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1. Introduction

A finite compression of a straight linear¢hain of hard spheres results in buck-
ling, that is, lateral displacements of the spheres. The profile of these displace-
ments is arbitrary but it is reproduczbl if 4:confining potential is imposed on all
spheres, opposing their lateral dlsplacement {(In what follows the potential will
sthis; addition,: the system exhibits a bucking profile that
varies with compressmn and takes muiUple forms at hlgh compression.

was gat._ red. together in bifurcation dlagrams 1nd1catmg the energies or pos-
1t10 o3 “ {stable and unstable) equilibrium states, for a range of compressions.
‘y these results were interpreted in terms of direct simulations of discrete
systems‘of up to 20 spheres, whose centres are confined to two dimensions, but
an approximate continuous description, making connections with Jacobi func-
tions, was eventually found to be helpful [5].

At low compression the system buckles in the form of a zig-zag arrangement,
with a smooth profile (depending on boundary conditions). This is modulated
to form a more localised concentration of displacement at higher compression
(see Figure 1).
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2 (&) AJRANNEZHAD ET AL

Figure 1. Localised buckling in a linear chain of spheres.

In further work, a longitudinal force was introduced, acting on each sphere,
as may be produced, in practice, by filting the apparatus (so that a compon%nt of
gravity plays the role of the longitudinal force). The movement of localised
buckling concentration (called ‘kinks” or ‘solitons’ in some related fields)
under the influence of the longitudinal force, is of further interest, in relation
to Relerls-Nabarro potentials [4]. These are of relevance.to
trapped ions [6], which are of particular current interest. i1
quantum computing [7].

In the present paper, we retreat towards the low comipression regime, typi-
cally dealing with a configuration as in Figure 2: Whereas in absence of a longi-
tudinal (tilt) force, buckling arises at infinitesimal compféssioh, here it occurs at

Figure 2. Schematic illustration of the model used in this paper, i.e. a tilted line of spheres in a
harmonic confining potential, with the final sphere (here N= 10) in contact with a hard wall. A
tilt by an angle a beyond a critical value leads to a buckling of the initially linear chain; trans-
verse sphere displacement results in a harmonic restoring force.
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a finite critical value of tilt, if there is no confining boundary at the upper end of
the system (see Figure 2). This is analogous to the buckling/collapse of a tower
under gravity, the lateral confining potential being analogous to the stiffness of
the tower.

Determining the critical tilt for a chosen case (number N of spheres) is
straightforward, but we will broaden the question to include the nature of
the buckling transition and other related buckling states, which are gathered
together.in Figure 4,

We will have cause to mention the continuous formulation which wehave
previously developed [3, 5], corroborating many of the findings 1nc1uded
here. The continuous description raises several detailed theoretical: quesuons
accordingly we are deferring it to another publication [8] gind will touch' o
its results only briefly in what follows. -

The scenario which emerges should be compared with experiment byt this
has proved difficult. We present only some limited results in Section 5. The
difficulty arises from the inevitable frictional forces. v ____dlnary hard
spheres (ball bearings). It may be obviated by imstead uging bubbles [2], but
these are deformable, so that theory would need to be extended to that case;
which we anticipate in ﬁds/ future work.

2. Theoretical and computatio’h_""l méthods

2.1. Modelling the dlscrer _system

A chain of N contacting 1dent1ca1 hard spheres is tilted to make contact with a
hard wall, as illustrated in Flgure 2;and shown in the plane of tilt in Figure 3.
Displacement of a sphere bya distance R,, away from the central axis results in a
transverse restormg force Fﬁ with magnitude kR, where k is a spring constant.
We mtroduc on- -dimensional quantities by defining r, = R, /D, where D is
ter. The dimensionless transverse force f, is defined as
= n/ }‘cD Insertmg for F, leads to f, == r,; in our non-dimensional formu-
latlon the magnitude of the transverse force f, acting on a sphere equals its

ansverse displacement r,, a positive quantity. See Figure 3 for notation,

Ina chain which is tilted by an angle a, each sphere of mass m experiences a
tilt force mg sin « along the axial direction. In the followmg, we introduce the
non-dimensional tilt variable 7 by

) frhmgsma/(kD) , 7: (1)

The centres of contacting spheres are separated by their diameter. Hence in our .

dimensionless variables the radial distances and forces are given by
fn +fn+1 =ty + oyl = sin em (2)

see Figure 3,




125

130

135

140

145

150

155

4 A. IRANNEZHAD ET AL

Top view
g =0

gn+1

Figure 3, Top view of the buckled chain of Figure 2, with relevant notation of the dimens:
guantities, as defined in the main text. The forces £, (equivalent to the dimensionless di pla
ments) are due to the confining potential, g, are the compressive forces at sphere-sphere cons
tacts). The sphere positions in this example were obtained from computer mulations far the
dimensionless tilt, 7= 0.03. :

The angles between successive sphere centres play )
alternate in sign in a zig-zag structure, but a factor i
variable 6, used here; this remains posmve in the m n cases discussed
below; similarly the alternation of sign is supp“:essed in the transverse displace-
ment f, [3,5]. The applied (hard wall) boundary: ¢onditions correspond to
by = by = 0.

In the presence of tilt, the (non dzm """'s1ona1) compressive force g, between
contacting spheres depends on-thie position of a sphere within the chain,

(3)

where 7 is our tilt‘%#ariable our previous work for 7 == 0 the gight-hand side
of Equatlon (3) Was repla ed by a constant compressive force [3,5]).
¢ tratisverse: frce balance for the displaced nth sphere we obtain

Ja M,(4(n — 1)a4an 0,1

an g, = . 4
TH

‘boundary condition for sphere n=1 requires 6, to be zero, with an arbi-
trary f1 Using Equations (2) and (4) we proceed iteratively to (fut1, Ger1)-
The angle 6y corresponds to the contact of the Nth sphere with the wall,
which can be made equal to zero by adjusting the value of f; using a shooting
method, as in [1,3].

The total energy is the sum of the energy due to transverse sphere displace-
ment, s kxgzn | R2, and the energy due to tilt, mgsin & Zn_])( Here %, is the
position along the central axis of sphere =, given by
X D(; -I—Z cos fy..;). Evaluation of the double sum and division of
both energy contnbutmns by kD? results in the following expression for the
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non-dimensional energy E for a chain of N spheres,

1 N N
Exz A+ 'r(nzm; (ncos8,) _E) (5)

n=1

2.2. Energy minimisation

In the following, we also have recourse to modelling the chain of spheres as
deformable with purely repulsive harmonic forces, as commonly used in com-
putational studies of jamming [9]. This allows for overlaps between heres,
leading to a penalty in the total energy. The total energy (which varies quadra-
tically with overlap) can readily be minimised with respect to the coordinates of
the sphere centres (using for example conjugate gradient.based. methods) to
find the equilibrium state of lowest energy.

To make contact with our hard sphere simulations {which aré:b
iterative method, Section 2.1) we set the magnitude of the clastic force between
spheres to be 30 times greater than the transver sleads to a deviation
from the ideal hard sphere model which is negligible for our purpose here. The
deviation from the ideal hard-sphere model may be gauged by considering the
doublet structure (an example of which is shown in Figure 4 by the chain of red
spheres), where the displacement of two:contacting transverse hard spheres is

relative enargy AE

- 2 Lo
0.05: g

o307 S 1 1 (S 171
straight (unstable)

803

relative energy AE

~0.05-

-0.15)-

Figure 4. Bifurcation diagram for a system with N = 10, obtained from simulations, see Section
2. Shown is the variation of the energy difference Af = F — £, of total energy £ {Equation 5)
and energy of the straight chain, E;, as a function of tilt T. Examples of the various structures
described in the text are shown, with arrows indicating allowed directions of change of
stable solutions. The transition from the doublet to the zipper structure is shown in dose-up
in an inset.
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6 (&) A IRANNEZHAD ET AL

exactly a half and next-nearest neighbour contacts have formed; with our choice
of the elastic force between contacting spheres this displacement differs from
this value by less than | percent.

3. Results of simulations

We first address the question: what happens if the tilt is gradually increased from
zero?

It may be obvious that a small tilt will not render the chain unstable .We
expect it to become unstable with respect to buckling at some critical value
of tilt, 7= 7.. We wish to determine 7. (for specified N, the number'af
spheres) and describe what happens around the cr1t1cal _pomt As an
example, we choose N =10, for which results are shown i X

It is trivial to derive the energy of a straight cham (whe stable or not),
E; = 7N?/2, and we subtract this from calculated energles £ (Equation {50,
for simplicity of presentation,

(6)

Hence the horizontal axis in Figure 4, represents the straight chain solution,
Wthh is stable in the range 0 < T < T where 7. = 0. 03557 {as determined

AE=FE—E,;

branch emerges that correspond o a’ buckled solution, developing as T 1&
further increased, as in the classic descnphon of Euler buckling of a beam.

This is not the casc:herg__the; is no such ‘forward branch’, but rather a ‘back-
ward’ one, which onhe ma !eadll'y identify as unstable. In later sections, we will
explore its nature. For now, 1et us ask: what happens to the stable system when 7

this questlon we have had recourse to the deformable sphere
model of ec on 2.2°We equilibrate a linear chain of such spheres using gra-
dlenf descent:methods for energy minimisation and find that it is stable for
T T Beyond this point, it falls into a doublet, if energy is minimised (see
dashed black arrow in Figure 4). This type of state was encountered in our
earlier’ study of buckling under compression [3]. The energy difference
between the doublet structure and the linear chain is given analytically by

AEdDubbjf - 1/4 - (3 - \/g)(N - 2)7 (7)

If 7 is now reduced, the system remains in the doublet state for 7 < 7, and tran-
sitions to the linear chain only at 7 = 0. The stable straight chain with which we
began this description is the state of lowest energy only for 7<C 0.0246 (from
Equation 7). On the other hand, if 7 is increased, the doublet structure develops
into an extended double chain (which we will call a ‘zipper’), similar to what

R i

2.

L
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0.008
19
0.006 .
¢-$}
a‘}w&
4 0.004 N
‘ »,
2,
N
Ty
0,002 P,
0.031 0.032 0.033 0.034 0.035 0.036

Titt, r

Figure 5. Close to the critical value of tilt, 7., the varatioti.of the computed energy AE
(Equation 6) (blue data points) for the unstable buckied structi mdl_cated in Figure 4 is
well fitted by a quadratic form (dashed red line). {Data shown is % N=10)

was found by Pickett et al. in computer simulations: of cylindrically confined
spheres [10}. _

For T< 7, the bifurcation diag ""E:Iudes the ‘backward branch’ corre-
sponding to an unstable state:"Fhe. variation of energy close to 7, is quadratic
for this state, as Figure 5 shows. The “¢ritical value of tilt (for N=10) is
T == 0.03557. :

Figure 6(a) shows’ exa _=-pIes of profiles of displacements f, for the unstable
state, obtained from 51mu1.at10ns of the discrete N =10 chain, for values of tilt
just below 7...Th proﬁles are characterised by a long tail of near zero displace-
ments, with'a peak belowthe 9th sphere and a substantial displacement also for
the ;\(}tﬁ hete; ;which is in contact with the wall. We will return to the
mterpretat n of these profiles and their scaling in Section 4.3.

" Our bifurcation diagram, Figure 4, shows also the variation of energy of an

.unst_able higher energy double-peak structure, but we have not yet further ana-

lysed this state.

4, Further interpretation
4.1. Hessian eigenvalues and eigenvectors

To shed further light on the unstable states, we will in the following consider the
Hessian matrix associated with the energy of a perturbed straight chain for
values of 7 around 7. As usual, positive eigenvalues are associated with
stable modes of deformation, while negative ones denote instability.
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(decreasing A7)
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0.15]
0.1¢;

0.05

bisplacement/Sphere diameter, f,

0.00

M
BB

Sphere number, n
{b}

0.07

TRl i

-
0, 0pLeimmm T
5.0000  0.0005  0.0010  0.0015  0.0020  0.0025

Critical Tilt - Tilt, Ar

' (pisplacement/Sphere diameter)?, f,2

Figure 6. Simulation results for the (unstable) single peak sofution shown in Figure 4. (a) Dis-
placement prafiles for values AT = 1. — 7 close to 7, (Ar = 0.0055, 0.0030, 0.0017, 0.0005).
The data points result frem the discrete calculations (using the stepwise method}, the solid
lines are analytic solutions obtained from the continuum model, involving the Whittaker func-
tion: see Section 4.3. (b) Sguare of the displacement, taken at spheres 7, 8, 9, 10, respectively, as
a functian of Ar. The linear scaling of the square of the displacement with Aris also reproduced
in the simple heuristic model of Section 4.2 and the continuum model {Section 4.3).
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The hard sphere model makes use of generalised coordinates (in terms of B,
and f,) which guarantees that adjacent spheres cannot overlap. In the soft
sphere model (Section 2.2), we do not have to explicitly impose hard-sphere
constraints to prevent overlaps between spheres. Instead, these constraints
are approximated (to a good degree) by the imposition of an overlap penalty
In the energy. Therefore, we are free to specify the sphere centres using Carte-
sian coordinates. The resulting expression for the energy of the system and the
Hessian (i.e. the matrix of second derivatives of the energy with respect to the
coordinates) has an ¢xceptionally simple form in terms of Cartesian coordi- .

nates, making the computation of eigenvalues and eigenvé@tors
straightforward. i
Figure 7 shows the lowest three eigenvalues, Ag, Ay, Ay, as a function of 7. Fhe
eigenvector for Ay corresponds to the displacement profile of the unstable sol-
ution, as shown in Figure 8. . =

4.2. Simple models

We can shed further light on the results with simple heuiji_stli:'gmodels as follows.
The instability occurs where the local compressive forcéfis largest, i.e. towards
the bottom of the chain. Suppose we allow dispi&é&n}entlbf only the penultimate
sphere, so that there is only a single ¥ariable ( f; the displacement of the sphere,
or f, the angle associated with the fin - connecting the centres of the penaltimate
and the final sphere, which i ontagt with the wall) describing the buckled

0.8
0.6
g
% 0.4 A‘] -
>
B
‘@
0.2
w
~oal

0.030 0.032 0.034 0.038 0.038 0.040
Tilt, T
Figure 7. Variation of the three lowest eigenvalues as function of tilt 7, obtained using energy

minimisation. The lowest eigenvalue, Ay, goes-to-zero-linearly-at T Fheonset of bueklimg cor-

respﬂn-dr“rd“tﬁeﬂ“@%w
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o o
15, o
A

e
'y
g

o -

-@- Experiment s \
-# Simulation /
~&- Eigenvector

Displacement/Sphere diameter, f,
< o
[ w

0.1 B
p;f_’g-..ﬁ
.:;4».,, ke =y B e mﬁ@’gﬁf’;ﬁ/
k| 2 3 4 5 6 7 8 9 10
Sphere number,

Figure 8. The displacement profile of the unstable state at tlit 7= {03145 obtained using the
jterative method is matched by the Hessian eigenvector of the lo eigenvalue, Ay (normal-
ised, to match the magnitude). Also shown is the expe tmentai data for the friction-arrested
state (see discussion in Section 5).

state. The compressive force actin here N—1 is due to the weight of the
linear chain. At the onset of t ckling its transverse component,
{(T{N — 2) + (N — 1)) sin: 6 (the sum of the forces due to the contacts with
spheres N—2 and N, res vely), overcomes the restoring force f = sin 8. It
results in the estin .(ZN 273)7! for buckling. J#*provides a crude, but
fairly successful, E;gé.tlmate o

A variatioh:of ‘this model allows equal and opposite displacement of the
two spheféa and N-2 (where sphere N is in contact with the wall).
This more: curafél'jr”describes the effect of Iocalised buckling and captures

ate T

-Ieads to: an e\}en better estimate for the value of tilt 7., at which the unstable

solu,_. n vanishes,

=[BWN-21", (8)

see Figure 9.

This trial set of displacements for two spheres involves a single parameter,
displacement f, or angle 8, the latter being # = arcsin f. The relative energy,
Equations {6) and (5}, is given by

AE(B):sin29+3i(2c033+\/1—4sin28—3). (9)
Tc
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0.25 i_
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W 0.20 \y ® Discrete simulation data
,g ! -- Simple Model
% 0.15 — Continuum theory (Whittaker solution)
E R
[
-
T D10
o
=
e
g

b.05

0.00

0

Figure 9, Variation of the critical value of tilt rrcm Fithe niimber of spheres, N. The
data pomts are from discrete simulations (lteratwe method] the‘?'sohd fine is obtamed from

model, see Section 4.3), as specified by Equation (12).-Also s Wwn is an estimate obtained
from a simple ansatz for a displacement prqﬁ'lé, Equation (8){dashed line).

The maximum value of 8 is 17/6 W ich corresponds to the doublet structure.
The model is terminated heé since it does. not have allowance for the additional
contacts which arise at that point.

Figure 10 1Hustratesqthe form of. this function for different values of 7. For
T < T, the minimitm at 0 0 éorresponds to the stable straight chain solution
indicated in F}gure 4. The maximum corresponds to the unstable solution, dis-
cussed in the previous sections, and also represented in Figure 4. For 7= 7,
there is ..o:""'iy one statlonary state, 6 = 0O (straight chain), and for v > 7, it is

; the amplitude of the unstable solution varies as

8 (A7) ~—(%I) (1 +§(¥)) (10)

with A7 = 7, — 7. This results in a quadratic variation in energy, for small Ar,

2
AE(A7) :;(A{) (1+§(573)) (11)

Both scalings are consistent with the results of the discrete simulations, see
Figures 5 and 6(b). A deeper analysis of the critical behaviour can be developed
using an eigenvalue analysis.




12 (&) A.JRANNEZHAD ET AL,

0.25 ;
]
¥
0.206 !
o}
0.15 P
445 . 6
0.10 1 | Doublet
. |
- : ]
£ 0.05 ]
E\. .
o=
450 = 0.00
=
o0
) ~0.05
£
E
5 ~0,10
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Figure 10. Variation of energy, Equation (9}, with angle 9 ar did|ff' rent ratios /7. for the
simple model, in which only the two penultimate spheres are -
values of tilt in the range | 0= T/7, < 1 there are ur\stable solutions at finite valuesof 8,
460 farked as black dots. Fors, > 1 the unstable solution as moved to zero, showing how
%% unstable branch decays as T — 1.
We will return to this heuri 1 when interpreting our experimental
findings in Section 5.
485
4.3. Continuous fofiﬁ'ﬁ?at' n
The discrete system may be represented approximately by a continuous formu-
6 by.us to describe buckling under compression [3,5]. This
470 i 'ar mathematics of ordinary differential equations. We defer

: nalysis to a subsequent paper [8], as there is a substantial

tec:hmc ] content but summarise here some of its findings.

“ntn partlcular, it relates the results at and around the critical point 7, to Whit-
taker functions [11] and hence provides a neat analytic formula for 7, in terms

475 of the properties of this special function. For given N, 7, is the minimum (posi-
tive) value of 1 for which

Mg = 0. (12)

ey

Here M is the Whittaker function [11] and 7 is the unit imaginary number. For

480 N =10, this gives 7, = 0.03591 - - -, as determined numerically using Mathema-
tica. This is remarkably close to the numerical value obtained for the discrete
system by simulation: exact agreement is not to be expected. Figure 9 shows
close agreement also for other values of N.
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Furthermore, the scaling behaviour close to T, as illustrated in Figure 5, is
also well described by the continuum theory, the invariant shape of the
profile in Pigure 6(a) being that of the corresponding Whittaker function
with corresponding scaling as in Figure 6(b).

The same Whittaker function can also be used to estimate the critical value of
tilt 77 for the unstable double-peak solution displayed in Figure 4,

5. Experiments

As we have already indicated, experiments have not yet proved to be ful
isfactory for hard spheres. Nevertheless, such experiments have st o
much of the analysis presented in this manuscript. k-

5.1. Experimental set-up and procedure

The experiments were carried out with meta] spheres (setsiof ball bearings with

nfined'in a ‘eylindrical perspex
tube (diameter Dy = 34 mm) which was filled with vegqftﬁb]e oil to reduce fric-
tion (see Figure 11). The angle of tilt of the cyl :ﬁd_gg.as_gﬁhst the horizontal was
determined using a digital spirit l_gvéf (Neoteck NTKOM). The cylinder was
sealed with rubber stoppers at ‘hoth -ends; the surface of the stopper in
contact with the spheres was.covered with a circular plastic sheet to further
reduce friction at the contact point. &

In these experiments, the restoring transverse force is provided by the cur-
vature of the cylinder: The _hng_néibnless tilt variable T of Equation (1) is

then given by
D
(51: - l) sin &, (13)

diameter D = 9.5 mm and mass m = 3.52 ), 4

as shown ‘in ppenchx A.
f orie simply tilts such a system, no instability is found until 7 is much

“greater (e.g. by a factor 3 greater) than the 7, that we have computed for

idealhard spheres. Hence friction is sufficient to hold the system in the unstable
straightichain arrangement of hard spheres, up to a point.

We rule out the use of large perturbations since these tend to force the
System into the doublet arrangement over a very wide range of tilts. Instead

- we have tried to overcome the effects of friction by rolling the tube gently

back and forth, thus providing a perturbation of the linear chain,

Our experimental procedure was thus as follows. Starting from an initially
linear arrangement of spheres the tube was tilted away from the horizontal
by a tilt angle &. This was followed by ten cycles of manually rolling the tube
back and forth with a fixed period of 10 seconds and a specified amplitude.
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Figure 11.:Sphere”attangements obtained using the rolling procedure described in the text.
The:éxamples: shown are the straight chain {no tift), buckled single peak structures for tilt
angles 0.8 1.1 1.4 degrees, respectively, a ‘skewed doublet’ structure for 1.5 degrees,
and a ‘zipper' structure for 1.9 degrees, (The presence of ofl in the tubes results in optical dis-
tortion, We have corrected for this in these images by re-scaling the photographs by a factor of
2.04 toresult in circular shapes for the sphere. Sphere diameter 9.50 mm, inner tube diameter
34 mm, uncertainty in angle measurements, 0.03 degrees. Roliing amplitude, 30 mm.)

An image is taken after the rolling is stopped; Figure 11 shows examples of
sphere arrangements for six different values of tilt.

Image analysis using Image] [12] results in profiles of sphere displacement
from the tube axis. Experiments were repeated three times for each angle; in
each of these runs we started from an initially linear chain.
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5.2, Results

We find that once the rolling is stopped, even for values of tilt well below 7., the
system does not return to the linear configuration. The experiments consist-
ently resulted in the formation of a single peak zig-zag configuration, similar
in form to the unstable equilibrium state discussed above. An example of the
corresponding displacement profiles for the buckled structure is shown in
Figure 8. It has all the features of the profiles found in our simulations and is
consistent with the profile corresponding to the lowest eigenvalue (see
Section 4.1). All profiles are asymmetric, with a maximum dlsplacement at
sphere 9, and a substantial displacement also for sphere 10, wh'ch :
contact with the flat stopper at the end of the cylinder.

However, while in the frictionless case the displacement amplitude decreases
as the critical value of tilt is approached (Figure 6), friction catises the observed
displacement to increase with tilt, as shown in Figure 12. InFlg“ur 13, _vge ‘show

e
in

b
Y

2
(M

o
iv

e
[

o
e
¥
N
i
B

Sphere number, n
Figure 12. Experimental displacement profiles for (from bottom to top) tilt angles 0.40, 0.80,

1.10 and 140 +-0.03 degrees, corresponding to 7= 0,009, 0.018, 0.024 and 0.0315 (using
Equation 13 for conversion). ‘

——
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Figure 13. Contrasting experimental and simulated results for maximumdisplacement (i.e. cor-
responding to displacement of sphere 9) as a function of tilt 7. In the simulation (solid blue line)
the amplitude of the unstable buckled state decreases t 0 at the critical value 7, where the
620 spheres rearrange to form a doublet structure. In the experiment (data points) the buckled state

is friction-arrested, with an increasing amplifude as the doublet is approached. The solid red

line fs the result of a simple heuristic mogdel, see.Figure 14,

In both experiment and thlsc:rude €01y, Upon increase in tilt the single-

peak buckled structure eventually becomes unstable and the doublet structare

625 emerges. A further increase in tilt réﬁx_ijders also the latter unstable, resulting in
what we called the zippe 'struc__‘_c‘_l_;g_e’.:see bottom photograph in Figure 11.

6. Condlusi

630 Simple systems wi subtle properties are always interesting. This one proved
moreso than we expected at the outset, Indeed we identified an unexpected
property the:reverse bifurcation), adding to a list of interesting properties pre-
vigusly identified for the buckled lincar chain [2,3],
In vague terms, the system presents a type of buckling which, in one form or
635 another;'is quite general. Structures that fail under load may do so continuously
(although possibly with discontinuous secondary consequences) or catastrophi-
cally. The latter word has a modern mathematical meaning which may well
apply to our case.
In continuing our study we intend to explore the mathematics of the conti-
640" nuum theory mentioned ithd.3 will include also the case of combined tilt
and compression [8] in our analysis™
The stability of the linear chain‘and the presence of the buckled structure in
our experimental results serve to highlight the role of friction in arresting
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/7/ Figure 14. In a simple heuristic madel, as described ir |
ation, displaced from a straight line, is arrested by friction if it |
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J—— Tilt, r P
"0.12), an initial configur-
) s in the shaded region. In
other regions of the diagram, friction is overcome; the systens moves as indicated by the
arrows, until arrested. This figure shows hiow the combination of friction and tilt affect a
chaln with a given initial dlspEacement The dotted blue line represents the initial maximum

are stable only due to the presence of friction between contacting balls [13].
In conclusmn Whﬁe our, experﬂnents with hard spheres broadly support our

::elopment beyond the zipper (see Figure 11) leads to three dimensional
colu_ti;;_;ar structures [15,16].
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Appendix A. The non-dimensional tilt variable t for hard sphere
experiments

In our experiments with hard spheres the restoring transverse force is provided by the cur-
vature of the cylinder, see Figure Al. Transverse displacement Y of a sphere of mass m is
opposed by a gravitational force (2¥mg/(Dp— TH[L —4(Y/(Dy — D)%
2Ymg/(Dr — DON1 4+ 2(Y/(Dy — D)?), where Dy and D are cylinder and sphere diameter,
respectively. The maximum displacement is about D/2 {doublet structure} and we thus

obtain 2(Y/(Dr — D})* =~ 0.08 « 1. The restoring force is thus approximated linear in iz oo

placement ¥ with a force constant k;, of :i?"" M
ky = 2mg/(Dy — D).

' T= mg sin a/(ka)

Inserting for k, (Equation Al), we obtam

(A3)

Figl] é;._51. Diagram showing the geometry of the hard spheres held against the curved surface
of the tibe, which can be used to relate the physical dimensions of the system to k, the
{approximate) spring constant of the confining potential (see also [2]).




