up-11 Ty
Um = )
0
0 . 0 Uy, Uom U,
The matrices ppm, Q,,,,; V,,,, have the form
0
Tnm -1 0
Xom = | . 0 om0 0 , (7.146)
0 Tpm1

(2r+1)x(2rz+1)

and the matrices P, ,,, Snm, I'nms Unm, Vnm have the form

0
Lnm -1 xrtm—l 0
Xnm = om0 Lm0 "I;TJerO . (7147)
0 Tpmi  Tnmi

(2r+1)x(2ry+1)

Here x denotes one of the submatrices Py, Pyyms Snms Tnms Wnms Oy s Viems Vi All

the submatrices have the same number of rows, namely, 2r+1, where r = min[n, m|.
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The number of columns also can be found as 2r, 4+ 1, however each submatrix now

has its own number r,, namely

r, =min[n, m|, r; =min[n + 1,m — 1],
rs =minn + 1, m|, r, =min[n, m — 1],
r, =min[n — 1, m — 1], r, =min[n + 1,m + 1],
ry =min[n, m — 2|, ra =min[n + 2, m|.

The initial value vectors C,(0) in Eq. (7.18) are calculated in the following

manner. We introduce the vector

fén—l()
f2in—11
Mrim—r
, f M
Fio=| " e,.= "7, (7.148)
fénO :
fén—ll M:Lmr
f(’)YQn

where r = min[n, m] and the index i = I, II corresponds to the fields H, and HY.
Therefore we may transform Eq. (7.15) to the three term super-matrix recursion

formula

Q,F, ,+Q.F,+Q/F, , =0. (7.149)
The solution of this equation is rendered by the matrix product [2]
' ' — i Lo - Al - i -
Here, we have used F) = 1/(4r). Thus, we can write the initial vectors C,, (0) as

C,(0)=F, —FL (7.151)

For more details on the derivation of Eq. (7.151) see Appendix 7.G.
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7.F Derivation of the Matrices Q,, QF and their
Submatrices

Recall that the differential-recurrence relation for the observables, namely, the re-
laxation functions ¢, ,m(t) = (M, 1,m) (£) — (M, 15m)q; of the two-spin system is

given by

2 1
; _ l1 lz m
TNClylam = § : § : § : dl1+1l2+] m+kCli+ila+j mtks (7152)

i=—2 j=—2 k=—1
where the angular brackets () (t) denote ensemble averaging over the sharp values
and ();,7 = I,II denotes the equilibrium ensemble averages corresponding to the

initial (I) and final states (IT) of the two-spin system, evaluated from

2w 2m s T
(Mi, 1 m); Z/ / / / My, 1, mWi(01, 01, V2, 02) sin ¥ sin 01 diadid 1 dpadpr .
o Jo Jo Jo
(7.153)
In writing Eq. (7.152) we have also used the fact that the equilibrium averages

(M, 1, m), satisfy the time-independent recurrence relation
11
Z Z Z dyy gk M it o) = 0. (7.154)
i=—2j=—2k=—1

As stated earlier, the hierarchy of recurrence relations Eq. (7.152) for the relax-
ation functions ¢, 1, (t) must be solved subject to the initial conditions ¢, ,.,(0) =
(My,1,m); — (Miy13m)g;- To achieve this, we shall write Eq. (7.152) as a tractable
tridiagonal vector recurrence relation. Consider the one-sided pentadiagonal recur-

rence relation
T™nEn =V, Ch2+ R, o1+ P e +S,ci1 + U, €, (7.155)
and then write it down for even and odd indices n

TNCon—1 =Vag,_1C2n—3 + Ry, _1Con—a2 + Py, _1Co1 + Sy, _1C2n + Uy, _1Cont1,

(7.156)

TnCon =V, Con—2 + Ry, Con_1 + Py, Co + Sy, €1 + Uy, Conga, (7.157)
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where

Con =

Con—3 =

C2n,0,0
C(2n—1),1,—1
C(2n—1),1,0
C(2n—1),1,1
C(2n—2),2,—2
C(2n—2),2,—1
C(2n—2),2,0
C(2n—2),2,1
C(2n—2),2,2

14y

€0,2n,0

C(2n—3),0,0
C(2n—4),1,—1
C(2n—4),1,0
C(2n—4),1,1
C(2n—5),2,—2
C(2n—5),2,—1
C(2n—5),2,0
C(2n—5),2,1

C(2n—5),2,2

€0,(2n—3),0

y Cop—1 =

y Cont+1 =

C(2n—1),0,0
C(2n—2),1,—1
C(2n—2),1,0
C(2n—2),1,1
C(2n—3),2,—2
C(2n—3),2,—1
C(2n—3),2,0
C(2n—3),2,1

C(2n—3),2,2

€0,(2n—1),0

C(2n+1),0,0
Con,1,—1
Con,1,0
Con,1,1
C(2n—1),2,—2
C(2n—1),2,—1
C(2n—1),2,0
C(2n—1),2,1

C(2n—1),2,2

Co,(2n+1),0
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y Cop—2 =

y Con42 =

C(2n—2),0,0
C(2n—3),1,—1
C(2n—3),1,0
C(2n—3),1,1
C(2n—4),2,—2
C(2n—4),2,—1
C(2n—4),2,0
C(2n—4),2,1

C(2n—4),2,2

€0,(2n—2),0

€(2n+2),0,0
C(2n+1),1,—1
C(2n+1),1,0
C(2n+1),1,1
Con,2,—2
Con,2,—1
C2n.,2,0
Con2,1

Con,2,2

€0,(2n+2),0

(7.158)




The elements of the matrices V,,,, R,,,, P,,,, S,,,, U,,, can be determined from equa-

tions (7.152), (7.156) and (7.157). We start by introducing the column vectors

Con—10
Con—21
Cnmfr
Con—1 Coon—1 Cnm —r+1
C, = = , Com(l) = . , (7.159)
Con Cano :
Con—11 Cnmr
Coon

where (r = min[n, m]). Using Eq. (7.159) we can write Egs. (7.156) and (7.157) into

a tractable tridiagonal vector recurrence relation viz.,

TNCon—1 _ V2n,1 Rgn,1 Con—3 + P2n71 Sanl Con—1
TNCap 0 V2n Con—2 R2n P2n Con
U 0 ¢
2n—1 2n+1
+ , (7.160)
SQn U2n Con+t2

which can be more compactly written as

™G, =Q,Cr1 +Q,C, + QCpi, (7.161)
where
Q; _ V2n71 R2n71 7 Qn _ P2n71 Sanl 7 ,: _ U2n71 O
0 V2n R‘2n P2n S2n U2n
(7.162)

The non-zero coefficients in the right hand side of Eq. (7.152) are listed in Appendix
7.C. We seek now to derive the submatrices V,,,R,,,P,,.S,,, U,, in order to
demonstrate their general structure for all values of 2n and 2n — 1 in the tractable

tridiagonal vector recurrence relation in Eq. (7.160), which will thus allow for its
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implementation in Wolfram Mathematica code. To do this, we shall determine the
non-zero elements of the matrices V,,, Ry, Py, Sy, Us,, from Eq. (7.152). Then
using Egs. (7.157), and (7.158), we shall determine their positions in the matrices
V.., Ry, Py, Sy, Uy, and then generalise their structures for all values of n. From
Eq. (7.157) we have
TNC2n,0,0

TNé(zn—l),l,—l
TNé(2n—1),1,0
TNC'(anl),l,l
TNé(2n72),2,72
T™NCon = | TnCan-2)2-1 | - (7.163)
TNC(2n-2),2,0
TNé(2n72),2,1

TNC(2n—2),2,2

TNC0,2n,0

From this we can determine from Eq. (7.152) and the list of the non-zero coefficients

in Appendix 7.C the following:

l1:2n, ZQZO,mZO

TNC2n00 =

Ao 0cano0 + don®y 1 1can11 -1+ dor®Y 1 oCan—110
+don %01 1con111 + dop Y0 0C2n—100 + d%zg?oo@nﬂoo + oY con1
+dar Y 0con 10+ dop i Ycon11 + d32330062n+2oo + d323?1 ~1C2n+11-1

21,00 2100 2100 200
+don 1 10C2n+110 + Aoy 111Cn+111 + Aoy 20Con20 + o250 0C2n—200- (7.164)
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11:271—1, l2:1,m:—1

TNCon—11-1 =
d3rioo’ ~Can00 F A3 T11 10111 F A3 30 5022
iy 55 1Con—22 -1+ dan 330 Can-220 + dan_100 20100 + dan_51 12211
don =510 Con—210 + dop 1 ean1 1 + dap 15t eanio + don 15 5Con 12 2
+dan 15 1Con—12 1+ don 150 Con—120 + diny11 1Cont11-1 + dapg h Cana 2

on—11 on—1 n—11-1 on—11-1
+dar g 1 da ot T eana0 A3 13 1131 + dar s 60  Can200

+d3n 51 " 1Con—31-1. (7.165)

l1:2n—1, lzzl,mzo

TNCopn—110 =
2n—110 n—110 n—110
356" Cano0 + din_110C2n—110 + dan 5521 Con—22 1

2n—110 2n—110 2n—110 2n—110
Ao _920C2n—220 + d3,_591Con—221 + day_100C2n00 + d3 51— 1Con—21-1

2n—110 2m—110 110
+d5 510C2n—210 + d5_5711Con— 211+ d3 T 0001 - 1+d2n10 Con10

2n—110 n—110 2n—110 n—110
+d3n11 C2n11+d2n 12— 1C2n—12—1+d2n712002n 120+d2n 12162n—121

2n-110 2n-110 2n-110
don 110Can+110 + dong 1 Cana 1 + dinag “cana0 + dingy Vonan

27110 2n—110 2n—110
dn-130C2n-130 + d3p_200C2n—200 + d3,_510C2n—310- (7.166)

11:271—1, 12:1,m:1

TNCon—111 =

on—111 on—11 n—111
dyno0 C2no0 + day,— 11102n 111+d2n 220C2n—220

on—11 2n—11 on—111 on—111
dop— 221C2n 221 + d5,— 222C2n 222 + d5y 10002000 + A3, _219C2n—210

on—111 111 on—111 on—111
dor”511C2n— 211+d2n1 Conio+dyn 11 Coni1 + doy_120C2n—120

on—111 2n—111 111
dyp_121C2n—121 + d3_139Con-122 + d2n+111c2n+111 + d2n20 C2n20

on—111 n—111
+d5, 01 62n21+d2n22 C2n22+d2n 13102n 131+d2n 200C2n—200

+dgz éi%CQH 311- (7167)
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l1:2n—2, 12:2,7’7?,:—2

TNCon—22-2 =

d2n—22 —2

2n—22 -2 2n—22 -2
om—11-1C2n—11-1+ d3y_55_5Con—22-2 + d5 33" 5Con_33_3

2m—22 -2 2n—22 -2 2n—22 -2 2n—22 -2
+d3, "33 5Con-33 -2+ d5, 33 1Con-33-1+ da, 57 _1Con-21-1 1 dg, 35 5Con-32 2

d2n722 -2

2n—22 -2 2n—22 -2 2n—22 -2

m—32_1C2n—32-1 1+ d3, 75 5Con-12-2+ d3, 75 1Con-12-1+ d5, 53 3C2n-33-3

2n—22—2 2n—22 -2 2n—22 -2 2n—22 -2
—l—d% 23_2Cn—33— 2+d2n 23_-1C2n—33— 1‘|‘d2n2_2 62n2—2+d2n 13-3C2n—-13-3

2n—22—2 2n—22 -2 2n—22—2 2n—22—2
dop—13-5Con—13-2 + da, 15 _1Con—13-1 + d5,_ 55 5Con—24 -2+ d3,"37 _1Con-31-1
2n—22 -2
dop_42 _3Con—12—2. (7.168)
11:2n—2,l2:2,m:—1

TNCopn—22-1 =

d2n72 2-1

2n—11-1C2n—

2m—22 -1
d

on—33—2C2n—

m—22 —
+d3, 370 C2n

d2n72 2-1

on—12-2C2n—

2n—22-1
dn—53_1C2n

d?n—Q 2—1

on—13—-1C2n—

d2n 22—

2n—310 C2n—

2
—23-1 + don 330 a2z + d3ny]

2n—22 -1 2n—22—
11-1+d3n 170 Con—110 + dopy_55_ 1C2n 221

m-22-1 n-22-1 on—-22-1
33_2 1+ d5, 55 _1Con—33_ 1+d2n 330 Con—330 + d5n 57 _1Coan—21-1

2n—22 -1 2n—22 -1 2n—22 -1
210+ d5n 55 5Con—32-2 + dyn_55_1Con—32-1 1+ ds,_550 Con—320

2n—22 -1 2n—-22 -1 221
12—2 +d5 15 1Con—12-1 +d5 150 Con— 120+d2n 23_9C2n—23 -2

2n—22—1 2— 2n—22—1

C2n271+d2n 13-2C2n-13-2
2n—22—1 on—22— 2n—22—1
13-1 +d5n 150 Coan—130 + doy_54_1Con—24-1 4+ d5, 57 _1Con—31-1

510+ don 35 1Con—a2-1. (7.169)
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Lh=2n—-2,1,=2, m=0

TNCan—220 =

d2n 220

2n—220 2n—220
m—11— 102n—11_1+d2n_11002n 110 + d5,_ 11102n 111

2n—220 2n—
+d3,_550C2n—220 + da;,—

d2n72 20

22

2n—220

2n—220

0
33— 1C2n—33—1+d2n 33002n—330+d2n 331C2n 331

2n—220 2n—220
m—21-1C2n—21-1 T d3p_570C2n—210 + d3,_571Con—211 + do, 55 _1C2n-32-1

2n—220 2n—
+d3,"350Con—320 + dgy,_

2n—220 2n
+d2n_12162n 121 + d2n

d2n—2 0

m20 C2n20 T d2n 1

2m—220
333 0Con—240 + don_

2n—220 2n—
+d3, 371Con—311 1 dgy,_

11:271—2, l2:2, m=1

TNCo2n—221 =
2n—221 n
dop_110C2n— 110+d2n

d2n 221

220

—220

2n—220
3 1C2n—13—1 +d3,"130

220

560C2n—200 + dan_

220
420C2n—420-

221 n
111C2n-111 +d2n

n—220
321C2n— 321+d2n 12—

2n—220

2n—220 20
23— 102n—23—1+d2n_23002n 230+d2n 23102n 331

220

31-1C2n— 3171+d2n 31002n 310

221
221C2n—221

on—330C2n— 330+d2n 33102n 331+d2n 332€2n 332+d2n 21002n 210

2n—221
+don 3T 1Com—n11 + dip_

2n—221 2n—
dyn_150C2n—120 + d3;,

2n—221 n—221
+d3,91 C2n21+d2n 13

2n—221
+don 31 Con—2a1 + dp_3T0Cm—310 + dan 57 1Cn—311 + d3n_351Con—121.

221 on—
320C2n-320 1+ d3;,—

221

2n—221

2n—221
121C2n—121 T day_

221
321C2n— 321+d2n 32202n 322

2n—221
122C2n—122 T dyp 535

2n—221

0Coan—130 + dsy,_151Con—131 + d5,_159Con—132
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1C2n—12-1 + d3_7150C2n—120

20
Con— 130+d2n 13102n 131

(7.170)

(7.171)



l1:2n—2, 12:2,7’7?,:2

TNCon—222 =

2n—22
d2n 111

n—222
CQn 111 +'d2n 999Con—

n—222

2n—22
+din 3 35Cm—332 + don_333Cn—

2n—222
d2n73 22

m—222
+dn 335

2n—222

Con—322 + do 157Con—

2n—222

Con—232 + d5n_533Con—

n—222
222+d2n 331C2n—331

n—222 2m—222
333 +'d2n 211Cm—211 + d5,_557Con—321

2n—222 2n—222
121 +d5,_155Com—122 + d5_551Con—231

Mm-222
233 +-d2n22 Con22 + d5y_151Con—131

2n—22 n—222 n—222 2n—222
dgn 1320271 132+d2n 133C2n— 133+d2n 24202n—242+d2n 311C2n-311
2m—222
d2n 422C2n 4292. (7172)
1120, 12:271, m =0
TNCo2n0 =
02n0 02n0
Ay cron1 1+ dign Y oCron—10 + A5y 1 Cron—11
02n0 02n0 02n0 02n0
dyan0C0200 + dy2p—10C02n-10 + do2n410C02n+10 + Ay 55 —1C120 1
02n0 02n0 02n0 02n0
d15p0C1200 T di2p1C1201 + dyopio0C02n+20 T A1 511 1C1 20411
02n0 02n0 0210
d12n+10012n+10'+_d12n+1—1012n+1—4,+_d22n0622n0 + dy5p-20C02n-20- (7'173)
11:1, 12:271—1, m=1
TNC12n—11 =
12011 on—11 12n—11
doomo' ' coomo + dign 1 1C12n—11 + dy3mn_56C22n—20
12n-11 n—11 12n-11 12n-11
dyon_21C22n—21 +‘d22n 22C22n—-22 T dy2p_10C02n—10 T A3, _20C02n—20
12n—11 n—11 n—11
d12n 21C02n— 21+d12n0 Cl2n0+d12n1 612n1+d22n 10C22n—10
12n—11 12n—-11 1
dyop_11C22n—11  dy5_15C22n-12 +‘d 2n+11012n+11 +‘d22n2 C22n2
12011 12n—11 12n—11 12n—11
+dson1 Can1 +d35, 0 C2on0 + d33,"11C320-11 F dgo,_20C020—20
12n—11
dy3n_31C12n-31- (7.174)
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Lh=1,01=2n—1, m=0

TNC12n—10 =

12n—10 n—10 12n—10
domo coono + dign_10C12n-10 + d3n_50C22n-2-1

12n—10 n—10 12n—10 12n—10
+dy5, " 50C22n— 20+d22n 21C22n-21 1 dy2,_10C02n—-10 T d13, 5" 1C02n—2 -1

12n—10 12n—10 12n—10 12n—10
d13n—20C02n—20 + 15, 91C02n—21 + d15, 7 Clan—1+ d13,0° Ci2n0

12n—10 n—10 12n—10 12n—10
+dy5n Cl2n1+d22n 1-1C22n-1-1 1 doo,_10C22n—10 + da5_11C22n-11

12n 12n—10 12n n—10
d12n+10612n+10+d22n1 C22n1+d22n0 C22n0+d22n 1 C22n—1

12n—10 n—10 12n—10

dyon =1 0¢32n-10 + doon 5 0C02n—20 + di or—30C1 20-30- (7.175)

llzl, l2:2n—1,m:—1

TNC12n—-1-1 =

12n—1-1 12n—1-1 12n—1—
dyamo' “'oano + dign 1 Z1C1on—1—1 + dyon_3 5C220—2 -2

12n—1-1 12n—1-1 12n—1-1 12n—1-1

tdyon o 1C22n—2-1+ dyon 50 C22n-20 1+ dooy_10 Co2n—10 T di2, 5 1C02n—2-1
12n—1— 12n—1-1 12n—1-1 12n—1-1

+di5, 90 COQn—20+d12n—1 Clan—1+t di5no  Ciano +dao, 1 922012

12n—1-1 12n—1— 1 n—1-1
+dyon_1-1C22n-1-1 + d35, 1 'eyom-10+ d12n+1 1C12n+1—1 T d22n0 C22n0

12n—1-1 12n—1-1 12n—1-1 12n—1-1
+dyon 1 Coon—1 +dy5n 9 Coop—2 +d35 1 1C32n—1-1 + doon_20 Co2n—20

+di 32 T 1 on_3 1. (7.176)
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From Eq. (7.157) we have

TN C20,0,0
TNC'(anl),l,fl
TNC.(anl),l,O
TNé(2n—1),1,1
TNC(2n-2),2,~2
TnCon = | TnCen-2)2-1 | = YonCon—2+Ro,Con1+Py,C20+85, €011+ Uy, Consa,
TNé(Qn—2),2,O
TNé(Qn—Q),2,1

TNC(2n—2),2,2

TNC0,2n,0

(7.177)
where from Eq. (7.158) and Eqs. (7.164) - (7.176), we have
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7.G Calculation of the Initial Value Vectors C,,(0)

Recall that the equilibrium averages (M, 1,m); satisfy the time-independent recur-

rence relation

2 1

Il
TN<MZ1 lzm> SOt My ity mak); = 0. (7.199)
i,j=—2k=-—1
We introduce the vector
fénflo
fén—21
M:zm—r
A fi A M
Fi—=| ! g = A (7.200)
fQZnO :
fén—ll M;Lmr
f(§2n

where r = min[n,m] and the index i = I, II corresponds to the fields H), and HY.

We may thus transform Eq. (7.199) to the three term supermatrix recursion formula

d
TNEFI Q,F,_,+Q.F, +Q'F.,,, =0. (7.201)

We seek the solution of Eq. (7.201) as

Fi = T F (7.202)

n+- n—1

where T/, is a transformation matrix. Using Eq. (7.202) we may rewrite Eq. (7.201)
as

Q;F;—l + QnT;Fl 1t Q+Tn+1T,7i7,Ff7,—l =0, (7.203)
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which can be rewritten as

Q. +Q.T, +Q/T,,,T,] F, , =0.
=[Q, +Q, T, +Q; T,  Ti] =0.

=Q, =[-Q.—Q;T, | T,.
Multiplying both sides of Eq. (7.206) by [~Q, — QFT.,,]”" we get
Q.- Q/T,,)] 'Q, =T,
Recall from Eq. (4.42) that
Su(s) = [stnI = Qu = QiSuia(5)] " Q, = Au(5)Q,,
where A,,(s) is given by

An(s) =[sT8T — Q — Qi Spnaa(s)]
—[stal—Q, — QI A, ()Qi]

since

Snt1(s) = An+1(S)Q;+1'

With s = 0 in Eq. (7.208) we have

$.(0) = [~Qu — QISun(0)] Q= A 0)Q;.
By comparing Eqs. (7.207) and (7.211) we can see that

Tiz = Sn(()) = An(O)Q;
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Substituting Eq. (7.212) into Eq. (7.202) we get

Fi, = A, (0)QF,_,. (7.213)
Let n =0 in Eq. (7.200)
Fé = (féo)
= (Méoo)

i) | (7.214)
Using Eq. (7.214) we can rewrite Eq. (7.213) as

Pl = AJ0)Q i = AL (0)Q AL, (0)Q AT Qry-, (7219
Thus, we can write the initial vectors C,, (0) as

C,(0) =F, —FL (7.216)

7.H The Effective Relaxation Time 7.¢

We suppose that a weak external magnetic field, having been applied to the system
in the infinite past, ¢ — —o0, is suddenly switched off at time ¢t = 0. We study the
relaxation of a pair of macrospins, including the effect of dipole-dipole interaction,
starting from an initial equilibrium state at t = 0. The effective relaxation time is
defined as

Tef = —& (7217)

f(0)’

where the relaxation function, f(t¢) is given by
f(t) = (cos ) (t) + (cos ) (t) — (cos 1), — (cosVa),. (7.218)
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The initial value f(0) is given by
f(0) = (cosv)y), + (cosVq), — (cos 1)y — (cos ¥2), (7.219)

where (cos ), and (cos,), are the equilibrium ensemble averages corresponding

to the Boltzmann distribution functions with the external field

|:Z (0cos29p+€ cos 9p)—¢ cos E:|
We = Z;'el” : (7.220)

and without the external field

|:Z ocos29p+s cos E:|
Wy = Z;tel? : (7.221)

respectively. Here cos = is by spherical trigonometry
cos = = 2 cos 1 cos ¥y — sin ¥y sin ¥ cos(p1 — p2). (7.222)

Using Eq. (7.217) we may write

™ f(O)

= ) (7.223)

We consider the case of switching off the small permanent magnetic field (theory of
linear response) at time ¢ = 0. We have from the Landau-Lifshitz-Gilbert equation

(see Eq. (2.404) in [34])

> [ eostid 0+ teos0) ()] = 3 [(F572 57 ) 0+ (5052 ) 0.
’ ’ (7.224)
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where £ = — Y ocos®d, — s cosZ. Using Eq. (7.224), we may write
p

Z[ jt((cosz?)() <C0819p)0)+(cosz9p>(t)—(cosz9p)0}
T (58, (o (ate))

(7.225)

Using Eqs. (7.218) and (7.225) we have

v f(t) Z TN [{(cos¥,) () — (cosVp),]

sinv, OF
—Z { (cos V) +<cosz9p>0+< 5 8_191)>(t)

sind, OF 1 OF 1 OF
— — —_ —( —— . .226
< 2 879p>0 " <2a a¢p> Q <204 890p>0} 7 )

By taking ¢ = 0 in Eq. (7.226) and noting that d,, £ = —0,,F, we can substitute

Egs. (7.226) and (7.219) into Eq. (7.223) to get

> [<COS ﬁp>g — (cos 19:0>0 - <Sin2ﬂpg_1i>§ + <Sin219p g_”i>o]

w~ o w0 D

0 5 ((cos ) — {cos 1))

p

1 E 1 OF
% 0p, +<%%>J

= |
> ({cos By — (cosd,), )

+

:<cos191> — (cos¥1) + (cosdz), — (cos ¥z),
2 ((cosﬂ ¢ — (cosdy) >

sinvy, OF + s1n191 oF
2 8’(91 8191

sinds OF + sinvs OF
2 9o ¢ 2 999 0




(cosdy), — (cos V), + (costz), — (cos ),

> ((cos Up)e — (cos 19P>0>

p

_ /[ sinvY1 OF + sinv, OF _ [/ sindYa OF + sinvs OF
26191£ 2 0%/ 28192£ 2 0%/,

" ; <<cos Up)e — (cos 19p>0)
), (), ), ),
Zp: ((cos Up)e — (cos ﬁp)o)

(cos i), — (cos V), + (cosdg), — (costa),

5 ({cos ) — (cos ), )

p
_ [/ sintYy OF + sind; OF [/ sindYs OF + sinds OF
2 o ¢ 2 o 0 2 0 ¢ 2 9 0

> <<cos Up)e — (cos 19p>0)

p

+

; ((cosq(}])5 — (cos¥p), — <%37Ep>5 + <%%>0)

) 5 (teos ) — (cosd,), ) o

p

For an arbitrary function A we have

(A = (A
=(A—=({4)

0)e
1 T[T <Z (0005219;)-&{ cos 19p)+§ cos E>
= - e\’ sin ¥, sin ¥odd;dd,
Zg/o /O [A = (A)] in ¥, sin Yaddd d)

T, S (ocos?dp )+ cos E:|
_1 / / [A— (A),] e[p ( ) elé(cosPrteosD2)l i 4 sin Iydid, didy.
Ze Jo Jo

(7.228)

Since the external field parameter £ < 1, we can approximate exp [€ (cos ¥y + cos )]

using the Taylor series expansion as

elélcosPiteos )l o 1 4 ¢ (cos ¥y + cos D) . (7.229)
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Substituting Eq. (7.229) into Eq. (7.228) we obtain
(A)e = (A)g
1 T [T {Z (acoszﬂp)+< cos E} ) )
zi / / [A— (A),]el? [1 4 & (cos ¥y + cos¥s)] sin ¥y sin Podi) dids
£Jo Jo
1 ™ [T |:Z (Ucos2z9p)+gcosE:| ] ]
:7/ / [A— (A),]el? sin ¥4 sin ¥odd, d)y
§Jo Jo

1 T[T [Z (Uc05219p)+g cos E:|
+ 57 / / [A = (A)o]el” (cos ¥y + cos ) sin ¥y sin Yodi);dis.
¢Jo Jo

(7.230)

Note that

L [Z (Ucoszﬁp)-i—q cos E:|
ZO = / / eL? Sin??l SinﬁQdﬁldﬂg, (7231)
0 0

and

T s Z ocos2d, )+¢cos =
Ze = / / elL? ( 2 1 elé(cosDrteos )] i) ¥y sin Yodd dV,
o Jo

LI DY (0'005219p)+§ cos 2
~ / / el? 11+ £ (costy + cos ¥y)] sin vy sin Yod);diy
0 0
LY DY (acoszﬂp)—kg cos 2
~ / / el 1 sin 9, sin ¥ydv, dvs, (7.232)
0 0

since £ < 1. Since from Eq. (7.232) we find that Z; ~ Z, (through comparison of
Egs. (7.231) and (7.232)), Eq. (7.230) can be written as

1 s s [Z (acosQﬁp)Jrgcos E] ) )
<A>5 —(A4) “70/0 /0 [A— (A),]el? sin ¢ sin Yod¥; dv,

1 ™ fm |:Z (Jcos219p)+§ cos E:| ) )
+ 57 / / [A—(A)|el” (cos ¥y + cos ) sin ¥y sin Yodi)1dd;.
0Jo Jo
== / / [A - <A>0] WO sin 191 sin 192d191d’[92
o Jo
+¢£ / [A — (A),] (costy + cosVy) W sin )y sin Padd); di)s.
o Jo

=(A = (A)g), + (A= (A4),) (cosV; + cosV)),. (7.233)
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Note that (A — (A),), = (4), — (A), = 0. Thus

0

(A)e — (A)g =E((A — (A)y) (cos Iy + cosiz)),
={(A (cos )y 4 cosvy) — (A), (cos V1 + cosdy)),
=E£(A (costy + cos V), — E(A)y(costh + cosva),,. (7.234)

By using Eq. (7.234) we have for the denominator in Eq. (7.227)

Z [(cos Up)e — (cos 19,))0}

= Z [€(cos ¥, (cos ¥y + cosVa)), — E(cos ¥y),(cos U1 + cos )]
=¢ (<(cos Yy + cos 192)2>0 — (cos v + cos ?92>g) ) (7.235)

Moreover we have (see numerator of Eq. (7.227))

<sin19p8_E> _<sin19p8_E>
2 00,/ 2 09,/,
B sind, OF sind, OF
—§(<(cosq91+cosq92) 5 819p>0 < > o0,

Eq. (7.227) may now be written as

>0 (cos ¥ + cos 192)0> . (7.236)

Tef <(cos ¥1 + cos 192)2>0 — (cos v + cosvq)
> <(cos V1 + cosy) Sm219p gTi>0 > <Sm219p 3—@0 (cos ¥y + cosq),

p p

((cos ¥y + cos 192)2>0 — (cos ¥y + cosVy)?

™ <(cos ¥1 + cos 192)2>0 — (cos v + cos 192)3
= 2
0

(7.237)
The Maxwell-Boltzmann distribution Wj is given by
o—F
Wy =—. 7.238
=5 (7.238)
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Differentiating W, with respect to ¥, we have

8Wg 0 €_E
o0, 0v, | Z,

2 ()

OF
__w. o 2
Woaﬁp (7.239)

Using Eq. (7.239) and integrating by parts, we have

sind, OF
Z <(COSI91 + cosy) 5 8—19]0>0

p
[ ind, OF
=> / / (cos 0y + cos 9) V2 O 1 i, sin 9oy dds
> Jo Jo 2 09,

™ s . 19
=— Z/ / (cos vy + cos Uy) sin 9 oW sin 1 sin ¥odid; didy
o Jo Jo 2 09,

m 2
_ / { / (cos ¥ + cos o) Sm;% %?Odﬁl] sin Jodil
0 0 1

™ ™ 2
_ / {/ (cos v + cos ) Sln2192 %Ig/o d’l?g:| sin ¥, d,
0 0 2

s

1 i
- _5/ (cos ¥y + cos ¥y) sin, Wy
0

sin T92d192
¥91=0

1 s ™
+ = / / VVOi [(COS V1 + cos Uy) sin2191} d sin 99dV,

™

sin ’l9ld791

1 s
5 / (cos 1 + cos Uy) sin®dy Wy
0 ¥o=0

1 (™ [T d
+ = / / Wo—— [(cos Y1 + costs) Sin2192} dy sin 9, dy
2Jo Jo dvy
1 ™ vy
=5 / / W[)% [(COS U1 + cos Uy) sin2191} d sin Yodi)y
o Jo 1
1 (™ [ d
+ = / / Wo—— [(cos Y1 + costs) Sin2192} d¥y sin 91 dy
1 ™ vy
=5 / / Wo [(— sin;) sin®9; + (cos 1 + cos1dy) 2sin ¥, cos 191} d) sin Vodi)y
o Jo

1 T s
+ 3 / / Wo [(— sin¥y) sin®dy + (cos Y1 + cos ) 2 sin ¥ cos 792} d¥y sin ¥, dy
o Jo
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1 /7T /7r Wo [—sin®¥; + (cos ¥y + cos ) 2 cos ¥y ] sin ¥y sin Podidydidy
0
+ % /0” /OW W [—sin®ds + (cos ¥y + cos ¥a) 2.cos o] sin vy sin 0y ddadt;
:%<—sin2191 + 2c08”91 + 2 cos )y cos ),
+ %<—sin2192 + 2c0s%9s + 2 cos ¥4 cos 192>0
_%<—Sin2191 — sin®Yy + 2cos?; + 4 cos ¥ cos Iy + 2C052192>0
:%<—Sin2191 — sin®9y + 2(cos ¥y + cos 192)2>0

=— %(sin%‘l + sin2192>0 + {(cos ¥ + cos 192)2>0. (7.240)

In a similar manner we obtain
sinv, OF sin v, 8W _
zp:< 2 o0, > Z / / °s1m9 L d0, sin Podidy

1 T
= —= / SiH2ﬁ1W0
2 0

1 T
—= / sin2792 Wo
2 0 ¥2=0

=(costh + cosy),. (7.241)

sin Yody + %ZO / / ngﬁ (sm 9 )dﬁl sin Yo diy

91=0

" 1

sin ﬁldﬁl -+ —Zo_l/ / WO— (Sin2192)d192 sin 1916[191
270 Jo Jy aw

Substituting Eqgs. (7.240) and (7.241) into Eq. (7.237) we obtain

™ L <sin2191 + sin2ﬁ2>0 (7.242)
Tef <(cos Yy + cos Uy) >0 (cos ¥y + cos 192> ' '
The effective relaxation time 7. is thus given by
cos ¥y + cosvs) (cos vy + cos V)
Tef = 27'N <( ! 2 >0 ! 2> . (7243)

<sm2191 + sm2?92>0
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Wolfram Mathematica Code Used for the Cal-

culation of the Observables

(R/117177777771777777777771717777717717171111711171717+%)

(*
From the methods described in Appendix (7.D) of the

thesis using the theory of angular momentum and the Clebsch-

Gordan series as well as the expansion of the potential E;

in terms of spherical harmonics (Eq (7.5) of thesis),
these are the various coefficients dl; “me)mk for dipole-

dipole interaction (they are listed in appendix 7.B of the thesis) .

Note that the variable I corresponds to the imaginary number \/(—1) = i.

*)

e e
-((1/2) #11% (11+1) -o% ((11% (11+1) -3+m~2) / ((2%11-1) % (2411+3)))) -
((1/2) »12% (12+1) o ((12% (12+1) -3%m~2) / ((2%12-1) « (2%12+3))));
(¢ A= Ty, 10 %)
uhat[11_, 12_,m_, 0_] := -o* ((11) / (2+11+3)) »
sart[((((11+1)~2-mr2) » ((12+2)22-m2)) /((2%11+1) » (2412+5)))];

* dinizl = Vi, 1,m *
\ihat[ll_, 12 ,m_, o_]) 1= ox ((12+1) /(2%12-1)) »
sart[((((12)~2-m~2) « ((12—1)"2—m"2))/((2*12+1) *(2+12-3)))];

(* A2 n= S1,,10m %)
s[12_,11_,m_, 0,8 ,c_,a_]:=-(((&)/(2)*12+ ((I*(c-¢))/ (a)) +m) *
sart[(((12+1)~2-m"2) / (4% (12+1)~2-1))];

(* dh’iz’lz,m— Py, 1,m *)
ri[l2_, 11 _,m_, o_, £, c_, a_] := (((&) /(2)) * (12+1) + ((I* (0-¢)) / (a)) *m) *
sart[(((12)~2-m~2) / (4% (11)~2-1))];

(¢ AP 0= U, 1,,n %)
ufli_, 12 ,m_, 0_, ¢_] := -¢* (11+12) «Sqrt[(((11+1)"2-m"2) » ((12+1)~2-m"2)) /
((2*11+1) * (2*11+3) * (2*12+1) * (2*12+3))];

O s e Vi,L,m *)
VI11_, 12 ,m_, 0, ¢_] := ¢ (11+12+2) »Sqrt[(((11)~2-m"2) « ((12)~2-m~2)) /
((2%11-1) % (2#11+1) = (2%12-1) % (2412+1))];

(* dhiizlz 1,m= P1,,1,,m *)
phat[11_,12_,m_, 0_, ¢_] :=
o (12-11+1) #Sqrt[(((11+1)~2-m"2) % ((12) ~2-m~2)) /
((2%1241) % (2%11+3) » (2#12-1) % (2%12+1))];

(* Note that the variable pm only has values of +1 where for example if pm =

L, 1,1, _
1 we get i1 ma= Ui,,1,,n and when pm = -1 we get diliPil.1,m1= UL,,1,,m *)
1,1,
(% A1 01 me1= U, 1,,m *)
upm[11_, 12_,m_, o_, c_, pm_] := - (1/4) x g (11+12) %

Sart[(((11+ (pm) *m+1) % (11+ (pm) *+m+2) % (12+ (pm) *m+1) % (12+ (pm) *m+2)) /
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((2%12+1) » (2411+3) « (2%12+1) « (2+1243)))];

(* AT 1me1= Pi,,1,m %)
phatpm[11_, 12_, m_, o_, c_, pm_] := - (1/4) xc* (12-11+1) «
sqrt[(((11+ (pm) #m+1) % (11 + (pm) *m+2) » (12+ (-pm) +m-1) % (12+ (-pm) »m)) /
((2#1241) % (2%11+3) = (2%12-1) % (2%12+1)))];

(* AT 1 mea= Vi, 1, %)
vpm[1l_, 12_,m_, o_, G_, pm_] := (1/4) #cx (11+12+2) +
sqre[ (((11+ (-pm) +m-1) « (11+ (-pm) +m) % (12+ (-pm) xm-1) % (12+ (-pm) *xm)) /
((2#12-1) % (2%11+1) » (2#12-1) % (2%12+1)))];

15,1,m +
(% di21301,me1= Si,,1,,m *)

spm[12_,11_,m_, o_, c_, a_, pm_] := -pmx ((I*xg) / (4xa)) *
sqrt[(((12+ (pm) #+m+1) % (12+ (pm) *m+2) » (11+ (pm) xm+1) » (11+ (-pm) +m)) /
((2*12+1)*(2*12+3)))];

(* di:ﬁz,’lr:,mﬂ: rfz,ll,m *)
rpm[12_, 11_,m_, o_, g_, a_, pm_] := -pm* ((I*g) / (4xa)) *
Sqrt[ (((12+ (pm) xm+1) % (12+ (-pm) xm) » (11+ (-pm) *+m-1) = (11 + (-pm) *m)) /
((2%12-1) % (2%11+12)))];

(R/1171717777717777777777717717777717717771111711171717+%)

(xThe following functions make use of the coefficients di:’!%"; n. for dipole-
dipole interaction defined earlier to generate the submatrices p, ., Pn,ms> Sn,m»

Pams Un,ms Unms Vnms Vnn @ defined in Eqs. (7.73) and (7.74) of the thesis.
These will later in the code be used to generate the submatrices P,,

Rns> Sms Vms U, which make up the tridiagonal matrices Q;,

Q, and Q; in the matrix three term recurrence relation =)

(* Pn,m *)
pmatrix[n_, m_, o_] :=
(Block[{A, r, rp, a, b, middlerow, middlecolumn},
(* This variable controls the number of rows the submatrix will have. The
Min[X;,X;,...] function yields the numerically smallest value of the x;. *)
r =Min[n, m];

(xThis variable controls the number of columns the

submatrix will have. As described in appendix 7.C of the thesis,
all the submatrices will have the same number of rows, namely,
2xr+1l. The number of columns is given as 2xr,+1,
however each submatrix defined has its own number r, =Min[n+i,m+j],
where the integers i and j will have different values

for each submatrix as defined in appendix 7.C )
rp = Min[n, m];

(* a and b are varables which will store the

number of rows and columns respectively as calculated earlier.x)
a=2xr+1;

b=2xrp+1;

(» A is defined here as a zero matrix to initialise the submatrix before
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assigning the coefficients to their appropriate positions in the matrix =)
A = ConstantArray[0, {a, b}];

middlerow = ((a-1) /(2)) +1;
middlecolumn = ((b-1) /(2)) +1;

(xHere we make use of the Switch[expr,forml,valuel,form2,value2,...] function
(which evaluates expr, then compares it with each of the formi in turn,
evaluating and returning the valuei corresponding to the first match found)

to assign the p, ;, , coefficients to their appropriate positions in the

Pn,m Submatrix.sx)

(*In the case of the Switch function here,

it is placed in a Table[expr, {i, imin,imax}, {j,jmin,jmax}] function which
will generate a nested list of the values of expr (where i is outermost)
when i runs from imin to imax and for each i,j runs from jmin
-jmax. %)

(*xThe output of this is a matrix

containing all the evaluated terms based on the expr defined.x)

(*The Switch function used here evaluates the difference between the values i

and j for all their values through the execution of the Table function. If i-
j = @, then the Switch function will output the p[n,m,i,o]
function with the appropriate value of i that meets this condition,
otherwise (the insertion of the form, _ , means that if i-jze,
then we output @).)

A = Table[Switch[i-j, @, p[n, m, i, o], _, @], {i, -r, r}, {j, -rp, rp}1;

(*The function will return the matrix A.x)

(* Fn,m *)
phatmatrix[n_, m_, o_, ¢_, a_] :=
(Block[{A, r, rphat, a, b, middlerow, middlecolumn},

r =Min[n, m];
rphat = Min[n+1, m-1];

a=2xr+1;
b =2=x*rphat+1;
A = ConstantArray[@, {a, b}];

middlerow = ((a-1) /(2)) +1;
middlecolumn = ((b-1) /(2)) +1;

(*As was done previously,

the Switch function used here evaluates the difference between the values i
and j for all their values through the execution of the Table function.x)
(xIf i-j = @, then the Switch function will output the p[n,m,i,o]
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function with the appropriate value of i that meets this condition.x)
(*This time however we have two other conditions to consider.x)

(*If i-j = -1,
then the function will output phatpm[n,m,i,o,c,1] (which is P, ,;) and if i-j =
1, the function will output phatpm[n,m,i,o,c,-1] (which is Py ;) .*)
(xFor the resulting matrix these two conditions will have the consequence
of placing placing phatpm[n,m,i,o,c,-1] one row above phat[n,m,i,o,c] if
the condition for it is met (i-j = -1) and placing phatpm[n,m,i,oc,c,1]
one row below phat[n,m,i,o,c] if the condition for it is met (i-j = 1)#)
A = Table[Switch[i - j, @, phat[n, m, i, o, ¢], -1, phatpm[n, m, i, o, ¢, 1],

11 Phatpm[n: m, i.v o, G '1]: k] 0], {1) -r, r)) {J) -"Phat: T‘Phat}]}

A

1)

(*» The basic procedure for constructing the submatrices p, ,,
Pn,n described earlier apply to the rest of the submatrices s, ,,

Po,ms Un,ms Un,ms> Vin,mos Vn,m*)

(% Up,p *)
uhatmatrix[n_, m_, o_] :=
(Block[{A, r, ruhat, a, b, middlerow, middlecolumn},

r =Min[n, m];
ruhat = Min[n+2, m];

a=2xr+1;
b =2 x%ruhat +1;
A = ConstantArray[@, {a, b}];

middlerow = ((a-1) /(2)) +1;
middlecolumn = ((b-1) /(2)) +1;

A = Table[Switch[i-j, @, uhat[n, m, i, o], _, @], {i, -r, r}, {j, -ruhat, ruhat}];

(* vn,m *)
vhatmatrix[n_, m_, o_] :=
(Block[{A, r, rvhat, a, b, middlerow, middlecolumn},

r=Min[n, m];
rvhat = Min[n, m- 2];

a=2xr+1;

b = 2 xrvhat + 1;
A = ConstantArray[0, {a, b}];
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middlerow = ((a-1)/(2)) +1;
middlecolumn = ((b-1)/(2)) +1;

A = Table[Switch[i-j, @, vhat[n, m, i, o], _, @], {i, -r, r}, {j, -rvhat, rvhat}];

(* Sn,m *)
smatrix[n_,m_, o0 , & ,¢_,a_] :=
(Block[(A, r, rs, a, b, middlerow, middlecolumn},

r=Min[n, m];
rs =Min[n+1, m];

a=2xr+1;
b=2xrs+1;
A = ConstantArray[0, {a, b}];

middlerow = ((a-1)/(2)) +1;
middlecolumn = ((b-1) /(2)) +1;

A = Table[Switch[i-j, @, s[n, m, i, o, &, ¢, a], -1, spm[n, m, i, o, ¢, a, 1],
1, spm[n, m, i, 0, ¢, @, -1], _, @], {i, -r, r}, {j, -rs, rs}l;

(* S;,m *)
sasterixmatrix[n_, m_, o_, §_, ¢c_, a_] :=
(Block[{A, r, rs, a, b, middlerow, middlecolumn},

r =Min[n, m];
rs =Min[n+1, m];

a=2xr+1;
b=2x%xrs+1;
A = ConstantArray[@, {a, b}];

middlerow = ((a-1) /(2)) +1;
middlecolumn = ((b-1) /(2)) +1;

A = Table[Switch[i-j, O,

Conjugate[s[n, m, i, o, §, ¢, a]1, -1, Conjugate[spm[n, m, i, o, ¢, a, 1]],
1, Conjugate[spm[n, m, i, 0, ¢, &, -1]1, _, @], {i, -r, r}, {j, -rs, rs}l;
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(* Pom *)
rmatrix[n_, m_, o_, § ,c_, a_] :=
(Block[{A, r, rr, a, b, middlerow, middlecolumn},

r =Min[n, m];
rr =Min[n, m-1];

a=2xr+1;
b=2x%xrr+1;
A = ConstantArray[@, {a, b}];

middlerow = ((a-1)/(2)) +1;
middlecolumn = ((b-1)/(2)) +1;

A = Table[Switch[i-j, @, ri[n, m, i, o, &, ¢, @], -1, rpm[n, m, i, o, ¢, a, 1],
i, rpm[n, m, i, o0, ¢, @, -1], _, @], {i, -r, r}, {j, -rr, rr}l;

(* ron *)
rasterixmatrix[n_, m_, o_, §_, ¢_, a_] :=
(Block[{A, r, rr, a, b, middlerow, middlecolumn},

r =Min[n, m];
rr =Min[n, m-1];

a=2xr+1;
b=2xrr+1;
= ConstantArray[0@, {a, b}];

+1;

)) +1
/(2 )+1;

middlerow = ((a-1) /(2
middlecolumn = ((b-1

A = Table[Switch[i-j, @,

Conjugate[rl[n, m, i, o, &, ¢, a]], -1, Conjugate[rpm[n, m, i, o0, ¢, a, 1]],
1, Conjugate[rpm[n, m, i, 0, ¢, a, -1]1, _, @1, {i, -r, r}, {j, -rr, rr}l;

(* Un,m *)

umatrix[n_, m_, o_, ¢_] :=
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(Block[{A, r, ru, a, b, middlerow, middlecolumn},

r =Min[n, m];
ru=Min[n+1, m+1];

a=2xr+1;
b=2x%xru+1;
A = ConstantArray[@, {a, b}];

middlerow = ((a-1) /(2)) +1;
middlecolumn = ((b-1)/(2)) +1;

A = Table[Switch[i-j, @, u[n, m, i, o, ¢], -1, upm[n, m, i, o, ¢, 1],
1, upm[n, m, i, o, ¢, -11, _, @], {i, -r, r}, {j, -ru, ru}];

(* Vn,m *)
vmatrix[n_, m_, o_, ¢_] :=
(Block[{A, r, rv, a, b, middlerow, middlecolumn},

r =Min[n, m];
rv=Min[n-1, m-1];

a=2xr+1;
b=2xrv+1;
A = ConstantArray[0, {a, b}];

middlerow = ((a-1) /(2)) +1;
middlecolumn = ((b-1) /(2)) +1;

A = Table[Switch[i-j, @, v[n, m, i, o, ¢], -1, vpm[n, m, i, o, ¢, 1],
1) me[n) m, i: O, GC» _1]) 3 0], {i) -r, I“}, {J) -rv, I‘V)];

A

1)
(%//77177777771777777777777777777777777777777777771717%)

(xHere we define the submatrices P,, R,, S,

V,, U, which make up the Matrices Q; , Qi, Qu*)

(*As was done previously in the case of the generation of submatrices p,,,

Fn,m: sn,m! I“n,m»‘ un,m) Un,m.v Vn,m! vn,m,v

the Switch function used here evaluates the difference between the values
i and j for all their values through the execution of the Table function,

leading to the creation of a matrix. This time however,

the output for each condition in the switch function will be a submatrix,

leading to the creation of a matrix of matrices. The result is then converted to a
single flattened matrix through the use of the ArrayFlatten[...] function.x)
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(* See Appendix 7.C for information on the structures of the matrices P,,

Rus Sns Vs Up %)

(% Py, %)
P[m_, o0_,¢_,a_] :=
(Block[{A, i, 3},

A = ArrayFlatten[
Table[Switch[i - j, @, pmatrix[m-1i, i, o], -1, phatmatrix[i, m-1i, o, ¢, a],

1) phatmatrix[m_ i) i) 0', C) a]) ) e]) {i) e) m}, {j) e) m}]];

(* Ry, *)
R[m_, 0_, & ,¢c_,a_]:=
(Block[{A, i, 3},

A = ArrayFlatten[Table[Switch[j - i, @, rmatrix[i, m-1i, o, &, ¢, a], -1,

rasterixmatrix[m— i: i: o, §) S a]: ) 9], {i) e: m}: {J: e: m- 1)]]5

(% Sp *)
S[m_, 0_, & _,¢_,a_] :=
(Block[{A, i, 3},

A = ArrayFlatten[Table[Switch[j - i, @, sasterixmatrix[m-1i, i, o, &, ¢, al,

1, smatrix[i, m-1i, 0, §, ¢, a], _, 0], {i, @, m}, {j, @, m+1}]];

(* V, *)
V[m_, o_, ¢_] :=
(Block[{A, i, 3},

A = ArrayFlatten[
Table[Switch[j - i, @, vhatmatrix[i, m-1i, o], -1, vmatrix[m-1i, i, o, ¢],

-2, Vhatmatr‘ix[m—i) i, ol, _, 0], (i) 0, m}, (J) 0, m-2}11;
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U[II'I_, o_,¢G_]:=
(Block[{A, i, j},

A = ArrayFlatten|[
Table[Switch[i - j, @, uhatmatrix[m-1i, i, o], -1, umatrix[m-1i, i, o, ¢],
-2, vhatmatrix[i, m-1i, o], _, 0], {i, @, m}, {j, @, m+2}]];

A
1)
(R/1171777777717777777777717717777717717171111711171717+%)

(*Here we use the ArrayFlatten function again to construct the Q; ,
Q;, Qn matrices from the submatrices P,, R,,
Sms Vms Up in the manner seen in appendix 7.Cx)

Qminus[n_, o0 _, § ,¢_,a_] :=
ArrayFlatten[{{V[2%n-1, 0, ¢], R[2*n-1, 0, §, G, @]}, {®, V[2*n, 0, c]}}];

Q[n_, o_, §, c_, a_] := ArrayFlatten[{{P[2*n-1, 0, ¢, a], S[2*n-1, 0, §, G, a]},
{R[2%n, 0, §, ¢, al, P[2*n, 0, ¢, al }}];

QP]-US[“_: o,§& ,¢_,a_]:=
ArrayFlatten[{{U[2*n-1, o0, ¢], O}, {S[2*n, 0, §, ¢, al, U[2xn, 0, ¢]1}}];

/11717777 7777777777777777777777777771777177777717717%)

(xHere we define the two matrix continued fractions which
are used in solving the differential-recurrence relation using
the techniques described in section 4.6 of the the thesis. x)

(*The matrix continued fraction S, represents Eq. (4.42) in the thesis where s = 0,
meaning that we solve for S,(@).x)

(*The purpose of this matrix continued fraction

which is Eq. (2.7.5) in the 4th edition of the book

"The Langevin Equation: With Applications to Stochastic Problems in

Physics, Chemistry and Electrical Engineering"” is to solve for

the initial conditions vector C,(@) through the use of Eqs. (2.7.15)

(which is equivalent to Eq. (7.77) in the thesis) in the

Langevin equation book and Eq. (7.78) in the thesis.x)

(* Sp *)
Sn_,t ,0_ ,¢& ,¢c_,a_]:=
(Block[(Bl, il,
(*We start by defining a zero square matrix which will have
the dimensions (4(t+1)® + 2(t+1) + 1) x (4(t+1)% + 2(ts1) + 1))
(*t is an integer which defines for any matrix continued fraction S, the
number of iterations of the continued fraction that we see to evaluate,
i.e. the continued fraction will iterate t-i times. For example,
if we seek to evaluate S; and we set t=10, then the continued fraction will
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be iterated on 10 times, whereas if we seek to evaluate S, with t=10,
the continued fraction will be iterated on 9 times =x)

Bl = Table[@, { (4% (t+1)"2 + 2% (t+1) + 1)}, {(4x (t)"~2+ 2% (t) +1)}];

(*This for loop evaluates the matrix
continued fraction by starting with the max iteration value j=t,
and then iterating for decreasing values j=j-1, until we iterate the
necessary number of times to obtain the answer we seek (S")*)
(xFor every iteration of the For loop, the variable Bl stores the
previously evaluated answer so that it can be further iterated on.x)

For[j=t,j2n, j--,
Bl = Inverse[-Q[], o, & ¢, a] -Qplus[j, o, &, ¢, a] .B1].Qminus[j, o, &, ¢, al;

(*The matrix continued fraction A, represents Eq. (7.19) in the thesis x)
(* By is later used in Eq. (7.18) of the thesis to solve for El(iw)*)

(* A %)
An_,t ,w_,0_,& ,G_,a_]:=
(Block[{B1, j},

Bl = Table[@, { (4% (t+1)~2 + 2% (t+1) + 1)}, {(4% (t+1)~2 + 2« (t+1) + 1)}];

For[j=t,j2n, j--,
Bl = Inverse[I *xw % IdentityMatrix[4 *j"2+2%j+1] -
Q[J: o, § ¢, a] -Qplus [J) o, § ¢, a] .B1.Qminus [J +1, 0, & G, a]]

K/111777777777777777777777777777777177717717777777717%)

(* This function allows us to evaluate the initial value column vector C"(e) *)
(+It is based on Eq. (7.78) in the thesis, x)
(*where we utilise Eq. (2.7.15) in the 4th edition of the
book "The Langevin Equation: With Applications to Stochastic
Problems in Physics, Chemistry and Electrical Engineering"
to solve for F} and FI' to ultimately obtain C,(@)x)

(*This function will output a vector which will contain calculations of cn(e) from n=
1 to n=nm and them store them all in a single column vector of column vectorsx)
Cifnm_, t_, o_, €I_, §II_, c_, a_] := (
Block[{Cl, C2, CvVi, CV2, CR, res, k, 1},
( This will store out evaluations of C,(@) from n=1 to n=nmx)
CR={};
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(» These correspond to F%:l/(4n) *)
avi={{1/@+m}}sv2={{1/(a+m}};

(*This do function evaluates FI and FI' and then using the Join function,
the difference between them is stored in the vector CR. this is done from i=
1 to i=nm, and the final result is that CR will
contain all the evalations of C,(@) up to Cun(@)*)
Do [
CVl=S[i, t, o, €I, ¢, a] .CV1;
CV2 =SJ[i, t, o, 11, ¢, a] .CV2;
CR = Join[CR, CV1-CV2], {i, 1, nm}];

(#For[k=1,k< nm,k++,

cvi
cv2

S[k,t,0,8I,c,a].CV1;
S[k,t,0,&1I,c,a] .CV1;

CR=Join[CR,CV1-CV2];
15%)

(+This function make use of Egs. (7.18),
(7.19) and (7.25) in the thesis to calculate
the complex susceptibility x (w)=x (w)-ix " (w)=*)

x[nm_, t_,0_, EI_, EII_, ¢_, a_, w_] := (
Block[{C1laplace, c1, Cn, res},

(*This vector will store the output of C1 which is a
vector that contains calculations of c"(e) from n=1 to n=nmx)

cl=Cl[nm, t, o, €I, €11, g, al;
Cllaplace = Table[{@}, {4 (nm+ 1)2 +2% (nm+1) +1}];
Do

(*The vector which the function C1 is a vector contain the vectors cl(a) to Chn
(0), *) (xbut for every iteration we need one of them at a time, «x)
(*so we use the Take function to extract the individual vectors C;(0)
to cnm(e) so that they can x) (xbe used at the appropriate times in the
calculation. In order to do this however, x) (xwe need to know the range
of values in the storage vector Cn that correspond to the each cn(a) *)
(xvector. The length of the vector C,(@) is 4n?+2n+1, so if nm = 2, x)
(%Cy (@) will have 21 entries and C;(@) will have 7 entries, x)
(*meaning that the vector that stores these entires will have
28 entries. So for the first iteration &) (xof the Do function,
we take entries 28 to 8 in the Cn vector to extract , x)
(xthen for the second and final iteration, we take entries 7 to 1.x)
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(xTo generalise this process for any nm value,
for the first iteration onwards, ) (xwe take entries jx
(2-3%j+4%3%) /3 to j* (8+9xj+4xj2) /3 where j=nm,nm-1,nm-2,...,1 *)

Cn=Take[cl, {j* (2-3+3+4%3%) /3,5 (8+9xj+4x3%) /3}];

Print [TimeObject[]];

(*» Here we perform the calculation for El(iw) through the use of Eq. (7.18). )
Cllaplace = A[j, t, w, o, €II, ¢, a].(Cn+Qplus[j, o, €I, ¢, a].Cllaplace),

{j) nm, 1’ '1}];

(* Here we use Eq. (7.25) to obtain the desired observable x(w)=x'(w)-ix''(w) *)
res =1-i*w*Cllaplace[[1, 1]] /c1[[1, 1]];
res

(xThis function make use of Eqs. (7.18),

(7.19) and (7.22) in the thesis to calculate the integral
relaxation time tj,:. The procedure for this this is similar to

the procedure for calculating x(w) in the previous function,

with the key differences being that now we are solving for C;(@) (w=@) and
the calculation at the end makes use of Eq. (7.22) instead of Eq. (7.25) =)

wint[nm_, t_, o, €I, €II_, ¢_, a_] := (
Block[{C1laplace, c1, Cn, res},

cl=Ci[nm, t, o, &I, €11, ¢, a];
Cilaplace = Table[{0}, {4 (nm+1)%+2x (nm+1) +1}];

Do
Cn =Take[cl, {j* (2-3+3+4+3%) /3,5 (8+9xj+4x3%) /3}];
Print [TimeObject[]];

Cllaplace = A[j, t, @., o, £II, ¢, a]. (Cn+Qplus[j, o, &II, ¢, a] .Cllaplace),
{j) nm, 1’ '1}];
(* Here we use Eq. (7.22) to obtain the desired observable tjint *)
res = Cllaplace[[1, 1]] /c1[[1, 1]1];
res

)
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8. Comparison of the Response for
Dipole-Dipole Interaction to the

Response for Exchange Interaction

We now compare the results of the response for dipole-dipole interaction with those
for exchange interaction for the same value of the interaction parameter ¢. Figure
8.1a shows the effect of ¢ on 7, in linear response, i.e., the correlation time. Clearly
the effect of increasing ¢ is generally to increase the relaxation time. However,
for the particular circularly symmetric configuration studied the effect of dipole-
dipole coupling is much more pronounced than that of exchange coupling for the
same ¢. Indeed, increase of ¢ exceeding ~ 1 causes a marked increase in 7, for
dipole-dipole coupling as compared to exchange coupling. A similar increase also
occurs with exchange interaction. However, a much larger value of ¢ would now be
needed relative to that for dipole-dipole coupling. Figure 8.1b shows the relaxation
time as a function of ¢, with the anisotropy or inverse temperature as a parameter.
Again, for both types of interaction the tendency is to markedly increase the integral
relaxation time with the enhancement effect being much greater for dipole-dipole
rather than exchange interaction.

Figure 8.2 shows both 7, and 7 = 1/A; vs. the anisotropy (or inverse tem-
perature) parameter o. Without the external field, i.e., hy; = 0, the temperature
dependence of Ty (like 7 = 1/);) has the customary Arrhenius behaviour, i.e.,
exponentially increasing with decreasing temperature (see Figure 8.2a), while the

slopes of both 7y, (T71) and 7(7~!) markedly depend on s.
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Figure 8.1: Integral relaxation time 7, /7y as a function of the interaction parameter
¢ (a) for various external field parameters hy; subject to the linear response condition
ht — hyp = 0.001 and (b) for various ¢ and h; = 0.101, Ay = 0.1; « = 0.5. Solid and
dashed lines: the matrix continued fraction solution for dipole-dipole and exchange
interaction, respectively. Note the pronounced effect of dipole-dipole interaction
(for the particular geometry considered), which for large ¢ greatly increases the
relaxation time as compared to exchange interaction.
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Figure 8.2: Integral relaxation time 7y, /7y (solid and dashed lines) and inverse
smallest non-vanishing eigenvalue (A\;7y) ! (circles and asterisks) vs. the anisotropy
(inverse temperature) parameter o (a) for various interaction parameters ¢ and
hir = 0 and (b) for various external field parameters hyy = 0,0.2,0.5 and ¢ =
3 subject to the linear response condition h; — hy; = 0.001. Solid and dashed
lines: Ty, /7n calculated via the matrix continued fraction solution for dipole-dipole
and exchange interactions, respectively; circles and asterisks: (A;7x)~! calculated
via the analytic matrix continued fraction solution for dipole-dipole and exchange
interactions, respectively.
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Notice that 73, and 7 = 1/ increase as the interaction parameter is raised, with
the effect of dipole-dipole interaction again dominating. Furthermore with Ay = 0,
Tint Provides an accurate approximation to the magnetization reversal time 7 = 1/;.
However, as the dc field increases, so that, taking zero exchange coupling described
by a bistable potential as a particular example, the wells of the interaction potential
now become markedly nonequivalent then 7, can decrease with increasing o (see
Figure 8.2b). Thus the (global) 7, may differ exponentially from the reversal time.
This effect was first reported in [122,123] and was qualitatively explained in [124]
for an assembly of noninteracting uniaxial nanomagnets, i.e., for ¢ = 0. In the low
temperature limit, the effect is due to the depletion of the population of the shallower
potential well consequent on the escape of many particles from that well and their
subsequent descent to the deeper well from which it is very difficult for them to
escape due to the high energy barrier. Thus 73, can now deviate considerably from
the reversal time 7 = 1/A; and so is no longer a good approximation to the latter
(see Figure 8.2b).

The role played by interactions in the behaviour of the real x/(w) and imaginary
X" (w) parts of the dynamic susceptibility x(w) is shown in Figure 8.3a. The spectra
X'(w) and x”(w) for dipole-dipole interaction resemble those for exchange interac-
tion. Like noninteracting magnetic dipoles [2,122], two distinct peaks appear in
the spectra of the magnetic loss x”(w). Their characteristic frequencies, i.e., where
X" (w) attains local maxima, are 7~ and wy,, where wy, is the precession frequency of
the magnetic moment in the effective magnetic field near the bottom of the deepest
well. The high-frequency peak is due to the (fast) near-degenerate intrawell modes
which are virtually indistinguishable in the spectrum appearing as a single high
frequency band. For small dc fields, the amplitude of the high-frequency peak is far
weaker than that of the low-frequency one (see Figure 8.3b). However, in a strong
dc field, the high-frequency intrawell modes can ultimately dominate the spectrum
because as hyp increases, the magnitude of the low frequency band decreases and

may even disappear altogether (curves 3).
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Figure 8.3: The real x/(w) and imaginary x”(w) parts of the complex susceptibility
vs. wry (a) for « = 1,0 = 7,hy = 0, and various interaction parameters ¢ =
0.01,1.0, and 3 and (b) for various external field parameters hy;; = 0,0.2,0.5 and
a = 1,0 = 10,¢ = 3. Solid and dashed lines: the analytic matrix continued
fraction solution for dipole-dipole and exchange interactions, respectively (the solid
and dashed lines for ¢ = 0.01 lie on top of each other).
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This is again due to the depletion effect, which may be succinctly described as
follows: in strong fields, at some critical value of hyy, the relaxation switches from
being dominated by the slowest barrier-crossing or reversal mode to being dominated
by the fast intrawell modes. As the low-frequency behaviour of y”(w) is due to
the exponentially slow barrier-crossing relaxation mode, the reversal time 7 can be
evaluated from the characteristic frequency wpax, where x”(w) attains a maximum,

and /or the bandwidth Aw of the spectrum of x”(w) as

T R Whax ~ Aw. (8.1)

Comparison of 7 as extracted from the spectra x”(w) via Eq. (8.1) with 7 = 1/\;
as determined by an entirely independent method, viz. numerical calculation of
the smallest non-vanishing eigenvalue A\; of the system, by solving the secular Eq.
(7.28), demonstrates that both results are identical. In accordance with the previous
figures, this maximum x”(w) exhibits a more pronounced shift to lower frequencies

for dipole-dipole interactions than for exchange ones.
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9. Conclusions

It has been demonstrated how Budd’s generalisation of the microscopic Debye theory
of relaxation to a dielectric composed of complex molecules containing interacting
rotating polar groups can be applied to anomalous diffusion in the presence of a
weak microwave field in the non-inertial limit [19]. This is a good example of the
role played by 2 body interactions in relaxation processes.

A second example is the relaxation of single-domain ferromagnetic particles.
Here the relative effects of dipole-dipole and exchange interaction on the relaxation
process have been considered, albeit in the most simple case where both easy axes
of magnetisation are parallel to each other and also to the direction of the applied
dc field [21]. Moreover the latter is taken as parallel to the reference Z-axis while
the anisotropy is represented by the simplest possible uniaxial potential. This cir-
cumvents some of the considerable mathematical difficulties which are otherwise
encountered. In both cases we commence with the appropriate Langevin equa-
tions and then for polar molecules, write a fractional Smoluchowski equation for the
orientation distribution based on the continuous-time random walk Ansatz. This is
accomplished via the non-inertial Langevin equations for the dynamics of a molecule
consisting of two similar polar groups. These cannot rotate freely relative to one
another owing to their mutual potential energy (causing hindered rotation). The
fractional Smoluchowski equation is then converted to a scalar differential-recurrence
relation for the statistical moments.

Furthermore for single-domain ferromagnetic particles, an exact system of equa-
tions for the statistical moments is derived. This is achieved by directly averaging
(in the manner of Einstein) the Landau-Lifshitz-Gilbert equations with appropriate

changes of variable as suggested by the form of the potential for the motion of the
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magnetisation augmented by a random field due to the heat bath over its realisa-
tions. Hence the calculation of the response is again reduced to solving a system of
linear differential-recurrence relations for the statistical moments (averaged prod-
ucts of spherical harmonics). Once the respective differential-recurrence relations
are obtained, one can then solve them by calculating successive convergents of con-
tinued fractions in the frequency domain for the appropriate relaxation responses.
Furthermore, I have via the Appendices in Chapters 5 and 7 elaborated (in step by
step fashion) on the derivation of all the relevant differential-recurrence relations
from the respective Langevin equations. Moreover, I have shown in detail how they
are solved via matrix continued fractions.

In particular for dielectrics, restriction to the linear response (following Budd)
is enough to describe many dielectric phenomena in a liquid. The main advance
consists in writing the appropriate non-inertial Langevin equations, thereby allow-
ing consideration of two interacting dipole moments including anomalous diffusion.
I have also given in detail the exact complex susceptibility for both normal and
anomalous diffusion, now written as an easily calculated scalar continued fraction
rather than as a sum of Debye or Cole-Cole mechanisms. Furthermore, as observed
in Figures 6.1 and 6.3, the single mode Cole-Cole approximation provides a good
representation of the exact susceptibility. Moreover the corrected Figure 6.2 alias
of Figure 3 of the paper [19] shows this approximation is accurate for all oy of
interest. The continued fraction solution also avoids the Sturm-Liouville problem
encountered by Budoé. As far as comparison with experiment, ample evidence exists
of Cole-Cole like behaviour (as in Figure 6.2) in the low frequency dispersion and
absorption of viscous liquids. See Chapter 5 of [49]. Notice that the version of the
fractional Smoluchowski equation obtained is one where the jump lengths have a
distribution with a finite variance. Also the waiting times are scale-free, with power-
law exponent «. The latter determines the order of the fractional derivative. For
such fractional models the relaxation of modes changes from exponential (o« = 1) to
a Mittag-Leffler function decay, with power-law long-time tail in accordance with
experimental observations in [49]. In the frequency domain this corresponds to the

Cole-Cole equation [2]. For a discussion of alternative models see [125].
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For single-domain ferromagnetic particles, it can be seen that the solution is
subject to considerable symmetry-based restrictions. Therefore, it can be reason-
ably argued that such a model cannot provide a reliable description of the many
spin relaxation problem. Nevertheless, even that drastically simplified configuration
exemplifies the relative roles of dipole-dipole and exchange interactions. The main
conclusion is that including them causes a marked increase in the reversal time.
As we noted the particular case of parallel easy axes (also parallel to the direction
of the applied dc field) is analysed merely to simplify the calculations. Then the
dipole-dipole interaction between the particles increases the effective energy barrier
for the magnetisation reversal leading to the results described above. However due
to the anisotropic nature of that interaction one may expect completely different
behaviour if the external magnetic field makes an arbitrary angle with respect to
the line connecting the particle centres. This conclusion may be justified along the
following lines. In linear response the reversal time is effectively the correlation
time, i.e., a global feature of the response indicating that additional high frequency
modes (due to exchange and dipole interactions over and above those appearing
without such interactions) now contribute to the magnetisation decay. This con-
clusion is analytically supported by that of Zwanzig [17] (based on a lattice model)
that dipole-dipole interactions give rise to a discrete set of relaxation times. For ex-
ample, in his model [17] permanent point electric dipoles of moment p are located
at the sites of a rigid cubic lattice. Consequently, one finds from his Eq. (6) for
the complex susceptibility at high temperatures that (in his notation) the integral

relaxation time is given by

in 4 162 5} 3
Tt%1+—7rpa+{ 7T+<— >R](pa)2

T 3 9 6 12872
6471'3 687T ]_ 3 4
[ 5 ( T 247r> R] (pa)” + O(par)”. (9.1)

Here p is the number of dipoles per unit volume of the lattice, R is a certain
lattice sum which is about 16.8 for a simple cubic lattice a = p?/(3kT) and 7
is the relaxation time associated with the rotational Brownian motion of a non-

interacting dipole (Debye 15" model). Although the Néel (overbarrier) mechanism is
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blocked, the value of this expression in the magnetic relaxation context is that it
may be directly applied to dipole-dipole coupling effects by simply replacing electric
quantities by the corresponding magnetic ones. This obviously cannot be done if
the Néel mechanism is active because then the dipole-dipole coupling will affect the
overbarrier process. Similar conclusions were drawn by Déjardin [126] via Berne’s
theory of interacting electric dipoles [127] adapted to spins. A reference made by
Zwanzig [17] to unpublished calculations of J.I. Lauritzen, where the elementary
process is the flip of a single dipole and all other dipole interactions are ignored,
save electrostatic ones, is highly relevant to this case.

The theory presented may serve as a basis for future development. For the Budé
model utilised for polar dielectrics, future researchers may seek to extend it to in-
clude inertial effects for both normal and anomalous diffusion via the Fokker-Planck
equation in the phase space of configurations and momenta. In other words the rota-
tional Klein-Kramers equation obtained from the inertial Langevin equations rather
than the non-inertial ones which suffice for the low frequencies considered here. Such
a procedure allows one to consider high-frequency effects such as the resonant (or
Poley) absorption [2] in the far infrared due to the inertia of the molecules. This
absorption could then be ascribed to hindered rotation combined with inertia giving
rise to small oscillations of the groups relative to each other.

For single-domain ferromagnetic particles, it should be reiterated that through-
out the calculations the two-spin problem is treated where the two easy axes are
both parallel to each other and to the applied field. The general situation of an ar-
bitrary angle between the easy axes (when the symmetry is broken) can be treated
in like manner, however with much more difficulty because of the extra index in
the governing recurrence relations. Nevertheless, even the simplified solution will
provide a useful benchmark with which the more general solution must agree in the
appropriate limit. Thus the calculations outlined can serve as a precursor to analysis
of the high temperature dipole lattice including the anisotropy-Zeeman energy.

Notice that only a bare outline of the many involved calculations in both the

dielectric and magnetic cases has been given in the two published papers:

(a)  Generalization to anomalous diffusion of Budd’s treatment of polar molecules
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containing interacting rotating groups by Serguey V. Titov, William T.
Coffey, Marios Zarifakis, Yuri P. Kalmykov, Mohammad H. Al Bayyari,
and William J. Dowling, published by ”The Journal Of Chemical Physics”
(Volume 153, Issue 4, Page 044128) in 2020.

Dipole-dipole and exchange interaction effects on the magnetization re-
laxation of two macrospins: Compared by Yuri P. Kalmykov, Serguey V.
Titov, Declan J. Byrne, William T. Coffey, Marios Zarifakis, and Moham-
mad H. Al Bayyari, published by the ” Journal of Magnetism and Magnetic
Materials” (Volume 507, Page 166814) in 2020.

Thus our main objective of providing an archived record of the calculations has been

achieved.
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10. Future Perspectives:
Outstanding two Body Problems:
Combined Rotational Diffusion of
a Superparamagnetic Particle and
Its Magnetic Moment: Solution of
the Kinetic Equation - Brief
Summary of the work of 1.S.

Poperechny

As previously discussed Brown has made crucial contributions to the formulation of
a statistical approach which explicitly accounts for the thermal fluctuations of the
magnetic moment in the analysis of the magnetic response of superparamagnets.
We saw that he introduced using the general ideas of Brownian motion theory, the
concept of a random magnetic field, simulating thermal fluctuations, and wrote down
stochastic Langevin equations for the magneto-dynamics of an isolated mechanically
fized nanosized particle. Upon doing so, Brown then (under the assumption that
the stochastic field has the statistical properties of white noise) obtained a kinetic
equation in the form of the Fokker-Planck equation for the distribution functions

of orientations of the particle’s magnetic moment. Thus he obtained an asymptotic
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expression for the greatest relaxation time for the particular simple case where the
applied field is coincident with the easy axis of magnetisation of the single domain
ferromagnetic nanoparticles. However in a ferrofluid which is a colloidal suspension
of single domain particles (i.e., they are in a liquid matrix) the particles undergo a
rotational Brownian motion under the influence of random torques imposed by the
molecules of the surrounding media. Thus even if we don’t take into consideration
the dipole-dipole interaction of the particles, the kinetics of the magnetic moments
of all the dispersed particles do not obey the Brown Fokker-Planck equation for
immobilised particles and therefore need to be generalised.

The answer to this question was partly provided by Stepanov and Shliomis
[128,129], who obtained an equation for the joint distribution function of the orien-
tations of the anisotropy axis and magnetic moment of the particle and have found
solutions to said equation in certain limited cases. Stepanov and Shliomis called
their theory the “egg model”, where the internal magnetisation dynamics coupled
to the Brownian rotation of a magnetic nanoparticle is analogous to an egg, with
the magnetic moment represented by the yolk and the mechanical rotational motion
of the particle body represented by the shell. However, integration of the equation
for arbitrary values of parameters is difficult due to the high dimensionality (4 polar
angles are involved) of the configuration space. This equation was later derived by
others [130,131], who followed the general procedure of deriving the Fokker-Planck
equation from the Langevin ones.

Essentially the Langevin simulation (Langevin dynamics) method sidesteps the
complexity of the kinetic equation in the description of magneto-dynamics subjected
to thermal noise. In this method, a direct numerical integration of the equations of
the rotational dynamics of the particles body and its magnetic moment in the pres-
ence of random torques and fields [132-135] is performed. The main advantage of
this is that it uses a well-developed computational procedure (e.g. [136]). However,
severe limitations to this procedure exist:

1. There is a requirement for multiple repetitions of simulations in order to

obtain a time sweep of the average (observed) magnetisation, which involves

considerable computational costs, especially in the analysis of low frequency
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and/or high temperature processes.
2. The Langevin dynamics method precludes the closed form calculation and
analysis of the dependence of the relaxation spectrum of a system on the

applied magnetic field.

We now summarise Poperechny’s theory of rotation diffusion of a uniaxial super-
paramagnetic particle, suspended in a fluid [137]. A kinetic equation for the joint
distribution function of orientations of anisotropy axis and magnetic moment of
the particle is analysed and a consistent method of its solution is described. The
approach introduces a kinetic operator that generates the time evolution of the dis-
tribution function, and using quantum-mechanical formalism. In particular, aspects
of representation theory and the addition of angular momenta. The matrix of the
kinetic operator is specified to have a sparse, close to diagonal form. The evolution
equation takes the form of a linear differential-recurrence relation for statistical mo-
ments of the distribution function. Numerical integration can then be performed via
the standard methods, giving the average (observed) magnetisation of the system for
any instant of time. It is assumed in the proposed methodology that the frequency
of an applied magnetic field is well below the ferromagnetic resonance range, which
does not impose any other restrictions on the field amplitude, material parameters
of the particle, viscosity of the fluid or temperature. This paper can serve as the
theoretical basis for a consistent description of the relaxation spectrum, dynamic
magnetic susceptibility and non-linear magnetic response of a dilute magnetic fluid
while considering the interplay between mechanical and magnetic degrees of freedom
of suspended nanoparticles. It can also provide for cross-checking of approximate
models.

The kinetic equation obtained has the general form (which at first glance seems
irreconcilable with the earlier treatment of a frozen or immobilised particle grain by

Brown, we shall show however that this is not the case)

%—Vf + (Jn +3e) (W) 261% (Jn +je> W <3n +3e) (% —I—an)
%je WQe (% +an> . (10.1)
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Here W is the joint distribution function W (e, n,t) of the orientation of the mag-
netic moment of the particle and its anisotropy axis, e = p/u is the magnetic

moment unit vector (p is the magnetic moment) directed along the direction of the

9
on

and J, = e x Z are infinitesimal

casy axis n fixed inside the particle, J, = n x B

rotation operators, a is the phenomenological precession damping parameter, v is
the gyromagnetic ratio for electrons, n is the fluid viscosity, T is the temperature,
2 is the local angular velocity of rotation of the liquid, Qe =Jo + i%, U is the
orientation-dependent part of the magnetic energy of the particle in an external

magnetic field H viz.,
U=-KV(e-n)’—puH(e-h). (10.2)

This consists of the anisotropy energy (first term) and the Zeeman energy (second
term). Here K is the particle (uniaxial) anisotropy constant, V" is the particle volume
and h is the unit vector along the direction of the applied field. This kinetic equation
of the particle is identical to that written by Stepanov and Shliomis [134, 135].
Furthermore Poperechny assumed that there is no external flow (i.e., the fluid in
which the particle is suspended is at rest), meaning that in Eq. (10.1), € = 0. The

resulting evolution equation is then

a—‘f = KW, (10.3)

where K is the kinetic operator given by

Rw =L (jn+Je> W (jn+3e> (%Hnw) +$L-Wie (% —|—an> ,
(10.4)

where
3nV (14+a?)p
=" andrp=——2", 10.5
B T ane 7o 2a~T ( )
Note that if the frequency of the applied field is far below the Ferromagnetic res-
onance region ( 1GHz), then we can neglect the role of gyration in the magnetic

response of the system and consider only the relaxation processes. This is done

formally through excluding the precessional term in the operator Q. via making
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the damping constant @ — oo in the operator Qe, leading to Qe transforming to

the operator Je.

10.1 Comparison with our notation accompany-
ing notes on I.S. Poperechny Journal of Molec-

ular Liquids, 2019

We first consider Eq. (1.17.12) of [2], which pertains to a frozen Brownian mechanism

ow N[ 9 ) 9 )

where A is the angular part of the Laplacian

19 ) 1
A=— 2 (sinol )4 — L 10.
sind 90 (Sm’?aﬂ)  SnZg 0 (10.7)

the operator d/0u means the gradient operator on the surface of the unit sphere
(1,7, )

OOt ﬁ%e (10.8)
W (9, p,t)dQ2 is the probability that M has orientation (¢, ) within solid angle
dQY = sinvdddp, ¥ € [0, 7], ¢ € [0,27] and
kTR 1

v 2N

o UMs(l + a2)
- 2%kTHo

K (10.9)

We are considering a statistical ensemble of superparamagnetic particles. In terms

of v Eq. (10.6) reads as

ow 1 1 '<8vV aW) La ( 0 vV

oW 1w g 9 4 (wli 10.10
ot 27N + QaTNu dukT ~ ou 27n Ou ou kT ) | )
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In analysing Eq. (10.10) and comparing it with equation Eq. (33) of [137] for an

immobilized particle (pure Néel relaxation)

ow 1 . s [V
=3, WI, (= +IW
9t 2y (kT_kn )
1 (a4 . sV
=—(J? J, - WI,— 10.11
(3w wi) (10.11)
1 /s LV LV
=— [ J? JF— I W-J —
an(em/+vvekT*'eM/ ekT)’
where
V =-KV (e n)’) — uH (e-h), (10.12)
and
e=u/u. (10.13)

We need to show that Eqs. (10.6) and (10.11) are identical.

It is important that we establish the exact definition of the various operators.

Here
A 0
J. = —, 10.14
e X 90 ( )
A 0
— —_ 10.1
J, =n x B (10.15)

are infinitesimal rotation operators for e and n. Note that in Eq. (10.8) we also
have used the infinitesimal rotation operator. Recall that rotational operators are
very useful because such operators are merely the angular momentum operators of
quantum mechanics ([34], page 137). The classical angular momentum of a particle
is

L=rxp. (10.16)

In quantum mechanics the orbital angular momentum may be defined in the coor-

dinate representation as the dimensionless operator

L=—i(rxV), (10.17)
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where V is the vector differential operator with the cartesian components in the

laboratory coordinate system

.0 .0 3

Clearly, the rotation operators used in [137] are just particular form of the angu-
lar momentum operator of quantum mechanics (specifically J = —iL). This fact

considerably eases subsequent calculations because we can make use of the relations

LY =I(1 + 1)Ym, (10.19)

L.Y,, =mYi., (10.20)

and so on. Ultimately we are going to expand W in spherical harmonics Y}, so we
have to rearrange the Eq. (10.11) into a form so that only simple products of Yy,
which may be expanded in Clebsch-Gordan series, are involved. We have (via the

Lemma proved)

Vo 1 ay(V V., ,V
iw. JekT =3 {Je (WkT> kTJeW WJekT} (10.21)

Hence we have from Eq. (10.11)

1 1 (4
oW (J2W + Wizl + = {J§ (W1> L L })

Ot 2y kT 2 kT kT ¢ kT
1 Vo1 vV 1V 4
=— (J? j R S, A . 10.22
QTN( W W “%T 2 (Wk:T) 2K eW) (1022)

This is Eq. (35) of [137], cf. Eq. (10.11) above which only involves the squared

operator JZ.

Lemma

2Vu -Vf=A(vf) —vAf — fAv, (10.23)

where

A=V =-L*=7J% (10.24)
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Proof

A(vf) =V - (vVf+ fVo)
=Vu-Vf+vAf+Vu-Vf+ fAv
=vAf+2Vv-Vf+ fAv. (10.25)
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