
Trinity College Dublin

School of Computer Science and Statistics

Resource Management for Data Analytics in Edge

Computing Networks

by

Apostolos Galanopoulos

Dissertation

Submitted in partial fullfilment of the requirements

for the degree of Doctor of Philosophy

September 2021

I declare that this thesis has not been submitted as an exercise for a degree at this or any

other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or allow

the Library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College

Library conditions of use and acknowledgement.

I consent to the examiner retaining a copy of the thesis beyond the examining period, should

they so wish (EU GDPR May 2018).

i

Summary

This is a dissertation submitted for acquiring the degree of Doctor of Philosophy, from School of

Computer Science and Statistics, Trinity College Dublin. It contains research carried out in the

past 4 years, in the broad area of edge computing networks and optimization of machine learning

and data analytic services that have emerged through the deployment of next generation wireless

networks. Those services are unique, and thus, new problems arise that cannot be tackled

by typical network resource orchestration solutions. In particular, the services do not involve

deterministic tasks that can be executed anywhere in the network, i.e the devices themselves

or an edge/cloud server, with the same level of accuracy. These are often machine learning

tasks, like e.g. object recognition, and the deployment of related software on the various network

location imposes intricate trade-offs between execution accuracy/delay, power consumption and

even computing capabilities, which are typically diminishing as devices move towards the edges

of the network.

The purpose of our research is to study and highlight those trade-offs and propose optimization

based solutions to strike a balance between application performance, end user satisfaction, and

resource availability. We mainly consider 2 network architectures. In the first one, small, energy

constrained IoT devices need to collaboratively execute their data analytic tasks in order to

economize network, computing and energy resources, while also ensuring a fast and accurate task

execution. We start with a simple model where IoT nodes individually decide the portion of tasks

they outsource to their neighboring nodes, using a Lagrange decomposition method, towards

optimizing a multi-objective performance metric. We then build upon that model to provide an

incentive mechanism for the collaboration of devices using an auction algorithm that enables

devices to obscure sensitive information and discourage its misreporting in order to exploit the

resources of others. We evaluate the solution using simulations as well as a small Raspberry Pi

ii

testbed used also for obtaining power consumption and task execution accuracy measurements

from a custom built face recognition application. Finally, we propose a framework for dynamic

scheduling of transmissions and executions of such face recognition tasks using a combination

of the approximate dual subgradient method and the Frank-Wolfe algorithm. The challenge

here is that the problem we wish to solve is not linear, and the (primary) scheduling variables

obtained in each iteration of the solution algorithm are not implementable to our system as, e.g.

when a certain link is active, all interfering links should be inactive. Using Frank-Wolfe primal

updates we overcome this issue and obtain a series of implementable schedules that, on average,

approximate the system’s optimal scheduling solution.

We then study centralized networks where a number of end users can leverage a powerful edge

computing cloudlet for enhanced data analytics performance. Our initial setup has small devices

execute an object recognition task and then using a predictor to estimate the prediction gain if

the task is further outsourced to the cloudlet. The gain is weighted against the respective user

and cloudlet resource consumption and each user decides whether to outsource the task or not.

We use Convolutional Neural Networks (CNN) and K Nearest Neighbor (KNN) algorithm to

evaluate the service and a linear regressor and random forest to implement the predictor. Finally,

our iterative algorithm makes outsourcing decisions in each time slot, using only information

available up to that time slot. Following that work, we study a mobile application that captures

images, encodes them, and transmits them to a GPU enabled edge server that carries out object

recognition using a state-of-the-art CNN. The results are transmitted back to the phone and

displayed on its screen. We initially study the accuracy/latency trade-off of the system as

we modify 2 of the service’s critical parameters, namely the image encoding rate and Neural

Network (NN) input layer size, and propose network related tweaks that effectively render object

recognition, rather than image transmission to be the bottleneck of the system with respect to

latency. We then proceed to collect measurements for the accuracy and latency performance of

this system and propose an online algorithm for configuring the encoding rate and NN size on the

fly. We make use of the Multi-Armed Bandit (MAB) framework and combine it with Gaussian

Processes to dynamically estimate the performance of the system under different configurations

and approach the optimal one. We further consider multiple users sharing the server’s GPU and

wireless air time of the system so that they all maximize their object recognition accuracy, while

satisfying individual frame rate constraints.

iii

Acknowledgments

This dissertation would never be possible without the aid of my supervisor, prof. George Iosifidis.

He was very eager to have me as his student, and highly motivated to guide me throughout the

years towards improving my knowledge and skills. His persistence and attention to detail has

been invaluable; his encouragement and overall attitude during difficult times, hugely appreciated.

He offered me unique experiences like the opportunity to assist in his teaching duties, and his

urging to pursue an internship at a big tech company like IBM. For all that and many more, I

will always consider him as a mentor and a friend.

There are also other people I collaborated with, and would like to thank. Prof. Doug Leith,

the head of our lab, was always there to aid me and provide me with everything I needed for

conducting research and generally feel comfortable in the lab. The discussions we had on our

research topics were always deep and interesting, and the feedback he provided for our published

work was always to the point and extremely valuable. The same is true for Dr. Salonidis, who

aided me in my research during my first few years as a PhD researcher. Victor Valls spent

many hours with me, working on both mathematical equations and lines of code. Finally, Jose

Ayala-Romero joined the lab about 1.5 years ago, and within just a few months we had several

publications together, thanks to his attention, knowledge and great ideas.

Then there are all those amazing people that have worked or are still working in our lab:

Kariem, Hamid, Jeongho, Pavlos, Mayank, Cillian, Fahri, Daron, Sulthana, Sham, Beiran,

Erjona. Some of you I know quite well. The rest I would like to have more time to get to know

(I have the pandemic to thank for that). All of you however created a very pleasant atmosphere

for me in the lab, which I enjoyed even during times I was under a huge load of work. Many

thanks to the CONNECT Center team for the interesting discussions we had now and then, and

especially to Prof. Marco Ruffini for technically having me as a PhD after George’s departure

iv

from the university earlier this year. Also, the entire administrative and academic staff of the

school of Computer Science and Statistics was amazing, always there to respond to any arising

issues and arranging and taking part to numerous seminars on several interesting research topics

that augmented my curiosity and understanding of science.

Last but not least, I want to thank my fiance Dimitra both for the emotional support when

things were getting difficult and I would lose courage, and for the times she celebrated my

achievements with me. None of those would be possible if she wasn’t always by my side. Finally,

a big thank you to my family and friends back in Greece, for being highly supportive of me in

my decision to study in Ireland. You are always on my mind, and whenever I get the chance to

visit I always get excited and happy to see you.

v

List of Publications
1. A. Galanopoulos, G. Iosifidis, and T. Salonidis, "Optimizing Data Analytics in Energy

Constrained IoT Networks", IEEE International Symposium on Modeling and Optimization

in Mobile, AdHoc and Wireless Networks (WiOpt), 2018.

2. A. Galanopoulos, G. Iosifidis, and T. Salonidis, "Poster: Cooperative Analytics for the

Internet of Things", ACM International Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc), 2019.

3. A. Galanopoulos, T. Salonidis, and G. Iosifidis, "Cooperative Edge Computing of Data

Analytics for the Internet of Things", IEEE Transactions on Cognitive Communications

and Networking, vol. 6, no. 4, pp. 1166-1179, Dec. 2020.

4. A. Galanopoulos, V. Valls, D. J. Leith, and G. Iosifidis, "Dynamic Scheduling for IoT

Analytics at the Edge", IEEE International Symposium on a World of Wireless, Mobile

and Multimedia Networks (WoWMoM), 2020.

5. A. Galanopoulos, A. G. Tasiopoulos, G. Iosifidis, T. Salonidis, and D. Leith, "Improving

IoT Analytics through Selective Edge Execution", IEEE International Conference on

Communications (ICC), 2020.

6. A. Galanopoulos, V. Valls, G. Iosifidis, and D. Leith, "Measurement-driven Analysis

of an Edge-Assisted Object Recognition System", IEEE International Conference on

Communications (ICC), 2020.

7. A. Galanopoulos, J. Ayala-Romero, G. Iosifidis, and D. J. Leith, "Bayesian Online Learn-

ing for MEC Object Recognition Systems", IEEE Global Communications Conference

(GLOBECOM), 2020.

8. A. Galanopoulos, J. Ayala-Romero, D. J. Leith, and G. Iosifidis, "AutoML for Video Analyt-

ics with Edge Computing", IEEE International Conference on Computer Communications

(INFOCOM), 2021.

vi

List of Abbreviations
MEC Multi-access Edge Computing

IoT Internet of Things

NUM Network Utility Maximization

RPi Raspberry Pi

DPP Drift Plus Penalty

ADSM Approximate Dual Subgradient Method

ML Machine Learning

KNN K Nearest Neighbors

NN Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

DL Deep Learning

AP Access Point

NIC Network Interface Controller

MAB Multi-Armed Bandits

GP Gaussian Process

CC Cumulative Confidence

UCB Upper Confidence Bound

vii

Contents

1 Introduction 1

1.1 Motivation and Contributions . 1

1.2 Synopsis . 4

2 Literature Review 8

2.1 IoT Analytics and Collaborative Networks . 9

2.2 Mobile Analytics with Edge Computing . 10

2.2.1 Task Execution . 10

2.2.2 Video Analytics . 11

3 Optimizing Data Analytics in Energy Constrained IoT Networks 14

3.1 Introduction . 14

3.2 System Model and Problem Statement . 16

3.2.1 System Model . 16

3.2.2 Problem Statement . 18

3.3 Problem Formulation and Solution . 19

3.3.1 Problem Formulation . 19

3.3.2 Problem Solution . 22

3.4 Performance Evaluation . 25

3.5 Conclusions . 30

4 Providing Incentives for the Cooperation of Edge Devices 31

4.1 Introduction . 31

4.2 Methodology and Contributions . 32

viii

4.3 Model and Problem Formulation . 34

4.4 Auction Algorithm Design . 39

4.4.1 Finding an Equivalent Problem . 39

4.4.2 Algorithm and Properties . 42

4.5 Model and Algorithm Extensions . 44

4.6 Performance Evaluation . 47

4.6.1 Testbed and Evaluation Setup . 47

4.6.2 Results . 49

4.7 Conclusions . 54

5 Dynamic Scheduling for IoT Analytics 55

5.1 Motivation and Related Work . 56

5.2 Model and Problem Setup . 58

5.2.1 Network Model . 58

5.2.2 Variables and Constraints . 59

5.2.3 Network Control Problem and Challenges 60

5.3 Reformulation and Dynamic Problem . 61

5.3.1 Preliminaries . 61

5.3.2 The t-slot Problem . 63

5.4 Online Optimization Framework . 63

5.4.1 The Building Algorithmic Blocks . 64

5.4.1.1 Frank-Wolfe algorithm . 64

5.4.1.2 The Approximate Dual Subgradient Method (ADSM) 65

5.4.2 Online Approximate Scheduling Algorithm 66

5.5 Performance Evaluation . 68

5.5.1 Experimental Setup . 69

5.5.2 Parameter Sensitivity Analysis . 70

5.5.3 Comparison with Benchmarks . 70

5.6 Conclusions . 73

6 Enabling Edge-Assisted Mobile Analytics 74

6.1 Introduction . 74

ix

6.1.1 Background and Motivation . 75

6.1.2 Methodology and Contributions . 75

6.2 Model and Problem Formulation . 77

6.2.1 Classifiers and Predictors . 77

6.2.2 Wireless System . 78

6.2.3 Problem Definition and Formulation . 80

6.3 Decision Framework and Online Algorithm . 81

6.3.1 Algorithm with Complete Information . 82

6.3.2 Algorithm with Instantaneous Information 83

6.4 Model and Algorithm Extensions . 86

6.5 Implementation and Evaluation . 89

6.5.1 Experiments Setup . 89

6.5.2 Initial Measurements . 91

6.5.3 Performance Evaluation . 93

6.6 Conclusions . 97

7 Trade-off Analysis of a MEC Object Recognition System 98

7.1 Motivation . 99

7.2 Preliminaries . 100

7.2.1 Hardware & Software Setup . 100

7.2.2 The Need for Edge Server Offload . 101

7.2.3 Evaluation Scenario . 101

7.3 System End-to-End Latency . 102

7.3.1 Encoding Delay (Tenc) . 102

7.3.2 Decoding and Pre-processing Delay (Tdec) 102

7.3.3 Transmission Delay (Ttx) . 103

7.3.3.1 Handset NIC Wake-from-Sleep Latency 104

7.3.3.2 Latency Caused By TCP Dynamics 105

7.3.4 Recognition Delay (Tdl) and Impact of Handheld 106

7.4 Performance Trade-offs . 107

7.5 Data Models and Pareto Analysis . 109

x

7.5.1 Fitting the Measurements . 109

7.5.2 Pareto Analysis . 110

7.6 Conclusions . 112

8 Online Configuration of MEC Video Analytics 113

8.1 Methodology and Contributions . 114

8.2 Preliminary Experiments . 116

8.3 System Model and Problem Statement . 118

8.4 Gaussian Processes and Problem Solution . 122

8.4.1 MAB formulation through GP modeling 122

8.4.2 Constrained GP-based MAB optimization 123

8.4.3 Theoretical results . 125

8.5 Extensions and Practical Considerations . 128

8.6 Performance Evaluation . 131

8.6.1 Single User and Multi-objective Scenario 131

8.6.2 Parameter Analysis . 133

8.6.3 Results . 134

9 Conclusions 139

9.1 Summary and Findings . 139

9.2 Future Work . 141

10 Appendices 143

10.1 Appendix to Chapter 5 . 143

10.2 Appendix to Chapter 6 . 149

xi

Abstract

The emergence of Multi-access Edge Computing (MEC) aspires to divert the aggregation of

data and their computation away from the cloud, and closer to the end users. At the same

time IoT and mobile devices create a plethora of data, that in many cases are ephemeral and

can be consumed at the network’s edge. Hence, they should not burden the core network with

data transfers, and the cloud with computations. We study the case of executing data analytic

services on such networks. Data analytics can be very demanding in terms of computation and

energy requirements, which can limit the effectiveness of executing on small edge devices. On

the other hand, they are also delay sensitive, and solely relying on the cloud for their execution

is inadequate. More importantly however, they are usually non-deterministic tasks, and the

selection of execution algorithm or Machine Learning (ML) model can further impact their

overall performance.

We study such trade-offs that arise in edge computing networks. We formulate and solve

problems that decide the efficient allocation of communication and computation resources,

towards optimizing key performance metrics for the underlying services. Moreover we provide

the necessary incentives for the cooperation of nodes. Next, we propose a scheduling algorithm

that makes no assumptions about the generally unknown system parameters, and thus is able to

adapt to the varying system dynamics. We then study mobile edge computing systems, where

a central edge node (cloudlet) serves multiple users based on resource availability. Finally, we

delve into the specifics of a typical data analytic task, i.e. real time object recognition, and

study the impact of application and network specific parameters to highlight various system

trade-offs. We then proceed to optimally tune the service in an online fashion, paving the way

towards automatic deployment of machine learning services over edge computing networks.

Chapter 1

Introduction

1.1 Motivation and Contributions

The Internet of Things (IoT) enables a new breed of applications by connecting a massive number

of typically resource-constrained nodes at the network edge [1]. Among those, of particular

interest are the data analytic services that collect and analyze data for making inferences or

actuations, and assisting user decisions often in real time. Prominent examples include IoT

cameras that perform face recognition [2], mobile health wearables [3], and natural language

processing applications [4] among many others; see overview of use-cases in [5]. Indeed, the

domain of data analytics has been identified as one of the main driving forces for the next

generation of IoT systems, and it is expected that a plethora of such services will be deployed at

an increasing pace in the next few years [6].

These services are as challenging to implement as they are important. On one hand, they

create a huge amount of data that is very costly to transport to distant cloud servers where the

analytics can be effectively executed. Large portions of this collected data is ephemeral with

negligible payload and should ideally be filtered at the edge [7,8]. On the other hand, these services

require heavy-duty computing, and most often prior information that might require preprocessing

and significant memory space (e.g., a large training dataset is needed for face recognition

apps). Hence, implementing them at the IoT nodes, which are usually energy-constrained with

limited computation capabilities, might induce significant performance degradation, e.g., reduced

accuracy, higher error rate, and so on (see Fig. 1.1). One possible solution to that problem

is to enable the collaboration of IoT devices and exploit their heterogeneity to improve the

Apostolos Galanopoulos Trinity College Dublin

IoT/Mobile
Devices

Cloud Layer

Edge Layer
(Cloudlets)

Low Delay,
Resources,
Accuracy

High Delay,
Resources,
Accuracy

Figure 1.1: Layered structured of devices, edge/cloud servers and the relative trade-offs.

performance of analytics, while adhering to their individual resource consumption constraints.

For example, an IoT camera that performs face recognition, could transmit some of its captured

pictures to another camera in range, in order to expedite the task execution or improve its

accuracy (if the other camera has, say, a larger training dataset). This approach comes with

several advantages: it is scalable, reduces data transfer costs and task completion times, and

satisfies privacy criteria since the data is not transferred to the cloud.

Moreover, some parameters of the data analytics tasks like their arrival rates are usually

unknown, since they generally depend on application parameters. At the same time we need to

provide scheduling decisions that are aligned with the system’s hard interference constraints, and

can adapt to the unknown system parameters. For example, for two interfering links that have

been allocated with some data rates, we have to decide the schedules in each time slot so that

the links will never be active at the same time and the allocated rates are satisfied on average.

Many scheduling algorithms for wireless networks in the literature require a-priori knowledge of

the set of valid schedules [9–12], which is rarely the case for such dynamic systems.

Such scheduling interventions are of critical importance, especially for applications like

video analytics, that often require real-time performance. Mobile applications, e.g. augmented

reality [13], take advantage of modern high speed wireless networks to utilize specialized hardware

like GPUs, installed on edge computing servers. On one hand, this approach enables real-time

performance, but on the other hand, it creates a whole new genre of resource allocation problems,

since many of the parameters that need to be configured are not typical networking parameters,

Page 2 of 171

Apostolos Galanopoulos Trinity College Dublin

but involve service specific decisions like the video frame rate and resolution, or the machine

learning model to be used by the edge server for, e.g., object recognition. On top of that, the

accuracy/delay performance of such services is rarely known a-priori for fixed parameter settings.

They can vary with time, since e.g. wireless channels do not offer stable performance, or even

with device software and hardware as for example, a GPU’s processing speed can affect Deep

Learning (DL) processing delays. Clearly, optimizing the performance of such unique services by

continuously learning their initially unknown behavior is of immense importance.

The purpose of our research is to study the complex nature of edge computing systems

and provide solutions for the orchestration of communication and computation resources using

optimization techniques. We model the systems by deriving formulas that describe their major

performance metrics and solve optimization problems that yield the desired operation for each of

the devices towards optimizing their performance. We study the trade-offs that arise, and how

the system parameters can be tweaked towards obtaining the desired performance. We highlight

their characteristics, and validate our solutions using extensive simulations and experiments. In

specific, the contributions of this thesis are summarized as follows:

• Problem formulations. The particularity of data analytic services gives birth to new

interesting problems that extend classic Network Utility Maximization (NUM). In specific,

the execution accuracy and delay of such services often need to be jointly optimized, or at

least optimize one while respecting a constraint for the other. Moreover, we have power and

computing resource constraints that create multiple trade-off situations when we want to

decide the services’ execution location or other service related parameters. Our research aims

to study such problems and highlight those trade-offs between key service and networking

metrics.

• Optimization based algorithms. In order to solve those problems, we employ several

optimization techniques like Lagrange decomposition, and propose efficient algorithms for

making key system decisions in a way that is optimal and fair across the different devices/users

of such systems. We use frameworks such as the Approximate Dual Subgradient Method

(ADSM) and Multi-Armed Bandits (MAB) to counter realistic scenarios where parts of the

system’s parameters follow unknown, even non-i.i.d. distributions, and provide theoretical

proofs on the optimality of the proposed algorithms. Our goal is to develop solutions that

Page 3 of 171

Apostolos Galanopoulos Trinity College Dublin

Edge Analytics

IoT Mobile

Cooperative
Execution

Cooperation
Incentives

Dynamic
Scheduling

Selective
Offloading

Object
Recognition
Trade-offs

Online
Configuration

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Figure 1.2: Categorization of thesis’ chapters.

can configure such complex systems on the fly, and with minimal a-priori information, which

is often unavailable in practice.

• Experimentally validated solutions. We evaluate the efficiency of the proposed algo-

rithms using simulations, but more importantly, using testbeds consisting of state-of-the-art

equipment like GPU-enabled servers, Raspberry Pi devices and mobile phones. This way we

further validate the results of our research in a more tangible way, and even create datasets

from real systems that can help other researchers study similar problems and expand scientific

knowledge.

1.2 Synopsis

The structure of the thesis is such that it presents 1-2 published papers per chapter. This

decision was taken because some papers are straightforward extensions of previous works, e.g.

conference paper extended to journal paper. The main chapters are organized in a hierarchy

displayed in Fig. 1.2. IoT and collaborative networks are studied in Chapters 3-6, starting

from simpler static models, to more practical and realistic scenarios where system parameters

are unknown. Then our attention is focused on mobile, edge-assisted applications, retaining

the realistic assumptions made previously, and examining custom built edge systems before

proposing online methods for their optimal configuration.

In Chapter 2 we discuss the most recent literature on edge computing and data analytics

for IoT and mobile networks. Following the structure of the remainder of the thesis, we firstly

discuss in detail works studying edge computing problems where low computing power edge

Page 4 of 171

Apostolos Galanopoulos Trinity College Dublin

devices execute (collaboratively) data analytic tasks, based on input data generated by them.

Next, we expand in scenarios where more powerful edge computing servers are used to outsource

the edge devices’ load, in order to handle more delay/accuracy sensitive applications. We further

discuss additional works in other chapters when they are necessary and more relevant to the

specifics of the chapter.

The model of Chapter 3 assumes an architecture where devices are willing to collaboratively1

execute data analytic tasks in order to improve their execution delay and accuracy. We design

a static optimization framework where the nodes decide where their data analytic tasks are

going to be executed, in order to jointly optimize their average execution delay and accuracy,

while respecting power consumption constraints. We assume that several system parameters like

link capacities and task arrival rates are known a-priori, and propose a distributed dual ascent

solution to the formulated convex problem, so that the nodes can make the outsourcing decisions

by exchanging local information. This is enabled by introducing an auxiliary variable used to

control the amount of tasks each node admitts for computation and essentially decoupling the

problem’s constraints. The results indicate that the nodes can achieve better performance when

collaborating than when they locally compute the tasks, depending on the network load.

In Chapter 4 we drop the assumption that devices are willing to cooperate. We propose a

framework that provides the necessary incentives for the collaborative execution of data analytic

tasks between the IoT nodes. In detail, we introduce a cooperative auction-based algorithm

which optimizes the aggregate execution accuracy and delay, without requiring information about

the nodes’ accuracy/delay priorities, nor their resource availability. This is possible because

nodes bid for accessing the resources of others and request compensation for admitting their

tasks, and thus, do not need to reveal private information regarding the aforementioned priorities

and resource availability. The algorithm yields the optimal task - node assignment, as well as

the necessary reimbursements for ensuring the devices’ full-scale cooperation. Our framework

is then extended to multi-stage analytics, where different parts of the task execution can take

place to different nodes, further improving the system’s flexibility and performance.

Next, in Chapter 5, we further drop the static modeling used before, by assuming unknown

and time varying system parameters. We study the problem of making fast scheduling decisions

on IoT networks that request the execution of data analytics. The objective is to decide which
1E.g. the devices belong to the same entity and thus the entire system can benefit from cooperation.

Page 5 of 171

Apostolos Galanopoulos Trinity College Dublin

of the nodes, that execute the analytics in different rates and precision levels, will process each

data stream. We propose an online dual subgradient method to deal with unknown system

parameters. We observe that simple dual method solutions are not trivially implementable to

our system since they violate interference constraints. Contrary to other similar works, [14, 15],

we propose an algorithm based on the Frank-Wolfe algorithm [16] that updates the primal

variables in a way that always produces feasible schedules. Furthermore, it has low complexity

per iteration, and also adapts to system changes.

In Chapter 6, we shift our focus on mobile, edge-assisted analytics by proposing and evaluating

a rigorous task outsourcing framework. The edge devices execute their tasks locally and further

outsource them to edge servers (a.k.a. cloudlets) only when they predict a significant performance

improvement. We consider the practical scenario where system parameters such as the requests

and cloudlet computing capacities are unknown and vary stochastically over time. We propose

an online optimization algorithm that is oblivious to this information and provably maximizes

the analytics performance. Our approach relies on Nedic’s exemplar work on the approximate

dual subgradient method [17], combined with a primal-averaging scheme, and works under

minimal assumptions about the system stochasticity. We fully implement the proposed algorithm

in a wireless testbed and evaluate its performance using a state-of-the-art image recognition

application. Our analysis demonstrates the capability of our algorithm to intelligently leverage

the cloudlets, adapting to the service requirements and task load variations.

After observing the capabilities of edge systems in providing fast and accurate analytics,

we develop a mobile, edge-assisted object recognition system with the aim of studying the

system level trade-offs between end-to-end latency and object recognition accuracy. We focus on

developing techniques that optimize the transmission delay of the system and demonstrate the

effect of image encoding rate and neural network size on these two performance metrics. We

explore optimal trade-offs between these metrics by measuring the performance of our real time

object recognition application. Our measurements reveal hitherto unknown parameter effects

and sharp trade-offs, hence paving the road for optimizing this key service. Finally, we formulate

two optimization problems using our measurement-based models and following a Pareto analysis

we find that careful tuning of the system operation yields at least 33% better performance for

real time conditions, over the standard transmission method.

Finally in Chapter 8, we consider the edge-assisted object recognition system analyzed in

Page 6 of 171

Apostolos Galanopoulos Trinity College Dublin

the previous chapter, and provide a solution for its optimal online configuration, as opposed to a

static trade-off analysis. In detail, the system configurable parameters are distributed among the

different user, network and edge devices, constituting their joint selection an intricate problem.

We propose an Automated Machine Learning (AutoML) framework for jointly configuring the

service and wireless network parameters, towards maximizing the analytics’ accuracy subject to

minimum frame rate constraints. Our experiments reveal the volatile and system/data-dependent

performance of the service, and motivate the development of a Bayesian online learning algorithm

which optimizes on-the-fly the service’s performance. Similar online solutions have been proposed,

e.g. [18, 19] but here we employ a method that does not assume a fixed model describing the

system’s performance, but rather learn it over time. We prove that our solution is guaranteed

to find a near-optimal configuration using safe exploration, i.e., without ever violating the set

frame rate thresholds. We further evaluate this AutoML framework in a variety of scenarios,

using real datasets.

Chapter 9 presents a summary of conclusions for the thesis as well as research directions

for future work. Finally Chapter 10 contains mathematical proofs for lemmas and theorems of

Chapters 5 and 6 that are too extensive to appear in the main body of the respective chapters.

Page 7 of 171

Chapter 2

Literature Review

Edge Computing has introduced a paradigm shift regarding the conventional way of executing data

analytics. Computation resources have moved closer to the network edges and they can be used

to handle the intensive computations in coordination with the standard cloud services [5, 20–23].

In [20] the authors present a framework for collaborative cloud/edge computing, and some

of the challenges that arise towards supporting a broader spectrum of applications with such

architectures. [21] classifies the major types of data analytics as classification, prediction,

clustering and association rule mining, and presents some of the use cases for Big IoT data

analytics, e.g. smart transportation/grid/agriculture/traffic lights, and healthcare. Other

examples are smart city applications, security surveillance and smart manufacturing [22]. In [23]

the authors introduced a system for smart city data analytics. The architecture entails multiple

tiers of computing to provide the necessary resources and Quality of Service (QoS) for a series

of different applications.

The surveys [24,25] demonstrate the basic ideas behind the modeling and architecture of edge

computing with computation offloading. They reveal the main performance metrics that need to

be optimized in such systems to be execution latency, edge device power consumption and other

utilities and costs that are related to them, or the executed tasks, e.g. task success rate. [26]

proposes a load balancing scheme for the distributed execution of analytics with the objective

of minimizing their delay. Regarding cellular networks, the works [27–30] use optimization

techniques to allocate radio and computing resources to the network’s devices, towards optimizing

the network revenue [27], latency [28] and the users’ energy consumption [29,30].

Another critical performance metric regarding data analytics is their execution accuracy.

Apostolos Galanopoulos Trinity College Dublin

The work in [31] demonstrates a smart camera IoT device, capable of executing classification

algorithms. Depending on the desired level of classification accuracy, the device is able to

select the minimum energy operation point. The work in [32] studies the trade-off between

data collection latency and execution accuracy. Finally, ApproxIoT [33] proposes a framework

for executing data analytics using approximate computations. This way it is able to sacrifice

accuracy of analytics for computation efficiency. All the above works indicate that in order to

provide higher accuracy data analytics in edge computing networks, it is unavoidable to concede

higher latency/power consumption.

2.1 IoT Analytics and Collaborative Networks

Edge IoT analytics are attracting growing interest. This idea extends in many ways previous

schemes such as data fusion in sensor networks and mobile crowdsourcing/sensing applications

[34–36]. Interestingly, there are already products, deployed or under testing, pointing to the

direction of cooperative edge analytics. For instance, Google Nest cameras support video

analytics [37], Microsoft offers a suite for edge analytics [38], which is similar to Amazon’s

Greengrass [39], while IBM developed project owl [40], and the Edgeware platform [41]. These

services however do not optimize the collaborative task execution and ignore the issue of

incentives. Yet, given the scale of IoT deployments and the nodes’ resource constraints, ensuring

cooperation is instrumental for the success of these systems.

Recent works emphasize the importance of executing analytics in edge/cloud infrastructures,

e.g. [23, 27]. Most of them perform task offloading to optimize execution delay [20, 42, 43].

Misco [44], and CWC [45] implement frameworks for parallel task execution on phones, catering

to MapReduce-like batch processing models rather than tasks modeled as data streams. Several

cooperative models have been proposed in the literature for the execution of intensive computa-

tions between nearby edge devices. MobiStreams [46], Swing [47] and [48] enable collaborative

computations on data streams. Nevertheless, these systems either do not optimize the task

distribution [46], or use heuristic policies that do not cater for energy consumption or execution

accuracy [47] [48]. DeepCham [49] is an adaptive mobile object recognition framework that uses

deep learning techniques. It trains a collaborative learning model using a number of mobile

users to produce more accurate recognition results. The authors in [50] propose a framework

Page 9 of 171

Apostolos Galanopoulos Trinity College Dublin

that allows mobile devices to extract features from surveillance cameras for video processing

applications. Serendipity [51] focuses on distributed computing in mobile networks with inter-

mittent connectivity, and proposes a greedy task allocation scheme to minimize completion time.

However, it does not take into account accuracy or energy constraints, and does not provide

optimality guarantees.

Energy constraints in IoT systems are very important and several prior works have proposed

solutions for reducing their power consumption. D2D Fogging [52] and [53] designed frameworks

for Device-to-Device cooperation towards energy efficient task execution. In [54], the authors

propose a dynamic algorithm that minimizes energy costs by leveraging green energy sources; and

similarly, [55] and [56] propose cooperative solutions that reduce energy consumption. However,

those prior works do not consider data analytics nor minimize the task execution delay. On the

other hand, [26] decides the task offloading based on delay only, but does not account for the

power consumption or the execution accuracy, which perhaps is the most important factor for

such services. Finally, the authors in [55] propose a resource allocation scheme for cooperative

computation between nodes of a wireless sensor network, towards minimizing the total energy

consumption.

2.2 Mobile Analytics with Edge Computing

2.2.1 Task Execution

Most solutions partition compute-intense mobile applications and offload them to cloud [57, 58].

This approach cannot support applications with stringent requirements due to possible large

delays in data transfers [59]. Cloudlets on the other hand, achieve lower delay by leveraging edge

computing [23,60] but have limited serving capacity. The execution of mobile analytics, either

on local devices or on edge computing nodes has been extensively studied. For example, [61]

proposes a solution for deciding the execution location of augmented reality tasks, either on the

mobile, or an edge server. Previous works in this area consider simple performance criteria, such

as reducing computation loads, and focus on the architecture design, e.g. Misco [44], CWC [45].

The increasing importance of these services has motivated the design of mobile and wireless

systems that can execute such tasks. For instance, [62–64] tailor deep neural networks for

execution in mobile devices. These works however, focus on low delay execution of analytics and

Page 10 of 171

Apostolos Galanopoulos Trinity College Dublin

do not consider improving their execution accuracy. Cachier [65] uses edge servers as caches for

image recognition requests sent to the cloud, aiming to minimize latency; while [66] optimizes

again delay but through the orchestration of the edge resources. Precog [67] prefetches trained

classifiers on devices which use these lightweight models to accelerate image recognition. In a

different approach, [68] selects in runtime the ML models, namely the DNN size, in order to

balance accuracy and resource consumption.

Prior analytical works in the context of computation offloading focus on different metrics,

such as the number of served requests, e.g., see [69] and overview in [25]. Other works either rely

on heuristics or static models and complete knowledge of system parameters [18, 68, 70]. Clearly,

these assumptions are invalid for many practical systems where the performance metrics and

system parameters not only vary with time, but often do not follow an i.i.d. (or Markov) process.

This renders the application of max-weight type of policies [71] inefficient. Despite the efforts

to improve the execution of analytics at small devices, e.g., by compressing NN models [72]

or using residual learning [73], the trade-off between low-accuracy local and high-accuracy

cloudlet execution is still important due to the increasing number and complexity of these tasks.

This observation has spurred efforts for designing fast multi-tier (cloud to edge) deep neural

networks [74]; for dynamic model selection [68,75]; and for threshold-based task allocation to

DNNs [76].

2.2.2 Video Analytics

Video analytics in particular, often employ MEC to improve scalability and latency. For

instance, [74] and [76] explore DNN partitioning across user devices, edge servers and the cloud.

In [77] the authors propose a framework for distributing deep learning sub-processes to edge,

cloudlet and cloud nodes towards increasing the job execution rate of the system. Other object

recognition systems like JAGUAR [78], Glimpse [79], and [80] use methods such as object tracking

to improve real-time performance. OverLay [81] is a mobile augmented reality system, aided by

GPU-enabled edge servers, to minimize the tracking error. Focus [82] uses a low latency / low

accuracy first stage CNN for real time analytics, followed by a more robust one for queries that

do not satisfy accuracy requirements. VideoStorm [83] schedules GPU resources to maximize

an accuracy/latency utility and presents a system for large scale DL analytics that uses an

offline profiler to evaluate the system’s configurations, and an online scheduler to allocate GPU

Page 11 of 171

Apostolos Galanopoulos Trinity College Dublin

resources towards maximizing a joint accuracy/latency utility, while Chameleon [19] decides the

NN model, frame rate, and image resolution to maximize accuracy. A convex program is solved

in [84] to decide frame sizes, and [85] formulates a similar integer decision problem; while [70]

minimizes latency. Another large corpus of works take a computation-offloading perspective

and handle computing or network resources without considering video analytics metrics (e.g.,

accuracy) or NN configurations (e.g. NN size); see [86–88].

Other works explore the accuracy/latency trade-off. JALAD [89] proposes the decoupling

of a Deep Neural Network (DNN) between edge and cloud towards minimizing latency with

execution accuracy guarantees. MobiQoR [90] studies the trade-off between delay and Quality

of Result for edge applications that involve machine learning and analytics like face recognition.

The authors show that sacrificing computation result quality can decrease delay as well as

energy consumption. LAVEA [70] proposes a system for computation offloading of data analytics

to nearby edge nodes. The formulated optimization problem aims in making offloading and

bandwidth allocation decisions towards minimizing latency. DeepDecision [18] is a video analytics

system that balances accuracy and latency, by properly adjusting the camera sample rate, video

encoding rate, and deep learning model. However, both transmission and processing delays are

much higher than the ones obtained by our system. DeepMon [91] distributes the execution of a

large DNN across multiple mobile GPUs to reduce latency. It focuses on DNN optimizations,

instead of the network-centric approach presented in our work.

All the above works, highlight the inherent trade-off between latency and accuracy in edge

architectures. However, most of those works assume that the accuracy and delay of the available

DL models and wireless links are known a-priori. In practice however, quite often we do not have

access to complete datasets, and even then, their validity is limited as they presume a stationary

environment. Hence, online learning solutions are better suited for such systems. Most works

applying online learning to MEC systems are focused on making offloading decisions, e.g. [92].

Recently, online learning has been applied for configuring MEC systems for real-time operation,

without however considering accuracy [93]. In [94] a Lyapunov framework is used to configure

the image resolution and frame rate of video analytics applications in an online fashion. The

objective is to optimize the accuracy/energy consumption trade-off, under latency constraints.

In [95] video quality and computing resources are selected to maximize the (approximate)

accuracy, without however considering the frame rate. Chameleon [19] profiles periodically the

Page 12 of 171

Apostolos Galanopoulos Trinity College Dublin

configurations and searches greedily for the most resource-prudent, but does not consider latency.

VideoEdge [96] solves a similar problem for hierarchical systems, while [97] solves an integeer

program to allocate computing resources and decide the image compression and DNN model.

In [98], video quality and computing resources are selected to maximize successful queries. These

interesting works either do not offer optimality bounds [19, 97] or consider asymptotic-only

performance [94], assume known models [94, 97, 98] or convex functions [98]. Finally, online

algorithms for general edge computing, e.g., [99–101], do not cater for video analytic metrics or

the specifics of video pipelines.

Page 13 of 171

Chapter 3

Optimizing Data Analytics in

Energy Constrained IoT Networks

3.1 Introduction

Data analytics services usually generate large volumes of data that are difficult to process in

small IoT devices. A strong candidate solution for this problem is to leverage resources that are

available at the edge, e.g., at nearby IoT devices or even at small edge servers, a concept also

known as fog computing [7,8]. For example, an IoT camera that performs face recognition, could

transmit some of its captured pictures to another camera in range, in order to expedite the task

execution or improve its accuracy (if the other camera has, say, a larger training dataset). This

approach comes with several advantages: it is scalable, reduces data transfer costs and task

completion times, satisfies privacy criteria since the data is not transferred to the cloud, and so

on.

Nevertheless, enabling a group of resource-limited IoT devices to jointly execute their analytic

tasks is an intricate goal [20]. Some devices might be able to execute certain functions with higher

accuracy, but might not have enough computation resources to support all nearby devices. It is

therefore difficult to decide where to execute the tasks, even more since their execution is often

delay-sensitive. Clearly, there is here an inherent trade off between accuracy and task execution

delay. On top of that, the IoT nodes usually have limited communication capabilities, e.g., small

transmission range, and tight energy constraints (average power limitations). Hence, they need

to wisely decide how to allocate their power budget among computations, data collection and

Apostolos Galanopoulos Trinity College Dublin

transmissions.

Our goal in this chapter is to address the above challenges by designing a framework for the

collaboration of energy-constrained IoT devices which jointly optimize the execution delay and

accuracy of their analytic tasks.

In this chapter, we introduce an optimization framework for devising a data analytic task

execution policy in an energy-constrained IoT environment. The framework allows the policy

designer to balance execution time and accuracy, based on the system’s priorities (or, mission).

Our model is detailed: it captures transmission and reception energy costs that might vary

across nodes; caters for the inherent heterogeneity in link capacities; and uses a generic model

for the task execution accuracy that captures a rich set of data analytic scenarios. We place

emphasis on delay, which is apparently very crucial for this problem, and use a load-dependent

delay metric, instead of average constant delay functions.

In order to solve the resulting challenging mathematical program, we rely on Lagrange

duality which effectively decomposes it to a set of subproblems (one per node). Furthermore,

we use a primal-dual algorithm to allow the coordination of these subproblems in a distributed

and scalable fashion. Indeed, we prove that our solution finds the optimal cooperation policy

with minimal exchange of messages, involving only one-hop neighbors. Finally, we conduct a

trace-driven evaluation of our solution, using measurements from a small testbed of Raspberry

Pi 3 devices which run a Java-based face recognition app. Our experimental analysis reveals the

potential benefits of such cooperative IoT solutions, and provides interesting insights for the

arising trade offs. The contributions of this work can be summarized as follows:

• We introduce the problem of jointly optimizing the average execution delay and accuracy

of data analytic tasks in IoT networks. Our model is generic in the sense that it captures a

variety of network parameters.

• Our analytical multi-objective framework enables the designer to prioritize one objective over

the other, based on the system’s requirements.

• We design a scalable algorithm for solving the problem in a distributed fashion. Our algorithm

requires minimal exchange of messages among only neighboring nodes to converge to the

optimal solution.

• We conduct an extensive trace-driven evaluation of our optimization framework, showing that

Page 15 of 171

Apostolos Galanopoulos Trinity College Dublin

the collaborative solution can be up to 60% faster and 23% more accurate than local task

execution.

3.2 System Model and Problem Statement

3.2.1 System Model

Network. We consider a wireless IoT network represented by a directed graph G = (N ,L) of

N nodes and L links. The nodes are IoT devices of low resource footprint. We assume they

are equipped with half-duplex radios, hence each node can transmit to, or receive from at most

one other node at each time instance. They also operate with existing IoT technologies such

as Wi-Fi, Bluetooth or ZigBee. Each link li,j ∈ L, if node j is within communication range

of node i. All nodes within range of node i are called its neighbors and are denoted by N(i),

which contains Ni nodes. Each link li,j is characterized by its average capacity ci,j measured in

bits/s. We assume that ci,j is measured by higher layer capacity estimation mechanisms [102]

and accounts for channel fluctuations on the link, and MAC layer scheduling1.

Each link li,j is also characterized by its average (Tx/Rx) energy consumption eti,j(ci,j), eri,j(ci,j)

measured in Joules/bit. We assume that energy consumption is dominated by the transmission

at node i over (the attenuated) reception at node j. In general, energy consumption depends

on the link capacity ci,j since it is affected by the channel quality and the transmitter’s bit

rate [103]. We assume that the nodes experience a certain average bit rate with each of their

neighbors and, for simplicity, use eti,j and eri,j to denote the resulting energy consumption. We

consider the general case where ci,j 6= cj,i, eti,j 6= etj,i, eri,j 6= erj,i since nodes i and j may have

different wireless adapters.

Computing and Data Analytics. We assume that NT ⊆ N is a subset of the network’s

nodes that need to execute computationally intensive data analytic tasks. The tasks may

correspond to two types of compute models. In a data stream processing model the tasks are

data (e.g. images) that are sent to operator function modules (e.g. face recognition) deployed at

the nodes. Alternatively, in a SPARK/MapReduce model the tasks may consist of operators

that are sent to process data deployed at the nodes.
1Our focus is on data analytic task scheduling techniques at higher layers that are MAC agnostic. Optimizing

MAC scheduling for IoT systems is an orthogonal problem that is out of the scope of this work.

Page 16 of 171

Apostolos Galanopoulos Trinity College Dublin

Fog

Cloud

(a)

i

k

j

ei,j , ej,i

Si

hi, ei, Pi

wi,j

hk, ek, Pk

c

t r

ci,j

c

(b)

i

k
j

i

j

i

k
j

i

j

(i) (ii)

4 se
cs

5 secs

0.7

0.8

(c)

Figure 3.1: (a) The IoT environment where devices have embedded different types of sensors. (b)
Example of network graph where the nodes with data analytic task arrivals are highlighted with blue
color. (c) Optimal offloading decisions for accuracy and delay may differ.

Each node i ∈ NT generates tasks for processing at a rate of λi tasks/sec. The tasks generated

by each node i, are characterized by the amount of average input data Si in bits2. Each node

j ∈ N requires a number of ρj cycles to execute each task, depending on the algorithm it uses,

based on its CPU frequency hj . For example, in a face recognition application, node i is a

camera that captures images of size Si with an average rate of λi images/sec, and computing

node j uses a specific recognition algorithm that yields a processing capacity of hj

ρj
tasks/sec.

Combining the task arrival rate with its input size, we define each node’s data generation rate

Ri = Siλi (b/s). Furthermore, each node j has an average power budget of Pj Watts, which can

be used for processing or data transfers. Such power budgets arise in IoT networks that employ

energy harvesting mechanisms [56] or comprise small form-factor power-constrained devices. In

addition, the nodes have energy requirement when performing computations ecj (Joules/cycle).

An annotated view of the model is depicted in Fig. 3.1b.

Each data analytic task has a metric that determines the quality of its outcome. Here, we

focus on machine learning and predictive analytic tasks where the metric is the accuracy of

the prediction. The output accuracy of the data analytic tasks depends on the executing node.

We define by wi,j ∈ [0, 1], ∀i ∈ NT , j ∈ N(i) the normalized output accuracy of node j when it

executes a data analytic task requested by i. Consequently, when node i executes locally its

own tasks, the execution accuracy is denoted by wi,i,∀i∈NT . Thus the notation wi,j is used to

implicitly express j’s efficiency to execute i’s tasks, and not j’s efficiency in general. In a face
2We assume that task properties are node-specific, e.g., in a face recognition application it is the camera

configuration of each node that determines the size of the captured frames. However, our model can be directly
extended to include a set of task classes, each one with different data sizes, computation load, and arrival rate.

Page 17 of 171

Apostolos Galanopoulos Trinity College Dublin

recognition application for example, the nodes can use different classifiers or different training

data sets [104], which will yield different execution accuracy in the classification task. Note that

our model is very generic as it allows performance to depend on the node that generated the

tasks, e.g. the image resolution or the surrounding environment of the capturing camera-node

may impact the accuracy of the classification.

3.2.2 Problem Statement

We design our system with the aim to devise a data analytic policy which will: a) minimize

the overall execution delay, and b) maximize each node’s average task execution accuracy. To

this end, we formulate a rigorous mathematical program with a multi-objective optimization

metric, that respects power budget, link and computation capacities in the IoT network. The

solution of this problem gives us the portion of tasks that the nodes will outsource to each of

their neighbors. This is an interesting problem where several trade offs arise.

The reasons for improving performance with outsourcing are multiple. The tasks arriving at

the nodes can be too demanding with respect to required computational power to be supported by

their power budgets. In addition, these neighboring nodes may be more specialized in executing

these tasks, so outsourcing can increase execution accuracy. The additional communication delay

when choosing to execute at another node can be large, however there can be some neighboring

nodes with large link capacity and powerful processing speed that can render outsourcing faster

than local-only execution.

It is interesting to note that minimizing the execution delay and maximizing execution

accuracy are not necessarily conflicting objectives. In some cases minimizing delays by routing

tasks to good channel quality neighbors can lead to maximizing execution accuracy, namely if

the selected neighbors are very good at executing the requested tasks. In other cases however, it

is impossible to optimize one parameter without degrading the result of the other. The latter

cases are obviously more interesting, since the produced solution will be determined by the

importance of each single objective.

To further illustrate the above, consider a representation of the network graph where task

requesting nodes included in NT are on one side and are connected to all the other nodes in

N based on (i) average delay and (ii) average execution accuracy (see Fig. 3.1c). The optimal

decisions of i and j regarding execution delay and accuracy, are highlighted with red and green

Page 18 of 171

Apostolos Galanopoulos Trinity College Dublin

for i and j respectively. Optimizing delays and execution accuracies may result to different (in

case of i) or similar (in case of j) execution decisions. For j, no matter how important each single

objective is, the ideal decision is to outsource. In i’s case however, local execution is better in

terms of delay minimization, but executing at k is optimal regarding execution accuracy. In this

case, the routing result will be significantly affected by the relative priority of the two objectives.

3.3 Problem Formulation and Solution

3.3.1 Problem Formulation

Let us define variable vector x = {xi,j ∈ [0, 1], ∀i ∈ NT , j ∈ N(i)}. Its values denote the

execution policy of the nodes so that xi,j represents the portion of tasks a node i outsources

to some neighboring node j. As a result, xi,i denotes local execution. In addition, we define a

sub-vector of x as xi = [xi,1, xi,2, . . . xi,N] ∀i ∈ NT , where N = |N | that contains the execution

policy variables related to node i. The average execution delay per task involves two parameters,

i.e. the communication delay for input/output data transfer and the computation delay. In our

analysis we consider both load-dependent queuing and fixed transmission delay. Namely, the

queuing delay dQi,j is:

dQi,j = Si
ci,j − xi,jRi

, ∀ i ∈ NT , j ∈ N (3.1)

as a result of Little’s theorem and assuming that the tasks arrive in M/M/1 queues and

experience a load dependent delay. Transmission delay dTi,j is given by:

dTi,j = Si
ci,j

, ∀ i ∈ NT , j ∈ N (3.2)

Since the output of the execution is much smaller in size than the input, it is omitted for

simplicity. For instance in a face recognition application, the task input size (photo) is much

larger than the application’s result which can simply be the name of a person in the photo.

The task execution delay in node j is given by:

dCj = 1
hj

ρj
−
∑
k∈N(j)

xk,jλk
∀ j ∈ N (3.3)

We follow the same M/M/1 queuing approach in modeling the computation queuing delay at

Page 19 of 171

Apostolos Galanopoulos Trinity College Dublin

the nodes. The service and arrival rates are the task execution and arrival rates for all the

neighboring nodes that outsource tasks to some node j. The queuing delay at each node j

considers the task’s load and the CPU power at the executing node to produce the average

task execution rate of j. Notice how increasing variables xk,j increases the task arrival rate and

decreases the task execution rate of j, hence affecting apart i, all of j’s neighbors as well. As

the task arrival rate reaches the execution rate, the queuing delay is infinite and the task queue

becomes unstable. Note, that if the traffic load in either queuing or task execution delay exceeds

the total link or computing capacities we end up with negative delays. Those are considered

extreme situations and the study of this model is limited to the cases where the respective

M/M/1 queues are stable. The average total (communication and computation) delay is then

defined as:

Di(x) =
∑
j∈N(i)

xi,j
(
dTi,j + dQi,j + dCj

)
, ∀ i ∈ NT . (3.4)

Considering the average computation accuracy of each node we use the following definition:

Wi(xi) =
∑
j∈N(i)

xi,jwi,j , ∀i ∈ NT . (3.5)

The system’s goal is to minimize the analytics’ execution delay and maximize their execution

accuracy. We notice that Di(x) is convex with xi,j , j ∈ N(i) since it’s second order derivative

with respect to xi,j is a positive number, provided that the transmission and execution queues

are stable. Instead of directly maximizing the accuracy, we use a convex utility approach for

two main reasons. First we capture the diminishing returns effect that naturally arises in such

systems. Namely, a certain improvement in accuracy is more important if the accuracy is low

compared to the case that it is already high enough. The same holds for the delay since it is a

convex function3, in the sense that a certain delay deterioration is more negative/impactful if

the delay is already high. Moreover, by using such utility for the accuracy we ensure a balanced

dispersion of the collaboration benefits across the IoT nodes, satisfying this way a fairness

criterion. In particular a fairness utility commonly used in network utility maximization is

the a-fairness function [105]. Such function is the logarithmic, which we apply to the average

execution accuracy, and by using its convex form − logWi(xi) we formulate the objective function
3This holds under the assumption that the delays in (3.1),(3.3) are positive.

Page 20 of 171

Apostolos Galanopoulos Trinity College Dublin

as a sum of the two objectives:

Ui(x) = βDi(x)− γ logWi(xi), ∀i ∈ NT (3.6)

where β and γ are balancing parameters between the two objectives. For the balancing parameters

we follow a scalarization approach where certain weights are assigned to the two objectives that

we have. This ensures that the obtained solution is aligned with the priorities of the designer

(delay or accuracy) and in any case they will be Pareto optimal [106, Sec. 4.7].

Regarding the total power consumption for any given node j ∈ N we define the following:

pCj (x)=ecj
∑
i∈N(j)

xi,jλifi,j , (3.7)

pTj (x)=
∑
i∈N(j)

etj,ixj,iRj , pRj (x) =
∑
i∈N(j)

erj,ixi,jRi, (3.8)

where pCj , pTj and pRj are the total power spent on computation, transmission and reception by

node j respectively. Consequently, the joint execution delay and accuracy optimization problem

is:

P1 : minimize
x

∑
i∈NT

Ui(x) (3.9a)

subject to: g1,j(x) =
∑
i∈N(j)

xj,iRj
cj,i

− 1 ≤ 0, ∀ j ∈ N , (3.9b)

g2,j(x) =
∑
i∈N(j)

xi,jRi
ci,j

− 1 ≤ 0, ∀ j ∈ N , (3.9c)

g3,j(x) = pCj (x) + pTj (x) + pRj (x)− Pj ≤ 0, ∀j ∈ N (3.9d)

g4,i,j(x) = xi,j − 1 ≤ 0, ∀ i ∈ NT , j ∈ N , (3.9e)

g5,i,j(x) = −xi,j ≤ 0, ∀ i ∈ NT , j ∈ N , (3.9f)

hi(x) =
∑
j∈N(i)

xi,j − 1 = 0, ∀ i ∈ NT . (3.9g)

Eq. (3.9b)-(3.9c) guarantee the flow feasibility communication wise, i.e. they respect channel

capacities [107], [108]. The power budget constraint for each node is given by (3.9d). Note

that it accounts for energy spent on both computation and communication. Finally, the sum of

decision variables for each node i, over all its neighbors must be equal to 1 according to (3.9g)

Page 21 of 171

Apostolos Galanopoulos Trinity College Dublin

so that our routing policy is formed.

P1 is a convex yet challenging optimization problem. Note that Ui(x) includes load-sensitive

delay components and a logarithm of a summation. Moreover, the outsourcing and routing

decisions of each node affect the resource consumption of its neighbors and through them, that

of further-distant nodes. Thus, there is strong coupling among the decisions of nodes both in

the objective and in the constraint set. Finally, often such IoT systems comprise hundreds of

nodes, and their large size renders the above challenges more pronounced.

3.3.2 Problem Solution

In order to address the above challenges, we rely on Lagrange duality that allows the decoupling

of the constraint set of P1. In detail, Lagrange relaxation allows for efficient and iterative

minimization of the primal variables by embedding the problem’s well-defined constraint functions

into the objective. Furthermore we define a new set of auxiliary variables for each node i, which

serve as local copies of the decisions of the neighbors of j that affect its operation. This facilitates

the decoupling of the objectives of the different nodes, and enables the distributed execution of

the proposed algorithm. Namely, we define variables yi,j for each j ∈ N(i), and introduce the

necessary constraints:

yi,j = xj,i , ∀(i, j) ∈ L (3.10)

which ensure the consistent operation of the system. This transformation allows the scalable

and distributed solution of the problem, which is particularly important for large IoT systems.

We first define the Lagrange function by relaxing all constraints:

L(x,y,µ,v,κ) =
∑
i∈NT

Ui(x,yi) +
3∑

k=1

(∑
j∈N

µk,jgk,j(x)
)

+
5∑

k=4

(∑
i∈NT

∑
j∈N

µk,i,jgk,i,j(x)
)
+

∑
i∈NT

vihi(x) +
∑
i∈N

∑
j∈N

κi,j
(
yi,j − xj,i

)
(3.11)

where µ,v and κ are the Lagrange multiplier vectors for the inequality and equality constraints

respectively . y is defined as: [yi,j ,∀i ∈ N , j ∈ NT]. The dual problem is defined then as:

max
µ≥0,v,κ

ψ(µ,v,κ) = inf
x

L(x,y,µ,v,κ). (3.12)

Page 22 of 171

Apostolos Galanopoulos Trinity College Dublin

In order to solve (3.12), we follow a primal-dual decomposition method that gradually converges

to the optimal solution. In each iteration, a gradient method is used to obtain improved values for

the dual variables, and then use them to calculate the current gradient through the minimization

of (3.11).

First, we observe that the dual problem has a separable structure and hence it favours

a distributed solution. The latter is beneficial since it is scalable and requires only minimal

circulation of coordination messages. Namely each node i ∈ NT can optimize xi,yi, so the

Lagrangian is written as a sum of partial Lagrangians Li over all nodes i ∈ NT such that:

L(x,y,µ,v,κ) =
∑
i∈N

Li(xi,yi,µi,vi,κi), (3.13)

where yi is defined as: yi = [yi,1, yi,2, . . . , yi,N],∀i ∈ N . µi,vi and κi are sub-vectors of µ,v,κ

that only contain the Lagrange multipliers associated with each node i, i.e. those appearing in

each node’s partial Lagrangian function given by:

Li(xi,yi,µi,vi,κi) = Ui(xi,yi) +
3∑

k=1

(∑
j∈N

µk,jgk,j(xi)
)

+
5∑

k=4

(∑
j∈N

µk,i,jgk,i,j(xi)
)
+

vihi(xi) +
∑
i∈N

∑
j∈N

κi,j
(
yi,j − xj,i

)
.

(3.14)

The dual ascent method consists of a minimization step, where the Lagrangian (3.11) is

minimized with respect to x for some given µ,v. After that, the Lagrange multipliers are updated

using the solution obtained from the minimization step before repeating the minimization step

in an iterative way, until x converges to its optimal value x∗. Formally we can write:

(xit,yit) = arg min
xi,yi

Li(xi,yi,µit−1,vi
t−1,κi

t−1) (3.15a)

µj
t = [µj t−1 + θtgtj]

+, (3.15b)

vj
t = vj

t−1 + θthtj , κti,j = κt−1
i,j + θt(yi,j − xi,j) (3.15c)

where the superscript t indicates a variable’s value at the t-th iteration and θt > 0 is the step size.

Vectors gtj and htj contain the values of (3.9b)-(3.9f) and (3.9g) respectively at the constraints

related to j, while [x]+ denotes that x = max{0, x}. Each node i ∈ N can then evaluate xi∗,yi∗

after receiving the dual variable updates in an iterative process, which is briefly described in

Page 23 of 171

Apostolos Galanopoulos Trinity College Dublin

Algorithm 1.

Algorithm 1 Distributed Collaborative Task Execution
1: Input: N ,NT , β, γ, θ,µ0

i ,v
0
i ,κ

0
i

2: repeat
3: for each node i ∈ NT do
4: t← t+ 1
5: (xit,xit)← arg minxi,yi Li(xi,yi,µit−1,vi

t−1,κi
t−1)

6: Transmit xit to neighbors
7: end for
8: for each node j ∈ N do
9: Update µj t,vj t,κj,it by using (3.15b), (3.15c)
10: Transmit µj t,vj t,κj,it to neighbors
11: end for
12: until ||xit − xit−1|| ≤ ε

The algorithm’s input is the number of nodes, the balancing parameters, the step size and

the initial values for the Lagrange multipliers, all considered known to each node. The step size

is chosen as a sufficiently small positive value to allow the algorithm to converge. Steps 2-12

describe the distributed iterative process of converging to the optimal xi∗. Each node i ∈ NT
evaluates xi,yi (step 5), and transmits xi to its neighbors, so they update their associated

Lagrange multipliers (step 9) and send them to their neighbors (step 10) so that a new iteration

can commence. Termination of the algorithm is achieved at some iteration t, for which it holds

||xit − xit−1|| ≤ ε, ∀i ∈ NT , where ε is a small positive, close to 0 value (step 12).

Proposition 1 Algorithm 1 solves problem P1 and converges to within ε from the optimal

solution x∗, in polynomial time.

Proof The Dual Ascent method solves the Lagrangian dual problem where the dual function is

given in (12), by iteratively increasing the dual variables µ,v,κ towards maximizing ψ(µ,v,κ).

The maximum value of ψ(µ∗,v∗,κ∗) = d∗ provides a lower bound on the solution p∗ of P1.

Since the objective
∑
i∈NT

Ui(x) is strictly convex, if Slater’s conditions apply strong duality

holds so that d∗ = p∗; and solving the dual problem, using steps (3.15a)-(3.15c), solves the

primal [106, Sec 5.3]. Algorithm 1 is the distributed implementation (dual decomposition) of the

dual ascent method, which has been shown to converge linearly to x∗ [109]. The communication

overhead from steps 3, 9, 15 is upper bounded by the maximum number of neighbors of each node,

which is at most N . In that case xi contains N variables, and the dual vectors µ,v,κ contain

Page 24 of 171

Apostolos Galanopoulos Trinity College Dublin

3 + 2N , 1 and N variables, respectively. All together we get an exchange of M = 3(N + 1) + 1

variables, so the overhead is of O(NM) order.

3.4 Performance Evaluation

In this section we evaluate the performance of the proposed system and the associated algorithm

devised to obtain optimal task outsourcing. We first describe the simulation setup, and then

conduct a sensitivity analysis for selected key parameters of our model. Finally, we demonstrate

the distributed algorithm’s convergence and scalability properties for different network sizes.

Evaluation Setup. In order to evaluate our algorithm for relatively large network sizes,in

our evaluation we use a custom simulator whose parameters are based on measurements on a

small testbed of Raspberry Pi 3 Model B devices.

We measure compute and Wi-Fi power consumption using a digital multi-meter connected to

the Pis. We measured compute power consumption by stressing 1-4 CPU cores of each Pi4 using

a methodology similar to [110]. Wi-Fi power consumption was measured by sending iperf UDP

traffic at different data rates between two Pis connected with a 802.11g link in ad hoc mode.

The power measurements are used to determine eti,j , eri,j and Pj parameters in our simulator

(See Table 3.1).

The Pis are running a face recognition application, implemented in Java OpenCV [47]. The

motivation behind using such an application lies in the fact that video analytics, e.g. face/object

recognition, are highly data intensive, and generate a huge load of data for processing per

task. This makes them ideal for stressing the edge network performance and highlighting the

accuracy/delay trade-offs this work aims to analyze. The application has a source that generates

frames from a local video feed, detects faces in each frame and compares found faces to a local

database. The faces and names of any matches are output to a sink. We ran the application

locally at each Raspberry Pi and measured throughput and accuracy for three different image

resolutions/sizes Si (5, 8 and 32 KB) and classification algorithms (LBP, Haar), when the

source sends frames in backlogged mode. Each combination of (image resolution, classification

algorithm) parameters corresponds to a different type of input source in our simulator that also

affects the required number of cycles per task ρj .
4Each Pi has a 1.2 GHZ quad-core ARM Cortex A53 processor.

Page 25 of 171

Apostolos Galanopoulos Trinity College Dublin

Description Parameter Value
Number of nodes, Number of nodes requesting
tasks

N,NT 25, 10

Transmission and reception energy consumption
per bit

eti,j , e
r
i,j 15-78, 5.5-38 nJ/b

Number of cycles per task ρj 52-889 Mcycles
Energy consumption per computation cycle ecj 0.2 nJ/c
Data per task Si 5-32 KB
Energy budget Pj 0.4 W
Balancing parameters β, γ 0.5
Task arrival rate λi 1

Table 3.1: Simulation parameters.

We used Matlab R2015a in order to simulate the behavior of the system, and obtain a

solution for P1. The assumption that communication and task execution delays are positive

(although not guaranteed in general), is enforced here by proper adjustment of other system

parameters like the link capacity and task arrival rate. The IoT network is created using a

random geometric graph model that is appropriate for such ad hoc networks. Namely, we have

randomly placed the nodes in a 100m×100m area, assuming that they are in communication

range when their Euclidian distance is less than 50m, while their link capacities are calculated

based on path loss and Rayleigh Fading. For each experiment we present results by averaging

100 simulations that differ in node locations.

Balancing parameters β, γ and objective correlation. First we evaluate the impact of

β and γ on the execution delay and accuracy. As it is expected, when the ratio β/γ is increased,

the solution of P1 prioritizes delay (which is reduced) over accuracy (which deteriorates). Fig.

3.2 quantifies this effect, where we have averaged the delay and accuracy for all nodes in 100

different random networks with the same parameters except node location. We observe that when

β increases up to 0.4, the delay is reduced to less than 0.4 secs (about 60% average improvement

to β = 0), while for higher β values this improvement is smaller (still monotonic). On the other

hand, the accuracy deteriorates with almost constant rate, reduced down to 73% for the extreme

case the system gives full priority to delay (γ = 0, β = 1). Clearly, the exact values of average

delay and task accuracy as β/γ changes depend also on the other system parameters shown in

Table I. Moreover, this trade off is largely shaped by the network structure, in particular the

properties of neighboring nodes, and it is important to understand this dependency.

Page 26 of 171

Apostolos Galanopoulos Trinity College Dublin

β

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 d

e
la

y
 (

s
)

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 e

x
e

c
u
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

70

75

80

85

90

Figure 3.2: The effect of balancing parameter β and γ = 1 − β on the task execution time and task
accuracy. Results are averaged for all nodes in each network, and for 100 different random network
instances.

To this end, we go a further step and use the Kendal rank correlation coefficient [111] in

order to predict, for a given network, how steep this trade off curve will be. In detail, for each

node i ∈ NT we create two ordered lists of its neighbors, ranking them according to delay (lower

to higher) and accuracy (higher to lower). In other words, the top-ranked node in the delay list

is the one that can execute node i’s tasks with the lower delay, while the top-ranked node in the

accuracy list offers the highest accuracy. Then, for each node, we test for all possible pairings

between its neighbors, if they maintain their order in the two lists or not and count the number

of concordant and discordant pairs. The Kendal rank correlation coefficient for a node i with Ni

neighbors is given by:

τi = P ci − P di
Ni(Ni − 1)/2 , ∀i ∈ NT (3.16)

where P ci is the number of concordant pairs and P di the number of discordant pairs. Since

Ni(Ni − 1)/2 is the number of possible pairs it holds that: −1 ≤ τi ≤ 1 and averaging for all

i ∈ NT we can obtain a unique objective similarity index τ for our network.

In Fig. 3.3a,3.3b we depict the average execution delay and accuracy (mean values for 100

instances) of the solution of P1, when parameters wi,j are chosen so that τ ∈ {−1, 0, 1}. We

observe that when τ=−1, i.e., the objectives are conflicting, the choice of β plays a significant

role in the solution. For β = 0 we get high delay and accuracy, while for β = 1 the opposite.

Page 27 of 171

Apostolos Galanopoulos Trinity College Dublin

τ

-1 0 1

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 d

e
la

y
 (

s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

β = 0

β = 0.5

β = 1

0.28 secs

0.05 secs

(a)
τ

-1 0 1

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

0

20

40

60

80

100
β = 0

β = 0.5

β = 117%

4%

(b)
λ

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 d

e
la

y
 g

a
in

 (
%

)

-30

-20

-10

0

10

20

30

40

50

60

70

(c)

λ

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 a

c
c
u
ra

c
y
 g

a
in

 (
%

)

-5

0

5

10

15

20

25

(d)
λ

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5A
v
e
ra

g
e
 n

e
tw

o
rk

 p
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

2

3

4

5

6

7

8

9

10

11

Outsourcing

Local Execution

Outsourcing Feasibility Threshold

Local Execution Feasibility Threshold

(e)

Iteration

0 20 40 60 80 100 120

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

10
1

10
2

10
3

10
4

N=15, N
T
=7

N=30, N
T
=15

N=50, N
T
=25

N=150, N
T
=70

(f)

Figure 3.3: Average network execution delay and accuracy for different levels of objective correlation in
(a) and (b). The average gain in execution delay and accuracy as a function of the task arrival load λ
in (c) and (d). (e) Power consumption of outsourcing and local execution approaches, (f) the objective
function at each algorithm iteration.

As the correlation of the objectives becomes stronger, the impact of β becomes smaller. In the

extreme case of τ = 1, the objectives are fully correlated and optimizing with respect to delay is

roughly the same as optimizing with respect to accuracy.

Impact of load on cooperation benefits. Next, we explore the impact of the average

task load λ on the cooperation delay gain of the IoT network. The latter is defined as the average

task delay improvement (%) when the nodes collaborate based on the policy of P1, over when

they execute the tasks locally. In Fig. 3.3c we plot this gain for different values of λ, where we

have set λi = λ, ∀i ∈ NT . Note that in order to fairly compare collaborative with local execution,

we have considered a large power budget (Pj = 1W, ∀j ∈ N), so that neither mode (local or

collaborative) violates the power constraints in P1.

There are some interesting observations here. First, note that the gain is positive, since some

nodes expedite their tasks by outsourcing them to neighbors with high processing power with

which they are connected with high-capacity links. For larger values of lambda however, the

queuing delays increase fast (due to congestion) and hence our policy sacrifices performance

(lower delay gains) in order to satisfy the power consumption constraints. Interestingly, in some

Page 28 of 171

Apostolos Galanopoulos Trinity College Dublin

cases, the cooperation might increase the delay for some nodes (negative delay gain) in order to

achieve higher accuracy.

Similarly, in Fig. 3.3d we depict the cooperation accuracy gain, defined as the average task

accuracy when the nodes collaborate, minus the average accuracy when all tasks are executed

locally. Hence, the gain is positive if collaborative performance is better. We see again that

there are important cooperation gains (few outliers are present), which are reduced for high load

values (even by 20%). These results show that even if the network is not energy-constrained,

our algorithm has merit as it improves both the average delay and accuracy. However, as the

load increases, the outsourcing of all tasks becomes very costly in terms of energy or bandwidth

overheads, hence the average gains are reduced.

Outsourcing feasibility gains. Clearly, more often than not, the nodes will have tighter

energy budgets than assumed above. In these cases, the cooperation among the nodes not only

increases the system’s performance, but also ensures the completion of the tasks even if they

arrive at a (high) rate that cannot be supported by local-only execution. This is demonstrated

in Fig. 3.3e, where we have averaged results over 100 network instances. We observe that

for λ < 0.8 both the outsourcing and the local execution solutions are feasible (white area),

but for higher loads the local execution exceeds the nodes’ aggregate power allowance, i.e.,∑
Pi. When task outsourcing is allowed however, all nodes ∈ N contribute to the power budget

which increases and allows the support of more tasks. Finally, it is interesting to note that the

cooperative solution consumes more energy than the local-only execution (focus on the white

area), as it tries to maximize the objective of P1 by achieving lower delay and higher accuracy

than the local solution.

Convergence of Algorithm 1. Finally, in Fig. 3.3f we evaluate the convergence of the

distributed Algorithm 1, using 4 different network sizes and a fixed step size. We observe that

the optimal solution is reached after few iterations, even for large networks of N = 150 nodes,

which verifies the scalability properties of the algorithm. Furthermore, we see that in practice,

the algorithm achieves approximately 95% of the optimal solution after only 25 iterations for all

experiments.

Page 29 of 171

Apostolos Galanopoulos Trinity College Dublin

3.5 Conclusions

In this chapter we studied how the heterogeneity of IoT networks plays an important role in

motivating the collaboration of devices towards executing data analytic tasks. The different

accuracies, delays and power consumption profiles of the devices allows them to adopt mutually

beneficial task offloading policies towards optimizing the entire system’s performance. In many

cases however, the devices are not be a part of the same system, and might misreport their

parameters and requirements towards exploiting the resources of others. In the following chapter

we deal with such scenarios by properly motivating truthful device cooperation.

Page 30 of 171

Chapter 4

Providing Incentives for the

Cooperation of Edge Devices

4.1 Introduction

Edge-based cooperative architectures have been extensively used in communication networks,

cf. [112], but IoT analytics raise novel techno-economic challenges. On the technical side, IoT

nodes are likely to offer different accuracy and execution delay for each task, e.g., due to their

training datasets (see Fig.4.1). Additionally, they might be heterogeneous in terms of their

computation, wireless connectivity, and energy resources. Therefore, it is highly non-trivial to

identify the assignment of tasks to nodes that maximizes the overall performance while respecting

the resource constraints. Besides, some assignments might improve accuracy and others the

delay, and it is not clear how (and if) one can combine these different criteria.

On top of that, IoT nodes are often owned by different users who, clearly, will not spend

voluntarily their resources for serving others. This incentive-misalignment issue has been largely

ignored by previous research, yet it arises often in practice. Our cooperative architecture is more

scalable than cloud/cloudlet solutions [57], which are inevitably confined by the unavailability of

link bandwidth and computing capacity, respectively. Prior proposals for fostering collaboration

e.g., in ad hoc networks [113] or file sharing overlays [114], include solutions based on reputation,

reciprocation or market mechanisms. However, this problem takes a new twist in IoT analytics

because of the different types of involved resources (bandwidth, computing, energy), the hetero-

geneity of nodes in terms of task execution accuracy and delay, the massive scale of IoT systems,

Apostolos Galanopoulos Trinity College Dublin

Figure 4.1: Example of IoT network with heterogeneous nodes. Camera-equipped nodes use their
neighbors’ resources for faster and/or more accurate execution of video analytics.

and the typically low power availability of nodes.

It becomes clear that the cooperative execution of IoT edge analytics is instrumental for the

success of these services, but the question of how to maximize their performance and ensure the

users participation remains open. Our goal is to address this issue by introducing an auction

framework, Coop-IoT, for optimizing the execution delay and accuracy of these tasks, while

offering cooperation incentives to nodes. We note that our analysis builds on our previous work

which studied the coordination problem [115],assuming cooperative nodes and full information.

4.2 Methodology and Contributions

We consider a general model of a wireless IoT network with heterogeneous nodes and one gateway.

Each node generates different types of tasks which can execute locally with a certain accuracy

and delay. The nodes are connected with links of different capacity and spend their energy for

exchanging data or computing the analytics. The performance target for each node, in terms of

accuracy and delay, is captured by a utility function which is private information known only to

that node. Our model has minimal assumptions and can be tailored to different IoT scenarios

by selecting proper utility functions.

We formulate the execution of analytics as a network utility maximization problem. This

yields an intricate mathematical program that cannot be solved by a central entity (the IoT

gateway) which, naturally, is not aware of the nodes’ utilities. The nodes are prone to misreport

their needs and costs so as to increase their performance at the expense of others resource

Page 32 of 171

Apostolos Galanopoulos Trinity College Dublin

consumption. To address this issue, we propose an auction-based mechanism, implemented by

the gateway, that elicits the unknown utility parameters and solves the NUM problem. This

is achieved by carefully-designed pricing and allocation rules that guide the nodes behavior

to the system-wide optimal equilibrium. Unlike other auctions, our framework can handle

the multi-dimensional resource constraints arising in this setting, it is lightweight in terms of

communication requirements and computation load, and can be executed in a decentralized

fashion when necessary.

Going a step further, we fully implement our solution as a network protocol and evaluate it

in a series of experiments using a wireless testbed of Raspberry Pis (RPis) and state-of-the-art

face recognition applications. Moreover, we use these measurements to simulate larger networks

and compare with several alternative competitors. We find that Coop-IoT improves substantially

the service accuracy and delay compared to simple or more sophisticated heuristics, adapts its

operation to account for the resource availability, and ensures the nodes’ cooperation.

To the best of our knowledge, this is the first work proposing and testing an incentive-

compatible cooperative framework for IoT analytics. Our main contributions are therefore:

• Analytics Optimization. We introduce the problem of optimizing the execution accuracy and

delay of data analytics in IoT networks, where the nodes can cooperate to improve their joint

performance. This is a fundamental problem appearing in many IoT scenarios, see [37–41].

• Incentive Mechanism. We design a novel auction for maximizing the aggregate analytics

performance while aligning the nodes’ cooperation incentives. Our algorithm handles the

intricate (non-linear, coupled) objectives and constraints of the optimization problem, the co-

existence of multiple task sellers and buyers, and it is amenable to distributed implementation.

To the best of our knowledge, there is no other mechanism satisfying these requirements.

• Multi-stage analytics. We extend the model for multi-stage tasks that involve data prepro-

cessing (e.g., feature extraction) and analytics (e.g., classification) executed at different nodes.

This is the first model that enables optimization of multi-stage cooperative analytics.

• Implementation and Evaluation. We fully implemented Coop-IoT in a wireless testbed using

several face-recognition algorithms and real datasets. We verified that the heterogeneity of

nodes induces different execution accuracy and delay; measured the overheads and scalability

Page 33 of 171

Apostolos Galanopoulos Trinity College Dublin

of our mechanism; and compared its performance to benchmark policies. We find that

Coop-IoT, unlike its competitors, ensures cooperation and is up to 50% faster and 30% more

accurate, while consuming less resources.

At the core of our framework lies a novel auction algorithm. Auctions are attractive for

designing cooperation mechanisms for e.g., routing [113], file-sharing [114], power control [116],

or crowdsensing [34]. Their design is notoriously hard when there are multiple buyers and sellers

(double auction, DA) [117]. One prominent type of DAs is VCG which, however, exhibit high

computational complexity and budget-imbalanced outcomes [118]. Another option is the McAfee

auction [119] used in cooperative routing [113] or spectrum allocation [120], which does not

maximize efficiency. Finally, truthful mechanisms for crowdsensing [34,36] are pertinent to our

problem, yet they consider one task requester and information collection and do not account

for energy costs or task delay; while social-network based solutions [121] rely on an underlying

social graph, a condition that is not required by Coop-IoT.

Our auction design is more challenging because IoT analytics involve (i) heterogeneous

bandwidth and computing resources, (ii) multiple buyers and sellers, (iii) user-specific objective

functions, and (iv) constraints that couple the nodes’ actions. Hence, we need a mechanism

more sophisticated than VCG or McAfee [119] in terms of constraints, but more lightweight

in terms of overheads. An interesting prior effort is the Kelly-VCG mechanism [122], which

reduces overheads but is for single-sided auctions and requires still the calculation of VCG

prices [118]. Our approach is inspired by [123] which however does not include costs and has

one seller. Walrasian DAs have been used by [124] and [125] among others, but do not handle

multi-stage analytics and energy costs. Our auction algorithm has minimal overheads, i.e., scalar

bids are transmitted and simple function evaluations and gradient updates are involved, and it

is amenable to distributed execution.1 Hence, this is a result of independent importance, beyond

the context of IoT analytics.

4.3 Model and Problem Formulation

Network. We consider a wireless IoT network modeled with a directed connected graph

G = (N ,L) of N nodes and L links. The nodes are resource-constrained devices operating with
1 [123] was used for congestion control protocols; Coop-IoT can be used for bandwidth/computing management

in IoT.

Page 34 of 171

Apostolos Galanopoulos Trinity College Dublin

Figure 4.2: Node j serves yji requests of i using its power Pj and processing Hj , incurring cost Vji(yji);
and similarly for k. Node i generates λi tasks/sec, with ρi computing and si data load, and gets Uij(xij)
utility if sends xijλi tasks to j.

a standard IoT technology such as Wi-Fi or ZigBee. They are equipped with half-duplex radios,

hence they transmit to, or receive from at most one other node at each time. A link lij ∈ L exists

if node j is within communication range of node i, and we define the set Ni={j : (j, i), (i, j)∈L}.

Every link lij has average capacity cij (bits/s) which is measured by higher layer mechanisms2,

e.g., [102].

Data transmissions over link lij induce energy cost of etij Joules/bit for the transmitting

node i, and erij Joules/bit for the receiving node j. These parameters depend on link capacities

cij , ∀(i, j) [103]. We consider the general case where capacities and energy costs of links lij
and lji might differ. Each node i has an average power budget of Pi Watts that can be used

for computing or data transfers. Such constraints arise in IoT nodes that, due to their small

form-factor, cannot spend energy at a high rate, or have to rely on limited energy sources [56].

There is also an IoT gateway with a global network view, that can communicate (over one or

more hops) with all nodes, but is oblivious to their analytic requirements.

Computing & Data Analytics. Each node i generates tasks with average rate λi ≥ 0

tasks/sec, where each task has data load of si bits/task and computing load (for node i) of

ρi cycles/task. Our model is generic and captures two key classes of compute models: (i) the

data stream processing model where the tasks are data (e.g., images) sent to operator function

modules (e.g., face recognition) deployed at the nodes; (ii) a Map-Reduce model where the

tasks are operators that are sent to process local data at the nodes. Each node i has computing

capacity Hi (cycles/sec) that constraints the rate at which it executes analytics. Finally, eci
denotes the energy that i consumes per computing cycle (Joules/cycle).

We focus on predictive analytics where the performance criterion is accuracy and fast

execution. We consider the general case where the tasks of each node i can be executed with

different accuracy at each node j, and we introduce the accuracy gain parameter wij ∈ [0, 1] and
2Our focus is on analytics scheduling at higher layers that are MAC agnostic. Optimizing MAC for IoT is an

orthogonal problem, and out of the scope of this work.

Page 35 of 171

Apostolos Galanopoulos Trinity College Dublin

the matrix w= (wij : i, j= 1, . . . , N). The different accuracies arise because the nodes might

use different algorithms or training data sets [104], and because the nodes may have different

analytic requirements. We verify these issues with our own measurements on our testbed in Sec.

4.6 (see Table 4.1). The delay criterion, on the other hand, is related to the wireless network

(time to transmit) and node computing resources (time to compute). Ideally, each node i would

like to outsource its tasks to node j ∈ Ni with the highest wij value and highest capacities Hj ,

cij .

Decision Variables. The goal of our Coop-IoT system is to maximize its aggregate

performance while minimizing the nodes’ costs. The performance objective is twofold: (i)

minimize the execution delay for the tasks, and (ii) maximize task accuracy. In terms of

costs, the major concern is the availability of energy that underpins both communications and

computations. Clearly, the nodes cannot exceed their energy budget, but also they would prefer

to reduce their energy consumption as much as possible.

Let us denote with xij ∈ [0, 1] the fraction of tasks that node i decides to outsource to node

j, and define the vector variable xi = (xij : j ∈ Ni), ∀ i; and also use xii for the fraction of tasks

i executes locally. Similarly, we introduce the decision yij of node i for admitting tasks from

node j, and define: yi = (yij : j ∈ Ni), ∀ i. In order for the system operation to be consistent

the nodes have to agree on the task execution policy, hence the constraint xij ≤ yji, ∀(i, j) ∈ L

must hold, meaning that j agrees to admit at least as many tasks as i outsources. Each node i

consumes energy for transmitting and receiving data, and for computing the tasks. We define

the power consumption function

Ei(xi,yi) ,
Ni∑
j=1

etijxijλisi+
Ni∑
j=1

erjiyijλjsj+eciρi
(Ni∑
j=1

λjyij+xiiλi
)
.

Utility Functions. Each node i decides how many tasks to outsource to its neighbors and

how many to admit from them, aiming to maximize its performance and reduce its energy cost.

We define the node’s utility for collaborating with its neighbor j as:

Uij(xij) ,αij log(λiwijxij+1)− βij
(
xijλi

(si
cij

+ ρj
Hj

))2
.

The first term quantifies the utility for sending tasks to j, which increases with wij but has

diminishing returns (implying a saturation). The benefits are proportional to parameter αij

Page 36 of 171

Apostolos Galanopoulos Trinity College Dublin

which is private information for i. The second term includes the transmission and computing

delay of sending and processing si bits at j, and we use a quadratic form to capture that users

are increasingly dissatisfied with delay. Parameter βij shapes this dis-utility.3

We model the energy cost that i experiences when executing analytics for j ∈ Ni with the

function:

Vij(yij) = γij
(
erjiyijλjsj + eciρiλjyij

)2
, (4.1)

where γij is private information of i and captures how sensitive it is in spending its energy. Our

model allows nodes to have serving preferences (as utility/cost parameters depend both on i

and j), but applies also when γij = γi, ∀j. An example is shown in Fig. 4.2.

Optimization Problem. We can now express the IoT cooperative analytics with the

network utility maximization program: Operation Problem (IoT-OP):

maximize
x,y≥0

N∑
i=1

Ni∑
j=1

Uij(xij)− Vij(yij) = f(x,y) (4.2)

subject to: xii +
Ni∑
j=1

xij ≤ 1, i ∈ N , (4.3)

xji ≤ yij , (i, j) ∈ L, (4.4)

λiρixii +
Ni∑
j=1

yijλjρi ≤ Hi, i ∈ N , (4.5)

Ni∑
j=1

xijλisi
cij

+
Ni∑
j=1

yijλjsj
cji

≤ 1, i ∈ N , (4.6)

Ei(xi,yi) ≤ Pi, i ∈ N (4.7)

with x = (xi, i ∈ N) and y = (yi, i ∈ N). Eq. (4.3) couples the outsourced and locally-

executed tasks; (4.5) ensures the computing capacity of nodes; and (4.6) captures the trans-

mit/receive limitations due to half-duplex operation. We note that this formulation captures

interference using the primary interference model (node-exclusive spectrum sharing model) where

only links adjacent to each node interfere due to the half-duplex radio constraints. In Sec. 4.5

we show how our framework can be adapted to the protocol interference model which captures

secondary interference of links in a single frequency channel using the Wi-Fi data/ack protocol.

IoT-OP is a convex problem and its solution is given by the KKT conditions. We relax the
3Based on the specific IoT application one could employ a different utility function and our model can be

directly applied.

Page 37 of 171

Apostolos Galanopoulos Trinity College Dublin

constraints and define the Lagrangian:

L(x,y) =
N∑
i=1

Ni∑
j=1

(
Uij(xij)− Vij(yij)− θij(xij − yji)

)
−

N∑
i=1

(
µi
(
xii+

Ni∑
j=1

xij−1
)
−φi

(
λiρixii +

Ni∑
j=1

yijλjρi−Hi
))
−

N∑
i=1

(
ψi
(Ni∑
j=1

xijλisi
cij

+ yijλjsj
cji

− 1
)
−πi

(
Ei(xi,yi)−Pi

))

where φi, ψi, πi, µi, θij , ∀(i, j) are the non-negative dual variables. We denote ω the 1×LN4

vector of all duals and write the KKT:

U ′ij =πie
t
ijλisi+

ψiλisi
cij

+µi+θij,mij(ω), ∀(i, j) ∈ L (4.8)

U ′ii = φiλiρi + πiλiρie
c
i + µi ,mii(ω), ∀i ∈ N (4.9)

V ′ij =θji−φiλjρi−
ψiλjsj
cji

−πiλj(erijsj+eciρi),nij(ω)∀(i, j) (4.10)

φi
(
λiρixii +

Ni∑
j=1

yijλjρi −Hi
)

= 0, ∀i ∈ N (4.11)

ψi
(Ni∑
j=1

xijλisi
cij

+
Ni∑
j=1

yijλjsj
cji

− 1
)

= 0, ∀i ∈ N (4.12)

πi
(
Ei(xi,yi)− Pi

)
= 0, ∀i ∈ N (4.13)

θij(xij − yji) = 0, ∀(i, j) ∈ L (4.14)

πi, ψi, φi, µi, θij ≥ 0, ∀i ∈ N , (i, j) ∈ L. (4.15)

where we simplified notation by omitting the optimality superscript (∗), and introducing functions

mij(·), nij(·).

Given the KKT conditions, the broker (here, the gateway) would be able to solve the

IoT-OP problem if it had access to parameters α = (αij , (i, j) ∈ L), β = (βij , (i, j) ∈ L),

γ = (γij , (i, j) ∈ L). However, most often this information is known only to nodes, which have

many reasons not to reveal or misreport these parameters. This is an important problem for

(almost) the entire spectrum of cooperative networks where nodes can benefit by overstating

their needs and costs. To overcome this obstacle we propose a scalable cooperation algorithm

that elicits this hidden information.

Page 38 of 171

Apostolos Galanopoulos Trinity College Dublin

4.4 Auction Algorithm Design

In our auction the IoT gateway acts as an auctioneer (broker) and sets the task allocation and

pricing rules. The nodes submit offer/ask bids to indicate their outsourcing and reimbursement

requirements, and the gateway determines the task allocation. These steps are repeated until

an equilibrium is reached. The key idea is to find the rules that drive these interactions to the

socially-optimal point.

4.4.1 Finding an Equivalent Problem

Our algorithm belongs to the class of Walrasian auctions, and hence works under the assumption

that nodes are price-takers [126]. This means that they do not anticipate the impact of their bids

on other nodes’ strategy (a strict assumption that is used in auction theory), but instead react

to prices announced by the auctioneer. This model is valid when nodes have limited capacity

or time to dwell in extensive strategy designs, or when there is a large number of nodes, each

one with infinitesimal impact on others strategy. Both of these conditions appear in our setting,

similarly to [123–125] and others.

Allocation Rules. Let us denote with pij ≥ 0 the bid node i submits to declare its interest

in outsourcing tasks to j∈Ni, and qij≥0 the bid that signals the reimbursement i requests for

accepting j’s tasks. The gateway collects all these bids and solves the following optimization

problem to find the current allocations.

IoT Auction problem (IoT-AP):

max
x,y

N∑
i=1

Ni∑
j=1

pij log(xij + 1)− qij
2 y2

ij (4.16)

s.t. (4.3), (4.4), (4.5), (4.6), (4.7) (4.17)

IoT-OP and IoT-AP are identical except the objective. The latter has been selected towards

extending the seminal pertinent one-side auction mechanism in [123] (see also [127]) while

Page 39 of 171

Apostolos Galanopoulos Trinity College Dublin

preserving concavity. Hence, the KKT optimality conditions for IoT-AP are:

pij
xij + 1 = mij(ω), pii

xii + 1 = mii(ω), qijyij = nij(ω), ∀(i, j) (4.18)

and (4.11), (4.12), (4.13), (4.14), (4.15) .

Now, the important remark is the following: by comparing the KKT optimality conditions for

the two problems, IoT-OP and IoT-AP, we see that their solutions would be the same if (4.18)

coincided with (4.8)-(4.10) (the other conditions are already identical). This, in turn, would be

possible if the nodes are “driven” to bid as follows:

p∗ij = (x∗ij + 1)U ′ij(x∗ij), q∗ij =
−V ′ij(y∗ij)

y∗ij
, ∀i, j ∈ Ni. (4.19)

The goal of the gateway is to employ a pricing mechanism for charging task outsourcing,

and reimbursing task admissions, so that the nodes will be induced to bid according to this

socially-optimal solution.

Pricing Rules. In detail, let hi(xi) and gi(yi) denote the charging and reimbursement

functions for node i, respectively, which depend on its decisions xi and yi. It is important to see

that these pricing decisions depend indirectly on the nodes’ bids pij , qij , through the resource

allocation decisions (4.18). Given these rules, each node i solves the following optimization

problem in order to find its optimal ask and offer bids for each one of its neighbors:

max
pij≥0

Uij
(
xij(pij)

)
− hi

(
xij(pij)

)
, ∀(i, j) ∈ L (4.20)

max
qij≥0

−Vij
(
yij(qij)

)
+ gi

(
yij(qij)

)
, ∀(i, j) ∈ L (4.21)

and these yield the conditions (first-order criterion):

∂Uij(xij)
∂xij

∂xij
∂pij

= ∂hi(xij)
∂pij

,
∂Vij(yij)
∂yij

∂yij
∂qij

= ∂gi(yij)
∂qij

, (4.22)

and then from (4.18) we obtain the derivatives of xij and yij

∂xij
∂pij

= 1
mij(ω) ,

∂yij
∂qij

= −nij(ω)
q2
ij

(4.23)

Page 40 of 171

Apostolos Galanopoulos Trinity College Dublin

Algorithm 2 Coop-IoT
1: Input: G = (N ,L),H,P , c,λ,w
2: Output: x∗, y∗, hi(pi), gi(qi).
3: Init/lize: x(0), y(0), φ(0), ψ(0), π(0), µ(0), θ(0), t, cnvg ← 0
4: while cnvg = 0 do
5: t← t+ 1
6: Each node i bids

(
p

(t)
i , q

(t)
i

)
by solving (4.20)-(4.21);

7: Broker collects all nodes’ bids
(
p(t), q(t));

8: Broker calculates new x(t),y(t) using (4.18)
9: if |x(t)

ij − x
(t−1)
ij | ≤ ε and |y(t)

ij − y
(t−1)
ij | ≤ ε, ∀(i, j) ∈ L then

10: cnvg ← 1; % broker checks convergence.
11: end if
12: Broker charges prices hi(x(t)

i), gi(y(t)
i), ∀i, with (4.24).

13: Broker updates dual variables, ∀i∈N , (i, j)∈L with:

µ
(t+1)
i =

(
µ

(t)
i + st

(
x

(t)
ii +

Ni∑
j=1

x
(t)
ij − 1

))+

θ
(t+1)
ij =

(
θ

(t)
ij + st

(
x

(t)
ij − y

(t)
ji

))+

φ
(t+1)
i =

(
φ

(t)
i + st

(
λiρix

(t)
ii +

Ni∑
j=1

y
(t)
ij λjρi−Hi

))+

ψ
(t+1)
i =

(
ψ

(t)
i +st

(Ni∑
j=1

x
(t)
ij λisi

cij
+
y

(t)
ij λjsj

cji
−1
))+

π
(t+1)
i =

(
π

(t)
i + st

(
Ei(x(t)

i ,y
(t)
i)−Pi

))+

14: Broker transmits all dual variables to the N nodes.
15: end while

Now, recall that for the solution of IoT-OP the derivative of Uij and Vij are given by (4.8)-(4.10).

Plugging these and (4.22) to (4.23), we obtain the socially-optimal pricing rules ∀(i, j) ∈ L:

h′ij(pij)=1, g′ij(qij)=
−
(
nij(ω)

)2
q2
ij

⇒

hij(pij)=pij , gij(qij)=
(
nij(ω)

)2
qij

. (4.24)

These pricing rules drive the system to the socially optimal solution and are intuitive. Firstly,

the nodes pay exactly the amount they bid (pij). Secondly, using the bidding-allocation relation,

Page 41 of 171

Apostolos Galanopoulos Trinity College Dublin

(4.18), the reimbursement rule can be written:

gij(qij) = yij
(
− θji+ φiλjρi+

ψiλjsj
cji

+ πiλj(erijsj+ eciρi)
)
,

which states that i is reimbursed based on the service it offers yij , and its resources’ congestion

(links, energy, and computing) which is measured by the dual variables — acting here as shadow

prices.

4.4.2 Algorithm and Properties

The mechanism is executed iteratively implementing a primal-dual algorithm for IoT-OP, where

for the subgradient calculation (i.e., the primal update) we leverage the auction; see Algorithm 2.

It takes as input the network configuration, node features and demand (step 1), and outputs the

cooperation policy and prices (step 2). The algorithm runs until convergence. In each iteration

every node announces its offer and ask bids that optimize its utility (step 6). The IoT gateway

acts as broker, collecting the bids (step 7), calculating the new allocations (step 8) and checking

the termination criterion (step 9). It calculates the prices and reimbursements (step 12) and

updates the dual variables (step 13), which are then transmitted to nodes (step 14). If the

algorithm has not converged, it repeats.

The updates of the dual variables implement a gradient descent method, solving the dual of

IoT-AP which, for proper bids, coincides with the IoT-OP as explained above. For instance, for

µ(t) we use:

µ(t+1) =
(
µ(t) + st∇µL(x(t),y(t),µ,θ(t),ψ(t),π(t),φ(t))

)+

and similarly for the other duals, where (·)+ denotes the projection onto the non-negative orthant

and st is the step size. Due to the fact that the problem is convex and under the assumption

that Slater’s conditions are satisfied, strong duality holds and this method will yield the optimal

primal solution.

Theorem 1: Algorithm 1 solves IoT-OP, achieving a budget-balanced allocation.

Proof (i) For the convergence, we extend the proof in [127]. We consider very small time slots

Page 42 of 171

Apostolos Galanopoulos Trinity College Dublin

approximating a continuous model and employ the Lyapunov function

Λ(ω) =
N∑
i=1

((µi−µ∗i)2

2 + (φi−φ∗i)2

2 + (ψi−ψ∗i)2

2 + (πi−π∗i)2

2 +
Ni∑
j=1

(θij−θ∗ij)2

2
)
.

Taking the time derivative of this function:

∂Λ(ω)
∂t

= ∂Λ(ω)
∂ω

∂ω

∂t
. (4.25)

and using the gradient updates for each dual variable:

∂µi
∂t

=
(
xii +

Ni∑
j=1

xij − 1
)+

µi

,
∂θij
∂t

=
(
xij − yji

)+

θij

, ∀i, j

and similarly for the other duals, where note that the RHS of these equations is simply the

partial derivative of the Lagrangian w.r.t. the dual variable. Also, here (g)+
r means that when

r>0 we use any g, and when r=0 only non-negative g values (to ensure duals are non-negative).

Now, using more compact notation (ω for all duals) we write the Lyapunov function:

∂Λ(ω)
∂t

=
K∑
k=1

(
ωk − ω∗k

)(∂L(x, y,ω)
∂ωk

)+

ωk

≤
K∑
k=1

(
ωk − ω∗k

)∂L(x, y,ω)
∂ωk

=
K∑
k=1

(
ωk − ω∗k

)(∂L(x, y,ω)
∂ωk

− ∂L(x∗, y∗,ω)
∂ωk

)
+
(
ωk − ω∗k

)(∂L(x∗, y∗,ω)
∂ωk

)

where the first inequality holds by the definition of the projection (see also [127, Sec. 3.4]),

and then we add and subtract the Lagrange derivatives at the optimal primal point x∗, y∗.

Finally, using the complementary slackness conditions (4.11)-(4.14) and eq. (4.8)-(4.10), and

after restructuring we obtain:

∂Λ(ω)
∂t

≤
N∑
i=1

N∑
j=1

((
xij − x∗ij

)(∂Uij(xij)
∂xij

−
∂Uij(x∗ij)
∂xij

)
+
(
yij − y∗ij

)(∂Vij(y∗ij)
∂yij

− ∂Vij(yij)
∂yij

))
≤ 0 ,

where the last inequality holds as Uij(xij), −Vij(yij) are concave.

Page 43 of 171

Apostolos Galanopoulos Trinity College Dublin

(ii) The broker’s budget is payments minus reimbursements:

K(p, q) =
N∑
i=1

Ni∑
j=1

(
hij(pij)− gij(qij)

)
=

N∑
i=1

Ni∑
j=1

(
p∗ij −

nij(ω∗)
q∗ij

)

=
N∑
i=1

Ni∑
j=1

(
(x∗ij + 1)mij(ω∗)− y∗ijnij(ω∗)

)
,

where the last equality holds due to (4.19), (4.8), (4.10). This is a non-negative quantity (hence,

we have non-negative budget): mij(ω) are always positive by (4.18), and similarly for −nij(ω)

except from its component −θ∗ji. However, the latter can be bundled with θ∗ij from mij(ω) and

zeroed-out due to complementary slackness (4.14).

4.5 Model and Algorithm Extensions

Next, we discuss the model extension for the case of 2-stage analytics, and explain how it can be

executed in a distributed fashion, and how it can cater for interference limitations.

Distributed Execution. Algorithm 1 requires a central node, the gateway, with access

to node parameters such as their processing capacity. However, for various IoT applications

we might prefer to have a fully decentralized implementation and our algorithm, unlike other

auctions, can be executed in a distributed fashion with small modifications. In detail, for

implementing the pricing rules hi(·) and gi(·), each node i can update independently its dual

variables µi, φi, ψi, πi, θij ,∀j∈Ni. Note that each node will have all the necessary information

for performing these iterations if all 1-hop neighbors exchange their primal and dual variables

in each round. The constraints that couple the different nodes actions, namely xji ≤ yij ,∀(i, j)

(i.e., (4.4)), can be relaxed by introducing a new dual variable which will be circulated to ensure

that this constraint will be satisfied at equilibrium. Then, the nodes can directly determine

their optimal bids, using eq. (4.20)-(4.21) as before, and subsequently decide their admission

and outsourcing strategy based on eq. (4.18).

The algorithm is lightweight as only 1-hop message passing is required for circulating the

duals and the bids among neighboring nodes. From a practical point of view, this algorithm can

be implemented as a distributed protocol, e.g., similar to TCP [123,127], where nodes observe

signals (here, the duals) and adjust their resource allocation decisions, which in our scenario

involve both the link bandwidth and node computing capacity.

Page 44 of 171

Apostolos Galanopoulos Trinity College Dublin

2-Stage Analytics. Many types of analytics are performed in two stages [5]: processing

the collected data (e.g., extracting features) and classifying the results. These stages can be

executed in different nodes, and our model can be extended to such scenarios. We assume that

each task creates si1 bits to be processed at the 1st stage and si2 for the 2nd stage; and similarly

we define parameters ρi1 and ρi2 for the computing load of each stage. For every node i we

denote with xijk ∈ [0, 1] the portion of generated tasks that i outsources to j (for executing

stage 1) and then to k for executing stage 2. Similarly, yjik denotes j’s decision for executing

the stage 1 for the tasks of i and then forwarding the results to k; and zkij is k’s decision to

execute the stage 2 for tasks of i (after receiving the stage 1 output from j). Clearly, a consistent

cooperation policy needs to satisfy xijk≤yjik≤zkij , ∀ (i, j), (j, k) ∈ L.

Using this model extension, we can redefine the utility and cost functions, and solve the

2-stage problem with a similar auction as Coop-IoT. In this case, node i receives different utility

Uijk(xijk) for every pair (j, k) of outsourcing nodes it uses. Similarly, node i incurs energy cost

Vijk for executing the stage 1 and transmitting the stage 2 data to another node, and Jijk costs

for executing the second stage. We consider here the most general case where these two cost

functions can be different.4 Following our analysis for the one-stage execution we can write the

utilities and costs ∀(i, j), (j, k) ∈ L as:

Uijk(xijk) = αijk log
(
λiwijkxijk + 1

)
− βijk

(
xijkλi

(si1
cij

+ si2
cjk

+ ρj1
hj

+ ρk2
hk

))2
,

Vijk(yijk)=γijk
(
erijyijkλjsi1+eciyijkλjρj1+etjkyijkλjsj2

)2
,

Jijk(zijk)=δijk
(
erkizijkλjsj2 + ecizijkλjρi2

)2
.

Parameters γijk and δijk capture the sensitivity of each node i for executing stage 1 or stage 2

of its neighbors’ tasks. Using these functions we can now define the 2-stage problem as follows:
4Note that the model can be simplified and aggregate all energy costs in one function, i.e., with a common

cost-sensitivity coefficient.

Page 45 of 171

Apostolos Galanopoulos Trinity College Dublin

maximize
x,y,z

N∑
i=1

N∑
j=1

N∑
k=1

Uijk(xijk)− Vijk(yijk)− Jijk(zijk)

subject to: xiii +
Ni∑
j=1

Nj∑
k=1

xijk ≤ 1, i ∈ N , (4.26)

xijk ≤ yjik, yjik ≤ zkij , (i, j), (j, k) ∈ L, (4.27)

λi(ρi1+ ρi2)xiii +
Ni∑
j=1

Ni∑
k=1

yijkλjρj1 +
Ni∑
k=1

Nk∑
j=1

zijkλjρj2 ≤ Hi, i ∈ N , (4.28)

Ni∑
j=1

Nj∑
k=1

xijkλisi1
cij

+
Ni∑
j=1

Ni∑
k=1

yijkλjsj1
cji

+
Nk∑
j=1

Ni∑
k=1

zijkλjsj2
cki

≤ 1, i∈N , (4.29)

Ei(xi,yi, zi) ≤ Pi, i ∈ N (4.30)

This new problem has the same structure with IoT-OP and can be solved with a similar

auctioning mechanism where now each node submits two type of ask bids, one for admitting

stage 1 tasks and one for stage 2 tasks. The reimbursement rule for the latter is an adaptation

of the respective rule from Sec. 4.4.

Protocol interference model: In addition to half-duplex interference constraints, the

IoT-OP formulation can be extended to two-hop interference constraints. According to the

popular protocol interference model, a transmission over link (i,j) is successful only if all nodes

in range with i or j, i.e.,

I(i, j) = {(c, b), (a, c) : c ∈ Ni ∪Nj , b, a ∈ Nc}, (4.31)

do not transmit or receive data at that time instance. It has been shown in the seminal work [108]

that the necessary and sufficient conditions for a flow-level policy such as the one we consider to

respect this scheduling requirement, is to include the constraint:

xijλisi
cij

+ yijλjsj
cji

+
∑

(k,m)∈I(i,j)

xkmλksk
ckm

+ ykmλmsm
cmk

≤ 1. (4.32)

Adding (4.32), ∀(i, j) ∈ L, to the constraint set of IoT-OP we will obtain a policy that accounts

for interference.

Note that since this is a convex constraint, our problem preserves its properties and hence

it still has a unique solution. Moreover, our Coop-IoT auction mechanism can solve this new

Page 46 of 171

Apostolos Galanopoulos Trinity College Dublin

problem with only small changes. Namely, we will need to introduce new dual variables and

additional exchanged messages in order to relax (4.32).

4.6 Performance Evaluation

We have fully implemented the proposed system using a face recognition app and a RPi-based

wireless testbed. Our goal is to explore the impact of the system parameters on the cooperation

benefits, compare our algorithm to other (non-)cooperative policies, and study also the 2-stage

execution policy. Our main findings are:

• The node configuration affects significantly the analytics accuracy, execution delay, and

consumed energy.

• Coop-IoT improves both the accuracy and delay, over other benchmark policies.

• Coop-IoT respects the resource constraints and expands the system’s capacity, i.e., the

supportable task rate.

• The cooperation benefits are more pronounced for dense and heavily loaded networks.

• The 2-stage execution adds flexibility and improves the accuracy and delay over the 1-stage

policies.

4.6.1 Testbed and Evaluation Setup

Face Recognition App. We built a face recognition application using OpenCV in Python.

For face detection we used Haar and LBP cascades combined with the OpenCV recognizers

Local Binary Patterns Histogram (LBPH), Eigen-faces and Fisher-faces. This created 6 face

detector/recognizer combinations. We used the Georgia Tech face database [128] which includes

15 pictures of 50 people. From this dataset, 14 pictures of each person were used for training

the recognizers, and the 15th to test it. We created two training sets to capture task diversity

at the source node. In the first, the testing images were frontal, while in the second they were

tilted to the side. Using a Monsoon Power Monitor we measured the power cost of the face

recognition task. Table 4.1 shows the results, where the two accuracy sub-columns correspond

to the frontal and side face tests.

Page 47 of 171

Apostolos Galanopoulos Trinity College Dublin

PPPPPPPP

Haar
Accuracy Delay (s) Power (W)

LBPH 82% 62% 0.76 0.28
Eigen Faces 74% 50% 0.59 0.40
Fisher Faces 42% 24% 0.41 0.25

LBP
LBPH 80% 56% 0.50 0.12
Eigen Faces 70% 48% 0.33 0.24
Fisher Faces 30% 18% 0.15 0.09

Table 4.1: Face recognition configurations.

Wireless Environment. We first measured the RPis average power consumption when

transmitting and receiving at different rates. We fit the collected measurements to first and

second-order polynomials, where the latter offers a better result (using the AIC criterion), see

Fig. 4.3a. Using this model, we can estimate the transmission and reception power consumption

as a function of the data rate, and evaluate the parameters eti,j , eri,j (which we use also in our

simulations). Note that the above values generally depend on the data rate and, as usually is

the case, Tx power is higher than Rx power [103]. We also measured the (average) data rate for

each link in the topology of Fig. 4.3b, using a random task outsourcing policy.

We note that in the implementation we used our framework based on the primary interference

model, complemented with link measurements that capture secondary interference indirectly.

This was a practical design decision because it leads to a lower-complexity mechanism where

nodes exchange information with only their one-hop neighbors, as opposed to two-hop neighbors

in the protocol interference model. Besides, the latter yields in practice very conservative

allocations as it assumes all nodes in the two-hop vicinity are blocking the transmission at the

same time. Such a practical design decision has also been used in work that implements a

practical distributed version of optimal Wi-Fi scheduling algorithms [129–131].

Trace-based simulation setup. For evaluations on a larger network we used Matlab.

The IoT network graph is created with the random geometric graph model, that has been

extensively used in simulating ad hoc or sensor networks [132]. The nodes are randomly placed

in a 100m×100m area, and considered to be in communication range when their Euclidian

distance is less than 50m. The link capacities in the simulations are calculated based on path

loss and Rayleigh Fading, and we average the outcomes of 100 simulations for random node

positions and application configurations.

Page 48 of 171

Apostolos Galanopoulos Trinity College Dublin

0 2 4 6 8 10 12 14 16 18 20

Throughput (Mb/s)

0.1

0.2

0.3

0.4

0.5

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 (

W
)

 Tx power

Tx Fitted curve

Rx power

Rx Fitted curve

(a)

44

11 33

22

Haar
Eigen

LBP
LBPH

LBP
Eigen

Haar
Fisher

5 m

10 m

15 m

10 m

(b)

Figure 4.3: (a): Tx/Rx measurements and fitted curves. (b): The RPi testbed topology for the
experiments.

4.6.2 Results

We implemented the Coop-IoT policy in our RPi testbed. We used the topology shown in

Fig. 4.3b to measure the analytics performance under different task loads5. We compare

our algorithm with a set of carefully selected benchmarks which are informed policies, more

sophisticated than basic greedy approaches, namely:

• Local execution (LE). Each node executes its tasks locally.

• Weighted Round Robin for Accuracy (WRR-A). Each node outsources tasks proportionally to

its neighbors’ accuracy6.

• Weighted Round Robin for Delay (WRR-D). Same as WRR-A but w.r.t total delay (data

transmission and task execution).

Performance Comparison. We conducted our first experiment using the setup of Fig.

4.3 and a vanilla version of Coop-IoT that gives equal priority to accuracy and delay, i.e.,

αij =βij =1, ∀(i, j). We present the results in Fig. 4.4. We find that it achieves higher accuracy

than the benchmark policies (up to 17% from LE), and higher even from WRR-A that focuses

only on accuracy (by up to 8%). At the same time, Coop-IoT yields low delay as well, and for

high-load scenarios (λ=1.5) it outperforms all other policies (even WRR-D, by 11.5%). It is

interesting to note that for low loads, LE is the fastest policy, but this comes at the expense

of accuracy. For instance, Coop-IoT sacrifices 14.9% delay performance compared to LE but
5For this setting, λ can reach 1.5 tasks/sec, without violating IoT-OP feasibility, which is the high task load

scenario. We use higher λ values by altering the system parameters.
6If node 1 is neighbor with nodes 2 and 3, with w12 = 2w13; WRR-A offloading decisions will be x12 = 0.66

and x13 = 0.33 (ignoring local execution).

Page 49 of 171

Apostolos Galanopoulos Trinity College Dublin

0.5 1 1.5
 (tasks/s)

0.4

0.5

0.6

0.7

0.8

A
c

c
u

ra
c

y

Coop-IoT LE WRR-A WRR-D

(a)

0.5 1 1.5
 (tasks/s)

0

0.5

1

1.5

D
e

la
y

 (
s

)

Coop-IoT LE WRR-A WRR-D

(b)

Figure 4.4: Accuracy and delay of Coop-IoT and benchmark policies, for the setup in Fig. 4.3 and
selected task loads.

Description Parameter Value
Number of nodes N 25
Tx/Rx energy per bit et

ij , e
r
ij 1-21, 0.3-10 nJ/b

Cycles per task ρj 180-912 Mcycles
CPU speed Hj 1.2 GHz
Energy per cycle ec

j 0.2 nJ/c
Data per task Si 180 KB
Energy budget Pj 0.3 W
Balancing parameters (αij , βij , γij) (1,1,10)

Table 4.2: Simulation parameters.

gains 17% in accuracy for λ=0.5. Note that these gains can be further increased if we modify

α,β to prioritize accuracy or delay, as we do for the simulations. Findings: Coop-IoT improves

concurrently both performance metrics compared to the benchmarks, especially for high loads.

Coop-IoT Agility. Next, we resort to trace-based simulations of 25-node networks, using

the above measured parameters and models. Our goal is to explore the impact of load λ on

the performance of Coop-IoT, compared to LE, and WRR-A/D. We employ two variations of

Coop-IoT:

• Coop-A. The nodes apply the solution of (IoT-OP) focusing on maximizing accuracy (αij =

1, βij = 0.1 ∀(i, j)).

• Coop-D. The nodes apply the solution of (IoT-OP) focusing on minimizing delay (αij =

0.1, βij = 1 ∀(i, j)).

Coop-IoT not only improves the system performance as we saw in the experiment above, but

additionally it supports higher task rates than LE, WRR-A and WRR-D which may violate the

Page 50 of 171

Apostolos Galanopoulos Trinity College Dublin

link capacity and node energy constraints (4.5)-(4.7). In detail, Fig. 4.5a shows the percentage

of nodes for which any of these constraints is not satisfied for various task loads. We observe that

this percentage increases very fast, yielding completely (near 100% for WRR) constraint-violating

policies in some cases. On the other hand, for all these λ values, Coop-A/D manage to optimize

the analytics performance while respecting the nodes’ resource availability. This highlights the

importance of our resource-adaptive collaborative policy.

Fig. 4.5b depicts the power cost of each policy as λ increases. We see that LE has the

lowest power consumption as it never offloads tasks. On the other hand, our sophisticated

Coop-A and Coop-D policies have higher energy cost, but still smaller than WRR-A and

WRR-D respectively, especially for high loads. This is due to the fact that they manage to

satisfy the problem’s constraints (by keeping power consumption low) that are often violated

by those policies. Findings: Coop-IoT increases the system’s capacity and does not violate the

constraints. At the same time, it consumes less energy than WRR-A/D but, naturally, more

than the non-cooperative LE policy.

In Fig. 4.5c we see that the average accuracy for LE and WRR is independent of the task

load, and for these values of λ they already violate the capacity constraints for some nodes (see

Fig. 4.5a). Our policy not only manages to respect all resource constraints, but at the same time

has higher performance than the benchmark policies (even if we ignore the constraint violations).

Namely, Coop-A, which prioritizes accuracy over delay, achieves up to 11% higher accuracy

than LE, and 6% higher than WRR-A. For high λ values, its performance drops to satisfy the

constraints, e.g., see how the power consumption of Coop-A remains lower than WRR-A for

high λ. Remember that WRR-A/D and LE do not respect the link/computing capacity and

power consumption constraints, and thus do not adapt their performance as λ changes.

Coop-D optimizes the execution delay as it is shown in Fig. 4.5d. Although the average

delay increases with the task load, Coop-D can achieve up to 25% lower delay than LE, when

the load is high. Also, Coop-D demonstrates better performance than WRR policies for most

loads. In practice, heuristics like WRR might have even worse performance as the nodes will not

agree to execute others’ tasks, but even if we assume full cooperation still Coop-IoT achieves

higher performance. Findings: Coop-IoT adapts its operation to each node’s performance

priorities and to the available network resources, unlike the rigid benchmark policies that are

resource-oblivious.

Page 51 of 171

Apostolos Galanopoulos Trinity College Dublin

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

 (tasks/s)

40

50

60

70

80

90

100

C
o

n
s

tr
a

in
t

v
io

la
ti

o
n

s
 (

%
)

LE
WRR-A
WRR-D

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

 (tasks/s)

0.05

0.1

0.15

0.2

0.25

0.3

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

LE
WRR-A
WRR-D
Coop-A
Coop-D

(b)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

 (tasks/s)

0.45

0.5

0.55

0.6

0.65

A
c

c
u

ra
c

y

LE
WRR-A
WRR-D
Coop-A

(c)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

 (tasks/s)

0.5

1

1.5

2

2.5

D
e

la
y

 (
s

)

LE
WRR-A
WRR-D
Coop-D

(d)

Figure 4.5: (a): Percentage of nodes that violate any of the constraints of Coop-IoT for LE and WRR
policies. (b)-(d): Simulation results for power consumption, accuracy and delay.

Scaling of Cooperation Benefits. In Fig. 4.6a we present the difference of the IoT-OP

solution, f(x,y), from the utility function of LE, i.e. fLE . This difference quantifies the

cooperation benefits as LE is the non-cooperation strategy. Here, we have increased the values of

Hj , Pj in order to support higher λ values. As it is expected, the cooperation benefits increase

with the number of nodes since more task exchange opportunities arise in dense IoT deployments.

This reveals the importance of designing a scalable algorithm (as Coop-IoT is) that can enable

large numbers of nodes to cooperate. Interestingly, these benefits are larger for heavily loaded

networks. For instance, when the nodes increase from 10 to 50, f(x,y) −fLE increases about

fivefold for any value of λ. Similarly, for a given number of users, increasing the load from λ = 1

to 5 increases also the cooperation benefits. Findings: The cooperation benefits of Coop-IoT

increase fast with the number of nodes, even more so for high load scenarios.

Convergence & Scalability. In Fig. 5.3 we evaluate the convergence of Coop-IoT for

different network density values, which is defined as the ratio of users over the area in which

Page 52 of 171

Apostolos Galanopoulos Trinity College Dublin

10 20 30 40 50

Users

0

50

100

150

200

250

300

350

=1

=2

=3

=4

=5

(a)

0 200 400 600 800 1000

Iterations

10
-3

10
-2

10
-1

10
0

10
1

E
r
r
o

r

N/m
2
=0.05

N/m
2
=0.075

N/m
2
=0.1

N/m
2
=0.125

(b)
Figure 4.6: (a): Cooperation benefits f(x,y) − fLE vs the number of users, for different values of λ
(tasks per node). (b): Convergence of Coop-IoT, with step size st = 10−4.

Haar LBP LBPH Eigen Fisher
Delay (s) 0.38 0.12 0.38 0.21 0.03
Power (W) 0.22 0.06 0.06 0.18 0.03

Table 4.3: Delay and power consumption measurements for the stages of detection and recognition.

they are spread (N/m2). Clearly, in denser networks there are more connections among the

nodes, and hence their outsourcing decisions are more intertwined. This, inevitably increases

the number of iterations required for the algorithm;s convergence, as can be seen in Fig. 4.6b.

However, still the algorithm can reach sufficient convergence accuracy of 10−2 within less than

200 iterations in any case, and this demonstrates the inherent scalability of Coop-IoT.

2-Stage Analytics. Finally, since this is the first 2-stage analytics optimization proposal,

we implemented and evaluated a 2-stage task execution policy for our face recognition application,

and compared its performance with the respective single-stage policy (both subtasks run in the

same node). First, it is necessary to measure the separate performance of the stages of detection

and recognition. Table 4.3 shows the delay and power required by each detector and recognizer.

Using these measurements, we can evaluate parameters ρi1, ρi2 for the 2-stage execution

model. Let us focus on Fig. 4.7. As α increases (and β decreases) the nodes’ priority is to

optimize accuracy rather than delay, and vice versa. It is evident that the 2-stage analytics

provides a more flexible way of executing the tasks by exploiting the different properties of the

available detectors and recognizers installed at each node. This yields significantly improved

performance (about 10% for accuracy and 16% for delay), especially at extreme cases, i.e. low

Page 53 of 171

Apostolos Galanopoulos Trinity College Dublin

0 0.2 0.4 0.6 0.8 1

 = 1-

0.4

0.45

0.5

0.55

0.6

0.65

0.7

A
c
c
u

ra
c
y

1-Stage Execution

2-Stage Execution

(a)

0 0.2 0.4 0.6 0.8 1

 = 1-

0.5

0.6

0.7

0.8

0.9

1

D
e
la

y
(s

)

1-Stage Execution

2-Stage Execution

(b)

Figure 4.7: Comparison between 1 & 2-stage execution (N = 25, λi = 1).

α values for accuracy (Fig. 4.7a) and high α values for delay. Findings: 2-stage policies are

more flexible in exploiting the nodes configuration, and improve performance compared to 1-stage

execution.

4.7 Conclusions

This chapter deals with device cooperation incentive misalignment that leads IoT devices to

purposefully misreport their system parameters at the cost of others. The proposed auction

framework manages to find a socially optimal task offloading policy that forces the devices to

fairly bid for others’ resources. In the following chapter, we study how to optimally schedule

task offloadings and executions in a dynamic environment with interfering links.

Page 54 of 171

Chapter 5

Dynamic Scheduling for IoT

Analytics

Exploiting edge devices for collaborative execution of analytics, requires making fast scheduling

decisions, i.e. which network links will be activated and which nodes should execute each task.

Finding an efficient scheduling policy for such a heterogeneous network is not an easy task. The

nodes produce a time-varying, often non-iid traffic load, since the latter is often event-driven, eg.

a motion-sensor/camera node that starts recording upon detecting movement. Moreover, data

analytics services are unique, in the way that their performance metric is also dynamic, e.g. the

recognition accuracy of an object recognizer varies over time, as the classifier can be presented

with more samples from other external sources.

In light of these new intricacies, we revisit the classic problem of scheduling both task

transmissions, i.e. link activation, and task processing at the heterogeneous IoT nodes. Face

recognition tasks are generated in the network, and the goal is to formulate a dynamic scheduling

policy that respects interference constraints and optimizes the service’s aggregate performance,

considering the network’s transmission and processing capacities. Such a solution can be applied

to many existing services, e.g. [37, 38], that target computing at the edge for IoT nodes and

improve their performance.

Apostolos Galanopoulos Trinity College Dublin

5.1 Motivation and Related Work

Unlike other state-of-the-art solutions based on max-weight scheduling like e.g. the drift-plus-

penalty (DPP) algorithm [133], our solution is designed to adapt not only to varying traffic

load, but also to a varying objective function, which is ideally suited for analytics. Furthermore,

our proposed algorithm (FWDS) is designed towards having robust complexity per schedule

evaluation, since it only solves a linear program in each iteration, even if the objective function is

convex. This is achieved by using the Frank-Wolfe (FW) algorithm [16], and effectively linearizing

the objective function, yielding schedules that are feasible, i.e they do not violate interference

constraints, and are efficiently evaluated. To deal with the rest of networking and processing

capacity constraints, we employ a dual method that relaxes them, and use the FW algorithm

for the update of the primal variables (scheduling decisions). In contrast, max-weight based

solutions either need to solve a (usually convex) admission control problem before max-weight

scheduling [134], or assume a-priori knowledge of the set of interference-free schedules [9–12].

The main advantages of FWDS over other wireless network control algorithms are that it:

(i) offers deterministic non-asymptotic bounds, i.e., hold per sample path; (ii) supports serving

non-i.i.d. or non-Markovian task arrivals; and (iii) can handle changing objective functions.

Network control techniques were revolutionized by the seminal backpressure and maxweight

stability algorithms of Tassiulas and Ephremides, [135, 136]. These works spurred a flurry of

related efforts [137] and were eventually extended by Neely et al with the Drift-Plus-Penalty

(DPP) algorithm that optimizes any convex objective, thus enabling the design of cross-layer

algorithms, cf. [134]. DPP algorithms run in two stages. First, they select a continuous action,

e.g., data admission, by solving the convex program xt ∈ arg maxx∈X V f(x)− J>t x, where J is

a vector of virtual queues (modeling constraints) and V > 0 a penalty parameter. And second,

they find a link activation schedule st that minimizes ∆Q + ∆J , i.e., the drift of packet and

virtual queues. They are proven to converge asymptotically, and on expectation, to the optimal

point while ensuring bounded constraint violation; and by tuning V we can trade-off optimality

for feasibility.

Unlike the above approaches, FWDS solves only a linear program for finding implementable

actions. This operation is almost identical with the schedule selection in maxweight and DPP

algorithms, the only difference being that we use the Lagrangian. Hence, FWDS has the same

Page 56 of 171

Apostolos Galanopoulos Trinity College Dublin

complexity with the respective step in those algorithms, namely it is NP-hard as it involves an

exponential number of constraints1; but overall FWDS is simpler as it does not require solving

additionally a convex program (first stage of DPP). Moreover, FWDS can readily include a

range of techniques developed for reducing the computation time of maxweight/DPP algorithms,

e.g., using pick-and-compare matchings, see discussion in [134, Ch. 7] and [138]; or for enabling

their distributed execution through message passing or randomization, cf. [139]. Many of these

suggestions can be directly applied to FWDS, and this is a promising direction for future work.

In a different line of work, Stolyar proposed the Greedy-Primal Dual (GPD) algorithm in [9]

which selects control actions greedily by solving st ∈ arg mins∈S (∇f(xt) + βQt∆Q)>s. The

continuous variables are updated with xt+1 = (1 − β)xt + βst. GPD is shown to converge

asymptotically, but we note that it uses exponential averaging {sτ}tτ=1 and hence does not

ensure ergodic convergence. Moreover, the objective is fixed and known, and the data arrivals

are constant or follow i.i.d. processes. Our approach is inspired from [140] which we extend

to include perturbations and to obtain discrete decisions through the Frank-Wolfe operation.

Finally, we note the similarities of our work with the recent works in [141, 142]. In [141] the

authors propose a greedy/FW algorithm to solve deterministic convex programmes; while [142]

uses DPP with FW updates, yet the convergence bounds are not deterministic and do not handle

time-varying objective functions.

The works in [14] and [15] propose max-weight-based scheduling algorithms for processing

networks. They perform utility maximization scheduling by controlling the amount of data

that is admitted to the network towards providing queue stability. [43] studies the joint task

and network flow allocation towards overall task completion time minimization, for an edge

computing network. [143] presents a task scheduling framework for a fog network, where the IoT

devices generate tasks with deadlines. The authors formulate a knapsack problem and propose

an algorithm to maximize the service provider’s revenues.

Contrary to [14] and [15], our solution optimizes a possibly time-varying task utility for the

nodes, on top of satisfying stability, while [43] does not embed routing, and a separate algorithm

is required. Many related works [54,143], do not consider interference constraints that complicate

scheduling. On the other hand, our solution deals with interference without heavily increasing

the complexity of the proposed algorithm by utilizing fast FW primal updates.
1In fact the complexity of this program depends on the interference model. For 1-hop interference model it has

polynomial complexity, but for other models it is as hard as the Weighted Maximum Independent Set problem.

Page 57 of 171

Apostolos Galanopoulos Trinity College Dublin

Finally, in-network processing gains increasing attention today because it can effectively

support latency-sensitive data-heavy applications, and there are several proposals for joint

routing and computing policies [115, 144–146]. For example, [144] was among the first works

to apply a maxweight policy for routing and processing, focusing on big data applications.

Similarly, [145] designs stability policies for wired networks with i.i.d. arrivals; while our previous

work [146] optimizes the network lifetime assuming, however, interference-free transmissions.

The current work builds on and expands these efforts to account for interference, varying network

state and objectives, and non-i.i.d. task requests.

5.2 Model and Problem Setup

5.2.1 Network Model

We consider a wireless IoT network that connects a set N ={i1, i2 . . . , iN} of possibly heteroge-

neous nodes through a set E={(i, j) | i, j∈N} of E links, see Fig. 5.1. The system operation

is time-slotted and w.l.o.g. we assume that slots have unit duration. The nodes communicate

through one or more hops to jointly execute a set C={c1, c2, . . . , cC} of data analytic tasks. For

example, c1 may correspond to image classification, c2 to filtering data collected by sensors,

etc. A task can be executed at the nodes which generate the data or elsewhere in the network.

This decision depends on the computing and network resources, and the performance, i.e. the

accuracy with which each task is performed at each node.

Each node i injects b(c)i,t ≥0 data of task (or commodity) c into the network in slot t, following

a stochastic process {b(c)i,t }∞t=1 with average value of b(c)i bits/sec. The capacity of each link (i, j)

may vary over time, {µij,t}∞t=1, with average value µij bits/sec. Similarly, every node i has a

possibly time-varying processing capacity {πi,t}∞t=1 cycles/sec, and πi is its long-term average.

These random variables are uniformly upper-bounded by bmax, µmax and πmax, respectively.

Finally, parameter ρ(c)
i is the processing load of i, in cycles/bit, for tasks of type c. We consider

the general case where ρ(c)
i may vary across nodes since they might have different hardware or

analytic algorithms.

Page 58 of 171

Apostolos Galanopoulos Trinity College Dublin

Edge Server IoT Node

Figure 5.1: An IoT network with heterogeneous nodes running various types of analytic tasks with
different accuracy.

5.2.2 Variables and Constraints

We begin by describing the static operation of the system. Variables y(c)
ij , z

(c)
i ≥ 0 denote the

average rate (bits/sec) at which commodity c ∈ C is transmitted over link (i, j) and processed at

node i, respectively. These should satisfy:

b
(c)
i +

∑
j∈Ni

y
(c)
ji =

∑
j∈Ni

y
(c)
ij + z

(c)
i , i ∈ N , c ∈ C, (5.1)

where Ni={j∈N | (i, j)∈E} are the one-hop neighbors of node i. Eq. (5.1) ensures that the

incoming and locally-generated data are equal to the outgoing and locally-processed2 data. Also,

the data routed over each link should not exceed its capacity:

∑
c∈C

y
(c)
ij ≤ µij , (i, j) ∈ E , (5.2)

and the processing is constrained by the computing capacity:

∑
c∈C

ρ
(c)
i z

(c)
i ≤ πi, i ∈ N . (5.3)

The transmissions are subject to interference, which is captured using the 2-hop interference

model [147]. Hence, if link (i, j) is active, no neighbor of i can receive data, and no neighbor of j
2Processing is technically equivalent to “extracting” data from the network, as we obtain a certain utility and

terminate their routing.

Page 59 of 171

Apostolos Galanopoulos Trinity College Dublin

can transmit. This requirement leads to the necessary and sufficient conditions for a transmission

policy to be implementable [148]:

∑
c∈C

y
(c)
ij

µmax
+
∑
c∈C

∑
(k,l)∈I(i,j)

y
(c)
kl

µmax
≤ 1, ∀(i, j) ∈ E , (5.4)

which captures the fraction of time that link (i, j) can be active with respect to its interfering

links:

I(i, j) =
{
(m, k), (l,m), k ∈ Ni, l ∈ Nj

}
.

Note that the interference sets I(i, j),∀(i, j)∈E are assumed fixed, but we do allow changes in

link capacities over time.

5.2.3 Network Control Problem and Challenges

Let U (c)
i (z(c)

i) be a utility function that expresses the reward derived from processing tasks

c ∈ C at node i. For example, this function quantifies the benefits from making a successful

image classification, or prediction using sensor measurements. It is a continuous and increasing

function of z(c)
i , and modulated by parameters w(c)

i which capture the performance offered by

each node. In practice, it is unknown and expresses the average reward of process {w(c)
i,t }∞t=1.

We select U (c)
i (z(c)

i) = w
(c)
i z

(c)
i , but our framework can be readily applied to other functions. We

define the Transmission and Computation Rate Allocation problem:

TCRA : maximize
{y(c)

ij ,z
(c)
i }≥0

∑
i∈N

∑
c∈C

U
(c)
i (z(c)

i)

subject to : (5.1)− (5.4)

This is a convex program that, in theory, could be solved with off-the-shelf solvers. However,

in most practical systems this is not possible for the following reasons:

• (R1): The task requests {b(c)i,t }, link capacities {µij,t}, and rewards {w(c)
i,t } are time-varying,

with unknown mean values.

• (R2): Its solution is not directly implementable, because it would create collisions between

interfering nodes, i.e., it is optimal only on average.

In the following, we define the set of implementable schedules that can be selected during a

scheduling slot.

Page 60 of 171

Apostolos Galanopoulos Trinity College Dublin

Let us elaborate on (R2). While (5.4) captures the time-average interference coupling, in

each slot the network can support only one of the eligible link-processing schedules, i.e.:

S =
{(
y

(c)
ij , z

(c)
i

)
| I (Ψij) +

∑
(k,l)∈I(i,j)

I (Ψkl) ≤ 1
}
,

where Ψij =
∑
c y

(c)
ij , and I(x)=1 if x>0 and 0 otherwise. The optimal solution of TCRA does

not necessarily belong to S, but the elements of S satisfy (5.4), namely:

Proposition 2 (Link-Processing schedules) Any average schedule that satisfies (5.4)

belongs to conv(S).

This means that we can select a series of schedules, the convex combination of which

approximates the optimal solution of TCRA. The caveat however is that finding this “time-

sharing” is a computationally cumbersome problem (see Sec. 5.5) and presumes knowing the

system parameters.

We present next a practical online algorithm that makes implementable scheduling decisions,

i.e., the selected schedules belong to S, and converges to the optimal TCRA solution without

knowing the system statistics, hence overcoming both issues (R1) and (R2).

5.3 Reformulation and Dynamic Problem

We first reformulate the problem to streamline its presentation, explain technically how (R1)-(R2)

hinder its solution, and introduce the t-slot problems that we will be using to solve TCRA

dynamically. We use superscripts ”◦” and ”∗” for the optimal solution of the static and t-slot

problems, respectively.

5.3.1 Preliminaries

We first define the bounded polytopes:

Y =
{
y

(c)
ij ∈ [0, µmax] | (5.4), c ∈ C, (i, j) ∈ E

}
, and

Z=
{
z

(c)
i ∈ [0, πmax/ρ(c)

i], c∈C, i∈N
}
.

Page 61 of 171

Apostolos Galanopoulos Trinity College Dublin

and express our variables in a single set X=Y ×Z⊆Re
+, with e=C2NE. Vector xt = (y(c)

ij,t, z
(c)
i,t)

is the amount of transmitted and processed data in slot t. We assume that TCRA has a finite

optimal solution3 x◦ (Assumption 1) which is a mild assumption as data can be dropped locally

at the nodes that generate them, with zero utility.

We write constraints (5.1)-(5.3) in form4 Ax + δ ≤ 0, where A ∈ Rm×e, δ ∈ Rm, m =

(CN+E+N); and define:

f(x) = −
∑
i∈N

∑
c∈C

U
(c)
i (z(c)

i) = −w>x,

where we used vector notation to represent the sum for all nodes and commodities. We wish to

stress that our framework can handle also general convex functions (as it will be evident from

the analysis below), and hence one can use, for instance, f(x) = − log(w>x) to enforce some

type of fairness or load-balancing. We can now rewrite TCRA as:

Primal: minimize
x∈X

f(x) s.t. g(x) = Ax+ δ � 0,

and the respective dual (concave) problem is:

Dual: maximize
λ�0

h(λ) , minx∈X L(x, λ),

where λ ∈ Rm
+ are the dual variables and L(x, λ) = f(x) + λ>(Ax+ δ) is the Lagrangian. This

problem can be solved with the subgradient method, which consists of the update:

λt+1 =
[
λt + αh′(λt)

]+
, (5.5)

where α > 0 is the step size and h′(λ) is a subgradient in the subdifferential ∂h(λt) of h at λt,

that is given by:

xt ∈ arg min
x∈X

{
f(x) + λ>t g(x)

}
. (5.6)

3This in practice means that the rates b(c)
i are such that they lie in the capacity region of the system; but one

can modify slightly eq. (1) by introducing a variable that dictates how much data are dropped locally at each
node, and thus drop this assumption.

4Each equality constraint in (5.1) can be replaced by two inequality constraints that should be satisfied
concurrently; alternatively we can use lagrange multipliers that can take negative values.

Page 62 of 171

Apostolos Galanopoulos Trinity College Dublin

One could use (5.5)-(5.6) to gradually approach the optimal TCRA solution f(x◦); or even apply

the obtained {xt}t as they are generated in each iteration, see [140]. However, due to (R1)-(R2)

either approach is not possible here, as we have time-varying parameters and (5.6) might yield

xt /∈ S.

5.3.2 The t-slot Problem

Our strategy is to employ the t-slot version of TCRA that uses only information that is

available up to t. In detail, we define the functions ft(x) =−w>t x, ∀t, where we assume that

the sequence of observed precisions wt converges to the final precision parameters of TCRA,

i.e., limt→∞w
(c)
i,t = w

(c)
i ∀i, c, (Assumption 2). This is because, as the nodes collect more data,

they eventually achieve their maximum possible analytic performance.5 Also, the changes across

functions are bounded, i.e., |ft+1(x)− ft(x)| ≤ σf , ∀t, x. Similarly, we define:

gt(x) = Ax+ δ̄t, with δ̄t =
t∑

τ=1
δτ/t

where the perturbations (link/node capacities, and arrivals) are assumed to converge, i.e.

limt→∞ δ̄t = δ (Assumption 3). Then, we can define the t-slot Lagrangian and dual problem:

maximize
λt�0

ht(λt) , min
x∈X

Lt(x, λt) = min
x∈X

{
ft(x) + λ>t gt(x)

}
.

In the sequel, we use these t-slot problems and functions to create a sequence of implementable

decisions {st}t ∈ S that ensure near optimal (average) performance, i.e.,

1
t

t∑
τ=1

fτ (sτ) −→ f(x◦) and 1
t

t∑
τ=1

gτ (sτ) −→ g(x◦),

under Assumptions 1-3, that hold in most practical systems.

5.4 Online Optimization Framework

We propose to combine the Frank-Wolfe (FW) algorithm [16] with the approximate dual

subgradient algorithm [149]. FW yields implementable actions by solving a Linear Program
5For classification tasks, for instance, the transmitted images can be used to re-train/update the classifiers,

achieving eventually their limiting classification error; see also the discussion in Section 5.5.

Page 63 of 171

Apostolos Galanopoulos Trinity College Dublin

Algorithm 3 FW with constant step and changing objective
1: Set: β ∈ (0, 1] and x1 ∈ X.
2: for t = 1, 2, . . . , do
3: st ← u ∈ arg minu∈X u>∇ft(xt)
4: xt+1 ← (1− β)xt + βst
5: end for

(LP), and the dual subgradient algorithm handles the perturbed constraints. We synthesize

these methods via the use of “errors” at the time to compute subgradients of the Lagrangian.

5.4.1 The Building Algorithmic Blocks

5.4.1.1 Frank-Wolfe algorithm

FW is a projection-free algorithm for unconstrained convex problems with smooth objective.6 It

was designed to solve static problems (fixed f) by making convex combinations of actions [150].

In our previous work [141], we showed7 that FW converges also when we have a sequence of

functions {ft}t, in the sense that, as t increases, it manages to reduce the gap |ft(xt)− ft(x∗t)|

until it becomes smaller than a set bound 2η. The steps are detailed in Algorithm 3 and presented

schematically in Fig. 5.2(a). In each iteration, we compute the gradient of ft at xt and select a

vector st that minimizes u>∇f(xt), w.r.t u (Step 3). Then, we update the running average xt+1,

where β ∈ (0, 1] is a selected parameter, and repeat the process until convergence. FW is useful

for our problem due to the following lemma.

Lemma 1 (Discrete Actions) The FW minimization step 3 in Algorithm 3 yields an

eligible schedule in S.

Proof First, recall that solving a LP over a polytope results to an extreme point [149, Prop.

3.4.2]. By Proposition 2, conv(S) satisfies (5.4). The same holds for X by definition, and the

two sets are identical. Since the FW step yields an extreme point of X [150], we conclude that

it is also a point in S, i.e., an implementable action.
6A convex function f is M -smooth if there exists a constant M ≥ 0 such that f(v) ≤ f(u) +∇f(u)>(v − u) +

2−1M‖v − u‖2 for all u, v ∈ X.
7Similar results were developed in the context of online convex optimization where FW is applied to sequence

of changing functions; albeit the performance criterion is the ergodic convergence and not |ft(xt)− ft(x∗t)|.

Page 64 of 171

Apostolos Galanopoulos Trinity College Dublin

(a) Frank-Wolfe

Set of dual

optimal

Balls to which the dual

variables converges

(b) Dual subgradient

Figure 5.2: (a): In each iteration we select an extreme point and move the average xt in that direction.
(b): Convergence of the dual subgradient algorithm.

Algorithm 4 Approximate Dual Subgradient Method
1: Set: α > 0 and λ1 = 0
2: for t = 1, 2, . . . do
3: xt ← u ∈ X (γt, λt)
4: λt+1 ← [λt + αgt(xt)]+
5: end for

Lemma 1 implies that we do not need to test each schedule in S, but instead we can directly

minimize u>∇xft(x). The basic idea is that in each iteration of Algorithm 3, either the value of

the function at xt+1 decreases, i.e., ft+1(xt+1)<ft+1(xt); or converges to a 2η ball around the

optimum, i.e., ft+1(xt+1)− ft+1(x∗t)≤2η.

5.4.1.2 The Approximate Dual Subgradient Method (ADSM)

This algorithm leverages the dual functions {ht}t to maximize the time-average
∑t
τ=1 fτ (xτ)/t

which, based on Assumption 2, is equivalent in limit to the static TCRA. See Algorithm 4 and

the example in Fig. 5.2(b). In each slot, we select xt as:

X (γt, λt) :=
{
x ∈ X | ht(λt) ≤ Lt(x, λt) ≤ ht(λt)+γt

}
This approximate minimization of the Lagrangian Lt(·, λt) amounts to using ε-subgradients [149,

pp. 235] with upper bound of error γt in each slot. The algorithm ensures bounded optimality

and constraint violation:

Page 65 of 171

Apostolos Galanopoulos Trinity College Dublin

Table 5.1: Constants and Bounds

Parameter Definition
σf |ft+1(x)− ft(x)| ≤ σf , ∀x ∈ X, t
σg ‖gt(x)‖ ≤ σg, ∀x ∈ X, t
σL |ht+1(λt+1)− ht(λt)| ≤ σL, ∀λt
R ‖x− y‖ ≤ R,∀x, y ∈ X
Λt Upper bound on ‖λt‖; see Lemma 5.
Λ Λ = maxt Λt

Perturbations εt = wt − w, φt = δ̄t − δ
Assumption 2 limt→∞w

(c)
i,t = w

(c)
i , ∀i, c

Assumption 3 limt→∞ δ̄t = δ

Lemma 2 (Approximate dual subgradient method) Algorithm 4 achieves the fol-

lowing bounds:

(i) 1
t

t∑
τ=1

fτ (xτ)−f(x◦)≤
ασ2

g

2 + 1
t

t∑
τ=1

γτ+ε>τ zτ+λ>τ φτ

(ii) ‖1
t

t∑
τ=1

gτ (xτ)‖ ≤ Λt+1
αt

,

where zt = arg minx∈X f(x) + λ>t g(x), ετ =wτ − w, φτ = δ̄τ − δ, and see also Table 5.1.

We explain next how we can combine these two algorithms to solve TCRA in an online fashion.

5.4.2 Online Approximate Scheduling Algorithm

The key idea is to apply Algorithm 1 in the t-slot Lagrangian (instead of ft) and use the dual

subgradient Algorithm 2 with the t-slot constraints. The steps are shown in Algorithm 5. We

first set the design parameters β and α, and initialize the variables (Step 1). In each slot t, we

observe the current ft and gt, construct the t-slot Lagrangian Lt(vt, λt) and solve an LP to find

the schedule st (Step 3). As explained above, this ensures that st∈S since changing from ft

to Lt does not affect Lemma 1. We can therefore implement directly this schedule (Step 4).

Next we update the average value of the primal variables (Step 5) and perform a subgradient

update for the dual variables (Step 6). In each slot t we only use information that has been

made available up to that slot.

Page 66 of 171

Apostolos Galanopoulos Trinity College Dublin

Algorithm 5 Frank-Wolfe Dual Subgradient (FWDS)
1: Set: β ∈ (0, 1], α > 0, v1 ∈ X and λ1 = 0.
2: for t = 1, 2, . . . do
3: st ← arg minu∈X u>∇vLt(vt, λt)
4: Implement schedule st = (y(c)

ij , z
(c)
i) ∈ S

5: vt+1 ← (1− β)vt + βst
6: λt+1 ← [λt + αgt(vt)]+
7: end for

Algorithm 5 generates a sequence of vectors {sτ}tτ=1 which ensure that the system operation

approaches the performance prescribed by the solution of TCRA. The following theorem

formalizes the performance of FWDS.
Theorem 1: Convergence of FWDS

Theorem 1 Consider the updates in Algorithm 5 with α and β selected as per Lemma 6

(see Sec.10.1). It holds:

(i) 1
t

t∑
τ=1

fτ (sτ)− f(x◦) ≤
ασ2

g

2 + 2Λσg + 1
t

t∑
τ=1

(
ε>τ zτ + λ>τ φτ + max{ζτ , 2η}

)

(ii) ‖1
t

t∑
τ=1

gτ (sτ)‖ ≤ Λt+1
αt

(1 + 1
β

)

where ζt=Lt+1(vt, λt+1)− ht+1(λt+1).

Discussion. The algorithm’s performance depends on parameters α, β and η, which need

to be carefully selected, namely:

0 < β ≤ 1, 0 < α<
βη−(β2MLR

2)/2−σf−σL−2Λσg
σ2
g

;

see Lemma 6 for the proof and Table 5.1 for the parameters.8 It is evident that α negatively

affects the optimality gap, while both α and β do not impact the constraint violation as they are

amortized by t. Parameter β however, affects η in the selection of α (which must be positive),

and can thus indirectly decrease the optimality gap, see Lemma 6. One needs to select these

parameters based on the desirable system performance, e.g., whether the priority lies in execution

accuracy, or in reducing the backlogs (i.e., delay).
8Similarly to the definition of M , Lt(·, λ) is a ML-smooth function where Lt(v, λ) ≤ Lt(u, λ) +∇Lt(u, λ)>(v−

u) + 2−1ML‖v − u‖2 for all u, v ∈ X, t.

Page 67 of 171

Apostolos Galanopoulos Trinity College Dublin

Let us now elaborate on the bounds of the Theorem. Starting with (i), the first term can

be made arbitrarily small by selecting α. The first term in the summation is upper bounded

by |ε>τ zτ | ≤ ‖ετ‖‖zτ‖ where ‖ετ‖ diminishes since wt → w. And in the same way we can

show that the second term diminishes as long as the dual variables ‖λt‖ are bounded, which is

proven in Lemma 5 of the Appendix. The last term in the summation depends on parameter η

and is affected by α and β, as explained above, while ζt is a decreasing sequence as shown in

Lemma 6; hence the term max{ζτ , 2η} is replaced by 2η for τ sufficiently large. Regarding the

feasibility bound, we showed that it diminishes with α, t, but we have used the running average

of perturbations on gt, i.e. δ̄t, and not δt. However, it is easy to see that we can write

‖1
t

t∑
τ=1

Asτ + δτ‖ ≤ ‖
1
t

t∑
τ=1

Asτ + δ̄τ‖+ ‖1
t

t∑
τ=1

δτ − δ̄τ‖.

This adds the residual ‖1
t

∑t
τ=1 δτ − δ̄τ‖, which is a decreasing with t sequence, since as more

input samples are added, the running average will converge to the true average δ̄t.

Finally, in terms of overheads and comlexity, the bad news is that FWDS requires the solution

of an NP-hard problem, but the good news is it has still smaller complexity than the state-of-

the-art network control algorithms. In particular, while Steps 4-6 involve simple calculations

that can be executed in polynomial time and in a decentralized fashion; Step 3 requires the

centralized solution of a problem that is at least as hard as the weighted maximum independent

set problem. This issue, however, arises in all wireless scheduling algorithms, cf. [134], – we

elaborate in Section 5.1 – and the various proposals for reducing the complexity or enabling its

distributed solution, at the expense of achievable throughput or increased backlogs, apply also

to FWDS. Moreover, in many IoT networks that include small nodes, there is already provision

for central gateways or cluster-head nodes, which can undertake the role of executing these

computations.

5.5 Performance Evaluation

We have utilized a wireless testbed comprised of small IoT and edge nodes to evaluate the

performance of an image classification application. The operation of the proposed FWDS

algorithm is simulated and compared against several benchmarks, with respect to complexity,

utility performance and network delay; and for random networks generating non-i.i.d. traffic

Page 68 of 171

Apostolos Galanopoulos Trinity College Dublin

Table 5.2: Application parameters.

Algorithm/Node Accuracy Cycles/bit
LBPH/Edge 82 % 670
Eigen/Edge 74 % 520
Fisher/IoT 42 % 360

loads. We first explain the setup of the experiments and then present the results.

5.5.1 Experimental Setup

We simulate the operation of an IoT network of wireless cameras where the nodes run face

recognition tasks. We used random geometric graphs to create the networks, i.e., we place

randomly the nodes in a 100×100 meters area and connect two nodes if their euclidean distance

is less than 30 meters. There are two type of nodes, namely Raspberry Pis and edge nodes9, that

differ on their computation and memory capacity.10 The nodes create images to be classified

using a typical face recognition application developed in Python with OpenCV. As mentioned

earlier, face recognition is an ideal example for edge analytics as the generated data load will

create communication delays that are comparable to the high computation delays of IoT analytics.

We applied 3 different algorithms on the Georgia Tech face database [128] that has 750 images.

We performed initial measurements in order to calculate the various system parameters.

First, we measured the average image size of the dataset and the average execution time for

each of the algorithms and type of node. Based on the CPU frequency of the nodes we measured

the average ρ(c)
i . We report the results, along with the achieved average accuracy w(c)

i of each

algorithm in Table 5.2. Observe that the more accurate an algorithm, the more computationally

expensive it is. Thus we assign the algorithms so that low computation power nodes (RPis) run

the least demanding algorithm (Fisher), and the edge run Eigen and LBPH, respectively. We

fully trained the algorithms on our dataset to obtain the reported accuracy values. Hence, in

the following, we have w(c)
i,t = w

(c)
i , ∀t, and also ft(x) = f(x), ∀t. This means that the bounds

of Algorithm 5 still hold, but in Lemma 6 we have σf = 0.
9The RPis are Model 3B with 1.2 GHz CPU, 1GB RAM; and the edge nodes have 2.3 GHz CPU and 16 GB

RAM memory.
10Our experimental setup can be naturally extended to include other types of nodes, e.g., smaller form-factor

nodes, since it is not necessary for all nodes to run the application and they can simply create images.

Page 69 of 171

Apostolos Galanopoulos Trinity College Dublin

0 100 200 300 400 500

Slot

0

10

20

30

40

50

60

(a) Optimality gap

0 100 200 300 400 500

Slot

0

5

10

15

20

25

30

35

(b) Constraint violation

Figure 5.3: Convergence of FWDS with N = 40, C = 20.

5.5.2 Parameter Sensitivity Analysis

We start by exploring numerically the impact of algorithm parameters α and β, on its performance.

We simulate FWDS for 500 slots and study how the optimality and feasibility bounds of Theorem

1 evolve. Fig. 5.3 presents the results for different α and β values. Note that the selected values

for α and β affect the convergence bounds of FWDS both directly (see Theorem 1) and indirectly

through η.

We observe that the optimality gap in Fig. 5.3a decreases with t for all cases. Notice that

from the bound of Theorem 1, the gap decreases with α. However, increasing α results in

slightly better convergence performance. This counter-intuitive behavior is due to the intricate

relations between α, β, η. Reducing α requires decreasing β, which in turn might increase η and

undermine the optimality gap. Regarding the feasibility gap in Fig. 5.3b, note that it decreases

with t. Hence the differences between the cases of selected α, β are smoothed as t increases, being

noticeable only in the early stages of execution. These experiments demonstrate numerically

the convergence of our algorithm and its dependence on the system parameters, verifying our

theoretical analysis.

5.5.3 Comparison with Benchmarks

We evaluate the performance of Algorithm 5 w.r.t. computation complexity for acquiring a

schedule in each slot, and congestion created as a result of the scheduling decisions. We compare

FWDS with the following benchmarks:

1) Optimal Solution Decomposition (OSD). We minimize Lt(x, λ) to obtain the optimal

Page 70 of 171

Apostolos Galanopoulos Trinity College Dublin

10 15 20 25 30

Number of Nodes

10
-4

10
-2

10
0

10
2

T
im

e
 (

s
)

FWDS

OSD

DPP

LCS

(a) Time delay

10% 25% 50%

Percentage of NUCs

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 u

ti
li
ty

 p
e
r

c
o

m
m

o
d

it
y

FWDS

OSD

DPP

LCS

(b) Utility for C = 20

10 20 30 40 50

Users

0

50

100

150

200

250

300

350

=1

=2

=3

=4

=5

(c) Utility for 10 edge nodes

Figure 5.4: (a) Delay of computing one schedule. (b)-(c) Average network utility for N = 40 and varying
number of commodities/edge nodes.

x∗t , and we decompose it to a set of implementable schedules (time-sharing). This can be

accomplished by, e.g., using the FW algorithm on ‖x− x∗t ‖2. Hence, we obtain a set of schedules

and their associated weights, such that their convex combination approaches −w>x∗t , and choose

a schedule randomly based on its weight. Although this approach leads to optimal behavior,

many times the size of the problem makes the computation of the implementable schedules very

slow, and thus prohibits its implementation in practical systems.

2) Drift Plus Penalty (DPP). Based on the max-weight algorithm [134], the DPP [133]

minimizes the queue backlogs while also maximizing some other performance metric for the

network, which for TCRA is the aggregate node utility, multiplied by the control parameter V .

3) Linear Complexity Scheduling (LCS). Inspired by [12], we implement a simple policy

where, having knowledge of the possible schedules, we pick a schedule s ∈ S randomly. At each

iteration, we pick another schedule ŝ at random and compare s>∇xLt(xt, λt) to ŝ>∇xLt(xt, λt).

We then apply the schedule that yields the minimum value.

Fig. 5.4a depicts the required time for each algorithm to compute the schedule in each time

slot, for different network sizes. Note that this delay will impact the system’s slot duration.

It is evident that OSD is by orders of magnitude slower than the rest, and thus its practical

application in a large IoT network is challenging if not impossible. FWDS is faster than DPP,

since it does not have to solve a convex resource allocation problem (DPP’s first stage). However,

it is slower than the LCS algorithm but the difference is much more tractable, making it suitable

for fast scheduling. In essence, FWDS can be utilized in systems where resource allocation

decisions need to be taken every few seconds.

Next we evaluate the average network utility obtained by each algorithm (Fig. 5.4b). We

Page 71 of 171

Apostolos Galanopoulos Trinity College Dublin

0 50 100 150 200

Slot

0

20

40

60

80

100

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

q
u

e
u

e
d

 t
a
s
k
s
 p

e
r

c
o

m
m

o
d

it
y

FWDS

OSD

DPP

LCS

(a) Congestion

0 50 100 150 200

Execution Delay (slots)

0

0.2

0.4

0.6

0.8

1

C
D

F

FWDS

OSD

DPP

LCS

(b) Task execution delay

Figure 5.5: Network congestion in tasks per commodity and task execution delay CDF with N =
40, C = 20.

consider different scenarios where we modify the number of edge nodes, in a 40-node network.

The results indicate that, as expected, the average utility increases with the percentage of edge

nodes. Moreover, we observe that OSD manages to clearly outperform the competition when

there is more than 25% of edge nodes, while our solution has the edge over the max-weight

based algorithms. Fig. 5.4c shows again the network’s average utility, but this time for a fixed

number of edge nodes and a varying load, as we increase the number of nodes that generate

traffic, i.e. the commodities. The results, once again demonstrate that FWDS roughly maintains

the same performance, despite the load increase, compared to DPP and especially LCS, while is

also competitive to OSD in all load cases.

Fig. 5.5a presents the network congestion for the operation of a 40-node hybrid network,

where 20 of the nodes create tasks and the rest of them act as relays and computing nodes. We

see that having high utility in OSD comes at the cost of high network congestion. This is because

decomposing the optimal solution to a set of feasible schedules takes many slots; hence OSD

keeps implementing the same set of (outdated) schedules until the next primal update iteration.

However, the dynamics of the system require better response to the implemented schedules and

congestion builds up. LCS although very fast, makes random, “naive” scheduling selections in

each slot and thus performs quite poorly, in both utility and congestion. On the other hand,

DPP is better for both metrics, and allow us to trade-off one for the other by tuning the design

parameter V . Still, FWDS performs better than DPP in both accuracy and network congestion.

The performance of data analytics services is also affected by their execution delay. Fig. 5.5b

Page 72 of 171

Apostolos Galanopoulos Trinity College Dublin

displays the CDF of execution delay for the same setup as with Fig. 5.5a. Observe that the

CDF of OSD and LCS lay below FWDS and DPP for most delay values. We also observe that

FWDS performs slightly worse than DPP, which can be attributed to having superior utility

performance. However, FWDS and DPP achieve a delay of less than 30 slots for more than 80%

of tasks.

5.6 Conclusions

In this chapter we provided an iterative algorithm for providing feasible task offloading schedules

for an IoT network. This is enabled by the linearization of the primal variable optimization step

using the Frank-Wolfe algorithm, embodied in a dual subgradient method. Next, we turn our

attention to centralized architectures, where the devices generating the analytic tasks exploit a

single, more powerful edge server to improve their performance.

Page 73 of 171

Chapter 6

Enabling Edge-Assisted Mobile

Analytics

6.1 Introduction

The recent demand for mobile machine learning (ML) analytic applications, such as image

recognition, natural language translation and health monitoring, has been unprecedented [5].

These services collect data streams generated by various hand-held or other IoT devices, and

analyze them locally or at distant cloud servers. The challenge with such services is that they are

both resource intensive and delay sensitive. On the one hand, the cloud offers more powerful ML

models and abundant compute resources, but requires data transfers which consume valuable

network bandwidth and device power, as well as induce significant delays (e.g., due to intermittent

connectivity). On the other hand, executing these services directly at the devices, economizes

network bandwidth, but degrades their performance due to the devices’ limited resources. For

example, these nodes may have insufficient memory to support accurate deep-learning neural

networks.

A promising approach to tackle this problem is to follow a middle-ground solution where

the devices outsource their tasks to nearby cloudlets [60]. These edge servers are typically

deployed in locations close to cellular base stations or Wi-Fi access points, and hence are in close

proximity with the users. Therefore, they can increase the service performance by augmenting

the devices’ ML components with more accurate models, while offering tolerable communication

and execution delay. Nevertheless, the success of such solutions requires intelligent decision

Apostolos Galanopoulos Trinity College Dublin

algorithms for selecting which tasks from each device will be outsourced. This is a new problem

that raises intricate challenges for the network and the involved computations.

6.1.1 Background and Motivation

Clearly, the cloudlets, unlike the cloud, have limited computing capacity and hence cannot

support all the requests from all devices. If overloaded, they will eventually become unresponsive.

At the same time, the task execution often involves the transfer of large data volumes (e.g., video

streams). This calls for prudent transmission decisions in order to avoid wasting the energy of

the devices, and congesting the network when link bandwidth is also a bottleneck. Furthermore,

unlike general computation offloading solutions [25], in ML analytic services it is imperative

to identify and outsource only the tasks that can significantly benefit from cloudlet execution.

Otherwise, the system might as well spend resources only to gain an insignificant improvement in

service performance. Finally, these decisions need to be made in a dynamic fashion, accounting

for the time-varying network conditions,user requests and cloudlet availability; and the statistical

properties of these random parameters are unknown in practice.

Our goal is to design and evaluate an online decision framework that supports edge-augmented

mobile analytic services. While prior works have studied the problem of offloading computation-

intensive tasks and others proposed system architectures for mobile analytics, we lack an analytical

framework for maximizing the performance of such services under resources (un)availability,

time-varying network conditions and unpredictable user requests. Our solution works under such

practical limitations (which we measure experimentally), and is general enough to be applied to

different architectures and services.

6.1.2 Methodology and Contributions

We consider a system where a cloudlet improves, upon request, the execution quality of data

analytic tasks, e.g. classification, running on edge devices such as wireless IoT cameras or small

robot nodes. Each device has a low-precision classifier, while the cloudlet can execute the task

with higher precision. The devices classify the received objects upon arrival (e.g., captured

images), and decide whether to transmit them to the cloudlet or not1. Making this decision
1We observed that local classifications can be much slower than offloading and executing at the cloudlet, hence

the users can tolerate an extra delay in depicting the results from the cloudlet, if an offloading decision is taken.

Page 75 of 171

Apostolos Galanopoulos Trinity College Dublin

requires an assessment of the potential performance gains, which are measured in terms of

analytics accuracy improvements. To this end, we propose the usage of a predictor that is

installed at each device and leverages the local classification results.

In terms of resource constraints, we focus on power consumption, a bottleneck issue in small

devices; and the computing capacity of the cloudlet which - unlike the cloud - is finite. The

former couples the decisions of each device across time, while the latter ties the decisions of

all devices sharing the cloudlet. We consider the practical case where resource availability is

unknown and possibly time-varying, not necessarily following an i.i.d. or Markov process, and

we observe their instantaneous values. We aim to design a distributed algorithm that enables the

coordination of devices and dictates the task outsourcing policy by carefully tuning the trade-off

between maximizing the aggregate analytics accuracy and constraining resource consumption.

We formulate the operation of the system as an optimization program with unknown

parameters appearing both in the objective (performance gains) and in the constraints (power

and capacity), which are learned gradually in an online fashion. This program is decomposed

via Lagrange relaxation to a set of device-specific problems, and this enables its distributed

solution through an approximate – due to the fact that there are several unknown parameters –

dual ascent method. Leveraging the ε-(sub)gradient information that is produced in the dual

space by each different device, we calculate primal solutions which are applied in real time

and implement our policy. Our method is inspired by primal averaging schemes for static

problems, e.g., see [140,151], and achieves a bounded and tunable optimality gap compared to

the hypothetical average benchmark policy that has access to a complete-information oracle.

Our algorithm is distributed and lightweight in terms of communication overheads, and adapts

on the fly to resource availability and user requests. More importantly, it works under minimal

assumptions for the stochastic perturbations of the system parameters. Namely, the requests

and resource costs/availability perturbations need only to be uniformly bounded and have

well-defined mean values. This is in contrast to other optimization toolboxes, see [71] and

references therein. Furthermore, our performance bounds are deterministic, i.e., hold for any

problem realization (sample-path) and not only in expectation, as in [71].

We extend our framework for settings where the bottleneck resource is the wireless link

capacity, and for services that wish to optimize both accuracy and execution delay. Similar

scenario-specific amendments are also possible (e.g., using the cloud). Given that this is a new

Page 76 of 171

Apostolos Galanopoulos Trinity College Dublin

problem, we investigate experimentally its properties and assess the performance of our algorithm.

We used a wireless testbed of Raspberry Pi devices and a cloudlet server, and evaluated an image

classification service using a KNN classifier and an advanced Convolutional Neural Network

(CNN) classifier. The system performance has been tested using two datasets, MNIST [152] and

CIFAR-10 [153], and we compared our solution with several benchmark algorithms.

The contributions of this work can be summarized as follows:

• We introduce the novel problem of augmenting the performance of mobile analytics using

edge infrastructure (e.g., cloudlets), which is increasingly important for mobile computing

services and IoT networks. Our model can be tailored to different system architectures or

types of analytics.

• A distributed task outsourcing policy is proposed that achieves near-optimal performance in

a deterministic fashion, while being oblivious to the system and request statistics. To the

best of our knowledge, our algorithm is the first to offer deterministic bounds (not only on

expectation) under such general conditions, e.g. system perturbations are uniformly bounded

and converge to some mean.

• The architecture is evaluated in a wireless testbed using a typical ML application, and

several classifiers and datasets. We show that our algorithm can be indeed implemented as a

lightweight protocol, and find that in practice can increase the accuracy (up to 12%) and

reduce the energy costs (down to 50%) compared to several benchmark policies.

6.2 Model and Problem Formulation

We introduce the system model and the problem, and define the respective mathematical program.

Table 6.1 summarizes the key notation we use throughout the chapter. We use caligraphic capital

letters for sets, bold typeface letters for vectors, and ‖ · ‖ denotes the `2 (Euclidean) norm.

6.2.1 Classifiers and Predictors

Time is slotted and we index the slots. There is a set C of C = |C| disjoint object classes; and a set

N of N = |N | devices. Each device n may receive at slot t an object snt for classification, from

a set S of possible objects, e.g., images captured by its camera. Every device n is equipped with

Page 77 of 171

Apostolos Galanopoulos Trinity College Dublin

Description Parameter / Variable
Classifier of device n (cloudlet) Jn (J0)
Inferred class of object snt at device n (cloudlet) Jn(snt) (J0(snt))
Predictor of device n Qn

Classification confidence of n (cloudlet) dn (d0)
Actual (predicted) offloading improvement φnt (Qn)
Average (instantaneous) power constraint Bn (Bnt)
Average (instantaneous) computing constraint H (Ht)
Computing (Power) consumption of task snt hnt (ont)
Weighted improvement gain for device n at slot t wnt

j-th interval of possible wnt values (and quantized value) Ij (wj
n)

Arrival probability of object at user n in interval Ij λj
n (λj

n,t)
Outsourcing probability for task in interval Ij yj

n ∈ [0, 1]

Table 6.1: Key Parameters and Variables.

a local classifier Jn which outputs the inferred class Jn(snt) ∈ C of object snt and a normalized

accuracy (or, confidence) value dn(snt) ∈ [0, 1] for that inference2. There is also a classifier at

the cloudlet J0 which can classify any object snt∈S with confidence d0(snt). The local classifiers

may have different performance due to, e.g., their different training datasets, while the cloudlet

classifier has higher accuracy, d0(snt)≥dn(snt), ∀n ∈ N , snt ∈ S, as demonstrated also in our

experiments (Sec. 8.6).

Let φnt ∈ [0, 1] denote the accuracy improvement when the cloudlet classifier is used:

φnt(snt) = d0(snt)− dn(snt), ∀n ∈ N , snt ∈ S. (6.1)

Every device is also equipped with a predictor3 that is trained with the outcomes of the local and

cloudlet classifiers for Kn labeled items. This predictor can estimate the cloudlet’s improvement

for each object Qn(snt), where this assessment might not be exact, i.e., Qn(snt) 6= φnt(snt), and

we denote with σnt(snt) ∈ [0, 1] the respective normalized predictor confidence for object snt.

6.2.2 Wireless System

The devices access the cloudlet through high-capacity cellular or Wi-Fi links, see Fig. 6.1, that

do not impose data transfer constraints (we relax this assumption in Sec. 6.4). Each device n
2The classifier might output only the class with the highest confidence, or a vector with the confidence for

each class and allow the user to decide (typically selecting again the more likely class). Our analysis works for
both cases.

3This can be a model-based or model-free solution, e.g., a regressor or a neural-network; our analysis and
framework work for any of these solutions. In the implementation we used a mixed-effects regressor, see [154].

Page 78 of 171

Apostolos Galanopoulos Trinity College Dublin

has an average power budget of Bn Watts that it can spend on transmitting the objects to the

cloudlet. Local classifications can induce significant energy costs to the devices, but they are not

considered for the budget Bn since, in our system, every object undergoes local classification

and only some of the objects are further sent to cloudlet. Clearly, power consumption is a key

limitation in this problem because: the devices might have a small energy budget to spend

during this time interval; their small form-factor imposes power consumption limitations; there

are protocol-induced transmission constraints; or users might impose constraints on the power

consumption of this service. Our model follows prior studies that use average power constraints,

e.g., [155], and captures these scenarios. Similarly, the cloudlet has an average processing capacity

of H cycles/sec. This resource is shared by all devices, and when the total load exceeds its

capacity the task delay increases fast, eventually rendering the system non-responsive.

We consider the realistic scenario where the parameters of devices and the cloudlet change over

time in an unknown fashion. Namely, they are created by unknown random processes {Bnt}∞t=1

and {Ht}∞t=1, and our decision framework has access only to their instantaneous values in each slot.

Unlike other network optimization frameworks [71], here we only ask that these perturbations

are uniformly bounded, Ht ≤ Hmax, Bnt ≤ Bmax,∀t, n ∈ N , and their averages converge to

some finite values which we do not require to be known, i.e., limT→∞
∑T
t=1Bnt/T = Bn, ∀n, and

similarly limT→∞
∑T
t=1Hnt/T = H. We also define the vector Bt = (Bnt ≤ Bmax, n ∈ N).

When an image is transmitted in slot t from device n to the cloudlet, it consumes part of

the device’s power budget. We assume that this power cost, denoted ont, follows a random

process {ont}∞t=1 that is uniformly upper-bounded and has well-defined mean values4. Also, each

transmitted object requires a number of cloudlet processing cycles, which might vary with time,

e.g., due to different object types, and we assume it follows the random process {hnt}∞t=1, with

limT→∞
∑T
t=1 hnt/T = hn. We define ot = (ont ≤ omax, n ∈ N), and ht=(hnt ≤ hmax, n ∈ N).

Our model is general as the requests, power and computing cost per request and resource

availability, can be arbitrarily time-varying and with unknown statistics.
4Such assumptions are minimal since, e.g. in real systems there is a maximum data rate that can be supported,

inducing a certain power cost, the mean value of which, can easilly be tracked.

Page 79 of 171

Apostolos Galanopoulos Trinity College Dublin

Local
Classifier

Predictor

Offloading
Decision

Device

Cloudlet
Classifier

Figure 6.1: System model including the local/cloudlet classifiers and predictors. Each device is constrained
by its average power budget, and the cloudlet has a limited computation capacity.

6.2.3 Problem Definition and Formulation

The devices wish to involve the cloudlet only when they expect high classification precision gain,

and with high confidence. Otherwise, they will consume the cloudlet’s capacity and their own

power without significant benefits. Therefore, we make the outsourcing decision for each object

snt based on the weighted improvement gain, wnt(snt) = Q(snt)− ρn,thσnt(snt), ∀n, t, where σnt
is the confidence, and ρn,th ≥ 0 is a risk aversion parameter set by the system designer or each

user. For example, assuming normal distribution for the outputs of the predictor, we could set

ρn,th = 1 and use a threshold rule of 1 standard deviation. We use hereafter these modified

parameters wnt,∀n, and partition the interval of their possible values [−1, 1] into subintervals

Ij , j = 1, . . . ,M such that ∪Mj=1Ij = [−1, 1] and Ii ∩ Ij = ∅ for all i 6= j; with wjn being the

center point of Ij . We denote withM the set of these intervals. This quantization facilitates

the modeling and implementation of our algorithm (Sec. 6.5), and is without loss of generality

since we can define very short intervals. Besides, many systems in practice use quantized values

to measure the inference accuracy.

Let λjnt denote the event of an object arrival at device n belonging to subinterval Ij at slot t.

If such arrival occurs at slot t, we have λjnt = 1; otherwise we get λjnt = 0. We assume these

arrivals are generated by an unknown process {λjnt}∞t=1, with limT→∞ 1/T
∑T
t=1 λ

j
nt = λjn, ∀n, j,

where λjn denotes the probability of an object arrival belonging to subinterval Ij , at any slot. Our

goal is to maximize the aggregate long-term analytics performance gain for all objects and devices.

We introduce the variables yjn ∈ [0, 1], ∀n, j, where each of them indicates the outsourcing

probability of objects in Ij . We also define the vector y=(yjn :n = 1, . . . , N, j = 1, . . . ,M) and

introduce the respective set Y = [0, 1]NM . Then we formulate the following program:

Page 80 of 171

Apostolos Galanopoulos Trinity College Dublin

(P1) : minimize
y∈Y

−
M∑
j=1

N∑
n=1

wjnλ
j
ny

j
n = f(y) (6.2)

subject to:
M∑
j=1

yjnλ
j
non ≤ Bn, n ∈ N , (6.3)

M∑
j=1

N∑
n=1

yjnλ
j
nhn ≤ H. (6.4)

Eq. (6.3) imposes the average power budget of each device, and (6.4) bounds the cloudlet

utilization. Note that if we were to fully model the total power consumption of the device, we

should add a term related to the computation energy cost at the LHS of (6.3). However, this

term is independent of the decision variable yjn (since the local classifier is used either way), and

thus it is omitted. Additional constraints can be included if needed; and we can also replace

the linear objective with any other concave function. For instance, we might wish to enforce

a fairness criterion by using a type of α-fair functions [105] or an objective that maximizes

accuracy while minimizing the total delay, if the latter is also a priority. We elaborate on these

extensions in Sec. 6.4.

The solution of (P1) requires to know all the parameter values, and yields the outsourcing

decisions for every device n and interval Ij where the expected improvement wjn for snt lies. We

assume that this problem admits a solution, which we denote with y∗ and define f∗ = f(y∗).

This means that the system parameters and number of objects arriving at each device are such

that (P1) is feasible. Then, our goal is to devise a distributed dynamic policy that manages to

approach asymptotically the value f∗.

6.3 Decision Framework and Online Algorithm

We first study the system when its parameters are known, and accordingly relax this assumption

and design an online algorithm that relies only on information that is available at each slot.

Page 81 of 171

Apostolos Galanopoulos Trinity College Dublin

6.3.1 Algorithm with Complete Information

In order to solve (P1) we first dualize it and define the Lagrangian:

L(y,µ) = −
N∑
n=1

M∑
j=1

wjnλ
j
ny

j
n +

N∑
n=1

µn
(M∑
j=1

onλ
j
ny

j
n −Bn

)
+ ξ

(N∑
n=1

M∑
j=1

hnλ
j
ny

j
n −H

)
, (6.5)

where µ = (µ1, µ2, . . . , µN , ξ), is the vector of the non-negative dual variables for (6.3) and (6.4).

This relaxation implies that the constraints need to be satisfied only on average, i.e. they might

be violated in certain slots, and in practice corresponds to installing queues for transmitting the

data packets and processing the images. Note that we only consider the case where problem (P2)

is feasible, meaning that the aforementioned queues will not grow indefinitely, as our algorithm

will prohibit the devices from sending their images to the cloudlet, and as a result, respecting

the average constraints (6.3),(6.4)5. The dual function is defined as:

(D) : V (µ) = min
y∈Y

L(y,µ). (6.6)

The dual problem (D) amounts to maximizing V (·) subject to the non-negative constraints for

all dual variables. We solve this problem with an iterative dual ascend algorithm, where the

iterations are in sync with the system’s time slots t and are applied in real time. In other words,

instead of waiting the algorithm to converge and then apply its solution, we implement the

outcomes of each iteration in the same slot.

First, observe that V (µ) does not depend on Bn, H, and it is separable w.r.t. the primal

variables and independent of λjn. Hence, in each iteration t we can minimize the Lagrangian by:

(yjnt)∗∈arg min
yj

nt∈[0,1]
yjnt(−wjn+µnton+ξthn), n = 1, . . . , N, j = 1, . . . ,M. (6.7)

This yields the following easy-to-implement threshold rule for every device n and interval j:

yjnt =


1 if λjnt > 0 and µnton + ξthn < wjn

0 otherwise.
(6.8)

5In a more practical setup where the feasibility of (P1) is not guaranteed, the task queues at the devices could
indeed grow indefinitely if the generated load λj

n is too large for the devices’ capabilities to processes the images.
In these cases, the devices can simply throttle the data generation rate by dropping the necessary number of
frames.

Page 82 of 171

Apostolos Galanopoulos Trinity College Dublin

Hence, we obtain an implementable policy when solving (P1), namely a 0-1 decision for the

requests at each device. Then, we can update the dual variables for (P1) using the step α > 0:

ξt+1 =

ξt+α
 N∑
n=1

M∑
j=1

hnλ
j
ny

j
nt −H

+

, µn,t+1 =

µnt+α
 M∑
j=1

onλ
j
ny

j
nt−Bn

+

, n ∈ N .

(6.9)

This iterative subgradient algorithm produces a series of primal variables yjnt which, if aver-

aged, yield an approximate primal solution for (P1). Namely, let γ = min{B1, B2, . . . , BN , H},

and g(y) � 0 to be the vector of N + 1 constraints of (P1). We have the following Lemma:

Lemma 1. The average ȳT = (1
T

∑T
t=1 y

j
nt : ∀n, j) converges to the optimum value

f∗ = f(y∗) of (P1), with the following optimality gap and constraint violation bounds:

f(ȳT)− f∗ ≤
α
(
H +

∑N
n=1Bn

)
2

‖g(ȳT)‖ ≤ 1
αT

−3f∗

γ
+
α
(
H +

∑N
n=1Bn

)
2γ + α

(
H +

N∑
n=1

Bn

)1/2

Proof First, we define the vector of the constraint functions g(y) =
(
g1(y), . . . , gN (y), gN+1(y)

)
,

with gn(y) =
∑M
j=1 y

j
nλ

j
non −Bn, n = 1, . . . , N , and gN+1(y) =

∑M
j=1

∑N
n=1 y

j
nλ

j
nhn −H. These

functions define a constraint set that is bounded, with an upper bound:

G = max
y∈Y
‖g(y)‖ =

(
H +

N∑
n=1

Bn

)
(6.10)

which is attained for y = 0. The latter is also a Slater vector for (P1), as it holds gn(0) < 0 for

n = 1, . . . , N + 1. Now, we can use zero initial values for all dual variables and calculate the

minimum constraint function for the selected Slater vector, namely γ = minn=1,...,N{−gn(0)} =

min{B1, . . . , BN , H}. Then the Lemma follows from [17, Prop. 3].

6.3.2 Algorithm with Instantaneous Information

In most practical cases however, the above solution approach cannot be applied as the parameters

and requests vary in each slot. We will be using the following approximate functions, which can

Page 83 of 171

Apostolos Galanopoulos Trinity College Dublin

be calculated at each slot t since they are using only information that has been revealed until t:

f̄t(y) = −
M∑
j=1

N∑
n=1

wjnλ̄
j
nty

j
n = −

M∑
j=1

N∑
n=1

wjnλ
j
ny

j
n +

M∑
j=1

N∑
n=1

wjny
j
n(λjn − λ̄

j
nt) = f(y) + y>εt

with εt =
(
wjn(λjn−λ̄

j
nt

)
, n ∈ N , j ∈M) ∈ RN ·M , and λ̄jnt =

∑t
τ=1 λ

j
nτ/t is the running average of

arrival probabilities. We also define ḡt(y) = g
(
y) + δt(y

)
, with δt(y) =

(
δnt(y), n = 1, . . . , N + 1

)
where:

δnt(y)=Bn−B̄nt+
M∑
j=1

yjn
(
ōntλ̄

j
nt−onλjn

)
, ∀n ∈ N , δN+1,t(y)=H−H̄t+

M∑
j=1

N∑
n=1

yjn
(
h̄ntλ̄

j
nt−hnλjn

)
,

with B̄nt = 1
t

∑t
τ=1Bnτ , and H̄t, ōnt, h̄nt being defined similarly. Note that f̄t(y) and ḡt(y) can

be calculated at each slot, while f(y) and g(y) are unknown.

Algorithm 6 OnAlgo
1: Initialization: t = 0,µ0 =0, ∀ n, j
2: while True do
3: for each device n ∈ N do
4: yj

nt = 0, ∀j
5: Receive object snt

6: Classify objects and obtain Jn(snt), dn(snt), ∀snt ∈ Snt

7: Use classification results on predictor to obtain Qn(snt), σnt

8: (wnt(snt), wj
n)← Qn(snt)− ρn,thσnt

9: for j = 1, . . . ,M do
10: Observe λj

nt and calculate average λ̄j
nt

11: if µntōnt + ξth̄nt < wj
n then

12: yj
nt ← 1 % Send object to cloudlet

13: end if
14: end for
15: Observe ont, hntBnt, and calculate new running averages ōnt, h̄nt, B̄nt

16: µn,t+1 ← [µnt + α(
∑M

j=1 ōntλ̄
j
nty

j
nt − B̄nt)]+, ∀n ∈ N

17: Send λ̄j
nt,∀j, to cloudlet

18: end for
19: Cloudlet: Compute tasks and receive λ̄j

nt,∀n, from all devices
20: Observe Ht and calculate new running average H̄t

21: ξt+1 ← [ξt + α(
∑N

n=1
∑M

j=1 h̄ntλ̄
j
nty

j
nt − H̄t)]+;

22: Send ξt+1 to devices
23: t← t+ 1
24: end while

Assumption 1 The perturbations of all system parameters {λjnt, ont, hnt, Bnt, Ht, ∀n, j, t} are

independent to each other, uniformly bounded, and their averages converge to well-defined

constant values, e.g., limt→∞ B̄nt = Bn.

Page 84 of 171

Apostolos Galanopoulos Trinity College Dublin

Under this assumption, it holds that limt→∞ δt(y) = 0 and limt→∞ y
>εt = 0 for any y. Further-

more, we define the following quantities for every slot t:

‖g(y)‖ ≤ σg, ‖δt(y)‖ ≤ σδt , ‖ḡt(y)‖ = ‖g(y) + δt(y)‖ ≤ σg + σδt , (6.11)

where for the last one we have used Minkowski’s inequality. These bounds are well defined

due to boundedness of the parameters and the fact that yjn ∈ [0, 1],∀n, j. Finally, it holds that

limt→∞ σδt = 0. Following the above, we can replace (6.7), (6.9) in the dual ascent with:

yt ∈ arg min
y∈Y

{
f̄t(y) + µ>t ḡ(y)

}
, µt+1 =

[
µt + aḡ(yt)

]+
. (6.12)

This is a modified version of the dual ascent method as we use the running averages of the

system parameters instead of the static values or the per-slot instantaneous values.

We can now design our online distributed task outsourcing algorithm, which we call OnAlgo.

The details are presented in Algorithm 1. If each device n receives an object snt in slot t, it uses

its local classifier to predict its class, and the predictor to estimate the cloudlet’s classification

improvement (Step 5-8). Then, the device uses its threshold decision rule (Step 11) that compares

the expected benefits for each interval j with the outsourcing costs for the device and the cloudlet

(comparing with averages ōnt, h̄nt, respectively). The devices update their running averages

of the system parameters B̄nt, and the local dual variable for its power constraint violation

(Step 16), and send their updated statistics to the cloudlet (Step 17). The clouldet classifies the

received objects and updates its parameter estimates (Step 20) and its congestion (Step 21),

which is then sent to devices.

The following Theorem characterizes the performance of the algorithm.
Theorem 1: Convergence of OnAlgo

Under Assumption 1, OnAlgo ensures the following optimality and feasibility gaps:

(i) : lim
T→∞

1
T

T∑
t=1

f(yt) ≤ f∗ +
aσ2

g

2 (ii) : lim
T→∞

1
T

T∑
t=1

g(yt) � 0

Proof See Sec. 10.2.

This theorem shows that OnAlgo achieves asymptotically, as T →∞, zero feasibility gap (no

Page 85 of 171

Apostolos Galanopoulos Trinity College Dublin

constraint violation), and a fixed optimality gap that can be made arbitrarily small by tuning

the step size. Moreover, as we prove analytically and show experimentally, smaller step sizes

increase the time interval until constraints are fully satisfied. Also, observe that we do not make

any assumption about the correlation and distribution of the arrivals. It is important to note

that the above limits are satisfied for any sequence of random variables, i.e., every sample path,

and not only for the average values (on expectation)6. Such deterministic bounds are of special

interest as they offer guarantees for any problem instance and not only for their ensembles.

6.4 Model and Algorithm Extensions

We extend our framework by jointly optimizing prediction accuracy and total execution delay,

since the latter can also be crucial for many edge services. Then, we explain how it can cope

with massive demand scenarios, where the wireless bandwidth becomes a bottleneck; and finally

we elaborate on alternative designs/usages of the predictor.

Joint Accuracy/Delay Optimization: We extend our model to capture both the accuracy

gains and the impact of offloading decisions on delay. We do so by adding the total delay for

processing the tasks of all users in the objective function and using a scaling parameter ζ ∈ [0, 1]

to balance between the two objectives. In detail, we can express the total delay as:

Dtot(y) =
N∑
n=1

M∑
j=1

(
1− yjn

)
λjnD

pr
n + yjnλ

j
n

(
Dpr
n +Dpr

0 +Dtr
n

)
(6.13)

where Dpr
n , Dpr

0 are the delays for processing images at device n or the cloudlet, respectively;

and Dtr
n the delay for transmitting images to cloudlet. These quantities can vary with time,

similarly to the other system parameters, because each image has different size, or the channel

conditions change. The processing delays can be modeled with linear functions, since we enforce

the total processing capacity constraints. Namely, we can write Dpr
n = kn/Hd,n, where kn is the

number of CPU cycles required for processing the images of device n, and Hd,n is the processing

speed of device n (cycles/sec). Similarly, we can define the processing delay at the cloudlet as

Dpr
0 = kn/H which, again, we allow to vary either because of changes in the cloudlet {H}t or

changes in the load {kn}t; we refer the reader also to [88] and references therein.
6That is, for every sequence of observed random parameters, the performance and constraint violation comply

with Theor. 1.

Page 86 of 171

Apostolos Galanopoulos Trinity College Dublin

Regarding the transmission delay, this depends on the actual system architecture. For

example, if different channels are employed for the users, we can express it as Dtr
n = `n/(rnW),

where `n is the size of each image, rn the channel gain for user n, and W the link bandwidth.

If there is a CSMA-type network where users need to share their links, we need to replace W

with the actual airtime Wn that user n receives; and in the case we have a fair round-robin

(vanilla version of CSMA) we can approximate this with Wn =
∑M
j=1 y

j
nλ

j
n/
∑N
n=1

∑M
j=1 y

j
nλ

j
n.

This model has been used extensively in Wi-Fi service allocation, see [156], and in mobile code

offloading, e.g., in [88]. Note that in our online algorithmic setup, we can track the changes in

the above delays in the same way we adapt to varying energy costs, processing loads, etc,

(P2) : minimize
yj

n∈[0,1]:∀n,j
−

M∑
j=1

N∑
n=1

wjnλ
j
ny

j
n + ζDtot(y) (6.14)

subject to:
M∑
j=1

yjnλ
j
non ≤ Bn, n ∈ N , (6.15)

M∑
j=1

N∑
n=1

yjnλ
j
nhn ≤ H, (6.16)

where ζ ≥ 0 underpins the importance of minimizing delay in contrast to maximizing

accuracy.

Following the analysis in Sec. 6.2 we can verify that the offloading rule will be:

yjnt =


1 if λjnt > 0 and µnton + ξthn < wjn − ζ(Dtr

n +Dpr
0)

0 otherwise.
, (6.17)

where we observe that the local device execution delay is nullified since it is independent of the

offloading decision, and the condition in line 12 of Algorithm 6 (OnAlgo) will be replaced by

µntōnt + ξth̄nt < wjn − ζ(D̄tr
nt + D̄pr

0t), where D̄tr
nt, D̄

pr
0t are the running averages of the measured

transmission and cloudlet computation delay respectively.

Wireless Bandwidth Constraints: We have assumed the system operation is constrained

by the devices’ power budget and the computing capacity of the cloudlet. Indeed, most often

these are the bottleneck resources [23, 25, 60]. However, in scenarios of massive demand the

wireless link capacity might also be a bottleneck constraint. Our analysis can be readily extended

for this case. If we denote with {Wt}∞t=1 the link capacity process (uniformly bounded; well-

Page 87 of 171

Apostolos Galanopoulos Trinity College Dublin

defined mean value W) assuming a wireless link shared by all devices7, we can add to (P1) the

constraint:
N∑
n=1

M∑
j=1

yjnλ
j
n`n ≤W, (6.18)

where `n is the size of objects device n transmits. Eq. (6.18) can be handled as the computing

constraint (6.4), and will only affect the convergence bounds. Similarly, we can include other

constraints, coupling the actions of all devices ∀t, or separately of each device across time.

Alternative System Architectures: A different mechanism is possible, where the devices

send objects to the cloudlet before using their own classifier. This approach can reduce the

consumed energy, since it avoids low-accuracy local classifications. However, it requires a different

type of a predictor, namely one that can estimate the expected accuracy gain using some basic

features of the object (e.g., its file size), and without requiring input from the local classifier. In

this case, modeling the power consumption of the devices would modify constraint (6.3) of (P1)

as:
M∑
j=1

(
yjnλ

j
non + (1− yjn)λjnνn

)
≤ Bn, ∀n ∈ N ,

where the second term indicates the power νn consumed by each device when only local

classification is performed. OnAlgo can be extended to this case by changing the predictor, as

long as Assumption 1 holds.

Similarly, it is possible to have services that are executed in multiple stages, e.g., a video

stream is compressed, then frames of interest are selected, and objects are identified on each

frame. In this case, the devices might decide to outsource some of the tasks in the first stage,

some others after the second stage, and so on. Again, our optimization algorithms can be

extended to include these decisions, by defining a separate set of variables for each stage while

accounting for the costs and properties (e.g., data volumes) in each case. In specific, (6.3) would

be transformed to:
M∑
j=1

(
yjnλ

j
non + (1− yjn)λjnνcln

)
≤ Bn, ∀n ∈ N ,

where νcln denotes the classification computing cost, which is significantly smaller than νn.

Observe that the computing load of stage 1, i.e. feature extraction, is not accounted for since it

is again induced regardless of the offloading decision.
7This can be either an OFDM-based cellular link or a coordinated access WiFi link; in the case we have a

CSMA-type of mechanism, one needs to account for the additional bandwidth loss due to collisions, etc.

Page 88 of 171

Apostolos Galanopoulos Trinity College Dublin

6.5 Implementation and Evaluation

We have fully implemented the proposed architecture, evaluated OnAlgo with real datasets, and

complemented our analysis with large-scale synthetic simulations. This section has four goals:

(i) investigate the accuracy performance of well-known classifiers for different sizes of training

datasets, hence revealing why the edge augmentation is needed; (ii) Measure the energy and

computing costs of image classification tasks; (iii) Perform a parameter-sensitivity analysis of

OnALgo; and (iv) Compare OnALgo with several benchmark algorithms.

6.5.1 Experiments Setup

We used 4 Raspberry Pis (RPis) as end-nodes, and a cloudlet with specs as in [157], see Fig.

6.2a. The RPis are placed in different distances from the cloudlet, and all plots are using data

from at least 50 experiments. We measured energy using a Monsoon Power Monitor, and used

Python libraries and TensorFlow for the classifiers. We have used vanilla versions of libraries

and classifiers so as to facilitate observation of the results.8

We measured the average power consumption when a RPi transmits with different rates,

Fig. 6.2b. Then we fitted a linear regression model that estimates the consumed power (Watts)

as a function of the rate r, p(r) = −0.00037r2 + 0.0214r+ 0.1277. This result is used by OnAlgo

to estimate the energy cost for each image, given the data rate in each slot (which might differ

for the RPis). Also, we measured the average computing cost (cycles/task) for the classification

task for a neural network (CNN) in the RPis and cloudlet. Since the images have different sizes,

we observed that the computation load varies, with a mean of 441 Mcycles and std. 90 Mcycles

for the cloudlet (see Fig. 6.2d), and a mean of 3044 Mcycles and std. 173 Mcycles for RPis.

Regarding the delays, we measured device and cloudlet average processing and transmission

delays and found that Dpr
n = 2.537, Dpr

0 = 0.191 and Dtr
n = 0.157 ms. This result suggests that

local processing is about 10 times slower than offloading in our system. Hence, it is possible that

the extra offloading delay experienced by the devices can be worth trading off for the enhanced

accuracy of the cloudlet.

We focus on image classification, a widely employed analytic task that is known to generate

big data loads that quickly consume device resources, and use two well-known data sets: (i)
8For instance, the memory footprint of NNs can be made smaller [72, 73] but such actions possibly affect their

performance. Our analysis is orthogonal to such interventions.

Page 89 of 171

Apostolos Galanopoulos Trinity College Dublin

Cloudlet
Core-i7 @1.8

GHz 16 GB RAM

Raspberry Pi 3B
ARM Cortex-A53
@ 1.2 GHz, 1 GB

RAM 802.11n

(a)

0 5 10 15 20

Throughput (Mb/s)

0.1

0.2

0.3

0.4

0.5

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 (

W
)

Average Tx power

Tx Fitted curve

(b)

1 2 4

Hidden Layers

0

200

400

600

800

1000

M
o

d
e

l
s

iz
e

 (
M

B
)

(c)

400 500 600 700

Cycles per task (Mcycles)

0

0.2

0.4

0.6

0.8

1

C
D

F

Edge device

Mean: 441.34 Mcycles

Std: 90.45 Mcycles

(d)

Figure 6.2: (a): Testbed: 4 RPis and a cloudlet (laptop). (b): Transmit power consumption measurements
and the fitted curve for the RPis. (c) Increasing the number of layers in CNN increases the model size.
(d) CDF of computing cycles per task for the cloudlet.

MNIST which consists of 28×28 pixel handwritten digits, and includes 60K training and 10K

test examples; (ii) CIFAR-10 that consists of 50K training and 10K test examples of 32×32 color

images of 10 classes. We used two very different classifiers: the normalized-distance weighted

k-nearest neighbors (KNN) algorithm [158], and the more sophisticated Convolutional Neural

Network (CNN), implemented with TensorFlow [159]. Both classifiers output a vector where

each coordinate represents the probability that the object belongs to the respective class. These

classifiers differ substantially in their performance and resource requirements, hence allowing us

to build diverse experiment scenarios. Our goal is to evaluate both and determine which one

is more suitable depending on other system parameters like the number of available training

samples at each location.

The predictors are trained with labeled images and the outputs of the local (dn(snt)) and

cloudlet (d0(snt)) classifiers. We implemented an ordinary least squares regressor and a model-

free random forest that estimate φnt (dependent variables) based on the classifier outputs

(independent variables). Recall that the dependent variables are calculated using (6.1), where

we additionally use that wnt = d0(snt) if device n has given a wrong classification (for a labeled

object) and wnt = −d0(snt) if the cloudlet is mistaken. We have used training sets of different

sizes and two different regressors: (i) a general model, where the prediction does not consider

the locally inferred class as an independent variable; and (ii) a class specific model that is based

on the output of the local classifier.

We compare OnAlgo with three different algorithms:

• Accuracy-Threshold Offloading (ATO), where a task is offloaded when the confidence of the

local classifier is below a threshold, without considering the resource consumption. This is

Page 90 of 171

Apostolos Galanopoulos Trinity College Dublin

0 1 2 3 4 5 6 7 8 9
Class

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Kn=5×104 Kn=200 Kn=50

(a) KNN on MNIST

0 1 2 3 4 5 6 7 8 9

Class

0.5

0.6

0.7

0.8

0.9

1

A
c

c
u

ra
c

y

4 Layers 2 Layers 1 Layer

(b) CNN on MNIST

A
irp

la
ne

A
uto

m
obile

B
ird C

at

D
ee

r
D
og

Fro
g

H
ors

e
Ship

Tru
ck

0

0.2

0.4

0.6

0.8

A
c
c
u

ra
c
y

4 Layers 2 Layers 1 Layer

(c) CNN on CIFAR

Figure 6.3: Per class Accuracy of MNIST and CIFAR-10 for KNN and CNN classifiers of various labeled
data sizes and hidden layers.

basically the non-distributed version of [74], where if the local result is not sufficiently reliable,

further CNN layers in the edge or cloud are invoked.

• Resource-Consumption Offloading (RCO), where a task is offloaded when there is enough

energy, without considering the expected classification improvement.

• Online Code Offloading and Scheduling (OCOS) [160], where the devices always try to exploit

the cloudlet’s classifier, and the cloudlet tries to schedule as many tasks as possible in each

slot, given its available resources.

6.5.2 Initial Measurements

We used our testbed to verify these small resource-footprint devices require the assistance of a

cloudlet. These findings are in line with previous studies, e.g., [74,76]. The performance of a

CNN model increases with the number of layers (as we will show next), but so does the model

size, see Fig. 6.2c. We find that, even with 4 layers, a CNN trained for CIFAR has 1GB size

and hence cannot be stored in the RPis (e.g., even more so in a smaller IoT node). Similar

conclusions hold for the KNN classifier, the accuracy of which is directly linked to the number

of labeled local data (KNN needs the training data available locally). Clearly, despite the efforts

to reduce the size of ML models by using, for instance, compression [72] or residual learning [73],

the increasing complexity of analytics and the small form-factor of devices will continue to raise

the local versus cloudlet execution trade off.

Here we evaluate the different classifier and predictor designs towards building a more efficient

system. In Fig. 6.3a we see that the accuracy (defined as the ratio of correct predictions over

the sum of all predictions) of the KNN classifier improves with the size Kn of labeled data when

Page 91 of 171

Apostolos Galanopoulos Trinity College Dublin

100 200 400 800 2000 5000
Samples

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Ab

s.
Er

ro
r

General
Class Based

(a) Linear regressor

100 200 400 800 2000 5000
Samples

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Ab
s.

Er
ro

r

General
Class Based

(b) Random forest

Figure 6.4: Predictor assessment.

applied to MNIST. Figure 6.3b depicts the accuracy improvement for CNN as more hidden

layers are added. The performance increase is higher for the digits that are more difficult to

recognize (e.g., 4 and 5), up to about 20%. Notice, that the performance of the CNN classifier is

superior to KNN, when we use fewer layers, or samples respectively. In addition, we present

the CNN performance on CIFAR, for 1, 2 and 4 hidden layers in Fig. 6.3c. CIFAR is more

complex than MNIST due to the properties of its objects (colored images, etc.), and this results

in lower accuracy. Overall, we see that the classifier performance depends on the algorithm

(KNN, CNN, etc.), the settings (datasets, layers, etc.), and differ also for each object class.

Hence, an algorithm is necessary that can adapt to all these parameters (as OnAlgo does). Since

we have verified the superiority of CNN classifiers, we continue our evaluation using only these,

instead of KNN.

Finally, we studied the training dataset impact on the predictor’s error, using both general

and class-specific (i) linear regressors and (ii) random forests. In Fig. 6.4, we plot the prediction

error of the accuracy improvement for both cases of general and class-specific predictors for CNN

local device and cloudlet classifiers. We observe that the random forest is superior to the simpler

linear regressor only when the number of samples is small. Moreover, random forests display an

inconsistency when comparing general to class-based models as the number of training samples

varies. The class specific linear regressor for 5K samples achieves the lowest average absolute

error, thus it is used throughout the following experiments, while its error is rapidly decreasing

from 35% for 100 points to 12.3% for 5K points on the CIFAR dataset.

Page 92 of 171

Apostolos Galanopoulos Trinity College Dublin

5 10 20
Bn(×10−6)

70
75
80
85
90
95

100
Ac

cu
ra

cy
 (%

)
MNIST

M=3 M=6 M=10

(a)

5 10 20
Bn(×10−6)

0

20

40

60

80

100

Of
flo

ad
ed

 ta
sk

s (
%

) MNIST
M=3
M=6
M=10

(b)

5 10 20
Bn(×10−6)

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

CIFAR
M=3 M=6 M=10

(c)

5 10 20
Bn(×10−6)

0

20

40

60

80

Of
flo

ad
ed

 ta
sk

s (
%

) CIFAR
M=3
M=6
M=10

(d)

Figure 6.5: Accuracy and offloading percentage of OnAlgo for various resource constraints and values
for M , on MNIST and CIFAR-10.

6.5.3 Performance Evaluation

Next, we evaluate the performance of OnAlgo in terms of achieved accuracy, offloading frequency

and resource consumption. First, we evaluate OnAlgo for different values of the power con-

sumption constraint Bn and quantization level M . Then, we use a variable non-i.i.d. traffic

load to compare its performance against the competitors. The traffic load is an exponentially

distributed sequence of task bursts, each of which has a uniform duration of 5 − 10 seconds.

This way we emulate the real-world scenario of sensor-activated cameras that generate images

for short time periods.

Resource Availability and Quantization Impact. We evaluate the performance of

OnAlgo, by using a 1-layer CNN for the RPis and a 4-layer CNN for the cloudlet. In Fig. 6.5

we show the average accuracy achieved by the four devices, as well as the fraction of requests

offloaded to the cloudlet when we vary the devices’ power budget Bn, for MNIST and CIFAR.

Evidently, as Bn increases there are more opportunities for exploiting the cloudlet and obtaining

a better result than the local classifier. Interestingly, the selection of M seems to positively

affect the offloading frequency, resulting also in higher accuracy, in specific cases only. In detail,

increasing M results in better performance just for CIFAR (the improvement gains are higher),

Page 93 of 171

Apostolos Galanopoulos Trinity College Dublin

1 2 3 4 5 6

Load in bursts per minute

86

88

90

92

94

96

A
c

c
u

ra
c

y
 (

%
)

Scenario 1

OnAlgo

ATO

RCO

OCOS

(a)

1 2 3 4 5 6

Load in bursts per minute

0

0.005

0.01

0.015

A
v

e
ra

g
e

 P
o

w
e

r
(m

W
)

Scenario 1

OnAlgo

ATO

RCO

OCOS

(b)

1 2 3 4 5 6

Load in bursts per minute

25

30

35

40

45

50

55

A
c

c
u

ra
c

y
 (

%
)

Scenario 2

OnAlgo

ATO

RCO

OCOS

(c)

1 2 3 4 5 6

Load in bursts per minute

0

0.005

0.01

0.015

0.02

A
v

e
ra

g
e

 P
o

w
e

r
(m

W
)

Scenario 2

OnAlgo

ATO

RCO

OCOS

(d)

Figure 6.6: Performance comparison of different offloading algorithms vs the generated task load.

and in the low resource availability regime. This practically means that a higher quantization

level for the accuracy gain is mostly effective when the cloudlet classifier is substantially better

than the local one, provided that the increased algorithm complexity from the increased M can

be handled by the system. Furthermore, some interesting remarks can be made by comparing

the two datasets. As shown in Fig. 6.3(b-c), MNIST is easier to classify and the gain of using a

better classifier is not as important as on the CIFAR dataset. In particular, with MNIST the

gains are about 6% in accuracy as the resources (and thus the offloaded tasks) increase, while M

does not affect the performance. With CIFAR, on the other hand, the potential performance gain

when using the cloudlet is larger; and as Bn and M increase, the accuracy gains are up to 25%.

These two experiments demonstrate the agility of our algorithm, which assesses the potential

accuracy gains and shapes accordingly the offloading strategy, based on resource availability

(cloudlet computing capacity), and the level of quantization.

Comparison with Benchmarks. Next, we compare OnAlgo to ATO, RCO and OCOS

for a varying non-i.i.d. traffic load in Fig. 6.6. To ensure a realistic comparison, we set the rule

for all algorithms that the cloudlet will not serve any task if the computing capacity constraint

is violated; while for RCO the availability of energy is determined by computing the running

average consumption by each device during the experiment. We employ two testbed scenarios,

and a simulation with larger number of devices.

Scenario 1: Low accuracy improvement; high resources. In this case, we set9 Bn=0.02 mW

and H = 2 GHz allowing the devices to offload many tasks, the MNIST dataset (has small

improvement between 1 layer and 4 layer CNNs), and M = 6. We depict the average accuracy

achieved by the devices and the average power consumption versus the task load in bursts
9We have explicitly set a small power budget so as to highlight the impact of power constraints on the system

performance; higher power budgets will still be a bottleneck for higher task request rates or images of larger size.

Page 94 of 171

Apostolos Galanopoulos Trinity College Dublin

per minute in Fig. 6.6a and 6.6b respectively. We observe that OnAlgo shows a smaller slope

in the decrease of accuracy, as the load increases than all the competitors. The performance

of ATO quickly drops because the cloudlet’s resources are insufficient for high loads. RCO’s

performance is good for the most part (at the cost of increased power consumption), but it

quickly deteriorates for high task loads as the devices many times refrain from offloading due

to the power constraints. OCOS performs similarly to RCO since performance degradation is

caused by cloudlet resource exhaustion. The problem with both algorithms is that they do not

offload intelligently, based on both the improvement potential and the availability of resources,

as opposed to OnAlgo.

Scenario 2: High accuracy improvement; low resources. The settings for this scenario areM =

10, Bn = 0.01 mW , H = 500 MHz not allowing many offloadings and cloudlet classifications.

We used the CIFAR dataset that demonstrates a substantial performance difference between

local and cloudlet classifiers. We see from Fig. 6.6c that OnAlgo is up to 12% more accurate

than ATO/RCO for high task load, and in any case significantly higher than in Scenario 1.

OCOS performs slightly better than ATO/RCO, but at the cost of very high power consumption.

Since the potential of improvement is higher in Scenario 2, ATO marginally outperforms RCO

by spending up to 50% more power than RCO (see Fig. 6.6d). OnAlgo consumes about 50 %

less power than OCOS since the latter always tries to offloads tasks but does not leverage the

cloudlet efficiently due to the lack of computing capacity.

Summing up the 2 scenarios above, we see that OnAlgo achieves a smooth performance across

varying traffic loads, while its competitors struggle, especially as the load increases. Moreover,

it achieves reasonable power consumption regardless of the resource availability as opposed to

RCO in Scenario 1, ATO in Scenario 2, and OCOS in both scenarios.

Trade-off Analysis. Next we demonstrate the trade-offs between number of offloadings,

accuracy and resource consumption between OnAlgo and the competitor algorithms using net

graphs. Fig. 6.7a displays the performance of OnAlgo for low medium and high task load.

Observe that as the load increases, OnAlgo rapidly increases resource consumption to maintain

high accuracy. For instance, comparing low to high load, we see that performance drops only

by about 7% as the computing and power consumption is increased by 75%. In Fig. 6.7b we

compare the same metrics for high traffic load, and the different competitors. Observe that

OnAlgo achieves the highest accuracy, while being (closely) second best (behind RCO) in terms

Page 95 of 171

Apostolos Galanopoulos Trinity College Dublin

(a) (b)

Figure 6.7: Comparison of different key metrics (normalized): (a) OnAlgo for low, medium and high
traffic load. (b) Algorithm comparison for high load in scenario 2.

(a) (b)

Figure 6.8: (a) OnAlgo performance for low, medium and high traffic load for problem (P3). (b) Pareto
front between accuracy and delay efficiency.

of computing resource and power consumption. Moreover it achieves high accuracy despite

offloading less frequently than OCOS, due to the intelligent way it makes the offloading decisions.

In summary, OnAlgo achieves the highest accuracy between the competitors, and at the same

time has a moderate resource consumption.

Next, in Fig. 6.8 we explore the accuracy-resource consumption-delay trade-off when problem

(P3) is considered, i.e. total delay is jointly optimized with accuracy. Notice in Fig. 6.8a, that

the increasing traffic load will not only result in lower accuracy (about 20%) and higher resource

consumption, but also in significantly higher delay (up to 25%). Hence, despite consuming extra

resources in high load cases, OnAlgo still maintains high accuracy standards. Finally, Fig. 6.8b

displays the Pareto front between accuracy and delay10. This shows the effect of parameter ζ
10In fact delay is inversed (1/s) so that increasing the value towards either the x-axis or the y-axis yields better

performance with respect to the relevant metric.

Page 96 of 171

Apostolos Galanopoulos Trinity College Dublin

(ranging from 0.1 to 0.3) on the resulted offloading policy and consequently on the performance

of accuracy and delay. For instance, in order to double the delay efficiency (from 0.1 to 0.2), we

would have to sacrifice roughly 10% accuracy, by offloading less frequently.

6.6 Conclusions

In this chapter we propose an algorithm for online data analytic task outsourcing from small

end devices to a cloudlet capable of improving classification results. This is possible since more

complex and resource heavy ML models can be deployed there, compared to the end devices.

Moreover, the tasks are typically executed faster at the cloudlet, leveraging its high end hardware

setup. Hence, in the following chapter, we build an MEC enabled object recognition system

where mobile devices offload their object recognition tasks directly to a GPU-equipped edge

server, and study accuracy/latency trade-offs that arise from tuning application specific system

parameters.

Page 97 of 171

Chapter 7

Trade-off Analysis of a MEC Object

Recognition System

Edge-assistance will most likely be a key component of future latency-critical and computationally-

demanding mobile applications such as video analytics and Tactile Internet services [161,162].

Augmented Reality [80] and real time object recognition [79] are examples of such services that

can benefit from the computational power of a nearby edge server, since mobile devices are

too slow to timely perform the required computations. Nevertheless, the practical performance

benefits of such edge architectures remain unexplored. On the one hand, data transmissions

are added to the service delay. On the other hand, the quality and execution delay of analytics

is affected by the volume of the transmitted data, as well as the complexity of the algorithm

running on the edge server.

In this chapter, we investigate this issue experimentally by building the edge computing system

illustrated in Fig. 7.1. We develop a real-time object recognition system, as a representative of

the plethora of emerging visual-aided services, e.g. video stream analytics, mobile augmented

reality, etc. A mobile handset (client) captures camera images and transmits them to an edge

server for processing; the server uses a deep neural network (NN) to detect and classify objects

in the images; and sends the output to the handset which overlays this information on the screen.

We built the above system using an Android application and a state-of-the-art deep learning

network running on GPU hardware for the server. We use a high performance 802.11ac wireless

link for communication between the handset and the server, which features technology likely to

Apostolos Galanopoulos Trinity College Dublin

Figure 7.1: Schematic of edge-assisted object recognition system.

persist in future small cells1, hence making our results relevant to a range of systems.

7.1 Motivation

Our goal is to understand the system-level trade-offs between end-to-end (E2E) latency and

object recognition accuracy, and propose specific solutions that can improve the performance

of the system. We firstly show that the degree of image compression and deep learning NN

input size are key parameters affecting both performance metrics. In particular, the use of more

aggressive image compression saves on communication latency between client and server (since

the transmitted image file is smaller), but at the cost of reduced object recognition accuracy.

While the impact of image degradation due to noise or blur on recognition accuracy has started

to receive attention in the deep learning literature [163], the impact of compression on accuracy

remains relatively poorly understood. Furthermore, a large NN size will improve recognition

performance at the cost of higher execution delay at the server, hence increasing E2E latency.

To the best of our knowledge, the trade-off between E2E latency and recognition accuracy for

the above parameters, has not previously been explored.

We focus our effort in designing wireless transmission interventions that further improve

the communication delay of the system. Such interventions have not yet received significant

attention by the edge computing literature, as most efforts have been devoted to minimizing

computation delays [18,77,91]. This delay source however, is of critical importance to low latency

services, and hinders their ability to achieve real time performance, e.g. [79, 81]. We show that

transmit time can be reduced by up to 65% by sending the images as short back-to-back bursts
1We use MU-MIMO/OFDM and channel aggregation at the PHY layer, and employ packet aggregation at the

MAC layer to reduce framing/signaling overheads.

Page 99 of 171

Apostolos Galanopoulos Trinity College Dublin

of UDP packets. We also find that the client Network Interface Controller (NIC) powersave

can incur substantial transmit latency and, hence, smarter sleep mode adaptation can further

decrease latency by up to 60%.

Finally, we model the different sources of delay in our system, and the obtained accuracy,

as functions of the NN size and encoding rate using our measurements. We illustrate the use

of the developed model to highlight optimal trade-offs between E2E latency and system object

detection accuracy. Moreover, we show that the use of smart wireless transmission techniques

employed, can nearly double the system performance along the Pareto-optimal curve of accuracy

vs frame rate.

7.2 Preliminaries

7.2.1 Hardware & Software Setup

We developed an Android application that captures images through the handset’s camera, carries

out JPEG encoding and then transmits the compressed images to an edge server for processing.

The server software (written in C/C++) decompresses and pre-processes the images, and submits

them to the deep learning neural network (NN) which is implemented using a GPU-optimized

framework. The results, i.e., the bounding boxes and labels, are then sent back to the client

handset and overlaid on the displayed image.

Object recognition is performed by YOLO [164], a state-of-the-art deep learning detector

implemented on darknet, an open source framework that supports GPU computations via

cuda. It takes an n×n array of image pixels as input, with each pixel being a float value, and

down-samples by 32 to give an n/32 grid. Then, each grid cell proposes bounding boxes and

labels for any contained objects. These results are filtered to generate the output consisting of a

set of bounding boxes of recognized objects with their labels and respective confidence. Since

the NN only uses convolutional and pooling layers, the input size n can be rescaled without

requiring NN retraining as long as N is a multiple of 32.

We use different mobile devices to measure the effect of the end user’s hardware on the

system’s performance: (i) a Google Pixel 2 (default device), (ii) a Samsung Galaxy S8, and (iii)

a Huawei P10 Lite. All devices are equipped with 802.11ac chipsets, and we will be using the

Google phone unless stated otherwise. The edge server is connected via Ethernet to a WiFi

Page 100 of 171

Apostolos Galanopoulos Trinity College Dublin

router that serves as an access point (802.11ac, 5GHz) for the handsets2, see Fig. 7.1.

7.2.2 The Need for Edge Server Offload

We investigated first the viability of running YOLO on the handset by cross-compiling darknet,

but found that the running times were excessive (on the order of minutes). Use of a cut-down

version of YOLO, referred to as TinyYOLO [164], was also investigated. The running time was

around 1s per image, substantially faster than with the full YOLO network but still very slow

compared to the server. Note also that the speedup of TinyYOLO is obtained at the cost of

significantly reduced object recognition accuracy, and supports only a small subset of object

types. Our tests convey the same message as previous studies [61, 70], namely confirm the

necessity for offloading the object recognition task to a powerful server, if low latency operation

is to be obtained.

7.2.3 Evaluation Scenario

To evaluate the system performance we used the extensive COCO dataset [165] which covers a

wide range of images and objects, and includes ground truth for each image (object locations and

labels within each image). For quantifying performance, we used the Average Precision (AP) and

Average Recall (AR) metrics3 for a range of Intersection-over-Union (IoU) values. Detection is

considered successful when the ratio of the overlapping area between the detected object and the

ground truth, over their respective union area, is higher than an IoU value of 0.5. COCO further

breaks precision and recall metrics down by whether objects are large, medium or small. YOLO

is known to perform poorly on small objects and so we focus on large and medium objects.

To use the COCO images we connected the phone to a server via a USB cable and a Python

script on the server sends commands to the phone using the Android Debug Bridge (adb). The

server initiates the client application through adb and configures the system parameters for

the experiment (e.g., the JPEG compression level). Then it iterates over 5000 images from

the COCO validation set, sending them one-by-one to the phone through cable. The phone

transmits each image to the server through the wireless interface, as if they were images captured
2The edge server is a 3.7 GHz Core i7 PC equipped with 32GB of RAM and a GeForce RTX 2080Ti GPU;

and the router is the ASUS RT-AC86U.
3AP is the ratio Tp/(Tp + Fp) while AR is the ratio Tp/(Tp + Fn), with Tp being the true positive detections,

Fp the false positive and Fn the false negative detections. The results are averaged over all objects classes.

Page 101 of 171

Apostolos Galanopoulos Trinity College Dublin

by its camera, receives the server response over WiFi and passes this back over the USB cable

for logging.

7.3 System End-to-End Latency

Our first goal is to measure each of the different delay components involved in the procedure,

and investigate how they are affected by the encoding rate q and NN size n, but also by the

network set up (from the transport, to data link and physical layer). Based on our findings we

propose and evaluate network design choices that speedup the task completion.

7.3.1 Encoding Delay (Tenc)

The handset application converts its camera images to JPEG format before transmission to the

server. We use JPEG as it is widely adopted and supported by the Android API. While image

encoding is a typical step in such systems, its impact on the performance of edge-assisted object

recognition has not received attention, with only few exceptions [162]. JPEG is a lossy format

and its compression is decided by the encoding rate q. Note that we rely on the terminology of

the compression library we employed in our system4 and define q∈ [10, 100] as the percentage

ratio of compressed image size over its actual size, where q=100 for an uncompressed image.

At higher encoding rates, the number of discrete cosine transform coefficients that represent

the JPEG image is larger, leading to an expected increase in the encoding delay. Indeed, Fig. 7.2a

(upper plot) shows the encoding delay Tenc vs. the encoding rate q. It can be seen that Tenc
grows from 5ms to 11ms as q increases from 25% to 100%. This has also impact on the size of

the compressed image, see Fig. 7.2a (lower plot).

7.3.2 Decoding and Pre-processing Delay (Tdec)

Upon receiving an image, the server (i) decompresses it to obtain an RGB image; (ii) re-

samples/pads the image to match the input size n of the deep learning network; (iii) rotates

the image to compensate for the handset camera orientation; and (iv) converts the pixel values

from 0-255 integers to 0-1.0 floats. Our profiling indicates that most of this processing is limited

by memory resources rather than CPU. Hence, in our implementation we execute steps (i) and
4For jpeg compression (through quantization) we used the Android library: https://developer.android.

com/reference/android/graphics/YuvImage.

Page 102 of 171

Apostolos Galanopoulos Trinity College Dublin

20 40 60 80 100

Encoding rate(%)

0

5

10

15

E
n

c
o

d
in

g
 d

e
la

y
 (

m
s

)

(a)

20 40 60 80 100

Encoding rate(%)

0

100

200

300

Im
a

g
e

 s
iz

e
 (

K
B

)

(b)
20 40 60 80 100

Encoding rate(%)

0

1

2

3

4

5

D
e

c
o

d
in

g
 d

e
la

y
 (

m
s

) N=128

N=256

N=320

N=512

N=608

(c)

Figure 7.2: (a) Time used for JPEG encoding and (b) resulting image size. (c) Decoding and preprocessing
delay, vs encoding rate q. Results are averaged for the entire COCO library (5000 images).

(ii) jointly so as to minimize memory movements and maximize scope for in-processor caching.

And similarly we designed our implementation to execute simultaneously steps (iii) and (iv).

Contrary to encoding delay, this part of the processing depends both on the encoding rate and

the NN size. Fig. 7.2c plots measurements of the processing time vs. q and n. Observe that

when q≤75 the latency is largely insensitive to q, i.e., it is dominated by the preprocessing steps

other than image decompression. Similarly, the NN size n affects significantly Tdec only when

it is very large (notice the sudden increase when n≥512). As we will see later, these findings

create opportunities for optimizing the overall system operation.

7.3.3 Transmission Delay (Ttx)

Next, we investigate the network impact on the task delay, and propose specific solutions that

can effectively halve this time. First, note that the size of the transmitted images vary between

20–250KB, corresponding to roughly 13–166 packets (each 1500B long). In contrast, the server

response contains object bounding boxes and typically fits into a single packet. Hence, the

network transmission delay is dominated by the time taken to transmit the image and we expect

that this will increase with the encoding rate q.

The solid line in Fig. 7.3a plots the transmission delay vs. q. This delay includes the time

needed to send the image to the server and the time for transmitting back the response. The

measurements are when TCP is used with default Android and Linux settings, i.e., Cubic

congestion control and dynamic socket buffer sizing. As expected, the delay tends to increase

with the JPEG quality (for larger q). However, when q<80 the delay is relatively insensitive to

the encoding rate. Further investigation reveals that this insensitivity is mainly caused by two

Page 103 of 171

Apostolos Galanopoulos Trinity College Dublin

20 40 60 80 100

Encoding rate(%)

0

5

10

15

20

25

T
ra

n
s

m
is

s
io

n
 d

e
la

y
 (

m
s

) powersave enabled

powersave disabled

(a) (b)

Figure 7.3: (a) Wireless transmission delay using TCP vs JPEG encoding rate, (b) example time history
of the NIC state on the mobile handset when power saving is enabled.

factors. Firstly, the handset’s power management aggressively puts the NIC into sleep mode,

and this induces a delay to wake the NIC when transmission or reception restarts. Secondly, the

dynamics of TCP congestion control mean that it takes multiple round-trip times to transmit

all image packets. Next, we propose solutions for these two issues.

7.3.3.1 Handset NIC Wake-from-Sleep Latency

When entering sleep mode, the handset’s 802.11 NIC sends a special flagging frame to the

AP which buffers any packets awaiting transmission until the handset signals it has woken up.

Fig. 7.3b plots an example time history of the handset’s NIC state derived by extracting these

state transitions from tcpdump data5. Also indicated on Fig. 7.3b are “active” periods where

the NIC is awake and exchanges data with the server. Note that the NIC regularly enters a sleep

state, waking up when the handset starts to send an image. As indicated by our measurements

above, the handset can roughly predict when the next image transmission will occur. Namely, a

new captured image is transmitted approximately after 5-10ms (time for its encoding), and this

could be used to preemptively wake up the NIC.

Solution: In order to investigate the potential latency gains of smart wake-up strategies,

we adopted the cruder approach of using iperf to generate 1Mb/s of background UDP traffic

from the server to the client, to keep the handset’s wireless interface awake. The dashed line in

Fig. 7.3a shows that the overall transmit delay is now decreased for all values of q, consistent
5In our experiment a delay is inserted between input of each image to the android app to make the power-save

behavior easier to see.

Page 104 of 171

Apostolos Galanopoulos Trinity College Dublin

0 1 2 3

Time(ms)

0

1

2

3

B
y
te

s
 s

e
n

t
10

4

ACKs

0 1 2 3

Time(ms)

0

1

2

3

B
y
te

s
 s

e
n

t

10
4

(a)

20 40 60 80 100

Encoding rate(%)

0

2

4

6

8

10

T
ra

n
s

m
is

s
io

n
 d

e
la

y
 (

m
s
)

TCP

UDP

(b)

Figure 7.4: (a) Time histories showing transfer of a compressed image from client to server using TCP
(upper plot) and UDP (lower plot). (b) Wireless transmission delay for TCP and UDP vs JPEG encoding
rate q with mobile NIC power-save disabled.

with the handset NIC no longer having to be woken up for transmitting the image. The delay

reduction is approximately 5ms for all encoding rates which corresponds to a reduction of 50% in

the wireless transmission delay.

7.3.3.2 Latency Caused By TCP Dynamics

The upper plot in Fig. 7.4a shows the time history when transferring an image using TCP. The

connection is kept open and used for sending multiple images so that the overhead of the TCP

handshake (SYN-SYNACK-ACK) is only incurred once (takes 4ms; not shown). The compressed

image in this example is 31335B in size, and when the HTTP request header is added, it occupies

22 TCP packets6. Its transmission lasts 2.5ms and uses 4 MAC frames for data and 3 for TCP

ACKs. On average, 5.5 TCP data packets are therefore sent in each MAC frame. Observe that

the client needs to receive TCP ACKs before it can send the full image since the TCP congestion

window (cwnd) limits the packets in flight to around 10 when starting a new transfer. Also,

observe that there is contention between uplink and downlink due to the ACKs transmitted by

the server.

Solution: We explore the gains from removing uplink/downlink contention and the impact

of TCP cwnd, by modifying the Android client and server to use UDP. At the client side, an

image is segmented and placed into a sequence of UDP packets which are then sent to the
6The payload of a 1500B TCP packet is 1448B including header overheads.

Page 105 of 171

Apostolos Galanopoulos Trinity College Dublin

200 300 400 500 600

NN Input Size

5

10

15

20

25

30

35

R
e

c
o

g
n

it
io

n
 d

e
la

y
 (

m
s

)

(a)
(b)

Figure 7.5: (a) Server recognition delay vs NN size. (b) Edge device delay comparison.

socket back-to-back to facilitate aggregation by the NIC. The lower plot in Fig. 7.4a shows UDP

measurements7 for transmission of the same image. Despite that UDP packets are fit within a

single MAC frame (our system can aggregate up to 128 packets in 1 frame), we see that the

transfer used actually 3 frames. Presumably this is due to the scheduling delays between the

kernel and NIC, and the relative timing of channel access opportunities and packet arrivals.

Nevertheless, we find that the data transfer time is now 0.8ms, i.e., 3 times faster than with

TCP. Finally, Fig. 7.4b plots measurements of the overall wireless transmission time (sending

the image and receiving its response) for the full COCO data set when using TCP and UDP;

and with mobile NIC power-save disabled. We find that using UDP packet bursting roughly

halves the transmit time for all JPEG encoding rates.

Concluding, in this subsection we showed that tailored transmission strategies, such as smart

NIC power-saving and using UDP with packet bursting, reduce the transmit time to around 5ms.

This improvement is hugely important given the targeted E2E latency budgets.8

7.3.4 Recognition Delay (Tdl) and Impact of Handheld

YOLO outputs the coordinates of the image’s detected objects along with their labels. The

recognition delay Tdl depends on the NN size, and our measurements in Fig. 7.5a show that

it increases, roughly, quadratically with n. Other works have reported similar findings, e.g.,

see [18, 61], but the delays are quite higher than our results, presumably due to the usage of
7Including the time needed to segment the image into UDP packets, so the values are comparable with the

TCP data.
8To achieve real time frame update rates, such as 30fps, the available total latency budget is only 33ms.

Page 106 of 171

Apostolos Galanopoulos Trinity College Dublin

25 50 75 100

Encoding rate (%)

608

512

320

256

128

N
N

 s
iz

e
Average Precision

0.41

0.43

0.42

0.38

0.47

0.48

0.44

0.4

0.5

0.5

0.45

0.4

0.52

0.52

0.45

0.4

0.12 0.12 0.12 0.12

0.2

0.3

0.4

0.5

(a)

25 50 75 100

Encoding rate (%)

608

512

320

256

128

N
N

 s
iz

e

Average Recall

0.27

0.29

0.28

0.25

0.32

0.32

0.3

0.26

0.33

0.34

0.3

0.26

0.35

0.35

0.31

0.27

0.07 0.08 0.08 0.08 0.1

0.15

0.2

0.25

0.3

0.35

(b)

Figure 7.6: Precision and recall (IoU=0.5) vs NN size and encoding rate.

older GPU hardware. Furthermore, DeepMon [91] proposes NN optimizations on the mobile

devices that reduce the delay at about 1sec for YOLO, but it is still worse than our system’s

performance. These values may vary from system to system, but we expect qualitatively the

trend to persist.

Similarly, we suspect that the handset hardware affects only slightly (i.e., quantitatively) the

results. To verify this, we repeat our experiments with 2 additional mobile devices. The delays

that are directly related to the handset device, and may vary due to the different hardware

specifications, are the encoding and transmission delay. Fig. 7.5b plots the total encoding and

transmission delay measured for the 3 devices (Pixel 2, P10 Lite, Galaxy S8) for each encoding

rate q (averaging all dataset images). We find that compared to the Pixel 2, the other 2 devices

are slightly faster in image encoding, but also slower in transmitting. Such differences might

likely arise due to the different chipsets/firmware implementations. Observe however, that the

roughly quadratic increase of both delay components persists across all devices as q increases.

Hence, qualitatively the results hold for different hardware.

7.4 Performance Trade-offs

Using our measurements above we discuss here the interaction and trade-offs between the two

performance metrics, i.e., the accuracy and E2E delay, under a range of different scenarios. We

discover that in several cases there are sharp trade-off curves which create opportunities for

improving the system operation, by carefully tuning parameters q and n.

Figures 7.6a-7.6b plot the object recognition9 average precision and recall vs the encoding
9We have used the Python library CoCoApi for calculating these metrics, https://github.com/cocodataset/

Page 107 of 171

Apostolos Galanopoulos Trinity College Dublin

200 300 400 500 600

NN input size

0

0.1

0.2

0.3

0.4

0.5

Accuracy

Precision (Large)

Recall (Large)

Precision (Medium)

Recall (Medium)

(a)

40 60 80 100

Encoding Rate (%)

0.1

0.2

0.3

0.4

0.5

Accuracy

Precision (Large)

Recall (Large)

Precision (Medium)

Recall (Medium)

(b)

25 50 75 100

Encoding rate (%)

608

512

320

256

128

N
N

 s
iz

e

Frame Rate

43.78

51.87

59.21

41.96

49.71

56.55

40.24

45.96

53.45

23.47

31.67

22.83

29.79

21.89

29.61

17.53

22.37

28.55

31.56

34.35
20

30

40

50

(c)

Figure 7.7: (a-b) Precision and recall for medium and large objects for uncompressed images. (c) Frame
rate vs NN size and encoding rate.

rate q and the NN size n. We see that both metrics generally increase with q and n, although

there is a sharp improvement going from n=128 to n=256. Moreover, as n drops the precision

and recall performance deteriorate and cannot be improved even if we use high q (e.g., see last

row in each matrix). This finding differs from previous studies, e.g., [163], perhaps due to the

COCO dataset which contains images with a large range of object sizes.

We further study the impact of the object sizes on performance, while we consider different

detection thresholds (IoU values) [165]. In Fig. 7.7a we plot the precision and recall vs n and q

for large and medium objects, averaged for a range of IoU values. We see that for large objects

the accuracy increases rapidly with n but plateaus when n>300. For medium objects on the

other hand, the benefits of larger input size (and so higher image resolution) are greater and

accuracy only plateaus when n>500. Fig. 7.7b shows that the dependence on q, albeit not that

strong, follows indeed a continuous increase. We note that the precision and recall values in

these plots are relatively low because we use very high IoU thresholds (up to 0.95). Also, we do

not consider larger NNs since for n=608 we already have satisfactory precision but also large

delays.

Finally, we study the frame rate, i.e., the reciprocal of E2E latency, for different NN sizes and

image encoding rates. Fig. 7.7c presents the average frame rate for each scenario. Notice that

for small NNs (n<320) the encoding affects significantly the frame rate, but this effect is weaker

for n>320. For example, when n=608 the rate falls below 30fps even for very small values of q.

In other words, we find that in the low NN size regime, the accuracy gains from choosing a high

encoding rate are not significant, while the frame rate gains of a low encoding rate are substantial.

cocoapi/tree/master/PythonAPI/pycocotools.

Page 108 of 171

Apostolos Galanopoulos Trinity College Dublin

Hence, a low encoding rate is probably more suitable for a small NN. The opposite is true in the

high NN size regime, where we can achieve substantial accuracy gains without compromising

significantly the frame rate. These findings underline the importance of selecting jointly the

values of parameters n and q. Next section provides a systematic methodology towards that end.

7.5 Data Models and Pareto Analysis

Using our observations in the previous section, we discuss here the trade-offs between accuracy

and delay, fit our measurements to create statistical models for these performance metrics, and

characterize the pertinent Pareto fronts based on two representative optimization problems.

7.5.1 Fitting the Measurements

Our measurements indicate that the latency components and accuracy can be approximated

using quadratic functions of the decision variables n and q. Note that only the decoding delay

Tdec and precision f (we omit recall for brevity) depend on both n and q. On the other hand,

the encoding and transmission delays, Tenc and Ttx, depend only on q, and the deep learning

delay Tdl on n. We therefore define:

Tenc(q) = α0 + α1q + α2q
2, (7.1)

Tdec(n, q) = β0 + β1n+ β2q + β3nq + β4n
2 + β5q

2, (7.2)

Ttx(q) = γ0 + γ1q + γ2q
2, (7.3)

Tdl(n) = δ0 + δ1n+ δ2n
2, (7.4)

f(n, q) = ε0 + ε1n+ ε2q + ε3nq + ε4n
2 + ε5q

2. (7.5)

The model parameters are obtained by fitting our measurements to (7.1)-(7.5). Clearly, the

exact values of these parameters can change if, for instance, we use a different access point or

server. However, as our tests with the different handset devices have revealed, the changes are

minimal and only quantitative.10

10The handsets affect only the values of parameters {αi}i and {γi}i.

Page 109 of 171

Apostolos Galanopoulos Trinity College Dublin

7.5.2 Pareto Analysis

We leverage the above models to explore the interaction of the decision variables:

n ∈ N ,
{
[128, 608] | mod(n, 32)=0

}
, q ∈ Q, [10, 100],

i.e., study how they jointly affect the precision and the frame rate (E2E latency), while we also

devise the Pareto fronts for these two performance criteria by following a detailed parameter-

sensitivity analysis. We formulate two optimization problems; P1, where we maximize the

precision subject to achieving a minimum frame rate; and P2 where we maximize the frame

rate while not dropping the precision below a threshold value. Formally the 2 problems can be

written:

P1 : maximize
n∈N ,q∈Q

f(n, q) (7.6)

subject to: Ttotal(n, q) ≤ Tmax (7.7)

P2 : minimize
n∈N ,q∈Q

Ttotal(n, q) (7.8)

subject to: f(n, q) ≥ fmin. (7.9)

where we have defined:

Ttotal(n, q) = Tenc(q) + Tdec(n, q) + Ttx(q) + Tdl(n),

and Tmax is the highest tolerable delay in order to achieve a frame rate of 1/Tmax fps. Respectively,

fmin is the target precision requested by the user. In essence, constraint (7.7) ensures that the

total delay does not exceed Tmax, and hence the frame rate 1/Ttotal will be greater or equal to the

threshold 1/Tmax. Similarly in P2 we maximize the frame rate by minimizing Ttotal. Using both

problem formulations we will be able to highlight the trade-offs between delay and precision.

Fig. 7.8a plots the values of n and q that maximize the precision while keeping the frame

rate at or above the value indicated on the x-axis (recall that n is a multiple of 32). The

achieved precision for each frame rate is displayed with a solid line in Fig. 7.8b. Observe how

the increasing frame rate dictates the drop of NN size and encoding rate, which in turn result in

decreasing precision performance. Moreover, we observe that the NN size continuously drops or

Page 110 of 171

Apostolos Galanopoulos Trinity College Dublin

16 20 24 28 32 36 40 44

Frame rate (fps)

200

300

400

500

N
N

 s
iz

e

50

60

70

80

90

100

E
n

c
o

d
in

g
 r

a
te

 (
%

)

NN size

Encoding rate

(a)

16 20 24 28 32 36 40 44

Frame rate (fps)

0.1

0.2

0.3

0.4

0.5

P
re

c
is

io
n

Optimized

Non-optimized

Infeasible

33 %

(b)

Figure 7.8: (a) Optimal NN size and encoding rate for the desired frame rate. (b) Corresponding
maximal precision values.

0.1 0.2 0.3 0.4 0.5

Target precision

100

200

300

400

500

N
N

 s
iz

e

40

60

80

100

E
n

c
o

d
in

g
 r

a
te

 (
%

)

NN size

Encoding rate

(a)

0.1 0.2 0.3 0.4 0.5

Target precision

20

30

40

50

60

F
ra

m
e
 r

a
te

 (
fp

s
)

Optimized

Non-optimized

72 %

93 %

(b)

Figure 7.9: (a) Optimal NN size and encoding rate for the target accuracy. (b) Corresponding maximal
frame rate values.

stays level with the frame rate, while the encoding rate can increase in some cases. That occurs

when the NN size has been reduced and hence the increase of the encoding rate can sustain a

higher precision. Notice that for the largest range of frame rates, the NN size can be kept quite

high (around and above 400), even when exceeding 30 fps. This yields a satisfactory precision of

0.5 at 40 fps11. However, after the 40 fps threshold, the NN size has to be very small to facilitate

fast object recognition and the precision performance drops dramatically.

To highlight the impact of our optimized networking configuration, we compare the perfor-

mance with the respective results of a non-optimized (vanilla) system, dashed line in Fig. 7.8b.

Namely, these results were obtained by fitting the non-optimized (TCP, and enabled powersave)

wireless transmission delay measurements to (7.3) and solving P1. Clearly, the increased trans-

mission delays hamper the ability of the system to achieve high precision for acceptable frame

rates (precision drops by 33% at 30 fps). Moreover, P1 becomes infeasible for a target frame rate
11Recall that we obtain low precision values because on purpose we used very high IoU values; for more typical

thresholds the precision is much higher.

Page 111 of 171

Apostolos Galanopoulos Trinity College Dublin

above 34 fps, indicating the greater range in which the system can operate after configuring the

network. The respective results for P2 are displayed in Fig. 7.9a, 7.9b. The optimal frame rate

can be kept very close to 30 fps, even for very high target precision. Also, we observe a huge

gap between the optimized and non-optimized solution in this case, with the former achieving

up to 93% higher frame rate than the latter when target precision is very low.

7.6 Conclusions

This chapter takes a measurement-driven approach to analyzing the trade-offs of an edge assisted

object recognition application. We use our testbed to make an accuracy and latency evaluation

of the possible service configurations, i.e. image encoding rate and NN input layer size. We

further propose networking tweaks that greatly reduce the communication delay of the system,

rendering on-device object recognition much less efficient than the edge computing alternative.

Still though, there are other parameters to consider. The achieved latency and accuracy of such

systems can vary with time and depend on the system software and hardware setup. In the

following chapter, we utilize our testbed and extend our measurements to propose a solution for

the online configuration of the system.

Page 112 of 171

Chapter 8

Online Configuration of MEC Video

Analytics

Existing MEC solutions manage computing or network resources to offload various tasks from user

devices [86–88]. However, video analytics are heavily affected by several new parameters both

at the user side, e.g., image resolution and encoding rate, and at servers, e.g., NN architecture.

In particular, the key criteria of accuracy and latency are intertwined and shaped by the

configuration parameters of the processing pipeline1 and the wireless network that connects

devices and servers. For instance, sending low-resolution or compressed frames reduces the

transmission latency but also the object recognition accuracy; and increasing the frame rate

improves a user’s experience but strains the network and exacerbates the frame rate of others.

Clearly, deciding jointly the resource allocation and pipeline configuration for multiple users is

of utmost importance.

Pertinent studies focus on reducing the resource costs of video analytics [19, 96], and on

maximizing their performance [18,98]. However, the dependence of performance metrics (accuracy,

latency, and others) on the pipeline configuration that is distributed among several devices, and

on the allocated resources, is unknown in practice, and might as well vary with time (e.g., due

to wireless conditions). Importantly, as our experiments reveal, the performance depends also on

the platform, i.e., the devices’ and servers’ hardware and software; and on the actual video data.

Hence prior approaches that rely on statistical models, offline datasets or pre-training, are limited
1This term refers to the video processing stages, e.g., decoder, frame sampler and inference module (as, e.g.,

Yolo [164]), see [19] for details.

Apostolos Galanopoulos Trinity College Dublin

to specific systems and scenarios, and are ill suited for the heterogeneous edge environment.

Here we take a fundamentally different approach and develop a Bayesian learning framework

towards automating the configuration of multi-user video edge analytic services. This way we can

tailor the configuration of each edge system to adapt to its users’ requirements and resource

availability.

8.1 Methodology and Contributions

We start with an experimental analysis using our prototype system presented in the previous

chapter. We aim to maximize the recognition accuracy while satisfying user-defined minimum

frame rate constraints; by deciding the image encoding rate, service time allocation and NN

input layer size. We find that the system has stochastic accuracy and latency response (which

shapes the achieved frame rate) even for fixed configurations. The former is due to differences

in the images’ objects, and the latter due to wireless channels and processing delay variations.

We also find that similar configurations induce similar performance, which depends on the

DNNs and devices, and even exhibits non-monotonic behavior. Our measurements extend prior

works [18,83,166], and highlight the platform and data-dependent performance of these systems.

Motivated by these findings, we propose an optimization framework consisting of two

components: a surrogate model builder for the unknown objective and constraint functions,

and an acquisition rule that explores iteratively the system configurations. The former employs

Gaussian Processes (GPs) and Bayesian updates [167] to construct the required models in real

time using the collected data. The second component quantifies each configuration’s performance

and uncertainty regarding the existence of better configurations [168]. The result is a data-driven,

platform-oblivious algorithm that is executed at system runtime. Its advantage is that, unlike

other collaborative learning techniques, e.g. transfer learning, it is able to adapt to the inherent

heterogeneity of the edge systems and learn the optimal configuration of each one. We prove

that the algorithm finds a near-optimal solution and achieves average sublinear pseudo regret

of O(
√
TγT) where γT is a system-related parameter. Moreover, the algorithm performs safe

exploration in the sense that it satisfies the users’ minimum frame rate constraints while exploring

the configuration space.

Our approach builds on the theory of Bayesian non-parametric learning, and falls into the

Page 114 of 171

Apostolos Galanopoulos Trinity College Dublin

realm of Automated Machine Learning. AutoML, as it is known, has been used to automate the

configuration of software packages2, or the selection of various ML hyper-parameters [169,170]

which otherwise are set using heuristics [171]. We extend these ideas to automate the video

pipeline and network configuration, while catering for frame rate constraints. This way, we tackle

the main challenge of the service’s dependency on system hardware and video data, and enable

the users’ devices to collectively configure the system in a way that satisfies their requirements.

Being a powerful framework, it can be used to also allocate computing resources, select different

networks, and so on (see details in Sec. 8.5).

Finally, we evaluate the system performance and find that our algorithm can get to within

5% from the optimal point in no more than 200 iterations. We also propose a set of practical

steps to improve its performance, based on our experimental observations, e.g., the usage of

stopping criteria for the different stages of the algorithm. Our technical contributions can be

thus summarized as follows:

• Experimentally-motivated problem. We perform extensive experiments using different system

equipment and datasets which reveal the volatile performance of video analytics and their

dependency on said system and data. All our measurements are made available in an online

fully-documented dataset [172].

• AutoML Framework. We propose a technique that finds a near-optimal configuration without

violating the users’ frame rate thresholds. This is achieved by combining a Bayesian GP

technique with bandit learning and safe constraint exploration. To the best of our knowledge,

this is the first time an AutoML framework is used to configure a video edge analytics service.

• Model Extensions. We extend our analysis to problems where additional video-related (e.g.,

frame resolution) or network parameters (e.g., user association to networks/servers) are

decided. This manifests the framework’s potential.

• Prototypes and Experiments. We evaluate the framework based on real data in our bespoke

prototype, where we perform a thorough parameter sensitivity analysis, quantify its overheads,

and verify its generality using a wealth of scenarios and system setups.

Our approach is different from related works (see Ch.2) since: (i) it uses Gaussian Processes
2E.g., the many parameters of mathematical solvers such as IBM CPLEX.

Page 115 of 171

Apostolos Galanopoulos Trinity College Dublin

128 256 320 512 578
NN size

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
CC

25%
50%
75%
100%

(a) Cumulative Confidence

128 256 320 512 578
NN size

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
m

AP

25%
50%
75%
100%

(b) Mean Average Precision

Figure 8.1: Comparison between online (CC) and offline (mAP) accuracy metrics.

[167] to build models in real-time, thus does not require prior data; (ii) jointly configures server,

device and network parameters; and (iii) employs data-efficient non-parametric learning, hence

does not make assumptions about the system. We draw ideas from the area of Automated Machine

Learning (AutoML) that streamlines the selection of ML hyper-parameters cf. [169,170,173], also

using, lately, Bayesian optimization to improve the overall process [171]. Such techniques have

been only recently used in systems, e.g., configuring cloud servers [174] or cellular networks [175].

To the best of our knowledge, this is the first work using this approach to build a platform/data-

oblivious optimization framework for multi-user video edge analytics.

8.2 Preliminary Experiments

Previous works, e.g., [18,83,166], have studied similar trade-offs created by such system knobs in

an offline setup, i.e., by pre-calculating the average Precision/Recall accuracy for large datasets

of images. However, we aim to automate the system configuration at runtime, and hence cannot

rely on offline evaluations; instead, we need instantaneous feedback for the performance. To that

end, we use the Cumulative Confidence (CC) which is simply the sum of confidence values for all

recognized objects that is output by YOLO, and is instantly available for each processed frame.

Next, we provide evidence that CC is a suitable online metric to other standard offline metrics

such as the mean Average Precision (mAP). We used the COCO dataset of 40K images [165] to

evaluate the CC and mAP for a series of NN size / encoding rate combinations 3 and depict the

results in Fig. 8.1a-8.1b. Observe that the normalized performance of CC and mAP is almost
3See also our previous work [166] for details on the measurement methodology for the mAP.

Page 116 of 171

Apostolos Galanopoulos Trinity College Dublin

25 50 75 100
Encoding Rate (%)

128
192
256
320
384
448
512
576

NN
 si

ze

1 1.1 1.1 1.1
2.1 2.2 2.2 2.2
2.6 2.7 2.8 2.8
2.8 3 3 3
2.8 3 3 3.1
2.8 3 3.1 3.2
2.7 3 3.1 3.2
2.6 3 3.2 3.3

1.2

1.6

2.0

2.4

2.8

3.2

(a) Cumulative Confidence

25 50 75 100
Encoding Rate (%)

128
192
256
320
384
448
512
576

NN
 si

ze

45.6 42.3 39.1 21.6
42.7 39.9 36.8 20.6
40.0 37.6 35.0 20.0
35.4 33.2 31.1 18.4
30.7 29.0 27.8 17.5
26.7 25.7 24.2 16.1
23.9 23.2 22.1 15.2
19.4 18.7 17.9 12.2

18

24

30

36

42

(b) Frame Rate

0.00 0.75 1.50 2.25 3.00 3.75 4.50 5.25
CC value

0

50

100

150

200

250

Fr
eq

ue
nc

y

(256,50)
(384,100)

(c) CC distribution

10 20 30 40 50
Frame rate value

0

50

100

150

200

250

Fr
eq

ue
nc

y

(256,50)
(384,100)

(d) Frame Rate distribution

Figure 8.2: (a)-(b): Cumulative Confidence and frame rate for various NN sizes and encoding rates.
(c)-(d): Distributions of CC and frame rate for (NN size, encoding rate): (256, 50%), (384, 100%).

identical. By using the normalized values we can directly compare CC and mAP since the former

is a sum of confidence values in the range [0, 1] while the latter is a single value in the same

range. Intuitively, the CC increases as we both get more objects recognized, and we do so with

higher confidence.

We first quantify the trade-off between the CC and service frame rate using the COCO

dataset. Figures 8.2a-8.2b depict the average CC and achieved frame rate, for different encoding

rates and NN input sizes. It is evident that increasing the NN size and/or encoding rate,

increases the CC and decreases the frame rate. Interestingly, we also found in Fig. 8.2a a case

of non-increasing impact of the NN size on CC (for 25% encoding rate). Notice that the CC

increases with the NN size before dropping for NN size > 448.

The main issue with those results is that they are averages of the system performance and

can be obtained only after applying object recognition to thousands of images for each possible

system configuration. Indeed, Figures 8.2c-8.2d depict the variations in CC and frame rate

for 2 specific configurations. Moreover, the observed increase (decrease) in CC (frame rate)

Page 117 of 171

Apostolos Galanopoulos Trinity College Dublin

25 50 75 100
Encoding Rate (%)

4

6

8

10

12

En
co
di
ng

 D
el
ay

 (m
s)

Pixel 2
P10 Lite
Galaxy S8

(a)

25 50 75 100
Encoding Rate (%)

5.0

7.5

10.0

12.5

Tr
an

sm
iss

io
n

 D
el
ay

 (m
s)

Pixel 2
P10 Lite
Galaxy S8

(b)

128 256 320 512 608
NN size

10

20

30

40

50

Pr
oc

es
sin

g
 D

el
ay

 (m
s)

GTX 1080 Ti
RTX 2080 Ti

(c)

Figure 8.3: (a) Encoding and (b) transmission delay for 3 devices. (c) Dependence of the NN processing
delay on GPU.

is non-linear with either NN size or encoding rate, and surprisingly, not even monotonic as

explained above. The measured performance can also vary depending on factors like the device

environment and specifications, channel conditions or server capabilities, making the development

of general accuracy and latency models highly cumbersome. We demonstrate the above in

Fig. 8.3a-8.3b, where we measure the average encoding and transmission delay respectively, for

3 different mobile devices. Clearly, although all delays are increasing with the encoding rate,

the fitted curves vary substantially across devices. The same trend persists when the server’s

hardware (GPU) changes. Fig. 8.3c depicts the difference in DNN processing delay between 2

GPUs as we increase the NN input size.

In summary, our experiments reveal a non-trivial multimodal impact of the encoding rate

and NN size on CC and frame rate. These 2 key metrics are platform and dataset dependent,

highly volatile, and there are unknown correlations among the configurations. Hence, it is both

important and challenging to find the best system configuration at runtime.

8.3 System Model and Problem Statement

Network and edge service. Our system operates in time slots, each with fixed duration ∆

secs. A set N of N mobile devices are connected to a MEC server that runs a video analytics

service, e.g. object recognition, as in Fig. 8.4. Each device n ∈ N extract images from the

captured video stream, where properties like the number and type of objects in each image vary

over time. We denote those properties with {ont} which follows an unknown random process

{ont}∞t=1. Each user applies an encoding rate to the captured images selected from finite set X

and transmits them to the server for processing. The average signal to noise ratio (SNR) of

Page 118 of 171

Apostolos Galanopoulos Trinity College Dublin

τnt(xnt)

Cnt(xnt, yt)

Rnt(xnt, yt, wnt)
wnt

xnt ytEncoding:

Devices

Frame rate:
AP+Server

NN Input:

Accuracy: Polling

Tx window:

1 2

3

4

n

Users GPUs

w1t

w2t
x2t

x1t

y2t

y1t

x1t

Assign users
to GPUs

...

w1t

y1t

y2tx2t

Assign users
to GPUs

...

Assign users
to APs

AP

Figure 8.4: Multi-user system operation.

device n during slot t is denoted by hnt, which is calculated by the AP and is given by a random

process {hnt}∞t=1. Upon reception of an image, the server decodes and downsamples it to fit the

input size of the NN that is loaded on its GPU. The possible NN size values are selected from a

finite set Y. Note that while each device can apply their own encoding rate, the NN input size

is common for all devices as they share the server’s GPU4.

Decision variables. The encoding rate of each device n during time slot t is a system

decision variable denoted by xnt ∈ X . The selection of xnt will determine the resulting image

size s(xnt), which in turn will affect the transmission time to the server. We denote the fixed

bandwidth of the wireless channel by W , and as a result, the Wi-Fi transmission delay of user n

during t is:

τnt(xnt) = s(xnt) + L

W log(1 + hnt)
, (8.1)

where L is the TCP/UDP stack overhead added to the images.

To enable multi-user connectivity to the server and coordinate transmissions and GPU

computations, we introduce the time allocation variable wnt ∈ W , [0,∆] as a configurable

parameter. By limiting the fraction of time wnt that is allocated to each device n for continuous

object recognition, we can guarantee that all devices have the opportunity to send a number

of images during t. We compact all variables in zt = (x1t, . . . , xNt, yt, w1t, . . . , wNt) ∈ Z ,

XN ×Y×WN . Note that our system is orthogonal to, and operates at a higher time scale

than other underlying wireless mechanisms, e.g., contention control, which run in the scale of

milliseconds.

Performance metrics. We define the function Cn(zt) : Z → R+ to be the expectation

of the CC experienced by user n when configuration zt is applied to the system. In practice
4Our experiments showed that changing the NN input size for each user induces delay that impacts performance.

In Sec. 8.5 we extend our model to allow different NN size per user whenever many GPUs are available.

Page 119 of 171

Apostolos Galanopoulos Trinity College Dublin

however, we can only observe the noisy instantaneous CC achieved during each slot t, that

follows a distribution like in Fig 8.2c. This noise is caused due to the varying content of the

images expressed by ont that makes some objects easier/harder to classify than others. We

denote the instantaneous CC as Cnt(zt; ont) : Z → R+, n ∈ N , and can write it:

Cnt(zt; ont) = Cn(zt) + ε1(ont), with ε1∼N (0, σ2
1). (8.2)

In a single user scenario, the frame rate is fully determined by the end-to-end latency of the

system. With multiple users however, service is interrupted (see Fig. 8.5 for a 3-user scheduling

example). The frame rate we refer to from now on, is the number of images processed for each

user during a slot of length ∆, e.g. with respect to Fig. 8.5 we have 4 frames per slot for user 1,

3 frames for user 2 and 2 for user 3. Similar to CC, we define the average frame rate of device n

by Rn(zt) : Z → R+, that depends on all variables. Function Rn(zt) is also an average value

that can vary over time due to varying channel conditions hnt of each user, as shown in Fig 8.2d.

We denote the noisy frame rate observed during slot t by Rnt(zt;hnt) : Z → R+ defined as:

Rnt(zt;hnt) = Rn(zt) + ε2(hnt), with ε2∼N (0, σ2
2). (8.3)

Note that the above frame rate is directly measured by the server since it is responsible for

processing all user images. Hence, it keeps count of the number images processed for each user n

during their allocated air time wnt. Finally, each device n sets a minimum frame rate threshold

λn based on their preferences or requirements. We consider the general case where these can

differ across users.

User scheduling. If we allow the users to concurrently send sequences of images, we face

the problem of interference and queuing at the server, since only one image can be processed at

each time. In detail, if we consider a shared medium (previous versions of WiFi) we want to

avoid the users to collide in their transmissions, i.e., avoid the contention phase, which will delay

the service pipeline (encoding-transmission-decoding-processing) shown in Fig. 8.5. Second,

if we consider the latest WiFi standard (802.11ax), which is based on OFDMA, several users

can transmit using different sub-bands without colliding. In that case our aim is to prevent

the server queue to grow infinitely. Such problems can deteriorate the analytics performance

since the end-to-end latency of a single image can increase, and thus the information overlaid

Page 120 of 171

Apostolos Galanopoulos Trinity College Dublin

Figure 8.5: Task scheduling example for 3 users.

on the user’s screen can be substantially outdated. To avoid that, we let the server apply a

polling scheme, so that each user n∈N executes the entire processing pipeline (in both the

mobile, the network and server) without interruptions, for the duration of its allocated time wnt,

using the selected configuration xnt, yt. Based on the values selected for wnt, n ∈ N , the server

communicates to the users the timestamp at which they are supposed to start and end their

transmissions in order to respect the scheduling scheme. This can occur any time the server

sends object recognition results back to the users.

Problem formulation. Our aim is to maximize the CC of users while respecting their frame

rate requirements. We define the observed CC across the users as ft(zt) =
∑
n∈N Cnt(zt; ont),

and the constraints gnt(zt) = λn −Rnt(zt;hnt), n∈N . Ideally, we would like to find the optimal

solution z∗ = (x∗1, . . . , x∗N , y∗, w∗1, . . . , w∗N) to the following problem:

P : maximize
z∈Z

E
{
ft(z)

}
(8.4a)

subject to: E
{
gnt(z)

}
≤ 0, n ∈ N (8.4b)∑

n∈N
wn ≤ ∆ (8.4c)

Observe that applying the expectations in (8.4a)-(8.4b), by using (8.2)-(8.3), yields the unknown

average functions, i.e.,

E
{
ft(z)

}
=
∑
n∈N

Cn(z), E
{
gnt(z)

}
= λn −Rn(z).

Page 121 of 171

Apostolos Galanopoulos Trinity College Dublin

Also, constraints (8.4b), (8.4c) ensure that the frame rate thresholds are respected, and that the

time allocation is valid.

Clearly, P cannot be solved directly since functions Cn(·) and Rn(·) are unknown. Therefore,

we follow an online learning approach where we select configurations zt at the beginning of

each slot t and calculate the perturbed outputs ft(zt), gnt(zt) using the noisy measurements

Cnt(zt; ont), Rnt(zt;hnt). Our goal then is to find a sequence of configurations {zt}t that will drive

the average performance close to E
{
ft(z∗)

}
, while satisfying (probabilistically) the constraints

gnt(zt), ∀n and (8.4c) at each slot. Formally, we define the pseudo-regret:

RegT =
T∑
t=1

E
{
ft(z∗)

}
−

T∑
t=1

E
{
ft(zt)

}
, (8.5)

and require that sequence {zt}t achieves sublinear average regret, limT→∞RegT /T = 0. This

will ensure that our policy learns to perform as well as the hypothetical benchmark z∗ which can

only be designed in hindsight, i.e., with complete knowledge of the platform functions and data.

8.4 Gaussian Processes and Problem Solution

In this section, we start with the necessary background and then present in detail the online

algorithm and its properties.

8.4.1 MAB formulation through GP modeling

Due to the online nature of our problem, we address it following a Multi-armed Bandit (MAB)

approach, by which we sequentially select different configurations (arms) to tackle the exploration-

exploitation dilemma. However, most of classic MAB algorithms such as UCB [176] and

Thompson Sampling [177], do not consider that nearby arms can be correlated, i.e., they yield

similar performance; or assume these correlations to be known in advance, or to have a specific

(e.g., linear) structure [178,179]. Nevertheless, as the experiments in Sec. 8.2 showed, the system

configurations exhibit unknown, varying and even non-monotonic performance correlations.

In fact, these correlations could be fully characterized by the objective and constraint

functions in P, provided they were known. To rectify this, we use Gaussian Processes which is a

model-free (or, assumption-free) approach requiring only a certain level of function smoothness

Page 122 of 171

Apostolos Galanopoulos Trinity College Dublin

[167], something we already validated with our measurements. A kernel function ρ(z, z′) is

used to express the correlation between the objective/constraint function value of any pair of

configurations (z, z′) and enables predictions about the function evaluation at any vector z ∈ Z.

Following this approach, the seminal GP-UCB algorithm [180] was applied to unconstrained

problems where the objective function is iteratively approximated using noisy observations, much

like in our setup with the difference of constraints. The benefit of this approach is that it

estimates the mean value of ft(z) for any z by only using the rewards observed up to t, including

configurations that have not been applied in the past. In specific, if At = {z1, . . . , zt}, Ft =

{f1(z1), . . . , ft(zt)} are the applied configurations and respective rewards up to slot t, the mean

value and covariance of ft(z) for any configuration (or, action) z are given by:

µf,t(z) = kt(z)>(Kt + σ2
1It)−1Ft, (8.6)

kf,t(z, z′) = ρ(z, z′)− kt(z)>(Kt + σ2
1It)−1kt(z′), (8.7)

where kt(z)=(ρ(z1, z), . . . , ρ(zt, z))>, Kt=(ρ(zt, zt′)) is the positive definite kernel matrix, and

It the identity matrix with dimension t. GP-UCB selects the next action based on a weighted

acquisition rule:

zt+1 = arg max
z∈Z

µf,t(z) + βt
√
kf,t(z, z),

where βt is a problem-related parameter, and it provably achieves sublinear expected (or,

pseudo) regret [180], for this ensures an efficient sampling, or active-learning, trajectory in the

configuration space.

8.4.2 Constrained GP-based MAB optimization

In order to find configurations that progressively increase system performance, and do so without

violating the frame rate thresholds, we need a twofold extension of GP-UCB. There are only

few works that proposed similar ideas for safe GP-UCB algorithms, e.g., [181–183]. Following

a similar approach, we design a learning algorithm with 2 stages: the expansion stage (for T0

slots) and the optimization stage (for T − T0 slots). In the former, given an initial safe set

of configurations S0, i.e., actions guaranteed to satisfy the thresholds, we successively create

enlarged safe sets St by adding configurations that conservatively (by means of upper bounds)

also respect the constraints. After we reach a satisfactory approximation of the maximum

Page 123 of 171

Apostolos Galanopoulos Trinity College Dublin

achievable safe set, we commence the optimization stage where we apply the upper confidence

bound (UCB) rule on that set, much like in GP-UCB [180].

In detail, we use GPs to model the constraints, as we do for the objective, and evaluate their

posteriors using the past observations Gnt = {gnτ (zτ)}tτ=1 as:

µn,t(z) = kt(z)>(Kt + σ2
2It)−1Gnt, (8.8)

kn,t(z, z′) = ρ(z, z′)− kt(z)>(Kt + σ2
2It)−1kt(z′). (8.9)

We also use the upper and lower confidence bounds (UCBs, LCBs) for the constraint and

objective functions:

uit(z) = µi,t(z) + βt

√
ki,t(z, z), i = f, 1, . . . , N (8.10)

lit(z) = µi,t(z)− βt
√
ki,t(z, z), i = f, 1, . . . , N (8.11)

where βt is an increasing with t scalar (discussed below).

Regarding the safe set expansion stage, if we knew the constraint functions it could be

achieved by performing the operation:

Vζ(St) = St ∪
⋂
n∈N

{
z ∈ Z

∣∣∃ z′ ∈ St : gn(z′) + ζ +Mn‖z − z′‖2 ≤ 0
}
, t = 0, 1, 2 . . .

where Mn is the Lipschitz constant of gn, and ζ a tunable tolerance parameter. Essentially, we

would expand St by including points z that are close enough to previous safe points z′ such that

they also satisfy the constraints. We denote with Sζmax, limt→∞ Vζ(St) the maximum reachable

set through this operation, and Smax the maximum possible safe set that we obtain for ζ=0.

Yet, since we do not know the constraint functions we follow a different approach.

Namely, we use instead the UCBs and the expansion rule:

St =
⋂
n∈N

⋃
z∈St−1

{
z′ ∈ Z | unt (z) +Mn‖z − z′‖2 ≤ 0

}
(8.12)

and employ the updated safe set St to create a second set Gt ⊆ St that contains configurations

Page 124 of 171

Apostolos Galanopoulos Trinity College Dublin

Algorithm 7 Automatic configuration of video analytics
1: Initialize: S0 ⊂ Z, z1 ∈ S0,A0,F0,Gn0 = ∅, ρ(z, z′),Mn, λn > 0 and βt
2: for t = 1, . . . , T do
3: Process images and obtain: ft(zt), gnt(zt), n ∈ N
4: At ← At−1 ∪ {zt}
5: Ft ← Ft−1 ∪ {ft(zt)}
6: Gnt ← Gnt−1 ∪ {gnt(zt)}, n ∈ N
7: Update posteriors of z ∈ St using (8.6)-(8.9)
8: if t ≤ T0 then
9: St ← ∩n ∪z∈St−1 {z′ ∈ Z|unt (z) +Mn‖z − z′‖2 ≤ 0}

10: Gt ← {z ∈ St | et(z) > 0}
11: if maxz∈Gt

(
unt (z)− lnt (z)

)
< ζ,∀n ∈ N then

12: zt+1 ← arg maxz∈St u
f
t (z)

13: else
14: zt+1 ← arg maxz∈Gt

(
unt (z)− lnt (z)

)
, n ∈ N

15: end if
16: else
17: St ← St−1
18: zt+1 ← arg maxz∈St u

f
t (z)

19: end if
20: end for

which not only are safe but can lead to further expansion. For that, we define:

et(z)=
∣∣∣ ⋂
n∈N

{
z′ ∈ Z\St

∣∣ lnt (z)+Mn‖z − z′‖2 ≤ 0
}∣∣∣, (8.13)

and then build Gt={z ∈ St | et(z)>0}. Finally, if the configurations in Gt are still uncertain

enough in terms of their possible values, i.e. maxz∈Gt(unt (z)− lnt (z)) ≥ ζ,∀n, we select the most

uncertain zt+1 = arg maxz∈Gt(unt (z)− lnt (z)). Otherwise, we select the configuration with the

highest UCB, i.e., zt+1 = arg maxz∈St u
f
t (z). In that case, we have found a good approximation

for the safe set, i.e., close enough to the maximum reachable set Sζmax, and can continue in the

optimization stage. All steps are shown in Algorithm 7.

8.4.3 Theoretical results

The effectiveness of Algorithm 7 relies on the accurate estimation of sets St and Gt. Specifically,

we want to conservatively expand the safe set in order to guarantee the feasibility of its

configurations. On the other hand, if the expansion is too conservative, we will need many

iterations to reach the set of all safe configurations Sζmax. This trade off is controlled by parameter

Page 125 of 171

Apostolos Galanopoulos Trinity College Dublin

βt which is chosen as [182]:

βt = B + σ1

√
2(1 + γt−1 + log(1/δ)), (8.14)

In the above, B is an upper bound on the Reproductive Kernel Hilbert Space (RKHS) norm of

f and gn, while δ is the allowed constraint violation probability. Parameter γt is the maximum

mutual information gain that can be obtained about the prior of f , after t samples have been

observed [180]:

γt = max
A⊂Z,|A|=t

= 1
2 log |I + σ−2

1 KA|,

where KA = [ρ(z, z′)], z, z′ ∈ A is the covariance matrix of the samples collected after t slots.

Evidently, γt is very difficult to obtain in practice, but a conservative bound is given in [181] for

the case of finite Z as

γt ≤ |Z| log
(
1 + σ−2

1 t|Z|max
z∈Z

kf,t(z, z)
)
.

We employ the Matern kernel function with parameter ν = 3/2, which implies that our functions

are at least once differentiable [167]. The kernel is given by:

ρ(z, z′) =
(
1 +
√

3
l
‖z − z′‖2

)(
exp(−

√
3
l
‖z − z′‖2

)
,

where l is a length scale parameter.

Next, we formally present the convergence properties of the safe set (expansion stage) and

the average observed reward (optimization stage), to Sζmax and E{ft(z∗)}, respectively. For

the former, what we need to do is find the minimum T0 in the problem’s time horizon T that

guarantees this convergence. This is described as follows:

Lemma 3 Given an initial safe set S0 6= ∅ such that gn(z) ≤ 0, ∀z ∈ S0, n ∈ N , fix any

ζ > 0 and δ ∈ (0, 1), choose βt as in (8.14), and γt = |Z| log(|Z|t). The safe set expansion

stage of Algorithm 7 guarantees with probability 1− δ that only safe actions are included

to the safe set at any time. Moreover, the expanded set St will reach the maximum safe

set Sζmax if we select T0 to be the smallest integer for which:

T0
β2
T0
|Z| log(|Z|T0)

≥ 8(|Smax|+ 1)
ζ2 log(1 + σ2

1)
.

Page 126 of 171

Apostolos Galanopoulos Trinity College Dublin

Proof The proof is based on Theorem 1 in [182] where we apply the bound on the information

gain γt. This is possible since in our setup the action set Z is always finite.

The next theorem characterizes the algorithm’s convergence, and how its regret depends on

the system parameters.
Theorem 1: Regret of Algorithm 7

Given an initial safe set S0 6= ∅ such that gn(z)≤ 0 ∀z ∈ S0, n ∈ N , fix δ ∈ (0, 1), and

choose βt as in (8.14). Algorithm 7 yields sublinear regret of O(
√
T |Z| log(|Z|T)) with

probability 1−δ. In specific:

RegT ≤ 4B
√

(T + 2)γT + γT

√
(T + 2)(α/γt + 1),

where α = 1 + log(1/δ), and γT = |Z| log(|Z|T).

Proof By the definition of regret we have

RegT =
T∑
t=1

E{ft(z∗)} − E{ft(zt)}

≤
T∑
t=1

µf,t(zt) + βt
√
kf,t(zt, zt)− E{ft(zt)} ≤ 2βT

T∑
t=1

√
kf,t(zt, zt)

where we used the upper and lower bounds (8.10), (8.11) and the fact that βt is an increasing

parameter. From Lemma 4 in [184] we have that
∑T
t=1

√
kf,t(zt, zt) ≤

√
4(T + 2)γT hence we

obtain

RegT ≤ 2βT
√

4(T + 2)γT ≤ 4
(
B +

√
2σ1
√
α+ γT

)√
(T + 2)γT

= 4B
√

(T + 2)γT + γT

√
(T + 2)(α/γt + 1).

Observe that the largest (second) term of the bound yields a regret growth of O(
√
TγT) and by

the selection of γT we have O(
√
T |Z| log(|Z|T)).

Discussion. The above result shows that the cumulative regret does not grow indefinitely and

the algorithm selects configurations towards increasing the obtained rewards. The performance

of the algorithm depends on parameters such as ζ which allow us to set the optimization accuracy

Page 127 of 171

Apostolos Galanopoulos Trinity College Dublin

Algorithm 8 GP-UCB
1: Initialize: z1 ∈ Z, α, ρ(z, z′), λ > 0, s, and βt
2: for t = 1, 2, . . . do
3: Process images and obtain: ft(zt)← Ct(zt; ot)− α|Rt(zt;ht)− λ|
4: At ← {z1, . . . , zt}
5: Ft ← {f1(z1), . . . , ft(zt)}
6: for z ∈ Z do
7: µt(z)← kt(z)>(Kt + σ2I)Ft
8: kt(z, z)← ρ(z, z)− kt(z)>(Kt + σ2I)−1kt(z)
9: end for
10: zt+1 ← arg maxz∈Z µt(z) +

√
βtkt(z, z)

11: end for

– increasing it reduces the expansion time T0 but shrinks the range of considered configurations

(by the algorithm and the benchmark); while reducing parameter δ improves the violation and

regret bound probabilities but deteriorates the regret bound. Finally, note that all bounds are

probabilistic, hence the term pseudo-regret.

8.5 Extensions and Practical Considerations

Next, we present important extensions of our system model, and also describe implementation

issues that allow the practical deployment of Algorithm 7.

Unconstrained Multi-objective version. We firstly study a simpler version of the

problem, where we consider a single user, and the frame rate constraints are embedded into the

objective [185]. In detail, we only have a tuple of configurable parameters zt = (xt, yt) 5 that

denote the selected encoding rate and NN size and a unified objective defined as:

ft(zt) = Ct(zt; ot)− α|Rt(zt;ht)− λ|,

where λ is the desired frame rate and α balances between maximizing the CC and achieving a

frame rate close to the desired λ. In that case, constraints (8.4b), (8.4c) are not needed, and we

only need one GP to estimate the objective. The algorithm used, to find the optimal solution in

this simpler version is given in Algorithm 8, and reduces to the standard GP-UCB algorithm.

Transmission control and sequencing. Besides scheduling the users, in many scenarios

it is crucial to guarantee a low maximum delay between consecutive scheduling sequences of each
5Note that the n indices are missing as we only consider one user.

Page 128 of 171

Apostolos Galanopoulos Trinity College Dublin

Figure 8.6: User scheduling with k = 3 subintervals for smoother user experience.

user. In Fig. 8.5 for example, this maximum delay for user 1 is equal to w2 + w3 = ∆− w1. A

way to reduce this delay is to divide the slot into smaller subintervals, e.g. k sub-slots of duration

∆/k, which will effectively reduce the inter-arrival delay by a factor of k. This is demonstrated

in Fig. 8.6, where the images of each user are highlighted with different color, effectively reducing

the delay between non-consecutive images for the users and providing a smoother experience.

However, if the number of users is too big the delay may not be brought down to desirable values

even then. Alternatively, one might resort to interleaving transmissions for users with high

performance requirements, and break the scheduling pattern. Such sequencing adjustments can

be applied to our framework, since the server dictates the service sequence of the users, and those

orthogonal to the parameters selected by our algorithm. Moreover, note that this framework

operates at a higher time scale than typical wireless mechanisms, e.g. power allocation, which

run in a much smaller time scale. These decisions are also orthogonal to the video pipeline

configuration, and are essentially latent factors, the effect of which is incorporated through our

Bayesian updates.

Additional configurations. In our prototype we experimented with the NN size, encoding

rate and airtime. Nevertheless, other video processing pipelines involve parameters such as the

frame resolution [19,83], NN model and number of NN layers [18,84,94], or the maximum power

the GPU can use [186]. These parameters eventually trade off frame rate for CC, just like the

encoding rate and NN input size in our application, and our framework can be readily extended

to account for these options. For example, consider the case where we can select the users’

frame resolution pnt from a finite set P, on top of the encoding rate. Image size s(xnt, pnt) and

Page 129 of 171

Apostolos Galanopoulos Trinity College Dublin

transmission delay τnt(xnt, pnt) would be bi-variate functions and thus we would have:

τnt(xnt, pnt) = s(xnt, pnt) + L

W log(1 + hnt)
,

while the configuration vector would be zt=(x1:Nt, yt, w1:Nt, p1:Nt), where we use shorthand

notations α1:Nt for vectors (α1t, . . . , αNt). Similarly, if we can select among L NN models that

differ on, e.g., their training data, this vector becomes zt = (x1:Nt, yt, w1:Nt, lt), lt ∈ L. Such

extensions increase the configuration space and this can impact the convergence speed, which

nevertheless is guaranteed. We evaluate this scenario in Sec. 8.6.

Controlling computing resources. On the other hand, some systems offer access to

allocating their computing resources or have multiple GPUs (see Fig. ??). Hence, we would be

able to allocate a GPU, and as a result a distinct NN input size ynt for each user n. The cost

would be again an increased action space, namely zt = (x1:Nt, y1:Nt, w1:Nt), but the total user

load would be distributed among a larger number of GPUs, allowing better system performance.

Furthermore we can introduce assignment variables to allocate multiple users to multiple GPUs

and/or Access Points (AP). In specific, consider that the server has K available GPUs and the

users can connect to it through J APs, resulting in a joint GPU/AP assignment decision vector,

i.e. zt = (x1:Nt, y1:Kt, w1:Nt, v1:Nt), where vnt is the association decision for user n, i.e. a tuple

(j, k) that denotes n is served by AP j and GPU k. This way we can support higher frame rates

for the users since the resource availability scales. However, as computation complexity increases

with the action space, a single edge node might not be able to make the configuration decisions

on time for the next slot. In such cases, a node with higher computing power (orchestrator) can

receive the action and reward/constraint history At,Ft,Gnt and update some or all of the GPs,

while the edge nodes are solely responsible for serving the users, reporting the measurements to

the orchestrator, and applying the actions it receives back.

Implementation issues. In many settings some of the algorithm’s parameters might be

unknown. For instance, an upper bound for the norms of f, gn is difficult to compute with

no/incomplete data. The same is true regarding the Lipschitz constants Mn. In practice, we can

compute the former during a small initialization period, or rely on historic data. For the latter

Page 130 of 171

Apostolos Galanopoulos Trinity College Dublin

we can use a modified rule for the expansion stage [182], where we replace (8.12), (8.13) with:

St =
⋂
n∈N
{z ∈ Z | unt (z) ≤ 0}, and et(z) =

∣∣∣ ⋂
n∈N
{z′ ∈ Z\St | lnt (z) ≤ 0}

∣∣∣,
where we simply use the upper/lower confidence bounds. The drawback is that we need to

calculate the posteriors for all z ∈ Z, not just the ones already in St, and essentially compute a

new safe set at each iteration.

8.6 Performance Evaluation

We consider the sets X ={25, 50, 75, 100}, and Y = {128, 192, 256, 320, 384, 448, 512, 576}, and

provide the respective measurements obtained from our testbed in [172]. We quantize the

time allocation decisions wnt so that our configuration space Z is finite. In specific, we define

W = {.1, .2, .3, .4, .5, .6, .7, .8, .9} and ∆=5 sec, so that wnt=0.5 means that the time allocated

to device n during t is 2.5 sec. For the construction of the initial safe set S0, we only use

configurations that include the lowest NN size and encoding rate, i.e. 128 and 25% respectively,

since if the problem is feasible, these parameters will definitely satisfy the constraints. We used

the measurements and the model of Sec. 8.3 to evaluate Algorithm 7 in finding the optimal

configuration of a multi-user system with diverse frame rate constraints. The channel bandwidth

is W =40 MHz and each user’s mean SNR is selected from a uniform distribution in [10, 35] dB.

This mean is then used to sample the SNR hnt at each slot from a Gaussian distribution.

8.6.1 Single User and Multi-objective Scenario

We evaluate the performance of Algorithm 8 with respect to the performance metrics, i.e. CC

and frame rate, as well as the optimality measure, i.e. the regret. We compare the latter,

with the regret achieved by standard algorithms used in the MAB literature like UCB [176]

and Thompson Sampling (TS) [177]. In brief, UCB selects actions based on a combination of

expected reward and selection frequency of each action. TS randomly samples a (Gaussian for

our problem) distribution for each action, based on the observed rewards, and selects the one

with the highest outcome.

Fig. 8.7a-8.7b display the running average of CC and frame rate (defined as 1/t
∑t
τ=1Cτ (xτ)

and 1/t
∑t
τ=1 λτ (xτ) respectively) achieved by Algorithm 8 for different values of the target

Page 131 of 171

Apostolos Galanopoulos Trinity College Dublin

0 50 100 150 200 250 300
Slot

2.0

2.5

3.0

Cu
m

ul
at

iv
e

Co
nf

id
en

ce λ ⋆ ⋆ 15 λ ⋆ ⋆ 25 λ ⋆ ⋆ 35

(a)

0 50 100 150 200 250 300
Slot

15

20

25

30

35

Fr
am

e
Ra

te
 (f

ps
)

λ ⋆ ⋆ 15 λ ⋆ ⋆ 25 λ ⋆ ⋆ 35

(b)

Figure 8.7: Running average of Cumulative Confidence and frame rate of GP-UCB for different values
of the desired rate λ?.

0 50 100 150 200 250
Slot

0

20

40

60

80

100

Re
gr
et

GP-UCB
UCB
TS

(a)

(38
4, 5

0)

(38
4, 7

5)

(44
8, 2

5)

(44
8, 5

0)

(44
8, 7

5)

(51
2, 2

5)

(51
2, 5

0)

(51
2, 7

5)

Action

0

20

40

60
Fr
eq
ue
nc
y
(%

) GP-UCB
UCB
TS

(b)

Figure 8.8: (a) Regret comparison under λ? = 25 fps. (b) Action selection frequencies for the different
algorithms.

frame rate λ?. The efficiency of the algorithm is increased as the CC increases and the frame

rate is close to the rate λ?. As expected, for higher λ?, the CC gets smaller to allow a (higher)

frame rate, closer to the desired λ?. Moreover, we observe that after the initial slots where the

algorithm explores the correlation between actions, the CC increases until it reaches a stable

average value, while the frame rate continues to approach λ?, as the algorithm keeps selecting

high reward actions more frequently.

We depict the cumulative regret of GP-UCB, UCB and TS algorithms in Fig. 8.8a. Compared

to UCB and TS, GP-UCB shows at first higher regret, since it needs to explore various areas of

the action space to reduce the initially high uncertainty. However, it quickly manages to locate

the high reward actions and after 150 slots its regret is lower than both UCB and TS. The latter,

also outperforms UCB, since it takes advantage of the Gaussian distribution of the rewards,

while UCB tends to explore low reward actions that have not been selected too often before.

Page 132 of 171

Apostolos Galanopoulos Trinity College Dublin

0 10 20 30 40 50
Slot

0
20
40
60
80

100
120
140
160

Sa
fe

 se
t s

ize # of safe actions

B= 2
B= 5
B= 10

(a)

δ= 0.1 δ= 0.30
5

10
15
20
25
30
35

Co
ns

tra
in

t V
io

la
tio

ns
 (%

) B= 2
B= 5
B= 10

(b)

Figure 8.9: (a) Safe set expansion during the first stage of Algorithm 7. (b) Constraint violation
percentage for different values of B, δ.

The frequency of selected actions is displayed in Fig. 8.8b, only for the actions selected for

more than 1% of the time. This way we overlook purely exploratory actions, and focus on those

that the algorithms deem worth exploiting. Note that actions (448,50) and (448,75) are the

ones yielding the highest rewards. Observe that one of these actions is selected by GP-UCB for

about 86% of the time while for UCB and TS this percentage is only 54% and 64% respectively.

Instead they apply lower reward actions more frequently, e.g. (512,25), resulting in higher long

term regret.

8.6.2 Parameter Analysis

We first study the impact of parameter βt. There are several practical limitations when setting

βt, e.g., B is difficult to obtain a-priori and is application specific. Importantly, the value for B

impacts the safe set expansion stage since it controls how conservative or slack we are in adding

configurations to the safe set. In addition, parameter δ determines the constraint violation

probability which is related to the correctness of St and how likely it is for relatively unsafe

actions to be selected. Fig. 8.9a depicts the size evolution of the safe set over time versus B. We

empirically select T0 = 30 for this case since, even before t = 30, St is stabilized. We calculated

(offline) that the number of configurations that satisfy gn(z)≤0, ∀n is 160. We observe that as

we increase B the algorithm becomes more conservative in expanding the safe set. In specific,

we have that |St| for B = 2 is 80.6% of the actual safe set, while for B = 10 it is only 59.4%,

meaning that many high reward actions will not be considered in the optimization stage.

Next, we evaluate the impact of B and δ on the constraints violation probability. Note that

Page 133 of 171

Apostolos Galanopoulos Trinity College Dublin

in order to actually achieve violation probability at most δ, parameter B has to be chosen such

that ‖gn‖2k ≤ B. Fig. 8.9b displays the constraint violation probability over 200-slot simulations.

We consider probabilities 0.1 and 0.3 for δ, and B∈{2, 5, 10}, as before. Notice that for B = 2

the violation probability increases beyond 10% and 30% respectively, indicating that the selection

of B is too low to satisfy the desired probability. In the following we select δ = 0.1 and B = 5

to enable low constraint violation probability and a relatively large safe set.

8.6.3 Results

In order to evaluate the performance of Algorithm 7, we use a for 2-user system where

λ1 =10, λ2 =20 fps, and plot each user’s achieved average CC and frame rate over time in

Fig. 8.10a. The figure shows 1/t
∑t
k=1Cnk(zk; onk) and 1/t

∑t
k=1Rnk(zk;hnk), ∀t, for the 2

users in each of the y-axes. Observe that during the expansion stage, i.e. t ≤ 30, we have a

rather random performance since the goal there is only to locate safe actions. For t>30 however,

the algorithm takes improved actions for both users, resulting in an increasing CC. These actions

are at the edge of the safe set and hence they are “riskier” resulting in a controlled drop of the

average frame rate, which is always above each user’s threshold λn. Interestingly, we observe

that the frame rate of user 1 is well above the target λ1 =10 fps. The optimal encoding rate for

user 1 under this setup is 100%, an option that is not included in the safe set since it marginally

satisfies the constraint. This results in much higher frame rates via the convergence to lower

encoding rates, i.e. 50% or 75%. Additionally, the achieved CC is almost identical for both

users, which indicates that the differentiation in time allocation rather than encoding rate is

what differentiates the users’ frame rates, since the former does not affect the CC.

We evaluate the performance of Algorithm 7 compared to other benchmarks using the average

regret Regt/t in Fig. 8.10b. We select two state-of-the-art algorithms as competitors. The first

one is based on Deep Neural Networks (DNN) and the second one is an online learning algorithm

that handles constraints. The competitor algorithms are described as follows.

• NeuralBandit (NB). We have designed this algorithm based on the ideas in [187]. Our

objective is to assess the performance of another function approximator instead of the GPs we

use in Algorithm 7. For that purpose, we use a feedforward DNN to approximate the reward

(output) as a function of an action (input). However, a single feedforward DNN cannot provide

the uncertainty over the function estimation and therefore Algorithm 7 cannot be directly used

Page 134 of 171

Apostolos Galanopoulos Trinity College Dublin

0 50 100 150 200
Slot

1.0

1.5

2.0

2.5

Cu
m

ul
at

iv
e

Co
nf

id
en

ce

20

25

30

Fr
am

e
Ra

te
 (f

ps
)

User 1
User 2

(a)

0 100 200 300
Slot

0

1

2

3

4

Re
gr

et

Convergence

Algorithm 1
NB
BCTS

(b)

User 1 User 20

5

10

15

20

25

Co
ns

tra
in

t V
io

la
tio

ns
 (%

)

Algorithm 1
NB
BCTS

(c)

Figure 8.10: (a) Cumulative Confidence and frame rate of 2 users with λ1 = 10, λ2 = 20. (b) Average
regret performance and (c) constraint violations for the competitor algorithms.

with this function approximator. For that reason, we adopt a common approach in which the

reward function is redefined by including the constraints as penalty terms [188,189]:

ft(zt) =
∑
n∈N

Cnt(zt)− αmax
(
0,max

n∈N

(
λ∗n −Rnt(znt)

))
, (8.15)

where α is used to determine the constraint violation weight that is attributed to the reward.

Note that if α is big enough the maximum average reward of (8.15) will be for the optimal

action of problem P. In each slot, the DNN is retrained with the information obtained up to

the current slot and all inputs (actions) are evaluated to predict the respective rewards. We

use ε-greedy as an acquisition function, i.e., at each slot, we select the action with the highest

predicted reward with probability 1− γ, or a random action with probability γ. We set α = 0.5

and γ = 0.2, that show in our simulations a good exploration-exploitation balance.

• Behavioral Constrained Thompson Sampling (BCTS) [190] is a state-of-the-art online

learning algorithm that handles constraints. Since its original formulation is for contextual

bandit problems, we customize it for our problem. It also works in 2 stages. In the first one,

actions are sampled randomly in each slot to establish sufficient measurements for (i) their

rewards, and (ii) a variable rez(t) ∈ {0, 1} that shows if an action z has violated any of the

constraints at time slot t. After the first stage, the expected reward and constraint violation

variables for each action are sampled from a normal distribution generated by the measurements

of rewards and constraint violations. The next action zt+1 is based on balancing those 2 sampled

values as follows:

zt+1 = arg max
z∈Z

αµ̃z(t) + (1− α)µ̃ez(t),

Page 135 of 171

Apostolos Galanopoulos Trinity College Dublin

0 50 100 150 200
Slot

0

10

20

30

40

Ite
ra

tio
n

de
la

y
(Δ

Δ
) N= 2

N= 3
N= 4
N= 5

(a)

6 8 10 12 140

100

200

M
ax

 d
el

ay

 (Δ
Δ

)

6 8 10 12 14
Users

0

100

200

Co
nv

er
ge

nc
e

 S
lo

t

(b)

Figure 8.11: (a) Average iteration delay of Algorithm 7. (b) Maximum iteration delay and convergence
time in slots.

where α is the balancing parameter between the expected reward of action z, µ̃z(t), and the

respective expected constrained violation (µ̃ez(t) is higher for actions that satisfy the constraints).

Since this approach does not guarantee the satisfaction of constraints with high probability,

we have selected α = 0.1 to fairly compare with our solution, i.e. minimize the frequency of

selecting constraint violating actions.

Fig. 8.10b depicts the average regret for Algorithm 7 and its competitors for 100 simulation

runs. Algorithm 7 makes high reward actions after the expansion stage, resulting in a continuous

decrease of the regret. We impose the stopping criterion discussed before, and observe that

convergence occurs at about 200. NB initially shows very high regret, especially because of

the penalization of constraint violating actions. It recovers very quickly but still it has weaker

performance than Algorithm 7. BCTS on the other hand shows very low regret, even in the first

stage (30 slots), as constraint violations are not penalized and all actions are equally explored.

In addition, convergence occurs very quickly, but it is to an action that is further away from the

optimal compared to Algorithm 7, as the regret decreases in a much slower pace. The inability

of NB and BCTS to safely explore the action space is highlighted in Fig. 8.10c where we see the

percentage of slots where either of the user constraints were violated. Observe that for user 2

that has a stricter frame rate requirement, violations are up about 20% for both NB and BCTS

compared to Algorithm 1. In conclusion, Algorithm 7 converges to a better solution than NB

and BCTS, and guarantees much safer exploration of the action space.

Next, we evaluate the algorithm’s scalability by measuring its average iteration delay, and in

particular, the time required to execute steps 7-19 in our server. Fig. 8.11a depicts this delay as

Page 136 of 171

Apostolos Galanopoulos Trinity College Dublinτnt(xnt)

Cnt(xnt, yt)

Rnt(xnt, yt, wnt)
wnt

xnt ytEncoding:

Devices

Latency:
AP+Server

NN Input:

Accuracy: Polling

Tx window:

1 2

3

4

n

Users GPUs

w1t

w2t
x2t

x1t

y2t

y1t

x1t

Assign users
to GPUs

...

w1t

y1t

y2tx2t

Assign users
to GPUs

...

Assign users
to APs

AP

0 50 100 150 200 250 300
Slot

3.5
4.0
4.5
5.0
5.5
6.0

Re
wa

rd

Optimal
Achieved

(a) Scenario 1

τnt(xnt)

Cnt(xnt, yt)

Rnt(xnt, yt, wnt)
wnt

xnt ytEncoding:

Devices

Latency:
AP+Server

NN Input:

Accuracy: Polling

Tx window:

1 2

3

4

n

Users GPUs

w1t

w2t
x2t

x1t

y2t

y1t

x1t

Assign users
to GPUs

...

w1t

y1t

y2tx2t

Assign users
to GPUs

...

Assign users
to APs

AP

0 50 100 150 200 250 300
Slot

6
7
8
9

10
11

Re
wa

rd

Optimal
Achieved

(b) Scenario 2

τnt(xnt)

Cnt(xnt, yt)

Rnt(xnt, yt, wnt)
wnt

xnt ytEncoding:

Devices

Latency:
AP+Server

NN Input:

Accuracy: Polling

Tx window:

1 2

3

4

n

Users GPUs

w1t

w2t
x2t

x1t

y2t

y1t

x1t

Assign users
to GPUs

...

w1t

y1t

y2tx2t

Assign users
to GPUs

...

Assign users
to APs

AP

0 50 100 150 200 250 300
Slot

2
4
6
8

10
12

Re
wa

rd

Optimal
Achieved

(c) Scenario 3

Figure 8.12: Reward of (a): Many GPUs and preassigned users; (b): User-to-GPU assignment; (c):
User-to-AP-to-GPU assignment.

a fraction of slot duration ∆ for different number of users N . For the first 30 slots (expansion

stage) we clearly see the delay increasing both with the slot t and users N . The former is

because the updates (8.6)-(8.9) increase in complexity with the samples, since they involve

matrix inversions of size t. The latter is because with more users, there are many more candidate

configurations for the safe set expansion. After the first stage, we observe a drop of the delay

since (i) the posteriors of the constraint functions no longer require updates, and (ii) the safe

set has been fixed and uft (z) is only evaluated for z∈St. The iteration delay starts increasing

again with t for the same reason as before, but is kept low until the algorithm converges to an

acceptable solution. Interestingly, the delay for N = 4 is bigger than with N = 5, which is due

to the smaller |St| we get for the latter case, since fewer actions are feasible in that case. This

typically results in smaller fractions of the action set ending up in the safe set, and as explained

earlier, this is a main factor that affects the delay in the second stage.

We consider more users in Fig. 8.11b where we set a low frame rate requirement λn =

2, ∀n ∈ N , so that problem P is feasible. In the top graph we show the maximum value of

the iteration delay within a 200 slots evaluation. Notice that for N ≥ 12 the delay gets much

bigger than the slot duration, which suggests that we have to either increase ∆ and admit longer

convergence, or reduce the expansion stage duration. Alternatively, we can delegate parts of

the GP computations to the orchestrator for deciding the next slot configuration on time. The

lower graph in Fig. 8.11b shows the slot in which (on average) the stopping criterion discussed

in Sec. 8.5 occurs for different values of N . We observe that the differences are insignificant and

that we can always stop the algorithm in fewer than 200 slots.

Finally, we evaluate our framework for the settings where (i) multiple GPUs (K = 2) are

Page 137 of 171

Apostolos Galanopoulos Trinity College Dublin

available to the server, and a NN size configuration ynt is selected for each user n (Scenario 1);

(ii) the number of users N is higher than the number of GPUs K (Scenario 2); and (iii) the

users can be served by a number of J APs. In detail we set N = 4,K = 2, J = 1 for Scenario 2,

and N = 4,K = 2, J = 2 for Scenario 3. The achieved and optimal reward of Algorithm 7 for

Scenarios 1-3 is displayed in Fig. 8.12a-8.12c, along with a small graph depicting the differences

in the setup and of each scenario. Remember that the achieved reward is simply the added

observed CC for all users in each slot. We can see that in all scenarios the performance of

the system keeps increasing and converging towards the optimal one. In specific, the observed

performance is within only 6%, 4% and 5% from the optimal in each Scenario, after 200 slots.

Page 138 of 171

Chapter 9

Conclusions

This thesis is the product of scientific effort to understand the operation and performance

trade-offs of data analytic services deployed over edge computing networks. We studied IoT

and mobile networks trying to answer questions like: Where should the service be deployed,

or how should the parameters of the service be configured to offer optimal performance, while

also complying to user and system constraints. The complexity of those problems lead to the

adoption of various mathematical and programming tools in order to provide efficient and robust

algorithms for their solution.

9.1 Summary and Findings

Starting with IoT networks capable of executing analytics, we studied how collaborative exe-

cution can increase performance. We formulated optimization problems towards minimizing

(maximizing) the execution delay (accuracy) of tasks under various networking and power con-

sumption constraints. The initial approach is a distributed algorithm that converges fast, even

for large networks and increases the performance compared to the local-only task execution. A

trace-driven evaluation showed that indeed there is need for such cooperative solutions, and that

the designer needs to carefully tune the priority parameters, especially for networks where delay

and accuracy are conflicting. Moving a step further, we designed a comprehensive optimization

framework for cooperative task execution that does not assume willingness for cooperation, and

provides the necessary incentives through a double-auction mechanism that finds the optimal

task execution policy with minimal information requirements. This is a clean-slate algorithm of

Apostolos Galanopoulos Trinity College Dublin

theoretical interest in its own right, and it is backed by a real-world implementation. Namely, we

fully implement and evaluate the performance of our proposal using a face recognition application

and a RPi testbed. The results show that the algorithm outperforms various benchmark policies

and increases the supportable rate of tasks.

Next, we assume more realistic assumptions for collaborative computing of analytics tasks in

IoT networks. In Chapter 5 we combined the ADSM and FW algorithms to provide a robust

scheduling policy that optimizes the system’s task execution accuracy and keeps congestion in low

levels compared to other standard approaches. Our algorithm makes fast schedule evaluations,

since it solves a Linear Program in each iteration that is also a feasible schedule. Moreover,

it is a solution tailored to analytic services where the parameters like traffic load, network

capacities and even task execution accuracy vary over time in a possibly non-i.i.d way. We

provide theoretical convergence bounds for the proposed solution and finally demonstrate the

high performance level of our algorithm, comparing it to standard scheduling methods. We

then demonstrate online scheduling for an edge-assisted network, where nodes can outsource

certain tasks to a single more powerful cloudlet device, depending on resource availability. The

key feature of our proposal is a dynamic and distributed algorithm that makes the outsourcing

decisions based on the expected performance improvement, and the available resources at the

devices and cloudlet. It was shown, theoretically and through experiments, that this joint

performance-costs design outperforms other efforts that do not cater for the analytics accuracy

or the resource availability. The proposed algorithm achieves near-optimal performance in a

deterministic fashion, and under minimal assumptions about the system behavior. Namely, it

suffices the perturbations to be bounded in each slot and have well-defined means. This makes it

ideal for the problem at hand where, more often than not, the stochastic effects (e.g., expected

accuracy gains) do not follow an i.i.d. or a Markov process, as required by other optimization

approaches.

Finally, we built and studied a MEC-assisted object recognition system to highlight its unique

performance trade-offs, and show that careful network transmit and powersave strategies can

significantly reduce the wireless transmission delay. We find that the level of image compression,

as well as the dimension of the deep learning network used, are key design parameters, affecting

both end-to-end latency and object recognition accuracy. We demonstrate how our measurements

can be used to choose these design parameters to optimally trade-off between execution delay

Page 140 of 171

Apostolos Galanopoulos Trinity College Dublin

and accuracy. We then used our exemplar object recognition prototype, and demonstrated

that MEC-assisted video analytics exhibit volatile and platform/data-dependent performance.

This renders traditional optimization approaches inadequate for their control, especially for

the challenging real-time high-accuracy analytics. To address this issue, we built a Bayesian

online learning framework for configuring important service and networking parameters towards

high accuracy object recognition with frame rate guarantees for multiple users. Putting theory

into practice, we performed a thorough evaluation using our prototype, and verified the efficacy

of the framework in a variety of scenarios, but also identified potential bottlenecks, such as

increasing computational complexity, and proposed remedies for overcoming them. Our approach

is inspired by ideas in the area of automated machine learning, and we believe that our work

paves the way for building fully adaptable systems with performance guarantees, being also

oblivious on the hardware and software setup of the system.

In summary, this work has identified the unique nature of edge analytics, and the intricate

performance trade-offs that arise. Depending on the strictness of assumptions and the system

setup of each scenario studied, we proposed optimization techniques tailored to their requirements

and highlighted their advantages compared to other standard state-of-the-art approaches.

9.2 Future Work

The plethora of system configuration options that demonstrate varying levels of accuracy, delay

and resource consumption complicate their efficient tuning. This problem becomes even more

cumbersome as the increasing network density creates large-scale optimization problems that are

difficult to track in reasonable amount of time, as discussed in Chapter 8. Moreover, many of

the system parameters like, users’ data rate, task size etc, and thus optimal solutions, constantly

vary with time.

A potential solution to the scalability issues of these approaches would be the utilization

of deep learning methods to making predictions about the system’s parameter settings, like

e.g., edge offloading and model selection variables [191]. In other words using e.g. a DNN for

predicting the optimal configuration of a machine learning or data analytic service, based on the

current system state, can lead to substantial decrease in computing delay of these solutions, and

enable scalable deployment of the related services. This will also allow dynamic adaptation to

Page 141 of 171

Apostolos Galanopoulos Trinity College Dublin

the system’s varying parameters that sometimes render optimization techniques non-applicable

in high user density systems.

There is evidence in the literature that support such ideas. Learning based approaches

like [92] attempt to solve offloading problems. Deep learning solutions have also been studied

for several resource allocation problems in edge systems. The works in [192–194] use a deep

reinforcement learning technique (Deep Q-Networks) to tackle offloading problems. In [195], a

double deep Q-Learning model is proposed to improve device energy consumption by learning

the performance of the available DVFS algorithms. Such approaches are ideal for environments

with feedback but they do not capture the distinct performance metrics of data analytics.

More similar to our approach, the authors in [196] train a DNN to the inputs/outputs of a

popular interference management algorithm in order to reduce its computational complexity and

obtain prediction accuracy of > 90%. The authors in [197] highlight the importance of using

deep learning techniques for solving challenging integer optimization problems, and propose

an algorithm for learning the branch-and-bound pruning policy, often used in such problems.

Finally, the work in [198] uses a swarm optimization algorithm to obtain solutions for a Mixed

Integer Non Linear Program (MINLP) that optimizes energy consumption, and uses the samples

to train a DNN for making user association and resource allocation decisions. All the above

works indicate the importance of developing deep learning solutions since they can provide an

efficient alternative to solving complex optimization problems; serving as an interesting direction

for future work.

Page 142 of 171

Chapter 10

Appendices

10.1 Appendix to Chapter 5

As f is M -smooth, it is f(y)≤f(x)+∇xf(x)>(y− x)+M
2 ‖y− x‖

2. Let y=xt+1 =(1− β)xt+βst,

x=xt, to obtain:

f(xt+1) ≤ f(xt) + β∇xf(xt)>(st − xt) + β2MR2

2 . (10.1)

Proof of Proposition 2. The proposition will be true if any schedule that satisfies the

constraints can be written as a convex combination of schedules in S. Consider schedule s for

which (5.2) - (5.4) hold ∀(i, j). Further, assume that for link (i, j) we have
∑
c y

(c)
ij > 0, and∑

c y
(c)
kl > 0,∀(k, l) ∈ I(i, j), so s /∈ S. Consider the following schedules that belong in S:

• sij : Same as s but it holds that
∑
c y

(c)
ij = µij , and

∑
c y

(c)
kl = 0,∀(k, l) ∈ I(i, j).

• skl: Same as s but
∑
c y

(c)
ij = 0,

∑
c y

(c)
kl = µkl, (k, l) ∈ I(i, j), and

∑
c y

(c)
mn = 0, (m,n) ∈

I(i, j)− {(k, l)}.

The above schedules mean that either (i, j) or one of its interfering links (k, l) is active. W.l.o.g. we

assume that s satisfies (5.4) strictly, i.e ξij +
∑

(k,l)∈I(i,j) ξkl = 1, where ξij =
∑
c y

(c)
ij /µij ∈ [0, 1],

and ξkl =
∑
c y

(c)
kl /µkl ∈ [0, 1], (k, l) ∈ I(i, j). Observe that we can express s as a convex

combination of schedules that belong to S, i.e.,

s := ξijsij +
∑

(k,l)∈I(i,j)
ξklskl.

Apostolos Galanopoulos Trinity College Dublin

This holds also when s has many active interfering links that respect (5.4), since we can express

them as convex combinations of extreme point schedules from S. �

The next two lemmas are used in the proof of Lemma 2.

Lemma 4 (Bounded level set) Let the Slater condition hold, i.e. there exists a vector

xs such that gt(xs) < 0, ∀t. The superlevel set Qλ̂ = {λ � 0 | ht(λ) ≥ ht(λ̂)} is bounded.

That is, for any λ ∈ Qλ̂ we have

‖λ‖ ≤
(
ft(xs)− ht(λ̂)

)
/qt,where qt = min

i
{−gt,(i)(xs)}.

Proof It holds that ∀λ∈Qλ̂ it is ht(λ̂)≤ht(λ) = minx{ft(x)+λ>gt(x)} ≤ ft(xs)+λ>gt(xs) =

ft(xs)+
∑m
i=1 λ(i)gt,(i)(xs). Since gt,(i)(xs) < 0, and λ(i) ≥ 0:

min
i
{−gt,(i)(xs)}

m∑
i=1

λ(i) ≤ ft(xs)− ht(λ̂)⇒ ‖λ‖ ≤ 1
qt

(ft(xs)− ht(λ̂)),

which completes the proof.

Lemma 5 (Bounded Multipliers) The multiplier sequence generated by Algorithm 4

is bounded, i.e.,

‖λt‖ ≤ Λt , 2ft(xs)− ht(λ
◦)

qt
+ max

{
‖λ1‖,

ft(xs)− ht(λ◦)
qt

+ γt
qt

+
ασ2

g

2qt
+ ασg

}
.

Proof We define the superlevel set Qa={λ�0 | ht(λ) ≥ ht(λ◦)− γt −
ασ2

g

2 } and prove that

‖λt − λ◦‖ ≤ max
{
‖λ1− λ◦‖,

ft(xs)−ht(λ◦)
qt

+ γt
qt

+
ασ2

g

2qt
+ασg+‖λ◦‖

}
. (10.2)

Observe that the above holds for t = 1. We are going to assume it holds for any t, and prove it

holds for t+ 1. Case (i): ht(λt) ≥ ht(λ◦)− γt −
ασ2

g

2 . By the dual update rule:

‖λt+1 − λ◦‖ = ‖[λt + αgt(xt+1)]+ − λ◦‖ ≤ ‖λt‖+ ‖λ◦‖+ ασg

≤ 1
qt

(ft(xs)− ht(λ◦) + γt +
ασ2

g

2) + ‖λ◦‖+ ασg

Page 144 of 171

Apostolos Galanopoulos Trinity College Dublin

where the last inequality follows from Lemma 4 for Qa, hence (10.2) holds. Case (ii): ht(λt) <

ht(λ◦)− γt −
ασ2

g

2 . We have:

‖λt+1 − λ◦‖2 ≤ ‖λt + αgt(xt+1)− λ◦‖2 ≤ ‖λt − λ◦‖2+2αgt(xt+1)>(λt−λ◦)+α2σ2
g

(a)
≤ ‖λt − λ◦‖2 + 2α(ht(λt)− ht(λ◦) + γt) + α2σ2

g ≤ ‖λt − λ◦‖2,

where (a) holds since

gt(xt+1)>(λt−λ◦) = ft(xt+1)− ft(xt+1) + gt(xt+1)>(λt−λ◦) ≤ Lt(xt+1, λt)− Lt(xt+1, λ
◦)

≤ ht(λt) + γt − ht(λ◦),

which holds by the assumption of this case, making (10.2) true. Now we can rewrite (10.2) as:

‖λt − λ◦‖ ≤ max
{
‖λ1 − λ◦‖,

ft(xs)− ht(λ◦)
qt

+ γt
qt

+
ασ2

g

2qt
+ ασg + ‖λ◦‖

}
≤ ‖λ◦‖+ max

{
‖λ1‖,

ft(xs)− ht(λ◦)
qt

+ γt
qt

+
ασ2

g

2qt
+ ασg

}
.

Since ‖λt‖ ≤ ‖λt−λ◦‖+‖λ◦‖ we obtain ‖λt‖ ≤ 2‖λ◦‖+max
{
‖λ1‖, ft(xs)−ht(λ◦)

qt
+ γt

qt
+ ασ2

g

2qt
+ασg

}
,

and by applying Lemma 4 for λ̂ = λ◦ we obtain the claimed bound.

Proof of Lemma 2. We first prove the upper bound on the objective function by linking

the static and t-slot problems. We define zt ∈ arg minx∈X f(x) + λ>t g(x) (which is bounded as

X is bounded) and also yt ∈ arg minx∈X ft(x) + λ>t gt(x). Now we can write:

ht(λt) = f(yt) + λ>t g(yt) + ε>t yt + λ>t φt ≤ f(zt) + λ>t g(zt) + ε>t zt + λ>t φt = h(λt) + ε>t zt + λ>t φt.

Hence:

f(x◦) = h(λ◦) ≥ 1
t

t∑
τ=1

h(λτ) ≥ 1
t

t∑
τ=1

hτ (λτ)− ε>τ zτ − λ>τ φτ

(b)
≥ 1

t

t∑
τ=1

Lτ (xτ , λτ)− γτ − ε>τ zτ − λ>τ φτ ≥
1
t

t∑
τ=1

fτ (xτ) + λ>τ gτ (xτ)− γτ − ε>τ zτ − λ>τ φτ .

Page 145 of 171

Apostolos Galanopoulos Trinity College Dublin

where (b) holds from the approximate minimization of the Lagrangian. Rearranging terms yields:

1
t

t∑
τ=1

fτ (xτ)− f(x◦) ≤ −1
t

t∑
τ=1

λ>τ gτ (xτ)− γτ − ε>τ zτ − λ>τ φτ . (10.3)

We proceed to upper bound the first term in the RHS of the last equation. Observe

that for any θ ∈ Rm
+ we have ‖λt+1 − θ‖2 = ‖[λt + αgt(xt)]+ − θ‖2 ≤ ‖λt + αgt(xt) − θ‖2 =

‖λt − θ‖2 + α2‖gt(xt)‖2 + 2α(λt − θ)>gt(xt). Rearranging yields:

‖λt+1−θ‖2−‖λt−θ‖2 ≤ α2‖gt(xt)‖2+2α(λt − θ)>gt(xt).

Setting θ=0, and applying the telescopic summation:

−2α
t∑

τ=1
λ>τ gτ (xτ) ≤ α2

t∑
τ=1
‖gτ (xτ)‖2,

where −‖λt+1‖2 and ‖λ1‖2 were dropped in the above since the former is non-positive, and the

latter can be zeroed out by setting λ1 =0. Using the fact that ‖gτ (x)‖ ≤ σg,∀τ , for all x ∈ Xτ ,

and diving across by 2αt we obtain −1
t

∑t
τ=1 λ

>
τ gτ (xτ) ≤

ασ2
g

2 . By using the above bound on

(10.3) we prove the first claim.

From the dual update rule recursive expansion we have λt+1 � λ1 + α
∑t
τ=1 gτ (xτ). By

dropping λ1, dividing by αt, and taking the norms we obtain:

‖1
t

t∑
τ=1

gτ (xτ)‖ ≤ ‖λt+1‖
αt

, (10.4)

which yields the claimed bound after applying Lemma 5.

We need the following Lemma for proving Theorem 1. Note also, that in order to differentiate

between Algorithms 4 and 5 we use vt for the primal variable of the latter.

Page 146 of 171

Apostolos Galanopoulos Trinity College Dublin

Lemma 6 (FW for the Lagrangian) Set η > 0 and select β ∈ (0, 1] and 0 < α <

βη−(β2MLR
2/2)−σf−σL−2Λσg

σ2
g

, ML is a constant independent of α, β. Algorithm 5 guarantees

that if Lt(vt, λt)− ht(λt) ≥ η:

Lt+1(vt+1, λt+1) < Lt+1(vt, λt+1), or

Lt+1(vt+1, λt+1)− ht+1(λt+1) ≤ 2η, otherwise.

Proof Based on Lemma 5, the sequence of vectors {λt}t is bounded. Hence, Lt(·, λt) is an

ML-smooth convex function of v for any parameter λ. We consider two cases. Case (i):

Lt(vt, λt)− ht(λt) > η, where recall that ht(λt) ≤ Lt(v, λt), ∀x. Due to its smoothness and the

FW rule applied on (10.1), we have

Lt(vt+1, λt)− Lt(vt, λt) ≤ β∇vLt(vt, λt)>(st − vt) + β2MLR
2

2 , (10.5)

and since st is the minimizer of u>∇vLt(vt, λt) we can replace the second term in the RHS

with β∇vLt(vt, λt)>(v∗t − vt), where v∗t = arg minv Lt(v, λt), i.e., ht(λt) = Lt(v∗t , λt). Due to

convexity of Lt(·, λt), it is ∇vLt(vt, λt)>(v∗t − vt) ≤ ht(λt)− Lt(vt, λt) < −η, hence

Lt(vt+1, λt)− Lt(vt, λt) ≤ −βη + β2MLR
2

2 . (10.6)

Now, it holds that

Lt+1(vt+1, λt+1)− Lt(vt+1, λt) = ft+1(vt+1)− ft(vt+1) + λ>t+1gt+1(vt+1)− λ>t gt(vt+1)

= ft+1(vt+1)− ft(vt+1) + λ>t
(
gt+1(vt+1)− gt(vt+1)

)
+ αgt(vt)>gt+1(vt+1) ≤ σf + 2‖λt‖σg + ασ2

g , (10.7)

where we used Cauchy-Schwarz and triangle inequalities. Adding (10.6) and (10.7), we get:

Lt+1(vt+1, λt+1) ≤ Lt(vt, λt)− βη + β2MLR
2

2 + σf + 2Λσg + ασ2
g ,

where we have defined Λ = maxt ‖λt‖. Subtracting Lt+1(vt, λt+1)in both sides, using |Lt+1(vt, λt+1)−

Lt(vt, λt)| ≤ σL, and by the stated choices of α, β we obtain that Lt+1(vt+1, λt+1) < Lt+1(vt, λt+1).

Page 147 of 171

Apostolos Galanopoulos Trinity College Dublin

Case (ii): Lt(vt, λt) − ht(λt) ≤ η. Since st is the minimizer of u>∇vLt(vt, λt), the term

∇vLt(vt, λt)>(st − vt) is non-positive and hence can be dropped from (10.5):

Lt(vt+1, λt)− Lt(vt, λt) ≤ (β2MLR
2)/2. (10.8)

Adding (10.7) to (10.8) and using Lt(vt, λt)− ht(λt) ≤ η we end up with

Lt+1(vt+1, λt+1)− ht(λt) ≤ Lt(vt, λt)− ht(λt)+β2MLR
2

2 + σf + 2Λσg + ασ2
g

≤ η + β2MLR
2

2 + σf + 2Λσg + ασ2
g ,

where we used the assumption of this case for the last inequality. Subtracting ht+1(λt+1) in

both sides and rearranging terms yields

Lt+1(vt+1, λt+1)−ht+1(λt+1) ≤ η + β2MLR
2

2 + σf + σL+2Λσg + ασ2
g ≤ η + βη+ ≤ 2η,

where we used |ht+1(λt+1)− ht(λt)| ≤ σL, and the stated α, β, completing the second case.

Proof of Theorem 1. By the stated selection of α and β, Lemma 6 applies and yields

Lt+1(vt+1, λt+1)− ht+1(λt+1) ≤ max{ζt, 2η},

where ζt = Lt+1(vt, λt+1)− ht+1(λt+1). By applying Lemma 2 with γt = max{ζt, 2η} we obtain

1/t
t∑

τ=1
fτ (vτ)− f(x◦) ≤

ασ2
g

2 + 1
t

t∑
τ=1

max{ζτ , 2η}+ε>τ x̂τ+λ>τ φτ (10.9)

We proceed by bounding the average performance of the selected schedules st. By convexity

of Lt(·, λt), we have

Lt(vt, λt)≥Lt(st, λt) +∇L>t (st, λt)(vt − st)≥Lt(st, λt).

So it is ft(st) ≤ ft(xt) + λ>t
(
gt(xt)− gt(st)

)
and by summing telescopically we have

1
t

t∑
τ=1

fτ (sτ) ≤ 1
t

t∑
τ=1

fτ (xτ) + 2Λσg.

Page 148 of 171

Apostolos Galanopoulos Trinity College Dublin

Combining the above with (10.9) we obtain the claimed bound (i). For the feasibility gap, we

use the linearity of gt to obtain gt(st)− gt(xt) = (1/β)gt(xt+1 − xt) which yields bound (ii) after

summing over all t and dividing by t.

10.2 Appendix to Chapter 6

This section contains the proof of Theorem 1 in Chapter 6. We drop bold typeface notation

here; use subscript i = 1, . . . , t to denote the ith slot; and n for the nth component of a vector.

We will be using the following Lagrangians:

L(yt, µt, δt, εt) = f(yt) + y>t εt + µ>t
(
g(yt) + δt(yt)

)
(10.10)

L(yt, µt) = f(yt) + µ>t g(yt), (10.11)

and the respective dual functions V (µ, δt, εt) and V (µ). Eq. (10.10) is the Lagrangian used in the

subgradient method; and unless stated otherwise, we will use below yt ∈ arg miny∈Y L(y, µt, δt, εt).

We first bound the distance of µt+1 from vector θ ∈ RN+1, i.e., ‖µt+1 − θ‖2 =

∥∥∥[µt + a
(
g(yt) + δt(yt)

)
]+ − θ

∥∥∥2
≤
∥∥µt + a

(
g(yt) + δt(yt)

)
− θ

∥∥2 =

‖µt − θ‖2 + a2 ‖g(yt) + δt(yt)‖2 + 2a(µt − θ)>
(
g(yt) + δt(yt)

)
≤

‖µt − θ‖2+a2 ‖g(yt)‖2+a2 ‖δt(yt)‖2+2a2δt(yt)>g(yt) + 2a(µt−θ)>
(
g(yt)+δt(yt)

)
(10.12)

Next, we bound the difference of L(yt, µt, δt, εt) from V (µt). We define ŷt ∈ arg miny∈Y L(y, µt),

which is different from yt. Then we can write:

L(yt, µt, δt, εt) = L(ŷt, µt) + L(yt, µt, δt, εt)− L(ŷt, µt) ≤ V (µt) +At(ŷt, yt) (10.13)

where we defined At(ŷt, yt) = f(yt) − f(ŷt) + y>t εt + µ>t
(
g(yt) − g(ŷt) + δt(yt)

)
, and used

L(ŷt, µt) = V (µt). By Assumption 1, it holds that limt→∞ L(·, µt, δt, εt) = L(·, µt), and given

that these are continuous convex functions, this yields limt→∞At(ŷt, yt) = 0. Also, we can upper

bound At(·) for every t, since the objective and constraint functions are upper bounded (all

their components), and also the dual vector is bounded for any t (as we will prove in the sequel).

Therefore, it also holds that limt→∞
1
t

∑t
i=1Ai(ŷi, yi) = 0.

Page 149 of 171

Apostolos Galanopoulos Trinity College Dublin

(i) Optimality Gap. Using (10.13) we can write:

V (µ∗) ≥ 1
t

t∑
i=1

V (µi) ≥
1
t

t∑
i=1

L(yi, µi, δi, εi)−Ai(ŷi, yi)

= 1
t

t∑
i=1

(
f(yi) + y>i εi + µ>i

(
g(yi)+δi(yi)

)
−Ai(ŷi, yi)

)

= 1
t

t∑
i=1

f(yi) + 1
t

t∑
i=1

(
y>i εi + µ>i

(
g(yi) + δi(yi)

)
−Ai(ŷi, yi)

)
(10.14)

Now, let θ = 0 in (10.12), we get:

‖µt+1‖2 ≤ ‖µt‖2 + a2 ‖g(yt)‖2 + a2 ‖δt(yt)‖2 + 2a2δt(yt)>g(yt) + 2aµ>t
(
g(yt) + δt(yt)

)
, (10.15)

and using (6.11) and the Cauchy-Swartz inequality:

‖µt+1‖2 ≤ ‖µt‖2 + a2σ2
g + a2σ2

δt
+ 2a2σgσδt + 2aµ>t

(
g(yt) + δt(yt)

)
. (10.16)

Applying it for all t and summing, we obtain:

‖µt+1‖2 ≤ ‖µ1‖2 + a2tσ2
g + a2

t∑
i=1

σ2
δt

+ 2a2σg

t∑
i=1

σδt + 2a
t∑
i=1

µ>i
(
g(yi) + δi(yi)

)
,

which, if we drop the non-negative term ‖µt+1‖2, divide by 2at, and rearrange terms, yields:

− 1
t

t∑
i=1

µ>i
(
g(yi) + δi(yi)

)
≤ ‖µ1‖2

2at +
aσ2

g

2 + a

2t

t∑
i=1

σ2
δi

+ aσg
t

t∑
i=1

σδi
. (10.17)

Setting µ1 = 0, using the fact that V (µ∗) = f∗, and combining (10.17) with (10.14), we obtain:

1
t

t∑
i=1

f(yi)− f∗ ≤
aσ2

g

2 + a

2t

t∑
i=1

σ2
δi

+ aσg
t

t∑
i=1

σδi
+ 1
t

t∑
i=1

y>i εi + 1
t

t∑
i=1

Ai(ŷi, yi).

By Assumption 1, all sums have diminishing terms and divided by t, hence converge to 0. Thus,

we obtained the first part of the theorem.

Page 150 of 171

Apostolos Galanopoulos Trinity College Dublin

(ii) Constraint Violation. If we apply recursively the following inequality:

µt+1 =
[
µt + a

(
g(yt) + δt(yt)

)]+
� µt + a

(
g(yt) + δt(yt)

)
, we obtain:

µt+1 � µ1 + a
t∑
i=1

(
g(yi) + δi(yi)

)
. (10.18)

Dropping µ1 = 0, and dividing by at, we get:

1
t

t∑
i=1

g(yi) + 1
t

t∑
i=1

δi(yi) �
µt+1
at

. (10.19)

We wish to prove that limt→∞ 1/t
∑t
i=1 g(yi) � 0. We already know that the second term in the

LHS of (10.19) converges to zero, hence it suffices to prove that all components of vector µt+1

are bounded for every t. This will ensure that the RHS converges to 0. We will be using the

following assumption.

Assumption 2 There exists a Slater vector ys ∈ Y such that g(ys) + δt(ys) ≺ 0, which holds

component-wise, and for any time slot t.

This means that there is a Slater vector that satisfies all perturbed instances of (P2). Since

the constraints are linear and the perturbations bounded, it is easy to find such a vector (e.g.,

ys = 0). Under this assumption, and given that f∗ is bounded, we know that the set of the dual

optimal values µ∗ of (D) is bounded, [199]. Now, we define the set:

Q(µ0, δt, εt) = {µ ≥ 0 | V (µ, δt, εt) ≥ V (µ0, δt, εt)} , (10.20)

which is parameterized by some dual vector µ0, and the running averages of perturbations δt, εt.

For every µ ∈ Q(µ0, δt, εt), it holds V (µ0, δt, εt) ≤

V (µ, δt, εt) = inf
y∈Y

{
f(y) + y>t εt + µ>

(
g(y) + δt(y)

)}
≤ f(ys) + ε>t y

s +
N+1∑
n=1

µn
(
gn(ys) + δnt(ys)

)
⇒ −

N+1∑
n=1

µn
(
gn(ys) + δnt(ys)

)
≤ f(ys)− V (µ0, δt, εt) + ε>t y

s. (10.21)

It is gn(ys)+δnt(ys) < 0, µn ≥ 0, ∀n = 1, . . . , N+1 and ∀t, and setting v = min1≤n≤N+1{−gn(ys)−

Page 151 of 171

Apostolos Galanopoulos Trinity College Dublin

δnt(ys)}, we can write:

v
N+1∑
n=1

µn ≤ −
N+1∑
n=1

µn
(
gn(ys) + δnt(ys)

)
≤ f(ys)− V (µ0, δt, εt) + ε>t y

s, hence

N+1∑
n=1

µn ≤
1
v

(
f(ys)− V (µ0, δt, εt) + ε>t y

s
)
, (10.22)

and since µ ≥ 0 we have that ‖µ‖ ≤
∑N+1
n=1 µn. Therefore:

max
µ∈Q(µ0,δt,εt)

‖µ‖ ≤ 1
v

(
f(ys)− V (µ0, δt, εt) + ε>t y

s
)
. (10.23)

Now, we are going to prove that ‖µt+1 − µ∗‖ ≤

max{‖µ1 − µ∗‖ ,
1
v

(
f(ys)− V (µ∗, δt, εt)− ε>t ys

)
+ a(σg + σδt)2

2v + ‖µ∗‖+ a(σg + σδt)}

(10.24)

This holds for t=0, and we use induction to prove it holds for any t. We start by expanding:

‖µt+1 − θ‖2 ≤
∥∥∥[µt + a

(
g(yt) + δt(yt)

)]+ − θ∥∥∥2
≤
∥∥µt + a

(
g(yt) + δt(yt)

)
− θ

∥∥2 =

‖µt − θ‖2 + a2 ‖g(yt) + δt(yt)‖2 + 2a
(
g(yt) + δt(yt)

)>(µt − θ). (10.25)

Note that g(yt) + δt(yt) is a subgradient of V (µt, δt, εt). Hence, for any θ, we can write:

(
g(yt) + δt(yt)

)>(µt − θ) ≤ −
(
V (θ, δt, εt)− V (µt, δt, εt)

)
. (10.26)

Replacing this inequality in (10.25), and setting θ = µ∗, we have:

‖µt+1 − µ∗‖2 ≤ ‖µt − µ∗‖2 + a2 ‖g(yt) + δt(yt)‖2 − 2a
(
V (µ∗, δt, εt)− V (µt, δt, εt)

)
(10.27)

As a next step, we bound the distance:

‖µt+1 − µ∗‖ ≤ ‖µt + ag(yt) + aδt(yt)− µ∗‖ ≤ ‖µt‖+ ‖µ∗‖+ aσg + aσδt , (10.28)

Page 152 of 171

Apostolos Galanopoulos Trinity College Dublin

where we have used the triangle inequality, and we define the set:

Q(µ∗, δt, εt, a) =
{
µ ≥ 0 | V (µ, δt, εt) ≥ V (µ∗, δt, εt)−

a(σg + σδt)2

2

}
, (10.29)

which, by definition, is a superset of Q(µ∗, δt, εt). Now, we consider the following two cases.

First case: µt is such that it belongs to the set Q(µ∗, δt, εt, a). Then, by (10.23), we have:

‖µt‖ ≤
1
v

(
f(ys)− V (µ∗, δt, εt) + ε>t y

s)+ a(σg + σδt)2

2v , (10.30)

which, combined with (10.28), validates (10.24). Second case: µt is such that

V (µt, δt, εt) < V (µ∗, δt, εt)−
a(σg + σδt)2

2 . (10.31)

From (10.27) and (6.11):

‖µt+1 − µ∗‖2 ≤ ‖µt − µ∗‖2 − 2a
(
V (µ∗, δt, εt)− V (µt, δt, εt)−

a(σg + σδt)2

2
)
, (10.32)

where by our assumption the last term is non-positive and can be dropped, thus ‖µt+1 − µ∗‖ ≤

‖µt − µ∗‖. Therefore, again we have shown that (10.24) holds by induction for this case as well.

Using (10.24) and ‖µ1 − µ∗‖ ≤ ‖µ1‖+ ‖µ∗‖, we can write ‖µt+1‖ ≤ ‖µt+1 − µ∗‖+ ‖µ∗‖ ≤

2 ‖µ∗‖+ max{‖µ1‖ ,
1
v

(
f(ys)− V (µ∗, δt, εt)− ε>t ys

)
+ a(σg + σδt)2

2v + a(σg + σδt)}, (10.33)

which states that all Lagrange multipliers are upper bounded by constants. To see this, note

that: the optimal dual variables µ∗ are bounded; the dual function is bounded for the bounded

µ∗ and any combination of perturbations, while we can further set µ1 = 0 to simplify the RHS.

Since all dual variables are positive, and the norm of the dual vector is bounded, it is clear that

the RHS of (10.19) converges to zero as t→∞. Similarly, the second term of the RHS (average

value of perturbations) converges to 0, and hence we have that limt→∞ 1/t
∑t
i=1 g(yi) � 0. This

proves that the actual system performance and constraint violation reach the optimal solution

asymptotically.

Page 153 of 171

Bibliography

[1] M. R. Palattella et al., “Internet of things in the 5g era: Enablers, architecture, and

business models,” IEEE JSAC, vol. 34, no. 3, pp. 510–527, 2016.

[2] R. Gimenez et al., “The safety transformation in the future internet domain,” The Future

Internet, pp. 190–200, 2012.

[3] O. Vermesan and J. Bacquet, Cognitive Hyperconnected Digital Transformation: Internet

of Things Intelligence Evolution. Wharton, TX, USA: River Publishers, 2017.

[4] H. Awadalla et al., “Achieving human parity on automatic chinese to english news transla-

tion,” CoRR, vol. abs/1803.05567, 2018.

[5] E. Siow, T. Tiropanis, and W. Hall, “Analytics for the internet of things: A survey,” ACM

Comput. Surv., vol. 51, no. 4, pp. 74:1–74:36, 2018.

[6] GSMA, “The mobile economy 2019.” [Online]: https://www.gsma.com/r/

mobileeconomy/.

[7] F. Bonomi et al., “Fog computing and its role in the internet of things,” in Proc. of MCC,

2012.

[8] Cisco, “Fog computing and the internet of things: Extend the cloud to where the things

are,” white paper, 2015.

[9] A. L. Stolyar, “Maximizing queueing network utility subject to stability: Greedy primal-

dual algorithm,” Queueing Systems, vol. 50, pp. 401–457, Aug 2005.

[10] M. J. Neely, “Stability and Capacity Regions or Discrete Time Queueing Networks,” ArXiv

e-prints, Mar. 2010.

154

Apostolos Galanopoulos Trinity College Dublin

[11] M. J. Neely, “A Simple Convergence Time Analysis of Drift-Plus-Penalty for Stochastic

Optimization and Convex Programs,” ArXiv e-prints, Dec. 2014.

[12] L. Tassiulas, “Linear complexity algorithms for maximum throughput in radio networks

and input queued switches,” in Proc. of IEEE INFOCOM, March 1998.

[13] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile Augmented Reality Survey:

From Where We Are to Where We Go,” IEEE Access, vol. 5, pp. 6917–6950, 2017.

[14] L. Jiang and J. Walrand, “Stable and utility-maximizing scheduling for stochastic processing

networks,” in Conference on Communication, Control, and Computing (Allerton), 2009.

[15] L. Huang and M. J. Neely, “Utility optimal scheduling in processing networks,” Performance

Evaluation, vol. 68, no. 11, pp. 1002 – 1021, 2011.

[16] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval research logistics

quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[17] A. Nedic and A. Ozdaglar, “Subgradient methods in network resource allocation: Rate

analysis,” in Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference

on, pp. 1189–1194, March 2008.

[18] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A Mobile Deep Learning

Framework for Edge Video Analytics,” in Proc. of IEEE INFOCOM, 2018.

[19] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica, “Chameleon: Scalable

Adaptation of Video Analytics,” in Proc. of ACM SIGCOMM, 2018.

[20] S. K. Sharma and X. Wang, “Live data analytics with collaborative edge and cloud

processing in wireless iot networks,” IEEE Access, vol. 5, pp. 4621–4635, 2017.

[21] M. Marjani et al., “Big iot data analytics: Architecture, opportunities, and open research

challenges,” IEEE Access, vol. 5, pp. 5247–5261, 2017.

[22] P. Patel, M. I. Ali, and A. Sheth, “On using the intelligent edge for iot analytics,” IEEE

Intelligent Systems, vol. 32, pp. 64–69, September 2017.

[23] J. He et al., “Multitier fog computing with large-scale iot data analytics for smart cities,”

IEEE Internet of Things Journal, vol. 5, pp. 677–686, April 2018.

Page 155 of 171

Apostolos Galanopoulos Trinity College Dublin

[24] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation

offloading,” IEEE Communications Surveys Tutorials, vol. 19, pp. 1628–1656, thirdquarter

2017.

[25] Y. Mao et al., “A survey on mobile edge computing: The communication perspective,”

IEEE Communications Surveys Tutorials, vol. 19, pp. 2322–2358, Fourthquarter 2017.

[26] C. K. Tham and R. Chattopadhyay, “A load balancing scheme for sensing and analytics

on a mobile edge computing network,” in Proc. of IEEE WoWMoM, 2017.

[27] C. Wang et al., “Computation offloading and resource allocation in wireless cellular

networks with mobile edge computing,” IEEE Transactions on Wireless Communications,

vol. 16, pp. 4924–4938, Aug 2017.

[28] J. Ren et al., “Latency optimization for resource allocation in mobile-edge computation

offloading,” IEEE Transactions on Wireless Communications, vol. 17, pp. 5506–5519, Aug

2018.

[29] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computa-

tional resources for multicell mobile-edge computing,” IEEE Transactions on Signal and

Information Processing over Networks, vol. 1, pp. 89–103, June 2015.

[30] C. You et al., “Energy-efficient resource allocation for mobile-edge computation offloading,”

IEEE Transactions on Wireless Communications, vol. 16, pp. 1397–1411, March 2017.

[31] N. Cao et al., “Self-optimizing iot wireless video sensor node with in-situ data analytics

and context-driven energy-aware real-time adaptation,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 64, pp. 2470–2480, Sept 2017.

[32] A. Padmanabha Iyer et al., “Mitigating the latency-accuracy trade-off in mobile data

analytics systems,” in Proc. of ACM MobiCom, 2018.

[33] Z. Wen et al., “Approxiot: Approximate analytics for edge computing,” in Proc. of IEEE

ICDCS, 2018.

[34] I. Koutsopoulos, “Optimal incentive-driven design of participatory sensing systems,” in

Proc. of IEEE INFOCOM, 2013.

Page 156 of 171

Apostolos Galanopoulos Trinity College Dublin

[35] “Mist: Fog-based data analytics scheme with cost-efficient resource provisioning for iot

crowdsensing applications,” Journal of Network and Computer Applications, vol. 82, pp. 152

– 165, 2017.

[36] X. Gong and N. Shroff, “Incentivizing truthful data quality for quality-aware mobile data

crowdsourcing,” in Proc. of ACM Mobihoc, 2018.

[37] “Google nest cameras.” [Online]: https://nest.com/cameras.

[38] Microsoft, “Azure iot edge software platform.” [Online]: https://azure.microsoft.com/

en-us/services/iot-edge/.

[39] Amazon, “Aws iot greengrass.” [Online]: https://aws.amazon.com/greengrass/.

[40] IBM, “Project owl.” [Online]: https://developer.ibm.com/code-and-response/

deployments/project-owl/,.

[41] IBM, “Edgeware fabric.” [Online]: http://edgware-fabric.org/.

[42] H. M. Raafat, M. S. Hossain, E. Essa, S. Elmougy, A. S. Tolba, G. Muhammad, and

A. Ghoneim, “Fog intelligence for real-time iot sensor data analytics,” IEEE Access, vol. 5,

pp. 24062–24069, 2017.

[43] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving low latency in

collaborative edge computing,” IEEE Internet of Things Journal, pp. 1–1, 2019.

[44] A. Dou et al., “Misco: A mapreduce framework for mobile systems,” in Proc. of ACM

PETRA, 2010.

[45] M. Y. Arslan et al., “Computing while charging: Building a distributed computing

infrastructure using smartphones,” in Proc. of ACM CoNEXT, 2012.

[46] H. Wang and L.-S. Peh, “Mobistreams: A reliable distributed stream processing system

for mobile devices,” in Proc. of IEEE IPDPS, 2014.

[47] S. Fan, T. Salonidis, and B. Lee, “A framework for collaborative sensing and processing of

mobile data streams,” in Proc. of ACM MobiCom, 2016.

Page 157 of 171

Apostolos Galanopoulos Trinity College Dublin

[48] D. O’Keefe, T. Salonidis, and P. Pietzuch, “Network-aware stream query processing in

mobile ad-hoc networks,” in Proc. of MILCOM, 2015.

[49] D. Li et al., “Deepcham: Collaborative edge-mediated adaptive deep learning for mobile

object recognition,” in Proc. of IEEE/ACM SEC, 2016.

[50] C. Long et al., “Edge computing framework for cooperative video processing in multimedia

iot systems,” IEEE Transactions on Multimedia, vol. 20, pp. 1126–1139, May 2018.

[51] C. Shi et al., “Serendipity: Enabling remote computing among intermittently connected

mobile devices,” in Proc. of ACM MOBIHOC, 2012.

[52] L. Pu et al., “D2d fogging: An energy-efficient and incentive-aware task offloading frame-

work via network-assisted d2d collaboration,” IEEE JSAC, vol. 34, no. 12, pp. 3887–3901,

2016.

[53] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive d2d collaboration for

energy-efficient mobile edge computing,” IEEE Wireless Communications, vol. 24, no. 4,

pp. 64–71, 2017.

[54] Y. Nan et al., “Adaptive energy-aware computation offloading for cloud of things systems,”

IEEE Access, vol. 5, pp. 23947–23957, 2017.

[55] Z. Sheng et al., “Energy efficient cooperative computing in mobile wireless sensor networks,”

IEEE Transactions on Cloud Computing, vol. 6, pp. 114–126, Jan 2018.

[56] S. Yang et al., “Distributed optimization in energy harvesting sensor networks with dynamic

in-network data processing,” in Proc. of IEEE INFOCOM, 2016.

[57] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: Elastic execution

between mobile device and cloud,” in Proc. of ACM EuroSys, 2011.

[58] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and

P. Bahl, “Maui: Making smartphones last longer with code offload,” in Proc. of ACM

MobiSys, 2010.

Page 158 of 171

Apostolos Galanopoulos Trinity College Dublin

[59] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M. Satyanarayanan,

“The impact of mobile multimedia applications on data center consolidation,” in IEEE

International Conference on Cloud Engineering (IC2E), 2013.

[60] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets

in mobile computing,” IEEE Pervasive Computing, vol. 8, pp. 14–23, Oct. 2009.

[61] X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering Deep Learning to Mobile Devices via

Offloading,” in Workshop on Virtual Reality and Augmented Reality Network, 2017.

[62] X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering deep learning to mobile devices via

offloading,” in Proc. ACM VR/AR Network Workshop.

[63] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar,

“Deepx: A software accelerator for low-power deep learning inference on mobile devices,”

in ACM/IEEE International Conference on Information Processing in Sensor Networks

(IPSN), 2016.

[64] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,

and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision

applications,” CoRR, vol. abs/1704.04861, 2017.

[65] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier: Edge-caching for

recognition applications,” in Proc. of IEEE ICDCS, 2017.

[66] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-edge: Orches-

tration of real-time vision applications on heterogeneous edge clouds,” in Proc. of IEEE

INFOCOM, 2019.

[67] U. Drolia, K. Guo, and P. Narasimhan, “Precog: Prefetching for image recognition

applications at the edge,” in Proc. of ACM/IEEE Symposium on Edge Computing (SEC),

2017.

[68] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy, “MCDNN:

An approximation-based execution framework for deep stream processing under resource

constraints,” in Proc. of ACM MobiSys, 2016.

Page 159 of 171

Apostolos Galanopoulos Trinity College Dublin

[69] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-

edge cloud computing,” IEEE/ACM Trans. on Networking, vol. 24, no. 5, pp. 2795–2808,

2016.

[70] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “LAVEA: Latency-aware Video

Analytics on Edge Computing Platform,” in Proc ACM/IEEE SEC, 2017.

[71] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and cross-layer control

in wireless networks,” Foundations and Trends on Networking, pp. 1–144, 2006.

[72] V. Chandrasekhar, J. Lin, Q. Liao, O. Morère, A. Veillard, L. Duan, and T. Poggio,

“Compression of deep neural networks for image instance retrieval,” in Data Compression

Conference (DCC), 2017.

[73] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[74] C. Lo, Y. Su, C. Lee, and S. Chang, “A Dynamic Deep Neural Network Design for Efficient

Workload Allocation in Edge Computing,” in Proc. of IEEE ICCD, 2017.

[75] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing accuracy-efficiency

trade-offs by selective execution,” CoRR, vol. abs/1701.00299, 2017.

[76] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed Deep Neural Networks

Over the Cloud, the Edge and End Devices,” in Proc. of IEEE ICDCS, 2017.

[77] M. Ali et al., “Edge enhanced deep learning system for large-scale video stream analytics,”

in Proc. of IEEE ICFEC, 2018.

[78] W. Zhang, B. Han, and P. Hui, “Jaguar: Low Latency Mobile Augmented Reality with

Flexible Tracking,” in Proc. of ACM Conference on Multimedia, 2018.

[79] T. Y.-H. Chen, H. Balakrishnan, L. Ravindranath, and P. Bahl, “Glimpse: Continuous,

Real-Time Object Recognition on Mobile Devices,” in Proc. of ACM SenSys, 2015.

[80] L. Liu, H. Li, and M. Gruteser, “Edge Assisted Real-time Object Detection for Mobile

Augmented Reality,” in Proc. of ACM MobiCom, 2019.

Page 160 of 171

Apostolos Galanopoulos Trinity College Dublin

[81] P. Jain, J. Manweiler, and R. Roy Choudhury, “OverLay: Practical Mobile Augmented

Reality,” in Proc. of ACM MobiSys, 2015.

[82] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl, M. Philipose, P. B.

Gibbons, and O. Mutlu, “Focus: Querying large video datasets with low latency and low

cost,” in Proc. of USENIX OSDI, 2018.

[83] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freedman,

“Live Video Analytics at Scale with Approximation and Delay-Tolerance,” in Proc. of

USENIX NSDI, 2017.

[84] Q. Liu, S. Huang, J. Opadere, and T. Han, “An Edge Network Orchestrator for Mobile

Augmented Reality,” in Proc. of IEEE INFOCOM, 2018.

[85] T. Tan, and G. Cao, “FastVA: Deep Learning Video Analytics Through Edge Processing

and NPU in Mobile,” in Proc. of IEEE INFOCOM, 2020.

[86] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet Load Balancing in Wireless Metropolitan

Area Networks,” in Proc. of IEEE INFOCOM, 2016.

[87] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online Job Dispatching and Scheduling in

Edge-Clouds,” in Proc. of IEEE INFOCOM, 2017.

[88] X. Chen, L. Jiao, W. Li, X. Fu, “Efficient Multi-User Computation Offloading for Mobile-

Edge Cloud Computing,” IEEE/ACM Trans. on Networking, vol. 24, no. 5, pp. 2795–2808,

2016.

[89] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint Accuracy- and

Latency-Aware Deep Structure Decoupling for Edge-Cloud Execution,” in Proc. of IEEE

ICPADS, 2018.

[90] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “MobiQoR: Pushing the Envelope of

Mobile Edge Computing Via Quality-of-Result Optimization,” in Proc. of IEEE ICDCS,

2017.

[91] L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-based Deep Learning

Framework for Continuous Vision Applications,” in Proc. of ACM MobiSys, 2017.

Page 161 of 171

Apostolos Galanopoulos Trinity College Dublin

[92] Y. Wu et al., “A learning-based expected best offloading strategy in wireless edge networks,”

in Proc. of IEEE GLOBECOM, 2019.

[93] F. Wang et al., “DeepCast: Towards Personalized QoE for Edge-Assisted Crowdcast With

Deep Reinforcement Learning,” IEEE/ACM Transactions on Networking, pp. 1–14, 2020.

[94] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint Configuration Adaptation

and Bandwidth Allocation for Edge-based Real-time Video Analytics,” in Proc. of IEEE

INFOCOM, 2020.

[95] P. Yang et al., “Edge coordinated query configuration for low-latency and accurate video

analytics,” IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4855–4864,

2020.

[96] C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl, and M. Phili-

pose, “VideoEdge:Processing Camera Streams Using Hierarchical Clusters,” in Proc. of

IEEE/ACM SEC, 2018.

[97] Q. Liu, and T. Han, “DARE: Dynamic Adaptive Mobile Augmented Reality with Edge

Computing,” in Proc. of IEEE ICNP, 2018.

[98] P. Yang, F. Lyu, W. Wu, N. Zhang, L. Yu, and X. Shen, “Edge coordinated query

configuration for low-latency and accurate video analytics,” IEEE Trans. on Industrial

Informatics, vol. 16, no. 7, pp. 4855–4864, 2020.

[99] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive User-managed Service

Placement for Mobile Edge Computing: An Online Learning Approach,” in Proc. of IEEE

INFOCOM, 2019.

[100] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online Task Dispatching and

Scheduling with Bandwidth Constraint in Edge Computing,” in Proc. of IEEE INFOCOM,

2019.

[101] L. Chen and J. Xu, “Budget-constrained edge service provisioning with demand estimation

via bandit learning,” IEEE JSAC, vol. 37, no. 10, pp. 2364–2376, 2019.

Page 162 of 171

Apostolos Galanopoulos Trinity College Dublin

[102] T. Salonidis et al., “Online optimization of 802.11 mesh networks,” in Proc. of ACM

CoNEXT, 2009.

[103] S. K. Saha et al., “Power-throughput tradeoffs of 802.11n/ac in smartphones,” in Proc. of

IEEE INFOCOM, 2015.

[104] M. A. Bagheri and Q. Gao, “An efficient ensemble classification method based on novel

classifier selection technique,” in Proc of ACM WIMS, 2012.

[105] T. Lan et al., “An axiomatic theory of fairness in network resource allocation,” in Proc. of

IEEE INFOCOM, 2010.

[106] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge

University Press, 2004.

[107] M. Kodialam and T. Nandagopal, “Characterizing achievable rates in multi-hop wireless

mesh networks with orthogonal channels,” IEEE/ACM Transactions on Networking, vol. 13,

Aug 2005.

[108] M. Kodialam and T. Nandagopal, “Characterizing the capacity region in multi-radio

multi-channel wireless mesh networks,” in Proc. of ACM MobiCom, 2005.

[109] Z.-q. Luo and P. Tseng, “On the convergence rate of dual ascent methods for linearly

constrained convex minimization,” Math. Oper. Res., vol. 18, pp. 846–867, Nov. 1993.

[110] F. Kaup, P. Gottschling, and D. Hausheer, “Powerpi: Measuring and modeling the power

consumption of the raspberry pi,” in Proc. of IEEE LCN, 2014.

[111] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no. 1/2, pp. 81–93,

1938.

[112] G. Iosifidis et al., “Incentive mechanisms for user-provided networks,” IEEE Comm.

Magazine, vol. 52, no. 9, 2014.

[113] D. Yang, X. Fang, and G. Xue, “Truthful auction for cooperative communications,” in

Proc. of ACM Mobihoc, 2011.

[114] D. Levin et al., “Bittorrent is an auction: Analyzing and improving bittorrent’s incentives,”

in Proc. of ACM Sigcomm, 2008.

Page 163 of 171

Apostolos Galanopoulos Trinity College Dublin

[115] A. Galanopoulos, G. Iosifidis, and T. Salonidis, “Optimizing data analytics in energy

constrained iot networks,” in International Symposium on Modeling and Optimization in

Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2018.

[116] J. Huang, Z. Han, M. Chiang, and H. V. Poor, “Auction-based distributed resource

allocation for cooperation transmission in wireless networks,” Proc. of IEEE Globecom,

2007.

[117] R. B. Myerson and M. A. Satterthwaite, “Efficient mechanisms for bilateral trading,”

Journal of Econ. Theory, vol. 29, no. 2, pp. 265 – 281, 1983.

[118] P. Maille and B. Tuffin, “Why vcg auctions can hardly be applied to the pricing of

inter-domain and ad hoc networks,” Proc. of NGI, 2007.

[119] R. P. McAfee, “A dominant strategy double auction,” Journal of Economic Theory, vol. 56,

no. 2, pp. 434 – 450, 1992.

[120] H. Xu et al., “A secondary market for spectrum,” in Proc. of IEEE INFOCOM, 2010.

[121] X. Chen, Z. Zhou, W. Wu, D. Wu, and J. Zhang, “Socially-motivated cooperative mobile

edge computing,” IEEE Network, vol. 32, no. 6, pp. 177–183, 2018.

[122] R. Johari and J. Tsitsiklis, “Efficiency of scalar-parameterized mechanisms,” Operations

Research, vol. 57, no. 4, pp. 823–839, 2009.

[123] F. Kelly et al., “Rate control for communication networks: Shadow prices, proportional

fairness, stability,” J. of Oper. Res. Soc. 29(3), 1998.

[124] G. Iosifidis et al., “A double auction mechanism for mobile data offloading markets,”

IEEE/ACM Trans. on Networking, vol. 23, no. 5, 2015.

[125] D. Zhang et al., “Double auction based multi-flow transmission in software-defined and

virtualized wireless networks,” IEEE Transactions on Wireless Communications, vol. 16,

no. 12, 2017.

[126] L. Johansen, “Price-taking behavior,” Econometrica, vol. 4, no. 7, 1977.

[127] S. Shakkottai and R. Srikant, “Network optimization and control,” Foundations and Trends

in Networking, vol. 2, no. 3, 2007.

Page 164 of 171

Apostolos Galanopoulos Trinity College Dublin

[128] A. V. Nefian, “Georgia tech face db.” www.anefian.com/research/face_reco.htm.

[129] A. Aziz, D. Starobinski, and P. Thiran, “Understanding and tackling the root causes of

instability in wireless mesh networks,” IEEE/ACM Transactions on Networking (TON),

vol. 19, no. 4, pp. 1178–1193, 2011.

[130] B. Radunović et al., “Horizon: Balancing tcp over multiple paths in wireless mesh network,”

in Proc. of ACM MobiCom, pp. 247–258, 2008.

[131] A. Warrier et al., “Diffq: Practical differential backlog congestion control for wireless

networks,” in Proc. of IEEE INFOCOM, 2009.

[132] M. Haenggi et al., “Stochastic geometry & random graphs for analysis & design of wireless

networks,” IEEE JSAC, vol. 27, no. 7, 2009.

[133] H. Yu and M. J. Neely, “On the convergence time of the drift-plus-penalty algorithm for

strongly convex programs,” in IEEE CDC, 2015.

[134] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and cross-layer control

in wireless networks,” Foundations and Trends in Optimization, vol. 1, no. 1, pp. 1–144,

2006.

[135] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems

and scheduling policies for maximum throughput in multihop radio networks,” IEEE

Transactions on Automatic Control, vol. 37, no. 12, pp. 1936–1948, 1992.

[136] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel queues with

randomly varying connectivity,” IEEE Transactions on Information Theory, vol. 39, no. 2,

pp. 466–478, 1993.

[137] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in wireless

networks,” IEEE JSAC, vol. 24, pp. 1452–1463, Aug 2006.

[138] Y. Yi, A. Proutière, and M. Chiang, “Complexity in wireless scheduling: Impact and

tradeoffs,” in ACM Mobihoc, 2008.

[139] L. X. Bui, S. Sanghavi, and R. Srikant, “Distributed link scheduling with constant overhead,”

IEEE/ACM Transactions on Networking, vol. 17, pp. 1467–1480, Oct 2009.

Page 165 of 171

Apostolos Galanopoulos Trinity College Dublin

[140] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate analysis for dual

subgradient methods,” SIAM Journal on Optimization, vol. 19, no. 4, pp. 1757–1780, 2009.

[141] V. Valls and D. J. Leith, “Max-weight revisited: Sequences of nonconvex optimizations

solving convex optimizations,” IEEE/ACM Transactions on Networking, vol. 24, pp. 2676–

2689, Oct 2016.

[142] X. Wei and M. J. Neely, “Primal-dual frank-wolfe for constrained stochastic programs

with convex and non-convex objectives,” arXiv preprint arXiv:1806.00709, 2018.

[143] J. Fan et al., “Deadline-aware task scheduling in a tiered iot infrastructure,” in IEEE

GLOBECOM, 2017.

[144] A. Destounis, G. Paschos, and I. Koutsopoulos, “Streaming big data meets backpressure

in distributed network computation,” in Proc. of IEEE INFOCOM, 2016.

[145] J. Zhang et al., “Optimal control of distributed computing networks with mixed-cast traffic

flows,” in Proc. of IEEE INFOCOM, 2018.

[146] V. Valls, G. Iosifidis, and T. Salonidis, “Maximum lifetime analytics in iot networks,” in

Proc. of IEEE INFOCOM, 2019.

[147] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed scheduling algorithms for

wireless networks,” IEEE/ACM Transactions on Networking, vol. 17, pp. 1846–1859, Dec

2009.

[148] M. Kodialam and T. Nandagopal, “Characterizing the capacity region in multi-radio

multi-channel wireless mesh networks,” in ACM MobiCom, 2005.

[149] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and Optimization. Athena

Scientific, 2003.

[150] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex optimization,” in ICML,

2013.

[151] K. Kiwiel et al., “Lagrangian relaxation via ballstep subgradient methods,” Math. Oper.

Res., vol. 32, 2007.

Page 166 of 171

Apostolos Galanopoulos Trinity College Dublin

[152] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[153] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech. rep., 2009.

[154] A. Gelman and J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models.

Analytical Methods for Social Research, Cambridge University Press, 2006.

[155] M. J. Neely, “Energy optimal control for time-varying wireless networks,” IEEE Transac-

tions on Information Theory, vol. 52, pp. 2915–2934, July 2006.

[156] L. Li, M. Pal, and Y. R. Yang, “Proportional fairness in multi-rate wireless lans,” in Proc.

of IEEE INFOCOM, 2008.

[157] Z. Chen et al., “An empirical study of latency in an emerging class of edge computing

applications for wearable cognitive assistance,” in Proc. of ACM/IEEE Symposium on

Edge Computing, 2017.

[158] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE Trans. on Systems,

Man, and Cybernetics, vol. 6, no. 4, pp. 325–327, 1976.

[159] M. Abadi et al., “Tensorflow: A system for large-scale machine learning,” in Proc. of

USENIX OSDI, pp. 265–283, 2016.

[160] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “An online algorithm for task

offloading in heterogeneous mobile clouds,” ACM Trans. Internet Technol., vol. 18, no. 2,

2018.

[161] G. Ananthanarayanan et al., “Real-Time Video Analytics: The Killer App for Edge

Computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[162] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang, “Distributed and Efficient Object

Detection in Edge Computing: Challenges and Solutions,” IEEE Network, vol. 32, no. 6,

pp. 137–143, 2018.

[163] S. Dodge and L. Karam, “Understanding how image quality affects deep neural networks,”

in Proc. of QoMEX, 2016.

Page 167 of 171

Apostolos Galanopoulos Trinity College Dublin

[164] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018.

[165] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan,

C. L. Zitnick, and P. Dollár, “Microsoft COCO: Common Objects in Context,” arXiv,

vol. abs/1405.0312, 2014.

[166] A. Galanopoulos, V. Valls, G. Iosifidis, and D. J. Leith, “Measurement-driven Analysis of

an Edge-Assisted Object Recognition System,” in Proc. of IEEE ICC, 2020.

[167] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine Learning, vol. 2.

MIT press Cambridge, MA, 2006.

[168] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process optimization in the

bandit setting: No regret and experimental design,” in Proc. of ICML, 2010.

[169] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, “Algorithms for Hyper-Parameter

Optimization,” in Proc. of NIPS, 2011.

[170] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Combined

Selection and Hyperparameter Optimization of Classification Algorithms,” in Proc. of

ACM SIGKDD KDD, 2013.

[171] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. d. Freitas, “Taking the human

out of the loop: A review of bayesian optimization,” Proc. of the IEEE, vol. 104, no. 1,

pp. 148–175, 2016.

[172] A. Galanopoulos, J. Ayala-Romero, D. J. Leith, and G. Iosifidis, “Edge-Dataset Description.”

https://github.com/apgalano/Edge-Dataset, 2020.

[173] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, “Efficient

and Robust Automated Machine Learning,” in Proc. of NIPS, 2015.

[174] O. Alipourfard et al., “CherryPick: Adaptively Unearthing the Best Cloud Configurations

for Big Data Analytics,” in Proc. of USENIX NSDI, 2017.

[175] Q. Liu, and T. Han, “VirtualEdge: Multi-Domain Resource Orchestration and Virtualiza-

tion in Cellular Edge Computing,” in Proc. of IEEE ICDCS, 2019.

Page 168 of 171

Apostolos Galanopoulos Trinity College Dublin

[176] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of the Multiarmed Bandit

Problem,” Mach. Learn., vol. 47, no. 2-3, pp. 235–256, 2002.

[177] H. Junya and T. Akimichi, “Optimality of Thompson Sampling for Gaussian Bandits

Depends on Priors,” arXiv preprint arXiv:1311.1894, 2013.

[178] S. Filippi, O. Cappe, A. Garivier, and C. Szepesvári, “Parametric Bandits: The Generalized

Linear Case,” in Proc. of NIPS, 2010.

[179] Y. Russac, O. Cappé, and A. Garivier, “Algorithms for Non-Stationary Generalized Linear

Bandits,” arXiv preprint arXiv:2003.10113, 2020.

[180] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-Theoretic Regret

Bounds for Gaussian Process Optimization in the Bandit Setting,” IEEE Trans. on

Information Theory, vol. 58, no. 5, pp. 3250–3265, 2012.

[181] Y. Sui, A. Gotovos, J. W. Burdick, and A. Krause, “Safe Exploration for Optimization

with Gaussian Processes,” in Proc. of ICML, 2015.

[182] Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue, “Stagewise Safe Bayesian Optimization

with Gaussian Processes,” in Proc. of ICML, 2018.

[183] S. Amani, M. Alizadeh, and C. Thrampoulidis, “Regret Bounds for Safe Gaussian Process

Bandit Optimization,” arXiv preprint arXiv:2005.01936, 2020.

[184] S. R. Chowdhury and A. Gopalan, “On Kernelized Multi-Armed Bandits,” in Proc. of

ICML, 2017.

[185] A. Galanopoulos, J. A. Ayala-Romero, G. Iosifidis, and D. J. Leith, “Bayesian Online

Learning for MEC Object Recognition Systems,” in Proc. of IEEE GLOBECOM, 2020.

[186] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosifidis, “Edgebol: Au-

tomating energy-savings for mobile edge ai,” in Submitted to ACM International Symposium

on Mobile Ad Hoc Networking and Computing (MobiHoc), 2021.

[187] R. Allesiardo, R. Féraud, and D. Bouneffouf, “A neural networks committee for the

contextual bandit problem,” in International Conference on Neural Information Processing,

2014.

Page 169 of 171

Apostolos Galanopoulos Trinity College Dublin

[188] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella, “D-dash: A deep q-learning

framework for dash video streaming,” IEEE Transactions on Cognitive Communications

and Networking, vol. 3, no. 4, pp. 703–718, 2017.

[189] J. A. Ayala-Romero, J. J. Alcaraz, A. Zanella, and M. Zorzi, “Online learning for energy

saving and interference coordination in hetnets,” IEEE JSAC, vol. 37, no. 6, pp. 1374–1388,

2019.

[190] A. Balakrishnan, D. Bouneffouf, N. Mattei, and F. Rossi, “Incorporating behavioral

constraints in online ai systems,” Proceedings of the AAAI Conference on Artificial

Intelligence, 2019.

[191] Y. Han et al., “Convergence of edge computing and deep learning: A comprehensive

survey,” CoRR, vol. abs/1907.08349, 2019.

[192] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation

offloading performance in virtual edge computing systems via deep reinforcement learning,”

IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4005–4018, 2019.

[193] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-based computation

offloading for IoT devices with energy harvesting,” IEEE Trans. on Vehicular Technology,

vol. 68, no. 2, pp. 1930–1941, 2019.

[194] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based computation offloading

and resource allocation for MEC,” in Proc. of IEEE WCNC, 2018.

[195] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A double deep Q-learning

model for energy-efficient edge scheduling,” IEEE Trans. on Services Computing, vol. 12,

no. 5, pp. 739–749, 2019.

[196] H. Sun et al., “Learning to optimize: Training deep neural networks for interference

management,” IEEE Transactions on Signal Processing, vol. 66, no. 20, pp. 5438–5453,

2018.

[197] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Lorm: Learning to optimize for resource

management in wireless networks with few training samples,” IEEE Trans. on Wireless

Communications, vol. 19, no. 1, pp. 665–679, 2020.

Page 170 of 171

Apostolos Galanopoulos Trinity College Dublin

[198] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-learning-based joint

resource scheduling algorithms for hybrid mec networks,” IEEE Internet of Things Journal,

vol. 7, no. 7, pp. 6252–6265, 2020.

[199] H. Uzawa, “Iterative methods in concave programming,” Studies in Linear and Nonlinear

Programming, K. Arrow, L. Hurwicz, and H. Uzawa, no. 1, pp. 154–165, 1958.

Page 171 of 171

