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Summary 

Age-related cognitive decline is an increasingly important societal issue, given projected 

increases in the proportion of older adults in the coming decades. Early identification of 

cognitive decline will enable earlier interventions which have a greater likelihood of 

slowing decline, maintaining quality of life, and reducing the burden on caregivers and 

society. The application of machine learning to neuroimaging data is a promising 

strategy to detect age-related cognitive decline. However, there has been little emphasis 

on the development of measures of two related, yet separable, constructs – brain 

maintenance and cognitive reserve – both of which support cognitive function as we age. 

Accurate measurement of these two constructs may improve our ability to detect age-

related cognitive decline.  

Chapter 2 applied a machine learning method to structural MRI data in order to 

predict chronological age. Brain-predicted age difference scores were then created by 

subtracting chronological ages from the predicted age. A penalised regression with 

cross-validation was applied to generate the model using open-access structural MRI 

data. This model was then applied to structural MRI data in three independent datasets. 

Across these independent datasets, brain-predicted age differences were negatively 

correlated with measures of general cognitive status; semantic verbal fluency; executive 

function; and executive function (without processing speed). These results provided firm 

evidence of a robust relationship between increased brain-predicted age differences and 

reduced cognitive function in specific domains. As such, the findings established the 

validity of brain-predicted age difference scores as an operational measure of brain 

maintenance.  

Chapter 3 applied a data-driven framework in order to establish the validity of 

different socio-behavioural variables as ‘proxy’ measures of cognitive reserve in a cross-

sectional study of cognitively healthy older adults. To demonstrate face validity as a 

measure of cognitive reserve, candidate neuroimaging measures must be shown to 

correlate with a socio-behavioural proxy. Furthermore, socio-behavioural proxies are the 

most commonly used measures of cognitive reserve. However, there is little empirical 

evidence demonstrating the validity, and guiding the choice, of proxy variables as 

measures of cognitive reserve. The validity of five common proxies and all possible 

combinations of their composites were assessed across two community-dwelling older 

adult cohorts. Verbal intelligence was found to be the most robust socio-behavioural 

proxy measure of cognitive reserve.  
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Chapter 4 applied a novel machine learning method, connectome-based 

predictive modelling, to functional connectivity data in order to develop and validate an 

objective measure of cognitive reserve. This measure was developed using task-based 

functional connectivity data from one dataset and then applied to resting-state fMRI data 

from an independent dataset. Face validity of the measure was assessed by establishing 

its association with the most robust socio-behavioural proxy measure of CR, verbal 

intelligence, as identified in Chapter 3. The protective effects of the measure was 

assessed by establishing its association with cognitive function, independent of brain 

structure. The measure accurately predicted CR in the training set and was validated as 

a measure of CR as it demonstrated face validity and protective effects on cognition. 

However, the measure was not validated in the independent dataset when generated 

using resting-state data. 

Overall, the findings demonstrate the value of machine learning for the 

development of robust and objective measures of brain maintenance and cognitive 

reserve using neuroimaging data. Chapter 2 established that brain-predicted age 

difference scores can serve as a valid measure of brain maintenance across cohorts, 

and may prove to be useful biomarkers of cognitive ageing. Chapter 3 identified verbal 

intelligence as the most robust socio-behavioural proxy of cognitive reserve and 

therefore recommended that researchers should use this variable when assessing the 

face validity of potential cognitive reserve neuroimaging measures. Chapter 4 developed 

a functional neuroimaging measure of cognitive reserve based on task-based fMRI data 

but further research is needed to validate this measure using resting-state data. Further 

innovations to the models outlined in Chapters 2 and 4 may provide important insights 

into the development and enhancement of brain maintenance and cognitive reserve and 

will further improve our understanding of these constructs. These validated measures of 

brain maintenance and cognitive reserve could be used to improve the early 

identification of cognitive decline and to directly assess the efficacy of preventative 

interventions targeted at the enhancement of brain maintenance and/or cognitive 

reserve. 
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1 Chapter 1: General Introduction 

1.1 Cognitive decline and the variability in cognitive decline 
Dementia is a clinical syndrome characterised by a progressive decline in cognitive 

functioning, behavioural changes, and functional impairment that ultimately causes a loss 

of independence (Goyal et al., 2018; Van Der Flier & Scheltens, 2005). Dementia is 

associated with reduced quality of life (Goyal et al., 2018) and neuropsychiatric symptoms, 

such as anxiety (Seignourel et al., 2008) and depression (Enache et al., 2011). Dementia 

also places a huge burden on caregivers, who tend to experience poorer physical and 

mental health (Richardson et al., 2013; Sallim et al., 2015), and on society as a whole 

(Jutkowitz et al., 2017).  

Globally, 43.8 million individuals were estimated to be living with dementia in 2016, 

an increase of 117% from the estimate of 20.2 million in 1990 (Nichols et al., 2019). This 

rate of increase is likely to continue as age is the most important risk factor for dementia 

(Van Der Flier & Scheltens, 2005) and the proportion of the population over the age of 60 is 

projected to rapidly increase in the coming decades (Bloom et al., 2015). The projected 

growth in the number of cases and associated increasing burden on caregivers and society 

means there is an urgent need to cure and/or prevent dementia. It also emphasises the 

need to slow or reduce the cognitive decline associated with dementia in order to maintain 

the quality of life and independence of adults living with dementia.  

To-date, there is no effective disease-modifying cure or treatment for dementia 

(Gauthier et al., 2016). Compounding this problem, there are a low number of 

pharmacological treatments in development, especially when compared to other disorders 

(Gauthier et al., 2016). Given the general failure of, and pessimistic outlook for, 

pharmacological interventions (Cummings et al., 2014), there has been a growing 

importance placed on research into the prevention of dementia (Livingston et al., 2020; 

Solomon et al., 2014). Broadly, preventative strategies focus on either avoiding dementia-

related neuropathology or identifying cognitive decline as early as possible and slowing its 

progression (Hodes et al., 2019). To achieve these goals, preventative interventions target 

various modifiable lifestyle risk factors (Kivipelto et al., 2018). However, effective prevention 

requires identification of individuals with dementia at a very early stage of the disease time 

course, before neurodegeneration results in the emergence of symptoms, i.e., cognitive 

decline (McDade et al., 2020). Early identification is also critical to enable treatment at the 

earliest stage possible, in order to maximise the effect of any interventions (Mortimer et al., 

2005). 
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 The identification of individuals at risk for dementia and indeed the design and 

evaluation of interventions is complicated by the considerable variability in cognitive decline 

across individuals (R. S. Wilson et al., 2002). This variation cannot be fully attributed to 

neuropathology (Boyle et al., 2013) or brain structure (Hedden et al., 2014). This 

phenomenon was famously described by Katzman et al. (1988) who reported that ten 

individuals, with normal levels of cognitive function, possessed the neuropathological 

features of Alzheimer’s disease (AD), when their brains were examined post-mortem. 

Further post-mortem studies have confirmed these findings (Bennett, Schneider, 

Arvanitakis, et al., 2006) and it is widely accepted that cognitive function is not completely 

dependent on brain structural health (Nilsson & Lövdén, 2018; Stern, 2002). 

The lack of a one-to-one relationship between cognitive function and brain structure, 

means that screening tools using cognitive assessments may not correctly identify 

individuals with the underlying pathologies or structural damage at an early stage (Mortimer 

et al., 2005). Conversely, solely measuring brain structure or pathology may mistakenly 

identify individuals with normal cognitive function but underlying neuropathology, like those 

described by Katzman et al. (1988), as being at significant risk of cognitive impairment. 

Targeting interventions at such individuals could be an ineffective use of resources and 

could needlessly expose these individuals to potential side effects of pharmacological 

therapeutics (De Jager, 2005). The variability in this relationship further complicates the 

design of intervention efficacy because interventions targeted at modifying brain structure 

or pathology might not translate to effects on cognition. Similarly, the unexplained variability 

in this relationship can obscure the perceived efficacy of an intervention (Liyanage et al., 

2018). 

1.2 Sources of variability in cognitive decline 
Three main constructs have been described that may account for the variability in 

cognitive decline that is not attributable to brain ageing or pathology. The first construct, 

brain reserve (BR), describes the neurobiological capital of the brain (Stern et al., 2020). 

Brain reserve can be conceptualised as the ‘hardware’, as it solely refers to the structural 

properties of the brain (Medaglia et al., 2017). Indicators of brain reserve include brain 

volume, dendritic branching, number of neurons, and number of synapses (Stern, 2009; 

Stern et al., 2020). Individuals are held to have a specific critical threshold, and once BR is 

depleted below that threshold, cognitive deficits emerge (Stern et al., 2020). Accordingly, 

individuals with greater BR are able to tolerate greater amounts of brain ageing or pathology, 

before suffering cognitive impairment. For example, an individual with a large brain reserve 

capacity might endure a certain level of brain injury or pathology but once this does not 

deplete their brain reserve capacity beyond the critical threshold, they would not sustain any 
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cognitive impairments. In contrast, an individual with a smaller brain reserve capacity might 

endure the same level of brain injury or pathology, which would deplete their brain reserve 

capacity beyond the threshold. Consequently, this individual would suffer cognitive 

impairments. As no processes are invoked in response to brain injury or pathology, BR has 

been described as a passive model of reserve (Stern, 2002, 2012).  

The second reserve construct, brain maintenance (BM), reflects the reduced 

development over time of brain ageing and pathology as a result of genetic and lifestyle 

factors (Stern et al., 2020). Essentially, BM holds that variability in the development of age-

related brain changes or pathology can explain variability in cognitive ageing (Nilsson & 

Lövdén, 2018). Individuals with greater BM have less age-related brain changes which 

preserves the integrity of the brain and therefore have reduced cognitive decline (Nilsson & 

Lövdén, 2018). BM is a modifiable construct and may be influenced by genetics, as well as 

life experiences and lifestyle factors (Nyberg et al., 2012). For example, increased BM has 

been associated with greater amounts of physical activity (Steffener et al., 2016) and more 

years of education (Gazzina et al., 2019; Steffener et al., 2016 but cf. Mungas et al., 2018; 

Zahodne et al., 2019). While BM and BR are related, there are important distinctions 

between the constructs (Stern et al., 2020). First, BM refers to the maintenance, or structural 

preservation, of the brain over time whereas BR refers to the status, or neurobiological 

capital, of the brain at a single point in time (Habeck et al., 2017; Stern et al., 2020). Second, 

BM protects against the accumulation of age-related brain changes or pathology whereas 

BR protects against the impact of age-related brain changes or pathology (Stern et al., 

2020). Greater BM may support higher BR (Stern et al., 2020). 

The third reserve construct, cognitive reserve (CR), is defined as the adaptability of 

cognitive or functional brain processes that explain individual differences in cognition in 

response to brain ageing or pathology (Stern et al., 2020). Individuals with more adaptable 

cognitive and functional brain processes are believed to be better able to cope with brain 

ageing or pathology and maintain normal cognitive function (Stern et al., 2020). As these 

processes may be invoked in response to brain ageing or pathology, CR has been described 

as an active model, in contrast to the passive model of BR (Stern, 2002). Moreover, whereas 

BR is concerned with the structural properties of the brain and is thus considered the 

“hardware” of reserve, CR is concerned with the processes and therefore can be thought of 

as the “software” of reserve (Medaglia et al., 2017; Stern, 2002). Like BM, CR is a modifiable 

construct that is thought to be influenced by genetics as well as life experiences (Stern et 

al., 2020), such as educational attainment (Malek-Ahmadi et al., 2017) or occupational 

complexity (Boots et al., 2015). Although similar factors may influence both BM and CR, 

they have been shown to be separable, or orthogonal, constructs (Habeck et al., 2017). 
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 CR may be implemented via different mechanisms, including neural reserve, neural 

compensation, and generic CR networks (Steffener & Stern, 2012). Neural reserve holds 

that greater efficiency or capacity of neural networks enables successful cognitive 

performance in the face of age-related brain changes or pathology (Steffener & Stern, 2012). 

Neural compensation holds that greater ability to recruit alternative neural networks to 

perform a task, when the primary neural network for that task is disrupted, enables 

successful cognitive performance in the face of age-related brain changes or pathology 

(Steffener & Stern, 2012). Evidence for neural reserve and neural compensation has been 

reported from functional magnetic resonance imaging (fMRI) studies which compare the 

relationship of CR-related activation patterns in young vs older adults or in groups of 

cognitively healthy adults vs adults with mild cognitive impairment (MCI) or AD (Anthony & 

Lin, 2017; Steffener et al., 2011). These studies have revealed that activation within medial 

temporal lobe regions and suppression of activity within the default mode network (DMN) 

may underlie neural reserve (Anthony & Lin, 2017) whereas increased activation of frontal 

lobe regions may underlie neural compensation (Anthony & Lin, 2017).  

CR may also be implemented via a generic CR neural network that is unrelated to 

specific task demands but is actively involved in many different cognitive processes 

(Steffener & Stern, 2012; van Loenhoud et al., 2020). Individuals with greater ability to 

express this generic, or task-invariant, network are better able to maintain cognitive 

performance across multiple tasks despite age-related brain changes or pathology (Stern et 

al., 2018). Studies assessing generic CR networks aim to identify CR-related patterns of 

activation or connectivity that are expressed across different cognitive tasks. Such studies 

have supported this implementation of CR as greater expression of generic networks active 

across multiple cognitive tasks has been associated with better fluid reasoning and episodic 

memory, beyond the effects of brain structure, as measured by mean cortical thickness 

(Stern et al., 2018; van Loenhoud et al., 2020).  

The accurate measurement of these three constructs is important from a theoretical 

and research perspective in order to account for the variability in cognitive decline and 

therefore better understand individual differences in cognitive ageing. From a clinical 

perspective, the accurate measurement of these constructs is crucial in order to improve the 

early detection or prediction of cognitive decline, particularly in cognitively healthy adults. 

Individuals at risk for severe cognitive decline and/or dementia could be identified despite 

still displaying normal cognition if they were found to have lower BR, BM, or CR. This would 

enable effective secondary preventative strategies to be targeted at these individuals 

(McDade et al., 2020). Moreover, as research suggests that BM and CR, in particular, are 

modifiable and can be influenced by life experiences and lifestyle, accurately measuring 
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these constructs is necessary to identify their life experience and lifestyle determinants. This 

would improve the design of interventions aimed at increasing levels of BM and CR in order 

to prevent or slow cognitive decline. Finally, accurate measurement of BM and CR would 

further enable the efficacy of such interventions to be more precisely evaluated in terms of 

their effects on BM and CR.  

Of the three constructs, BR is the most easily measured as it requires a single 

variable that reflects the structural capacity of the brain. For instance, in the famous example 

described by Katzman et al. (1988), the individuals who possessed the neuropathological 

characteristics of AD, but maintained cognitive performance, were reported to have 

significantly heavier brains and greater numbers of neurons. As such, brain weight and 

neuronal counts constitute simple post-mortem measures of BR. In-vivo measures of BR 

can also be obtained using neuroimaging measures including total intracranial volume (TIV; 

Groot et al., 2018; van Loenhoud et al., 2018; Vuoksimaa et al., 2013), total or regional grey 

matter (GM) volumes (Laubach et al., 2018), cortical thickness (Neth et al., 2020), or 

measures of white matter (WM) microstructural properties (Stern et al., 2020) such as 

fractional anisotropy of the genu of the corpus callosum (Neth et al., 2020). Other suggested 

in-vivo measures include dendritic spine length and synaptic density or integrity (Stern et 

al., 2020; van Loenhoud et al., 2018).  

The measurement of BM and CR is less straightforward than BR as they cannot be 

assessed solely by a single variable, such as measurements of brain structural health or 

cognitive function (Habeck et al., 2017). Instead, the relationship between these two 

variables must be assessed in order to derive satisfactory measures (Habeck et al., 2017; 

Stern et al., 2020). The following sections of Chapter 1 reviews the measurement of BM and 

CR, focusing on the potential of accurate measurement, the approaches to measurement, 

and the challenges in developing accurate measures. 

1.3 Brain Maintenance 
The accurate measurement of BM has important research and clinical potential. As BM 

may explain some of the variability in cognitive decline, accurate measurement of BM may 

improve the identification of individuals at risk for dementia and indeed the design and 

evaluation of interventions. Early identification of at-risk individuals could be improved by 

identifying individuals based on their levels of BM, instead of focusing on their levels of 

cognitive function, which might not yet have begun to deteriorate. This could enable 

interventions to be targeted towards these individuals before the onset of significant 

cognitive decline.  
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The construct of BM suggests that improving or maintaining the youthfulness or integrity 

of brain structure and function may be a possible strategy for maintaining cognition or 

slowing cognitive decline (Nyberg et al., 2012). Accurate measurement of BM would enable 

researchers to firmly identify factors that are associated with improved BM. These factors 

could then be included in lifestyle interventions targeted at BM in order to prevent or reduce 

cognitive decline. This is important because there have been inconsistent findings relating 

specific factors or life experiences to better brain maintenance. For instance, while some 

studies have suggested that education might contribute to better BM (Gazzina et al., 2019; 

Steffener et al., 2016), this has been contradicted by others (Mungas et al., 2018; Zahodne 

et al., 2019).  

Accurate measurement of BM would also improve the evaluation of lifestyle 

interventions as it would enable more accurate measurement of their efficacy. Typically, 

these interventions are evaluated with respect to their impact on cognitive function (Bhome 

et al., 2018; Whitty et al., 2020). However, if the intervention is targeted at BM, it would be 

useful to include a measure of its impact on the targeted mechanism, in addition to 

measuring the impact on cognition. If a lifestyle intervention was not shown to have any 

impact on cognitive decline as well as BM, then there would be stronger evidence 

suggesting that the intervention is ineffective. This could enable researchers to avoid 

spending excessive amounts of time and resources on ineffective interventions. On the 

other hand, if a lifestyle intervention failed to reduce cognitive decline but improved BM, this 

could suggest that the intervention might have some utility but might require adaptations, 

such as improved dose or duration. This would prevent researchers from unnecessarily 

discounting promising interventions. It could also suggest that the cognitive outcome 

measures may be obscured by practice effects (Elman et al., 2018) or individual-level factors 

such as comprehension levels, reading ability, self-efficacy, motivation, fatigue and 

fluctuations in concentration (McCaffrey & Westervelt, 1995). 

An optimal measure of BM would use longitudinal data, including a measure of age-

related brain change or pathology and a measure of associated cognitive change, to provide 

an index of the relative preservation of brain structure (Stern et al., 2020). However, cross-

sectional data may also be used to measure BM (Cabeza et al., 2018), which is important 

given the costs and difficulty of obtaining sufficient longitudinal neuroimaging and cognitive 

data. Moreover, a cross-sectional measure would enable BM to be measured in individuals 

lacking prior neuroimaging data. An intuitive way of measuring BM with cross-sectional data 

is a ‘residual’ approach where the relative state of an individual’s brain is compared to the 

state expected for that age (Stern et al., 2020). Operationally, this takes the form of a 

residual from a regression of age on measures of brain structure. For this residual to be 



21 
 

considered a valid measure of BM, it would also need to be associated with a measure of 

cognitive function.  

 The general approach to deriving a cross-sectional measure of BM has been applied 

more broadly to develop a potential neuroimaging biomarker of biological ageing. This was 

motivated by the problem that chronological age is not the most accurate marker of an 

individual’s rate of biological ageing (Sprott, 2010), as ageing is a process with significant 

heterogeneity across individuals (McCrory & Kenny, 2018). Consequently, ageing 

biomarkers are required to obtain additional information about an individual’s health status 

and life expectancy (Dean & Morgan, 1988). The general approach to creating neuroimaging 

biomarkers of ageing has been to quantify the relationship between structural MRI data and 

chronological age, using machine learning, in order to estimate an individual’s ‘brain age’. 

Subtracting chronological age from the estimated ‘brain age’ results in a brain predicted-age 

difference score (brainPAD, also referred to as brain age gap, brainAGE, Brain-Age Score; 

Beheshti et al., 2018; Franke et al., 2010; Schnack et al., 2016) which quantifies how a 

person’s brain health differs from what would be expected for their chronological age. Higher 

brainPADs reflect older brains, or accelerated brain ageing, and are associated with earlier 

mortality, weaker grip strength, reduced lung function, slower walking speed, and greater 

allostatic load (Cole et al., 2018). As a result, brainPAD, has been considered a promising 

biomarker of general brain ageing. 

BrainPAD may further serve as a measure of BM as various studies have identified 

associations with cognition. Higher brainPADs have been associated with cognitive 

impairment (Liem et al., 2017), impaired fluid cognitive performance (Cole et al., 2018) and 

have been reported in adults with AD and MCI (Franke & Gaser, 2012; Gaser et al., 2013; 

Löwe et al., 2016). The reported associations with cognitive impairment suggest that 

brainPAD may be a useful measure of BM. However, this relationship between brainPAD 

and cognition could be biased by three factors: the inclusion of clinical samples in studies, 

the failure to statistically control for age when assessing the brainPAD-cognition 

relationship, and the failure to control for multiple comparisons. Consequently, it is unclear 

if the relationship between brainPAD and cognition is reliable in cognitively healthy adults. 

As such, the validity of brainPAD as an operational measure of BM may be limited.  

Studies relating specific cognitive functions and brainPAD have been assessed in 

solely clinical samples (e.g., Cole et al. (2015), traumatic brain injury), or in mixed samples 

of clinical groups and healthy controls (e.g., Beheshti et al. (2018); AD, MCI, and healthy 

controls) and not samples comprised only of healthy adults. As such, the reported 

associations between brainPAD and specific domains of cognitive function in such studies 
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may be skewed towards statistical significance by the inclusion of the clinical samples with 

typically higher brainPADs and lower cognitive function. Consequently, these findings may 

not represent the brainPAD-cognition relationship in cognitively healthy adults. For example, 

Le and colleagues (2018) reported a significant negative correlation between brainPAD and 

response inhibition and selective attention in a sample of individuals comprised of healthy 

controls and patients with mood or anxiety disorders, substance use disorder and/or eating 

disorders. However, significantly increased brainPADs have been reported in mood 

disorders such as major depression (Koutsouleris et al., 2014) and in substance use 

disorders such as alcohol dependence (Guggenmos et al., 2017). As both major depression 

and alcohol dependence are associated with cognitive impairments (Chanraud et al., 2007; 

McIntyre et al., 2013), the significant brainPAD-cognitive function correlations reported 

across samples including such populations could be driven by the inclusion of such clinical 

groups.  

While some studies have reported significant associations between brainPAD and 

cognition in cognitively healthy adults (Cole, Underwood, et al., 2017), the reported 

associations were not assessed after adjusting for age. It has now been empirically 

demonstrated that chronological age must be controlled for when testing relationships 

between brainPAD and cognitive functions (Le et al., 2018; Smith et al., 2019). Failure to 

correct for chronological age can result in false positive findings because some cognitive 

variables are correlated with chronological age – but not brain ageing – and brainPAD is 

typically correlated with chronological age (Le et al., 2018). In light of this recent work, it is 

unclear whether the association between brainPAD and cognition is independent of 

chronological age in cognitively healthy adults. Moreover, researchers testing the brainPAD-

cognition relationship have tended to carry out multiple statistical tests of the correlation 

between brainPAD and various cognitive measures. The performance of multiple statistical 

tests can increase the Type I error and result in false positive findings (Ranganathan et al., 

2016). However, some previous studies did not control for multiple comparisons when 

investigating the brainPAD-cognition relationship (Beheshti et al., 2018; Cole, Underwood, 

et al., 2017; Gaser et al., 2013). 

Although some studies have investigated the relationship between brainPAD and 

cognition in cognitively healthy adults, while controlling for chronological age and multiple 

comparisons, there are conflicting results for most cognitive domains. For example, a 

significant correlation between verbal fluency and brainPAD was reported by Franke and 

colleagues (2013) whereas Richard and colleagues (2018) found no association between 

verbal fluency and brainPAD. The brainPAD-cognition findings are summarised in Table 

1.1. In sum, the relationship between brainPAD and cognitive function in cognitively healthy 
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adults is currently unclear due to a lack of studies that have tested this relationship, adjusting 

for age and controlling for multiple comparisons, in non-clinical samples. Furthermore, the 

few studies adjusting for age and correcting for multiple comparisons in cognitively healthy 

adults, have reported conflicting evidence for associations between brainPAD and specific 

cognitive domains (Franke et al., 2013; Richard et al., 2018). Consequently, while brainPAD 

is a potentially useful and intuitive measure of BM, its relationship with cognitive function is 

not entirely clear and therefore its validity as a measure of BM is unsatisfactory. 
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Table 1.1 Summary of findings on the relationship between brainPAD and cognitive function. 

Cognitive Domain Measure Reference Sample  n Sig.  Sig. 
in 
HCs 

Age 
adj.  

MC 
corr. 

General Cognitive 
Status 

MOCA (Richard et al., 2018) HC  265 ✘ ✘ ✔ ✔ 

MMSE (Kaufmann et al., 2019) MCI; DEM 921; 707 ✔ ✘ ✔ ✔ 

MMSE (Gaser et al., 2013) 
 

MCI 195 ✘ ✘ ✘ ✘ 

CDR ✔ ✘ ✘ ✘ 

ADAS ✔ ✘ ✘ ✘ 

MMSE (Löwe et al., 2016) APOE; Non 
APOE 

219; 186 ✔ ✘ ✘ ?1 

CDR APOE; Non 
APOE 

219; 186 ✔ ✘ ✘ ?1 

ADAS APOE; Non 
APOE 

219; 186 ✔ ✘ ✘ ?1 

MMSE (Beheshti et al., 2018) AD; pMCI; 
sMCI; HC 

147; 
112; 
102; 146 

✔ ✘ ✘ ✔2 

CDR ✔ ✘ ✘ ✔2 

ADAS ✔ ✘ ✘ ✔2 

Composite measure3 (Cole, Underwood, et al., 
2017) 

HIVp; HC 161; 102 ✔ ✔ ✘4 ✔2 

Verbal Fluency Composite measure5  (Cole, Underwood, et al., 
2017) 

HIVp; HC 161; 102 ✘ ✔ ✘4  ✘ 

Composite measure6 (Richard et al., 2018) HC 265 ✘ ✘ ✔ ✔ 

Semantic (Category Fluency Test) (Franke et al., 2013) DM2; HC 98; 87 ✔ ✔ ✔ ✔ 

Phonemic (Letter Fluency Test) (Cole et al., 2015) TBI 89 ✔ ✘ ✔ ✔ 

Processing Speed Composite measure7 (Cole, Underwood, et al., 
2017) 

HIVp; HC 161; 102 ✔ ✔ ✘4 ✘ 

Composite measure8 (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔ 

TMT-A (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔ 

                                                
1 Inconclusive information on multiple comparison correction as corrections were not specifically outlined in relation to brainPAD-cognition tests but were used elsewhere in paper.  
2 Finding not corrected for multiple comparison but likely would have survived Bonferroni correction so not affected by lack of correction. 
3 Average of average standardised t-scores (adjusted for age, sex, education) across domains of verbal fluency, processing speed, executive function, memory, attention, and motor function 
4 T-scores controlled for effect of age on cognitive scores, but relationship between brainPAD and age was not controlled for, so not fully adjusted for age.  
5 Average of standardised t-scores (adjusted for age, sex, education) from Category Fluency and Letter Fluency tests 
6 Cluster measure combining Phonological Flow and Semantic Flow measures from CABPad (Willer, Pedersen, Forchhammer, & Christensen, 2016) 
7 Average of standardised t-scores (adjusted for age, sex, education) from TMT-A, WAIS-III Digit Symbol and Symbol Search, and Stroop Colour-Word Test 
8 Cluster measure combining processing speed parameters based on the Theory of Visual Attention obtained from test battery using CABPad 
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CRT  TBI 66 ✔ ✘ ✔ ✔ 

Executive Function Composite measure9 (Cole, Underwood, et al., 
2017) 

HIVp; HC 161; 102 ✔ ✔ ✘4 ✘ 

TMT-B (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔ 

Executive Function 
(without Processing 
Speed) 

TMT-B minus TMT-A (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔ 

Response Inhibition 
and Selective 
Attention 

D-KEFS CWIT Composite measure 10 (Richard et al., 2018) HC 265 ✘ ✘ ✔ ✔ 

D-KEFS CWIT (Inhibition vs Color Naming – 
scaled) 

(Le et al., 2018) HC, 
MOOD/ANX, 
SUD, ED 

489 
 

✘ ✘ ✔ ✔ 

D-KEFS CWIT (Inhibition/Switching) (Cole et al., 2015) TBI 89 ✔ ✘ ✔ ✔ 

D-KEFS CWIT (Inhibition/Switching minus 
Baseline Stroop performance) 

TBI 89 ✘ ✘ ✔ ✔ 

Sustained Attention Composite measure9 (Cole, Underwood, et al., 
2017) 

HIVp; HC 161; 102 ✘ ✔ ✘2 ✘ 

Verbal Episodic 
Memory 

Composite measure11 (General) (Cole, Underwood, et al., 
2017) 

HIVp; HC 161; 102 ✔ ✔ ✘2 ✘ 

CVLT Immediate Recall, CVLT Delayed 
Recall, CVLT Learning 1-5, (all tested 
separately) 

(Richard et al., 2018) HC 265 ✘ ✘ ✔ ✔ 

People Test (Immediate) (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔ 

Working Memory Composite measure12 (Richard et al., 2018) HC 265 ✘ ✘ ✔ ✔ 

Blocked Verbal N-back Task (Scheller et al., 2018) HC 34 ✘ ✔ ✘ n/a13 

Motor Function Composite measure14 (Cole, Underwood, et al., 
2017) 

HIVp; HC 161; 102 ✘ ✔ ✘2 ✘ 

Intelligence WASI Similarities (Abstract verbal 
reasoning) 

(Cole et al., 2015) TBI 90 ✘ ✘ ✔ ✔ 

WASI Matrix Reasoning (Non-verbal 
reasoning) 

TBI 88 ✘ ✘ ✔ ✔ 

Composite measure15 (Fluid-type 
intelligence) 

(Cole et al., 2018) HC 669 ✔ ✔ ✔ ✘ 

                                                
9 Average of standardised t-scores (adjusted for age, sex, education) from TMT-B and WCST (Number of total errors, perseverative errors and responses) 
10 Cluster measure combining scores from the Colour-Naming, Reading, Inhibition, and Inhibition/Switching trails of the D-KEFS CWIT 
11 Average of standardised t-scores (adjusted for age, sex, education) from Rey Auditory Verbal Learning test and WMS-IV Visual Reproduction  
12 Cluster measure combining measures from working memory test of CABPad 
13 Only one test of brainPAD-cognition relationship conducted so multiple comparison correction not necessary 
14 Average of standardised t-scores (adjusted for age, sex, education) from Grooved Pegboard and Finger Tapping tasks 
15 Index derived from a principal components analysis of WASI-III Letter-number sequencing, digit span backwards, matrix reasoning, block design, digit symbol coding, symbol search 
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Moray House Test (Childhood IQ) ✘ ✔ ✘ ✘ 

Note: Sig: results were statistically significant; Sig. in HC: results were statistically significant in healthy controls; Age adj.: results were adjusted for age; 

MC corr.: results were corrected for multiple comparisons. MOCA = Montreal Cognitive Assessment; MMSE = Mini Mental State Examination, MCI = 

Mild Cognitive Impairment, DEM = Dementia; CDR = Clinical Dementia Rating Scale, AD = Alzheimer’s Disease, ADAS = Alzheimer’s Disease 

Assessment Scale, HC = Healthy Controls, APOE = APOE e4 carrier, Non APOE = APOE e4 non-carrier, sMCI = Stable MCI, pMCI = Progressive 

MCI, HIVp = HIV-positive, DM2 = Diabetes Mellitus Type 2, TBI = Traumatic Brain Injury, TMT-A = Trail Making Test A (Time to complete), CRT = 

Choice Reaction Time Task (Median reaction time), TMT-B = Trail Making Test B (Time to complete), D-KEFS CWIT = Delis-Kaplan Executive 

Function System D Color-Word Interference Test, MOOD/ANX = Mood/Anxiety Disorder, SUD = Substance use Disorder, ED = Eating Disorder, CVLT 

= California Verbal Learning Test, WASI = Weschler Abbreviated Scale of Intelligence. 
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1.4 Cognitive Reserve 
As with BM, the accurate measurement of CR has important research and clinical 

potential. In particular, the accurate measurement of CR could provide benefits in three 

key areas: 1) diagnosis and detection of cognitive decline and dementia; 2) clinical trials 

and intervention studies; and 3) design of CR-targeted interventions. 

 First, an accurate measure of CR could improve the clinical diagnosis of 

dementia as a clinician could account for CR when evaluating the cognitive status of the 

patient. The clinician would then be better able to estimate the optimal level of cognitive 

function for that patient against which their current level of functioning can be compared 

(Stern, 2012). Accurate measurement of CR might also enable future neuroimaging-

assisted diagnoses of cognitive decline and dementia. While the application of machine 

learning and deep learning techniques to neuroimaging data harbours great potential for 

the early detection of age-related cognitive decline and dementia (Jo et al., 2019), this 

approach has had limited success to-date and is not yet suitable for clinical applications 

(Pellegrini et al., 2018). This was starkly illustrated by the inability of 33 international 

teams of experts to accurately predict cognitive decline from a rich set of neuroimaging 

variables, including diffusion tensor imaging (DTI), structural MRI, fluorodeoxyglucose-

positron emission tomography (FDG-PET), and amyloid and tau PET, using state of the 

art machine learning algorithms (Marinescu, Oxtoby, et al., 2020). Accounting for 

differences in the functional brain and cognitive processes underlying CR could therefore 

potentially increase the accuracy of predictions of cognitive decline.  

Second, an accurate measure of CR could improve clinical trials and intervention 

studies. Imbalances in CR across treatment and control groups could result in differential 

rates of cognitive decline that are unrelated to the intervention (Stern, 2012). Effective 

statistical control of CR when matching participants across groups, or when assessing 

outcomes, would refine the measurement of intervention efficacy (Mondini et al., 2016). 

The measure would further provide an effective means of stratification in intervention 

studies (Stern, 2012). If the measure is shown to strongly predict cognitive decline and/or 

dementia risk, it might also enable shorter and cheaper clinical trials as it could be used 

as a surrogate endpoint in place of the typical – costly and protracted – endpoints such 

as a slowed rate of cognitive decline and a reduced risk of developing Alzheimer’s 

disease and dementia (J. K. Harrison et al., 2016; Vellas et al., 2008). 

 Third, an accurate measure of CR could enable better development of 

interventions designed to enhance CR in order to reduce or prevent cognitive decline 

and dementia. The majority of pharmacological interventions for Alzheimer’s disease 

focus on either improving cognitive function or modifying the disease process 
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(Cummings et al., 2014). Nearly all of these interventions have failed to-date, with a 

failure rate of 99.6% between 2002 and 2012 (Cummings et al., 2014). Therefore, an 

alternative approach may be necessary and enhancing CR may be a promising strategy 

for delaying and/or reducing cognitive decline (Moga et al., 2019). This strategy requires 

an accurate measure of CR that would facilitate the assessment of the impact of the 

interventions on CR. Accurate measurement would improve the identification of CR 

determinants which could then be targeted via behavioural and lifestyle interventions. At 

present, support for these determinants is largely based on epidemiological evidence 

and the evidence base for associations between changes in these determinants and 

changes in CR is limited due to difficulties in measuring CR. Additionally, an accurate 

neuroimaging measure could uncover specific brain networks underlying CR, which 

could then be targeted using neuromodulation techniques such as connectome-based 

neurofeedback (Scheinost et al., 2020) and brain-computer interface neurofeedback 

(Arvaneh et al., 2019), or neurostimulation techniques such as transmagnetic stimulation 

(Kim et al., 2019). 

Despite the considerable clinical and research potential of CR, there are 

significant difficulties in directly measuring CR (Conti et al., 2021; Stern et al., 2020) to 

the extent that it has been stated that “there is no direct way to quantify CR” (Marques 

et al., 2016, p. 3311) and that "no operational measures exist for accurately estimating 

an individual's CR" (Ward et al., 2015, p. 579). While the most direct measures of CR 

are likely to be developed using neuroimaging (Stern et al., 2020), the considerable cost 

of MRI scanning (Sarracanie et al., 2015) limits access to such measures, particularly in 

lower income countries (Ogbole et al., 2018). As such, socio-behavioural variables 

reflecting the degree of exposure to various lifetime experiences that are thought to 

contribute to CR, are often used as proxies of CR (Stern et al., 2020).  

Valid measurement of CR requires some putative measure of CR (e.g., a proxy 

or a candidate neuroimaging measure) and two further components: a measure of brain 

structure/pathology and a measure of cognitive function (Christensen et al., 2008; Stern 

et al., 2020). A complete CR model refers to a model or analysis including all three 

components. In a complete CR model, the candidate measure of CR can be assessed 

with respect to its protective effects on cognition. The evaluation of the protective effects 

of the CR measure on cognition has been described as the cognitive benefit criterion 

(Franzmeier, Duering, et al., 2017). The cognitive benefit criterion can be satisfied via 

the observation of 1) an independent effect in which the candidate measure is positively 

associated with cognitive function, independent of brain structure, or 2) a moderation 

effect in which the candidate measure moderates the relationship between brain 
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structure and cognitive function (Stern et al., 2020; Stern & Habeck, 2018). 

Demonstration of a moderation effect is considered the strongest level of evidence for a 

CR measure, whereas the independent effect is considered a weaker level of evidence 

for a CR measure (Stern et al., 2020). A valid neuroimaging measure of CR is also 

required to show face validity, which can be demonstrated via a positive correlation with 

a CR proxy (Franzmeier, Duering, et al., 2017; Stern & Habeck, 2018). 

1.5 Behavioural Measurement of Cognitive Reserve 
CR is most commonly measured using proxy variables (Stern & Barulli, 2019), 

given that they are easy and inexpensive to obtain particularly in comparison to 

neuroimaging data. The rationale for using socio-behavioural proxies as measures of 

CR is that greater exposure to certain lifetime experiences increases the adaptability of 

cognitive and functional brain processes, thereby enabling a greater ability to cope with 

brain changes or damage (Stern et al., 2020). Considerable epidemiological evidence 

indicates a reduced risk and/or delayed onset of dementia and cognitive decline in 

individuals with greater educational attainment (Dekhtyar et al., 2016; H. X. Wang et al., 

2012; Xu et al., 2016); occupational complexity/status (Andel et al., 2005; Kröger et al., 

2008; Potter et al., 2007); literacy and/or verbal intelligence (Cervilla et al., 2000; Kaup 

et al., 2013; Manly et al., 2003; Pavlik et al., 2006); engagement in activities that were 

cognitively stimulating (Marioni et al., 2015; H. X. Wang et al., 2002); leisure-related 

(Akbaraly et al., 2009; Paillard-Borg et al., 2009); physical (Bowen, 2012; Marioni et al., 

2015; Ogino et al., 2019; Rovio et al., 2005); and social (Marioni et al., 2015; H. X. Wang 

et al., 2002; Zhou et al., 2018). Proxies also provide a single value with a simple 

interpretation: a higher degree of exposure reflects greater CR. Furthermore, some 

proxies, such as educational attainment, are routinely collected as part of most ageing 

studies.  

Despite their advantages, the use of proxies to measure CR has been criticised. 

First, some proxies, such as educational attainment, are typically static measures 

(Malek-Ahmadi et al., 2017) meaning that they tend not to change after a certain point 

in time (e.g., after early adulthood). However, CR is considered to be a dynamic 

construct that can change over time (Bettcher et al., 2019). Second, some argue that a 

single proxy fails to reflect the full CR construct which is thought to be influenced by a 

range of experiences (Kartschmit et al., 2019; Zahodne et al., 2013). Finally, proxies 

may also be associated with cognitive decline via mechanisms other than CR (Jones et 

al., 2011). For instance, greater educational attainment is correlated with higher 

socioeconomic status (Sirin, 2005) which is itself associated with slower cognitive 

decline (Marden et al., 2017) and reduced risk and prevalence of dementia (Fischer et 
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al., 2009; Yaffe et al., 2013). Low socioeconomic status is associated with various other 

factors, including stress and access to healthcare, which could exacerbate cognitive 

decline (Yaffe et al., 2013). As such, the protective effect of education on cognitive 

decline and dementia may be via mechanisms related to socioeconomic status, rather 

than CR (Zahodne, Stern, et al., 2015). 

The limitations of individual proxies may be mitigated by averaging (cf. 

transformation methods such as PCA) multiple proxies to create a composite proxy 

measure that still provides a single summary value with a simple interpretation (Fleck et 

al., 2017; Pettigrew et al., 2017, 2020; Soldan et al., 2017; Steffener et al., 2014). 

Composite proxies allow for a wider range of contributions to CR and enable the 

inclusion of dynamic proxies that can change over time, such as verbal intelligence or 

engagement in activities (Malek-Ahmadi et al., 2017). Furthermore, composite proxies 

may attenuate the issue of non-CR mechanisms of individual proxies because 

alternative mechanisms (e.g., socioeconomic status) might only be associated with 

some proxies, such as educational attainment, but not others like social engagement. 

Some composite-type approaches, including factor analytic and latent variable models, 

measure CR using inappropriate reflective measurement models, where the observed 

CR proxies are effectively considered to be reflective of (i.e., caused by) the latent CR 

construct (Jones et al., 2011). Composite proxies are a more appropriate formative 

measurement model, where the observed proxies are considered to form, or cause, CR. 

Moreover, this approach can reflect the unique additive contributions of individual 

proxies, whereas factor analytic models reflect only the shared variance across different 

proxies (Stern et al., 2020). 

While the composite approach offers advantages over the use of single proxies, 

there is no agreed-upon gold-standard composite proxy (Stern & Barulli, 2019) just as 

there is likewise no gold-standard individual proxy. Similarly, it is unclear which proxy 

should be used when assessing candidate neuroimaging measures of CR, as face 

validity is assessed via their association with CR proxies (Franzmeier, Duering, et al., 

2017; Stern & Habeck, 2018). The considerable variation (S. L. Harrison et al., 2015; 

Opdebeeck et al., 2016) and lack of coherence in the use of proxies means that there is 

poor comparability across studies, as an effect observed for one proxy (e.g., educational 

attainment), may not be observed to the same degree for another (e.g., occupational 

complexity), even though both putatively reflect CR. It also provides researchers in the 

field of CR with an additional “researcher degrees of freedom” (Wicherts et al., 2016) 

such that several different proxies could be examined but only statistically significant 

results are reported. 
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There have been limited attempts to-date to assess the effects of different CR 

proxies on cognitive function. A systematic review of reviews and meta-analyses have 

found that education, occupational complexity/status and engagement in cognitively 

stimulating activities are individually associated with a reduced risk of dementia (S. L. 

Harrison et al., 2015) and positively associated with cognitive function in cognitively 

healthy older adults (Opdebeeck et al., 2016). Composites of these proxies and also 

including verbal intelligence have shown similar effects (S. L. Harrison et al., 2015; 

Opdebeeck et al., 2016; Roldán-Tapia et al., 2012). Across studies, education, as a 

single proxy, and composite proxies had moderate associations with cognitive function, 

with smaller associations found for occupational complexity/status and cognitively 

stimulating activities (Opdebeeck et al., 2016). Verbal intelligence and social 

engagement were also associated with a reduced risk of dementia although both were 

less frequently used compared to other proxies (S. L. Harrison et al., 2015).  

The evidence reported in the systematic reviews and meta-analyses described 

above were obtained from incomplete models of CR, where the cognitive benefit criterion 

could not be assessed (Chapko et al., 2018). Chapko et al. (2018) sought to rectify this 

problem and conducted a systematic review of studies assessing CR proxies in complete 

CR models. 58% of all models assessing education reported positive evidence for 

education as a CR proxy, although this dropped to 38% of models within cognitively 

healthy cohorts. Chapko et al. concluded that the evidence for occupational 

complexity/status was inconclusive. One reviewed study provided evidence that greater 

engagement in cognitively stimulating activities in mid- and late-life provided CR effects 

(Reed et al., 2011). Conflicting results were found for more general leisure activity 

measures, with one study finding a protective effect (Scarmeas et al., 2003) while 

another reported a null effect (Borroni et al., 2009).  

Verbal intelligence was not considered as a CR proxy by Chapko et al. (2018) in 

their systematic review, although it has been relatively widely used as a proxy. Negash 

et al. (2013) reported that verbal intelligence was positively associated with cognitive 

function controlling for global AD neuropathology, in a mixed sample of cognitively 

healthy older adults and older adults with MCI and dementia. In another mixed sample, 

a moderation effect was observed for verbal intelligence on the relationship between 

cognition and inferior temporal lobe tau deposition, but not global amyloid burden (Rentz 

et al., 2017). However, this moderation effect on tau deposition was not significant when 

the analysis was restricted to cognitively healthy older adults. Other studies have 

reported positive evidence for verbal intelligence as a CR proxy in cognitively healthy 

older adults, including a positive association with cognitive function controlling for 
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hippocampal atrophy (Topiwala et al., 2019), and a moderation effect on the relationship 

between cognition and fibre bundle length, an index of WM microstructural integrity 

(Baker et al., 2017). In the latter study, the reported moderation effect may have been 

confounded by age, as age is negatively associated with both fibre bundle length (Baker 

et al., 2014) and cognitive function (Salthouse, 2009, 2010), yet the analysis did not 

control for age.  

Chapko et al. (2018) did not assess physical activity or social engagement as CR 

proxies, presumably because studies with complete models including these proxies were 

not available at the time of the research. Complete CR models assessing physical 

activity and social engagement have since been published. Conflicting evidence has 

been reported for physical activity, which was positively associated with cognition in the 

presence of neuropathology (Buchman et al., 2019) but not hippocampal atrophy 

(Topiwala et al., 2019). Positive evidence has also been reported for social engagement, 

which moderated the relationship between amyloid-beta deposition and cognitive 

decline (Biddle et al., 2019). 

Mixed evidence for CR effects of composite proxies has also been published 

(note, composites were not assessed by Chapko et al., (2018)). The composite of verbal 

intelligence and education has been reported to moderate the relationship of subcortical 

GM volume and cortical thickness with fluid reasoning but not memory or processing 

speed and attention (Steffener et al., 2014). This composite has also been associated 

with memory controlling for GM volume (Kwak et al., 2020) and global cognition 

controlling for a composite AD-biomarker (Soldan et al., 2017). Aside from the composite 

of verbal intelligence and education, there is very little empirical evidence regarding the 

effects of different CR composites within complete models. 

Composite proxies have also been used to measure CR via standardised 

questionnaires, such as the Cognitive Reserve Index Questionnaire (CRIq; Nucci, 

Mapelli, & Mondini, 2012), the Lifetime Experiences Questionnaire (LEQ; Valenzuela & 

Sachdev, 2007), and the Cognitive Reserve Scale (CRS; León, García-García, & 

Roldán-Tapia, 2014), among others (for a systematic review of CR questionnaires, see 

Kartschmit et al., 2019). However, the methodological rigour of the various CR 

questionnaires is not yet conclusive, with limited evaluation of the psychometric 

properties of most CR questionnaires (Kartschmit et al., 2019). In particular, most CR 

questionnaires have limited evidence of construct validity as they have not been 

evaluated in complete CR models which enable the assessment of the cognitive benefit 

criterion (Kartschmit et al., 2019; Malek-Ahmadi et al., 2017). Furthermore, while a 
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questionnaire can theoretically account for all of the proposed CR indicators, to-date no 

questionnaire accounts for the full set of the most common CR proxies: educational 

attainment, occupational complexity, verbal intelligence, engagement in leisure-, social-

, physical- and cognitively stimulating-activities. 

In conclusion, while proxies are routinely used to measure CR, there is a lack of 

consistent empirical evidence demonstrating the validity of individual and composite 

proxies as measures of CR, particularly for the measurement of CR in cognitively healthy 

older adults. Consequently, while proxies are the most common measure of CR, 

researchers and ultimately clinicians, may inadvertently use proxy variables that are not 

valid measures of CR. Similarly, it is unclear which proxy should be used to assess the 

face validity of neuroimaging measures of CR. 

1.6 Neuroimaging Measurement of Cognitive Reserve 

1.6.1 Structural Measurement of Cognitive Reserve 
 One approach to measuring CR with neuroimaging is the CR residual, where CR 

is operationally defined as the unexplained variance in cognitive function after 

accounting for the variance explained by brain structure and demographic factors (Reed 

et al., 2010). The CR residual was first developed using latent variable models (Reed et 

al., 2010; Zahodne et al., 2013) but more straightforward methods, such as multiple 

regression, have since been used. With the regression method, a measure of cognitive 

function, typically episodic memory (Franzmeier, Göttler, et al., 2017; Franzmeier, 

Hartmann, et al., 2017; Habeck et al., 2017; Reed et al., 2010; Zahodne et al., 2013), is 

used as the dependent variable with independent variables including a measure of brain 

structure and demographic factors such as age, gender, and sometimes education 

(Franzmeier, Göttler, et al., 2017; Franzmeier, Hartmann, et al., 2017; D. H. Lee et al., 

2019; Zahodne, Manly, et al., 2015). CR is then indexed by the residuals from this linear 

regression, where positive residuals reflect greater CR as cognitive performance is 

better than expected given the individual’s brain structure (Reed et al., 2010). 

 The CR residual is an intuitive and relatively easily computed single scalar index 

of CR. It does not require the use of socio-behavioural proxies and indeed is a more 

direct measure of CR than proxies (Stern et al., 2020). The measure may be dynamic 

(Stern et al., 2020) and therefore could be used to track changes in CR over time, 

enabling the measurement of the efficacy of interventions aimed at increasing CR 

(Zahodne, Manly, et al., 2015). This measure has been empirically supported as higher 

values (i.e., more positive residuals) have been associated with a reduced risk of 

conversion to dementia (Reed et al., 2010). Moderation effects on the relationship 

between atrophy and cognitive decline have also been observed using the CR residual 
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such that atrophy was more strongly related to cognitive decline in individuals with lower 

(i.e., more negative) CR residuals (Reed et al., 2010). Similar moderation effects have 

been demonstrated for the relationship between brain structure and executive function 

(Reed et al., 2010) and language ability (Zahodne et al., 2013). Face validity has also 

been established for the CR residual as it has been associated with common CR proxies 

including educational attainment, occupational complexity, and verbal intelligence 

(Habeck et al., 2017; D. H. Lee et al., 2019). 

 Despite the various advantages of the CR residual, it does possess some 

important limitations. First, it relies on structural neuroimaging data, and therefore does 

not directly measure the functional processes underlying reserve. Second, while it may 

be a more direct measure than CR proxies, it is still an indirect measure which 

necessarily will contain a significant proportion of measurement error, by definition 

(Ewers, 2020). Third, different combinations of independent (i.e., brain structure) and 

dependent (i.e., cognitive function) variables have been used across studies. This 

introduces variability to the measure across different studies (Stern et al., 2020) and 

reduces the comparability across studies (Ewers, 2020). This issue extends to the choice 

of demographic variables used in the CR residual which have sometimes been 

inconsistent with CR theory. While education has been included as a demographic 

predictor variable in some CR residuals (Reed et al., 2010; Zahodne et al., 2013; 

Zahodne, Manly, et al., 2015), education is regarded as a key indicator of CR (Stern, 

2002) and is the most commonly used CR proxy (Opdebeeck et al., 2016). The inclusion 

of education as an independent variable in a regression model creates a CR residual 

that explicitly excludes the variance in cognition that is attributed to education. 

Consequently, this CR measure will not reflect any information from a presumed key 

contributor to CR. Finally, the CR residual does not provide any spatial information about 

CR and is uninformative about the underlying neural processes. 

 An alternative to the CR residual, which uses a similar approach, but can provide 

spatial information about CR is the ‘W-score’ measure (van Loenhoud et al., 2017). The 

W-score is essentially a reverse of the CR residual, as a measure of brain structure is 

regressed on cognitive function and demographic variables. However, unlike the CR 

residual which is computed for global summary measures of brain structure, the W-score 

is computed at the voxel level. This provides spatial information about CR as 

demonstrated by van Loenhoud et al. (2017) who reported a strong association between 

educational attainment and mean W-scores in a temporoparietal region of interest. Like 

the residual measure, the W-score has been associated with cognitive decline (van 

Loenhoud et al., 2019) and progression to more advanced stages of dementia (van 
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Loenhoud et al., 2017). Face validity has also been established for the W-score as lower 

scores – reflecting higher CR – were associated with higher levels of education (van 

Loenhoud et al., 2017). However, like the CR residual, the W-score measure will 

inevitably contain a large proportion of measurement error and fails to directly assess 

the functional brain processes underlying CR as it is solely based on structural data 

(Stern et al., 2020). 

1.6.2 Functional Measurement of Cognitive Reserve: EEG 
The functional brain processes and networks underlying CR can be more directly 

assessed using functional neuroimaging (Stern et al., 2020). Two functional 

neuroimaging methods, electroencephalography (EEG) and magnetoencephalography 

(MEG) enable the measurement of functional brain processes and networks by 

measuring the electrical and magnetic activity of the brain, respectively (van Straaten & 

Stam, 2013). However, neither method has been widely used to study CR, a systematic 

review identified only eleven EEG and five MEG valid studies of CR (Balart-Sánchez et 

al., 2021). Nonetheless, they may offer practical benefits over fMRI measures, as EEG, 

in particular, is better tolerated (Fleck et al., 2017) and more widely accessible (Cassani 

et al., 2018; Farina et al., 2020). Indeed, EEG may be a promising method for measuring 

CR as various functional connectivity metrics have been shown to correlate with the 

severity of cognitive decline (Briels et al., 2020). 

Promising EEG targets for developing a measure of CR may include coherence 

during resting-state and an event-related potential, the P300, which reflects neural 

efficiency (van Dinteren et al., 2014). Age-related decreases in coherence, a functional 

connectivity metric, were observed in a low CR group whereas an age-related increase 

was observed in a high CR group (Fleck et al., 2017). Positive associations between CR 

and imaginary coherence were observed in the theta band over a right frontocentral 

region, with negative associations in the theta band over a right parietotemporal region, 

and negative associations in the alpha band over an occipitoparietal region (Moezzi et 

al., 2019). CR was also positively associated with greater neural efficiency, measured 

by the P300 (Gu et al., 2018; Speer & Soldan, 2015). In cognitively healthy older adults, 

this increased efficiency was associated with better task performance (Gu et al., 2018). 

Other EEG indices, namely measures of relative power in each frequency band derived 

from spectral analysis, have not shown associations with cognitive reserve (Amodio et 

al., 2017).  

Promising MEG targets include measures of brain oscillations that have been 

positively related to CR in cognitively healthy older adults, specifically higher resting-

state gamma power in the right temporal region and higher beta intensity during an n-
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back task in the parietal and occipital regions (Yang & Lin, 2020). However, in adults 

with MCI, beta power was not correlated with CR (López et al., 2016). Overall, while 

there are some promising initial findings relating EEG and MEG measures to CR, no 

candidate measures have been assessed in relation to the cognitive benefit criterion or 

in terms of their face validity. Furthermore, no individual-level measures have yet been 

developed using EEG or MEG. 

1.6.3 Functional Measurement of Cognitive Reserve: task-based fMRI 
Compared to EEG and MEG, fMRI has been more widely used in research 

investigating possible measures of CR. Task-based fMRI has been widely used to 

investigate potential patterns of task-related activations that are associated with CR. A 

systematic review of fMRI studies concluded that increased activation of frontal lobe 

regions and decreased activation of medial temporal lobe regions may index CR as 

these activation patterns were associated with higher CR in cognitively healthy older 

adults, whereas they were associated with lower CR in younger adults (Anthony & Lin, 

2017). CR may also be reflected by suppression of activation within the DMN as reduced 

activity was associated with higher CR in multiple studies (Anthony & Lin, 2017). Another 

possible marker of CR, identified using task-based fMRI, is global functional connectivity 

of a region of the left frontal cortex, Brodmann area 6/44. Increased global functional 

connectivity in this region, a key hub of the frontoparietal network (FPN), was associated 

with both higher education and higher CR as measured with a CR residual (Franzmeier, 

Hartmann, et al., 2017). Connectivity of this region was also shown to mediate the 

relationship between increased efficiency of the DMN and dorsal attention network with 

memory performance (Franzmeier et al., 2018).  

Although task-based fMRI studies have identified possible patterns of activation 

and functional connectivity that are related to CR, these patterns have rarely been tested 

in regards to their protective effects on cognition (Belleville et al., 2021). Consequently, 

the validity of such activation patterns as candidate measures of CR is largely unclear. 

The protective effects of a pattern of activation specific to the right inferior temporal gyrus 

was tested by Belleville et al. (2021). Increased activation in this region was observed 

during an associative memory task and was positively associated with a composite proxy 

measure of CR. A moderation effect of this pattern of activation was subsequently 

observed on the relationship between hippocampal volume and associative memory 

performance. This effect indicated that individuals with reduced hippocampal volumes 

may sustain cognitive performance via greater activation of the right inferior temporal 

gyrus. Nevertheless, focusing on specific regions of activation or connectivity may not 

be an optimal approach to deriving a measure of CR, as CR may also be influenced by 
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variations in connectivity that are globally distributed across the entire brain rather than 

just variations in connectivity limited to specific candidate regions. Indeed, Zhao et al. 

(2021) reported that individual differences in cognition were more accurately predicted 

by global patterns of task-related activations than by activations specific to localised 

brain regions.  

Globally distributed activations and connectivity may be particularly relevant to 

identify generalised neural networks that may underlie CR (Steffener et al., 2011; 

Steffener & Stern, 2012). These networks have been described as generic and task-

invariant because the network is expressed across different tasks and is unrelated to 

specific task demands (Stern et al., 2018). Two notable studies have been attempted to 

identify and measure these networks using task-based fMRI. The first study identified a 

covariance pattern of activation across twelve different fMRI tasks (Stern et al., 2018). 

This covariance pattern was shown to display face validity as pattern expression was 

positively correlated with a CR proxy, verbal intelligence. Furthermore, protective effects 

were observed for this covariance pattern, as it was positively associated with fluid 

reasoning, after controlling for cortical thickness and it moderated the relationship 

between cortical thickness and fluid reasoning. The loadings of the identified covariance 

pattern suggested that individuals with higher CR had stronger task-related activity in 

clusters within the cerebellum, medial frontal gyrus, and the anterior portion of the 

bilateral superior temporal gyrus, but lower activity in clusters within the bilateral inferior 

parietal lobe, bilateral middle frontal gyrus, and bilateral inferior frontal gyrus (Stern et 

al., 2018).  

The second study, using the same dataset as Stern et al. (2018), attempted to 

measure a generic CR network using a measure of task potency (van Loenhoud et al., 

2020). Task potency was calculated as the change in connectivity, from a resting-state 

baseline, in response to a task. Positive task potency values represented greater 

connectivity, or synchronisation of activity, between different brain nodes whereas 

negative values reflected a possible decoupling of activity in different nodes. A network 

was identified where task potency was significantly associated with verbal intelligence, 

a CR proxy, and which was positively associated with episodic memory and fluid 

reasoning, independently of cortical thickness (van Loenhoud et al., 2020). This network 

was relatively sparse with 57 identified connections (i.e., edges) mostly located within 

the DMN followed by the FPN and the salience network. The most highly connected 

network, the DMN, was solely comprised of connections that were negatively associated 

with verbal intelligence.  
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To-date, task-based fMRI studies have identified specific regions where 

activation exerts protective effects prescribed to CR, and have been used to derive 

potential generic, or task-invariant, CR networks. Despite these promising findings, 

developing a measure of CR using task-based fMRI may not be the optimal approach to 

measuring CR. One problem with this approach is that task-related activations could be 

confounded by various individual-level factors which affect task performance and 

engagement, including task difficulty (Stern, 2005), motivation, concentration, and 

fatigue (McCaffrey & Westervelt, 1995). Moreover, task-fMRI can be difficult for clinical 

populations, including individuals with cognitive impairment, and therefore may be less 

useful to measure CR in clinical populations (Franzmeier, Caballero, et al., 2017). 

Additionally, whereas resting-state fMRI data are acquired in a relatively standard 

manner across different sites (Woodward & Cascio, 2015), task-based data may be less 

standardised due to differences in experimental designs and stimulus definitions of the 

task (Mennes et al., 2013). As a result, a task-based fMRI measure of CR may not be 

as easily shared across research groups or sites in comparison to a measure that can 

be generated using resting-state data. 

1.6.4 Functional Measurement of Cognitive Reserve: resting-state fMRI 
Resting-state fMRI has various advantages for the measurement of CR in 

comparison to task-based fMRI. A measure derived from resting-state fMRI would less 

be affected by individual-level factors that may confound task-related activations. 

Indeed, resting-state fMRI measures have high test-retest reliability (Shehzad et al., 

2009) and can have better signal-to-noise ratios than task-related activations (Fox & 

Greicius, 2010). Resting-state fMRI also has better clinical utility as no task-related 

demands are placed on participants and therefore can be applied to a wider population, 

including individuals with significant cognitive impairment (Fox & Greicius, 2010). 

Resting-state data can be more easily shared and aggregated with data from other sites 

as part of large data-sharing initiatives, thereby enabling greater use of any derived CR 

measures (Mennes et al., 2013; Woodward & Cascio, 2015).  

As a proof of concept, Stern and Habeck (2018) demonstrated that resting-state 

fMRI may be a suitable modality for measuring CR. They generated a relatively simple 

metric, the intraindividual variability of resting-state functional connectivity, and 

assessed its validity as a candidate neuroimaging measure of CR. The intraindividual 

variability of resting-state functional connectivity measures regional variation in 

connectivity with lower values reflecting relatively greater uniformity in whole-brain 

functional connectivity. This single summary value was obtained for each participant by 

calculating the standard deviation across all functional connections within the brain. This 
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metric demonstrated face validity as lower values were associated with higher verbal 

intelligence, a CR proxy. The metric was also reported to satisfy the cognitive benefit 

criterion, as lower values were positively associated with cognition, as measured by 

vocabulary performance, independently of cortical volume and cortical thickness (Stern 

& Habeck, 2018). However, this measure was not validated on unseen data so the 

generalisability of this metric to novel data is unclear. Nonetheless, while more sensitive 

functional connectivity measures, accounting for the differential associations between 

various functional connections and CR, are likely to be more informative, the results 

reported for this blunt metric demonstrated the viability of resting-state fMRI for 

measuring CR. 

Resting-state fMRI has also provided evidence suggesting that connectivity of 

specific functional networks, including the DMN, FPN and salience network, may 

underlie CR or form part of a broader generic CR network. These three networks have 

been separately associated with slower global cognitive decline, controlling for age, 

education and GM volume (Buckley et al., 2017). Moreover, connectivity of these three 

networks moderated the relationship between amyloid burden and cognitive decline, 

such that individuals with stronger connectivity and high amyloid burdens were less 

vulnerable to cognitive decline than those with weaker connectivity and high amyloid 

burdens (Buckley et al., 2017). The FPN may be particularly pertinent as increased 

connectivity of the FPN was related to higher CR, as measured by years of education, 

in individuals with MCI (Franzmeier, Caballero, et al., 2017; Serra et al., 2016). Global 

connectivity of the FPN has also been found to moderate the impact of WM lesions on 

executive function in cognitively healthy older adults (Benson et al., 2018). Connectivity 

of a specific hub of the FPN, the left frontal cortex (Brodmann area 6/44), has been 

consistently associated with CR in adults with MCI. Stronger negative connectivity of this 

hub to the DMN and stronger positive connectivity to the dorsal attention network have 

been associated with higher education and higher CR, as measured by a CR residual, 

in two separate cohorts of adults with MCI (Franzmeier, Göttler, et al., 2017). Global 

connectivity of this hub was further shown to mitigate the negative effect of glucose 

hypometabolism in the precuneus on memory ability in adults with MCI (Franzmeier, 

Duering, et al., 2017). 

Compared to the FPN, there is less consistent evidence relating resting-state 

connectivity of the DMN and salience network to CR. The protective effects of global 

FPN connectivity identified by Benson et al. (2018) were not observed for the DMN or 

the salience network as a whole. However, connectivity of a specific node of the salience 

network, the anterior cingulate cortex to the medial frontal cortex was reported to 
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moderate the relationship between WM lesions and executive function (Benson et al., 

2018). Connectivity of this node with regions including the right hippocampus, right 

posterior cingulate cortex/gyrus, left inferior frontal lobe, and left angular gyrus has also 

been positively associated with a CR proxy, years of education (Arenaza-Urquijo et al., 

2013). Higher connectivity of these connections were further associated with verbal 

fluency, but as this association did not adjust for brain structure, the cognitive benefit 

criterion was not satisfied. Increased connectivity of the anterior cingulate cortex has 

also been associated with higher CR in adults with MCI and in cognitively healthy adults 

(Serra et al., 2016). These findings suggest that functional connectivity of the salience 

network, especially the anterior cingulate cortex, may be a functional correlate of CR. 

Despite evidence from task-activation studies implicating the DMN in CR, evidence for 

a role of resting-state connectivity of the DMN in CR, appears to be limited to a single 

study where DMN connectivity demonstrated a protective effect on cognition (Buckley et 

al., 2017). 

In addition to functional networks, resting-state functional connectivity of specific 

neuroanatomical landmarks have also been linked to CR. D. H. Lee et al. (2019) reported 

that functional connectivity of the right middle temporal pole to the left amygdala and 

superior temporal pole was positively associated with a CR residual. In a subgroup 

analysis restricted to cognitively healthy older adults, stronger connectivity of the right 

precentral gyrus to the bilateral cuneus, bilateral supplementary motor area, and left 

post-central gyrus was related to higher CR. The right middle temporal pole and right 

precentral gyrus were also identified as key nodes in a widely distributed resting-state 

network where greater connectivity was associated with higher education in cognitively 

healthy older adults (Marques et al., 2015). Degree strength and betweenness centrality 

of the inferior temporal gyrus were positively associated with a CR residual in cognitively 

healthy adults (Marques et al., 2016), supporting the protective effects on cognition 

demonstrated for task-related activation of this region (Belleville et al., 2021). This CR 

residual was also associated with local efficiency and clustering of the middle occipital 

cortex as well as the cuneus, another key node of the widely-distributed resting-state 

network described by Marques et al. (2015).  In conclusion, while connectivity of 

functional networks, including the FPN, DMN, and salience network, may underlie a 

generic CR network, connectivity of specific regions including the temporal pole, 

precentral gyrus, inferior temporal gyrus, and the cuneus may further contribute to such 

a network. 

 In sum, there has been considerable growth in the number of studies using 

neuroimaging to investigate and attempt to measure CR. EEG and MEG have been less 
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frequently used to study CR than MRI, and to-date no individual-level measures using 

these two modalities have been described that display face validity or protective effects 

on cognition. The CR residual has been consistently shown to display face validity and 

demonstrate protective effects on cognition, but it is suboptimal as it is based on 

structural neuroimaging. Task-based fMRI measures have similarly displayed face 

validity and demonstrated protective effects (Stern et al., 2018; van Loenhoud et al., 

2020) but cannot be easily applied to data collected from the more clinically applicable 

resting-state fMRI. Resting-state fMRI has been used to identify key networks and 

regions where functional connectivity may underlie CR but its potential for deriving a 

measure of CR is mostly unexplored.  
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1.7 Specific aims of the research 
 Based on the research reviewed to this point in Chapter 1, there is a clear need 

for the development and validation of objective measures of BM and CR in cognitively 

healthy older adults. While a potential measure of BM, brainPAD, has been previously 

developed, the validity of this measure is uncertain as the relationship between 

brainPAD and cognitive function has been obscured by a lack of studies in cognitively 

healthy older adults that statistically controlled for the effects of age and corrected for 

multiple comparisons. Moreover, although socio-behavioural proxies are the most 

commonly used measures of CR, the validity of many proxies is unclear as there is a 

lack of empirical evidence from complete CR models tested in cognitively healthy older 

adults. Finally, while functional neuroimaging should provide the most direct measure of 

CR, sensitive and generalisable measures that can be applied to resting-state fMRI data 

have not yet been described. 

 Chapter 2 examined the validity of brainPAD as a measure of BM. A penalised 

regression with cross-validation was applied to structural MRI data, collated from open-

access datasets, in order to predict chronological age. Chronological ages were then 

subtracted from the predicted ages to create brainPAD scores. This model was then 

applied to three independent datasets, which contained measures of cognitive function. 

Across these three datasets, the association between brainPAD and specific domains 

of cognitive function were assessed to determine the validity of brainPAD as an 

operational measure of BM in cognitively healthy adults. 

 Chapter 3 established the validity of different socio-behavioural variables as 

proxy measures of CR. Complete CR models, containing a CR proxy, a measure of brain 

structure, and a measure of cognition were created in two datasets of cognitively healthy 

adults. CR proxies included five standard CR proxies: educational attainment, 

occupational complexity, verbal intelligence, engagement in leisure activities, and 

engagement in physical activity. All possible combinations of composite measures of 

these CR proxies were also included. The validity and robustness of these different proxy 

variables were assessed using hierarchical moderated linear regressions. The analysis 

framework enabled the identification of the CR proxy with the largest independent 

associations with cognition. These results established data-driven recommendations 

supporting the selection of specific CR proxies when measuring CR and when assessing 

the face validity of candidate neuroimaging measures of CR. 

 Chapter 4 developed and validated a novel functional neuroimaging measure of 

CR. Connectome-based predictive modelling was applied to task-based functional 

connectivity in order to predict a CR residual measure in one dataset. The measures 
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derived from this model were assessed in terms of their face validity and their ability to 

satisfy the cognitive benefit criterion (i.e., by demonstrating protective effects on 

cognition). This model was then applied to an independent dataset in order to assess 

the generalisability and validity of these measures when generated using the more 

clinically applicable and widely usable resting-state fMRI data. 
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2 Chapter 2: Validation of the brain-predicted age 

difference as a measure of brain maintenance 

2.1 Introduction 
BrainPAD may be useful and intuitive measure of BM but, as outlined in Chapter 

1 (see section 1.3 and Table 1.1), the relationship between brainPAD and cognition is 

unclear. To date, the relationship between brainPAD and specific cognitive functions has 

not been systematically examined using appropriate statistical methods in cognitively 

healthy adults. As a result, the validity of brainPAD as an operational measure of BM 

remains to be determined.  

The first step in generating a brainPAD score is creating a feature set of 

neuroimaging data which is correlated with chronological age. Neuroimaging data have 

high dimensionality, which can result in overfitting and overoptimistic predictions 

(Whelan & Garavan, 2014). Brain age prediction models thus rely on feature engineering 

techniques such as principal component analysis (PCA; Franke et al., 2010; Gutierrez 

Becker, Klein, & Wachinger, 2018) or even dot products of different features (e.g., 

vectors of GM and WM voxels as in Cole et al., 2015; Cole, Ritchie, et al., 2018; Cole, 

Underwood, et al., 2017) in order to reduce the dimensionality of the data (Mwangi et 

al., 2014). These techniques map the original variables onto a feature space (in effect, 

creating ‘new’ variables) typically using linear transformations in the case of dot products 

(Snyder et al., 2013), although non-linear transformation may also be used for kernel 

methods (Honeine & Richard, 2009; Kwok & Tsang, 2004). While these models create 

generalisable and accurate predictions, this may come at the cost of reduced 

interpretability of the contributions of the features (Bunea et al., 2011; Mateos-Pérez et 

al., 2018), which is important for assessing the neurobiological validity of the model (Woo 

et al., 2017) and to identify specific brain areas for further investigation (Scheinost et al., 

2019).  

Due to the importance of interpretability in neuroimaging, unlike with other data 

(e.g., credit card transactions for fraud detection), the application of machine learning to 

MRI does not necessarily involve the goal of achieving the highest accuracy (Mateos-

Pérez et al., 2018). While methods do exist for projecting the ‘new’ variables back from 

the feature space to the input space (Honeine & Richard, 2009; Kwok & Tsang, 2004; 

Snyder et al., 2013), thus enabling interpretability of models employing dot products, 

PCA or kernel methods, these methods are not always implemented and/or reported in 

brain-age papers (Cole et al., 2015, 2018; Cole, Poudel, et al., 2017; Gaser et al., 2013; 

Gutierrez Becker et al., 2018; Nenadić et al., 2017). In contrast, penalised regression 
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methods (e.g., the Elastic Net; Zou & Hastie, 2005) do not require the back-projection of 

coefficients from feature space to input space and therefore have good interpretability, 

particularly when less complex feature sets are used (Luo et al., 2019).  

GM data is particularly well-suited for age prediction as GM volume linearly 

declines with age (but cf. Fjell et al., 2013) whereas WM volume has a less 

straightforward relationship with age, as it doesn’t decline significantly until middle age 

(Farokhian et al., 2017; Ge et al., 2002). The Elastic Net is a machine learning model 

well-suited to the high dimensionality and multicollinearity inherent in neuroimaging data 

as shown by the finding that it produced the most consistent predictions as compared to 

various other models over datasets with varying sample-, feature set-, and effect-sizes 

(Jollans et al., 2019). 

A final challenge in the development of neuroimaging biomarkers, or 

neuromarkers, is ensuring the generalisability of the neuromarker to new data. For 

practical reasons, cross-validation, where a dataset is split into a training set and a test 

set (Varoquaux et al., 2017), is often used as an estimate of model accuracy for new 

data (Jollans & Whelan, 2018; Scheinost et al., 2019). However, cross-validation 

accuracy estimates are often optimistically biased and can vary considerably 

(Varoquaux et al., 2017), particularly when preprocessing and feature selection are 

carried out on the entire dataset before splitting it into training and test sets (Dwyer et 

al., 2018; Woo et al., 2017). As such, the gold-standard for assessing the external validity 

and generalisability of a neuromarker is by testing how the model performs on a 

completely independent held-out dataset (Jollans & Whelan, 2018).  

Several brainPAD studies have externally validated their models (Beheshti et al., 

2018; Cole et al., 2015, 2018; Cole, Underwood, et al., 2017; Franke et al., 2010; 

Gutierrez Becker et al., 2018; Lancaster et al., 2018; Liem et al., 2017; Madan & 

Kensinger, 2018; Varikuti et al., 2018), but only a few studies have reported model 

performance in terms of accuracy (i.e., correlation or mean absolute error between brain-

predicted age and chronological age) on the external validation dataset (Cole et al., 

2015; Lancaster et al., 2018; Liem et al., 2017; Madan & Kensinger, 2018). This does 

not necessarily cast doubt on the validity of the models whose accuracy is reported in 

terms of internal cross-validation performance. However, not reporting the external 

validation performance limits the interpretation of the accuracy and generalisability of 

various brainPAD models as typically performance will be lower in the external validation 

dataset.  
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 In order to clarify the unclear relationship between brainPAD and specific 

domains of cognitive function, an interpretable brainPAD model was created by using a 

cross-validated Elastic Net regression to predict chronological age from GM voxel-wise 

data in 1,359 T1 weighted MRI scans. To externally validate this model, it was then 

applied to MRI data from three independent datasets, Dokuz Eylül University (DEU; 

n=175), the Cognitive Reserve/Reference Ability Neural Network study (CR/RANN; 

n=380), and The Irish Longitudinal Study on Ageing (TILDA; n=487). To determine the 

validity of brainPAD as an operational measure of BM and to establish the specific 

domains of cognitive function that are reliably correlated with brainPAD across different 

datasets, the correlation between brainPAD scores and several cognitive measures 

across the three datasets were subsequently assessed.  
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2.2 Methods 

2.2.1 Study Design 
The present study used data from open-access neuroimaging repositories to 

form a training set in which a machine learning model was developed. Data from three 

separate datasets, DEU, CR/RANN, and TILDA, were then used to form three external 

validation sets in which the machine learning model was validated and the relationship 

between brainPAD and cognitive function was investigated. In all cases, the data was 

collected prior to conception and design of the present study. The target population were 

cognitively healthy adults. 

2.2.2 Participants 

Training Set 

The data were comprised of MRI scans from 1,359 cognitively healthy adults 

(mean age 40.04 years, SD = 17.78 years, range = 18.00 - 88.36 years; 855 females) 

drawn from various open-access data repositories (see Table S1 in 7.1.1 Supplemental 

Methods). Inclusion criteria for the training cohort were: over 18 years old, age and 

gender data available, and not diagnosed with any neurological, psychiatric or major 

medical conditions.  

Test Set 1 – DEU 

The first test set was comprised of 175 community-dwelling adults (mean age = 

68.95 years, SD = 8.59 years; range = 47.56 – 93.51 years; 104 females) recruited as 

part of a study conducted at Dokuz Eylül University, Izmir, Turkey. Exclusion criteria 

included history of neurological or psychiatric diseases, use of psychotropic drugs 

including cholinesterase inhibitors, traumatic brain injury, history of stroke, drug and/or 

alcohol addiction and uncontrolled systemic diseases.  

Test Set 2 – CR/RANN 

The second test set was comprised of 380 community-dwelling adults (mean age 

= 52.41 years, SD = 17.09 years; range = 19 – 80 years; 210 females) who participated 

in the CR/RANN studies (Stern et al., 2014, 2018). These participants were screened 

for MRI contraindications, hearing and visual impairments, medical or psychiatric 

conditions, and dementia and MCI. Further inclusion criteria were a score of over 135 

on the Mattis Dementia Rating Scale (Jurica et al., 2001), a reading level at least 

equivalent to the US 4th grade, and minimal complaints of functional impairment. 
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Test Set 3 –TILDA 

The third test set was comprised of an MRI subset of a nationally representative 

longitudinal cohort study of community-dwelling adults in Ireland (Kearney et al., 2011; 

B. J. Whelan & Savva, 2013). This data was collected during Wave 3 of the TILDA study 

(Donoghue et al., 2018). All participants were screened for MRI contraindications. From 

an initial subset of 553 participants, participants were excluded due to motion artefacts 

(n = 32), presence of lesions, (n = 18), motion artefacts and presence of lesions (n = 1) 

missing a portion of the cerebellum (n = 2), a history of Parkinson’s disease, stroke, or 

transient ischemic attack (n = 11) and no cognitive data (n = 2). The final test set was 

comprised of MRI data from 487 participants (mean age = 68.6 years, SD = 7.21 years; 

range = 50 – 88 years; 260 females).  

2.2.3 MRI data acquisition 

Training Set 

A range of T1-weighted MRI scans from different scanners and using different 

protocols were used as the training set (see Table S1 in 7.1.1 Supplemental Methods). 

Test Set 1 – DEU 

DEU participants underwent a 10 minute T1 scan in a 1.5 T Philips Achieva 

scanner as part of a larger 20 minute MRI battery. Two separate protocols were used 

for scans included here. The Alzheimer’s Disease Neuroimaging Initiative T1 protocol 

was followed for 126 scans using the turbo field echo sequence with the following 

parameters: number of slices = 166, FOV = 240mm3, matrix size = 256×256, slice 

thickness = 1 mm, slice gap = 0 mm, TR = 9 ms, TE = 4 ms. For 49 scans, a local 

protocol using a gradient echo sequence was followed with the following parameters: 

FOV = 230mm3, matrix size = 400×512, slice thickness = 1 mm, slice gap = 0 mm, TR = 

25 ms, TE = 6 ms. 

Test Set 2 – CR/RANN 

CR/RANN participants underwent a 5 minute T1-weighted 3D magnetization-

prepared rapid gradient echo (MPRAGE) scan in a 3T Philips Achieva scanner as part 

of a larger 2-hr imaging battery. The following parameters were used: FOV = 

256×256×180 mm, matrix size = 256×256, slice thickness = 1 mm, slice gap = 0 mm, 

TR = 6.5 ms, TE = 3 ms. 



 

49 
 

Test Set 3 – TILDA 

TILDA participants underwent a 5 minute 24 seconds T1 MPRAGE scan in a 3T 

Philips Achieva scanner as part of a larger 45 minute MRI battery. The following 

parameters were used: FOV = 240×240×162mm3, matrix size = 288×288, slice thickness 

= 0.9 mm, slice gap = 0 mm, TR = 6.7 ms, TE = 3.1 ms. 

2.2.4 MRI pre-processing 
All images were preprocessed using SPM12 (University College London, 

London, UK). Prior to processing, all scans were automatically approximately reoriented 

to a canonical SPM template, the MNI single subject T1 image, using a custom MATLAB 

function, auto_reorient.m – based on the same-named function created by Carlton Chu. 

All scans were then visually inspected for good orientation and gross artefacts before 

preprocessing. In the training set, badly oriented scans (n = 632), or scans with gross 

artefacts (n = 42), were excluded from further analysis (see Table S1 in 7.1.1 

Supplemental Methods for information on exclusions from each open-access dataset). 

It should be noted that the majority of the excluded scans were due to poor re-orientation 

and although this reduced the training set sample size, this eliminated the need for time-

consuming manual re-orientation of individual images. To prevent data loss in the test 

set, any badly oriented scans were manually re-oriented before preprocessing but scans 

with artefacts were still excluded. In both training and test sets, each individual dataset 

was preprocessed in a separate batch. Bias correction was applied to image which were 

then segmented into GM, WM, and cerebrospinal fluid (CSF). Segmented GM images 

were non-linearly registered to a custom template, using SPM’s DARTEL. Images were 

then affine registered to MNI space (1 mm3) and resampled with modulation to preserve 

the total amount of signal from each voxel. Images were smoothed with a 4 mm full-

width at half maximum Gaussian kernel. Finally, images were visually inspected for 

accurate segmentation. The code used to auto-reorient and preprocess the MRI data is 

available at https://github.com/rorytboyle/brainPAD. 

2.2.5 Machine learning  

Data preparation 

As a simple data reduction step, GM images were resized to 2 mm3 voxels and 

individual voxel values were extracted from each image. A threshold was applied to 

exclude voxels with a low probability of reflecting GM such that a voxel was retained if it 

had GM density > 0.2 in that voxel across all 1,359 training set images. 2 mm3 voxels 

were selected based on a balance between computational efficiency and predictive 

accuracy (see 7.1.1 Supplemental Methods: Choice of voxel size and Table S2) and on 

https://github.com/rorytboyle/brainPAD


 

50 
 

its use in previous studies (Daniels et al., 2015; Hanssen et al., 2018; Seubert et al., 

2013; Sowman et al., 2017). Although a lower threshold can result in greater accuracy, 

it also greatly increases the computational expense of the model as well as the 

probability of including non-GM information in the model (see 7.1.1 Supplemental 

Methods: Choice of GM threshold and Table S3). After thresholding, the training data 

consisted of 1,359 images, each with 54,869 voxels. 

Machine learning model 

The goal of the training phase was to construct a generalisable model that could 

predict chronological age from GM data. The Elastic Net was applied in the present study 

as it is particularly well-suited for data with a much larger number of predictors than 

observations, such as neuroimaging data. The Elastic Net combines the Least Absolute 

Shrinkage and Selection Operator (LASSO) regression, where regression weights are 

penalised for increasing model complexity based on their absolute size and can be set 

to zero, and ridge regression, where regression weights are penalised for increasing 

model complexity based on their squared values and as such cannot be set to zero (Zou 

& Hastie, 2005).  

Each nested training set was divided into 10 cross-validation (CV) folds, each 

consisting of 10% of the subsampled training set. Nine folds were then used to create 

the regression model and the model’s prediction were then tested on the one left-out 

fold. This entire procedure was repeated 10 times, with each CV fold being left-out once. 

Furthermore, within each fold, nested cross-validation with 10 partitions was then used 

for optimisation of the two Elastic Net model parameters: alpha (α), which is the weight 

of the lasso vs. ridge regularization and lambda (λ), which is the regularization 

coefficient. Thirty values of each parameter were used, with α parameters ranging from 

1e-25 to 1 and λ ranging from 1 to 1e-04. The most frequently occurring parameter 

values across nested CV folds were used to create the final prediction model for each 

CV fold.  

In order to increase generalizability of the model, a data resampling ensemble 

approach was used. That is, 500 participants, with a 50:50 gender ratio, were randomly 

sampled without replacement from the training data to form a nested training set. This 

process was repeated 25 times, creating 25 nested training sets. Each nested training 

set (500 participants x 54,869 voxels), was used as the input to a regularised linear 

regression model (Elastic Net), with 10-fold cross-validation (CV), to predict the 

chronological age of each participant. The data resampling ensemble approach 

controlled for the effect of sex and reduced any possible individual model effects. 
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The performance of the model was quantified using the mean of each of the 25 

nested models’ Pearson’s correlation between chronological age and predicted age (r), 

total variance explained (R2), mean absolute error (MAE), and the weighted MAE. The 

weighted MAE is equal to the MAE divided by the age range of the sample tested and is 

a more suitable metric for comparing the MAE of brainPAD models across studies as it 

accounts for the impact of a sample’s age range on prediction accuracy (Cole et al., 

2019). A lower weighted MAE reflects greater accuracy.  

Application to independent test sets 

First, the average coefficient value for each voxel across all folds in all 25 training 

models was calculated, resulting in a vector of length 54,869. For each independent test 

set, the mean coefficient values were multiplied by the voxels’ GM density values and 

the product was summed to create a brain-age prediction for each participant. To correct 

for the proportional bias in the model, the prediction was added to the intercept of the 

training set, and the result was then divided by the slope of the training set. This 

correction does not affect the relationship between brainPAD and outcome measures 

but scales the data correctly so that brainPAD scores can be interpreted in units of years 

proportional to a person’s chronological age. Similar corrections have been applied in 

other brainPAD models (Cole et al., 2018). BrainPAD was calculated by subtracting 

chronological age from the corrected predicted age, hence, a positive brainPAD value 

indicates a brain-predicted age that exceeds the participant’s chronological age, 

suggesting accelerated brain ageing. The code used to make brain-age predictions and 

calculated brainPAD scores for independent test sets is available at 

https://github.com/rorytboyle/brainPAD. 

2.2.6 Cognitive function measures 
Each of the three datasets contained a wide range of cognitive measures. 

However, as the three datasets were completely independent of one another, and all 

data collection was completed prior to conception and design of the present study, 

different cognitive measures were used across the datasets. For the purposes of the 

present study, a cognitive measure was selected for analysis if it assayed a cognitive 

domain that was assessed in at least one other dataset. For example, the Psychomotor 

Vigilance Test (PVT) and Sustained Attention to Response Task (SART) assessed 

sustained attention in CR/RANN and TILDA respectively so both measures were 

selected for analysis and considered as ‘comparable’ measures. The cognitive domains 

assessed by each measure were decided with reference to the literature. Across all three 

datasets, 17 common cognitive domains were identified (see Table 2.1 for list of 

cognitive domains and cognitive measures across datasets). 

https://github.com/rorytboyle/brainPAD
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General Cognitive Status: Total scores on the Mini-Mental State Examination 

(MMSE; Folstein, Folstein and McHugh, 1975) in DEU and TILDA, and on the Mattis 

Dementia Rating Scale-2 (DRS; Jurica, Leitten, & Mattis, 2001) in CR/RANN were used 

to assess general cognitive status. Both scales assess cognitive functioning across 

domains which are typically affected by Alzheimer’s disease and cognitive impairment 

(Monsch et al., 1995; Tombaugh & McIntyre, 1992). 

Verbal Intelligence: Raw scores on the American National Adult Reading Test 

(AMNART; Grober and Sliwinski, 1991) in CR/RANN and on the National Adult Reading 

Test (NART; Nelson and Willinson, 1982) in TILDA were used to assess verbal 

intelligence. In TILDA, 60.57% of those with NART scores completed the full NART 

whereas 39.22% completed the first half of the NART only. Participants only proceeded 

to the second half of the NART if they scored over 20 on the first half. This is both a time-

saving measure and serves to reduce distress and anxiety in people with poor reading 

skills (Strauss et al., 2006). Scores of 0-11 were used as full scores but scores of 12-20 

were corrected using a conversion table outlined by Beardsall and Brayne (1990). There 

was no comparable measure of verbal intelligence in DEU. 

Phonemic Verbal Fluency: Phonemic verbal fluency was assessed using the 

total score on a Turkish language version of the FAS test in DEU, the KAS test (Tumac, 

1997), and on the CFL test in CR/RANN. These tests measure the ability to 

spontaneously produce words beginning with specific letters (i.e., ‘K’ in KAS or ‘C’ in 

CFL; Strauss, Sherman and Spreen, 2006). There was no comparable measure of 

phonemic verbal fluency in TILDA. 

Semantic Verbal Fluency: Semantic verbal fluency was assessed using the 

total score on the Animals test in all three datasets. A Turkish language version of this 

task was used in DEU (Tumac, 1997). This test measures the ability to spontaneously 

produce the name of animals (Strauss et al., 2006). 

Processing Speed: Cognitive processing speed was assessed using time to 

complete the Trail Making Test A (TMT; Reitan, 1955) in DEU and CR/RANN, and the 

Colour Trails Task 1 (CTT; D’Elia et al., 1996) in TILDA. The CTT is considered a cross-

culturally valid form of the TMT (Strauss et al., 2006). 

Executive Function: Executive function was assessed using time to complete 

the TMT B in DEU and CR/RANN and the CTT 2 in TILDA. These measures both also 

involve processing speed (Strauss et al., 2006). 
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Executive Function (without Processing Speed): A purer measure of 

executive function was obtained by subtracting the simpler TMT A and CTT 1 from the 

more complex TMT B and CTT 2, respectively. This difference score was calculated in 

all 3 datasets and controls for general processing speed (Strauss et al., 2006). 

Cognitive Flexibility: Cognitive flexibility was measured by the percentage of 

perseverative errors on the Wisconsin Card Sorting Task (WCST; Heaton, Chelune, 

Talley, Kay, & Curtiss, 1993) in DEU and CR/RANN. Cognitive flexibility is considered a 

specific process underlying executive function (Logue & Gould, 2014) and is not 

associated with processing speed (Liozidou et al., 2012), unlike the TMT B or CTT 2.  

Response Inhibition and Selective Attention: The Stroop test in DEU and 

CR/RANN was used to assess response inhibition and selective attention. A Turkish 

version of the Stroop test, the Stroop Test Çapa Version, was used in DEU (Emek-Savaş 

et al., 2020) and the measure used was the resistance to interference in seconds as 

calculated by subtracting the time taken to read the colour names from the time taken to 

name the colour ink of written colour names. The Golden version of the Stroop test 

(Golden, 1978) was used in CR/RANN and number of words completed in 45 seconds 

on the Color-Word page was used as the measure. There was no comparable measure 

of response inhibition and selective attention in TILDA. 

Sustained Attention: Sustained attention was assessed with the PVT (Dorrian, 

Rogers and Dinges, 2005) in CR/RANN using the number of false alarms (i.e., errors of 

commission) and the median reaction time across trials with an inter-trial interval of two 

to four seconds. It was assessed with the SART (Robertson et al., 1997) in TILDA using 

the number of errors of commission and the coefficient of variation in reaction time as 

measures. There was no comparable measure of sustained attention in DEU. 

Verbal Episodic Memory (Immediate): Immediate verbal episodic memory was 

assessed in DEU with the immediate recall score from the Öktem Verbal Memory 

Processes Test (OVMPT; Öktem, 1992) which is a validated Turkish version of the Rey 

Auditory Verbal Learning Test (RAVLT; Bosgelmez et al., 2015) and measures the 

number of words immediately recalled from a 15-item word list. The CR/RANN measure 

was the total recall score on the Selective Reminding Test (SRT; Buschke & Fuld, 1974), 

which measures the total number of words recalled from 6 trials of a 12-item word list 

(Strauss et al., 2006). This was assessed in TILDA using the average number of words 

immediately recalled from 2 trials of a 10-item word list as used originally in the Health 

and Retirement Study (Wallace & Herzog, 1995). 
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Verbal Episodic Memory (Delayed): Delayed verbal episodic memory was 

assessed in DEU using the delayed recall score from the OVMPT which consisted of the 

number of words recalled from the 15-word list after a 40 minute delay, and in CR/RANN 

using the delayed recall score from the SRT which consisted of the number of words 

recalled from the 12-item word list after an approximate 15 minute delay. It was assessed 

in TILDA using the number of words recalled after an approximate 20-25 minute delay 

from a 10-item word list (depending on length of time it took participants to complete 

intervening items). The TILDA measure was taken as the average score over two trials.  

Verbal Episodic Memory (Learning): Verbal episodic memory learning was 

assessed in DEU using the OVMPT total learning score which was the total number of 

words recalled in each trial and in CR/RANN using the consistent long-term retrieval 

score on the SRT which was the number of words consistently recalled on all subsequent 

trials (Strauss et al., 2006). There was no comparable measure of verbal episodic 

memory learning in TILDA. 

Working Memory: Working memory was assessed in DEU using both the Digit 

Span Forward and Digit Span Backward tests from the Wechsler Memory Scale – 

Revised Edition (WMS-R; Wechsler, 1987). In CR/RANN, the Letter-Number 

Sequencing test from the Wechsler Adult Intelligence Scale – Third Edition (WAIS-III; 

Wechsler, 1997) was used. There was no comparable measure of working memory in 

TILDA. 

Visuospatial Ability: Visuospatial ability was assessed in DEU using the 

Judgement of Line Orientation Test (BLOT; Benton, Varney, & Hamsher, 1978) which 

measures participants’ capacity to discriminate the direction of lines. In CR/RANN, the 

Block Design test from the WAIS-III, which measures ability of participants to replicate 

models or pictures presented to them using blocks (Strauss et al., 2006), was used. 

There was no comparable measure of visuospatial ability in TILDA. 
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Table 2.1 Cognitive measures available across each dataset in comparable cognitive 

domains. 

Cognitive Domain(s) DEU Measure (N) CR/RANN Measure (N) TILDA Measure (N) 

General Cognitive Status MMSE (172) DRS (370) MMSE (485) 

Verbal Intelligence n/a AMNART (362) NART (486) 

Phonemic Verbal Fluency KAS Test (137) CFL Test (360) n/a 

Semantic Verbal Fluency Animals Test (175) Animals Test (361) Animals Test (487) 

Processing Speed TMT A (93) TMT A (361) CTT 1 (487) 

Executive Function TMT B (84) TMT B (357) CTT 2 (482) 

Executive Function 

(without Processing 

Speed) 

TMT B minus TMT A 

(84) 

TMT B minus TMT A 

(357) 

CTT 2 minus CTT 1 

(482) 

Cognitive Flexibility WCST Perseverative 

Errors (50) 

WCST Perseverative 

Errors (327) 

n/a 

Response Inhibition, 

Selective Attention 

Stroop16 Interference 

Score - Time (150) 

Stroop17 Interference 

Score - Words (359) 

n/a 

Sustained Attention 

(Errors of Commission) 

n/a PVT False Alarms (176) SART Errors of 

Commission (482) 

Sustained Attention (RT) n/a PVT Median RT (176) SART CV RT (479) 

Verbal Memory 

(Immediate) 

OVMPT Immediate 

Recall (175) 

SRT Total Score (360) Immediate Recall 

(487) 

Verbal Memory (Delayed) OVMPT Delayed 

Recall (175) 

SRT Delayed Recall 

(360) 

Delayed Recall 

(487) 

Verbal Episodic Memory 

(Learning) 

OVMPT Total Learning 

Score (175) 

SRT Consistent Long 

Term Retrieval (360) 

n/a 

Working Memory WMS-R Digit Span 

Forward (171) 

WAIS-III Letter Number 

Sequencing (360) 

n/a 

WMS-R Digit Span 

Backward (170) 

 

Visuospatial Ability BLOT (80) WAIS-III Block Design 

(356) 

n/a 

Note: MMSE = Mini-mental state examination (Folstein et al., 1975); DRS Total Score = Mattis Dementia 

Rating Scale-2 – Total Score (Jurica et al., 2001); NART = National Adult Reading Test (Nelson & Willinson, 

1982); AMNART = American National Adult Reading Test (Grober & Sliwinski, 1991); CTT = Colour Trails 

Test (D’Elia et al., 1996); TMT = Trail Making Test (Reitan, 1955); WCST = Wisconsin Card Sorting Test 

(Heaton et al., 1993); SART = Sustained Attention to Response Test (Robertson et al., 1997); PVT Median 

RT = Median Reaction Time on Psychomotor Vigilance Task (Dorrian et al., 2005); SART CV RT = SART 

Coefficient of Variation of Reaction Time OVMPT = Öktem Verbal Memory Processes Test (Öktem, 1992); 

SRT = Selective Reminding Test (Buschke & Fuld, 1974); WMS-R = Wechsler Memory Scale (Wechsler, 

1987); WAIS-III = Wechsler Adult Intelligence Scale – Third Edition (Wechsler, 1997); BLOT = Benton’s 

Judgement of Line Orientation Test (Benton et al., 1978) 

                                                
16 Turkish Capa version of Stroop test (Emek-Savaş et al., 2020) 
17 Golden version of Stroop test (Golden, 1978) 
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2.2.7 Statistical Analysis 
The statistical analysis was conducted using the following procedure: 

1. Correlate. Within each independent test set, partial Spearman’s rank order 

correlations were conducted between brainPAD scores and cognitive measures, 

controlling for chronological age and sex. Sex was adjusted for to account for a 

significant sex difference in brainPADs (p < 0. 0001). 

 

2. Replicate. For findings replicated in multiple datasets, the probability of obtaining 

statistically significant p-values across multiple datasets by chance was calculated by 

random-label permutation (Good, 1994). Within each dataset, brainPAD scores were 

randomly shuffled using the randperm function in MATLAB. Spearman’s partial 

correlations were then conducted between randomly shuffled brainPAD scores and 

the cognitive dependent variables, controlling for age and sex. This process was 

repeated one million times. The number of iterations in which the random p-values 

were more extreme (i.e., smaller) than the actual p-values across datasets was 

summed and divided by one million to obtain the probability of the finding replicating 

across multiple datasets by chance. Replicated findings were deemed significant if 

this probability was less than .05. For example, if a finding was replicated across three 

datasets, the replication p-value obtained by the random-label permutation test 

represented the probability of observing correlations larger than the true correlations 

across all three datasets. 

 

3. Correct for multiple comparisons. All other correlations were then corrected for 

multiple comparisons, or the familywise error rate within individual datasets, while 

allowing for correlations among dependent cognitive variables, using a maximum 

statistic approach. In each test set, brainPAD scores were randomly shuffled using 

the randperm function in MATLAB. Spearman’s partial correlations were conducted 

between the randomly shuffled brainPAD scores and the cognitive dependent 

variables, controlling for age and sex. This process was repeated one million times 

and the maximum rho value was stored each time. Correlations between actual 

brainPAD scores and cognitive variables were deemed significant if they exceeded 

the 95th percentile of the maximum rho values. This approach was a variant of max 

T adjustments (Dudoit et al., 2003) and was used because Bonferroni and Šidák 

adjustments can be overly conservative when there are correlated dependent 

measures (Conneely & Boehnke, 2007; Dudoit et al., 2003).These analyses were 
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conducted in MATLAB and the code used to perform steps 2 and 3 of the above 

procedure is available here: https://github.com/rorytboyle/brainPAD_dataAnalysis. 

  

https://github.com/rorytboyle/brainPAD_dataAnalysis
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2.3 Results 

2.3.1 Brain age prediction 

Training set 

The model accurately predicted chronological age (r = 0.85, R2 = 67.24%, MAE 

= 7.28 years, weighted MAE = 0.10, p < 0.0001) in the training set. As with other 

brainPAD models (e.g., Cole et al., 2018), a proportional bias was observed in this 

model where chronological age correlated with prediction error (r = - 0.4452, p = 

1.1036e-10). 

Independent test sets 

Application of the coefficients to all three test sets combined resulted in a 

statistically significant correlation between brain-predicted age and chronological age of 

r = 0.73 (p < 0.0001), which explained 52.79% of the variance (R2). The combined test 

set had a mean chronological age of 62.75 (SD = 14.3) years at the time of scanning 

and mean brain-predicted age of 62.94 (SD = 13.3) years. Mean brainPAD was +0.18 

(SD = 10.25) years. MAE was 8.33 years and weighted MAE was 0.112 years. 

Application of the coefficient to each individual test set similarly resulted in statistically 

significant correlations between brain-predicted age and chronological age (see Table 

2.2).  

 

Table 2.2 Results of application of trained model parameters to independent test sets.  

Test Set r Mean brainPAD (SD) MAE  Weighted MAE  

Test Set 1 – DEU 0.78* +6.60 (6.44) 7.60 0.17 

Test Set 2 – CR/RANN 0.87* +6.39 (8.57) 8.56 0.14 

Test Set 3 - TILDA 0.65* -6.97 (7.52) 8.42 0.22 

Note: * = p < 10-37. R = Pearson’s r between brain age and chronological age,  

Weighted MAE = MAE divided by age range. 
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2.3.2 Sex differences in brainPAD 
Mean brainPAD differed significantly by sex in all datasets, Welch’s t(1009.55) = - 5.79, 

p < .0001. Males (M = -1.81, SD = 9.92) had significantly lower brainPADs than females 

(M = 1.81, SD = 10.23; see Fig. 2.1). Within individual test sets, males had significantly 

lower brainPADs, compared to females, in CR/RANN (p < .0001) and TILDA (p < .0001) 

but not in DEU (p = 0.148; see Fig. 2.2). 

 

 

Figure 2.1. Violin plot comparing distributions of brainPADs between sexes across all 

datasets. 

 

 

Figure 2.2. Violin plots comparing distributions of brainPADs between sexes within 

datasets. 
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2.3.3 Brain regions involved in brain age prediction 
The voxel-wise method used here to predict brain age resulted in individual 

coefficient values for each voxel, where voxels with positive values contributed to older 

brain age predictions and voxels with negative values contributed to younger brain age 

predictions (see Fig. 2.3). As it is difficult to visualise a 3D object containing many small 

voxels, a .nii file of the regression coefficients can be downloaded here: 

https://osf.io/5n6t8/ and used as an overlay in a viewer such as mricroGL to obtain a 

better visualization. Moreover, an .xlsx file containing the absolute value and sign 

direction (i.e., positive/negative) of each regression coefficient, the coefficient rank in 

terms of absolute values, as well as the MNI coordinates and anatomical labels of the 

coefficients, is available here: https://osf.io/dkz67/. 

 

  

Figure 2.3. Binarised regression coefficients overlaid on 5 coronal slices of the brain.  

Positive coefficients shown in pink, negative coefficients shown in yellow. A: No 

threshold applied; B: thresholded at 25th percentile of absolute value of regression 

coefficients; C: thresholded at 50th percentile of absolute value of regression coefficients; 

https://osf.io/5n6t8/
https://osf.io/dkz67/


 

61 
 

D: thresholded at 75th percentile of absolute value of regression coefficients; E: 

thresholded at 95th percentile of absolute value of regression coefficients. 

2.3.4 BrainPAD and Cognitive Function 
BrainPAD was negatively correlated with performance in specific cognitive 

domains across multiple datasets (see Fig. 2.4 and Table 2.3). The replication of 

associations between brainPAD and cognition was statistically significant in four 

cognitive domains: general cognitive status (DEU and CR/RANN, replication p-value = 

0.000002), semantic verbal fluency (DEU and CR/RANN, p < 0.000001), executive 

function (DEU, CR/RANN, TILDA, p = 0.000054), and executive function without 

processing speed (DEU and CR/RANN, p = 0.000966). 

BrainPAD was negatively associated with performance, in a single dataset, in 

four further cognitive domains: phonemic verbal fluency (DEU, rho = -0.326, p = 0.0001), 

verbal intelligence (CR/RANN, rho = -0.2322, p < 0.00001), verbal episodic memory – 

learning (DEU, rho = -0.3196, p < 0.00001), and visuospatial ability (CR/RANN, rho = -

0.1824, p = 0.0006). These associations were not replicated but survived correction for 

multiple comparisons within a single dataset.  

BrainPAD was not significantly associated with performance in any dataset, in 

seven cognitive domains: processing speed, response inhibition and selective attention, 

working memory, verbal episodic memory – immediate, verbal episodic memory – 

delayed, sustained attention, and cognitive flexibility (see Fig. S1 in 7.1.2 Supplemental 

Results for scatterplots of the brainPAD-cognition associations in each dataset that were 

either non-replicated or non-significant).  
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Figure 2.4. Scatterplots of replicated correlations between the residuals of brainPAD 

and cognitive measures after regressing brainPAD on age and sex, and each cognitive 

measure on age and sex. A: General cognitive status; B: Semantic verbal fluency; C: 

Executive Function; D: Executive Function (without Processing Speed). 
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Table 2.3 Results of Spearman’s partial correlations between brainPAD and 17 cognitive domains, adjusting for age and sex.  

Cognitive Domain 

 

DEU CR/RANN TILDA Replication 

rho df p rho df p rho df p p 

General Cognitive Status -0.3199 168 <0.0001 -0.1449 366 0.0275 -0.0333 481 0.4655 <0.00001 

Verbal Intelligence n/a -0.2322 358 <0.0001* 0.0485 482 0.2873 n/a 

Phonemic Verbal Fluency -0.3259 134 0.0001* -0.0771 356 0.1454 n/a n/a 

Semantic Verbal Fluency -0.2507 171 0.0009 -0.2019 357 0.0001 -0.0615 483 0.1765 <0.00001 

Processing Speed 0.1232 89 0.2448 0.0595 357 0.2610 0.1208 483 0.0077 n/a 

Executive Function  0.2662 80 0.0156 0.1167 353 0.0279 0.0904 478 0.0478 0.00005 

Executive Function (without Processing 

Speed) 

0.2702 80 0.0141 0.1211 353 0.0225 0.0166 478 0.7165 0.00097 

Cognitive Flexibility 0.0722 46 0.6258 0.0429 323 0.4411 n/a n/a 

Response Inhibition, Selective Attention 0.0854 146 0.3019 -0.1755 355 0.0009 n/a n/a 

Sustained Attention (Errors of 

Commission) 

n/a 0.0203 172 0.7902 0.0499 478 0.2752 n/a 

Sustained Attention (Reaction Time) n/a -0.0212 172 0.7813 0.0436 475 0.3425 n/a 

Verbal Episodic Memory (Immediate) 0.2194 171 0.0037 -0.0407 356 0.4428 -0.0347 483 0.4114 n/a 

Verbal Episodic Memory (Delayed) 0.2797 171 0.0002 0.0343 356 0.5173 0.0122 483 0.7887 n/a 

Verbal Episodic Memory (Learning) -0.3196 171 <0.0001* 0.0657 356 0.2151 n/a n/a 

Working Memory -0.1310 

-0.2974 

167 

166 

0.0895a 

0.0001b 

-0.0469 360 0.3759 n/a n/a 

Visuospatial Ability -0.0809 76 0.4815 -0.1824 352 0.0006* n/a n/a 

Note: Replication p-value reflects the probability of association between brainPAD and cognition replicating across datasets by chance. * = 

indicates associations that were not replicated across datasets but were statistically significant in a single dataset after correcting for multiple 

comparisons by applying a maximum statistic correction; a Digit Span Forwards; b Digit Span Backward.
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2.4 Discussion 
A penalised regression approach produced accurate brain-age predictions from 

T1 MRI data in three independent datasets. In non-demented adults, brainPAD, 

calculated by subtracting these brain-predicted ages from chronological age, was 

negatively correlated with general cognitive status, semantic verbal fluency, executive 

function; and executive function (without processing speed) in multiple datasets. These 

robust associations between brainPAD and cognition demonstrated that brainPAD is a 

valid operational measure of BM. However, while brainPAD was significantly correlated 

with phonemic verbal fluency, verbal intelligence, verbal episodic memory (learning 

score), and visuospatial ability in single datasets after controlling for multiple 

comparisons; these correlations were not replicated in another dataset. As such, there 

is not strong evidence here in support of these relationships. BrainPAD was not 

significantly correlated with processing speed, cognitive flexibility, response inhibition 

and selective attention, sustained attention, verbal episodic memory (immediate recall 

or delayed recall), or working memory in any dataset. These non-robust and/or non-

significant associations demonstrate that the relationship between brainPAD and 

cognition is specific to particular cognitive domains.  

 The replicated associations between lower brainPADs and better performance 

on measures of general cognitive status, semantic verbal fluency, executive function, 

and executive function (without processing speed), are supported by previous 

associations with these measures. BrainPAD has been previously associated with 

general cognitive status in non-cognitively healthy samples (Beheshti et al., 2018; 

Kaufmann et al., 2019) and in studies without statistically controlling for multiple 

comparisons or the effects of age (Beheshti et al., 2018; Cole, Underwood, et al., 2017). 

BrainPAD also been previously associated with semantic verbal fluency (Franke et al., 

2013). Furthermore, brainPAD was previously associated with executive function (with 

and without the influence processing speed, i.e., TMT B and TMT B minus A) in non-

cognitively healthy samples (Cole et al., 2015) and in studies without correcting for 

multiple comparisons (Cole, Underwood, et al., 2017). These findings clarify the 

literature in relation to the association of brainPAD and specific domains of cognitive 

function (see Chapter 5, section 5.2 for further discussion of these findings in relation to 

the literature). 

Together, the replicated associations between brainPAD and general cognitive 

status, semantic verbal fluency, executive function, and executive function (without 

processing speed) demonstrate that brainPAD is a valid operational measure of BM, as 

relatively better preservation of brain integrity, or structural health, is associated with 
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better cognition. However, this association between brainPAD and cognition is not global 

as robust associations were not observed for several other cognitive domains, including 

cognitive flexibility, phonemic verbal fluency, processing speed, response inhibition and 

selective attention, sustained attention, verbal episodic memory, verbal intelligence, and 

visuospatial ability.  

It is notable that several significant brainPAD-cognition relationships were 

replicated across the DEU and CR/RANN datasets, but not in TILDA. Nonetheless, given 

the statistically significant replication across two of the three datasets, there is reliable 

evidence in support of the correlation between brainPAD and these specific cognitive 

domains in healthy older adults. Tentative suggestions for this pattern of results include 

differences in confounds, age range, and range of cognitive performance across 

datasets. Confounding factors obscuring the brainPAD-general cognitive status 

relationship may have been uniquely present in TILDA. Whereas the DEU and 

CR/RANN cohorts were part of neuroimaging research studies, which have typically 

strict inclusion criteria, the TILDA MRI sample were a subset of a large nationally 

representative longitudinal study encompassing health, economic and social research 

(B. J. Whelan & Savva, 2013). TILDA therefore had few inclusion criteria: being at least 

50 years old, having a residential address, and absence of dementia at baseline 

(Kearney et al., 2011; Savva et al., 2013). TILDA’s MRI sample were screened for MRI 

contraindications and were on average healthier than the full sample, but it is likely that 

the TILDA sample included participants who might normally be excluded from 

neuroimaging research studies (e.g., those using psychotropic or cardiovascular 

medication). Moreover, the range of some cognitive measures in TILDA was also smaller 

than DEU and CR/RANN in some cases (see Table S4 in 7.1.2 Supplemental Results) 

notably for general cognitive status, and executive function (without processing speed), 

where the brainPAD-cognition correlations were not replicated within TILDA. Restricted 

range of scores on these measures in TILDA may have contributed to smaller correlation 

coefficients (Bland & Altman, 2011; Mendoza & Mumford, 1987). Additionally, the age 

range within TILDA was smaller than both DEU and CR/RANN which may have reduced 

the statistical power of the brainPAD-cognition correlations within TILDA as range 

restriction on covariates has also been shown to reduce power (Miciak et al., 2016) and 

decrease the magnitude of correlation coefficients (Sackett & Yang, 2000). 

The smaller age range within TILDA (38 years) as compared to DEU (45.95 

years) and CR/RANN (61 years) might also have contributed to the weaker correlation 

between chronological age and brain-predicted age in TILDA (see Table S4. in 7.1.2 

Supplemental Results), as range restriction will reduce the size of correlation coefficients 
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(Goodwin & Leech, 2006). Moreover, a negative mean brainPAD was reported in TILDA 

(-6.97 years) whereas both DEU and CR/RANN had positive mean brainPADs, +6.6 and 

+6.39 years respectively. Various factors, including intelligence, educational attainment, 

and environmental factors, have been proposed to affect brain ageing (Irimia et al., 

2015). TILDA had significantly higher levels of education versus both CR/RANN and 

DEU (see 7.1.2 Supplemental Results: Differences in Education across samples). 

Steffener and colleagues (2016) reported that brainPAD was significantly related to 

education, with higher education associated with younger brains (or smaller/more 

negative brainPADs). This association with education could be one reason why lower 

mean brainPADs were observed for the TILDA dataset. As the cohorts are each from 

different countries, there could be various other environmental factors that could further 

explain this relationship. 

 An interesting finding was that there were significantly higher mean brainPADs 

in females in two of the three datasets in this study (TILDA and CR/RANN). There is 

mixed evidence in relation to sex differences in other brain age prediction studies, with 

some studies reporting significantly higher mean brainPADs in males (Cole et al., 2018; 

Franke et al., 2013; Luders et al., 2016), some reporting no significant sex differences 

(Azor et al., 2019; Cruz-Almeida et al., 2019; Franke et al., 2014; Han et al., 2019), and 

another study, with a notably large sample size of 19,000, reporting higher mean 

brainPADs in females (Smith et al., 2019). Even studies using the same training sets 

have contrasting results in terms of sex effects. For example, one training set reported 

significantly higher male brainPADs in two studies (Franke et al., 2013; Luders et al., 

2016) but no sex differences in another study (Franke et al., 2014). However, this 

divergence could have arisen due to the likely mean centering of both brainPADs in both 

sexes in the latter study (i.e., male and female groups had mean brainPADs of 0 years). 

This was also the case in another training set used in multiple studies, with one study 

reporting significantly higher brainPADs in males (Cole et al., 2018) but another reporting 

no significant differences (Azor et al., 2019). As such, it is likely that sex differences in 

brainPAD reflect the characteristics of the test sample. This is apparent in the present 

study with two out of the three datasets showing higher mean brainPADs in females but 

one dataset showing no significant differences. 

Importantly, the brain age prediction model used here to evaluate the 

associations between brainPAD and cognition was accurate and generalisable. The 

model was evaluated based on its predictive accuracy in three independent test sets, as 

proposed by Madan and Kensinger (2018). While internal cross-validation is a valuable 

and widely used technique that can attenuate overfitting (Arlot & Celisse, 2010); the use 
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of cross-validation in certain situations and when it is not implemented correctly, can 

result in overestimated prediction accuracy and overfitting (Saeb et al., 2016; Skocik et 

al., 2016; Varoquaux et al., 2017). For brainPAD to be considered for clinical use, it must 

perform accurately with MRIs acquired in different scanners and under different 

protocols. However, in most instances of cross-validation, while the test set is split and 

held completely independent from the training set, factors common to both sets, such as 

scanner and protocol, could influence model performance. The evaluation of model 

performance on external test sets is a stronger test of generalisation (Gillan & Whelan, 

2017). As such, the gold-standard evaluation for brainPAD should be accurate 

performance on independent external datasets. The significant correlations between 

chronological age and brain-predicted age in all three external datasets shows that the 

model is accurate and generalisable (0.65, 0.78, and 0.87 for external datasets). 

Although the magnitude of these correlations is lower than correlations reported 

elsewhere, ranging from 0.91 to 0.94 (Cole et al., 2015; Cole, Poudel, et al., 2017; 

Franke et al., 2010; Lancaster et al., 2018; Liem et al., 2017), it exceeds other externally 

validated brain-predicted age studies, ranging from 0.65 to 0.85 (Beheshti et al., 2018; 

Madan & Kensinger, 2018; Varikuti et al., 2018). 

With respect to MAE, the model did not perform as well as other externally 

validated studies, ranging from 4.28 to 7.5 years (Beheshti et al., 2018; Cole et al., 2018; 

Franke et al., 2010; Lancaster et al., 2018; Madan & Kensinger, 2018). As a result, it 

could be possible that the model may have lost some precision by not integrating WM 

information as input, as was done by Cole et al. (2018), for example. Another potential 

reason is that other studies centred the age predictions using the mean of the ages from 

the test set. Although this correction is typically not explicitly described in method 

sections, Madan and Kensinger (2018) note that this is a standard correction in brain 

age prediction. Moreover, some studies also match the variance in predicted age in the 

test set with the variance of the training data (Madan & Kensinger, 2018). Both 

corrections are principled and acceptable methods of correcting for the regression to the 

mean artefact in brain age predictions but they result in biased age predictions in the 

test set. These corrections also limit the use of brainPAD to make single subject 

predictions, as both the test set mean and variance are used in the prediction. The 

method in the present study used only training set information and therefore produced 

slightly less accurate but less biased predictions. Finally, the model may also appear to 

be less precise in terms of MAE as an artefact of the greater age range of the samples 

assessed here in comparison to most brainPAD studies. An alternative metric, the 

weighted MAE (calculated by dividing the MAE by the age range of the sample), may 
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enable better comparisons across studies with different age ranges (Cole et al., 2019). 

While the weighted MAE is higher than some studies, ranging from 0.072 to 0.087 

(Lancaster et al., 2018; Liem et al., 2017), the lowest weighted MAE in the present study 

(0.14 in CR/RANN) outperformed this metric when calculated for other studies, 0.178 

(Beheshti et al., 2018), and 0.18 (Varikuti et al., 2018) and is comparable to 0.139 

(Franke et al., 2010, 'Test 4' external test set). As such, the predictive accuracy of the 

model is comparable to the rest of the literature and is arguably less biased as only 

training set information is used. 

In addition to the good accuracy and generalisability observed for the brain age 

prediction model here, the model was interpretable. The interpretability of machine 

learning models is an important and widely discussed problem (Doshi-Velez & Kim, 

2017), and although it is poorly defined (Lipton, 2018) it has been described as “the 

ability to explain or to present in understandable terms to a human” (Doshi-Velez & Kim, 

2017, p. 2) and elsewhere as the ability to “understand the contribution of individual 

features in the model” (Lou et al., 2012, p. 1). Additionally, Lipton (2018) argued that for 

a model to be considered truly interpretable, it should possess the following three 

properties: algorithmic transparency (i.e., it should be possible to understand the 

mechanism by which the model works), decomposability (each part of the model, such 

as the model input and parameters, should have an intuitive explanation), and 

simulatability (a person should be able to consider the entire model at once). The present 

model possessed these three properties as well as conforming to the definitions 

proposed above. First, the model possessed algorithmic transparency in that the Elastic 

Net is a penalised linear regression. Second, the model possessed decomposability. 

The inputs to the model were GM voxel density values and the parameters, or beta 

coefficient values, weighted the contribution of each individual value to the model output, 

which is brain predicted age. Third, the model possessed simulatability as the entire 

model can be considered as follows: summing the multiplication of GM voxel density 

values by the average contribution of these voxels to the prediction of chronological age 

in the training set (i.e., the beta coefficient values) resulted in a prediction of a new 

individual’s brain age.  

While the model of brain age demonstrated good interpretability from a statistical 

and machine learning perspective, the biological interpretability of the model was 

suboptimal. The statistical model of brain age described here contained many adjacent 

voxels with opposite signs. The negative weights represent those areas with less volume 

(associated with older age). The positive weights displayed areas that have more volume 

associated with older age, which may seem counterintuitive: this may be because GM 
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in these areas represents a shift away from the cortex or periventricular regions (i.e., 

younger participants would have WM or CSF in those regions). An example of a similar 

result can be seen in an AD classification study (Dubois et al., 2014), which also used 

penalised regression. The biological interpretability of the model could be further 

improved by forcing sparsity to limit the number of voxels making significant contributions 

to brain age predictions. Modified Elastic Net algorithms, such as Enet-BETA (Liu & Li, 

2017), can obtain sparser models which would reduce the number of predictive voxels, 

thereby further improving interpretability. However, as the Elastic Net’s prediction 

accuracy can increase with feature set size (Jollans et al., 2019), further limiting the 

feature set size could reduce model accuracy. As such, it might be difficult to achieve 

the right balance between interpretability and accuracy. An alternative approach could 

be to incorporate a penalty such as Total Variation within the Elastic Net in order to take 

into account the spatial structure of MRI data and produce weight maps that show the 

predictive voxels clustered in regions rather than dispersed across the brain (Dubois et 

al., 2014). These algorithms have been shown to produce models with greater biological 

interpretability (i.e., spatially organised weight maps) and comparable predictive 

accuracy to regular Elastic Net models for classification problems (Dubois et al., 2014). 

However, the technical implementation of such algorithms can be difficult and 

computationally expensive, although solutions such as early stopping and feature 

screening, have been proposed (Dohmatob et al., 2015). 

In conclusion, the brain age model presented here is accurate and generalizable 

as it significantly predicts chronological age in three independent datasets. Furthermore, 

this model is interpretable. Finally, brainPAD scores, calculated using this model, are 

associated with reduced cognitive performance within the domains of general cognitive 

status; semantic verbal fluency; executive function; and executive function (without 

processing speed). The replication of these correlations across multiple datasets 

demonstrates that the relationship between brainPAD and these domains of cognitive 

function is robust to cultural- and site/scanner effects. Therefore, these robust 

associations between brainPAD and specific domains of cognition demonstrate that 

brainPAD is a valid operational measure of BM, as better preserved structural brain 

health is associated with better cognitive function. Furthermore, given that brainPAD is 

not limited by task effects which can hinder neuropsychological assessment, these 

findings provide support for the use of brainPAD as an additional or supplementary 

objective measure of general cognitive function with applications as a general measure 

of brain health and cognitive performance in the clinic and as a summary outcome 

measure for intervention studies in research settings.  
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3 Chapter 3: A systematic comparison of cognitive 

reserve proxy variables across two older adult cohorts 

3.1 Introduction 
Neuropathology and measures of brain structure do not fully explain cognitive 

decline (Boyle et al., 2013) nor age-related variation in cognitive function (Hedden et al., 

2014). This well-established gap between brain and cognition may be explained by CR, 

which is most commonly measured using socio-behavioural proxy variables. As outlined 

in Chapter 1 (see Section 1.5), CR proxies are easy to collect, have a straightforward 

interpretation, and are widely associated with a reduced risk of dementia and cognitive 

decline in epidemiological studies.  

Despite the widespread use of CR proxies, the specific proxies used vary across 

studies and have rarely been assessed in complete CR models (i.e., alongside both a 

measure of cognitive outcome and a measure of brain structure). Complete models can 

test independent associations between proxies and cognitive function in addition to the 

moderation effect of proxies on the brain-cognition relationship. This enables the CR 

proxy to be assessed with respect to whether it satisfies the cognitive benefit criterion, 

which holds that a valid measure of CR should demonstrate a protective effect on 

cognition (Franzmeier, Duering, et al., 2017; Stern et al., 2020). Because of the variation 

in proxies used across studies and the lack of complete CR models, there is insufficient 

empirical evidence guiding the choice of proxy measures of CR and poor comparability 

across studies. In effect, this means researchers, particularly those lacking 

neuroimaging data and therefore unable to assess complete CR models, may 

inadvertently measure CR with proxies that are not valid measures of CR. Similarly, 

clinicians attempting to adjust cognitive screening measures for CR levels, may use 

invalid measures of CR. Furthermore, as the face validity of candidate neuroimaging 

measures of CR should be assessed via their correlations with CR proxies, variation in 

the proxies used may also impair the comparability of different candidate neuroimaging 

measures.  

A methodology to establish the validity, and compare the robustness, of different 

CR proxies is to use hierarchical linear moderated regressions to systematically assess 

standard CR proxies and their composites in complete CR models. This approach can 

establish whether a CR proxy satisfies the cognitive benefit criterion, via the examination 

of both moderation and independent effects within the same analysis framework. This is 

important because, although moderation effects should ideally be observed to validate 

a CR proxy or measure (Stern et al., 2020), they are typically small in real-world data 
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(Morris et al., 1986), explaining 1-3% of the variance in the outcome (Champoux & 

Peters, 1987). Consequently, large sample sizes are required to detect the typically 

small moderation effects (Whisman & McClelland, 2005). This issue is further 

exacerbated when measurement error is present in either variable in the interaction term 

(e.g., the CR proxy and measure of brain structure) used to assess the moderation effect 

(Dunlap & Kemery, 1988) or when either variable in the interaction term is associated 

with the outcome variable (e.g., cognitive function; Whisman & McClelland, 2005). Given 

these difficulties in identifying moderation effects, it is important to also consider the 

independent effect when assessing the validity of CR proxies. 

Hierarchical moderated linear regressions allow the robustness (i.e., frequency 

of effects using different measures of brain structure and cognitive function) and 

magnitude of both moderation and independent effects of different proxies to be 

compared. To establish their validity and robustness, five common CR proxies – 

education, occupational complexity, verbal intelligence, leisure activities, and exercise – 

were assessed in complete CR models in two separate community-dwelling older adult 

cohorts: TILDA (n = 313) and CR/RANN (n = 234). In addition to the five individual 

proxies, composite proxies were created using all possible combinations of those 

proxies. Fifteen complete CR models were created with three brain structure variables 

(GM volume, hippocampal volume, and mean cortical thickness) and five cognitive 

variables (verbal fluency, processing speed, executive function, episodic memory, and 

global cognition). The robustness and validity of the individual and composite proxies 

were assessed across the two datasets using hierarchical moderated linear regressions.  
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3.2 Method 

3.2.1 Participants 
The first dataset consisted of 313 community-dwelling adults (mean age = 68.90 

years, SD = 6.75 years, range = 54-88 years; 50.48% female) from the TILDA dataset 

(as described in Section 2.2.2). Study-specific inclusion criteria (in addition to the criteria 

outlined in Section 2.2.2) included: no history of neurological conditions and available 

data for CR proxies and cognitive function.  

The second dataset consisted of 234 community-dwelling adults (mean age = 

64.49 years, SD = 7.42 years, range = 50-80 years; 51.28% female) selected from the 

CR/RANN dataset (as described in Section 2.2.2). Study-specific inclusion criteria (in 

addition to the criteria outlined in Section 2.2.2) included: aged 50 years or older and 

available data for CR proxies and cognitive function. 

3.2.2 Measures: CR Proxies 
Data was available for 5 socio-behavioural proxies in both datasets: Educational 

attainment, Occupational complexity, Verbal intelligence, Leisure activities, and Physical 

activity. In TILDA, further data was available for the proxies: Cognitively stimulating 

activities and Social engagement.  

Educational attainment was measured using years of formal education in both 

datasets. In TILDA, participants were asked to indicate the age at which they first left 

continuous full-time education. This information was missing for 4 participants in the final 

sample (1.28%), so it was imputed using educational qualification, father’s education, 

age, sex, and rural residence during childhood as previously described (Henretta & 

McCrory, 2016).  

Occupational complexity was measured using the complexity of work in the 

dimensions of data, people, and things (Smart et al., 2014) using ratings obtained from 

an online catalogue of the Dictionary of Occupational Tiles (DOT: 

www.occupationalinfo.org). Ratings for each dimension were reversed (such that higher 

scores reflected greater complexity) and then summed to create a total occupational 

complexity score, with scores ranging from 0 (minimal complexity) to 21 (maximal 

complexity). This was obtained for each participant’s current occupation or last 

occupation before retirement in TILDA and for participant’s occupation of longest 

duration of their lifetime in CR/RANN. 

Verbal intelligence was measured using the total number of correctly 

pronounced words on the National Adult Reading Test (NART; Nelson & Willinson, 1982) 

in TILDA and the American National Adult Reading Test (AMNART; Grober & Sliwinski, 
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1991) in CR/RANN. In TILDA, a stress/anxiety-preventative and time-saving measure 

(Strauss et al., 2006) was employed such that participants only completed the second 

half of the NART if they scored greater than 20 on the first half. A correction procedure 

was employed whereby scores of 0-11 were retained as full scores, but scores of 12-20 

in participants who did not complete the second half were corrected using a conversion 

table outlined by Beardsall and Brayne (1990). Possible scores on the NART, in TILDA, 

ranged from 0 to 50 and on the AMNART, in CR/RANN, from 0 to 45. While the NART 

is often used to provide a measure of premorbid intelligence, NART scores are labelled 

here as verbal intelligence in line with previous CR studies (Fleck et al., 2017; Oosterman 

et al., 2020). 

Leisure activities were assessed in TILDA by participants rating their current 

frequency of engagement on an 8-point Likert scale (0 = Never to 7 = Daily/Almost Daily) 

in 9 activities: watching television, going to films/plays/concerts, travel, listening to 

music/radio, going to the pub, eating out, sports/exercise, visiting/talking on phone, and 

volunteering. In CR/RANN, participants rated their frequency of engagement over the 

preceding 6 months on a 3-point Likert scale (1 = Never to 3 = Often) in 17 activities: 

television/radio, cards/games, reading, lectures/concerts, theatre/movies, travel, 

walks/rides, crafts/hobbies, music, visiting, sports/dancing/exercise, cooking, group 

membership, collecting, religious activities, and volunteering. For both datasets, total 

scores were created by summing individual responses and possible scores ranged from 

0 to 63 in TILDA and 17 to 51 in CR/RANN. 

Physical activity was assessed in TILDA by calculating the total metabolic 

minutes arising from self-reported physical activity over the last week using the 

International Physical Activity Questionnaire-Short Form (Craig et al., 2003; Lee et al., 

2011). This questionnaire assessed the time spent in 3 categories: vigorous, moderate, 

and walking. Responses were converted to metabolic equivalent minutes (Craig et al., 

2003) and summed. In CR/RANN, physical activity was calculated using total metabolic 

hours arising from physical activity in an average week. The Godin Leisure Time 

Exercise Questionnaire (Godin & Shephard, 1985) assessed the frequency of activity 

sessions lasting > 15 mins in 3 categories: strenuous, moderate, and mild exercise. 

Responses were then weighted by the average estimated duration of activity in each 

category (0.5, 0.75, 1 hr respectively) and their metabolic equivalent values (9, 5, 3; 

Ogino et al., 2019; Scarmeas et al., 2009).  

Cognitively stimulating activities were assessed in TILDA with a questionnaire 

where participants rated their frequency of engagement on an 8-point Likert scale 



 

74 
 

(0=Never to 7=Daily/Almost Daily) in 5 activities: attending classes and lectures, working 

in the garden/home or on a car, reading books/magazines, spending time on 

hobbies/creative activities, and playing cards/bingo/games. Total scores were created 

by summing individual responses and possible scores ranged from 0 to 35. 

Social engagement was measured in TILDA using the Social Network Index 

(Berkman & Syme, 1979) which provides a total score, ranging from 0 to 4, reflecting an 

individual’s degree of social connection (McCrory et al., 2016). 

Composite proxies were created by first standardising (z-scoring) individual 

proxies. Next, every unique combination of proxies was generated and the composite 

proxy was the average of those proxies. For TILDA, this produced 120 unique composite 

proxies. For CR/RANN, this resulted in 26 composite proxies.  

To summarise, for TILDA there were 127 proxies in total (individual and 

composite) and 31 in total for CR/RANN. To attenuate possible effects of outliers, all 

proxies were Winsorized using a robust technique based on the median absolute 

deviation (Leys et al., 2013). Outliers were identified as values greater than a threshold 

of 3 median absolute deviations from the median. Identified outliers were replaced by 

the median +/- 3 median absolute deviations.  

3.2.3 Measures: Cognitive Function 
Verbal Fluency was assessed using the Semantic Verbal Fluency measures as 

described in Section 2.2.6. Whereas Chapter 2 had both a measure of semantic and 

phonemic verbal fluency, only semantic verbal fluency was assessed in the present 

study and so the term verbal fluency is used for brevity. These variables – and all 

cognitive function measures – were standardised and Winsorized, as described above 

for the CR proxies. 

Processing Speed was measured using the Processing Speed variables as 

described in Section 2.2.6. Scores were reversed coded, such that higher scores 

reflected greater cognitive performance. 

Executive Function was assessed using the Executive Function variables18 as 

described in Section 2.2.6. Scores were reverse coded such that higher scores reflected 

greater cognitive performance. 

Episodic Memory was measured in both datasets with a composite measure 

created from the Verbal Episodic Memory (Immediate) and Verbal Episodic Memory 

                                                
18 For clarity, Executive Function variables refers to CTT 2 (TILDA) and TMT B (CR/RANN), not 
the Executive Function (without Processing Speed) variables. 
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(Delayed) variables as described in Section 2.2.6. The composite measure was created 

using the average of the standardised and Winsorized immediate and delayed recall 

variables. 

Global Cognition was measured using a composite measure of all five cognitive 

variables in each dataset: verbal fluency, processing speed, executive function, verbal 

episodic memory (immediate) and verbal episodic memory (delayed). All variables were 

Winsorized and standardised prior to creation of the composite. The composite variable 

was then Winsorized and standardised itself. 

3.2.4 Measures: Brain Structure 
T1 MRI scans were acquired in both datasets as described in section 2.2.3. T1 

MRIs were inspected and processed in TILDA and CR/RANN using FreeSurfer v6.0 and 

v5.1 (Fischl, 2012), respectively, as described previously (Carey et al., 2019; Habeck et 

al., 2016). Total GM volume and hippocampal volume were obtained from Freesurfer 

and both were divided by Freesurfer’s estimated total intracranial volume to adjust for 

head size. Brain images were parcellated using the Desikan Killiany atlas, with 34 

cortical regions of interest (ROIs) per hemisphere (Desikan et al., 2006). The mean 

cortical thickness of each cortical ROI was calculated. Mean cortical thickness was 

calculated as the mean over cortical ROIs. All variables were standardised and 

Winsorized. 

3.2.5 Statistical Analysis 
Fifteen individual brain structure-cognitive function models were created for each 

combination of brain structure and cognitive function variable, where one brain structure 

variable was selected as an independent variable and one cognitive function variable 

was selected as an outcome variable (Fig. 3.1). A moderated hierarchical regression 

was conducted within each brain structure-cognitive function model (n = 15) for each 

unique proxy (TILDA = 127; CR/RANN = 31). In Step 1, a cognitive measure was 

regressed on age, sex, and a measure of brain structure. In Step 2, a proxy variable was 

included as an independent variable. In Step 3, the interaction term for brain structure 

and the proxy was added.  

To protect against violations of linear regression assumptions, the analysis was 

repeated using a robust regression, specifically an iteratively reweighted least squares 

regression with Tukey’s biweight function and median absolute deviation scaling. 

Significant effects within each dataset were only considered significant if they were 

statistically significant in both the linear regression and robust regression. To control for 

multiple comparisons and to ensure generalisability of findings, effects were only 
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considered significant if they were statistically significant across both datasets. The 

analysis was conducted with customised Python code (available here: 

https://github.com/rorytboyle/hierarchical_regression) which used the statsmodels 

module (Seabold & Perktold, 2010). The change in R2 (i.e., amount of variance 

explained) from Step 1 to Step 2, and from Step 2 to Step 3 in linear regression models 

were used to assess the size of the independent and moderation effects of CR proxies, 

respectively. Where significant effects were observed, the mean R2 change across both 

datasets was calculated to assess the average additional variance explained by the 

proxy and its interaction with brain structure. 

Figure 3.1. Schematic of basic brain structure-cognitive function models created for 

analysis. 

  

https://github.com/rorytboyle/hierarchical_regression
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3.3 Results 

3.3.1 Demographics 
In TILDA, some data were missing for mean cortical thickness (n = 34) and CTT 2 and 

Global Cognition (n = 2). In CR/RANN, the same n was used (n = 234) in all models. 

Consequently, different sample sizes were used across models within TILDA (see Table 

3.1).  

Table 3.1 Demographics for complete CR models assessed in hierarchical regressions. 

Dataset Brain Structure Cognition n Mean Age (SD, 

Range) 

Sex 

(M/F) 

 

 

 

 

 

TILDA 

Grey Matter Volume, 

Hippocampal Volume 

Verb Flu, 

Proc Speed,  

Epi Mem 

313 68.90 (6.75, 54 – 88) 155/158  

Grey Matter Volume, 

Hippocampal Volume 

Exec Func,  

Glob Cog 

311 68.91 (6.77, 54 – 88) 154/157  

Mean Cortical 

Thickness 

Verb Flu, 

Proc Speed,  

Epi Mem 

279 69.16 (6.64, 54 – 88) 137/142  

Mean Cortical 

Thickness 

Exec Func,  

Glob Cog 

277 69.18 (6.66, 54 – 88) 136/141  

CR/RANN All All 234 64.49 (7.42, 50 – 80) 114/120  

Note: Verb Flu = Verbal Fluency, Proc Speed = Processing Speed, Epi Mem = Episodic Memory, 

Exec Func = Executive Function, Glob Cog = Global Cognition. 
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Figure 3.2. Heatmaps showing Pearson’s correlations between individual proxies in 

each dataset. * = p < .05, ** = p < .01, *** = p <.001.  

 

3.3.2 Step 1: Brain-Cognition Relationships 
Models in Step 1 of the hierarchical regression (i.e., containing a brain structure 

measure, sex, and age) were significantly associated with cognitive measures across 

both datasets (see Tables 3.2 and 3.3), except for two models in CR/RANN 

(hippocampal volume-executive function, and hippocampal volume-episodic memory). 

Sex was independently associated with cognitive function in 40% and 20% of brain-

cognition models in TILDA and CR/RANN, respectively. These associations were such 

that in these models in TILDA, females had higher cognitive function than males, on 

average, with other variables (i.e., brain structure and age) being equal. In these models 

in CR/RANN, females had lower cognitive function than males, on average, with other 

variables being equal. Age was negatively associated with cognitive function, 

independent of brain structure and sex, in 100% and 40% of models in TILDA and 

CR/RANN, respectively.  

In TILDA, only one brain structure variable, mean cortical thickness, was 

independently positively associated with cognitive function (processing speed). In 

CR/RANN, GM volume was independently positively associated with all cognitive 

measures and cortical thickness was independently positively associated with all 

cognitive measures except for processing speed. Hippocampal volume was not 

independently associated with any measure of cognition in either dataset.
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Table 3.2 Results from step 1 of hierarchical regressions in TILDA. 

Cognition Model Statistics Brain Structure Sex Age 

 n R2 f Variable β β β 

Verb Flu 313 .043 4.597** 

Grey Matter 

Volume 

.042 -.030 -.205** 

Proc Speed 313 .129 15.320**** .041 .084 -.360**** 

Exec Func 311 .143 17.070**** .048 .052 -.383**** 

Epi Mem 313 .079 8.780**** .021 .352** -.207** 

Glob Cog 311 .159 19.400**** .048 .217* -.373**** 

Verb Flu 313 .042 4.475** 

Hippocampal 

Volume 

-.005 -.004 -.229** 

Proc Speed 313 .129 15.226**** -.025 .120 -.394**** 

Exec Func 311 .143 17.010**** -.041 .101 -.428**** 

Epi Mem 313 .080 8.902**** .044 .341** -.195** 

Glob Cog 311 .158 19.171**** .002 .243* -.396**** 

Verb Flu 279 .051 4.898** 

Mean Cortical 

Thickness 

.103 .002 -.192** 

Proc Speed 279 .173 19.217**** .122* .042 -.370**** 

Exec Func 277 .195 22.040**** .090 .065 -.428**** 

Epi Mem 279 .091 9.202**** -.036 .414** -.216*** 

Glob Cog 277 .195 22.105**** .065 .251* -.391**** 

Note: * = p < .05, ** = p < .01, *** = p < .001, **** = p < .0001. Verb Flu = Verbal Fluency, Proc Speed 

= Processing Speed, Exec Func = Executive Function, Epi Mem = Episodic Memory, Glob Cog = 

Global Cognition. 
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Table 3.3 Results from step 1 of hierarchical regression models in CR/RANN. 

Cognition Model Statistics Brain Structure Sex Age 

n R2 f Variable β β β 

Verb Flu 234 .087 7.320***  

 

Grey Matter 

Volume 

.258*** -.073 -.062 

Proc Speed 234 .087 7.344*** .218** -.296* -.120 

Exec Func 234 .047 3.762* .175* -.247* -.063 

Epi Mem 234 .061 4.998** .221** .070 -.072 

Glob Cog 234 .130 11.498**** .330**** -.148 -.117* 

Verb Flu 234 .043 3.449*  

 

Hippocampal 

Volume 

 

.078 <-.001 -.111* 

Proc Speed 234 .061 5.014** .034 -.225 -.173** 

Exec Func 234 .030 2.339 .026 -.190 -.107 

Epi Mem 234 .033 2.608 .032 .142 -.127* 

Glob Cog 234 .069 5.671*** .061 -.044 -.195** 

Verb Flu 234 .065 5.303**  

 

Mean Cortical 

Thickness 

 

.166** -.024 -.098 

Proc Speed 234 .073 6.063*** .129 -.252* -.152* 

Exec Func 234 .048 3.834* .153* -.226 -.077 

Epi Mem 234 .053 4.281** .159* .106 -.098 

Glob Cog 234 .109 9.401**** .231*** -.092 -.158** 

Note: * = p < .05, ** = p < .01, *** = p < .001, **** = p < .0001. Verb Flu = Verbal Fluency, Proc Speed 

= Processing Speed, Exec Func = Executive Function, Epi Mem = Episodic Memory, Glob Cog = 

Global Cognition. 

3.3.3 Step 2a: Independent Effects 
Significant positive independent effects were observed for 18 proxies, including 2 

individual proxies and 16 composites, across the 15 models in both datasets. As there was 

a large number of individual significant independent effects across both datasets, a 

spreadsheet containing detailed data on these effects is available here: 

https://tinyurl.com/sigAcrossBoth. Similar spreadsheets are available for effects within 

TILDA: https://tinyurl.com/sigInTILDA and within CR/RANN: 

https://tinyurl.com/sigInCRRANN.  

The proxy with the largest average independent effect on cognition was verbal 

intelligence (mean R2 change = 0.097; see Fig. 3.3). Verbal intelligence was the most robust 

proxy: independent effects were replicated across both datasets in 100% of models. The 

largest average independent effects were observed for verbal intelligence on global 

cognition where it explained a mean additional 16.80% (hippocampal volume), 15.87% (GM 

volume), and 14.66% (mean cortical thickness) of the variance after accounting for age, sex, 

https://tinyurl.com/sigAcrossBoth
https://tinyurl.com/sigInTILDA
https://tinyurl.com/sigInCRRANN
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and brain structure (see Fig. S2 in 7.2.1 Supplemental Results for scatter plots of proxies 

with 10 largest average independent effects). Education was the only other individual proxy 

with reproducible independent effects on cognition (mean R2 change = 0.033), which were 

observed in 20% of models, all of which contained executive function.  

The most robust composite proxy was comprised of occupational complexity and 

verbal intelligence (mean R2 change = 0.064) which was replicated in 86.67% of models. 

The composite proxy with the largest average independent effect on cognition was 

educational attainment and verbal intelligence (mean R2 change = 0.08) which was 

replicated in 80% of models. Only one composite with reproducible independent effects on 

cognition – occupational complexity and physical activity – did not include verbal 

intelligence. This was the least robust composite as it was replicated in a single model and 

had the smallest average effect (mean R2 change = 0.002). 

Figure 3.3. Mean R2 change across datasets in all models for proxies with significant effects.  

+ indicate composite proxies (e.g., Education + Verbal IQ = composite of educational 

attainment and verbal intelligence). Black vertical bars represent the mean R2 change 

across all models for that proxy in both datasets. All models were adjusted for brain 

structure, age, and sex. 
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Figure 3.4.  R2 change in all TILDA models for individual proxies. Black vertical bars 

represent the mean R2 change across all models for that proxy. All models were adjusted 

for brain structure, age, and sex. 

 

Figure 3.5.  R2 change in all TILDA models for composite proxies. Each row refers to all 

composites including that proxy (e.g., Verbal IQ+ refers to all composites including verbal 

intelligence). Black vertical bars represent the mean R2 change across all models for all 

composites containing that proxy. All models were adjusted for brain structure, age, and 

sex. 
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3.3.4 Step 2b: Additional Independent Effects 
Data was only available for cognitively stimulating activities and social engagement 

in TILDA. Consequently, these effects could not be assessed in terms of their reproducibility. 

However, within TILDA, positive independent effects of cognitively stimulating activities on 

cognition were observed in 100% of models and this proxy had the second largest average 

independent effect of all individual proxies (mean R2 change = 0.065, see Fig. 3.4). In 

contrast, positive independent effects of social activities on cognition were observed in only 

40% of models and this proxy had the second smallest average independent effect of all 

individual proxies (mean R2 change = 0.008). The only individual proxy with smaller effects 

than social engagement was physical activity which did not have significant effects on 

cognition in any model.  

Composite proxies including verbal intelligence had the largest average effects on 

cognition, followed by cognitively stimulating activities, and then education (see Fig. 3.5). 

Composites including verbal intelligence had significant effects on cognition in all models in 

TILDA. The composite with the largest effect in TILDA was verbal intelligence and 

cognitively stimulating activities (mean R2 change = 0.13). 

3.3.5 Step 3: Moderation Effects 
There were no significant moderation effects in either dataset for any proxy. There 

were however non-replicated moderation effects that did not survive correction for multiple 

comparisons. Negative moderation effects are consistent with the CR hypothesis as they 

reflect weaker associations between brain structure and cognition in individuals with higher 

CR, suggesting that individuals with higher CR are less reliant on brain structure to sustain 

cognitive function. 31 non-replicated negative moderation effects were observed in TILDA 

(see Table S5 in 7.2.1 Supplemental Results), but none survived correction for multiple 

comparisons (Bonferroni-adjusted alpha = 0.0004: alpha [0.05] / comparisons per model 

[127]). 61.29% of these effects were observed for composite proxies including cognitively 

stimulating activities, which was not available in CR/RANN. No negative moderation effects 

were observed in CR/RANN.  

 Positive moderation effects contradict the CR hypothesis as they reflect stronger 

associations between brain structure and cognition in individuals with higher CR, suggesting 

that individuals with higher CR are more reliant on brain structure to sustain cognitive 

function. Non-replicated positive moderation effects were observed in both datasets (see 

Table S6 in Section 7.2.1 Supplemental Results) but none survived correction for multiple 
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comparisons. Eight effects were observed in TILDA (Bonferroni-adjusted alpha = 0.0004) 

and seven effects were observed in CR/RANN (Bonferroni-adjusted alpha = 0.0016: alpha 

[0.05] / comparisons per model [31]). The Bonferroni corrections for multiple comparisons 

applied here are liberal as they correct for number of proxies compared per brain-cognition 

model (TILDA: 127, CR/RANN: 31) rather than number of total comparisons across all 

proxies and all brain-cognition models (TILDA: 1905; CR/RANN: 465). 
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3.4 Discussion 
The reproducibility and magnitude of moderation and independent effects of 33 CR 

proxies, comprised of 5 standard individual proxies and all their unique combinations, were 

assessed across 2 datasets to investigate their validity as measures of CR. No moderation 

effects of CR proxies on the association between brain structure, as measured by GM 

volume, hippocampal volume, or mean cortical thickness, and cognition were observed 

across both datasets. Replicated independent effects – positive associations with cognitive 

function, independent of brain structure – were observed for 2 individual proxies (verbal 

intelligence and educational attainment) and 16 composites. The most robust and largest 

independent effects on cognition were found for verbal intelligence, which satisfied the 

independent effect criterion in all 15 brain-cognition models across both datasets. 

Educational attainment satisfied the independent effect criterion in 3 brain-cognition models. 

No composite proxy had larger or more robust independent effects on cognition than verbal 

intelligence alone. These results suggest that when proxies are used to measure or adjust 

for CR in cognitively healthy older adults in cross-sectional studies, verbal intelligence 

should be used.  

Verbal intelligence had the largest and most robust independent effects on cognition. 

Unlike previous studies, due to the availability of two large neuroimaging datasets, it was 

demonstrated that independent effects of verbal intelligence on cognition were present in 

several brain-cognition models and were replicable. This validation of verbal intelligence as 

a CR proxy supports previous, narrower, associations between verbal intelligence and 

cognitive function in the presence of hippocampal atrophy (Topiwala et al., 2019), a 

neuropathological ‘residual’ measure of CR (Negash et al., 2013), a functional connectivity 

measure of CR based on task potency (van Loenhoud et al., 2020), and a possible 

neuromarker of CR, locus coeruleus signal intensity (Clewett et al., 2016).  

Aside from verbal intelligence, the only other individual proxy with replicable 

independent effects on cognition was educational attainment. These effects were only 

observed in brain-cognition models where executive function was the cognitive outcome 

variable. While education has been previously positively associated with executive function, 

without accounting for brain structure, in cognitively healthy older adults (Laubach et al., 

2018) and in a systematic review (Opdebeeck et al., 2016), the present results show that 

this association is independent of GM volume, hippocampal volume, and mean cortical 

thickness. Notably, the effects of education on cognition were less robust than verbal 
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intelligence, as positive associations were not seen across both datasets for verbal fluency, 

processing speed, episodic memory and global cognition. As such, these results suggest 

that educational attainment is not a reliable individual proxy of CR in cognitively healthy 

older adults (see Chapter 5, section 5.2.2 for further discussion of the evidence favouring 

the use of verbal intelligence over educational attainment). This conclusion is supported by 

previous findings including a systematic review which found positive evidence for education 

in only 38% of complete models with cognitively healthy samples (Chapko et al., 2018) and 

a non-significant association between education (when considered separately from other 

possible CR proxies) and a neuropathological residual measure of CR (Reed et al., 2011). 

Based on their findings using ex-vivo neuropathological measures, Reed et al. (2011) 

concluded that the observed effects of education on cognition should not be simply 

considered as reserve effects. These results further show that this conclusion is valid when 

using in-vivo neuroimaging measures of brain structure. 

 Significant positive independent effects on cognition were observed for 16 different 

composite proxies across both datasets. Three composites had significant independent 

effects on cognition in at least two thirds of the brain-cognition models assessed: 

occupational complexity and verbal intelligence (86.67% of models); education and verbal 

intelligence (80% of models); and education, occupational complexity, and verbal 

intelligence (66.67% of models). This is a novel finding as the most robust composite – 

occupational complexity and verbal intelligence – has never (to the best of my knowledge) 

been used previously as a CR proxy, likely due to the predominant use of education both 

as an individual proxy and in composites. The next most robust composite of education and 

verbal intelligence has been widely used (Fleck et al., 2017; Kwak et al., 2020; Oosterman 

et al., 2020; Pettigrew et al., 2013, 2017; Soldan et al., 2017; Steffener et al., 2014) and the 

present results support a previous positive association between this composite and episodic 

memory, controlling for GM volume (Kwak et al., 2020). A speculative explanation for the 

greater robustness of occupational complexity and verbal intelligence as a composite may 

be that occupational complexity and verbal intelligence are less strongly correlated with 

each other than educational attainment and verbal intelligence (see Fig. 3.2).  

While composite proxies purportedly provide advantages over individual proxies, 

these results show that their independent effects on cognition are less robust (i.e., less 

frequently observed across brain-cognition models) and smaller in magnitude than those 

found for verbal intelligence alone. This may be explained by the large individual effects of 
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verbal intelligence and its strong correlation with other proxies (see Fig. 3.2) considering 

that all composite proxies with replicated effects contained verbal intelligence, except for 

the composite with the least robust effects, occupational complexity and physical activity. 

While adding another proxy to verbal intelligence to form a composite should have an 

additive effect, this could also add noise to an already strong proxy measure as well as 

shared variance in situations where the proxies are correlated. Consequently, the overall 

effect of the composite may then be smaller than verbal intelligence alone. Alternative 

methods to creating composites, such as PCA, could potentially mitigate this issue but may 

not be theoretically appropriate (Jones et al., 2011) and incorporating this method within the 

analysis framework used here would have significantly increased the complexity of the 

analysis. Of all composites considered here, these results especially support the use of 

education and verbal intelligence as well as occupational complexity and verbal intelligence 

as composite proxies in cross-sectional studies using cognitively healthy older adults, where 

multiple proxies are available. However, using composites may lead to more Type II errors 

than using verbal intelligence alone, given the more robust and larger effects of verbal 

intelligence. As such, based on these results, it is recommended that researchers should 

use, or at least repeat analyses using, verbal intelligence alone.  

 Robust independent effects on cognition, independent of GM volume, hippocampal 

volume, or mean cortical thickness, were not found for 3 individual proxies across both 

datasets. Occupational complexity was not positively associated with any domain of 

cognitive function, adjusting for brain structure. This suggests that the small positive 

associations between this proxy and cognition, as reported in a meta-analysis (Opdebeeck 

et al., 2016), may not be independent of GM volume, hippocampal volume, or mean cortical 

thickness. Unlike the detailed nature of the occupational complexity measure used here, 

occupational complexity has been typically measured using government classification codes 

that are effectively a socioeconomic classification of occupations (e.g., the UK’s Office Of 

Population Statistic classification as in Staff et al., 2004). As such, previously reported 

effects for occupational complexity may have in fact reflected the effect of socioeconomic 

status, which can support cognitive health via greater access to resources and healthcare, 

among many other mechanisms (Jones et al., 2011). While Chapko et al. (2018) concluded 

that the evidence for this proxy in complete CR models using cognitively healthy samples 

was inconclusive, based on the present results, it is concluded that occupational complexity 

should not be used as an individual CR proxy in cross-sectional studies of cognitively 

healthy older adults.  
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 As with occupational complexity, there was no robust evidence to support the use of 

leisure activities as an individual CR proxy in cognitively healthy older adults. Although it 

has been associated with a reduced risk of dementia and AD (Crowe et al., 2003; but cf. 

Sommerlad et al., 2020), few studies have rigorously tested this proxy in a complete CR 

model. One study found a moderation effect for midlife leisure activities but in line with the 

present findings, they did not find evidence of either a moderation or independent effect for 

later life leisure activities (Chan et al., 2018). Future research is warranted to clarify which 

specific leisure activities should be included in measures for this proxy given that only a few 

activities have been associated with cognition in mid-/old-age samples, albeit without 

adjusting for brain structure (Anatürk, Suri, Smith, et al., 2020; Park et al., 2019). 

Considering these results, it is suggested that later life leisure activities should not be used 

as an individual CR proxy in cross-sectional studies of cognitively healthy older adults. 

 Finally, the present results do not support the use of physical activity as an individual 

CR proxy. While this proxy has been previously associated with cognitive function in older 

adults without controlling for brain structure (Lipnicki et al., 2019; Tsai & Chang, 2019), the 

present results show that these associations are not independent of GM volume, 

hippocampal volume, or mean cortical thickness. This supports previous findings of non-

significant associations from the few complete CR models assessing this proxy adjusting for 

brain structure using GM volume and hippocampal atrophy (Casaletto et al., 2020; Topiwala 

et al., 2019). The disparity in the observed associations when brain structure is accounted 

for could be because the protective effects of exercise may be exerted via improved brain 

maintenance, i.e., the relative preservation of brain structural health (Nilsson & Lövdén, 

2018; Stern et al., 2020), rather than improved CR (Cheng, 2016). This is supported by the 

finding that the protective effects of exercise on cognition were mediated by increases in 

prefrontal cortex volume (Weinstein et al., 2012) and also by associations of greater physical 

activity with lower brain-predicted age difference scores (Steffener et al., 2016), which 

reflects better brain maintenance (Habeck et al., 2017), and greater cortical thickness (Stern 

et al., 2019) and regional GM volumes (Arenaza-Urquijo et al., 2017; Erickson et al., 2014). 

Setting aside a possible contribution of physical activity to brain maintenance, these results 

suggests that it does not contribute to greater CR and therefore should not be used as an 

individual CR proxy in cross-sectional studies of cognitively healthy older adults. 

Robust moderation effects were not identified for any proxy here across datasets. 

This lack of evidence is in line with previously reported non-significant moderation effects 
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on the relationship between episodic memory and GM volume (Kwak et al., 2020) and right 

hippocampal volume (Resende et al., 2018) but conflicts with previous evidence of 

significant moderation effects reported for CR proxies in similar brain-cognition models 

(Chan et al., 2018; Steffener et al., 2014; Vuoksimaa et al., 2013). However, the evidence 

for moderation is largely inconsistent as highlighted by the finding of moderation effects 

reported on 1 measure, but not on 2 other measures, of episodic memory within the same 

study (Vuoksimaa et al., 2013) and even findings of a positive moderation effect, which 

contradicts the CR hypothesis, on the relationship between left hippocampal volume and 

episodic memory (Resende et al., 2018). It is likely that the non-significant moderation 

effects observed here further reflect the general difficulties in detecting CR moderation 

effects.  

 The ability to detect a moderation effect here may have been impaired because the 

participants were cognitively and neurologically healthy and therefore had a relatively 

restricted range of cognitive function and brain atrophy in comparison to cognitively and/or 

neurologically impaired individuals. The relatively restricted range of the predictor variable 

of brain structure restricts the range of the interaction term (McClelland & Judd, 1993) which 

can substantially reduce statistical power to detect a moderation effect (Aguinis & Stone-

Romero, 1997). This is exacerbated by the fact that neuroimaging variables explain a 

relatively small amount (20%) of variance in healthy older adults cognition (Hedden et al., 

2014), which effectively constrains the size of the moderation effect (Whisman & 

McClelland, 2005). While the present study was designed using pre-existing data from two 

cognitively and neurologically healthy cohorts, an experimental approach where individuals 

with extremely low or high scores on measures of cognitive function and brain structure are 

oversampled may be better able to detect the existence of a moderation effect for these CR 

proxies (McClelland & Judd, 1993).  

 It was not possible to assess the reproducibility of effects for cognitively stimulating 

activities and social engagement across datasets as only the TILDA dataset had sufficient 

data for these proxies. Within TILDA, cognitively stimulating activities was highly robust as 

it was significant in all brain-cognition models, and had the largest average independent 

effect on cognition after verbal intelligence. This finding supports associations between this 

proxy and neuropathological ‘residual’ measures of CR (Negash et al., 2013; Reed et al., 

2011) and suggests that previously reported consistent positive associations (S. L. Harrison 

et al., 2015; Opdebeeck et al., 2016) can be observed with various cognitive domains when 
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controlling for GM volume, hippocampal volume, and mean cortical thickness. Social 

engagement was less robust as it was significant in only 40% of brain-cognition models and 

had the second smallest average independent effect on cognition of all individual proxies. 

This inconsistent evidence emphasises a need for further study of social engagement in 

complete CR models. While mixed evidence of moderation effects have been reported to-

date for this proxy controlling for neuropathology (Bennett, Schneider, Tang, et al., 2006; 

Biddle et al., 2019), this is the first attempt to assess it in a complete CR model including 

neuroimaging variables. As the focus of the present study was on replication across 

datasets rather than single dataset findings, requiring correction for multiple comparisons, 

and because these proxies were only available in a single dataset, these findings remain 

speculative until they can be replicated. With this in mind, it is tentatively suggested that 

cognitively stimulating activities, but not social engagement, may be a reasonable choice of 

CR proxy in cross-sectional studies of cognitively healthy older adults where verbal 

intelligence is not available. 

The present study established empirically supported recommendations in the use of 

proxies to measure CR cross-sectionally. Nonetheless, there were some limitations which, 

if addressed in future research, could further strengthen these recommendations and 

provide additional insights. As discussed above, it was not possible to assess the effects of 

cognitively stimulating activities and social engagement across both datasets. This limited 

the ability to make definitive conclusions about these proxies and may have further limited 

the ability to detect robust moderation effects as ~60% of proxies with moderation effects 

within TILDA contained cognitively stimulating activities but could not be assessed across 

both datasets.  

The present study did not assess all possible CR proxies. In particular, one potential 

CR proxy that was not assessed here was bilingualism, which has been associated with a 

delayed onset of dementia (Mendez et al., 2019; but cf. Yeung et al., 2014; Zahodne et al., 

2014). However, bilingualism is not a common CR proxy. It has only been included as a CR 

proxy in a single questionnaire measure of CR (Kartschmit et al., 2019) and in less than 

10% of reviewed studies (Hannigan et al., 2015). While assessing this proxy could have 

potentially provided some clarity on the validity of bilingualism as a CR proxy, data on 

bilingualism was not available.  

Some CR proxies, namely leisure activities and physical activity, were measured 

differently in both datasets. Differences in these measures or in the specific activities 
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included in each measure may have contributed to differing effects across both datasets. 

This may be particularly pertinent for leisure activities as its relationship with cognitive 

function can vary based on the specific leisure activities assessed (Anatürk, Suri, Smith, et 

al., 2020). For example, the measure of leisure activities used in TILDA did not contain 

information on leisure-time computer use, which was the only leisure activity in a large UK 

Biobank study found to be positively associated with trail making performance and 

prospective memory (Anatürk, Suri, Smith, et al., 2020). However, this variability across the 

two datasets reflects the variability in the measurement of CR with proxies in the wider 

literature. 

Despite the discussed limitations, the present findings are informative for 

researchers using proxies as measures of CR, particularly in cross-sectional studies of 

cognitively healthy older adults. Building on previous meta-analyses and systematic reviews 

of CR proxies, a wider set of standard proxies, including their composites, were assessed 

and their effects were evaluated across complete and theoretically consistent models of CR 

and in multiple brain-cognition relationships. The analysis framework enabled the 

comparison of the robustness and magnitude of effects. Furthermore, the reported findings 

are stringent, robust and replicable, as they were only considered statistically significant if 

they were replicated in a robust regression and across two datasets.  

In conclusion, the present study is the first systematic investigation of the validity of 

different proxies, and their composites, in complete CR models. Verbal intelligence was 

associated with better cognitive function in all variables assessed, controlling for mean 

cortical thickness, GM volume, and hippocampal volume. The independent effects on 

cognition of education and composite proxies, including verbal intelligence and occupational 

complexity as well as verbal intelligence and education, were smaller and less robust. These 

results provide firm, data-driven, recommendations for the use of verbal intelligence as a 

CR proxy in cross-sectional studies focused on cognitively healthy older adults, over other 

proxies including education, occupational complexity, leisure activities, exercise, and 

composites including all possible combinations of these proxies. While no robust moderation 

effects were found for any proxy here, this may be due to the considerable statistical 

difficulties in detecting such effects in normal healthy ageing samples. In sum, the finding of 

robust independent effects on cognition across all brain-cognitive domains assessed 

provides strong evidence for the use of verbal intelligence as a CR proxy in cross-sectional 

studies of cognitively healthy older adults.   
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4 Chapter 4: Measuring cognitive reserve using 

connectome-based predictive modeling 

4.1 Introduction 
Chapter 3 demonstrated that verbal intelligence is a robust and valid cross-sectional 

proxy measure of CR in cognitively healthy older adults. However, across 15 different 

complete CR models, verbal intelligence explained at most 16.8% of the variance in 

cognition, after accounting for age, sex and brain structure. As such, other measures of CR 

are likely necessary to obtain optimal accuracy when measuring CR. Using functional 

neuroimaging to identify neural networks, whose strength or expression differs as a function 

of CR, may provide a more direct measure of the CR construct (Stern et al., 2020; Stern & 

Barulli, 2019). There are several advantages to this approach, if validated, compared to the 

use of proxies for measuring CR. A neuroimaging measure would provide an objective 

measure of CR, whereas proxy variables typically rely on self-reported information, which 

can be inaccurate, especially among individuals with poorer memory and for proxies such 

as cognitively stimulating activities (Everson-Rose, 2003). Moreover, a neuroimaging 

measure could be influenced by exposure to various lifetime experiences (Stern & Barulli, 

2019) without directly reflecting the change in exposure itself. This would enable the 

evaluation of interventions designed to increase CR. For instance, imagine an intervention 

consisting of engagement in cognitively stimulating activities. Assessing this intervention 

using engagement in cognitively stimulating activities as a proxy measure would not provide 

any information about the effects of the intervention, as the proxy measure reflects exposure 

to a specific factor, and not the outcome of that exposure. In contrast, assessing the effects 

of the exposure on a neuroimaging measure of CR may provide information about the 

outcome, given that interventions comprised of cognitively stimulating activities have been 

found to increase functional connectivity within the posterior DMN (De Marco et al., 2016). 

Importantly, a brain-based approach could provide important insights into the mechanisms 

of CR and may enable more focused research into the underlying neural processes of CR. 

A novel approach to developing a functional neuroimaging measure of CR is to use 

connectome-based predictive modeling (CPM; Shen et al., 2017). CPM is a data-driven 

method that enables the prediction of cognitive or behavioural phenotypes from functional 

connectivity data. In short, CPM summarises the most relevant connections – also referred 

to as edges – for the phenotype, across the whole brain. Within cross-validation frameworks, 

these edges are summed to create three measures – positive, negative, and combined 
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network strength – which summarise the connectivity strength of edges that are related to 

the phenotype of interest.  

CPM is a promising strategy for measuring CR for a number of reasons. First, it 

provides a single scalar value – combined network strength – (or three values if desired by 

also using positive and negative network strength) that summarises the connectivity 

strength of CR-related networks. Second, it has been successfully applied to predict specific 

cognitive domains – fluid intelligence (S. Gao et al., 2019; Greene et al., 2018), attention 

(Fountain-Zaragoza et al., 2019; Rosenberg et al., 2016), and executive function 

(Henneghan et al., 2020) – which themselves have been directly associated with proxy 

measures of CR (Chan et al., 2018; Lavrencic et al., 2018). Third, CPM is not constrained 

by a priori hypotheses as whole-brain functional connectivity is used in a data-driven 

manner. This approach means that the search for CR-related networks is not constrained 

to hypothesised regions or networks of interest. This is important given that individual 

differences in cognition have been more accurately predicted using whole-brain data rather 

than data obtained from specific ROIs (Zhao et al., 2021). Fourth, CPM has been widely 

shown to create measures of cognitive and behavioural phenotypes that generalise across 

datasets (M. Gao et al., 2020; Rosenberg et al., 2016; Yip et al., 2019; Yoo et al., 2018). 

This means that CPM has successfully developed measures of a phenotype in one dataset 

that have then been applied to accurately measure that phenotype in an independent 

dataset. This could be very beneficial for clinical use and for researchers without access to 

large neuroimaging datasets as they would be able to generate a CR measure using a 

model previously developed on a large dataset. 

CPM can capitalise on recent developments in measuring CR using neuroimaging 

by using the CR residual as the outcome – or target – variable to be predicted from the 

functional connectivity data. The CR residual has face validity (Habeck et al., 2017; D. H. 

Lee et al., 2019), satisfies the cognitive benefit criterion (Reed et al., 2010; Zahodne et al., 

2013) and provides a more direct measure of CR than proxies that have been used as target 

variables in previous attempts to measure CR with fMRI (Stern et al., 2018; van Loenhoud 

et al., 2020). Furthermore, these previous attempts to measure CR relied on task-based 

fMRI data, and it is not clear if they could be applied to measure CR from resting-state data. 

In contrast, CPM has been used to develop accurate measures of cognitive phenotypes 

using task-based fMRI data which have been then successfully applied to resting-state data 

from independent datasets (Rosenberg et al., 2016). This is critical if the measure is to be 
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widely used in research and clinical settings as resting-state fMRI is easier to collect and 

less affected by task-related confounds (Fox & Greicius, 2010; Mennes et al., 2013; Stern, 

2005). Nevertheless, compared to resting-state data, task-based fMRI data may augment 

individual differences in neural processes or networks underlying a phenotype (Greene et 

al., 2018; Yoo et al., 2018). As such, measures initially derived from task-based data may 

be more accurate. Indeed, it has been shown that task-based data enables more accurate 

predictions of fluid intelligence using CPM than resting-state data (Greene et al., 2018). 

Therefore, CPM may provide the best of both worlds as it enables a measure to be 

developed using task-based data, potentially increasing the accuracy of the measure, which 

can then be applied to resting-state data, thereby increasing the usability and clinical 

potential of the measure.  

The present study aimed to develop a functional neuroimaging measure of CR by 

applying CPM to task-based fMRI data and to externally validate the measure on resting-

state fMRI data in an independent dataset. Furthermore, the present study aimed to assess 

the validity of the functional neuroimaging measures as measures of CR in both datasets 

by establishing whether they display face validity and satisfy the cognitive benefit criterion. 
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4.2 Methods 

4.2.1 Participants 

Training Set (CR/RANN) 

The training set consisted of data from 220 participants of the CR/RANN studies (as 

described in Section 2.2.2). From an initial dataset of 38419 participants, participants were 

excluded according to the following criteria in the present study: (1) task fMRI data not 

available in session 1 or 2 of imaging data collection (3 participants excluded); (2) missing 

volumes in task fMRI scan (2 participants excluded); (3) presence of possible lesions or 

severe atrophy (5 participants excluded); (4) data quality issues including scanner artefacts, 

motion artefacts, and signal dropout (91 participants excluded); (5) excessive head motion 

defined as mean framewise displacement (FWD) > 0.4 mm or frame to frame movements > 

97.5th percentile of head movements during resting-state fMRI scan (41 participants 

excluded); (6) missing data for CR residual (22 participants excluded).  

Test Set (TILDA) 

The test set consisted of 294 participants from the TILDA dataset (as described in 

Section 2.2.2). From an initial dataset of 56120 participants, participants were excluded 

according to the following criteria: (1) structural and fMRI data available (5 participants 

excluded); (2) history of Parkinson’s disease, stroke, or transient ischaemic attack (11 

participants excluded); (3) GM or WM lesion evident in structural MRI (19 participants 

excluded); (4) data quality issues including scanner artefacts, motion artefacts, and signal 

dropout (22 participants excluded); (5) excessive head motion defined as mean FWD > 0.4 

mm or frame to frame movements > 97.5th percentile of head movements during resting-

state fMRI scan (154 participants excluded); (6) missing data for CR residual (56 

participants excluded). Demographic information for both datasets is presented in Table 4.1. 

                                                
19 In Chapter 2, the initial CR/RANN dataset contained 380 participants. After completion of Chapters 
2 and 3, data for 4 further participants was made available for analysis in Chapter 4. As a result, the 
initial CR/RANN dataset in Chapter 4 contained 384 participants. 
 
20 In Chapter 2, the initial TILDA dataset contained 553 participants. Due to a technical error, 8 
participants were not included in this initial dataset, but their data was made available for analysis in 
Chapter 4. As a result the initial TILDA dataset in Chapter 4 contained 561 participants. 
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4.2.2 Image acquisition 

Training Set (CR/RANN) 

CR/RANN imaging data were obtained using a 3 T Philips Achieva scanner over the 

course of 2 separate 2-hour imaging sessions in order to accommodate 12 fMRI scans and 

additional imaging modalities. Here, a single fMRI scan session was used, which was 

collected during completion of the Paper Folding task (Ekstrom et al., 1976). A screen at the 

foot of the MRI bed, which was viewed by participants using a mirror system within the head 

coil, displayed the task stimuli. Stimuli were back-projected onto the screen using an LCD 

projector. Participants responded via a LUMItouch response system (Photon Control 

Company). Participants who required their vision corrected to normal were provided with 

MRI compatible glasses (manufactured by SafeVision, LLC. Webster Groves, MO). The task 

was administered using EPrime (v2.08).  

The Paper Folding task requires participants to select a pattern of holes that would 

be created following a sequence of folds in a sheet of paper, in which a hole is punched. 

Participants were shown the sequence of folds at the top of the screen and were presented 

with 5 different patterns in a row below. Participants were instructed to respond by pressing 

1 of 5 buttons corresponding to the number of the correct pattern. Participants completed a 

short, 4-6 trial, practice test which provided feedback and explanations for each trial. In 

order to maintain participant engagement during the task, a timing protocol was designed 

which enabled participants to respond at their own rate (Stern et al., 2014). This protocol 

consisted of a variable number of trials, depending on participant’s performance. Trials 

consisted of a 24 second fixation-cross followed by presentation of the stimulus. The 

stimulus was terminated immediately after response except if a response was made within 

11 seconds, where the stimulus was terminated at 11 seconds. Where no responses were 

made, the stimulus terminated after 85 seconds. There was a 35 second inter stimulus 

interval.  

The fMRI data were acquired using a 14 minute 26 second echo-planar imaging 

(EPI) pulse sequence (flip angle = 72°, slice thickness = 3 mm, slice gap = 0 mm, slices = 

33, TR = 2000 ms, TE = 2 ms). In addition to 430 volumes, 3 dummy volumes were acquired 

at the start of the task fMRI scan and automatically discarded. Structural MRI data were 

acquired as described in Section 2.2.3. 
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Test Set (TILDA) 

TILDA imaging data were obtained using a 3 T Philips Achieva scanner during a 45-

min MRI battery. Resting-state fMRI data were acquired using a 6 minute 51.9 second 

gradient EPI sequence (flip angle = 90°, slice thickness = 3.2 mm, slice gap = 0.3 mm, slices 

= 38, TR = 2000 ms, TE = 28 ms). In addition to 200 volumes, 4 dummy volumes were 

acquired at the start of the resting-state fMRI scan and automatically discarded. Structural 

MRI data were acquired as described in Section 2.2.3. 

4.2.3 Image Preprocessing 

The same preprocessing pipeline was applied to the training and test sets but each 

dataset was preprocessed separately. Prior to preprocessing, functional and structural 

images were manually reoriented to ensure that images were in roughly the same 

orientation in MNI space. Images were then visually inspected for artefacts, data quality 

issues, possible lesions, and severe atrophy. Images were preprocessed using SPM12 and 

fMRI images were corrected for slice-timing and head motion. Nuisance regressors 

consisted of 6 motion estimates, mean WM signal, mean CSF signal, and mean global 

signal. For each of these 9 parameters, their derivatives, quadratic terms, and squares of 

derivatives were included (i.e., the ‘36 Parameter model’: Ciric et al., 2017; Satterthwaite et 

al., 2013). After preprocessing, the presence of registration, normalisation and other data 

quality issues were assessed by visual inspection of normalised functional images. Artefacts 

and data quality issues relating to excessive motion were assessed via visual inspection of 

variance images. Exclusions relating to the issues flagged during visual inspection before 

and after preprocessing are noted for each dataset in the Participants subsection of the 

Methods. Finally, data were temporally smoothed with a zero-mean unit-variance Gaussian 

filter (approximate cut-off frequency of 9.37 Hz) using BioImageSuite (Joshi et al., 2011). 

4.2.4 Functional connectivity network construction 

The Shen 268-node (Shen et al., 2013) functional atlas was used to parcellate the 

fMRI data in both datasets into 268 nodes, in line with previous studies applying CPM (Finn 

et al., 2015; M. Gao et al., 2020; Greene et al., 2018; Horien et al., 2019). First, the fully 

preprocessed functional volumes, already in MNI space, were resliced to the Shen 

functional parcellation image using spm_reslice. Second, using BioImageSuite, the mean 

time series for each node was calculated as the average time series across all voxels within 

each node, for each participant. Third, as there was incomplete coverage of the cerebellum 

for a large proportion of the training set (n = 125; 56.82% of final sample), nodes within the 



 

98 
 

cerebellum and brainstem were removed from all participants in each dataset. This 

approach was chosen to avoid excluding a large number of participants from the training 

set. Nodes within the cerebellum and brainstem were identified based on a previously 

reported anatomical labelling of the Shen parcellation atlas where the functional 

parcellations were assigned an anatomical label using the Tailarach atlas (see Table S1 in 

Salehi et al., 2020). This resulted in the removal of 63 nodes in total, leaving a 430 

(volume/time point) * 205 (node) and 200 (volume/time point) * 205 (node) time series for 

each participant in CR/RANN and TILDA, respectively. Finally, using BioImageSuite, 

functional connectivity between each pair of nodes was calculated by correlating the 

average time course between each pair of nodes. The Pearson correlation coefficients were 

normalised by a Fisher z-transformation. This resulted in a 205 * 205 connectivity matrix for 

each participant in both datasets. 

4.2.5 Measures 

CR residual 

A residual measure of CR (CR residual) was generated using a linear regression 

with global cognition as the dependent variable, and age, gender, grey matter volume, 

hippocampal volume, and mean cortical thickness as the independent variables (see Fig. 

4.1). Global cognition, total GM volume, hippocampal volume, and mean cortical thickness 

were measured in both datasets as described in Sections 3.2.3 and 3.2.4. The linear 

regressions were conducted separately for the training set and test set. The residuals from 

these regressions represented the CR residual.  

CR proxy 

Based on the results of Chapter 3, verbal intelligence was selected as the CR proxy 

to use in the assessment of face validity of the neuroimaging measure of CR. Verbal 

intelligence was measured as described in Section 3.2.2.  
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Figure 4.1. Illustration of CR residuals from the regression of global cognition on age, sex, 

and brain structure. Positive residuals (green arrows) reflect better cognitive performance 

than expected given age, sex, and brain structure. Negative residuals (purple arrows) reflect 

poorer cognitive performance than expected. Higher/more positive residual values reflect 

higher CR. Image created with BioRender.com and adapted from Fig. 1 (Franzmeier, 

Hartmann, et al., 2017). 

Table 4.1 Descriptive statistics and statistical comparison of the demographics and studied 

variables in both datasets. 

 CR/RANN (Training Set)  

n = 220 

TILDA (Test Set)  

n = 294 

Group  

Comparison 

Mean SD Mean SD t 

Age (Years) 51.905 17.043 68.301 7.177 -14.837* 

Sex (Female/Male) 115/105 152/142 χ2 = 0.016 

Education (Years) 16.209 2.380 17.629† 3.163 -5.537* 

NART Score 32.859 9.011 30.432 10.596 5.710*‡ 

Global Cognition 0.076 0.711 0.094 0.650 -0.300 

Grey Matter Volume 0.426 0.028 0.410 0.037 5.453* 

Hippocampal Volume 0.005 0.001 0.005 0.001 1.511 

Mean Cortical Thickness 2.610 0.114 2.410 0.075 23.892* 

CR Residual 0.000 0.593 0.000 0.585 -0.664 

Mean FWD (mm) 0.199 0.074 0.250 0.072 -7.745* 

Note: SD = Standard deviation; FWD = framewise displacement; t = t-statistic from independent 

samples t-test; χ2 = chi-square statistic; * = p < .001; † = 14 participants missing years of education 

in TILDA; ‡ = Mean NART scores were normalised separately in each dataset using min-max 

normalisation before conducting an independent samples t-test as different versions of the NART 

with different possible maximum scores were used in each dataset.  
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4.2.6 Connectome-based prediction of cognitive reserve 
To develop a measure of CR using functional connectivity, CPM with a leave-one-

out cross-validation (LOOCV) framework was applied to the training set data (Shen et al., 

2017). This was conducted in MATLAB (code available here: 

https://github.com/rorytboyle/flexible_cpm). The CPM method applied here was comprised 

of the following steps: edge selection, network strength calculation, model fitting, model 

application, model evaluation. This method iterated through the entire training set n times, 

with 1 participant left aside in each iteration for the model application step, and n-1 

participants retained in each iteration for the feature selection, network strength calculation, 

and model fitting steps (see Fig. 4.2). 

Edge selection: In each iteration, in the n-1 participants, each edge in the 205*205 

connectivity matrix was correlated with the CR residual, using a Pearson’s correlation. 

Edges with p-values below an optimised threshold of p < .0009 were selected (see 

Optimising edge selection threshold). Thresholded edges were then separated into positive 

and negative edges, where positive edges were positively related to the CR residuals, and 

negative edges were negatively related to the CR residuals.  

Network strength calculation: Positive and negative network strength values were 

then calculated for positive and negative edges separately. Positive Pearson’s r values were 

summed and the sum was divided by 2 to account for matrix symmetry (i.e., the fact that 

each edge was represented twice in the symmetrical matrix). This was repeated for negative 

Pearson’s r values. A combined network strength value was then calculated by subtracting 

negative network strength from positive network strength.  

Model fitting: 3 separate linear regressions were fitted where 

positive/negative/combined network strength was the independent variable and the CR 

residual was the dependent variable. The model parameters (i.e., model intercept and 

regression coefficient/slope for network strength) were extracted from each regression. 

Model application: Network strength values were then calculated for the left out 

participant. The edge strengths of the selected edges in the n-1 participants in the Edge 

selection step were summed for the left out participant. Summed edge strengths were then 

added to the fitted linear regression equations using the model parameters from the Model 

fitting step, in order to calculate 3 network strength predicted CR values (positive network 

strength predicted CR, negative network strength predicted CR, combined network strength 

predicted CR) for the left out participant.  

https://github.com/rorytboyle/flexible_cpm
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For example: 

PosNet CR = PosNet fitted intercept + (PosNet fitted slope * PosNet strength) 

Where: PosNet = positive network; PosNet CR = positive network strength predicted 

CR; PosNet strength = summed edge strength of left out participant’s positive network. 

Model evaluation: In each iteration, the network strength predicted CR values were 

stored, as were the selected edges and the fitted model parameters. After n iterations, such 

that each participant was left out once, all participants had 3 network strength predicted CR 

values (positive network strength predicted CR, negative network strength predicted CR, 

combined network strength predicted CR). Model performance, or the accuracy of each 

prediction, was evaluated for each network strength predicted CR value using 3 metrics: 

Pearson’s correlation between network strength predicted CR values and the CR residual, 

coefficient of determination (R2) from a linear regression with network strength predicted CR 

values as the independent variable and the CR residual as the dependent variable, and the 

mean absolute error (MAE) between the network strength predicted CR values and the CR 

residual.  
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Figure 4.2. Schematic of CPM with LOOCV to predict CR residuals in the training set. 

PosNetStrength = positive network strength; NegNetStrength = negative network strength; 

ComboNetStrength = combined network strength; PosNet CR = positive network strength 

predicted CR; NegNet CR = negative network strength predicted CR; ComboNet CR = 

combined network strength predicted CR. Image created with BioRender.com 
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4.2.7 Optimising edge selection threshold 
As edge-selection p-value thresholds are arbitrary (Greene et al., 2018), the 

following method was applied in order to select an optimal threshold in a data-driven 

manner. Starting with a p-value of 0.0001, CPM with LOOCV was repeated in the training 

set with 100 different p-value thresholds, increasing the p-value by 0.0001 at each step, to 

a maximum p-value of 0.01. The p-value threshold resulting in the largest Pearson’s r 

between combined network strength predicted CR and the CR residual was selected as the 

optimal p-value threshold. This p-value threshold was 0.0009 with r = 0.2896 (see Table S7 

in 7.3.1 Supplemental Methods). 

4.2.8 Assessing validity of network strength predicted CR 
To assess the validity of the network strength predicted CR measures as objective 

neuroimaging measures of CR, two further tests were carried out for each measure. First, 

the face validity of the network strength predicted CR measures was assessed by 

establishing their association with a CR proxy, verbal intelligence, using a Pearson’s 

correlation. Network strength predicted CR values were considered to display face validity 

if they were positively associated with verbal intelligence. Second, the cognitive benefit of 

the measures were assessed by establishing whether they a) moderated the relationship 

between mean cortical thickness and global cognition (i.e., displayed a moderation effect), 

or b) were positively associated with global cognition, independent of mean cortical 

thickness (i.e., displayed an independent effect). The moderation and independent effects 

of each measure were assessed using moderated hierarchical regressions where global 

cognition was regressed on age, sex, and mean cortical thickness in Step 1, with network 

strength predicted CR added as an independent variable in step 2, and the interaction term 

for mean cortical thickness and network strength predicted CR included as an independent 

variable in Step 3. The change in R2 (i.e., amount of variance explained) from Step 1 to Step 

2, and from Step 2 to Step 3 in linear regression models were used to assess the size of the 

independent and moderation effects of CR proxies, respectively. This analysis was 

conducted in Python (code available here: 

https://github.com/rorytboyle/hierarchical_regression). Global cognition and mean cortical 

thickness were chosen to represent cognitive function and brain structure, respectively, in 

these regressions as this model accounted for the largest amount of variance explained in 

both TILDA and CR/RANN in Chapter 3.  

https://github.com/rorytboyle/hierarchical_regression
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4.2.9 External generalisability of connectome-based prediction 
 To evaluate if network strength predicted CR generalised to independent data, 

network strength predicted CR values were created in TILDA. First, network strength values 

were calculated in TILDA. Positive and negative network strength was computed by 

summing the positive and negative edges selected in each iteration of the LOOCV in the 

training set. As in the training set, these values were divided by two to account for the 

symmetrical matrix. Combined network strength was computed as positive network strength 

minus negative network strength. Second, the regression parameters generated in the 

training set were averaged across all iterations of the LOOCV and applied to their respective 

network strength values to calculate network strength predicted CR values. Third, these 

values were evaluated with respect to their predictive accuracy of the CR residual, using 

Pearson’s correlation, R2, and MAE. Finally, as described for the training set in 4.2.8 

Assessing validity of network strength predicted CR, the validity of the network strength 

predicted CR values as measures of CR was assessed for the test set predictions. 

4.2.10 Possible confounds in the relationship between connectivity and CR 
The ’36 Parameter model’ used in preprocessing includes global signal regression 

which has been shown to attenuate motion-related artifacts and noise in the data (Power et 

al., 2014; Yan et al., 2013). Further steps were also taken to control for this source of noise, 

given the noted effect of motion on functional connectivity (Power et al., 2012). First, images 

were visually inspected before and after preprocessing and excluded if motion-related 

artifacts were present. Second, participants with mean FWD > 0.5mm were excluded after 

preprocessing. Third, remaining participants who had individual head movements during the 

scan > 97.5th percentile of individual head movements across all participants were excluded. 

To assess whether functional connectivity was then related to head motion, the correlation 

between mean FWD and global functional connectivity (the average of functional 

connectivity in the upper triangle of the connectivity matrix) was assessed in each dataset. 

While the correlation in CR/RANN was not significant (r = .03, p = 0.62), global functional 

connectivity in TILDA was significantly related to mean FWD (r = 0.23, p < .001). As such, 

a final FWD threshold was applied such that participants with mean FWD > 0.4mm (n = 52) 

were excluded. After removal of these participants, the correlation between global functional 

connectivity and mean FWD did not change (r = 0.23, p < .001). Although the mean FWD > 

0.4mm threshold did not reduce the correlation between mean FWD and global functional 

connectivity, there were fewer edges correlated to mean FWD at this threshold (18% fewer 

correlated edges). This threshold was chosen as it removed the remaining participants with 
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the highest average head motion in TILDA (i.e., n = 52 with FWD <= 0.5 mm and > 0.4 mm) 

but retained a large final N. While a more conservative threshold of FWD > 0.2 mm has 

been previously used (M. Gao et al., 2020), this would have resulted in the exclusion of a 

further 95 and 239 participants from the final CR/RANN and TILDA samples respectively. 

To ensure that the network strength predicted CR measures were not confounded 

by head motion, additional checks were conducted at the analysis stage to assess whether 

the CR residual was correlated with mean FWD and whether the network strength predicted 

CR measures were correlated with mean FWD. The possible influence of other confounds, 

specifically age and sex, on functional connectivity were assessed by correlating age with 

global functional connectivity and assessing gender differences in global functional 

connectivity. To ensure that the network strength predicted CR measures were not 

confounded by covariates, CPM was repeated including the covariates age, sex, and mean 

FWD at the feature selection step. This was implemented by using a partial correlation to 

relate functional connectivity in each edge to the CR residual, including age, sex, and mean 

FWD as covariates. 

4.2.11 Supplementary analyses 
As a further validation of the main results, the analysis was repeated in the training 

set using k-fold cross-validation schemes (5-fold and 10-fold cross-validation) instead of 

LOOCV. While LOOCV is the standard cross-validation scheme in studies applying CPM 

(Greene et al., 2018; Rosenberg et al., 2016), LOOCV can result in overly optimistic 

estimates of model accuracy and can provide more variable predictions when applied to 

external datasets (Dwyer et al., 2018; Varoquaux et al., 2017). As such, k-fold cross-

validation has been recommended as a preferable cross-validation scheme (Poldrack et al., 

2020; Varoquaux et al., 2017). In k-fold cross-validation, the data is randomly split into k 

subsets. One subset is then set aside (as the left out participant is set aside in LOOCV) as 

a test set for the model application step in CPM and the k-1 subsets are used to fit the model 

(i.e., edge selection, network strength calculation, model fitting steps in CPM). 100 iterations 

were run of each k-fold model, and the models were evaluated by averaging their Pearson’s 

r and R2 across datasets across the 100 iterations. 
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4.3 Results 

4.3.1 Creation of cognitive reserve residual 
The CR residuals accounted for 30% and 19% of the variance in global cognition in 

CR/RANN and TILDA respectively (see Table 4.2). In Chapter 3, verbal intelligence 

explained a mean additional 16.8% of the variance in global cognition, across both datasets, 

after accounting for age, sex, and hippocampal volume. This was the largest effect 

identified. The CR residuals accounted for a mean additional 57.9% of the variance in global 

cognition across both datasets (see Table S8 in 7.3.2 Supplemental Results). As such, the 

CR residuals were a preferable target variable for CPM as they reflected a larger amount of 

the variance in global cognition that was not explained by brain structure or demographics. 

In both datasets, CR residuals were approximately normally distributed and were 

significantly positively correlated with NART scores (see Fig. 4.3). As such, CR residuals in 

both datasets displayed face validity as measures of CR. 

 

Figure 4.3. Normality and face validity of CR residuals. Histograms of CR residuals with 

kernel density estimates (top row) show that the CR residuals are approximately normally 

distributed. Scatterplots with regression lines (bottom row) show significant positive 

relationships between CR residuals and NART scores, demonstrating the face validity of 

CR residuals as CR measures. 
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4.3.2 Connectome-based prediction of cognitive reserve 
The connectome-based predictive models significantly predicted the CR residuals of novel 

participants (i.e., each left-out participant in the LOOCV) from task-based functional 

connectivity data in the training set (see Fig. 4.4 and Table 4.3). The combined network 

strength model had the best predictive accuracy as it had the highest R value for the 

correlation between network strength predicted CR and CR residuals, the highest R2, and 

the lowest MAE. 

 

Figure 4.4. CR residual vs positive-, negative-, and combined network strength predicted 

CR in the training set. PosNet CR = Positive network strength predicted CR; NegNet CR = 

Negative network strength predicted CR; ComboNet CR = Combined network strength 

predicted CR. 

 

4.3.3 Validation of network strength predicted CR in the training set 
The network strength predicted CR values generated by the connectome-based 

predictive models displayed face validity as measures of CR, as all models were significantly 

positively correlated with a CR proxy – verbal intelligence as measured by NART scores 

(see Fig. 4.5 and Table 4.4). The network strength predicted CR values also satisfied the 

cognitive benefit criterion for measures of CR, as all were positively associated with global 

cognition, controlling for the effects of mean cortical thickness, age, and sex (see Table 4.4). 
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Figure 4.5 NART scores vs positive-, negative-, and combined network strength predicted 

CR in the training set. PosNet CR = Positive network strength predicted CR; NegNet CR = 

Negative network strength predicted CR; ComboNet CR = Combined network strength 

predicted CR. 

 

4.3.4 Motion control and confounds 
A Pearson’s correlation indicated that, in the training set, mean FWD was not 

significantly associated with the target variable (i.e., the CR residual, r = -.0786, p = 0.2459). 

However, mean FWD was significantly negatively associated with positive network strength 

predicted CR (r = -0.1542, p = 0.0221); negative network strength predicted CR (r = -0.1390, 

p = 0.0394); and combined network strength predicted CR (r = -0.1551, p = 0.0214). In the 

test set, mean FWD was not significantly associated with the CR residual (r = -0.0270, p = 

0.6442); positive network strength predicted CR (r = 0.0236, p = 0.6875); negative network 

strength predicted CR (r = 0.0365, p = 0.5333); and combined network strength predicted 

CR (r = 0.0441, p = 0.4508). 

A Pearson’s correlation further established that age was significantly positively 

associated with global functional connectivity in the training set, r = 0.1430, p = 0.0340. An 

independent samples t-test showed that there were no significant differences in the training 

set between males and females in mean global functional connectivity (t = -.1099, p = 

0.2734). However, in the test set, age was significantly negatively associated with global 

functional connectivity (r = - 0.1842, p = 0.0015) and there was a significant sex difference 

in global functional connectivity (t = 2.8917, p = 0.0041) such that males (mean = 0.01, SD 

= 0.0063) had higher mean global functional connectivity than females (mean = 0.0081, SD 

= 0.0049). 
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Given the associations between network strength predicted CR and mean FWD in 

the training set, age and global functional connectivity in both datasets, and the sex 

differences in global functional connectivity in the test set, these three variables (FWD, age, 

and sex) were considered confounds. As such, an adjusted connectome-based predictive 

model was applied where, age, sex, and mean FWD were included as covariates at the 

feature selection stage, using a partial correlation between functional connectivity in each 

edge and the CR residual. After this adjustment, mean FWD was no longer significantly 

associated with negative network strength predicted CR (r = -0.0728, p = 0.2822) or 

combined network strength predicted CR (r = -0.1023, p = 0.1302). While mean FWD was 

still significantly associated with positive network strength predicted CR (r = - 0.1339, p = 

0.0474), the strength of the association was reduced as compared to the original 

(unadjusted) model. In the test set, as was also the case prior to adjusting for possible 

confounds, mean FWD was not significantly associated with positive network strength 

predicted CR (r = 0.0473, p = 0.4188); negative network strength predicted CR (r = 0.0377, 

p = 0.5199); and combined network strength predicted CR (r = 0.0587, p = 0.3154). 

The connectome-based predictive models remained statistically significant when 

adjusting for age, sex, and mean FWD at the feature selection stage (see Fig. 4.6 and Table 

4.3). Furthermore, network strength predicted CR values generated from the adjusted 

connectome-based predictive models also displayed face validity as, and satisfied the 

cognitive benefit criterion for, measures of CR (see Table 4.4 and Fig. 4.7). 

 

Figure 4.6. CR residual vs positive-, negative-, and combined network strength predicted 

CR using adjusted CPM in the training set. PosNet CR = Positive network strength predicted 

CR; NegNet CR = Negative network strength predicted CR; ComboNet CR = Combined 

network strength predicted CR. 
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Figure 4.7. NART scores vs positive-, negative-, and combined network strength predicted 

CR using adjusted CPM in the training set. PosNet CR = Positive network strength predicted 

CR; NegNet CR = Negative network strength predicted CR; ComboNet CR = Combined 

network strength predicted CR.
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 Table 4.2 Results of multiple regressions used to create CR residuals in the training and test datasets. 

  

 

 

 Note: * = p < .0001. 

 Table 4.3 CPM performance for prediction of CR residuals in the training set. 

 Positive Network Strength Negative Network Strength Combined Network Strength 

r p R2 MAE r p R2 MAE r p R2 MAE 

Original .239 3.6e-4 .057 .453 .282 2.3e-5 .079 .447 .290 1.3e-5 .084 .444 

Adjusted .251 1.7e-4 .063 .452 .178 .008 .032 .475 .225 7.6e-4 .051 .463 

 

 Table 4.4 Validation of network strength predicted CR in the training set. 

 
 
 
 

Positive Network Strength Negative Network Strength Combined Network Strength 

Face Validity Cognitive Benefit Face Validity Cognitive Benefit Face Validity Cognitive Benefit 

NART Ind. Effect Mod. Effect NART Ind. Effect Mod. Effect NART Ind. Effect Mod. Effect 

r  p  R2 p R2 p r  p  R2 p R2 p r  p  R2 p R2 p 

Original .250 1.8e-4 .043 2.2e-4 2.5e-5 .928 .182 .007 .060 1.2e-5 .005 .184 .223 8.7e-4 .063 6.2e-6 .026 .348 

Adjusted .280 2.5e-5 .030 .022 1.7e-6 .981 .165 .014 .056 2.3e-5 .003 .329 .226 7.4e-4 .054 3.2e-5 .002 .446 

 Note: NART = Correlation of predicted values with NART scores; Ind. Effect = Independent effect of predicted values on global cognition, controlling for 

 age, sex, and mean cortical thickness; Mod. Effect = Moderation effect of predicted values on relationship between brain structure and global cognition. 

 

Dataset 
Model Statistics GM Volume Hippocampal Volume Mean Cortical Thickness Sex Age 

n R2 f β β β β β 

CR/RANN (Training) 220 0.304 18.723* .088 .001 .080 -.018 -.433* 

TILDA (Test) 294 0.190 13.483* -.045 .077 .040 .095 -.395* 
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4.3.5 Functional network anatomy 
Both positive and negative CR networks were sparse with 9 common edges (0.04% 

of total edges) that were statistically significant in every iteration of the positive network, and 

12 common edges (0.06% of total edges) that were statistically significant in every iteration 

of the negative network. Fig. 4.8 shows circle plots visualising the edges that constituted the 

positive and negative networks/connectomes. Fig. 4.9 shows these same edges visualised 

within the brain.  

 The left dorsolateral prefrontal cortex contained two key nodes within the positive 

CR network, with number of edges (k) = 3 and 2 respectively (see Table 4.5). Other nodes 

containing more than one edge in the positive CR network were located in the left 

premotor/supplementary cortex (k = 2) and the right angular gyrus (k = 2). The remaining 

nodes in the positive CR network were connected by single edges. The left temporal pole 

contained the most highly connected node in the negative CR network (k = 5), followed by 

the right angular gyrus (k = 3) and the left precentral gyrus (k = 2; see Table 4.6). The 

remaining nodes in the negative CR network were connected by single edges. 

 The connectivity patterns of the positive and negative CR networks were further 

explored in relation to the distribution of connectivity within and between 10 different 

canonical functional networks as previously defined in an independent sample (Noble et al., 

2017). Noble et al. labelled these networks as follows: medial frontal network (MFN), FPN, 

DMN, motor network, visual I network, visual II network, visual association network, limbic 

network, basal ganglia network, and cerebellar network. In BioImageSuite Web and more 

recent studies by the same group (Greene et al., 2018, 2020), the limbic network is referred 

to as the salience network and the basal ganglia network is referred to as the subcortical 

network (see Fig. S3 in 7.3.2 Supplemental Results). The latter definitions are used here. It 

should also be noted that while the cerebellar network is presented in figures here, it was 

not included in any models analysed. The positive CR network was largely characterised by 

connectivity within the FPN, connectivity of the FPN to other networks, and of the motor 

network to other networks (see Fig. 4.10). This pattern of connectivity remained the same 

when adjusting for age, sex, and mean FWD, although there were a lower number of 

common edges across all iterations of the positive network. The negative CR network was 

mostly characterised by connectivity of a single node in the MFN, the left temporal pole, to 

other networks, connectivity within the motor network, and connectivity of the motor network 
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to other networks. There was a similar, but reduced, pattern of connectivity in models 

adjusting for age, sex, and mean FWD. 

 

Figure 4.8. Circle plots illustrating the positive and negative CR connectomes. Positive 

connections (red) and negative connections (blue) in original CPM (top panel) and 

adjusted CPM (bottom panel), controlling for age, sex, and mean FWD. These circle plots 

are inverted such that the right side of each plot corresponds to the left hemisphere and 

the left side to the right hemisphere. Image created with BioImageSuite Web. 
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Figure 4.9. Glass brain visualising the patterns of connectivity within the brain. Positive connections (red) and negative 

connections (blue) in original CPM (A, top panel) and adjusted CPM (B, bottom panel), controlling for age, sex, and mean FWD. 

Image created with BioImageSuite Web. 
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Table 4.5. Positive CR network functional neuroanatomy with nodes sorted by degree 

strength. 

# 

 

BIS Label (BA) 

 

Tailarach 
Label 

 

K 

 

Net-
work 

 

Lobe 
(L/R) 

 

MNI co-ordinates 

x y z 

154 Dorsolateral prefrontal 
cortex (46)  

Middle 
Frontal Gyrus 

3 FP L 
Prefrontal 

-42.97 42.04 11.04 

164 Premotor/supplementary 
motor cortex (6) 

Middle 
Frontal Gyrus 

2 FP L 
MotorStrip 

-23.22 10.66 53.61 

147 Dorsolateral prefrontal 
cortex (9) 

Middle 
Frontal Gyrus 

2 FP L 
Prefrontal 

-46.12 28.15 26.79 

49 Angular Gyrus (39) Middle 
Temporal 
Gyrus 

2 DMN R Parietal 41.39 -75.34 27.98 

185 Temporal Pole (38) Superior 
Temporal 
Gyrus 

1 MF L 
Temporal 

-38.01 6.07 -37.86 

166 Premotor/supplementary 
motor cortex (6) 

Precentral 
Gyrus 

1 Mot L 
MotorStrip 

-27.58 -9.08 55.86 

163 Premotor/supplementary 
motor cortex (6) 

Superior 
Temporal 
Gyrus 

1 Mot L 
MotorStrip 

-56.98 -3.43 6.82 

141 Anterior Prefrontal Cortex 
(10) 

Superior 
Frontal Gyrus 

1 DMN L 
Prefrontal 

-11.7 65.09 4.18 

62 Primary Auditory Cortex 
(41) 

Insula 1 Mot R 
Temporal 

39.86 -25.56 14.38 

59 Inferior Temporal Gyrus 
(20) 

Sub-gyral 
Temporal 
Lobe 

1 VAs R 
Temporal 

43.36 -26.48 -24.63 

30 Premotor/supplementary 
motor cortex (6) 

Sub-gyral 
Frontal Lobe 

1 FP R 
MotorStrip 

25.22 12.41 49.39 

19 Dorsolateral prefrontal 
cortex (46) 

Middle 
Frontal Gyrus 

1 FP R 
Prefrontal 

48.29 35.68 15.15 

14 Frontal Eye Fields (8) Middle 
Frontal Gyrus 

1 FP R 
Prefrontal 

40.68 14.51 48.21 

Note: # = Node number; BIS Label (BA) = Brodmann Area label and number for node as listed in 

BioImageSuite; Tailarach Label = Anatomic label for node from Tailarach atlas (Salehi et al., 2020); 

K = degree strength (i.e., number of connections) of node in positive network; Network = canonical 

networks defined in an independent sample (Noble et al., 2017); Lobe (L/R) = Left or right hemisphere 

and Lobe as listed in BioImageSuite; MNI co-ordinates= Montreal Neurological Institute co-ordinates; 

FP = Frontoparietal Network; DMN = Default Mode Network; MF = Medial Frontal Network; Mot = 

Motor Network; VAs = Visual Association Network. 
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Table 4.6. Negative CR network functional neuroanatomy with nodes sorted by degree 

strength. 

# 

 

BIS Label (BA) 

 

Tailarach 
Label 

 

K 

 

Net-
work 

 

Lobe (L/R) 

 

MNI co-ordinates 

x y z 

185 Temporal Pole (38) Superior 
Temporal 
Gyrus 

5 MF L Temporal -38.01 6.07 -37.86 

49 Angular Gyrus (39) Middle 
Temporal 
gyrus 

3 DMN R Parietal 41.39 -75.34 27.98 

166 Premotor/supplementary 
motor cortex (6) 

Precentral 
Gyrus 

2 Mot L 
MotorStrip 

-27.58 -9.08 55.86 

164 Premotor/supplementary 
motor cortex (6) 

Middle Frontal 
Gyrus 

1 FP L 
MotorStrip 

-23.22 10.66 53.61 

218 Premotor/supplementary 
motor cortex (6) 

Cingulate 
Gyrus 

1 Mot L Limbic -7.75 -22.37 46.05 

211 Secondary Visual Cortex 
(18) 

Lingual Gyrus 1 Vis I L Occipital -8.88 -70.65 -1.67 

182 Angular Gyrus (39) Angular Gyrus 1 FP L Parietal -42.05 -65.62 41.73 

179 Supramarginal Gyrus (40) Sub-gyral 
Parietal Lobe  

1 Mot L Parietal -35.72 -39.37 47.75 

178 Visual Motor Co-
ordination (7) 

Precuneus 1 SAL L Parietal -9.83 -66.34 55.14 

177 Visual Motor Co-
ordination (7) 

Sub-gyral 
Parietal Lobe 

1 VAs L Parietal -28.41 -62.35 40.42 

161 Premotor/supplementary 
motor cortex (6) 

Cingulate 
Gyrus 

1 Mot L 
MotorStrip 

-6.47 -4.31 47.6 

89 Dorsal Posterior Cingulate 
Cortex (31) 

Cingulate 
Gyrus 

1 Mot R Limbic 7.83 -23.07 44.93 

61 Primary Auditory Cortex 
(41) 

Superior 
Temporal 
Gyrus 

1 Mot R 
Temporal 

59.18 -3.36 2.74 

55 Middle Temporal Gyrus 
(21) 

Inferior 
Temporal 
Gyrus 

1 FP R 
Temporal 

61.28 -22.87 -22.38 

46 Supramarginal Gyrus (40) Inferior 
Parietal 
Lobule 

1 Mot R Parietal 58 -29.28 19.53 

45 Supramarginal Gyrus (40) Inferior 
Parietal 
Lobule 

1 Mot R Parietal 52.84 -27.25 40.93 

43 Visual Motor Co-
ordination (7) 

Precuneus 1 VAs R Parietal 31.62 -60.79 49.21 

Note: # = Node number; BIS Label (BA) = Brodmann Area label and number for node as listed in 

BioImageSuite; Tailarach Label = Anatomic label for node from Tailarach atlas (Salehi et al., 2020); 

K = degree strength (i.e., number of connections) of node in negative network; Network = canonical 

networks defined in an independent sample (Noble et al., 2017); Lobe (L/R) = Left or right hemisphere 

and Lobe as listed in BioImageSuite; MNI co-ordinates= Montreal Neurological Institute co-ordinates; 

MF = Medial Frontal Network; DMN = Default Mode Network; Mot = Motor Network; FPN = 

Frontoparietal Network; Vis I = Visual I Network; SAL = Salience Network; VAs = Visual Association 

Network. 
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Figure 4.10. Connectivity matrices summarising the connectivity patterns within and 

between different functional networks. Note: Darker shades represent stronger connectivity 

(i.e., larger number of edges in that network). MF = Medial Frontal Network; FP = 

Frontoparietal Network; DMN = Default Mode Network; Mot = Motor Network; Vis I = Visual 

I Network; Vis II = Visual II Network; VAs = Visual Association Network; SAL = Salience 

Network; SC = Subcortical Network; CBL = Cerebellar Network. Image created with 

BioImageSuite Web. 

 

4.3.6 Generalisability of network strength predicted CR: Application to the 

test set 
The network strength predicted CR values in the test set, which were generated by network 

strength models calculated over the same edges identified in the training set, were not 

related to the CR residual (see Fig. 4.11A and Table 4.7). While the correlations of the CR 

residual with negative- and combined-network strength predicted CR had p-values < 0.05, 

these relationships are not meaningful as the negative correlation indicates that the network 

strength predicted CR values are negatively related to the CR residual in the test set (Ren 

et al., 2021). The results were similar when CPM, controlling for age, sex, and mean FWD, 
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was applied to the test set (see Fig. 4.11B and Table 4.7). These results show that the 

predictive models developed in the training set on task-based fMRI data did not generalise 

to resting-state data in the test set. 

 

Figure 4.11. CR residual vs positive-, negative-, and combined network strength predicted 

CR in the test set. A = predicted CR values from original network strength models; B = 

predicted CR values from adjusted network strength models, controlling for age, sex, and 

mean FWD. PosNet CR = Positive network strength predicted CR; NegNet CR = Negative 

network strength predicted CR; ComboNet CR = Combined network strength predicted CR. 

 

4.3.7 Validation of network strength predicted CR in the test set 
The network strength predicted CR values generated by the connectome-based 

predictive models did not display face validity as measures of CR, as they were not 

significantly positively correlated with a CR proxy, verbal intelligence as measured by NART 

scores (see Fig. 4.12A and Table 4.8). These results were also observed in network strength 

models controlling for age, sex, and mean FWD (see Fig. 4.12B). Furthermore, the network 

strength predicted CR values did not satisfy the cognitive benefit criterion for measures of 
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CR, as they did not moderate the relationship between mean cortical thickness and global 

cognition nor were they significantly positively associated with global cognition, controlling 

for the effects of mean cortical thickness, age, and sex (see Table 4.8). The adjusted 

predictive models similarly did not satisfy the cognitive benefit criterion. 

 

Figure 4.12. NART scores vs positive-, negative-, and combined network strength predicted 

CR in the test set. A = predicted CR values from original network strength models; B = 

predicted CR values from adjusted network strength models, controlling for age, sex, and 

mean FWD. PosNet CR = Positive network strength predicted CR; NegNet CR = Negative 

network strength predicted CR; ComboNet CR = Combined network strength predicted CR. 

4.3.8 Supplementary analyses 
 In the training set, the negative and combined network strength predicted CR values 

remained statistically significant when applying k-fold cross-validation methods instead of 

LOOCV (see Table S9 in 7.3.2 Supplemental Results). However, the positive network 

strength predicted CR values did not remain statistically significant in the training set. 

Application of the 5-fold and 10-fold cross-validation models to the test set generated 

negative- and combined-network strength predicted CR values that were statistically 
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significant but negatively correlated with the CR residual (see Table S9 in 7.3.2 

Supplemental Results). As was observed using LOOCV, the negative correlations between 

network strength predicted CR values and the CR residual indicated that these predictions 

were not meaningful and that the models did not generalise.  

To investigate why the predictive models did not generalise to resting-state data in 

an independent dataset, a further exploratory analysis was conducted. To investigate 

whether differences in the age ranges of the datasets may have explained the inability to 

generalise, the training set was restricted to adults aged 50 years or older in order to more 

closely match the age range of the training set. This reduced the sample size of the training 

set to n = 128 (mean age = 64.42 years, SD = 8.49 years). CPM was then repeated, 

adjusting for age, sex, and FWD as covariates at the feature selection stage. In the training 

set, the CR residuals of novel participants were only significantly predicted by negative and 

combined network strength predicted CR values (see Table S10 in 7.3.2 Supplemental 

Results). In the test set, the CR residuals were not significantly predicted by positive and 

combined network strength predicted CR (see Table S10 in 7.3.2 Supplemental Results). 

While the correlation between CR residuals and negative network strength predicted CR 

was statistically significant, the correlation was negative, indicating that the models failed to 

generalise to resting-state data in the test set. This suggested that differences in the age 

range in each dataset were not responsible for the inability of the models to generalise to 

the test set. 

 A negative correlation between network strength predicted CR values and observed 

values (i.e., the CR residual) is interpreted as the predicted values failing to explain any 

variance in the observed values (Greene et al., 2018) and is therefore considered 

meaningless (Ren et al., 2021). However, to further explore the negative correlation 

between network strength predicted CR values and the CR residual in the test set, the 

correlation between the CR residual and the thresholded edges in the test set was 

investigated (see Table S11 in 7.3.2 Supplemental Results). 12 edges were selected in the 

negative network (i.e., edges where connectivity was negatively correlated to the CR 

residual) in the training set. The average correlation between connectivity in these 12 edges 

and the CR residual in the training set was r = - 0.2728. However, in the test set, none of 

these edges were negatively correlated with the CR residual and the average correlation in 

the test set was r = 0.0696. In fact, 3 of the thresholded edges (25%) were significantly 

positively correlated with the CR residual. 
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 Table 4.7 CPM performance for prediction of CR residuals in the test set. 

 Positive Network Strength Negative Network Strength Combined Network Strength 

r p R2 MAE r p R2 MAE r p R2 MAE 

Original -.008 .893 6.3e-5 .648 -.169 .004 .028 .570 -.140 .016 .020 .617 

Adjusted -.025 .675 .001 .620 -.133 .022 .018 .536 -.136 .020 .018 .580 

 

 Table 4.8 Validation of network strength predicted CR in the test set. 

 Positive Network Strength Negative Network Strength Combined Network Strength 

Face 
Validity 

Cognitive Benefit Face 
Validity 

Cognitive Benefit Face 
Validity 

Cognitive Benefit 

NART Ind. Effect Mod. 
Effect 

NART Ind. Effect Mod. Effect NART Ind. Effect Mod. Effect 

r p R2 p R2 p r p R2 p R2 p r p R2 p R2 p 

Original .045 .439 2.9e-
5 

.918 .002 .374 -
.084 

.150 .024 .003 .001 .483 -
.039 

.509 .016 .016 .005 .166 

Adjusted .017 .769 4e-4 .700 4e-
4 

.698 -
.077 

.186 .015 .021 6.1e-
6 

.963 -
.063 

.283 .015 .020 3.5e-
6 

.972 

 Note: NART = Correlation of predicted values with NART scores; Ind. Effect = Independent effect of predicted values on global cognition, 

 controlling for age, sex, and mean cortical thickness; Mod. Effect = Moderation effect of predicted values on relationship between brain 

 structure and global cognition. 
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4.4 Discussion 
CPM was applied to task-based functional connectivity to predict a CR residual in 

order to develop functional neuroimaging measures of CR, namely positive network strength 

predicted CR, negative network strength predicted CR, and combined network strength 

predicted CR. All three measures were shown to predict the CR residual in unseen 

individuals within the same dataset based on a sparse set of edges. Negative and combined 

network strength predicted CR values remained statistically significant when different cross-

validation schemes were used. However, positive network strength predicted CR values 

were only statistically significant when LOOCV was used, suggesting possible overfitting 

within this network. The network strength predicted CR values met the criteria necessary for 

neuroimaging measures of CR, as they displayed face validity and were positively 

associated with cognition beyond the effects of brain structure. However, these measures 

did not generalise to resting-state functional connectivity data from an independent dataset.  

 The validation of the task-based fMRI measure on novel data within the same 

dataset provides further evidence in support of the objective measurement of CR using task-

based fMRI. As was demonstrated in previous task-based fMRI studies, the network 

strength predicted CR measures here displayed face validity and protective effects on 

cognition (Stern et al., 2018; van Loenhoud et al., 2020). As previous studies used task-

related activations (Stern et al., 2018) and task potency (van Loenhoud et al., 2020), the 

present study is the first to demonstrate that functional connectivity during task performance 

can predict CR in unseen data (Stern et al., 2018), albeit using internal cross-validation.  

The CR connectomes identified here were sparse, as the positive and negative 

connectomes together reflected connectivity strength from only 0.1% of all edges. This level 

of sparsity is much greater than observed in connectomes underlying cognitive phenotypes 

in previous CPM studies. For example, 3.88% and 1.99% of edges were included across 

positive and negative networks underlying sustained attention (Rosenberg et al., 2016) and 

processing speed (M. Gao et al., 2020), respectively. This sparsity may have occurred due 

to the stricter feature selection threshold used here, p < .0009, than in previous CPM studies 

(M. Gao et al., 2020; Rosenberg et al., 2016). However, previous connectivity studies of CR 

have also identified sparse underlying networks, only 0.17% of edges were included in the 

task potency measure described by van Loenhoud et al. (2020), for example. While the 

present study used the same dataset as van Loenhoud et al. (2020), the latter study 

observed this sparse network across 12 different task-based fMRI scans, meaning the 
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sparsity was not just specific to the overlapping task fMRI scan used in both studies. While 

it still cannot be ruled out that this sparsity may be an idiosyncrasy of functional connectivity 

within this dataset, these findings suggest that the network of functional connectivity 

underlying CR is indeed sparse (see Chapter 5, section 5.4 for discussion of the functional 

anatomy of the sparse networks underlying CR in relation to previous findings). 

Although the pattern of connectivity underlying the positive and negative CR 

connectomes, and sparsity of the connectomes themselves, were in line with previous 

research, the relationship between connectivity of the positive CR connectome and the CR 

residual in the present study was not particularly robust. Positive network strength predicted 

CR only accurately predicted the CR residual in unseen data when LOOCV was used in 

CPM, and not when k-fold cross-validation schemes were used (see Table S9 in 7.3.2 

Supplemental Results). LOOCV can produce estimates that have high variance (Efron, 

1983), particularly compared to 10-fold cross-validation (Kohavi, 1995). As such, LOOCV 

can result in overfitting (Lever et al., 2016) and consequently the positive network strength 

predicted CR values may have somewhat reflected noise in the data (Poldrack et al., 2020; 

R. Whelan & Garavan, 2014). 

 The network strength predicted CR measures did not generalise to resting-state data 

in an independent dataset. One possible reason for this may have been the different age 

profiles of the training set and test set samples. Gao et al. (2020) reported that a CPM 

measure of processing speed, developed in a training set of older adults, could predict 

processing speed in a cohort of older adults but not middle-aged or younger adults in an 

external dataset. In an exploratory analysis to investigate if a similar age-difference may 

have affected the generalisability here, the training set was restricted to adults aged 50 

years or older to more closely match the age range of the training set. Still, the network 

strength measures of CR did not generalise to the external resting-state dataset. As such, 

age differences were not responsible for the inability of the model to generalise.  

Another exploratory analysis investigated why the negative and combined network 

strength predicted CR values were negatively related to CR residuals. This was not a 

meaningful prediction because the predicted values were in the opposite direction to the 

observed values and similar findings have been treated as meaningless (Greene et al., 

2018; Ren et al., 2021). However, differences in connectivity from task to rest conditions 

may be relevant to CR. Inspection of the negative CR connectome in the test set revealed 

that all edges had positive, albeit mostly non-significant, correlations with CR. As these 
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same edges were negatively correlated with CR in the training set, this may suggest that 

CR is associated with a change or reorganisation of brain connectivity in response to task 

demands, as previously shown by the relationship between task potency and CR (van 

Loenhoud et al., 2020). A practical implication of this is that while CR is associated with both 

task-based and resting-state connectivity, it may not be possible for measures developed 

solely on task-based data to generalise to resting-state data as has been demonstrated for 

CPM measures of cognitive phenotypes like sustained attention (Rosenberg et al., 2016). 

 The inability to generalise to resting-state data may also have arisen due to the 

nature of the data in both the training and test set datasets. Single task connectomes with 

static univariate functional connectivity were used in the training set but CPM studies have 

reported more accurate predictions of cognitive phenotypes with training sets consisting of 

multiple task connectomes (S. Gao et al., 2019), multivariate connectivity data (Yoo et al., 

2019), and dynamic functional connectivity data (Zhu et al., 2021). In the test set, the resting-

state fMRI scan was approximately five minutes in duration. This length is sufficient to obtain 

stable correlations for functional connectivity (Van Dijk et al., 2010), but longer durations 

further reduce the amount of noise in, and the reliability of, functional connectivity data (Birn 

et al., 2013; Van Dijk et al., 2010). The degree of individual variability in functional 

connectivity matrices is also greatly reduced in scans with fewer than 500 time points (Finn 

et al., 2015). As the test set resting-state scan contained only 200 time points, more time 

points may be needed for connectivity matrices to have sufficient variation across individuals 

in order to accurately predict phenotypes such as cognitive reserve.  

 Of course, the model may not have generalised to the test here simply because the 

model itself was suboptimal. Various additions or alterations to CPM have now been 

described that may improve model accuracy and generalisability. One improvement may be 

bootstrap aggregating (bagging), where bootstrapped samples of the training set (i.e., 

randomly sampled subsets of the training set) are used to create multiple estimates of the 

predicted value which are then aggregated (Jollans et al., 2019). Bagging has been 

previously shown to improve the performance of multiple regression models applied to 

neuroimaging data, particular in datasets with samples sizes of less than 400 participants 

(Jollans et al., 2019). Bagging applied to CPM was found to improve the generalisability of 

a model predicting fluid intelligence from task-based connectivity data to an external dataset 

(O’Connor et al., 2020). Another improvement could be the use of partial least squares 

regression within CPM which assigns every edge in the connectivity matrix a weight for 
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subsequent prediction, instead of selecting only a subset of edges as is the case in standard 

CPM where correlation and linear regression are used (Yoo et al., 2018). CPM with partial 

least squares regression outperformed standard CPM for the prediction of attentional 

function with respect to generalisability to external datasets (Yoo et al., 2018). 

There were some important limitations in the present study. Due to incomplete coverage 

of the cerebellum in the majority of the training set (56% of the training set sample), nodes 

within the cerebellum and brainstem were removed from the functional connectivity matrices 

analysed here. After removing these edges, the connectivity matrices had 20,910 edges 

which was 58% of their original size, with 35,778 edges. Task-related activation and 

functional connectivity studies have identified positive relationships between the cerebellum 

and CR proxies (Belleville et al., 2021; Marques et al., 2016; Stern et al., 2018). 

Consequently, while removing nodes from the cerebellum and brainstem was necessary to 

avoid drastic reductions of the sample size in the training set, it removed information from a 

region that has been previously associated with CR. As positive associations between task-

related activation and connectivity of the cerebellum have been reported, the loss of this 

information in the training set may have impeded the ability of the positive CR network to 

produce robust accurate predictions of the CR residual (i.e., across k-fold validations). 

Other limitations arose due to the use of the CR residual as the target variable in the 

predictive model. First, there were no statistically significant independent associations 

between any of the brain structure variables and global cognition in the multiple regression 

models used to create the CR residual in each dataset. As such, while the CR residual 

reflected the variance in cognition that was not explained by age, sex, or brain structure; the 

variance uniquely attributable to brain structure was minimal. Therefore, it could be argued 

that the CR residual simply reflected age- and sex-adjusted global cognition. Subsequently, 

network-strength predicted CR measures may then have just represented individual 

differences in global cognition. This leads to a circular reasoning fallacy, as the candidate 

measure of CR, a construct which may explain individual differences in cognitive ageing, is 

simply just a measure of cognition. Furthermore, the validation of the candidate measure 

requires demonstration of a positive association between the measure and cognition, above 

and beyond the effects of brain structure. However, if the variables representing brain 

structure are not independently associated with cognition themselves, then, in effect, the 

test of validation simply requires an association between the candidate measure and 

cognition. In the present study, this was already effectively conducted during CPM.   
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The issue of circularity could be mitigated in future studies by developing a CR residual 

using variables representing brain structure that are statistically significantly associated with 

cognition, independent of age and sex. Using variables such as white matter hyperintensity 

volume, fractional anisotropy and neuropathological indices may enable this. A future study 

could attempt to develop an optimal CR residual by using the first principal component of 

an extensive set of variables representing brain structure and pathology, including regionally 

specific measures, as the brain structure variable. Moreover, in future studies assessing the 

cognitive benefit criterion of candidate CR measures, it should be established that the 

measure of brain structure, adjusted for in the association between the measure and 

cognition, is itself significantly correlated with cognition. This would ensure that the 

candidate CR measure is in fact associated with cognition above and beyond the effects of 

brain structure.  

Second, because CR residuals inevitably contain a large amount of measurement error 

(Ewers, 2020), the use of the CR residual as a target variable, introduced irreducible error 

(i.e., noise in the dependent variable) into the predictive model. Because irreducible error 

affects generalisability (Janssen et al., 2018), even an optimal predictive model may not 

have generalised to the test set as the predictor variables may not contain all the information 

required to reconstruct the target variable, due to the amount of noise contained within the 

target variable. The decision to use a CR residual instead of a CR proxy was justified on the 

basis that CR residuals are considered more direct measures of CR than proxy variables 

(Stern et al., 2020) and as it was demonstrated that the most robust CR proxy explained no 

more than 16.8% of the variance in cognition, after accounting for age, sex, and brain 

structure. Nonetheless, a more nuanced approach than simply predicting a CR residual 

might be needed to achieve generalisability. One approach may be to predict cognition from 

functional connectivity, controlling for brain structure at the edge selection step of CPM. This 

would minimise the effects of measurement error in comparison to the approach described 

here, where measurement error was introduced in both the target variable (i.e., creation of 

the CR residual) and during CPM. 

Third, there was an overlap in the measures used to create the CR residual and to 

assess the cognitive benefit, or protective effects, of the network strength predicted CR 

measures. Specifically, the CR residual was created from the regression of global cognition 

on age, sex, total GM volume, hippocampal volume, and mean cortical thickness. The 

cognitive benefit of network strength predicted CR measures was assessed in hierarchical 
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regressions of global cognition on age, sex, mean cortical thickness, and network strength 

predicted CR measures. Consequently, there was a degree of circularity in assessing the 

cognitive benefit of the network strength predicted CR measures. This circularity was 

accepted as it was important to create the CR residual with as much detailed brain structure 

information as possible. This circularity somewhat weakens the validity of the network 

strength predicted CR measures as neuroimaging measures of CR. However, the strong 

face validity of the network strength predicted CR measures suggests that they may still be 

valid. Developing CR measures by applying CPM to predict global cognition from functional 

connectivity, controlling for measures of brain structure at the edge selection step, may be 

another approach which could avoid this circularity.  

 There were, however, a number of strengths to the current study. A whole-brain 

approach was taken that considered functional connectivity across the brain, except for the 

cerebellum due to poor scanner coverage. As such, the model and results were not biased 

by a priori predictions. A cross-validation framework was applied to assess whether the 

model could make accurate predictions in unseen data. An external validation dataset, with 

functional connectivity obtained from a different fMRI condition on which the model was 

trained, was used to provide a rigorous test of the generalisability of the developed 

measures across datasets and conditions. The gold-standard recommendations for deriving 

measures of CR were rigorously applied by assessing the face validity of the measures in 

respect to their association with a robust CR proxy, validated in Chapter 3, as well assessing 

their protective effects on cognition, above and beyond the effects of brain structure.  

In sum, the present results demonstrated that task-based functional connectivity 

data can be used to create objective summary measures of CR (i.e., network strength 

predicted CR values) that are significantly associated with a CR residual, positively 

correlated with a CR proxy, and demonstrate a protective effect on cognition, beyond the 

effects of brain structure. These findings were demonstrated on unseen data within the 

training set (i.e., the same dataset used to develop the measures). However, the findings 

did not replicate when the model was applied to the test set (i.e., resting-state data from an 

independent dataset). The present study presents a framework for future attempts to 

develop measures that can generalise across datasets and fMRI conditions such that 

objective measures of CR can be developed, shared, and used by the wider research 

community with the ultimate aim of validating their clinical potential.  
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5 Chapter 5: General Discussion 

5.1 Summary 
The aim of the present thesis was to develop and validate objective measures of BM 

and CR in cognitively healthy adults. While the global burden of cognitive decline and 

dementia is increasing, there is a lack of effective treatments. Consequently, there is a 

growing emphasis on preventative strategies that rely on early identification of individuals 

at risk of severe cognitive decline and/or dementia. However, early identification is 

complicated by the significant variability in cognitive decline across individuals and the lack 

of a one-to-one relationship between cognitive function and brain structure and/or 

pathology. BM and CR are two constructs that may explain this variability and therefore their 

accurate measurement is vital in order to improve early identification and to improve the 

design and evaluation of preventative interventions. 

The first experimental chapter, Chapter 2, set out to clarify the relationship between 

brain-predicted age difference score (brainPAD) and cognitive function in order to validate 

brainPAD as a measure of BM. BrainPAD reflects the relative preservation of brain structural 

health or integrity and has been previously associated with earlier mortality, poorer physical 

ageing, and cognitive impairment (Cole et al., 2018; Franke & Gaser, 2012; Gaser et al., 

2013; Liem et al., 2017). However, the validity of brainPAD as a measure of BM was 

previously uncertain as the relationship between brainPAD and cognitive function has been 

obscured by a lack of studies in cognitively healthy older adults that statistically controlled 

for the effects of age and corrected for multiple comparisons. Here, a penalised linear 

regression with cross-validation was applied to structural MRI data to develop a model of 

brainPAD that generalised to three independent datasets. Across these three datasets, 

brainPAD was robustly associated with general cognitive status, semantic verbal fluency, 

executive function, and executive function (without processing speed). The replication of 

these associations across multiple datasets demonstrated that lower brainPADs – reflecting 

better relative preservation of brain structural health – was related to better cognitive 

function. Therefore, brainPAD was established as a valid measure of BM. 

In the second experimental chapter, Chapter 3, the validity and robustness of 

standard CR proxy variables as measures of CR were systematically analysed and 

compared. While CR is most commonly measured using socio-behavioural proxy variables, 

the validity of these variables as measures of CR is often not assessed within studies. 

Moreover, the choice of proxy tends to vary across studies. As such, the validity and relative 
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efficacy of proxy variables as measures of CR is unclear. This hinders the measurement of 

CR for researchers who cannot assess the validity of a CR proxy themselves due to a lack 

of neuroimaging data. It also impairs the comparability of future candidate neuroimaging 

measures of CR, as researchers may end up using different CR proxies for the assessment 

of face validity. Across two datasets, the validity and robustness of five standard CR proxies 

were assessed using hierarchical moderated linear regressions in complete CR models 

containing a measure of cognitive function and a measure of brain structure. The five proxies 

were educational attainment, occupational complexity, verbal intelligence, engagement in 

leisure activities, and engagement in physical activities. Composite proxies, created from all 

possible combinations of these five CR proxies, were also investigated. The analysis 

revealed that verbal intelligence had the largest independent associations with cognition 

and was the most robust CR proxy as it was validated in all CR models across both datasets. 

Smaller and less robust associations with cognition were observed for educational 

attainment and some composite proxies. These findings demonstrated that verbal 

intelligence should be used when measuring CR with proxies in cross-sectional studies of 

cognitively healthy older adults and when assessing the face validity of candidate 

neuroimaging measures. 

Chapter 3 demonstrated that some CR proxies – specifically verbal intelligence – 

are robust and valid measures of CR but proxies are nonetheless suboptimal for the 

accurate measurement of CR (Stern et al., 2020). Measuring neural networks that vary as 

a function of CR – using functional neuroimaging – can provide a more direct measure of 

CR (Stern & Barulli, 2019). More accurate predictions of individual cognitive phenotypes 

have been reported using task-based fMRI in comparison to resting-state fMRI (Greene et 

al., 2018; Yoo et al., 2018) and to-date, candidate functional neuroimaging measures of CR 

have solely relied on task-based fMRI. However, measures of CR that can be generated 

using resting-state fMRI may have greater clinical and research utility. CPM is a method that 

has been applied to task-based functional connectivity to develop measures of cognitive 

phenotypes, such as sustained attention, that can also then be generated from resting-state 

functional connectivity (Rosenberg et al., 2016). This potentially enables the development 

of measures with high accuracy using task-based data that can be applied to resting-state 

data and therefore have wider clinical and research utility. The final experimental chapter, 

Chapter 4, examined whether valid functional neuroimaging measures of CR could be 

developed using CPM from task-based fMRI data and applied to resting-state fMRI. 

Application of CPM to task-based functional connectivity data developed three measures of 
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CR, positive-, negative-, and combined-network strength predicted CR. These three 

measures predicted CR, as measured by a CR residual, in unseen individuals within the 

same dataset. The three measures reflected the summed connectivity strength of a sparse 

set of edges with key nodes including the left temporal pole of the MFN, the right angular 

gyrus of the DMN, and the left dorsolateral prefrontal cortex and premotor/supplementary 

motor cortex of the FPN. These measures displayed face validity as measures of CR as 

they were positively associated with a CR proxy, verbal intelligence, and they also satisfied 

the cognitive benefit criterion as they were positively associated with global cognition, 

independent of mean cortical thickness. However, critically, these measures did not 

generalise to resting-state functional connectivity in an independent dataset. Nonetheless, 

Chapter 4 demonstrated a framework for developing and validating functional neuroimaging 

measures of CR that could be further improved in future research studies. 

5.2 Implications 

5.2.1 Relationship between brainPAD and cognition  
In Chapter 2, robust associations between brainPAD and specific domains of 

cognition were observed. These robust associations demonstrated validity for brainPAD as 

an operational measure of BM. These associations were in line with previous findings from 

the literature, although previous associations were mostly in non-cognitively healthy 

samples and may have been affected by statistical issues (i.e., failure to statistically control 

for age and/or correct for multiple comparisons). For some of the cognitive domains, there 

were some previous studies which reported conflicting evidence regarding their association 

with brainPAD. In this section, the robust associations between brainPAD and specific 

domains of cognition, identified in Chapter 2, are reviewed in the context of previous 

evidence from the literature21. 

BrainPAD was negatively correlated with general cognitive status, as measured 

using the MMSE and DRS, in DEU and CR/RANN. Previous studies have reported that 

                                                
21 In Chapter 2, verbal intelligence was considered as a cognitive outcome measure which was 
assessed in terms of its relationship with brainPAD. At the outset of the work presented in this thesis, 
I considered verbal intelligence to be a measure of cognitive function. However, after the completion 
of the work presented in Chapter 2 and after learning more about the area of BM and CR, it became 
apparent that verbal intelligence can also be considered as a contributor to, or indicator of, BM and 
CR (e.g., Fleck et al., 2017; Habeck et al., 2017; Oosterman et al., 2020). Accordingly, verbal 
intelligence was treated as an indicator, or proxy, of CR in Chapters 3 and 4. I elected to include 
verbal intelligence in Chapter 2, for consistency with Boyle et al., 2021, which contains the core of 
Chapter 2. However, in future studies, verbal intelligence should be treated as an indicator of CR and 
BM rather than a cognitive outcome measure given its use as such in the literature. 
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brainPAD is related to general cognitive status, albeit in samples including individuals with 

MCI or dementia (Beheshti et al., 2018; Kaufmann et al., 2019), and without adjusting for 

the effect of age or controlling for multiple comparisons (Beheshti et al., 2018; Cole, 

Underwood, et al., 2017). In contrast to these findings, Gaser et al. (2013) reported that 

brainPAD was correlated with the CDR and Alzheimer’s Disease Assessment Scale but not 

the MMSE in an MCI sample. However, Gaser et al. (2013) did not account for the effect of 

age. While Löwe et al. (2016) reported that brainPAD was negatively correlated with the 

MMSE across mixed samples of APOE e4 carriers and non-carriers (including healthy 

controls, MCI, and AD), it was not significantly correlated with the MMSE within healthy 

control and MCI subgroups. Sample sizes within these subgroups were relatively small, 

ranging from 14 to 81 participants. Consequently, the correlations between brainPAD and 

the MMSE in these subgroups may not have been adequately powered to reach 

significance. This study is the first to report a relationship between brainPAD and measures 

of general cognitive status in cognitively healthy adults while controlling for the effects of 

age and correcting for multiple comparisons. These findings provide strong support for the 

existence of a significant negative relationship between brainPAD and general cognitive 

status. 

BrainPAD was significantly negatively correlated with semantic verbal fluency, as 

measured using the Animals task, in both DEU and CR/RANN. This finding contradicts non-

significant correlations between brainPAD and composite measures of semantic and 

phonemic verbal fluency (Cole, Underwood, et al., 2017; Richard et al., 2018). However, the 

former study used age-adjusted t-scores to control for the age-cognition relationship rather 

than adding age as a covariate to the brainPAD-fluency association (cf. Le et al., 2018). As 

semantic verbal fluency is associated with age (Clark et al., 2009; Santos Nogueira et al., 

2016), the failure to appropriately adjust for age may have obscured a significant effect. 

Alternatively, these previously reported non-significant correlations could be explained by 

the use of composite measures of both phonemic and semantic fluency as the present study 

did not find strong evidence for a relationship between phonemic verbal fluency and 

brainPAD (although it was significant in DEU, this correlation was not replicated in 

CR/RANN). Therefore, it is possible that a non-significant relationship between phonemic 

fluency and brainPAD in the Cole et al. (2017) and Richard et al. (2018) studies may have 

diluted a possible significant relationship between semantic fluency and brainPAD. The 

significant negative correlation between brainPAD and semantic verbal fluency observed 

here is supported by a previous negative association, which was adjusted for age (Franke 
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et al., 2013). This therefore further strengthens the validity of brainPAD as an operationally 

valid measure of BM and indicates that semantic verbal fluency may be supported by better 

BM.  

Across all three datasets, brainPAD was negatively correlated with executive 

function as measured by trail-making tests (TMT B or CTT 2). The TMT B has previously 

been described as a relatively sensitive measure of cognitive decline as completion times 

were shown to be significantly different between healthy controls, MCI, and AD (Ashendorf 

et al., 2008). Likewise, the CTT 2 was also found to be sensitive to cognitive decline, with 

differences between AD and healthy controls (Lin et al., 2014), and between healthy 

controls, MCI, and AD (Guo et al., 2010). Moreover, preservation of brain structure, 

measured by medial temporal lobe atrophy, deep WM hyperintensities, and periventricular 

hyperintensities, has been previously associated with the TMT B (Oosterman et al., 2010). 

Therefore, it is no surprise that executive function was negatively correlated here with an 

index of accelerated brain ageing. Indeed, previous studies have reported similar results for 

trail-making versus brainPAD; however, these studies used clinical samples (traumatic brain 

injury; Cole et al., 2015) or did not correct for multiple comparisons (Cole, Underwood, et 

al., 2017). The present results therefore augment these previous findings by replicating this 

result across three independent datasets. This provides further support for the validity of 

brainPAD as a measure of BM and suggests that executive function may be supported by 

better BM.  

BrainPAD was also negatively correlated with executive function, without the 

confound of processing speed (TMT B minus A), in DEU and CR/RANN. The replicated 

association between relative preservation of brain structure and the TMT B minus A is 

supported by previous studies reporting associations with medial temporal lobe atrophy, 

deep WM hyperintensities, and periventricular hyperintensities (Oosterman et al., 2010). In 

regards to previous associations with brainPAD, only one previous study investigated this 

relationship, in older adults with traumatic brain injury (Cole et al., 2015), where a significant 

positive correlation was reported. This robust association provides further support for the 

validity of brainPAD as a measure of BM and suggests that the association between 

executive function and BM is not solely driven by the influence of processing speed. This 

finding may also suggest that the association between brainPAD and cognition is primarily 

driven by a strong association with executive function, as it was also robustly associated 

with both the TMT B/CTT 2 as well as the Animals task, which measures semantic verbal 
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fluency but is also influenced by executive function (Aita et al., 2019; Ardila et al., 2006; but 

cf. Whiteside et al., 2016). 

While the robust associations between brainPAD and general cognitive status and 

semantic verbal fluency observed across datasets in Chapter 2 contradict some previous 

findings, there are plausible explanations for those contradictory findings, as outlined above. 

These issues in previous studies were addressed in Chapter 2 via the use of large non-

clinical samples and appropriate statistical controls. Moreover, other studies have reported 

associations with these cognitive domains that are in line with the associations observed 

here. Therefore, there is firm evidence that brainPAD is indeed robustly associated with 

general cognitive status and semantic verbal fluency. Moreover, given the findings support 

and extend previous associations with executive function, with and without the influence of 

processing speed, Chapter 2 further demonstrated that brainPAD is robustly associated with 

executive function. Together, these robust associations between the relative preservation 

of brain structural health and cognition establish strong validity for the use of brainPAD as 

a measure of BM. 

5.2.2 Verbal intelligence, not educational attainment, robustly assesses CR  
In Chapter 3, it was demonstrated that verbal intelligence was the most robust CR 

proxy with the largest associations with cognition, beyond the effects of brain structure, as 

measured by GM volume, hippocampal volume, and mean cortical thickness. In particular, 

verbal intelligence had larger and more robust CR effects than educational attainment. This 

finding was important and especially interesting because educational attainment is the most 

commonly used CR proxy (Opdebeeck et al., 2016). The relative superiority of verbal 

intelligence, in terms of effect size and robustness, convincingly supports an argument 

favouring the use of verbal intelligence over education (Perneczky et al., 2019). This 

argument was previously broadly supported by evidence that, compared to educational 

attainment, verbal intelligence was a stronger predictor of cognitive function/decline (Manly 

et al., 2004, 2005) and had greater protective effects on the onset of clinical symptoms of 

MCI/AD (Pettigrew et al., 2013, 2017). More specifically, Malek-Ahmadi et al. (2017) directly 

compared educational attainment and verbal intelligence in a mixed autopsy sample, 

consisting of adults with diagnoses of no cognitive impairment, MCI and AD. In complete 

CR models, including neuropathological indices and measures of episodic memory and 

executive function, positive evidence was found for verbal intelligence, but not education, 

as a CR proxy, leading to the conclusion that verbal intelligence measures are superior to 
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educational attainment as CR proxies. In Chapter 3, it was demonstrated that verbal 

intelligence is also a superior CR proxy when using in-vivo measures of GM volume, 

hippocampal volume, and mean cortical thickness and when assessed in respect to 

additional cognitive outcome measures, including verbal fluency, processing speed, and 

global cognition. Importantly, these results demonstrated that this conclusion held when 

tested across two separate samples of cognitively healthy older adults. 

 The larger and more robust effects of verbal intelligence reported here and 

elsewhere could be explained by two key factors. First, verbal intelligence may be a closer 

reflection of the quality, benefit, or outcomes of educational attainment (Manly et al., 2002) 

than years of education, which simply reflects the quantity of educational attainment. Quality 

of education can differ greatly among individuals with the same quantity of education due to 

various socioeconomic and systemic factors (Chin et al., 2012), such as class size 

(Ehrenberg et al., 2001), and also due to individual level factors such as intrinsic learning 

motivation and academic self-efficacy (Hsieh, 2014). Second, measures of verbal 

intelligence may reflect wider lifetime educational and cognitive experiences as compared 

to years of education which is generally restricted to early-life formal education (Baker et al., 

2017; Oh et al., 2018; Perneczky et al., 2019; Schwartz et al., 2016) and typically neglects 

to consider later-life education which has been positively associated with cognitive function 

(Anatürk, Suri, Smith, et al., 2020; Peeters et al., 2020). In this sense, verbal intelligence 

could be considered a dynamic CR proxy which can change over time (Deary et al., 1998; 

Giambra et al., 1995; McHutchison et al., 2019) whereas years of education may be 

considered a static CR proxy (Malek-Ahmadi et al., 2017). Despite the widespread use of 

educational attainment as an individual CR proxy, these results suggest that it should only 

be used as an individual proxy in cross-sectional studies of cognitively healthy older adults 

where verbal intelligence is not available.  

5.2.3 Functional anatomy of sparse networks underlying CR 
 In Chapter 4, it was shown that task-based functional connectivity can be used to 

objectively measure CR, although the measures did not generalise to an external resting-

state dataset. An interesting finding was that CR could be predicted in the training set by a 

very sparse network of functional connections within specific functional networks. This 

suggested that the edges and functional networks identified in the positive and negative CR 

connectomes are particularly relevant to CR. To establish whether the relationship of these 

edges and functional networks with CR was indeed sensible, such that the model was 
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identifying patterns of connectivity truly relevant for CR, they must be considered in terms 

of the broader literature. In this section, these edges and functional networks, are discussed 

in terms of their previously identified associations with CR. 

 The negative CR connectome was largely influenced by connectivity within the motor 

network and of the motor network to the DMN and MFN. This suggested that stronger 

connectivity of the motor network is related to lower CR. A key node of the motor network 

in the negative CR connectome was the left precentral gyrus, where functional connectivity 

has been previously negatively related to a CR residual (D. H. Lee et al., 2019). Activation 

of the left precentral gyrus during a passive language comprehension task (Bosch et al., 

2009) and a working memory task (Steffener et al., 2011) has also been negatively related 

to CR proxy composites. Negative relationships between connectivity of the motor network 

and CR proxies have been previously reported, although these associations were between 

specific nodes of the network, including the insula and post central gyrus (Anatürk, Suri, 

Zsoldos, et al., 2020; Conti et al., 2021), that were not present in the negative CR 

connectome here. 

 The MFN was the other functional network with a major influence on the negative 

CR connectome. Stronger connectivity of a single node in the MFN, the left temporal pole, 

to other networks including the FPN, salience network, and visual association network, was 

associated with lower CR. This negative relationship is supported by previous studies where 

functional connectivity of the left temporal pole in adults with MCI decreased after 

participating in an education programme intervention (Simon et al., 2020) and where lower 

task-related activation of the left temporal pole was associated with higher education and 

better memory performance in younger adults (Springer et al., 2005). Interestingly, both left 

precentral gyrus and the left temporal pole were identified as two regions where functional 

activity, measured by metabolic activity using FDG-PET, was most negatively affected 

during normal aging (Kalpouzos et al., 2009). The role of these two nodes in the negative 

CR connectome identified here might therefore tentatively suggest that individuals with 

higher CR are less reliant on connectivity to these nodes of the motor network and MFN 

during task performance.  

Aside from the left precentral gyrus and temporal pole, only one node, the right 

angular gyrus, had more than one significant edge in the negative CR connectome. 

However, this node also had multiple edges in the positive CR connectome. One possible 

explanation for the differential relationship of connectivity of this node to CR may be that it 
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depends on the levels of neuropathology present in the brain. This differential relationship 

was demonstrated in an FDG-PET study where higher CR, measured by education, was 

associated with higher metabolic functional activity in amyloid-beta negative participants but 

with lower activity in amyloid-beta positive participants (Ewers et al., 2013). This relationship 

between education and metabolic activity of the angular gyrus has also been found to differ 

depending on sex, with a negative relationship identified for males, but not for females, with 

Alzheimer’s disease (Malpetti et al., 2017). One region in the negative CR connectome, the 

supramarginal gyrus of the bilateral inferior parietal lobules, contained multiple nodes with 

single edges negatively related to CR. This finding supports a previous negative association 

between functional connectivity here and a CR residual in cognitively healthy adults (D. H. 

Lee et al., 2019). Moreover, task-related activation of this region contributed to a pattern of 

activation across multiple tasks that had protective effects on cognition and was negatively 

associated with a CR proxy, verbal intelligence (Stern et al., 2018).  

The negative CR connectome was robust as it accurately predicted the CR residual 

in unseen data in the training set when generated using different k-fold cross-validation 

schemes (see Table S11 in 7.3.2 Supplemental Results) as well as LOOCV. The positive 

CR connectome was not as robust as it did not accurately predict the CR residual in unseen 

data in the training set when generated using k-fold cross-validation (see Table S11 in 7.3.2 

Supplemental Results). Therefore, this network needs to be interpreted with caution. 

However, the positive CR connectome did accurately predict the CR residual in the training 

set using LOOCV and the edges and functional networks identified within the positive CR 

connectome have been previously implicated in CR.  

The positive CR connectome was primarily comprised of edges within the FPN, and 

from the FPN to the DMN, motor network, and visual association network. This suggested 

that stronger connectivity of the FPN is related to higher CR, in agreement with a previous 

finding where stronger functional connectivity during task performance was related to higher 

CR as measured by education and a CR residual (Franzmeier, Hartmann, et al., 2017). 

Resting-state studies have also implicated connectivity of the FPN in CR, as stronger 

connectivity of the FPN attenuated the impact of high amyloid burden on global cognitive 

decline (Buckley et al., 2017) and of WM lesions on executive function (Benson et al., 2018). 

This relationship may persist even after the onset of cognitive decline, as positive 

correlations between FPN connectivity and CR proxies (Franzmeier, Caballero, et al., 2017; 

Serra et al., 2016), in addition to protective effects on cognition (Franzmeier, Duering, et al., 
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2017), have been reported in adults with MCI. A key node of the positive CR connectome 

was Brodmann area 6, the premotor/supplementary motor area in the left frontal cortex 

which overlaps with the specific hub of the FPN, Brodmann area 6/44 in the left frontal 

cortex, that has been implicated in CR in the series of studies by Franzmeier et al. 

Connectivity of the supplementary motor area has also been positively associated with a 

CR residual in cognitively healthy adults (D. H. Lee et al., 2019). 

D. H. Lee et al. (2019) also reported a positive association between a CR residual 

and connectivity of the left temporal pole. A node in the left temporal pole was identified in 

the positive CR connectome, although not in the adjusted connectome generated by CPM 

controlling for age, sex, and head motion. An edge that did survive adjustment for confounds 

was identified between the FPN and the right inferior temporal gyrus of the visual association 

network. Increased task-related activation of this region was positively associated with a CR 

proxy composite as well as with protective effects on memory in the face of lower 

hippocampal volume (Belleville et al., 2021). Moreover, the degree strength of this node 

was positively related to a CR residual in a network-based analysis (Marques et al., 2016). 

Together, these findings suggest that the right inferior temporal gyrus may be an important 

hub of a CR network. 

 Connectivity between the FPN and DMN also contributed to the positive CR 

connectome, as did connectivity between the DMN and motor network. Stronger resting-

state functional connectivity of the DMN has been previously implicated in CR, as it was 

associated with reduced cognitive decline in the face of amyloid burden (Buckley et al., 

2017). Moreover, CR, as measured by education, has been positively associated with 

resting-state functional connectivity and metabolic activity of the anterior cingulate cortex 

(Arenaza-Urquijo et al., 2013), a node of the DMN (Buckner et al., 2008; Washington & 

VanMeter, 2015). Stronger resting-state functional connectivity of this node was 

subsequently associated with higher levels of verbal fluency. However, a previous study 

using the training set sample here, reported a negative association between task potency 

of edges in the DMN and CR, as measured by verbal intelligence (van Loenhoud et al., 

2020). The opposite direction of that finding may be due to the difference in measures used 

in both studies. The present study used functional connectivity during task performance, 

reflecting resting-state connectivity and the changes in connectivity in response to a task, 

whereas task potency reflects the change in connectivity without the influence of resting-

state connectivity (van Loenhoud et al., 2020). As suppression of the DMN is vital for 
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successful cognitive performance (Anticevic et al., 2012), an explanation could be that 

individuals with higher CR are better able to reduce connectivity of the DMN to other 

networks during task performance, which would reflect lower task potency.  

In sum, while the positive CR connectome was not as robust as the negative CR 

connectome to different cross-validation schemes, it did predict the CR residual in the 

training set using LOOCV and was comprised of edges and functional networks that have 

been previously associated with CR. The lack of robustness of the positive CR network here 

may have therefore arisen due to limitations of the present study rather than a lack of edges 

and functional networks where stronger connectivity is associated with higher CR. In 

contrast, the negative CR connectome was robust. Various studies have previously 

identified negative associations between CR and connectivity or task-related activation of 

key nodes in the negative CR connectome identified here. Therefore, this suggests that the 

negative CR connectome identified patterns of connectivity meaningful to CR. More careful 

consideration of factors such as neuropathology and sex may be needed to elucidate the 

contributions of specific nodes, such as the right angular gyrus. Nonetheless, the key 

functional networks and nodes identified in the negative CR connectome strongly supports 

previous studies suggesting that individuals with greater connectivity and task-related 

activation of these networks and nodes tend to have lower CR. 

5.2.4 Implications summary 
Together, the findings outlined in the present thesis demonstrate that brainPAD can 

be used as an operational measure of BM and that verbal intelligence can be used as a 

proxy measure of CR. While evidence was found that network strength predicted CR may 

be a valid neuroimaging measure of CR, this measure did not generalise to independent 

resting-state data. Nonetheless, an important implication of this measure is that it 

established a promising framework that can be used to develop valid measures of CR using 

task-based functional connectivity. Future studies can use this framework and attempt to 

develop a robust measure that generalises to resting-state data in independent datasets 

and therefore has wide clinical and research potential.  

The stringent validation of brainPAD as a measure of BM has important implications 

for cognitive ageing research. One implication of a validated measure of BM is that it may 

enable improved early identification of individuals at risk of cognitive decline by identifying 

individuals who have lower BM despite normal cognition. This might enable more effective 

early intervention by directing interventions and/or resources towards these individuals 
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before the onset of cognitive decline. A second implication is that brainPAD can be used to 

identify lifestyle factors and interventions that influence BM. Interventions based on these 

lifestyle factors and experiences can then be designed to target BM in order to slow or 

reduce cognitive decline. A third implication is that brainPAD could be used to more 

effectively measure the impact of such interventions, as instead of relying on measurement 

of the effect on cognition, researchers can now assess the effect on BM directly, in addition 

to the effect on cognition. 

More generally, given the robust associations between brainPAD and specific 

domains of cognitive function, brainPAD could also be used as a supplementary or 

alternative outcome measure in studies of general cognitive ageing, as it is not confounded 

by the various biases and effects (e.g., low reliability, practice effects) that limit the MMSE 

(Galasko et al., 1993; Pfeffer et al., 1984; Tombaugh & McIntyre, 1992) and the DRS (Emery 

et al., 1996; Green et al., 1995). Similarly, in studies investigating cognitive ageing in the 

domains of semantic verbal fluency and executive function, brainPAD could be also be 

included as an outcome measure because it is not affected by possible biases including 

scoring and administration procedures (Woods et al., 2016) and practice effects (Cooper et 

al., 2001; J. E. Harrison et al., 2000; B. A. Wilson et al., 2000) that can impact the Animals 

task or factors that can bias trail-making performance, including practice effects (Bartels et 

al., 2010), rater effects (Feeney et al., 2016) and participant literacy (Vaucher et al., 2014). 

The validation of verbal intelligence as a robust proxy measure of CR has important 

implications for CR research in particular. Given that candidate neuroimaging measures of 

CR must be shown to display face validity via an association with a CR proxy, the evidence 

presented here concludes that verbal intelligence should be used for the assessment of face 

validity. An important implication here is that this proxy can be used to study CR-related 

questions by researchers without access to neuroimaging data. A more general implication 

is that verbal intelligence could be used to improve the screening of individuals at risk for 

dementia and cognitive decline. While cognitive screening measures, such as the MMSE, 

are often adjusted for education (Franco-Marina et al., 2010; Ylikoski et al., 1992), the 

finding that verbal intelligence was a more robust CR proxy than educational attainment 

suggests that such measures could be improved by adjusting for verbal intelligence. This 

would enable more accurate assessments of an individual’s cognitive status. Improvements 

to screening of individuals at risk of dementia and cognitive decline could improve clinical 

trials and intervention studies by ensuring that recruited participants are in fact likely to 
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experience severe cognitive decline or dementia. A further implication of the present thesis, 

that could improve clinical trials and intervention studies, is that such trials could effectively 

control for CR-related differences in outcomes by matching participants based on verbal 

intelligence or statistically controlling for verbal intelligence when evaluating intervention 

efficacy.  

5.3 Limitations and future directions 
 The results outlined in the present thesis are robust and have been rigorously 

assessed in terms of their replicability. As outlined above, these findings also have important 

implications for cognitive ageing research. Nonetheless, there are some limitations. 

Limitations arose due to the use of cross-sectional data, different age ranges in the 

CR/RANN dataset across chapters, the selection of specific cognitive measures, collapsing 

across sexes for all analyses, and only using GM data to represent brain structure. As 

discussed below, while these limitations required clarification, they were not critical faults 

and the conclusions drawn from the results remain valid. These limitations can be addressed 

in future studies that may further illuminate our understanding, and improve our 

measurement, of BM and CR. 

The main limitation of the present thesis is that the results in each experimental 

chapter were cross-sectional. As such, the developed measures of BM and CR, in Chapters 

2 and 4, were associated with individual differences in cognition, but not cognitive decline 

or change. While the measures were validated in relation to cross-sectional associations 

with cognition, to be completely validated as measures of BM and CR, longitudinal data is 

required. Similarly, the validation of proxy measures of CR in Chapter 3, did not provide 

information about purported protective effects of those proxies on cognitive decline. 

Moreover, the use of cross-sectional data prevented inferences from being made about the 

causal direction of the relationships between the robust proxies and cognitive function. 

While the reliance on cross-sectional data in the present thesis is a significant limitation, 

longitudinal data was not available. However, cross-sectional data is still informative. Cross-

sectional data can be particularly useful for the development of candidate measures, as 

these can be developed and validated cross-sectionally using the available data, and then 

optimised later when longitudinal data becomes available. Similarly, given that many CR 

studies investigate cross-sectional associations with CR proxies, assessing the validity of 

CR proxies using cross-sectional data was important in order to provide empirically driven 

recommendations for future researchers.  
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With longitudinal data on cognitive function, a future study could assess the validity 

of the BM measure, CR proxies, and CR neuroimaging measure in relation to cognitive 

decline rather than individual differences in cognition. The development of a CR functional 

neuroimaging measure might not even necessarily require longitudinal neuroimaging data. 

Instead, functional connectivity could be used to predict a CR residual created from the 

regression of longitudinal cognitive function on brain structure, demographics, and baseline 

cognitive function. This would enable the creation of network strength predicted CR 

measures that accounted for the variance in cognitive change that is not explained by brain 

structure, demographics, and baseline cognition. In contrast, for an optimal neuroimaging 

measure of BM, longitudinal neuroimaging data may be required. The brain age prediction 

model described in Chapter 2 generated a measure of BM, brainPAD, that reflected the 

preservation of an individual’s structural brain health relative to the norm for their age. While 

this is a useful cross-sectional measure, this approach somewhat failed to account for 

individual differences in structural brain health. With longitudinal data, brain age could be 

predicted at two time points and the difference between the rate of brain ageing and 

chronological ageing could be calculated. Like brainPAD, if this difference score is positive 

it would reflect accelerated brain ageing, and therefore lower BM. However, this measure 

would be specific to each individual and would potentially provide a more precise measure 

of BM.  

In Chapters 2 and 4, the full age range of CR/RANN was used whereas in Chapter 

3 a restricted age range was used. The rationale for this was that the development of 

neuroimaging measures of BM and CR in Chapters 2 and 4, respectively, would be better 

served by the larger range in brain structure/function and cognitive function afforded by the 

larger age range. In contrast, in Chapter 3, already established proxy measures of CR were 

assessed in terms of their robustness and validity, so in order to draw comparisons across 

two datasets, it was necessary to match their age ranges. While this difference in age range 

may be incongruent across experimental chapters, there was a clear rationale for the age 

range used in each dataset. Moreover, there were protections in Chapters 2 and 4 against 

the possibility of any findings arising as a consequence of the increased age range of 

CR/RANN. In Chapter 2, a third dataset, DEU, was assessed, which had a restricted age 

range more closely matching the TILDA dataset. Furthermore, age was included as a 

covariate in the analysis of the associations between brainPAD and cognitive function. In 

Chapter 4, a supplementary analysis with a restricted age range of CR/RANN was 

conducted (see Section 4.3.8 and Table S10 in 7.3.1. Supplementary Results) and adjusted 



 

142 
 

measures of network strength predicted CR were created in which age was included as a 

covariate when relating the functional connectivity of edges in connectivity matrices to CR. 

Given these controls, it is unlikely that the difference in the age range of CR/RANN across 

the experimental chapters had undue effects on the findings outlined here.  

  A limitation relevant to all three experimental chapters was the use of different 

cognitive measures to assess the putatively same cognitive processes. Differences in the 

cognitive measures could have potentially resulted in differential associations of that 

cognitive domain to BM/CR across datasets. For instance, the verbal episodic memory 

(delayed) variables were measured by delayed recall of word lists after a 40 minute delay 

in DEU, a 15 minute delay in CR/RANN, and a 20-25 minute delay in TILDA. In Chapter 2, 

brainPAD was only significantly associated with verbal episodic memory (delayed) in DEU. 

One possible explanation for this may be that the shorter delay periods in CR/RANN and 

TILDA may have resulted in ceiling effects (Uttl et al., 2002) that attenuated any statistical 

association with brainPAD. The longer delay periods in DEU may have been less affected 

by ceiling effects as word list recall decays with increasing delay durations (Geffen et al., 

1997; Saloner et al., 2018). However, the durations assessed by Geffen et al. and Saloner 

et al. were on the scale of days to weeks, whereas the increased duration in DEU was a 

maximum of 25 minutes, versus CR/RANN. Increases in delay duration of up to 45 minutes 

have previously been found not to affect immediate memory performance, albeit for figures 

rather than word lists (Berry & Carpenter, 1992). As such, despite slight differences in this 

cognitive measure, differences in the association between brainPAD and verbal episodic 

memory across datasets may have been due to differences in confounding factors and age 

range (see Chapter 2, section 2.4 for discussion of these factors). 

Another example of a cognitive domain that was assessed by different cognitive 

measures was executive function, which was assessed by the TMT B in DEU and CR/RANN 

but by the CTT 2 in TILDA. Although the CTT 2 has been described as a direct ‘culture-free’ 

analogue of the TMT B (Elkin-Frankston et al., 2007; Messinis et al., 2011), the CTT 2 has 

different stimuli (shapes and colours vs numbers and letters) and takes longer because it 

has more stimuli (Mitrushina et al., 2005). Consequently, some have argued, based on 

findings of significant difference in mean scores on CTT 2 and TMT B, that the tests are not 

direct equivalents (Dugbartey et al., 2000; Strauss et al., 2006). However, mean scores for 

both measures are calculated as time to completion and therefore a difference in means 

between both measures primarily reflects a difference in test length. A more appropriate 
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measure of test equivalence would be correlations between mean scores, and various 

studies report significant correlations between both measures (Dugbartey et al., 2000; Elkin-

Frankston et al., 2007; T. Lee et al., 2000; Messinis et al., 2011). 

Although it would have been preferable to use identical measures across datasets, 

this was not possible because the studies were designed after data collection so they made 

use of the pre-existing data. Nonetheless, the measures used here were broadly 

comparable in that they are apparent measures of the same underlying cognitive constructs. 

It could also be argued that any slight differences in cognitive measures used across 

datasets might actually strengthen the evidence supporting a robust association between 

BM and a specific domain of cognition, or a robust effect of a particular CR proxy. 

Nonetheless, to ensure that differences in the cognitive measures used to assess specific 

cognitive domains do not bias the relationship of cognitive function with BM and CR, a future 

study could ensure agreement in the measures used across datasets.  

 Another limitation in relation to the cognitive measures in the present thesis, is that 

the use of a specific cognitive measure, the TMT/CTT difference score, may not have 

assessed the intended underlying cognitive domain. This measure, calculated via the 

subtraction of TMT A/CTT 1 from TMT B/CTT 2, was intended to provide a measure of 

executive function without the influence of processing speed (Strauss et al., 2006). 

However, evidence suggests that the difference score is in fact influenced by processing 

speed: processing speed, as well as attention, episodic memory, and working memory, were 

independently associated with TMT difference scores in a stepwise regression (Oosterman 

et al., 2010). In contrast, the ratio score, calculated by the division of TMT B by TMT A, was 

only associated with executive function. Given these findings, a purer measure of executive 

function may have been obtained by using the ratio score instead of the difference score in 

this thesis. In particular, this may have introduced redundant information into the global 

cognition variable used in Chapters 3 and 4, as processing speed may have essentially 

been accounted for twice in that measure.  

Previous work has shown that there is an influence of processing speed on the TMT 

difference score (Oosterman et al., 2010). However, a pattern of results observed in Chapter 

2 suggests that the difference score may have accounted for executive function as intended, 

without the influence of processing speed. Processing speed (TMT A/CTT 1) was 

associated with brainPAD in TILDA, but not DEU or CR/RANN. In contrast, executive 

function with the influence of processing speed (TMT B/CTT 2) was associated with 
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brainPAD in all three datasets. Finally, executive function without the influence of processing 

speed (i.e., the difference score) was associated with brainPAD in DEU and CR/RANN but 

not TILDA. Given that processing speed, and executive function with the influence of 

processing speed were associated with brainPAD in TILDA but executive function without 

the influence of processing speed was not, this suggests that the difference score was not 

unduly influenced by processing speed. Nonetheless, based on the findings reported by 

Oosterman et al. (2010), the ratio score may be a preferable measure of executive function 

without the influence of processing speed. Given that executive function without processing 

speed was one of only four cognitive domains reliably associated with brainPAD, future 

research should clarify that this association holds when using the TMT/CTT ratio score 

instead of the difference score.  

 A key limitation in the present thesis was that all analyses collapsed across sexes. 

In Chapter 2, brainPAD was developed using a training set comprised of males and females. 

Brain age prediction models have been developed in males and females separately, and 

have resulted in greater training set accuracy, with Pearson’s r = 0.93 for females and 0.94 

for males (Kaufmann et al., 2019), than reported here, r = 0.85. However, the model reported 

here had comparable accuracy in external test sets, ranging from r = 0.65 to 0.87, than for 

models trained within each sex separately, r = 0.53 to 0.86 as reported by Kaufmann et al. 

As such, developing models separately within sexes may not improve model performance. 

Moreover, this may only be possible when extremely large training sets are available as 

training set sample size is associated with model performance (de Lange et al., 2020; 

Schnack & Kahn, 2016) and Kaufmann et al. had a training set consisting of 35,474 

participants, which was 26 times larger than the training set of 1,359 participants studied 

here.  

 Although developing models separately within sexes may not result in improved 

model performance when applied to external datasets, there may still be some value in 

doing so when using brainPAD to investigate the association between BM and cognitive, 

lifestyle, or health factors. Significant sex differences in brainPAD were identified in two of 

the three test sets assessed here and have been reported elsewhere (Cole et al., 2018; 

Franke et al., 2013; Luders et al., 2016; Smith et al., 2019). These sex differences in 

brainPAD may be relevant for the subsequent investigation of associations between BM and 

specific factors, as the pattern of relationships between brainPAD and health and lifestyle 

factors was found to differ in males and females (Franke et al., 2014). As such, it may be 
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worthwhile to develop sex-specific brain age prediction models when using brainPAD to 

investigate the influence of lifestyle or health factors on BM, or indeed the influence of BM 

on cognition. In the present study, while sex-specific brain age prediction models were not 

created in order to maintain a sufficiently large training set sample size, potential sex 

differences between BM and cognition were accounted for. These potential differences were 

mitigated by the inclusion of sex as a covariate when assessing the relationship between 

brainPAD and cognition. In future studies, it would be informative to identify the associations 

between BM and cognition that differ by sex as this may be relevant for the effective design 

of lifestyle interventions that target BM in order to reduce cognitive decline. 

 Sex was also included as a covariate in Chapter 3 when investigating the association 

between CR proxies and cognition. This approach mitigated the effect of potential sex 

differences in the relationship between CR proxies and cognition. However, there are sex 

differences in the factors that contribute to CR (Subramaniapillai et al., 2021). These 

differences may be particularly relevant in older cohorts, including the two samples 

assessed in Chapter 3, as men in these cohorts, on average, had greater educational and 

occupational opportunities in the earlier years of their lives (Subramaniapillai et al., 2021). 

This could be particularly pertinent in the Irish context, as Irish women were subject to a 

marriage bar, whereby they were obliged to retire from employment upon marriage 

(O’Leary, 1987). The marriage bar in Ireland was in place in some sectors until the 1970s, 

much later than other countries where they were by abolished the 1950s (Mosca & Wright, 

2019). As a result, women in Ireland may have had less exposure to greater occupational 

complexity, thereby reducing the contribution of this factor to CR. While the analysis in 

Chapter 2 collapsed across sexes, but mitigated any sex effects by adjusting for sex as a 

covariate in the CR proxy-cognition relationship, a future study could conduct these 

analyses separately within sexes. This might elucidate sex-specific differences in the validity 

of certain proxies as measures of CR.  

 The predictive models developed for CR using CPM in Chapter 4 were also 

developed across sexes. This may have been a suboptimal approach as the connectomes 

underlying certain cognitive phenotypes, such as intelligence, have been reported to differ 

across sexes (Greene et al., 2018; Jiang et al., 2020). For the prediction of intelligence, 

these differences were sufficiently substantial such that predictive models developed in 

males could not predict intelligence in females, and vice versa (Jiang et al., 2020). However, 

developing the predictive models separately within sexes would have substantially 
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decreased the training set sample size. Given the relationship between sample size and 

model performance (de Lange et al., 2020; Schnack & Kahn, 2016), a reduction in sample 

size may have impaired model performance. Instead, an adjusted model was developed 

whereby sex was included as a covariate when assessing the relationship between each 

edge in the connectivity matrix and the CR residual. The adjusted models did not 

substantially differ from the original model. While this was considered a satisfactory 

correction for potential sex differences, given that different patterns of connectivity have 

been reported to underlie successful predictions of intelligence, similar sex-differences in 

the CR connectome may exist. As such, if sufficient data was available, a future study could 

apply CPM separately within sexes in order to account for possible sex-differences in CR-

related functional connectivity. 

Another key limitation of all analyses in the present thesis is that only GM 

neuroimaging data was used. This may have resulted in lower accuracy of the brain age 

prediction model described in Chapter 2. More complex feature sets using combinations of 

GM and WM voxel-wise density information (Cole et al., 2015, 2018; Cole, Underwood, et 

al., 2017), GM and WM volumetric and thickness information (Gutierrez Becker et al., 2018) 

and DTI metrics (Richard et al., 2018) have been used to create brainPAD scores. However, 

such feature sets typically require dimension reduction techniques such as PCA (Gutierrez 

Becker et al., 2018) or even dot products to combine GM and WM data (Cole et al., 2015, 

2018; Cole, Underwood, et al., 2017). These methods can reduce the interpretability of the 

relationship between the original feature and brain age (Mateos-Pérez et al., 2018), 

although methods exist for making such feature sets interpretable (Honeine & Richard, 

2009; Kwok & Tsang, 2004; Snyder et al., 2013). A specific aim of Chapter 2 was to develop 

an interpretable model with a relatively straight-forward method, an aim which required a 

simple feature set. While this approach may have limited the model’s accuracy as larger 

and more complex feature sets often produce more accurate predictions (Scheinost et al., 

2019), accuracy was still comparable to other models reported to-date in the literature. 

Nonetheless, future investigations of the association between BM, using brainPAD, and 

cognition may be improved by including WM information in the brain age prediction model. 

Inclusion of such information may reveal further associations. For instance, brainPAD, 

developed here using only GM information, was not robustly associated with processing 

speed. Inclusion of WM could potentially reveal an association between BM and processing 

speed, given that faster processing speed is associated with higher fractional anisotropy, 
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an index of WM microstructural integrity, in cognitively healthy older adults (Vernooij et al., 

2009). 

In Chapter 3, the complete CR models solely contained information relating to GM, 

specifically total GM volume, hippocampal volume, and mean cortical thickness. These 

models did not contain measures of WM microstructural integrity, WM hyperintensity 

volume, or AD-related neuropathology, as such data was not available across both datasets. 

Nonetheless, CR proxies have been previously reported to moderate the relationship 

between these measures and cognition (Baker et al., 2017; Dufouil et al., 2003; Joannette 

et al., 2019; Rentz et al., 2017; Zahodne et al., 2019). Future studies could assess proxies 

in complete CR models containing these brain structure variables to extend the conclusions 

made here to a wider spectrum of brain-cognition relationships. Furthermore, inclusion of 

WM measures, such as WM hyperintensity volume, would explain additional variance in 

cognition (Tsapanou et al., 2019). In the hierarchical moderated regressions used to analyse 

the complete CR models, this additional variance in cognition explained by brain structure 

would equate to a larger additive effect on cognition. For moderation effects of an ordinal 

nature, such as the theorised CR moderation effect, the size of the moderation effect is 

constrained by the size of the additive effect (Rogers, 2002; Whisman & McClelland, 2005). 

As such, a larger additive effect can reveal a larger moderation effect. Therefore, including 

variables reflecting WM information in the CR models may improve the ability to detect a 

moderation effect. 

In Chapter 4, the CR residual used as the target variable for prediction only 

contained brain structure information pertaining to GM. As such, variance in global cognition 

attributable to other features of brain structure, such as WM hyperintensity volume, and 

neuropathology, such as amyloid and tau burden, were inadvertently retained in the CR 

residual. CR residuals have been described including measures of WM hyperintensity 

volume (Bettcher et al., 2019) and in-vivo amyloid and tau burden (D. H. Lee et al., 2019). 

Including such measures increases the precision of the CR residual as it minimises the 

amount of variance retained in the residual that can be attributed to brain structure and/or 

pathology. Although the CR residual used in the present study was restricted to the data 

available, by not including these other features, it was inevitably sub-optimal. A future study 

may obtain more precise network strength predicted CR measures by predicting target 

variables that include measures of WM microstructural integrity, WM hyperintensity volume, 

and in-vivo measures of neuropathology. 
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 Addressing the limitations outlined above in future research could provide more 

informative and accurate measures of BM and CR and could establish further validity of 

specific CR proxies in relation to cognitive decline. Nonetheless, the measure of BM 

described here could itself be used in future studies to further investigate BM in order to 

better understand the variability in cognitive decline. If improvements to CPM and or richer 

neuroimaging data enabled validation of network strength predicted CR in an external 

dataset, then it too could be used in future studies. First, both measures could be used to 

identify the specific exposures or life experiences that influence both constructs. 

Identification of such factors could enable the design of particularly effective interventions 

to prevent dementia or reduce cognitive decline by targeting both BM and CR in comparison 

to just a single mechanism.  

 Second, the measures of BM and CR could be used to identify the cognitive domains 

associated with, and possibly influenced by, BM and CR. This was assessed in the present 

thesis for BM, but not for CR. BM, as measured using brainPAD, was robustly associated 

with various measures assessing executive function. This suggests that BM may be 

particularly relevant to the protection of executive function, although of course this was only 

assessed cross-sectionally. As such, this information could be used when designing 

intervention studies targeted at improving BM, as the results here suggest that a suitable 

cognitive outcome measure would be some measure of executive function. This would 

enable assessment of the intervention in a cognitive domain previously shown to be 

associated to the mechanism or construct (e.g., BM, targeted by the intervention). BrainPAD 

itself could be used as an outcome measure too. Future studies could identify the specific 

cognitive domains associated with network strength predicted CR in order to obtain similar 

insights.  

 A third future direction of the work presented here is that the measures of BM and 

CR could be used to further investigate the sex-related differences in cognitive decline. 

Among clinically normal older adults, men have been reported to experience significantly 

faster cognitive decline than women (McCarrey et al., 2016). This relationship is different 

when examined among individuals with preclinical AD, as females with higher levels of 

amyloid beta showed faster cognitive decline than males (Buckley et al., 2018; McCarrey et 

al., 2016) and females with MCI had better verbal memory than males with MCI despite 

similar levels of pathology, measured by temporal lobe glucose hypometabolism 

(Sundermann et al., 2016). These findings suggest sex-differences may contribute to the 
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variability in cognitive decline. A future study could further examine these sex differences, 

using brainPAD and network strength predicted CR, in order to establish the construct via 

which these sex differences are manifested in cognitive decline. 

 Finally, as BM and CR should account for unexplained variance in cognitive decline, 

it follows that accurate and valid measurement of these two constructs may improve the 

prediction of future cognitive decline. To-date, machine learning applied to neuroimaging 

data has largely failed to predict future cognitive decline (Marinescu, Bron, et al., 2020), 

Therefore a future study, accounting for BM and CR using brainPAD and network strength 

predicted CR, in addition to the different neuroimaging features reflecting brain structure as 

used in the TADPOLE challenge study (Marinescu, Bron, et al., 2020), may provide more 

accurate predictions of cognitive decline. Such a study would further enable the comparison 

of the relative prediction power of BM and CR by directly comparing the associations 

between brainPAD, network strength predicted CR and cognitive decline, independent of 

brain structure (or brain reserve). This would inform the design of lifestyle interventions to 

prevent dementia or slow cognitive decline, as greater emphasis could be placed on 

targeting the more predictive construct.  

5.4 Conclusion 
 In summary, this thesis attempted to develop and validate objective measures of BM 

and CR. Data-driven analyses, including machine learning, were applied to structural MRI, 

fMRI, cognitive measures, and socio-behavioural variables in order to achieve these aims. 

The first study established firm evidence for a robust association between brainPAD and 

cognition. This clarified previously unclear associations between brainPAD and cognition. 

As such, this study demonstrated the validity of brainPAD as an operational measure of CR. 

In the second study, verbal intelligence was established as a robust and valid socio-

behavioural proxy measure of CR. In the third and final study, task-based functional 

connectivity was used to develop an objective measure of CR that displayed good accuracy 

and validity within the same dataset in which it was developed. However, the developed 

measure was not able to accurately predict CR when generated from resting-state functional 

connectivity in an independent dataset. Nonetheless, a promising candidate task-based 

measure was developed and potential areas for improvement to this measure that may 

enable generalisability were outlined. Together, these findings establish valid measures of 

BM and CR as well as a promising framework for future attempts to measure CR using 

functional connectivity data. Using these measures, and further developing and refining 
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them, can improve our understanding of the variability in cognitive ageing and decline. This 

may have important clinical and policy implications via the better design and implementation 

of lifestyle interventions and preventative strategies to prevent dementia and slow cognitive 

decline.  
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7 Appendices 

7.1 Appendix I: Supplemental Information for Chapter 2 

7.1.1 Supplemental Methods 
Table S1 List of open-access repositories used with information on exclusion during image processing, age and sex of dataset, 

and scanner information. 

Dataset (Country - site) Eligible n 
(excluded) 

Reason for 
exclusion 

Final 
n 

Mean age of 
final n (SD, 
range) 

Male/ 
Female 

Scanner (field 
strength) 

Voxel dimensions 
(mm) 

Autism Brain Imaging Data 
Exchange (ABIDE)  
 
USA – Barrow 
Neurological Institute 
 
USA – Indiana University 
 
 
France – Institut Pasteur 
and Robert Debré Hospital 
 
Belgium – Katholieke 
Universiteit Leuven 
 
SA – New York University 
Langone Medical Center 
 
Ireland – Trinity College 
Dublin 
 

102 (39) Failed auto 
reorientation 

63 28.70 (11.32, 
18 - 64) 

46/17  
 
 
Philips Ingenia 
(3T) 
 
Siemens TriTim 
(3T) 
 
Phillips Achieva 
(1.5T) 
 
Phillips Achieva 
(3T) 
 
Siemens Allegra 
(3T) 
 
Philips Intera 
Achieva (3T) 
 

 
 
 
1.11 x 1.11 x 1.2 
 
 
0.7 x 0.7 x 0.7  
 
 
1.00 x 1.00 x 1.00  
 
 
1.20 x 1.20 x 1.20  
 
 
1.30 x 1.00 x 1.30 
 
 
0.89 x 0.89 x 0.89 

The Neuro Bureau – 
Berlin: Mind & Brain 
(Germany) 
 

49 (22) Failed auto 
reorientation 

27 32.62 (6.18, 
22.24 – 
49.37) 

15/12 Siemens TrioTim 
(3T) 

1 x 1 x 1 

Beijing Normal University 
(China) 

179 (10) Failed auto 
reorientation 

169 21.22 (1.88, 
18 – 28) 

66/103 Siemens TrioTim 
(3T) 

1.33 x 1.0 x 1.0 
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Cleveland Clinic 
Foundation (CCF) (USA – 
Cleveland Clinic Hospital) 
 

31 (31) Failed auto 
reorientation 
(10); Failed 
QC (21) 

0 n/a n/a Siemens Trio 
Tim (3T) 

2 x 1 x 1.2 

Center for Biomedical 
Research Excellence 
(COBRE) (USA – The Mind 
Research Network) 
 

72 (13) Failed auto 
reorientation 

59 34.98 (11.61, 
18 – 62) 

38/21 Siemens Trio 
Tim (3T) 

1 x 1 x 1 

Dallas Lifespan Brain 
Study (DLBS) (USA – 
University of Texas at 
Dallas) 
 

315 (138) Failed auto 
reorientation 

177 46.82 (18.39, 
20.57 – 
88.36) 

45/132 Philips (3T)  

Information eXtraction 
from Images (IXI) 
 
UK – Hammersmith 
Hospital 
 
 
 
UK –Guy’s Hospital 
 
 
 
UK – Institute of 
Psychiatry) 
 

565 (325) Failed auto 
reorientation 

240 47.20 (16.17, 
19.98 – 
80.17) 

62/178  
 
 
Philips Medical 
Systems Intera 
(3T) 
 
 
Philips Gyroscan 
Intera (1.5T) 
 
General Electric 
Signa (1.5T) 

0.9375 x 0.9375 x 
1.2 

Nathan Kline Institute -
Rockland Sample (NKI) 
(USA – Nathan Kline 
Institute) 
 
 

143 (28) Failed auto 
reorientation 
(27); Failed 
QC (1) 

115 42.83 (17.95, 
18 - 83) 

40/75 Siemens TrioTim 
(3T) 

1 x 1 x 1 

Southwest University 
Adult Lifespan Dataset 
(SALD) (China – Southwest 
University) 

494 (46) Failed auto 
reorientation 
(26); Failed 
QC (20) 

448 44.73 (17.44, 
19 - 80) 

162/286 Siemens Trio 
Tim (3T) 

1 x 1 x 1 
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Power et al (2014) (USA – 
Washington University in 
St. Louis) 
 

83 (22) Failed auto 
reorientation 

61 24.56 (2.29, 
19.69 – 
37.73) 

30/31 Siemens Trio 
Tim (3T) 

1 x 1 x 1 

Training set total 2033 (674) Failed auto 
reorientation 
(632);  
Failed QC 
(42) 
 

1359 40.04 (17.78, 
18 – 88.36) 

504/855 N/A N/A 

Note: Eligible n = Healthy controls >= 18 years old with age and sex data available. All datasets, except for the IXI dataset were downloaded 

from the 1000 Functional Connectomes Project via the NITRC repository http://fcon_1000.projects.nitrc.org/. The IXI dataset was 

downloaded from http://brain-development.org/ixi-dataset/.

http://fcon_1000.projects.nitrc.org/
http://brain-development.org/ixi-dataset/
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Choice of voxel size  

Larger voxel sizes were required to reduce the computational expense of the machine 

learning analysis as the original images, with 1 mm3 voxels, were 27.7 MB per image. 

Preprocessed training set images were resized to images with 2mm3, 3mm3, and 5mm3 

voxels. The accuracy of the different voxel sizes was then compared using an Elastic 

Net with 10-fold nested cross-validation in order to predict chronological age in the 

training set. The lowest MAE and highest Pearson’s r was found for 2mm3 voxels (see 

Table S2). As such, this voxel size was selected for the full analysis. While it is possible 

that accuracy could have been further increased with a smaller voxel size again, using 

voxels smaller than 2mm3 becomes very computationally intensive. 

Table S2 Comparison of model accuracy using full training set with different voxel sizes. 

Voxel Size File size as % of original image MAE r 

2 mm3 12.7% 5.99 0.908 

3 mm3 3.82% 6.44 0.895 

5 mm3 0.87% 6.55 0.889 

 

Choice of GM threshold 

The GM threshold of > 0.2 threshold has been described as an optimal threshold (see 

Fig. 10, Ridgway et al., 2009), and has been used in several publications (Agroskin, 

Klackl, & Jonas, 2014; Almairac, Duffau, & Herbet, 2018; Daniels, Gaebler, Lamke, & 

Walter, 2015; Hanssen et al., 2018; Seubert, Freiherr, Frasnelli, Hummel, & Lundstrom, 

2013; Sowman et al., 2017; Y. Wang et al., 2016). However, a lower threshold of > 0.05 

was also assessed to compare model accuracy and computational efficiency (see Table 

S3). The lower threshold resulted in more accurate predictions but was significantly less 

computationally efficient, taking 8.79 times longer to run one model (Elastic Net with 10-

fold nested cross-validation). As such, for computational and theoretical reasons (i.e., 

less probability of including non GM information), the standard threshold of > 0.2 was 

selected. 

Table S3 Comparison of model accuracy using different GM thresholds. 

Density Threshold Number of voxels Runtime (hours) MAE r 

>0.2 54,869 3.13 5.99 0.908 

>0.05 148,762 27.5 5.81 0.915 
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7.1.2 Supplementary Results 
Table S4 Range, standard deviation (SD), and interquartile range (IQR) of variables 

used in partial correlations between brainPAD and cognitive functions. 

Cognitive Domain DEU CR/RANN TILDA 

Range SD IQR Range SD IQR Range SD IQR 

Age 45.95 8.59 13.08 61.00 17.09 30.25 38.00 7.21 8.00 

BrainPAD 37.79 6.44 7.27 49.26 8.57 11.24 52.18 7.52 10.15 

General Cognitive Status 16.00 2.98 4.00 16.00 2.85 4.00 9.00 1.41 2.00 

Verbal Intelligence n/a 48.00 9.31 14.00 49.00 11.22 17.00 

Phonemic Verbal 

Fluency 

70.00 13.86 17.00 64.00 11.97 16.00    

Semantic Verbal Fluency 34.00 5.79 8.00 45.00 5.52 6.00 36.00 5.43 8.00 

Processing Speed 267.00 34.79 33.00 93.45 10.93 12.00 211.88 24.28 27.35 

Executive Function 342.00 65.77 69.00 279.18 40.74 38.50 309.13 41.63 42.23 

Executive Function 

(without Processing 

Speed) 

290.00 54.73 62.00 271.47 37.21 28.78 223.77 27.95 29.72 

Cognitive Flexibility 40.12 7.68 7.99 66.67 8.69 8.18 n/a 

Response Inhibition, 

Selective Attention 

241.00 32.16 27.50 68.00 11.31 15.00 n/a 

Sustained Attention 

(Errors of Commission) 

n/a 8.00 1.50 2.00 23.00 3.71 4.00 

Sustained Attention 

(Reaction Time) 

n/a 572.00 75.97 74.50 1.30 0.16 0.15 

Verbal Episodic Memory 

(Immediate) 

11.00 1.97 3.00 47.00 9.79 14.00 10.00 1.48 2.00 

Verbal Episodic Memory 

(Delayed) 

15.00 4.51 7.00 19.00 2.48 4.00 10.00 2.46 3.00 

Verbal Episodic Memory 

(Learning) 

67.00 29.33 45.00 71.00 17.54 26.25 n/a 

Working Memory 

 

5.00† 1.21 1.00 16.00 3.13 4.00 n/a 

7.00‡ 1.17 2.00 n/a n/a 

Visuospatial Ability 19.00 4.45 6.00 60.00 13.22 20.25 n/a 

Note: † Digit Span Forwards; ‡ Digit Span Backwards  
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Figure S1. Scatterplots of non-replicated correlations between the residuals of 

brainPAD and cognitive measures after regressing brainPAD on age and sex, and 

regressing each cognitive measure on age and sex. A: Verbal Intelligence; B: 

Phonemic Verbal Fluency; C: Processing Speed; D: Cognitive Flexibility; E: Response 

Inhibition and Selective Attention; F: Sustained Attention (Errors of Commission); G: 

Sustained Attention (Reaction Time); H: Verbal Episodic Memory (Immediate); I: 

Verbal Episodic Memory (Delayed); J: Verbal Episodic Memory (Learning); K: Working 

Memory; L: Working Memory; M: Visuospatial Ability. 
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Differences in Education across samples 

A Kruskal-Wallis H test was conducted to compare years of education across each of 

the three test datasets. There was a statistically significant difference in years of 

education between each group, χ2(2) = 239.279, p < 0.001, with a mean rank of 216.48 

for DEU, 462.80 for CR/RANN and 593.12 for TILDA. Post-hoc tests using Dunn-

Bonferroni pairwise comparisons revealed that TILDA had significantly higher years of 

education as compared to both CR/RANN and DEU, and that CR/RANN had significantly 

higher years of education as compared to DEU.  
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7.2 Appendix II: Supplemental Information for Chapter 3 

7.2.1 Supplemental Results 
Table S5 Negative moderation effects of cognitive reserve proxies within TILDA. 

Brain Structure Cognition Cognitive Reserve Proxy n ΔR2 β 

Cx Thickness Epi Mem Occu + CogStim + Ex 279 .034 -.340** 

Cx Thickness Epi Mem Occu + CogStim + Leisure + Ex 279 .032 -.335** 

Cx Thickness Epi Mem Occu + Leisure + Ex 279 .030 -.310** 

Cx Thickness Epi Mem CogStim + Ex 279 .029 -.286** 

Cx Thickness Epi Mem Leisure + Ex 279 .026 -.245** 

Cx Thickness Epi Mem CogStim + Leisure + Ex 279 .025 -.258** 

Cx Thickness Epi Mem Occu + Ex 279 .022 -.242** 

Cx Thickness Epi Mem Edu + Occu + CogStim + Ex 279 .021 -.270** 

Cx Thickness Epi Mem Occu + CogStim 279 .021 -.214* 

Cx Thickness Epi Mem Edu + Occu + CogStim + Leisure + Ex 279 .020 -.265* 

Cx Thickness Epi Mem Edu + Occu + Leisure + Ex 279 .019 -.255* 

Cx Thickness Epi Mem Ex 279 .018 -.200* 

Cx Thickness Epi Mem Occu + CogStim + Leisure 279 .018 -.204* 

Cx Thickness Epi Mem Occu + Social + CogStim + Leisure + Ex 279 .015 -.233* 

GM Volume Epi Mem CogStim + Ex 313 .015 -.176* 

Cx Thickness Epi Mem Edu + Occu + Ex 279 .015 -.205* 

Cx Thickness Glob Cog Edu + Leisure + Ex 277 .015 -.198* 

Cx Thickness Glob Cog CogStim + Leisure + Ex 277 .014 -.185* 

Cx Thickness Glob Cog Leisure + Ex 277 .014 -.175* 

Cx Thickness Epi Mem Occu + Social + CogStim + Ex 279 .014 -.227* 

Cx Thickness Epi Mem Occu + Verbal IQ + CogStim + Leisure + Ex 279 .013 -.223* 

Cx Thickness Glob Cog Edu 277 .013 -.113* 

Cx Thickness Glob Cog Edu + CogStim + Leisure + Ex 277 .013 -.187* 

Cx Thickness Epi Mem Occu + Verbal IQ + CogStim + Ex 279 .012 -.212* 

Cx Thickness Glob Cog Edu + Occu + CogStim + Leisure + Ex 277 .012 -.195* 

GM Volume Exec Func Edu + CogStim + Ex 311 .011 -.179* 

Cx Thickness Glob Cog Edu + Leisure 277 .011 -.131* 

Cx Thickness Glob Cog Leisure 277 .011 -.103* 

Cx Thickness Glob Cog Edu + Occu + Leisure + Ex 277 .011 -.189* 

Cx Thickness Glob Cog Occu + CogStim + Leisure + Ex 277 .011 -.191* 

GM Volume Glob Cog Edu + CogStim + Ex 311 .010 -.161* 

Note: ΔR2 = moderation effect size; β = standardised regression coefficient for moderation effect; 
* = p < .05, ** = p < .01 Cx Thickness = Mean Cortical Thickness, GM Volume = Grey Matter 
Volume, Epi Mem = Episodic Memory, Glob Cog = Global Cognition, Exec Func = Executive 
Function, Occu = Occupational Complexity, CogStim = Cognitively Stimulating Activities, Ex = 
Exercise, Leisure = Leisure Activities, Edu = Educational Attainment, Social = Social 
Engagement, Verbal IQ = Verbal Intelligence. 
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Table S6 Positive moderation effects of cognitive reserve proxies within both datasets. 

Dataset Brain 

Structure 

Cognition Cognitive Reserve 

Proxy 

n ΔR2 β 

 

 

 

 

TILDA 

HC Volume Verb Flu Occu + Ex 313 .019 .227* 

GM Volume Proc 

Speed 

Occu 313 .018 .148* 

GM Volume Verb Flu Occu + Ex 313 .017 .214* 

Cx Thickness Verb Flu Occu + Social + Ex 279 .015 .235* 

HC Volume Verb Flu Occu + Social + Ex 313 .015 .243* 

HC Volume Verb Flu Ex 313 .014 .192* 

GM Vol Verb Flu Occu + Social + Ex 313 .014 .231* 

HC Volume Verb Flu Social + Ex 313 .014 .208* 

 

 

 

CR/RANN 

HC Volume Glob Cog Occu + Verbal IQ 234 .030 .215** 

HC Volume Epi Mem Occu + Ex 234 .026 .232* 

HC Volume Glob Cog Occu + Verbal IQ + Ex 234 .026 .266** 

HC Volume Glob Cog Occu 234 .025 .155* 

HC Volume Epi Mem Occu + Verbal IQ + Ex 234 .025 .263* 

HC Volume Epi Mem Occu 234 .024 .151* 

HC Volume Exec Func Occu + Verbal IQ 234 .018 .168* 

Note: ΔR2 = moderation effect size; β = standardised regression coefficient for moderation effect; 
p < .05, ** = p < .01. HC Volume = Hippocampal Volume, GM Volume = Grey Matter Volume, Cx 
Thickness = Mean Cortical Thickness, Verb Flu = Verbal Fluency, Proc Speed = Processing 
Speed, Glob Cog = Global Cognition, Epi Mem = Episodic Memory, Exec Func = Executive 
Function, Occu = Occupational Complexity, Ex = Exercise, Social = Social Engagement, Verbal 
IQ = Verbal Intelligence. 
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 TILDA CR/RANN 

 

Glob Cog ~ 

Intell 

| Hipp Vol,  

Age, Sex 

Mean ΔR2 = .168 
  

 

Glob Cog ~ 

Intell 

| GM Vol,  

Age, Sex 

Mean ΔR2 = .159 
  

 

Glob Cog ~ 

Intell 

| Cx Th,  

Age, Sex 

Mean ΔR2 = .147 
  

 

Exec Func 

~ Intell   

| Hipp Vol,  

Age, Sex 

Mean ΔR2 = .146 
  

 

Exec Func 

~ Intell   

| GM Vol,  

Age, Sex 

Mean ΔR2 = .142 
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TILDA CR/RANN 

 

Glob Cog 

~ Edu_Intell 

| Hipp Vol,  

Age, Sex 

Mean ΔR2 = .136 
  

 

Glob Cog 

~ Edu_Intell 

| GM Vol,  

Age, Sex 

Mean ΔR2 = .127 
  

 

Exec Func 

~ Edu_Intell 

| Hipp Vol,  

Age, Sex 

Mean ΔR2 = .123 
  

 

Glob Cog 

~ Edu_Intell 

| Cx Th,  

Age, Sex 

Mean ΔR2 = .121 
  

 

Exec Func 

~ Intell 

| Cx Th,  

Age, Sex 

Mean ΔR2 = .120 
  

Figure S2. Association between proxies and cognition, adjusting for brain structure, age, 
and sex. Plots are shown for the 10 largest mean R2 change (ΔR2) across datasets for 
proxies with significant effects. Glob Cog = Global Cognition, Exec Func = Executive 
Function, Intell = Verbal Intelligence, Edu_Intell = Composite of Education and Verbal 
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Intelligence, Hipp Vol = Hippocampal Volume, GM Vol = Grey Matter Volume, Cx Th = 
Mean Cortical Thickness. 
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7.3 Appendix III: Supplemental Information for Chapter 4 

7.3.1 Supplemental Methods 
Table S7 Optimisation of feature selection threshold in the training set. 

p-value 
for 

Feature 
Selection 

Positive Network 
Strength 

Negative Network 
Strength 

Combined Network 
Strength 

r p r p r p 

0.0001 0.1646 0.0145 0.2210 0.0010 0.2436 0.0003 

0.0002 0.0560 0.4083 0.2022 0.0026 0.1895 0.0048 

0.0003 0.0694 0.3058 0.1089 0.1072 0.1235 0.0675 

0.0004 0.0335 0.6207 0.0915 0.1764 0.0846 0.2113 

0.0005 0.0934 0.1676 0.1659 0.0137 0.1571 0.0197 

0.0006 0.1304 0.0535 0.2116 0.0016 0.2022 0.0026 

0.0007 0.1846 0.0060 0.2502 0.0002 0.2469 0.0002 

0.0008 0.2324 0.0005 0.2687 0.0001 0.2783 0.0000 

0.0009 0.2385 0.0004 0.2816 0.0000 0.2896 0.0000 

0.0010 0.2152 0.0013 0.2849 0.0000 0.2818 0.0000 

0.0011 0.1549 0.0215 0.2765 0.0000 0.2550 0.0001 

0.0012 0.1337 0.0476 0.2744 0.0000 0.2464 0.0002 

0.0013 0.0992 0.1423 0.2752 0.0000 0.2342 0.0005 

0.0014 0.0728 0.2823 0.2751 0.0000 0.2238 0.0008 

0.0015 0.0551 0.4161 0.2640 0.0001 0.2096 0.0018 

0.0016 0.0445 0.5113 0.2577 0.0001 0.1990 0.0030 

0.0017 0.0330 0.6265 0.2469 0.0002 0.1871 0.0054 

0.0018 0.0344 0.6116 0.2504 0.0002 0.1879 0.0052 

0.0019 0.0484 0.4751 0.2436 0.0003 0.1872 0.0053 

0.0020 0.0606 0.3713 0.2559 0.0001 0.2006 0.0028 

0.0021 0.0767 0.2575 0.2644 0.0001 0.2111 0.0016 

0.0022 0.0931 0.1686 0.2694 0.0001 0.2196 0.0010 

0.0023 0.1071 0.1130 0.2705 0.0000 0.2235 0.0008 

0.0024 0.1098 0.1042 0.2716 0.0000 0.2235 0.0008 

0.0025 0.1045 0.1223 0.2731 0.0000 0.2212 0.0010 

0.0026 0.1045 0.1221 0.2768 0.0000 0.2224 0.0009 

0.0027 0.1005 0.1372 0.2756 0.0000 0.2194 0.0011 

0.0028 0.0967 0.1531 0.2707 0.0000 0.2143 0.0014 

0.0029 0.0988 0.1442 0.2729 0.0000 0.2139 0.0014 

0.0030 0.0996 0.1408 0.2693 0.0001 0.2112 0.0016 

0.0031 0.0869 0.1993 0.2666 0.0001 0.2046 0.0023 

0.0032 0.0881 0.1931 0.2652 0.0001 0.2035 0.0024 

0.0033 0.0949 0.1608 0.2611 0.0001 0.2034 0.0024 

0.0034 0.0868 0.1997 0.2584 0.0001 0.1975 0.0033 

0.0035 0.0945 0.1625 0.2600 0.0001 0.2011 0.0027 

0.0036 0.0955 0.1581 0.2608 0.0001 0.2014 0.0027 

0.0037 0.0910 0.1785 0.2603 0.0001 0.1989 0.0030 

0.0038 0.0791 0.2427 0.2597 0.0001 0.1933 0.0040 

0.0039 0.0791 0.2429 0.2560 0.0001 0.1906 0.0046 

0.0040 0.0766 0.2580 0.2562 0.0001 0.1893 0.0048 

0.0041 0.0777 0.2513 0.2575 0.0001 0.1892 0.0049 

0.0042 0.0741 0.2738 0.2586 0.0001 0.1882 0.0051 

0.0043 0.0703 0.2991 0.2590 0.0001 0.1875 0.0053 

0.0044 0.0640 0.3448 0.2575 0.0001 0.1840 0.0062 

0.0045 0.0632 0.3511 0.2574 0.0001 0.1831 0.0065 

0.0046 0.0698 0.3024 0.2501 0.0002 0.1819 0.0068 

0.0047 0.0695 0.3047 0.2483 0.0002 0.1802 0.0074 

0.0048 0.0730 0.2811 0.2454 0.0002 0.1791 0.0077 

0.0049 0.0751 0.2674 0.2454 0.0002 0.1795 0.0076 
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0.0050 0.0761 0.2612 0.2385 0.0004 0.1758 0.0090 

0.0051 0.0785 0.2461 0.2314 0.0005 0.1724 0.0104 

0.0052 0.0798 0.2382 0.2219 0.0009 0.1669 0.0132 

0.0053 0.0798 0.2384 0.2190 0.0011 0.1649 0.0143 

0.0054 0.0812 0.2304 0.2183 0.0011 0.1654 0.0141 

0.0055 0.0796 0.2398 0.2105 0.0017 0.1592 0.0182 

0.0056 0.0800 0.2375 0.2070 0.0020 0.1572 0.0196 

0.0057 0.0834 0.2180 0.2077 0.0020 0.1589 0.0183 

0.0058 0.0871 0.1981 0.2057 0.0022 0.1594 0.0180 

0.0059 0.0865 0.2011 0.2040 0.0024 0.1577 0.0193 

0.0060 0.0871 0.1979 0.2014 0.0027 0.1563 0.0204 

0.0061 0.0795 0.2403 0.1970 0.0033 0.1503 0.0258 

0.0062 0.0852 0.2081 0.1927 0.0041 0.1504 0.0257 

0.0063 0.0822 0.2244 0.1937 0.0039 0.1494 0.0267 

0.0064 0.0812 0.2305 0.1923 0.0042 0.1476 0.0286 

0.0065 0.0763 0.2600 0.1926 0.0041 0.1452 0.0313 

0.0066 0.0728 0.2821 0.1843 0.0061 0.1390 0.0395 

0.0067 0.0661 0.3289 0.1795 0.0076 0.1331 0.0486 

0.0068 0.0629 0.3533 0.1806 0.0072 0.1324 0.0498 

0.0069 0.0484 0.4749 0.1775 0.0083 0.1236 0.0673 

0.0070 0.0412 0.5436 0.1787 0.0079 0.1210 0.0733 

0.0071 0.0348 0.6075 0.1706 0.0113 0.1136 0.0927 

0.0072 0.0272 0.6877 0.1667 0.0133 0.1075 0.1117 

0.0073 0.0206 0.7615 0.1664 0.0135 0.1042 0.1233 

0.0074 0.0166 0.8063 0.1672 0.0130 0.1027 0.1290 

0.0075 0.0120 0.8597 0.1654 0.0140 0.0992 0.1426 

0.0076 0.0046 0.9461 0.1682 0.0125 0.0971 0.1513 

0.0077 -0.0028 0.9668 0.1658 0.0138 0.0917 0.1753 

0.0078 -0.0103 0.8791 0.1662 0.0136 0.0884 0.1913 

0.0079 -0.0122 0.8576 0.1633 0.0153 0.0859 0.2046 

0.0080 -0.0140 0.8364 0.1628 0.0157 0.0844 0.2124 

0.0081 -0.0213 0.7535 0.1608 0.0170 0.0799 0.2378 

0.0082 -0.0232 0.7322 0.1575 0.0194 0.0767 0.2571 

0.0083 -0.0290 0.6688 0.1593 0.0180 0.0745 0.2710 

0.0084 -0.0278 0.6820 0.1612 0.0167 0.0761 0.2609 

0.0085 -0.0272 0.6883 0.1599 0.0176 0.0756 0.2643 

0.0086 -0.0316 0.6409 0.1593 0.0181 0.0729 0.2816 

0.0087 -0.0332 0.6246 0.1611 0.0168 0.0728 0.2824 

0.0088 -0.0352 0.6033 0.1594 0.0180 0.0713 0.2923 

0.0089 -0.0334 0.6224 0.1615 0.0165 0.0733 0.2792 

0.0090 -0.0326 0.6302 0.1636 0.0152 0.0751 0.2671 

0.0091 -0.0288 0.6712 0.1657 0.0139 0.0786 0.2455 

0.0092 -0.0265 0.6961 0.1673 0.0129 0.0810 0.2315 

0.0093 -0.0256 0.7055 0.1675 0.0129 0.0812 0.2302 

0.0094 -0.0198 0.7702 0.1672 0.0130 0.0840 0.2148 

0.0095 -0.0182 0.7888 0.1675 0.0128 0.0849 0.2097 

0.0096 -0.0163 0.8099 0.1661 0.0136 0.0850 0.2094 

0.0097 -0.0130 0.8482 0.1632 0.0154 0.0849 0.2096 

0.0098 -0.0074 0.9132 0.1634 0.0153 0.0876 0.1953 

0.0099 -0.0004 0.9958 0.1654 0.0141 0.0922 0.1728 

0.0100 0.0050 0.9407 0.1610 0.0168 0.0925 0.1717 
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7.3.2 Supplemental Results 

 

Figure S3. Ten canonical functional networks. Figure reproduced with permission, under 

a Creative Commons Attribution 4.0 International License, from Supplementary Figure 

6 in Greene et al. (2018).
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Table S8 Hierarchical regression results demonstrating average additional variance explained in global cognition across datasets. 

Dataset Step R2 ΔR2 Additional % variance explained 

CR/RANN 
1 0.293*   

2 0.988* .696 69.6% 

TILDA 
1 0.188*   

2 0.651* .462 46.2% 

Average across datasets  .579 57.9% 

Note: * = p < .001, Step 1 independent variables = age, sex, hippocampal volume;  

Step 2 independent variables = age, sex, hippocampal volume, CR residual 

 

Table S9 CPM performance for prediction of CR residuals in both datasets using k-fold cross-validation in the training set. 

 

 

Table S10 CPM performance for prediction of CR residuals in both datasets using an age-restricted sample in the training set.

Cross-Validation 
Scheme 

Dataset Positive Network Strength Negative Network Strength Combined Network Strength 

r p R2 r p R2 r p R2 

5-Fold Training Set .087 .281 .010 .197 .013 .041 .175 .033 .032 

5-Fold Test Set -.021 .726 4.2e-4 -.139 .017 .019 -.130 .0253 .017 

10-Fold Training Set .093 .249 .011 .212 .004 .046 .187 .012 .036 

10-Fold Test Set -.079 .175 .006 -.142 .015 .020 -.164 .005 .027 

 Positive Network Strength Negative Network Strength Combined Network Strength 

r p R2 MAE r p R2 MAE r p R2 MAE 

Training Set .142 .109 .020 .563 .209 .018 .044 .527 .195 .028 .038 .536 

Test Set .079 .175 .006 .707 -.138 .018 .019 .609 -.076 .194 .006 .680 
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Table S11 Correlation of selected edges with CR residual in test set. 

Note: * < .05, ** < .0005, *** < .0001. VAs = Visual Association Network; FP = 

Frontoparietal Network; DMN = Default Mode Network; MF = Medial Frontal Network; 

Mot = Motor Network; Vis I = Visual I Network; SAL = Salience Network. 

 

 

Network 
Strength 

Model 

Node 
A 

Node 
B 

Networks  
(Node A - Node 

B) 

Training Set 
r 

Test Set 
r 

Positive 59 14 VAs – FP  0.253** 0.105 

Positive 49 19 DMN – FP 0.261** -0.037 

Positive 154 30 FP – FP 0.248** 0.022 

Positive 154 49 FP – DMN 0.321*** -0.021 

Positive 185 62 MF – Mot 0.251** 0.045 

Positive 163 141 Mot – DMN 0.278*** -0.085 

Positive 164 147 FP – FP 0.237** 0.016 

Positive 166 147 FP – FP 0.241** -0.075 

Positive 164 154 FP – FP 0.237** 2e-4 

Negative 185 43 FP – VAs -0.277*** 0.138* 

Negative 185 45 FP – Mot -0.315*** 0.118* 

Negative 166 46 Mot – Mot -0.257** 0.020 

Negative 89 49 Mot – DMN -0.266** 0.048 

Negative 161 49 Mot – DMN -0.242** 0.007 

Negative 218 49 Mot – DMN -0.260** 0.018 

Negative 182 55 FP – FP -0.285*** 0.071 

Negative 166 61 Mot – Mot -0.265** 0.034 

Negative 211 164 Vis I – FP -0.248** 0.106 

Negative 185 177 FP – FP -0.309*** 0.102 

Negative 185 178 FP – SAL -0.269** 0.121* 

Negative 185 179 FP – Mot -0.281*** 0.053 
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