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ABSTRACT

The generalized inverse Gaussian (GIG) Lévy process is a limit of compound Poisson pro-

cesses, including the stationary gamma process and the stationary inverse Gaussian process as

special cases. However, fitting the GIG Lévy process to data is computationally intractable due

to the fact that the marginal distribution of the GIG Lévy process is not convolution-closed.

The current work reveals that the marginal distribution of the GIG Lévy process admits a sim-

ple yet extremely accurate saddlepoint approximation. Particularly, we prove that if the order

parameter of the GIG distribution is greater than or equal to -1, the marginal distribution can

be approximated accurately – no need to normalize the saddlepoint density. Accordingly, max-

imum likelihood estimation is simple and quick, random number generation from the marginal

distribution is straightforward by using Monte Carlo methods, and goodness-of-fit testing is

undemanding to perform. Therefore, major numerical impediments to the application of the

GIG Lévy process are removed. We demonstrate the accuracy of the saddlepoint approxima-

tion via various experimental setups.

KEY WORDS: Metropolis-Hastings algorithm; Modified Bessel functions of the second kind;

Parametric bootstrap; Saddlepoint approximation.
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1 Introduction

In the family of pure-jump increasing Lévy processes, both the gamma process and the inverse

Gaussian process have wide applications. This is mainly because their marginal distributions,

namely the gamma and the inverse Gaussian distributions, are convolution-closed and infinitely

divisible. Therefore, these two Lévy processes can be easily extended to model non-stationary

time-series data (see, e.g., Zhou et al., 2017; Cholette et al., 2019). This work introduces and

studies a very general Lévy process, called the generalized inverse Gaussian (GIG) Lévy process,

which includes the gamma and inverse Gaussian processes as special cases.

The GIG distribution was proposed by Étienne Halphen in 1941 and popularized by Ole Barndorff-

Nielsen in the 1970s. Barndorff-Nielsen et al. (1978) proved that any GIG distribution with a

non-positive power parameter is the distribution of the first hitting time to level 0 for a time-

homogeneous diffusion process with state space [0,∞). This fact suggests the potential use of the

GIG distribution as a lifetime distribution or the distribution for times between successive events

in a renewal process (Embrechts, 1983). Halgreen (1979) further showed that the GIG distribution

is self-decomposable. Therefore, all GIG probability density functions are unimodal (Yamazato,

1978). The self-decomposability makes the GIG distribution suitable for option pricing (see, e.g.,

Carr et al., 2007). The GIG distribution is also a conjugate prior for the normal distribution when

serving as the mixing distribution in a normal variance-mean mixture (Barndorff-Nielsen, 1997).

Barndorff-Nielsen and Halgreen (1977) proved that the GIG distribution has infinite divisibil-

ity, which implies that we can construct a Lévy process from the GIG distribution, i.e., the GIG

Lévy process. Applications of the GIG Lévy process are reported in Alexandrov and Lacis (2000)

for cloud/aerosol particle size modelling, Protassov (2004) and Vilca et al. (2014) for construct-

ing mixture distributions of heavy tail and skewness, Luciano and Semeraro (2010) for modelling

return processes in finance, Themelis et al. (2016) for time-adaptive group sparse signal estima-

tion, etc. However, unlike the gamma and inverse Gaussian processes, the GIG Lévy process has

received very limited attention. This is mainly because the GIG distribution is not convolution-

closed. In other words, for a GIG Lévy process {Xt ; t ≥ 0}, if Xt has a GIG density, then for any

s 6= t, the random variable Xs does not have a GIG density. Moreover, the density function of Xs

even does not have an analytic form. Hence, applying the GIG Lévy process to areas where the

gamma and inverse Gaussian processes have been adopted is prohibitively daunting. The current

work reveals that this problem can be solved by employing the saddlepoint approximation.

Saddlepoint methods provide approximations to densities and probabilities, which are very ac-
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curate in a wide range of settings. In particular, it is often the case that relative errors of these

approximations stay bounded in the extreme tails, a desirable property that is not shared by most

other types of approximation. Saddlepoint approximations are constructed by performing various

operations on the cumulant generating function of a random variable. For the development and

discussion of saddlepoint methodology, see Daniels (1954) for details of the density approxima-

tion, Lugannani and Rice (1980) and Daniels (1987) for the discussion of a tail area approximation

which has a uniform relative error, and Reid (1988) and Goutis and Casella (1999) for a review of

saddlepoint techniques.

The main objective of this paper is to show that the marginal distribution of the GIG Lévy pro-

cess can be well approximated by an analytical function and hence that the GIG Lévy process can

be readily applied to model time series data. The remainder of this paper is organized as follows.

Section 2 introduces the GIG distribution and the GIG Lévy process. Section 3 gives a detailed

explanation of the saddlepoint approximation and its uniqueness. Section 4 reveals that, although

the saddlepoint approximation is fairly accurate, it is not exact, even after normalization. The

saddlepoint density is then modified to provide an improved approximation. Section 5 addresses

the problems of parameter estimation, random number generation and goodness-of-fit test. Sec-

tion 6 explores the accuracy of the saddlepoint approximation via simulation. Finally, Section 7

concludes with a summary and remarks.

2 GIG Distribution & GIG Lévy Process

The density function of the GIG distribution is given by

f (x;λ ,a,b) =
(
√

a)λ

2(
√

b)λ Kλ (
√

ab)
xλ−1 exp

(
−1

2
(ax+bx−1)

)
, x > 0, (1)

where a> 0, b> 0, and the order parameter λ ∈R; Kλ (·) is a normalizing constant (called modified

Bessel function of the second kind):

Kλ (v) =
1
2

∫
∞

0
xλ−1 exp

(
−v

2
(x+ x−1)

)
dx.

Kλ (v) is an exponentially decaying function of v, diverges for all orders at v = 0, and has the

property that K−λ (v) = Kλ (v). Modified Bessel functions of the second kind of order {0, 1, 2, 3,

4, 5} are shown in Figure 1. We let GIG(λ ,a,b) represent the GIG distribution (1). GIG distri-

butions enjoy several nice probabilistic features. For example, if X follows the GIG distribution
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Figure 1: Plot of the modified Bessel functions of the second kind: K0(v) (black), K1(v) (red),

K2(v) (blue), K3(v) (green), K4(v) (purple), K5(v) (brown).

GIG(λ ,a,b), then its reciprocal 1/X follows GIG(−λ ,b,a). The GIG distribution includes as

special cases the gamma distribution (b = 0 and λ > 0), the inverse gamma distribution (a = 0 and

λ < 0), the inverse Gaussian distribution (λ =−0.5) and the hyperbolic distribution (λ = 0).

Owning to its infinite divisibility, we can construct a Lévy process from the GIG distribution,

herein called GIG Lévy process. We say that the process {Xt ; t ≥ 0} is a GIG Lévy process, if

the law of X1 is the GIG distribution GIG(λ ,a,b). A Lévy process can be fully determined by

the characteristic function of Xt which is given by the Lévy-Khintchine formula. In the manner of

Dufresne et al. (1991), it is easy to prove that

E[eiuXt ] = exp
(

t
∫

∞

0
(eiux−1)Π(dx)

)
,

where Π(·) is called the Lévy measure. According to Barndorff-Nielsen and Shephard (2001), the

Lévy measure of the GIG Lévy process is absolutely continuous with density

Π(dx) =
1
x

[
b
∫

∞

0
exp(−xz)gλ (2bz)dz+max{0,λ}

]
exp(−a

2
x)dx,

where gλ (y) =
{

1
2π2y

[
J2
|λ |(
√

y)+Y 2
|λ |(
√

y)
]}−1

, y > 0. J|λ |(·) is the Bessel function of the first

kind, and Y|λ |(·) is the Bessel function of the second kind (see Chapter 9 of Abramovitz and Segun,

1970). For the GIG Lévy process, the arrival rate
∫

∞

0 Π(dx) is infinite (Morales, 2004). Hence, the
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GIG Lévy process is a limit of compound Poisson processes, composing of an infinite number of

infinitesimal jumps.

The GIG Lévy process includes the stationary gamma process and inverse Gaussian process

as special cases. If {Xt ; t ≥ 0} is a stationary gamma process (resp., inverse Gaussian process), ∀
t > 0, Xt always follows the gamma distribution (resp., the inverse Gaussian distribution). However,

for the GIG Lévy process, only X1 follows the GIG distribution. ∀ 0≤ s< t, if t−s 6= 1, then Xt−Xs

does not follow the GIG distribution. This is because the GIG distribution is not closed under

convolution. In other words, if two random variables Z1 and Z2 both follow the GIG distribution

GIG(λ ,a,b), then their sum Z1 +Z2 does not follow a GIG distribution. This undesirable feature

has restrained the application of the GIG Lévy process in areas where the gamma process and

inverse Gaussian process have been employed.

To make the GIG Lévy process a practical model, we need to formulate the density function

of Xt for any t > 0, which can be derived via the Fourier inversion formula. ∀ t > 0, let fXt (x;θθθ)

denote the density function of Xt , where θθθ = (λ ,a,b). The characteristic function of a GIG random

variable X is

E[eiuX ] =

(
a

a−2iu

) λ

2 Kλ (
√

(a−2iu)b)

Kλ (
√

ab)
,

where u ∈ R. Hence, we have

fXt (x;θθθ) =
1

2π

∫ +∞

−∞

exp(tϕ(u)− iux)du, (2)

where ϕ(u) is the logarithm of E[eiuX ]:

ϕ(u) =
λ

2
[log(a)− log(a−2iu)]+ log(Kλ (

√
(a−2iu)b))− log(Kλ (

√
ab)).

Apparently, recovering the density function fXt (x;θθθ) from its characteristic function is not possible

explicitly. Hence, in the following section we introduce the saddlepoint method for constructing a

closed-form approximation to fXt (x;θθθ).

3 Saddlepoint Method

3.1 Brief Explanation

For readability, we introduce here the formal calculations to derive the saddlepoint approxima-

tion. Suppose X is a continuous random variable with density f (x). Let ψ(u) denote the moment
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generating function: ψ(u) =
∫

∞

−∞
eux f (x)dx. Via the Fourier transform, we have

f (x) =
1

2π

∫
∞

−∞

e−iux
ψ(iu)du =

1
2π

∫
∞

−∞

exp(log(ψ(iu))− iux)du.

Substituting iu with u and applying the Closed Curve Theorem, we have

f (x) =
1

2πi

∫ i∞

−i∞
exp(log(ψ(u))−ux)du =

1
2πi

∫
τ+i∞

τ−i∞
exp(log(ψ(u))−ux)du,

where τ is within the interval of convergence for ψ(u) which we assume to contain the origin as

an interior point. Define k(u,x) as k(u,x) = log(ψ(u))− ux. In what follows, we let k′(u,x) and

k′′(u,x) respectively denote the first and second derivative w.r.t. u. Approximate k(u,x) by its

Taylor expansion:

k(u,x)≈ k(û,x)+ k′′(û,x)
(u− û)2

2
,

where û satisfies k′(û,x) = 0 and k′′(û,x)> 0. Then we have

f (x)≈ 1
2πi

∫
τ+i∞

τ−i∞
exp(k(û,x)+ k′′(û,x)

(u− û)2

2
)du =

1
2πi

∫ i∞

−i∞
exp(k(û,x)+ k′′(û,x)

u2

2
)du,

in which, again availing the Closed Curve Theorem, we have set τ = û. Substituting u with iu and

employing the idea of Laplace approximation, we have

f (x)≈ exp(k(û,x))
1

2π

∫ +∞

−∞

exp(−k′′(û,x)
u2

2
)du =

1√
2πk′′(û,x)

exp(k(û,x)).

That is,

f (x)≈ 1√
2πk′′(û,x)

exp(log(ψ(û))− ûx), (3)

which is the saddlepoint approximation for f (x). Note that log(ψ(u)) is called the cumulant-

generating function of the random variable X .

3.2 Saddlepoint Density for fXt(x;θθθ)

Let Hλ (u) denote the cumulant generating function of X1 (i.e., t = 1): for u < a
2 ,

Hλ (u) = log(E[euX1]) =
λ

2
[log(a)− log(a−2u)]+ log(Kλ (

√
(a−2u)b))− log(Kλ (

√
ab)). (4)

Then the cumulant generating function of Xt is tHλ (u). Following (3), the saddlepoint density

approximation to fXt (x;θθθ) is:

f̂Xt (x;θθθ) =
1√

2πtH ′′
λ
(û)

exp(tHλ (û)− ûx), (5)
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where H ′′
λ
(u) represents the second derivative of Hλ (u) w.r.t. u, and û is the saddlepoint satisfying

tH ′
λ
(û)− x = 0. Note that û = û(x, t) is a function of x and t. The first derivative of Hλ (u) is

H ′
λ
(u) =

λ

a−2u
−

K′
λ
(
√

(a−2u)b)

Kλ (
√

(a−2u)b)

√
b

a−2u
,

where

K′
λ
(v) =−1

4

∫
∞

0
(xλ + xλ−2)exp

(
−v

2
(x+ x−1)

)
dx =−1

2
[Kλ+1(v)+Kλ−1(v)]. (6)

Hence, û is obtained by solving w.r.t. u

λ

a−2u
−

K′
λ
(
√

(a−2u)b)

Kλ (
√

(a−2u)b)

√
b

a−2u
=

x
t
. (7)

The second derivative of Hλ (u) is

H ′′
λ
(u) =

2λ

(a−2u)2 −
K′

λ
(
√

(a−2u)b)

Kλ (
√

(a−2u)b)

√
b

(a−2u)3

+
K′′

λ
(
√

(a−2u)b)Kλ (
√

(a−2u)b)−K′
λ
(
√
(a−2u)b)2

Kλ (
√

(a−2u)b)2

b
a−2u

, (8)

where

K′′
λ
(v) =−1

2
[K′

λ+1(v)+K′
λ−1(v)] =

1
4
[Kλ+2(v)+2Kλ (v)+Kλ−2(v)].

The pseudo code in Algorithm 1 summarizes the steps for evaluating the saddlepoint density func-

tion f̂Xt (x;θθθ) at any point x.

Algorithm 1 Evaluating the saddlepoint density f̂Xt (x;θθθ).

1: Solve the saddlepoint equation (7), w.r.t. u, to obtain the saddlepoint û;

2: Replace u in Equation (8) with û to calculate H ′′
λ
(û);

3: Replace u in Equation (4) with û to calculate Hλ (û);

4: Calculate f̂Xt (x;θθθ) by evaluating the right hand side of Equation (5).

3.3 Existence and Uniqueness of the Saddlepoint

The feasibility of the saddlepoint approximation depends on the existence and uniqueness of the

solution û to tH ′
λ
(u) = x and on û satisfying H ′′

λ
(û) > 0. In this section we discuss the existence

and properties of the real root of the equation

H ′
λ
(u) = ξ .
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Proposition 1. There is no real root of the equation H ′
λ
(u) = ξ whenever ξ ≤ 0.

Proof. Define a function M(u,ξ ) as

M(u,ξ ) = eHλ (u)−uξ =
∫ +∞

0
eu(x−ξ ) f (x;λ ,a,b)dx,

which exists only for u < a
2 . Taking partial derivative of M(u,ξ ) w.r.t. u, we have that

M′(u,ξ ) = [H ′
λ
(u)−ξ ]eHλ (u)−uξ , (9)

and that

M′(u,ξ ) =
∫ +∞

0
(x−ξ )eu(x−ξ ) f (x;λ ,a,b)dx. (10)

Here and in Proposition 2, we implicitly utilize the dominated convergence theorem to exchange

derivatives and integrals. It is clear that the integrand eu(x−ξ ) f (x;λ ,a,b) and its partial derivative

w.r.t. u are integrable functions of x.

From Equation (10) we know that, when ξ ≤ 0, M′(u,ξ ) > 0 for any u < a
2 . Hence, from

Equation (9) we know that, when ξ ≤ 0, H ′
λ
(u)−ξ > 0 for any u < a

2 ; that is, H ′
λ
(u)−ξ = 0 has

no real root when ξ ≤ 0.

Proposition 2. For any ξ > 0, if there exists a root of the equation H ′
λ
(u) = ξ , then the root is

simple and unique and satisfies H ′′
λ
(û) > 0. A necessary and sufficient condition for the equation

to have a root for all ξ > 0 is that lim
u→ a

2

H ′
λ
(u) = +∞.

Proof. Note that M′(u,ξ ) is strictly increasing with u, because

M′′(u,ξ ) =
∫ +∞

0
(x−ξ )2eu(x−ξ ) f (x;λ ,a,b)dx > 0.

Then for any root û of the equation H ′
λ
(u) = ξ , we have M′′(û,ξ ) = H ′′

λ
(û)eHλ (û)−ûξ > 0, and

therefore H ′′
λ
(û)> 0, and û is a simple root.

When ξ > 0, we rewrite Equation (10) into:

M′(u,ξ ) =
∫

ξ

0
(x−ξ )eu(x−ξ ) f (x;λ ,a,b)dx+

∫ +∞

ξ

(x−ξ )eu(x−ξ ) f (x;λ ,a,b)dx.

For the first integration, we have

lim
u→−∞

∫
ξ

0
(x−ξ )eu(x−ξ ) f (x;λ ,a,b)dx =−∞.
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For the second integration, let m denote the maximum value of f (x;λ ,a,b) over the interval

(ξ ,+∞). Because f (x;λ ,a,b) is integrable over the interval (0,+∞), we must have lim
x→+∞

f (x;λ ,a,b)=

0, and hence m is finite. Then

0≤ lim
u→−∞

∫ +∞

ξ

(x−ξ )eu(x−ξ ) f (x;λ ,a,b)dx≤ lim
u→−∞

m
∫ +∞

ξ

(x−ξ )eu(x−ξ )dx = 0.

Therefore, lim
u→−∞

M′(u,ξ ) =−∞ for any ξ > 0, and we conclude that M′(u,ξ ) is strictly increasing

from −∞. If lim
u→ a

2

M′(u,ξ ) < 0, then M′(u,ξ ) < 0 (and hence H ′
λ
(u)− ξ < 0) for all u < a

2 . If

lim
u→ a

2

M′(u,ξ )> 0, then there is only one point û at which M′(û,ξ ) = 0; that is, if lim
u→ a

2

M′(u,ξ )> 0,

then the equation H ′
λ
(u)−ξ = 0 has one and only one root.

Equation (9) indicates that lim
u→ a

2

M′(u,ξ )> 0 for all ξ > 0 if and only if lim
u→ a

2

H ′
λ
(u) = +∞.

Proposition 3. We have lim
u→−∞

H ′
λ
(u) = 0 for any fixed λ , and that H ′

λ
(u) is a strictly increasing

function of u.

Proof. We note that, for large values of v, the asymptotic approximation of Kλ (v) is
√

π

2v exp(−v),

and therefore

lim
v→∞

Kλ+1(v)
Kλ (v)

= lim
v→∞

Kλ−1(v)
Kλ (v)

= 1.

Then it follows from (6) that:

lim
u→−∞

H ′
λ
(u) = lim

u→−∞

{
λ

a−2u
+

1
2

Kλ+1(
√

(a−2u)b)+Kλ−1(
√

(a−2u)b)

Kλ (
√
(a−2u)b)

√
b

a−2u

}

= lim
u→−∞

λ

a−2u
+ lim

u→−∞

√
b

a−2u
= 0.

According to Proposition 2, for any ξ > 0, if there exists a root of the equation H ′
λ
(u) = ξ , then

the root is unique and satisfies H ′′
λ
(û)> 0. To prove that H ′

λ
(u) is a strictly increasing function, we

only need to prove that H ′′
λ
(u) > 0 for any u < a

2 . Let ξ0 be the point at which lim
u→ a

2

M′(u,ξ0) = 0.

On one hand, for any 0 < ξ < ξ0, we have

lim
u→ a

2

M′(u,ξ ) = lim
u→ a

2

∫ +∞

0
(x−ξ )eu(x−ξ ) f (x;λ ,a,b)dx > lim

u→ a
2

M′(u,ξ0) = 0,

and therefore there is a unique root to the equation H ′
λ
(u) = ξ for any 0 < ξ < ξ0. On the other

hand, recall that M′(u,ξ ) is strictly increasing with u; if lim
u→ a

2

M′(u,ξ0) = 0, then M′(u,ξ0)< 0 for

all u < a
2 , and therefore H ′

λ
(u)− ξ0 < 0 for all u < a

2 ; that is, we have 0 < H ′
λ
(u) < ξ0 for any

9



u. Therefore, we can claim that H ′
λ
(u) is a bijection from (−∞, a

2) to (0,ξ0). Combining with the

fact that H ′′
λ
(û) > 0 everywhere, we can conclude that H ′

λ
(u) is a strictly increasing function of

u, mapping (−∞, a
2) to (0,ξ0), where ξ0 is the point at which lim

u→ a
2

M′(u,ξ0) = 0 (or, equivalently,

ξ0 = lim
u→ a

2

H ′
λ
(u)).

Theorem 1. If lim
u→ a

2

H ′
λ
(u) =+∞, then with ξ increasing from 0 to +∞, the unique root û increases

monotonically from −∞ to a
2 . We have

lim
u→ a

2

H ′
λ
(u) =

{
+∞, if λ ≥−1;
−b

4(λ+1) , if λ <−1.

For equation H ′
λ
(u) = ξ ,

• when λ ≥−1, there is a unique simple root for any ξ > 0;

• when λ < −1, there is a unique simple root for any 0 < ξ < −b
4(λ+1) , but no root for any

ξ ≥ −b
4(λ+1) .

Proof. When λ > 0, we have

lim
u→ a

2

H ′
λ
(u) = lim

u→ a
2

{
λ

a−2u
+

1
2

Kλ+1(
√

(a−2u)b)+Kλ−1(
√

(a−2u)b)

Kλ (
√

(a−2u)b)

√
b

a−2u

}

≥ lim
u→ a

2

λ

a−2u
=+∞.

When λ = 0, we have

lim
u→ a

2

H ′
λ
(u) = lim

u→ a
2

{
1
2

Kλ+1(
√
(a−2u)b)+Kλ−1(

√
(a−2u)b)

Kλ (
√

(a−2u)b)

√
b

a−2u

}

≥ lim
u→ a

2

{
1
2

Kλ+1(
√
(a−2u)b)

Kλ (
√
(a−2u)b)

√
b

a−2u

}

≥ lim
u→ a

2

1
2

√
b

a−2u
=+∞.

When λ < 0 and λ 6=−1, define v =
√

(a−2u)b and we have

H ′
λ
(u) =

bλ

v2 +
1
2

K|λ+1|(v)+K|λ−1|(v)
K|λ |(v)

b
v
,
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where we have utilized the property that K−λ (v) = Kλ (v). For small values of v, the asymptotic

approximation of Kλ (v) is 1
2Γ(λ )(1

2v)−λ for λ > 0, and therefore

lim
v→0

K|λ+1|(v)+K|λ−1|(v)
K|λ |(v)

= lim
v→0

Γ(|λ +1|)(1
2v)−|λ+1|+Γ(|λ −1|)(1

2v)−|λ−1|

Γ(|λ |)(1
2v)−|λ |

.

Hence, when −1 < λ < 0, we have

lim
u→ a

2

H ′
λ
(u) = lim

v→0

{
bλ

v2 +
1
2

Γ(λ +1)(1
2v)−λ−1 +Γ(1−λ )(1

2v)λ−1

Γ(−λ )(1
2v)λ

b
v

}

= lim
v→0

Γ(λ +1)4λ

Γ(−λ )v2λ+2 b =+∞.

When λ <−1, we have

lim
u→ a

2

H ′
λ
(u) = lim

v→0

{
bλ

v2 +
1
2

Γ(−λ −1)(1
2v)λ+1 +Γ(1−λ )(1

2v)λ−1

Γ(−λ )(1
2v)λ

b
v

}

=
b
4

Γ(−λ −1)
Γ(−λ )

<+∞.

When λ =−1, we have

H ′
λ=−1(u) =−

1
a−2u

+
1
2

K0(
√

(a−2u)b)+K2(
√

(a−2u)b)

K1(
√

(a−2u)b)

√
b

a−2u
.

For small values of v, the asymptotic approximation of K0(v) is − log(v). Therefore, we have

lim
u→ a

2

H ′
λ=−1(u) = lim

v→0

{
−b

4
log(v)

}
=+∞.

To conclude, we have

lim
u→ a

2

H ′
λ
(u) =

{
+∞, λ ≥−1;
−b

4(λ+1) , λ <−1.

Theorem 1 also explains why the inverse Gaussian distribution, i.e. λ =−0.5, can be (exactly)

approximated by the saddlepoint density (Daniels, 1980).
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4 Saddlepoint Density Modification

4.1 Approximation Error

In many applications, the saddlepoint density does not integrate to one, and hence needs to be

normalized. We here point out that generally the saddlepoint approximation for fXt (x;θθθ) is not

exact, even after normalization.

We prove by calculating the ratio f̂Xt (x;θθθ)
fXt (x;θθθ) . If the ratio is not 1, then we can conclude that the

saddlepoint approximation f̂Xt (x;θθθ) is not exact. Moreover, if the ratio changes with x, then we

can conclude that even the normalized saddlepoint approximation is not exact. Note that, on one

hand, only fX1(x;θθθ) has an explicit expression. On the other hand, if the normalized f̂X1(x;θθθ) is

not exact, then for any t > 0, the normalized f̂Xt (x;θθθ) is not exact either. Therefore, we only need

to examine the ratio
f̂X1(x;θθθ)
fX1(x;θθθ) for x > 0.

In Figure 2 we plot the ratio for different values of (a,b), with λ fixed at value 2. In each row, b
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Figure 2: Plot of the ratio
f̂X1(x;θθθ)
fX1(x;θθθ) for different values of a and b, with λ fixed at 2. In each row,

b takes a value from {0.1,1,10}; in each column, a takes a value from {0.1,1,10}. The x-axis

represents the value of x.

takes a value from {0.1,1,10}, while in each column, a takes a value from {0.1,1,10}. The x-axis
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represents the value of x, and the y-axis represents the value of the ratio
f̂X1(x;θθθ)
fX1(x;θθθ) . Figure 3 repeats

the procedure with λ fixed at value -0.75. Both figures indicate that the saddlepoint approximation
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Figure 3: Plot of the ratio
f̂X1(x;θθθ)
fX1(x;θθθ) for different values of a and b, with λ fixed at -0.75.

f̂Xt (x;θθθ), even after normalization, is not exact. Moreover, in Figure 2, all the ratios are above 1,

while in Figure 3, all the ratios are below 1. All the ratio curves are bounded. Note that the relative

difference between f̂X1(x;θθθ) and fX1(x;θθθ), as measured by the ratio, increases with x; however,

with x increasing, the true value fX1(x;θθθ) quickly converges to 0. Hence, if we plot the two density

functions, they are visually the same (see Section 6). In fact, via exhaustive numerical study, we

find that the saddlepoint approximation f̂Xt (x;θθθ) has the following property:

Proposition 4. The saddlepoint approximation f̂Xt (x;θθθ) is exact only when λ = −0.5. When

λ 6=−0.5, it is not exact even after normalization. When λ >−0.5, the ratio f̂Xt (x;θθθ)
fXt (x;θθθ) is larger than

one for any x > 0, and increases with x. When λ < −0.5, the inverse ratio fXt (x;θθθ)
f̂Xt (x;θθθ)

is larger than

one for any x > 0, and increases with x.

Remark 1. We can relate the GIG density (1) to the inverse Gaussian density f (x;−0.5,a,b) by

writing

f (x;λ ,a,b) =
xλ+0.5

E[Xλ+0.5]
f (x;−0.5,a,b),
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where

f (x;−0.5,a,b) =

√
b

2π
exp(
√

ab)x−3/2 exp
(
−1

2
(ax+bx−1)

)
,

and the expectation is taken w.r.t. f (x;−0.5,a,b). The saddlepoint density can exactly approx-

imate f (x;−0.5,a,b), and E[Xλ+0.5] is independent of x. Therefore, the approximation error is

introduced by the exponentiation xλ+0.5. When λ increases from -1 to infinity, the change of the dif-

ference f̂Xt (x;θθθ)− fXt (x;θθθ) from negative to positive may be caused by the exponentiation xλ+0.5,

which changes from a decreasing function to an increasing function.

4.2 A Modified Approximation

Proposition 4 indicates that if we want to improve the approximation f̂Xt (x;θθθ), we have to mul-

tiply it by a non-constant factor. Following Section 3.1, let ψ0(w) denote the moment generat-

ing function of an appropriate distribution that admits an analytic density function f0(x). Define

k0(w,x) = log(ψ0(w))−wx, and let ŵ be the unique root of k′0(w,x) = 0. Instead of approxi-

mating k(u,x) by a truncated Taylor expansion, Ait-Sahalia and Yu (2006) approximated it by

k(û,x)+ k0(w,x)− k0(ŵ,x):

k(u,x)− k(û,x)≈ k0(w,x)− k0(ŵ,x).

Both k(u,x) and k0(w,x) are strictly convex. Hence, u = û if and only if w = ŵ. Now it is clear that

the appropriateness of the benchmark density f0(x) means that ψ0(w) is defined on a non-trivial

interval, and ŵ exists whenever û exists. Moreover, the two local functions, k(u,x)−k(û,x) around

û and k0(w,x)− k0(ŵ,x) around ŵ, are expected to behave alike.

Now we can treat u as a function of w. By differentiating twice the above equation and setting

w to be ŵ, we have

u′(ŵ) =

√
k′′0(ŵ,x)
k′′(û,x)

.
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Then we have

f (x) =
1

2πi

∫ û+i∞

û−i∞
exp(log(ψ(u))−ux)du

≈ exp(k(û,x)− k0(ŵ,x))
1

2πi

∫ ŵ+i∞

ŵ−i∞
exp(log(ψ0(w))−wx)u′(w)dw

≈ u′(ŵ)exp(k(û,x)− k0(ŵ,x))
1

2πi

∫ ŵ+i∞

ŵ−i∞
exp(log(ψ0(w))−wx)dw

=

√
k′′0(ŵ,x)
k′′(û,x)

exp([log(ψ(û))− ûx]− [log(ψ0(ŵ))− ŵx]) f0(x),

or, equivalently,

f (x)≈ 1√
2πk′′(û,x)

exp(log(ψ(û))− ûx)
f0(x)

1√
2πk′′0(ŵ,x)

exp(log(ψ0(ŵ))− ŵx)
.

We notice that 1√
2πk′′0(ŵ,x)

exp(log(ψ0(ŵ))− ŵx) is the saddlepoint approximation for f0(x).

For the GIG Lévy process, one candidate of f0(x) for fXt (x;θθθ) is given by

f0(x) =
(
√

a)λ

2(
√

bt2)λ Kλ (
√

abt2)
xλ−1 exp

(
−1

2
(ax+bt2x−1)

)
,

which simply replaces b in Equation (1) with bt2. Hence, the quantities ŵ, ψ0(ŵ) and k′′0(ŵ,x)

can be readily calculated following Section 3.2. Let f̄Xt (x;θθθ) denote the modified saddlepoint

approximation for fXt (x;θθθ). According to Section 3.2, we have

f̄Xt (x;θθθ) =

√
k′′0(ŵ,x)

tH ′′
λ
(û(x, t))

(
√

a)λ

2(
√

bt2)λ Kλ (
√

abt2)
xλ−1 exp(−1

2
(ax+bt2x−1))

× exp([tHλ (û(x, t))− û(x, t)x]− [log(ψ0(ŵ))− ŵx]) .

When t = 1, f0(x) is identical to fX1(x;θθθ), and hence f̄X1(x;θθθ) is exact. Note that, when λ =−0.5,

f0(x) is the marginal density function of the inverse Gaussian process.

We examine the similarity between f0(x) and fXt (x;θθθ), and for ease of exposition we let t = m

be an integer. Let i.i.d. random variables {Y1, . . . ,Ym} follow the GIG distribution (1), and i.i.d.

random variables {X1, . . . ,Xm} follow the inverse Gaussian distribution f (x;−0.5,a,b). Then the

summand ∑
m
i=1Yi follows the distribution fXm(x;θθθ) with the moment generating function given by

E[exp(u
m

∑
i=1

Yi)] =
m

∏
i=1

E[exp(uYi)] =
m

∏
i=1

E[Xλ+0.5
i exp(uXi)]

E[Xλ+0.5
i ]

=
E[(∏m

i=1 Xi)
λ+0.5 exp(u∑

m
i=1 Xi)]

E[(∏m
i=1 Xi)λ+0.5]

.
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The corresponding f0(x) for fXm(x;θθθ) is

f0(x) =
(
√

a)λ

2(
√

bm2)λ Kλ (
√

abm2)
xλ−1 exp

(
−1

2
(ax+bm2x−1)

)
.

Let Y be a random variable from f0(x), and X a random variable from fXm(x;−0.5,a,b) – a special

case of fXm(x;θθθ) and also the density function of ∑
m
i=1 Xi. The moment generating function of Y is

E[exp(wY )] =
E[Xλ+0.5 exp(wX)]

E[Xλ+0.5]
=

E[(∑m
i=1 Xi)

λ+0.5 exp(w∑
m
i=1 Xi)]

E[(∑m
i=1 Xi)λ+0.5]

.

We observe that the moment generating function of fXm(x;θθθ) and that of f0(x) are alike. Hence, it

is expected that the modified saddlepoint density f̄Xt (x;θθθ) will yield a better approximation.

5 Other Issues

5.1 Parameter Estimation

We now fit the GIG Lévy process to a time series dataset and estimate the unknown parameters.

Let θ̂θθ denote the maximum likelihood (ML) estimate of θθθ , and Θ a restricted parameter set: Θ =

{(λ ,a,b)|λ >−1,a > 0,b > 0}. Here we presume that the true value of θθθ falls in Θ, as otherwise

the saddlepoint method will fail. Although Θ is a restricted set, it is still larger than the parameter

sets of the gamma process and the inverse Gaussian process. Starting from time 0, suppose we have

data {x0,x1,x2, · · · ,xm} collected at time points 0 = t0 < t1 < t2 < · · ·< tm. Define ∆xi = xi− xi−1

and ∆ti = ti− ti−1 for i = 1, . . . ,m. Then the likelihood for observing ∆xi shall be fX∆ti
(∆xi;θθθ)

which, according to Equation (2), is difficult to evaluate.

We notice from Figure 2 that the approximation error is quite small and uniformly bounded. In

Section 6.1, we will corroborate that the saddlepoint density approximates the true density nearly

exactly. In fact, due to the round-off error, numerical integration of f̂Xt (x;θθθ) over the interval

(0,+∞) even gives the value 1. Hence we might perform ML estimation by directly maximizing

the log-likelihood ∑
m
i=1 log( f̂X∆ti

(∆xi;θθθ)):

θ̂θθ = argmax
θθθ∈Θ

m

∑
i=1

{
−1

2
log(H ′′

λ
(û(∆xi,∆ti)))+∆tiHλ (û(∆xi,∆ti))− û(∆xi,∆ti)∆xi

}
.

Here, we use the notation û(x, t) to highlight that the root is a function of x and t. Maximizing

the above log-likelihood function is undemanding: the root û(∆xi,∆ti) can be quickly found using,

e.g., the bisection method, because H ′
λ
(u) is a strictly increasing function of u.
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5.2 Random Number Generation for fXt(x;θθθ)

We generate data from f̂Xt (x;θθθ) and treat them as sampled from fXt (x;θθθ). Though we can evaluate

f̂Xt (x;θθθ) for any x, the root û(x, t) does not have an analytic expression. Hence, there is no method

available to directly draw i.i.d. samples from f̂Xt (x;θθθ). We here propose to adopt the Markov

chain Monte Carlo (MCMC) technique to generate a sequence of dependent samples, denoted by

{Xi, i = 1,2, · · ·}, which is a Markov chain with the equilibrium distribution f̂Xt (x;θθθ). Then the

Nth element (with N being sufficiently large), XN , can be used as a random sample from f̂Xt (x;θθθ).

Readers are referred to the excellent texts of Chen et al. (2012) and Meyn and Tweedie (2012) and

review papers by Tierney (1994) and Andrieu et al. (2003) for more information on MCMC. We

herein develop a sampler based on the Metropolis-Hastings (MH) algorithm.

Let Xi = x denote the current state of the Markov chain. The MH sampler is composed of

three steps: (1) Generate a proposal sample ẍ from a proposal distribution g(ẍ|x). (2) Compute the

acceptance probability α: α = min{1, f̂Xt (ẍ;θθθ)
f̂Xt (x;θθθ)

g(x|ẍ)
g(ẍ|x)}. (3) Accept the candidate sample with proba-

bility α . If ẍ is accepted, set Xi+1 = ẍ; otherwise, set Xi+1 = x. The proposal distribution g(ẍ|x)
is a conditional distribution that represents the probability of moving from x to ẍ. If the proposal

distribution satisfies the regularity conditions: irreducibility and aperiodicity, then the generated

Markov chain converges to the target distribution, i.e., f̂Xt (x;θθθ) (Tierney, 1994; Mengersen and

Tweedie, 1996).

To fully develop an MH sampler, we need to specify the proposal distribution g(ẍ|x). Here we

work with the Gaussian distribution centered at the current value x with standard deviation σ(> 0).

The value of σ should be subjectively determined to maintain the acceptance rate of proposals in

a reasonable range. Note that the target distribution, f̂Xt (x;θθθ), does not have full support, while

the Gaussian proposal distribution does. Hence, we need to work with a slightly different proposal

distribution – the truncated Gaussian distribution: g(ẍ|x) = φ( ẍ−x
σ

)

Φ( x
σ
) , ẍ > 0, where φ(·) and Φ(·)

are respectively the density function and cumulative distribution function of the standard normal

distribution. Then the acceptance probability is simply α = min{1, f̂Xt (ẍ;θθθ)
f̂Xt (x;θθθ)

Φ( x
σ
)

Φ( ẍ
σ
)
}.

Remark 2. If the value of λ in f̂Xt (x;θθθ) is not very large, we can apply the importance sampling

with the proposal distribution being the inverse Gaussian distribution (λ =−0.5) or the hyperbolic

distribution (λ = 0). Importance sampling is faster than the MH sampler, as the samples are

independent.

Godsill and Kndap (2021) recently developed a data-generation technique for the GIG Lévy

process. They first constructed a bivariate point process having the GIG Lévy process as its
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marginal, and then developed an acceptance-rejection sampling method for the bivariate point

process. By contrast, our simulation method is much simpler.

5.3 Goodness-of-Fit Test

To test the goodness of fit, we propose to employ empirical-distribution-function test statistics,

e.g., the Kolmogorov-Smirnov test. The idea is to invoke the probability integral transformation

and calculate yi = FX∆ti
(∆xi;θ̂θθ) for i = 1, . . . ,m. To calculate {y1, · · · ,ym}, we need to be able to

approximate FXt (x;θθθ) for any t > 0. Again, this can be accomplished by employing the saddlepoint

method (Lugannani and Rice, 1980; Daniels, 1987):

F̂Xt (x;θθθ) =


Φ(z)+φ(z)

(
1
z −

1
û(x,t)
√

tH ′′
λ
(û(x,t))

)
, for x 6= E[Xt ],

1
2 +

tH ′′′
λ
(0)

6
√

2π[tH ′′
λ
(0)]3/2 , for x = E[Xt ],

where z = sgn(û(x, t))
√

2[û(x, t)x− tHλ (û(x, t))].

We might assume {y1, · · · ,ym} are in ascending order. Denote by F̂m(y) the empirical distribu-

tion function of the data {y1, · · · ,ym}. The Kolmogorov-Smirnov statistic is defined by

K̂2
m =
√

m sup
0<y<1

|F̂m(y)− y|=
√

m max
(

max
1≤i≤m

(
i
m
− yi), max

1≤i≤m
(yi−

i−1
m

)

)
;

the Cramér-von Mises statistic is defined by

Ŵ 2
m = m

∫ 1

0
[F̂m(y)− y]2dy =

m

∑
i=1

(
yi−

i−0.5
m

)2

+
1

12m
;

and the Anderson-Darling (AD) statistic is defined by

Â2
m = m

∫ 1

0

[F̂m(y)− y]2

y(1− y)
dy =−m− 1

m

m

∑
i=1

(2i−1) [log(yi)+ log(1− ym+1−i)] .

We then employ the parametric bootstrap technique (Stute et al., 1993) to calculate p-values:

1. For i = 1, . . . ,m, draw an observation x∗i from f̂X∆ti
(x;θ̂θθ) via the MH sampler.

2. Compute θ̂θθ
∗
= argmax

θθθ∈Θ
∑

m
i=1 log( f̂X∆ti

(x∗i ;θθθ)).

3. Compute y∗i = F̂X∆ti
(x∗i ;θ̂θθ

∗
) for i = 1, · · · ,m, and then compute the values of the test statistics.

4. Repeat steps 1 to 3 for a large number of times to obtain the corresponding p-values.
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6 Numerical Study

6.1 Performance of the Saddlepoint Approximation

We examine the performance of the saddlepoint approximation by approximating fX2(x;θθθ), i.e.,

t = 2. To simulate a random value from fX2(x;θθθ), we simulate two random values from fX1(x;θθθ)

and then add them together to obtain a realization of X2. Repeat in this manner to simulate a

dataset with size 100,000 from fX2(x;θθθ). Then the kernel density plot of the simulated data pro-

vides an accurate graphical representation of fX2(x;θθθ). To examine the accuracy of f̂X2(x;θθθ), we

just need to plot f̂X2(x;θθθ) within the kernel density plot, which is illustrated in Figures 4, 5 and

6. In Figures 4-7 and 12, the black curve represents the kernel density estimate, the red curve
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Figure 4: Density plots of fX2(x;θθθ) (black), f̂X2(x;θθθ) (red) and f̄X2(x;θθθ) (green), when b increases.

represents the saddlepoint density f̂X2(x;θθθ), and the green curve represents the modified saddle-

point density f̄X2(x;θθθ). In Figure 4, we gradually increase b, with the other two parameters being

fixed. Similarly, in Figures 5 and 6, we respectively gradually increase a and λ . In every panel, the

three density plots are virtually indistinguishable, confirming that the saddlepoint density f̂X2(x;θθθ)

can accurately approximate the true density fX2(x;θθθ). The modified saddlepoint density f̄X2(x;θθθ)

locates between f̂X2(x;θθθ) and fX2(x;θθθ), yielding a slightly better approximation than f̂X2(x;θθθ).
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Figure 5: Density plots of fX2(x;θθθ) (black), f̂X2(x;θθθ) (red) and f̄X2(x;θθθ) (green), when a increases.
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Figure 6: Density plots of fX2(x;θθθ) (black), f̂X2(x;θθθ) (red) and f̄X2(x;θθθ) (green), when λ increases.
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We now investigate the impact of t on the performance of the saddlepoint approximation by

fixing (λ ,a,b) at (2, 2, 6). Likewise, to simulate an observation of Xt , we simulate t observations of

X1 and then add them together. To plot the kernel density estimate, we simulate 100,000 data points

for each value of t. Figure 7 shows the results. Again, it is observed that the saddlepoint density
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Figure 7: Density plots of fXt (x;θθθ) (black), f̂Xt (x;θθθ) (red) and f̄Xt (x;θθθ) (green), when t increases.

f̂Xt (x;θθθ) is fairly accurate for each value of t. Moreover, numerical integration of f̂Xt (x;θθθ) over

the interval (0,+∞) gives the value 1 (due to round-off error). Figure 12 covers more exhaustive

parameter settings. Figures 4-7 and 12 verify the competence of the saddlepoint approximation,

which shall greatly simplify the inference procedure of the GIG Lévy process.

6.2 Parameter Estimation

In this section, we examine the feasibility of directly maximizing ∑
m
i=1 log( f̂X∆ti

(∆xi;θθθ)) for ML

estimation. The time series data with size m = 100 are simulated as follows. The time increments

{∆t1,∆t2, · · · ,∆tm} are randomly sampled with replacement from the set {1,2, ...,9,10}. Then

randomly generate ∆ti (i = 1, . . . ,m) samples from the GIG distribution GIG(λ ,a,b) and set their

sum as the realization of the increment ∆xi. A variety of parameter settings are examined: a ∈
{0.5,1,3,5,7,9}, b ∈ {0.5,1,3,5,7,9} and λ ∈ {−0.75,−0.25,0.5,1,3,5,7,9}. Hence, there are
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in total 288 different parameter settings. For each parameter setting, we repeat for 5000 times and

hence obtain 5000 ML estimates of the parameter vector (a,b,λ ). The relative error of every ML

estimate is calculated, which is the difference (between the estimate and the true value) divided by

the true value.

We remark that, with any one of the three parameters {a,b,λ} being known, the other two

parameters can be accurately estimated by directly maximizing ∑
m
i=1 log( f̂X∆ti

(∆xi;θθθ)). We cor-

roborate this statement via the relative-error box plots in Figures 8, 9 and 10.
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Figure 8: Box plots of the relative errors of the ML estimates â, with the value of b being known.

In each column, λ takes in turn a value from {1, 3, 5, 7, 9}. In each row, b takes in turn a value

from {1, 3, 5}. In each panel, a takes in turn a value from {0.5, 1, 3, 5, 7, 9}.

• The box plots in Figure 8 characterize the variation of the relative error â−a
a , assuming that
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Figure 9: Box plots of the relative errors of the ML estimates b̂, with the value of λ being known.

In each column, λ takes in turn a value from {-0.75, -0.25, 0.5, 1, 3}. In each row, a takes in turn

a value from {1, 3, 5}. In each panel, b takes in turn a value from {0.5, 1, 3, 5, 7, 9}.

the true value of b is known. For the five panels in each column, λ takes in turn a value

from {1, 3, 5, 7, 9}. For the three panels in each row, b takes in turn a value from {1, 3,

5}. For the six box plots in each panel, a takes in turn a value from {0.5, 1, 3, 5, 7, 9}. It

is observed that, for every box plot in Figure 8, the distance between the 1st quantile and

3rd quantile is quite small. For each combination of the values of the three parameters, with

5000 repetitions, the 5000 ML estimates scatter symmetrically at the two sides of the true

parameter value, and the median of the 5000 relative errors is virtually zero.

• The box plots in Figure 9 describe the variation of the relative error b̂−b
b , assuming that the
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Figure 10: Box plots of the relative errors of the ML estimates λ̂ , with the value of a being known.

In each column, a takes in turn a value from {1, 3, 5, 7, 9}. In each row, b takes in turn a value

from {1, 3, 5}. In each panel, λ takes in turn a value from {0.5, 1, 3, 5, 7, 9}.

true value of λ is known. For the five panels in each column, λ takes in turn a value from

{-0.75, -0.25, 0.5, 1, 3}. For the three panels in each row, a takes in turn a value from {1, 3,

5}. For the six box plots in each panel, b takes in turn a value from {0.5, 1, 3, 5, 7, 9}. We

notice that, with a decreasing and λ increasing, the variance of the relative error increases.

(This is because, as verified in Figure 11, when a is small and λ is large, the value of b has

little impact on the GIG density function). However, the median of the 5000 relative errors

is still close to zero, implying that the ML estimate b̂ is unbiased.

• The box plots in Figure 10 describe the variation of the relative error λ̂−λ

λ
, assuming that the
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true value of a is known. For the five panels in each column, a takes in turn a value from

{1, 3, 5, 7, 9}. For the three panels in each row, b takes in turn a value from {1, 3, 5}. For

the six box plots in each panel, λ takes in turn a value from {0.5, 1, 3, 5, 7, 9}. Again, the

5000 ML estimates λ̂ scatter symmetrically at the two sides of the true parameter value, the

distance between the 1st quantile and 3rd quantile is quite small, and the median of the 5000

relative errors is virtually zero.

Figures 8-10 reveal that, with any one of the three parameters {a,b,λ} being known, the ML

estimates of the other two parameters obtained by directly maximizing ∑
m
i=1 log( f̂X∆ti

(∆xi;θθθ)) are

unbiased and efficient. Therefore, by fixing any of the parameters {a,b,λ} at an arbitrary value

within its domain, we can obtain a new two-parameter Lévy process which, via the saddlepoint

technique, can be readily applied to practical problems. In other words, the set of applicable pure-

jump increasing Lévy processes has been significantly enriched.

In the general case, when all the three parameters {a,b,λ} are unknown, the ML estimate

θ̂θθ undoubtedly will have a larger variance. Through comprehensive numerical study, we found

that, when λ > 1, the ML estimate θ̂θθ obtained by directly maximizing ∑
m
i=1 log( f̂X∆ti

(∆xi;θθθ)) is

unbiased. However, when λ ≤ 1, the ML estimate λ̂ tends to be larger than the true value, and

accordingly the ML estimate b̂ tends to be smaller than the true value. We will tackle this problem

through felicitous modifications of the saddlepoint approximation, which is left for future work.

7 Conclusions

We uncovered the simplicity of the GIG Lévy process by proving that, when λ ≥−1, the marginal

distribution of the GIG Lévy process admits an explicit form, which is a highly accurate approxi-

mation. The availability of the analytic and accurate approximation greatly simplifies the problems

of parameter estimation, goodness-of-fit testing, random number generation, etc. Particularly, if

any one of the three parameters is known, or if λ > 1, the unknown parameters can be accurately

and efficiently estimated by directly maximizing the saddlepoint-approximation log-likelihood

function. Due to the generality of the GIG Lévy process, the set of practicable pure-jump in-

creasing Lévy processes has been significantly enriched. Our continued work on this process will

propose a well-grounded modified saddlepoint approximation.
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Appendix A Sensitivity Analysis

We here examine the sensitivity of the GIG density function w.r.t. the parameter b. Density plots

are given in Figure 11: for the eight panels in each row, λ takes in turn a value from {-0.75, -0.25,

0.5, 1, 3, 5, 7, 9}; for the six panels in each column, a takes in turn a value from {0.5, 1, 3, 5, 7,

9}; in each panel, b takes in turn a value from {0.5, 1, 3, 5, 7, 9}. It is clear from Figure 11 that,

when a is small and λ is large, the value of b has little impact on the GIG density function. For

example, when λ ≥ 5 and a≤ 1, all the density curves for b in {0.5, 1, 3, 5, 7, 9} are virtually the

same. Consequently, the estimate of b, produced by any parameter estimation method, will have a

large variance. Examination of the sensitivity of the GIG density function w.r.t. the parameter λ

reveals that (not shown here) when both a and b are large, a small value of λ (e.g., λ ≤ 1) has little

impact on the GIG density curve. To put it briefly, if the condition number of the log-likelihood

function ∑
m
i=1 log( fX∆ti

(∆xi;θθθ)) w.r.t. θθθ is large, the ML estimate θ̂θθ will behave erratically.

Corresponding to Figure 11, Figure 12 includes saddlepoint approximations f̂X1(x;θθθ) (red) and

f̄X1(x;θθθ) (green) to GIG(λ ,a,b), i.e., fX1(x;θθθ). In Figure 12, for better visualization, b only takes

two values: 0.5 and 9. Figure 12 further verifies the exceptional performance of the saddlepoint

approximation, with the modified saddlepoint density f̄X1(x;θθθ) yielding a slightly better approxi-

mation than f̂X1(x;θθθ). According to Figure 12, we can claim that the Kullback-Leibler divergence

from f̂Xt (x;θ̂θθ) to fXt (x;θθθ) will be trivial, even if the condition number of the log-likelihood func-

tion ∑
m
i=1 log( fX∆ti

(∆xi;θθθ)) w.r.t. θθθ is large.
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