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Summary

Complex genetic disorders are impacted by a range of DNA variation. Next generation

sequencing (NGS) allows for the direct examination of this variation, but large sample

numbers are required to identify rare variants in unrelated cohorts. Pedigree-based co-

horts can partly resolve this, as densely affected pedigrees are likely to be influenced

by the same collection of rare variants. In this thesis, we examined approaches for

disease-gene prioritisation from pedigree-based NGS data for complex disorders. As a

model phenotype, we consider schizophrenia. A spectrum of rare and common variants

is known to increase individual risk for schizophrenia, although identifying such variants

remains challenging.

To begin, we examined some issues with variants derived from NGS data. Converting

base pair positions between builds of a reference genome can result in instabilities that

can impact downstream analysis. We characterised all such unstable positions between

two builds of the human reference genome. We replicated these instabilities in whole

genome sequencing (WGS) data and showed that removing variants at unstable posi-

tions results in variants stable to the conversion process. Next, we developed a novel

pipeline for calling copy number variants (CNVs) that takes a consensus of four calling

methods. By incorporating relatedness information, we can reclaim lower confidence

CNV calls in our consensus approach. We benchmarked this pipeline against a curated

“Gold Standard” set of CNV calls and showed that our method outperforms all other

comparison pipelines selected.

We examined WGS data from a collection of identical twins discordant for schizophrenia

and related disorders. We identified seven rare, deleterious, missense variants present

in an affected sample but absent from their co-twin. One impacted gene (POLG ) has

previously been implicated in mood disorders and psychosis. We also identified a rare

duplication at chromosome 3q29 private to one affected sample. Duplications in this

region have previously been observed in autism and developmental delay.

Next, we investigated WGS data from a cohort of seven Utah pedigrees multiply affected

with schizophrenia. We considered an identity-by-state (IBS) filtering approach and pri-

oritised ultra-rare, protein-coding variants in constrained genes. We identified three such

variants with a reduced co-segregation pattern in three separate pedigrees. One such

gene (ATP2B2) has been implicated in common variants associated with schizophrenia
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and was found to be nominally associated with schizophrenia in a recent rare-variant

case-control analysis.

We evaluated two tools (pVAAST and PERCH) which aim to prioritise variants from

pedigree-based NGS data in a more unified framework compared to the IBS filtering.

We found that pVAAST correctly identified deleterious variants that followed a Mendelian

inheritance pattern using a synthetic phenotype but was unable to identify the three vari-

ants prioritised in the IBS analysis of the Utah pedigrees. PERCH did not identify several of

the deleterious Mendelian variants, and so both tools were removed from future analyses.

To address some of the limitations of previous methodologies, we developed a novel

Bayesian model to measure pedigree-based causality from NGS data. We found that

our method performed well at identifying the correct variants from the synthetic phen-

otype and the Utah pedigrees. Additionally, our method identified a rare frameshift

variant in KDM2B perfectly co-segregating with schizophrenia that was discounted by

the IBS analysis. A variant in gene has been recently implicated in schizophrenia from

co-segregation in a Japanese pedigree.

Our work has wider implications, making substantial contributions in aiding researchers

to elucidate the genetic architecture of pedigree-based NGS data for complex genetic

disorders in psychiatry and beyond.
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Chapter 1

Introduction and Background

Identifying the genetic basis of diseases is important if we are to understand disease

pathogenesis and improve patient outcomes. Mendelian disorders, with a simple genetic

architecture, are rare, with the bulk of disease morbidity involving a complex interplay

of genetic and environmental risk. This complexity necessitates multiple methodological

approaches to DNA variant discovery. Studying families, which share genetic variants,

can be useful where the emphasis is on variants that are rare in the wider population.

The focus of this thesis is learning about and developing methods for analysing rare

variants from human sequence data (in Chapter 4, Chapter 7, and Chapter 8), and

applying this to schizophrenia, a heritable brain disorder (in Chapter 5, Chapter 6, and

Chapter 8). Here we discuss some of the technologies and techniques used to investigate

complex genetic disorders before providing a brief overview of the current understanding

of schizophrenia genetics.

1.1 Genetic Models

1.1.1 Overview of Complex Disorders

In comparison to Mendelian disorders, complex genetic disorders are influenced by mul-

tiple genetic factors and different models for the genetic architecture involved have been

proposed (Mitchell, 2012). The common-variant hypothesis states that there are many

common DNA variants, each with a small effect on the phenotype. This can range from a

modest number of variants (oligogenic) to hundreds, or thousands in a polygenic model.

At the other extreme, the rare-variant hypothesis proposes involvement of many rare

variants, each with a moderate to large effect on the phenotype. Both hypotheses have

merits and should be seen as complementary rather than competitive (Gibson, 2012;

Schork et al., 2009). The liability threshold model states that complex disorders have

some underlying distribution of risk, either genetic, environmental, or both (Falconer,

1965; Pearson, 1901). An accumulation of risk factors pushing an individual above some

threshold results in that individual having the phenotype. This model provides some

harmonisation between the common-variant and rare-variant hypotheses.
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DNA microarrays have been used for many decades to genotype single nucleotide poly-

morphisms (SNPs) which are individual DNA base pair (bp) changes to the genome.

To be classified as a SNP, a variant must be found in at least 1% of the population.

Their frequency, and the development of arrays that can genotype a million SNPs or

more (LaFramboise, 2009), made possible the comprehensive genetic analysis of com-

mon variants predicted by Risch and Merikangas (Risch & Merikangas, 1996). Over

the last two decades, genome-wide association study (GWAS) have used SNP arrays

to evaluate the common-variant hypothesis by examining differences in SNP frequencies

across a given phenotype in cohorts of unrelated individuals (Bush & Moore, 2012). This

work has mapped out a significant contribution of common genetic risk across a wide

range of conditions. However, each SNP identified typically represents a linkage disequi-

librium (LD) block which may contain many DNA variants, so the causal mechanism of

a GWAS association peak can be hard to establish. Significant loci from GWAS can be

summarised at an individual level as a polygenic (risk) score, which is the sum of the

number of alleles carried by that individual, weighted by the effect sizes of the loci.

1.1.2 Pedigree-Based Studies

The heritability explained by SNPs alone may fall short of the known family-based her-

itability estimates, a phenomenon known as the “missing heritability” problem (Manolio

et al., 2009). One explanation for this is that rare variants, whose signal may not be

readily detectable from SNP genotype arrays, account for a substantial proportion of

the remaining heritability (Zuk et al., 2014). The rationale is that pathogenic variants

with strong effects on a phenotype are likely to be rare in the general population due

to purifying selection. Identifying such variants may be particularly important in un-

derstanding biological mechanisms that underpin phenotypes. Rare variants that affect

the amino-acid chain of protein-coding regions are more readily interpretable in a bio-

logical context than tagging SNPs under association peaks, the majority of which are

non-coding (Cano-Gamez & Trynka, 2020). Additionally, such rare variants are often

amenable to follow-up molecular analyses to provide biological validation to statistical

identification. These variants that are not typically captured by SNP arrays could only

be systematically investigated with the advent of next-generation sequencing (NGS), de-

scribed below. However, large sample sizes are required to perform a gene-based burden

analysis of rare variants in an unrelated cohort, and greater sizes again are needed to

discover specific risk variants (Sanders et al., 2017).

Pedigree-based analyses offer a solution to this issue (DeLisi, 2016; Glahn et al., 2019). A
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rare variant present in a founder of a pedigree is more likely to be present in the founder’s

immediate descendants than in the general population. The assumption is that densely

affected pedigrees will be enriched for highly penetrant, rare variants, reducing the need

for the extremely large sample sizes that are required in unrelated cohorts (Sullivan et al.,

2012). LD-structure differences and population stratification are less likely to occur in

closely related individuals within a pedigree, although care should be taken with marry-in

individuals who may have different genomic ancestry. Another potential advantage is

that there tends to be less variation in environmental factors between individuals in a

pedigree compared to unrelated cohorts (Morris et al., 2015), and unaffected individuals

within a pedigree can often serve as controls.

1.2 Genomic Technologies

1.2.1 Next-Generation Sequencing

Traditional Sanger sequencing allows for the examination of contiguous DNA sequences

but is typically limited to segments of less than 1kbp in length (Crossley et al., 2020).

Where longer DNA sequences are required, shotgun sequencing of overlapping segments

can be performed (Heather & Chain, 2016). However, this process is not always feasible

for several genomic loci at once due to its cost, so genomic regions need to be prioritised

in advance by some other method. This issue found a powerful resolution with the wide-

spread use of short-read NGS technologies. In the 2000s, the cost of NGS fell rapidly,

and its scalability made it an attractive alternative to Sanger sequencing (Goodwin et

al., 2016). While DNA sequencing is typically orders of magnitude more expensive than

SNP genotyping, it facilitates the direct evaluation of DNA with no requirement for

imputation panels or careful probe design.

NGS involves splitting the DNA into short, contiguous fragments which may be amp-

lified by polymerase chain reaction (PCR) (McCombie et al., 2019). These fragments

(typically 100-300 bp in length) are sequenced to generate a read, which contains the

ordered DNA nucleotides and their sequencing quality score. Reads can be assembled to

re-construct the original genome of the sample (Reinert et al., 2015). Sequencing may

be restricted to protein-coding regions, known as whole-exome sequencing (WES), or

cover the entire genome, known as whole-genome sequencing (WGS). By analysing the

assembled reads, various classes of DNA variants may be called, whose genotypes can

be inferred by probabilistic modelling (Van der Auwera et al., 2013). While SNP probes

on genotype arrays are chosen to be reasonably common in a given population, NGS has
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the ability to examine single nucleotide variants (SNVs) or short insertions or deletions

(indels) of any population frequency.

A key component to read alignment and variant calling with NGS data is a reference

genome, which is a standardised, representative genome for a given species. The most

frequently used human reference genomes are those constructed by the Genome Ref-

erence Consortium (GRC) (Church et al., 2011) who to date have released thirty-eight

iterative reference builds; the two most recent being GRCh37 (released in 2009) and

GRCh38 (released in 2013). The University of California, Santa Cruz (UCSC) Genomics

Institute have also released analogous versions of these builds, referred to as hg19 and

hg38 respectively (Haeussler et al., 2019). Both GRCh37 and GRCh38 were generated

by sequencing DNA from a collection of human donors, predominantly using Sanger

sequencing (Genome Reference Consortium, 2010; Consortium, 2013). DNA sequences

were combined to form high-confidence contiguous segments known as contigs, which

were joined to form a de novo assembly of the reference genome. One of the major

updates in GRCh38 was the closing of numerous gaps where sequencing had previously

not been possible (Schneider et al., 2017).

Updates to the base pair coordinates in the reference genome mean that not all pos-

itions are comparable between builds. While the most accurate solution would be the

realignment of reads to a common reference genome, this is a computationally expensive

task (Guo et al., 2017). This means that resources curated relative to different builds of

the reference genome must be pre-processed to make them comparable. Tools exist to

convert the coordinates between builds (Haeussler et al., 2019; M. Zhao et al., 2013),

but the process is known to have instabilities (Liu et al., 2016).

1.2.2 Structural Variants

A structural variant (SV) is a large-scale change to a chromosome. Microscopic events

such as an abnormal number of chromosomes have historically been detected using ka-

ryotyping. On a sub-microscopic level, SVs typically take the form of deletions, duplic-

ations, insertions, inversion or translocations (Feuk et al., 2006). Copy number variants

(CNVs) are simply deletion or duplication events, which are estimated to make up 4.8-

9.5% of the human genome (Zarrei et al., 2015). SVs were historically detected by

cytogenic techniques, such as fluorescent in situ hybridization (FISH) and comparative

genomic hybridization (CGH) (K. Wang & Bucan, 2008). Both methods have limita-

tions, the most important of which is a low level of resolution. Also, FISH can only

detect SVs in regions targeted by the fluorescent probes, and CGH cannot detect bal-
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anced structural changes such as certain translocations or inversions (Weiss et al., 1999).

SNP-arrays allow a higher resolution of SV detection, given the density of SNP probes

available on most modern arrays (Coughlin et al., 2012). SV calling algorithms for SNP-

arrays are sensitive to probe designs, and so different arrays may not be empowered

to detect all types of SVs (Haraksingh et al., 2017). One recommended strategy is to

combine the results from multiple calling algorithms to improve the power to detect all

variants (Kim et al., 2012), but the results will always be limited by the distribution and

density of the probes in the array. Additionally, it is not always possible to determine

the breakpoints of SVs with accuracy. NGS technologies have the potential to provide a

solution to this issue, given that they examine all base pairs in the genome/exome, and

are not dependent on tagging SNPs (M. Zhao et al., 2013). However, there are several

different computational approaches to calling CNVs from NGS data, and there is a wide

variability in performance of calling software tools (Kosugi et al., 2019). Unlike SNVs

and indels, there are no “Best Practices” for calling CNVs from NGS data, so studies

are not able to benchmark the ability of their pipeline to detect CNVs.

1.2.3 NGS Pedigree Analysis

Linkage analysis is the de facto standard used to identify candidate causal genes or re-

gions in pedigrees. Typically, multiple generations and a minimum number of samples

are required for linkage analysis to achieve statistical significance, which is not always

feasible, especially for NGS data (Ott et al., 2015). An alternative approach is co-

segregation analysis which we refer to as identity by state (IBS) filtering. One strategy

is to examine the subset of variants present in affected individuals and absent from unaf-

fected individuals. As with linkage analysis, characteristics common to complex disorders

such as reduced penetrance and the presence of phenocopies may also be incorporated

into such filtering. This method is non-statistical but has the advantage of simplicity

and is a reasonable alternative when linkage analysis is not possible. Variants may be

further prioritised by filtering on population-derived metrics such as conservation, dele-

teriousness, or allele frequency.

While IBS filtering is often implemented, it has its limitations. Firstly, there is no

measure of co-segregation, so there is no way to compare results from different pedigrees.

For example, we cannot know whether there is more evidence from a large sibship or

from a smaller but multi-generational family. Secondly, there is no obvious approach

to relaxing the requirement that all affected individuals carry a risk variant consistently

across different family structures. Finally, the population-based filtering methods used
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to prioritise variants, even if guided by empirical work, are arbitrary and may vary from

one research group to another. Some tools have been designed to provide a statistical

framework for pedigree-based NGS data analysis (Feng, 2017; Hu et al., 2014), but their

novel metrics make them difficult to interpret or to compare to more traditional methods.

Additionally, as with most frequentist statistical approaches, they make no statement

about how likely any of the tested hypotheses are a priori.

1.3 Schizophrenia

1.3.1 Phenotype

Schizophrenia is a debilitating psychiatric disorder with an estimated lifetime prevalence

of 1% and a reduction in life expectancy of up to 25 years (Tiihonen et al., 2009).

The core features of schizophrenia are: hallucinations, delusions, disorganized speech

or behaviour, and “negative symptoms” such as diminished emotional expression and

avolition (Association, 2013). Environmental effects are known to have an impact on

schizophrenia (Stilo & Murray, 2019), but genetic heritability has been estimated from

twin studies at ∼ 0.81 (Sullivan & Geschwind, 2019). Furthermore, there is an increased

rate of other psychiatric conditions (e.g. bipolar disorder) in first-degree relatives of

people with schizophrenia (Lichtenstein et al., 2009) and more recent work indicates a

likely shared heritability across many psychiatric disorders (Anttila et al., 2018). As such,

understanding the genetic aetiology of schizophrenia may provide wider insight into the

genetics of mental disorders.

1.3.2 Genomics

The first large-scale studies of common variants in schizophrenia in 2009 found a handful

of significantly associated loci including the major histocompatibility complex (Purcell

et al., 2009; Stefansson et al., 2009). Over a decade later, the Psychiatric Genomics

Consortium (PGC) wave 3 GWAS identified 287 loci associated with schizophrenia across

multiple genomic ancestry groups (Trubetskoy et al., 2022). Parallel analysis of rare

CNVs from SNP array data enabled the detection of twelve CNVs with a statistically

significant association with schizophrenia (Marshall et al., 2017; Rees et al., 2014).

Details of these loci are shown in Table 1.1. Some of these CNVs are associated with

related disorders such as bipolar disorder (Green et al., 2016), major depressive disorder

(Kendall et al., 2019), intellectual disability (Coe et al., 2014), and autism (Malhotra

& Sebat, 2012; Sanders, 2015). Additionally, 11 CNVs were found to be nominally

associated with schizophrenia, some of which had a protective effect (see Table 1.2).
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Cytoband Type OR Notes Other

1q21.1
DUP 3.45 ID, ASD, MDD

DEL 8.35 ID, ASD

2p16.3 DEL 9.01 NRXN1 ID, ASD

3q29 DEL 57.65 ID, ASD

7q11.23 DUP 11.35 Williams-Beuren syndrome ID. ASD

15q11.2 DEL 2.15 ID

15q11-q13 DUP 13.20 Prader-Willi syndrome MDD, ID, ASD

15q13.3 DEL 7.52 ID, ASD

16p13.11 DUP 2.30 ID

16p11.2, dist. DEL 20.60 ID, ASD

16p11.2, prox. DUP 11.52 MDD, BD, ID

22q11.2 DEL 67.70 Velocardiofacial syndrome ID, ASD

Table 1.1: Details of 12 rare CNVs from 11 unique regions with a statistically significant
association with schizophrenia, including the odds ratio (Rees et al., 2014) and other pheno-
types also associated with the CNV. The odds ratios for the 16p11.2 distal deletion and the
22q11.2 deletion were taken from Marshall et al. (Marshall et al., 2017). DEL: deletion; DUP:
duplication; ID: intellectual disability; ASD: autism spectrum disorder; MDD: major depressive
disorder; BD: bipolar disorder; dist.: distal; prox.: proximal.

Cytoband Type OR Notes Other

7q11.21 DEL/DUP 0.66 ZNF92

7p36.3 DEL/DUP 3.50 VIPR2, WDR60

8q22.2 DEL 14.50 VPS13B

9p24.3 DEL/DUP 12.40 DMRT1

13q12.11 DUP 0.36 ZMYM5

22q11.2 DUP 0.15 ID, ASD

Xq28 DUP 0.35 MAGEA11

Xq28, dist. DUP 8.90

Table 1.2: Details of 11 CNVs from eight unique regions that are nominally associated
with schizophrenia (Marshall et al., 2017). DEL: deletion; DUP: duplication; ID: intellectual
disability, ASD: autism spectrum disorder; dist: distal.
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Recently, the Schizophrenia Exome Meta-Analysis (SCHEMA) Consortium collated WES

data on 24,248 schizophrenia cases and 97,322 controls from across five genomic an-

cestry super-populations (T. Singh et al., 2022). The analysis focused on ultra-rare

variants (URVs) affecting genes that were predicted to be intolerant to loss-of-function

variants. The SCHEMA consortium reported 10 genes in which the burden of URVs was

significantly higher in cases than controls and suggested that many more genes in which

URVs contribute to schizophrenia risk are yet to be discovered. A summary of known

rare and common variants implicated in schizophrenia as described by Singh et al. is

shown in Figure 1.1.

Figure 1.1: An overview of variants with a known association with schizophrenia taken from
Singh et al., showing the broadly inverse relationship between the variant’s allele frequency
(x-axis), and the odds ratio of that variant (y-axis) (T. Singh et al., 2022). Common SNPs
from GWAS are shown in blue, rare CNVs are shown in yellow, and genes harbouring ultra-rare,
protein-truncating SNVs and indels are shown in red.
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1.4. AIMS OF THE THESIS

1.4 Aims of the Thesis

� To compare two tools (liftOver (Haeussler et al., 2019) and CrossMap (M. Zhao

et al., 2013)) for converting SNVs between genome builds, and to characterize

instabilities in the conversion process.

� To develop and benchmark a consensus pipeline for calling CNVs from WGS data

in a pedigree-based cohort.

� To investigate the presence of rare, post-zygotic variants from WGS data in a

cohort of identical twins discordant for psychiatric diagnosis.

� To analyse rare variants in a cohort of multiplex schizophrenia pedigrees from Utah

using an IBS filtering approach.

� To evaluate the strengths and weaknesses of two software tools (pVAAST (Hu et al.,

2014) and PERCH (Feng, 2017)) for disease-gene prioritisation from pedigree-based

NGS data.

� To develop a Bayesian framework for measuring pedigree-based causality of rare

variants.
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Chapter 2

General Methods

In this chapter, we detail some of the general bioinformatics processes applied to prepare

our WGS data for the primary analyses. We describe the read alignment pipeline applic-

able to all NGS data that is based on well-established “Best Practices”. For some of our

data, this was performed by a sequencing facility, whereas for data obtained from collab-

orators or from online resources, this was performed locally. Next, we call and genotype

SNVs and indels across all samples in a cohort and re-calibrate the variant-level quality

control scores to remove lower-confidence calls. Finally, we select various metrics from

publicly available databases with which we annotate our variant call sets.

2.1 File Formats

2.1.1 FASTQ

FASTQ files are the standard format for storing raw sequencing reads from Illumina

platforms and are considered the de facto standard for most other sequencing platforms

(Cock et al., 2010). A FASTQ file is organised into four lines per read: the sequence

identifier and optional meta-data (line begins with “@”), the raw nucleotide sequence,

optional repeat of the title (line begins with “+”), and the per-base quality scores. The

quality scores are phred-scaled and are stored as ASCII characters so that one character

represents the score of each nucleotide in the read. Paired-end sequencing results in two

files: the forward reads and the reverse reads. The files are matched so that the order of

the reads is the same for both files, and typically tools will fail to process FASTQ files

where the read order is out of sync. For WGS data, these files can be large, so they are

typically compressed with bgzip and indexed with tabix (H. Li, 2011) for quicker access.

For the FASTQ data in this thesis, the tool FastQC (see “Web Resources”, Subsec-

tion A.2.1) was applied to all files identify any potential quality control issues. FastQC

generates figures on several metrics such as: base pair quality score, GC content (propor-

tion of G or C nucleotides), N content (proportion of no-call bases), sequence duplication

levels, etc. Samples which showed low base pair quality scores across their reads were
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flagged as not having sufficiently high-quality data to continue analysis. The GC content

across all chromosomes in homo sapiens is known to be approximately normally distrib-

uted, centred around 41% (Lander et al., 2001). Any deviation from this is usually

an indicator of the presence of DNA of a different organism. Thus, samples were ex-

cluded if the distribution of GC content was multi-modal, as this is likely due to bacterial

contamination of the DNA sample, or possibly the presence of tumour samples.

2.1.2 SAM/BAM/CRAM

After read alignment (discussed below), reads are stored in a sequence alignment map

(SAM) format (H. Li et al., 2009). At the top of the file is a header section (lines

beginning with “@”) which contains meta-information about the alignment, such as the

chromosomes present, the read group, the commands used to generate the file, etc. Next

comes the alignment section with information from one sequencing read per line. The

alignment section has 11 mandatory columns which describe the mapping of the read to

the reference genome, as well as all information from the FASTQ file. Since SAM files

are typically large for WGS data, they can be converted to binary alignment map (BAM)

files, which are smaller in size. An efficient alternative to BAM format is compressed

alignment map (CRAM) format (Cochrane et al., 2013), which can offer significant

storage improvements over BAM format. However, while most tools which process

aligned data accept BAM files as an input, many tools are not capable of processing

CRAM files so decompression is often required. Typically, we use BAM files when calling

variants and compress to CRAM for long-term storage. SAM, BAM and CRAM files

were created and manipulated with samtools (H. Li et al., 2009).

2.1.3 VCF

The variant call format (VCF) is generated from an alignment file and stores information

about genetic variants (Danecek et al., 2011). This file format can be used to describe

SNVs, indels, or SVs. As with the alignment files, VCF files begin with a header (lines

beginning with a “##”) which contains meta-data on the main body of the file, in-

cluding: the chromosomes present, annotation information about the variants, how the

data were generated, variant filters, etc. Next comes a line beginning with a “#” which

describes the fields, and following this is the data section, with one variant per line. The

mandatory eight fields are: the chromosome, the base pair position of the start of the

variant, an ID string, the reference allele, the alternate allele(s), a phred-scaled quality

score, any filtering info, and any user-defined information about the variant.
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If samples are provided, the ninth column describes the format of the sample-level inform-

ation, and then data for each sample are displayed as additional columns, one column per

sample. Typically, the sample columns contain the genotype (GT) of the individual for

the variant, the depth of coverage (DP) at the variant site and the genotype quality score

(GQ) which represents the confidence of the genotype call. For diploid chromosomes,

the genotypes may be homozygous for the reference allele (represented by “0/0”), het-

erozygous (“0/1” or “1/0”), homozygous for the alternate allele (“1/1”), or missing

(“./.”). A variant may have multiples alleles, which is reflected in the genotype. For

example, a genotype of 0/2 means an individual is heterozygous for the second allele in

the allele column. As with FASTQ files, VCF are typically compressed with bgzip and

indexed with tabix.

2.1.4 FAM

A FAM file describes information about individuals in a cohort, and any family information

that may be present. Each line represents one individual, and the file contains six

columns: the family ID, the individual ID, the ID of the father, the ID of the mother,

the sex, and the phenotype code. Unknown values for the ID of the parents or the sex

are coded as a “0”, and unknown phenotype values are usually coded as “-9”. Using

this information, a pedigree diagram for a family may be constructed, and the pairwise

relatedness between any two individuals in the file may be estimated. Note that multiple

families may be present in the one file.

2.2 SNV and Indel Calling

2.2.1 Read Alignment and Post-Processing

The read alignment and post-processing of WGS data were mostly performed at Ed-

inburgh Genomics, Clinical Genomics (EGCG). This pipeline was broadly based on the

well-known genome analysis toolkit (GATK) “Best Practices” v3 (Van der Auwera et al.,

2013), with some modifications for speed and optimisation. However, where raw data

was obtained directly (either from collaborators or downloaded from public resources),

this pipeline was applied on local servers. To ensure compatibility, the BAM and FASTQ

files obtained from EGCG were examined, and identical parameters were used for the local

instance of the pipeline. An overview of this pipeline is shown in Figure 2.1. Source code

for the alignment process is available online (see “Web Resources”, Subsection A.2.1).

Either the GRCh38 reference genome (including decoy, HLA and alternative contigs,

GenBank accession: GCA 000001405.15) or the GRCh37 reference genome (GenBank
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accession: GCA 000001405.14) was selected, depending on the analysis.

The alignment and post processing consisted of the following steps:

1. pairs of FASTQ files were aligned to the chosen reference genome using the

BWA-MEM algorithm (H. Li, 2013).

2. the chromosomes were re-ordered and the reads within the chromosomes were

sorted using the ReorderSam and SortSam modules from picard respectively

(see “Web Resources”, Subsection A.2.1).

3. the BAM file was validated with ValidateSamFilemodule from picard to ensure

that there were no errors with the read alignment or file formatting.

4. PCR duplicates from the sequencing process were marked. BAM files processed

by EGCG had duplicates marked with samblaster (Faust & Hall, 2014), whereas

BAM files processed locally had duplicates marked using the MarkDuplicates

module from picard. Both tools perform comparably, but samblaster is optim-

ised for speed.

5. local re-alignment around indels was performed using GATK v3.4. This step is

unnecessary when later versions of GATK are used but was retained for compatibility

with data from EGCG.

6. base quality score recalibration (BQSR) was performed to correct for potential

errors in the sequencing chemistry and platform using the BaseRecalibrator

module from GATK. The error rates before and after adjustment are plotted by the

AnalyzeCovariates module of GATK, and the adjustments are applied by the

PrintReads module.

7. the BAM file was validated once more using the ValidateSamFile module from

picard, since this is the final stage of read post-processing.
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Figure 2.1: Flowchart of the variant calling, genotyping, and annotation pipelines. BQSR: base quality score recalibration; BAM: binary alignment
map; gVCF: genomic variant call format; VQSR: variant quality score recalibration.
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2.2.2 Variant Calling and Joint Genotyping

Once read alignment and post-processing was performed, variants were called using the

HaplotypeCaller module from GATK. GVCF mode was selected, whereby all positions

in the genome are evaluated for having a variant or not, so likelihoods for a site being

homozygous reference can be calculated. Instead of a standard VCF file, a genomic

VCF (gVCF) file is produced with records for non-variant sites as well as candidate

variant sites. For convenience, neighbouring non-variant records in the gVCF file are

combined so intervals may be represented as a single record (or block) in which the

genotype likelihoods are binned. After variants were called with HaplotypeCaller in

GVCF mode, genotypes for all samples were assigned jointly using the GenotypeGVCFs

module from GATK v3.8. A newer version of GATK was used for this and subsequent steps,

since v3.4 had a known bug and was not able to process spanning deletions (i.e. sites

where one sample had a deletion, but another sample had an SNV within the deleted

region ).

2.3 Variant Quality Control

2.3.1 Variant Quality Score Recalibration

After genotyping, variants on the standard 23 pairs of chromosomes were retained. As

recommended from the GATK “Best Practices”, variants whose depth of coverage was

greater than five standard deviations above the average coverage across all sites were

removed (see “Web Resources”, Subsection A.2.1). To remove low-quality variants,

variant quality score recalibration (VQSR) is applied to calculate a new metric, the

variant quality score, logarithm of odds (VQSLOD) (Van der Auwera et al., 2013).

Variants were split by type using the SelectVariants module from GATK. VQSLOD

scores were calculated by the VariantRecalibrator module and annotated by the

ApplyRecalibration module, both from GATK. The recommended VQSLOD tranche

thresholds are 99.9% for SNVs and 99.0% for indels. For variants which are neither

SNVs nor indels (spanning deletions, multi-nucleotide variants, etc.), the following hard

filters (recommended for indels from the GATK “Best Practices”) were applied:

QD < 2 || FS > 200 || SOR > 10 || ReadPosRankSum < -20

SNVs, indels and other variants were then merged with CombineVariants and the

VCF file was validated with ValidateVariants, both from GATK. At this stage, the

sample IDs within the VCF files were assessed for consistency and where necessary

samples were renamed with bcftools reheader (Danecek et al., 2021). Source code
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for the joint genotyping process and VQSR is available on GitHub (see “Web Resources”,

Subsection A.2.1)

2.3.2 Genotype-Level Metrics

During joint genotyping of multiple samples, two different variants may be present at the

same site, e.g. two alternate alleles of an SNV, or an SNV in one sample and an indel

in another. It is often useful to separate these variants so that they may be processed

independently, especially if allele-specific information is being used. To do this, we used

the norm module from bcftools, which separates out the genotype-specific metrics

for each alternate allele. Following the split of multi-allelic sites, we required that each

sample had a minimum of evidence for a genotype to be correctly called. We required

that there were at least 10 reads supporting the genotype, or DP ⩾ 10. Also, we required

that the Phred-scaled GQ score was at least 20. This means that the likelihood for the

genotype was at least 100 times greater than the likelihood for the next most likely

genotype. These filters were applied using the VariantFiltration module from GATK.

Genotypes which failed these filters were set to missing using the SelectVariants

module from GATK.

2.4 Pedigree Consistency

The software peddy was used to check the consistency of the pedigree information with

the genetic data (Pedersen & Quinlan, 2017). The following quality control measures are

examined: expected versus observed relatedness (by the KING algorithm (Manichaikul

et al., 2010)), predicted sex concordance, median depth of coverage, and genomic an-

cestry clustering prediction following principal component analysis (PCA). peddy has

known bugs when calculating the expected relatedness from complex pedigree struc-

tures, such as when half-siblings or consanguinity are present (see “Web Resources”,

Subsection A.2.1). In this instance, the observed relatedness scores are calculated using

vcftools (Danecek et al., 2011) which also implements the KING algorithm, and the

expected relatedness scores are calculated with the kinship2 package from R (Sinnwell

et al., 2014).

2.5 Public Databases and Resources

2.5.1 Allele Frequency Databases

The following allele frequency databases are used throughout the thesis:
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� The 1000 Genomes Project (Phase III) examines NGS and SNP genotype data

on 2,504 individuals from five genomic ancestry groups: African (AFR), admixed

American (AMR), East Asian (EAS), European (EUR) and South Asian (SAS)

(Auton et al., 2015).

� The genome aggregation database (gnomAD) includes population-level allele fre-

quencies for a range of super- and sub-populations of genetic ancestry (Karczewski

et al., 2020). Version 2.1.1 of gnomAD is considered by the authors to be the

preferred version for analysis of protein-coding regions due to the large sample

numbers (125,748 exomes). Version 3.1 of gnomAD is composed of 76,156 WGS

samples and so is preferred for examining non-coding variants. Additionally, a

collection of structural variants is compiled for 14,891 individuals (Collins et al.,

2020).

� The Database of Chromosomal Imbalance and Phenotype in Humans using En-

sembl Resources (DECIPHER) collates a list of CNVs and their allele frequencies

in the general population (Firth et al., 2009).

� The Database of Genomic Variants (DGV), a similar project which aims to cata-

logue structural variants from healthy controls (MacDonald et al., 2014).

2.5.2 Variant Deleteriousness Metrics

The functional interpretation of genetic variants can be challenging, even for variants

in protein-coding genes. If we have not observed a variant in an individual (or many

individuals) with a phenotype, we have no evidence to implicate that variant with the

phenotype. Various scores (known as deleteriousness metrics) aim to predict how dam-

aging a variant is or how likely a variant is to be implicated in diseases or disorders in

general. These scores can be used to remove variants that are unlikely to be disease-

causing candidates. Some examples of commonly used metrics are described below and

are used in aspects of the work in this thesis.

Sorting Intolerant From Tolerant (SIFT) scores can be calculated for all non-synonymous

variants and are based on the prediction of whether the amino acid substitution will affect

protein function or not (Ng & Henikoff, 2003). Given a query protein, related proteins

are examined to identify if similar amino acid substitutions are observed in protein se-

quence databases. Substitutions not observed are assumed to be selected against, and

so variants resulting in these amino acid substitutions are predicted to be deleterious.
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SIFT generates a score from 0 to 1, with smaller scores representing deleterious variants.

Polymorphism Phenotyping v2 (PolyPhen2) scores can also be calculated for all non-

synonymous variants and are based on amino acid substitutions (Adzhubei et al., 2013).

A näıve Bayes classifier is used to predict the functional importance of a variant from a

set of sequence-based as well as protein-structure-based features. Two datasets are used

to train the model (HumDiv and HumVar), which give varying degrees of performance

accuracy. PolyPhen2 generates a score from 0 to 1, but the scale is in the opposite

direction to SIFT; variants with high scores are predicted to be damaging.

Combined Annotation Dependent Depletion (CADD) is a machine learning model built

using over 60 genomic features, including deleteriousness, conservation, genetic func-

tional consequence, epigenomic modification, etc. (Rentzsch et al., 2019). It is trained

on a set of evolutionarily simulated variants rather than curated benign/pathogenic sets,

which allows all positions in the genome to be scored for a given alternate allele. This

is especially useful for considering non-coding variants. CADD reports raw scores as

the output of the penalised logistic regression model, but more frequently used are the

ranked, Phred-transformed C-scores. A CADD C-score of 20, for example, indicates that

a variant is in the top 1% of all variants when ranked by the raw CADD score. The

C-scores range from 0.001 to 99, with larger scores being more deleterious.

The Missense badness, PolyPhen2 and missense Constraint (MPC) score combines three

measures of deleteriousness for missense variants (Samocha et al., 2017). Instead of as-

suming a uniform distribution of observed/expected missense variants, a transcript of a

gene may be split into segments where missense variants are enriched/depleted. This

identifies regions of the transcript that are constrained for missense variants. Additionally,

all potential amino acid substitutions across overlapping transcripts for a given variant

may be evaluated, and the “badness” score represents the fold enrichment of amino acid

substitutions in constrained versus unconstrained regions. Both missense constraint and

missense badness were combined with the PolyPhen2 score as a composite predictor of

deleteriousness. The MPC ranges from 0 to 5, with higher scores being more deleterious.

A useful resource for the above metrics is the database of non-synonymous functional

prediction (dbNSFP) which collates transcript-specific information on all potential non-

synonymous SNVs, over 84 million variants (Liu et al., 2020). Included is a wide range of

variant-level information, including many deleteriousness predictors. Position information

is given for both the GRCh37 and GRCh38 reference genomes.
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2.5.3 Gene Constraint Scores

Due to negative selection, deleterious variants are expected to occur less frequently in

the genome than benign variants (Lek et al., 2016). The difference between the observed

and the expected number of variants in a gene can indicate how tolerant that gene is

to different variant categories. Lek et al. quantified this deviation from the expected

number of protein-truncating variants which results in a probability of loss-of-function

intolerant (pLI) score. This gene-based constraint score ranges from 0 to 1, and the

authors classify genes with pLI > 0.9 as highly intolerant to loss-of-function variants.

Karczewski et al. calculated a modified version of this from gnomAD called the oe score

(Karczewski et al., 2020). The loss-of-function observed/expected upper-bound fraction

(loeuf) is recommended by the authors as a measure of gene constraint. This loeuf score

should be used as a continuous metric between 0 and 1, but the authors suggest that

genes with loeuf < 0.35 may be considered constrained. The gene-constraint scores

described here are also included in dbNSFP.

2.6 Variant Annotation

2.6.1 vep

Variants were annotated with external databases and resources using the variant effect

predictor (vep) (McLaren et al., 2016). Since all gene-based information queried by vep

is specific to individual transcripts, care must be taken when variants overlap multiple

transcripts, or even multiple genes. The “--per gene” flag selects one transcript per

gene (determined by a pre-defined hierarchy, typically the canonical transcript) and re-

ports one annotation report (“consequence”) per overlapping gene. In addition to the

default resources, other databases can be supplied to vep for annotation. In particular

the following information was manually supplied: allele frequencies from gnomAD v2.1.1

or v3, CADD v1.6 scores and functional prediction metrics from dbNSFP v4.1.

2.6.2 SnpSift

We are often interested in examining variants that may only be present in a particu-

lar pedigree out of a jointly genotyped cohort. We annotated these variants with the

private module from SnpSift (Cingolani et al., 2012). SnpSift takes a VCF file and

a FAM file as input and outputs a VCF file with a “Private” tag annotated for each

record that is only found in one pedigree.
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Chapter 3

Converting Single Nucleotide

Variants between Genome Builds

NGS studies require a high-quality reference genome for SNV calling. Although the

two most recent builds of the human genome are widely used, position information is

typically not directly comparable between them. Re-aligning positions to a particular

genome build is computationally expensive, and so tools are used to convert data from

one build to another. However, the positions of converted SNVs do not always match

SNVs derived from aligned data and in some instances, SNVs are known to change

chromosome when converted. In this chapter, we describe a novel algorithm to identify

positions that are unstable when converting between human genome reference builds.

These positions are detected independent of the conversion tools and are determined

by the chain files. Pre-excluding SNVs at these positions, prior to conversion, results

in SNVs that are stable to conversion. This work has been published (Ormond et al.,

2021) and is included in Appendix C for reference.

3.1 Introduction

The human reference genome is fundamental to genome assembly and variant calling

for NGS studies (Church et al., 2011; Guo et al., 2017). Without a reference, de novo

assembly of each sequenced genome would need to take place, which is computation-

ally intensive and in certain scenarios may result in a poor quality assembly (Treangen

& Salzberg, 2011). The current builds of the human reference genome (GRCh37 and

GRCh38) are the most widely adopted builds for genomic analysis. However, further

iterations are inevitable as GRCh38 also contains a much larger collection of unloc-

alized (known sequence and chromosome but position unknown) and unplaced (known

sequence, but chromosome and position unknown) contigs, as well as including alternate

contigs (known alternate representations of specific regions of the genome to account

for population differences) (Schneider et al., 2017). Different builds result in different

genome assemblies which will impact downstream analysis of genomic variants (Guo et

al., 2017).
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Each genome build brings improvements, but updates to the base pair coordinates mean

that not all positions are comparable between builds. Because a wealth of annotation

information is available for GRCh37 and many pipelines and tools are still based on this

older version (Guo et al., 2017), researchers are sometimes hesitant to switch to the

newer version. Where a newer build is adopted, a similar problem arises when trying

to compare new sequences to data aligned to an older build: both data sets must be

aligned to the same build to be comparable. Obviously, re-aligning sequence data to the

newest build will typically provide the most accurate base pair position information, but

this can be quite computationally expensive (Guo et al., 2017). Also, the raw sequence

data required for alignment, if available, can be large, so long-term storage may not be

feasible.

An alternative approach to re-alignment is to convert between genome builds using tools

such as liftOver (provided as part of the Genome Browser tool (Haeussler et al., 2019)

hosted by the UCSC Genomics Institute), CrossMap (H. Zhao et al., 2014) or Remap

(hosted by the National Centre for Biotechnology Information (NCBI) (Agarwala et al.,

2018)). This process is aided by a chain file, which provides a mapping of contiguous po-

sitions from one build to another. The ability to convert between builds using these tools

has proved vital, allowing the integration of a wide range of SNV annotation databases

and sequence data, regardless of how they were originally aligned, for example gnomAD

(Karczewski et al., 2019), CADD (Rentzsch et al., 2019) and dbNSFP (Liu et al., 2016).

For those who do choose to convert between GRCh37 and GRCh38, there are known

problems with this conversion process, particularly for SNVs. In the online user guide for

the UCSC Genome Browser, the authors note that “occasionally, a chunk of sequence

may be moved to an entirely different chromosome” (see “Web Resources”, Subsec-

tion A.2.2). This is echoed in Liu et al., where the authors note that after converting the

dbNSFP database to other builds using liftOver, “there are a few SNVs whose coordin-

ates in hg38 and hg19 . . . have inconsistent chromosome numbers” (Liu et al., 2016).

This phenomenon can inevitably prove problematic for downstream analyses. Taking a

real world example, suppose we wish to examine variants in protein-coding regions of

the genome, prioritised using CADD scores. Consider the T>A missense substitution at

position 15690247 on chromosome 22 of GRCh38 (chr22:c.15690247T>A), contained in

the first exon of POTEH. CADD v1.6 gives the variant a C-score of 20.8, indicating that

it is in the top percentile of all ranked deleterious variants. If we convert the position to

GRCh37 (using either liftOver or CrossMap), this variant maps to position 19553586
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on chromosome 14, where the reference allele is still T (chr14:c.19553586T>A) but the

variant is now in the first exon of POTEG. CADD v1.6 for GRCh37 gives this variant a

C-score of 0.009, indicating that it is now in the bottom percentile of all ranked deleter-

ious variants in the genome.

Pan et al. (2019) examined SNVs from data aligned under a range of bioinformatics

pipelines to data converted between GRCh37 and GRCh38 using both liftOver and

CrossMap (Pan et al., 2019). The authors noted that on average 1% of SNVs did not

convert from GRCh37 to GRCh38, and an average of 5% of SNVs did not convert from

GRCh38 to GRCh37. Furthermore, on average 1.5% of SNVs which were successfully

converted were not found in the corresponding aligned data, a trend that was more pro-

nounced when converting from GRCh38 to GRCh37. Such discordant sites were noted to

be low-confidence calls, have lower average read depth, and have a higher than average

GC content. The authors urged caution when converting SNVs between builds.

Recently, Luu et al. (2020) benchmarked six tools (including liftOver, CrossMap and

Remap) for converting multi-base pair regions derived from epigenetic data from GRCh37

to GRCh38 (Luu et al., 2020). The authors found a high degree of correlation between

the six tools but noted that gapped regions in both chain files can result in conversion

failure, or even regions mapping to incorrect locations. A guideline to improve conversion

is offered, which involves removing input data which overlap with the gapped regions, as

well as removing input data which map to multiple regions or alternate contigs. However,

if this strategy were applied to SNV data, some variants may not necessarily be removed,

such as those in un-gapped regions which also change chromosome under conversion.

Here we present a novel algorithm to identify base pair positions in the human genome

which exhibit unstable behaviour when converting between genome reference builds. In

addition, we are providing the list of these unstable positions for the two most recent

builds (GRCh37 and GRCh38) on GitHub (see “Web Resources”, Subsection A.2.2).

This list can be used to pre-exclude SNVs prior to conversion to remove potentially

problematic variants, resulting in stable SNVs and improving the quality of sequencing

data post-conversion.
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3.2 Identification of Unstable Positions

3.2.1 Chain File

A chain file provides a mapping of the analogous positions from one genome build to

another. Given a sequence of DNA on both builds, it details the count (and hence pos-

ition) of contiguous bases where the sequences match and allows for gaps to be present

in either build. A visual depiction is given in Figure 3.1 below. Chain files may only be

used in one direction i.e. from the source build to the target build. When creating a

chain file, tools such as BLAST (Altschul et al., 1990) or BLAT (Kent, 2002) are used to

ensure that the overall matching regions have a sufficiently high proportion of matching

base pairs, known as sequence identity (e.g. at least 98%, see “Web Resources”, Sub-

section A.2.2). This allows for a small number of differences in the sequence between

matched regions, which may arise due to errors in the genome build being corrected in

minor patches. Chain files mapping between GRCh37 and GRCh38 (one for each direc-

tion) were obtained from the liftOver website hosted by the UCSC Genomics Institute

(see “Web Resources”, Subsection A.2.2), since these files were recommended by the

selected conversion tools.

Source · · ·
107654

· · ·
108554

Target · · ·
102173

· · ·
103123

100 50 200 50 150 50 300

100 100 50 100 50 150 100 300

Figure 3.1: A visual depiction of a chain file showing the pairwise mapping between the
source and target, allowing for gapped regions in either build (grey blocks). Identifying the
contiguous bases and gaps allows for positions in one build to be mapped to another.

3.2.2 Full-Genome Data

Genome build conversion tools use base pair position information only, so it is possible to

examine the stability of all base pair positions in the genome. This allows the behaviour

of all potential SNVs to be examined when converting between builds, rather than just

a subset that might be found on an individual sample’s genome. To this effect, browsed

extensible data (BED) files were created containing an entry for each base pair position in

both the GRCh37 and GRCh38 reference genomes, which we refer to as the full-genome
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data. This includes positions that are not typically amenable to short-read WGS, such

as known gaps in the genome assembly. Positions on the unplaced, unlocalized and

alternate contigs were not included in the input data, and so only the standard 23 pairs

of chromosomes were considered. The mitochondrial chromosome was excluded since

variant calling on the mitochondrial chromosome often uses a separate reference genome

(Bandelt et al., 2014). Each entry in the input BED file was given a label containing the

original chromosome and start position for unique identification, and the file was split by

chromosome for parallelisation (Tange, 2011). This generated 3,095,677,412 positions

for GRCh37 and 3,088,269,832 positions for GRCh38.

3.2.3 Algorithm to Identify Novel Conversion-Unstable Positions

To identify base pair positions that are unstable in the conversion process (defined below),

each input file was converted from the source build to the target build and then back to

the source build again (see Figure 3.2 below). Entries in the output files were extracted

if they satisfied one of the following conditions:

� positions which failed on the first conversion (“Reject 1”);

� positions which mapped to a different chromosome on the first conversion

(“CHR Jump 1”);

� positions which failed on the second conversion (“Reject 2”);

� positions which did not map back to the original chromosome on the second

conversion (“CHR Jump 2”); and

� positions which did not map back to the original position on the second conversion

(“POS Jump”)

We refer to these collectively as conversion-unstable positions (CUPs), and all other po-

sitions are referred to as stable. Note that entries in the Reject 1 category are typically

identified by the conversion tool, so the latter four entries are what we refer to collectively

as novel CUPs. Reject 1 and CHR Jump 1 positions were removed prior to the second

conversion (from the target build back to the source build). Despite not being included

in the input data, entries that mapped to the unplaced, unlocalized, and alternate con-

tigs were retained in the CHR Jump 1 and CHR Jump 2 categories to ensure each base

pair position in the source build had an accurate category designation. Both liftOver

and CrossMap were used for the conversion (see “Web Resources”, Subsection A.2.2).

Remap was not considered as its input file is limited to 250,000 entries, which is much
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smaller than the lengths of the input chromosomes. The same chain files were used

by both liftOver and CrossMap, allowing us to also check the robustness of CUP

identification, as a consensus between tools would give higher confidence in the output.

This algorithm was run twice, once for the GRCh37 build as the source and once for the

GRCh38 build as the source.

Both liftOver and CrossMap gave identical output for the same input data (see

Table 3.1). On GRCh37, approximately 11.3Mbp of novel CUPs were identified (repres-

enting 0.37% of the build) and on GRCh38 20Mbp of novel CUPs were identified (0.65%

of the build). For both builds, a successive application of the algorithm on the stable

positions using either tool did not identify any additional base pair positions for any of

the CUP categories, as expected.
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Figure 3.2: Flow chart of the algorithm to identify novel conversion-unstable positions.
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Category
GRCh37 to

GRCh38 (bp)
% of
Source

GRCh38 to
GRCh37 (bp)

% of
Source

All 3,095,677,412 100.000 2,859,470,792 92.370

Reject 1 234,712,067 7.582 - -

CHR Jump 1 1,494,553 0.048 - -

Reject 2 - - 100,180 0.003

CHR Jump 2 - - 799,922 0.026

POS Jump - - 8,907,439 0.288

Stable 2,859,470,792 92.370 2,849,663,251 92.053

Novel CUPs - - 11,302,094 0.365

(a)

Category
GRCh38 to

GRCh37 (bp)
% of
Source

GRCh37 to
GRCh38 (bp)

% of
Source

All 3,088,269,832 100.000 2,862,067,878 92.675

Reject 1 218,510,733 7.076 - -

CHR Jump 1 7,691,221 0.249 - -

Reject 2 - - 73,770 0.002

CHR Jump 2 - - 292,083 0.009

POS Jump - - 12,038,774 0.390

Stable 2,862,067,878 92.675 2,849,663,251 92.274

Novel CUPs - - 20,095,848 0.651

(b)

Table 3.1: Details of the stable positions and conversion-unstable positions (CUPs) for the
full-genome data for (a) GRCh37 as the source and (b) GRCh38 as the source, including the
number of base pairs (bp) for each category, and the proportion of the source genome build
covered (%). Novel CUP category names are highlighted in green.
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3.2.4 Comparison with Assembly Annotation Sets

To better understand the possible reasons for CUPs occurring, we also identified where

these positions originated in the genome. Given the reconstruction of some contigs

in the development of GRCh38 (Schneider et al., 2017), one explanation for base pair

positions being rejected during a conversion is that the position is not in the target build.

Additionally, in the online support forum for the UCSC Genome Browser, it is noted that

variants may change chromosomes between builds because they lie in repetitive regions

or segmental duplications (see “Web Resources”, Subsection A.2.2). In an attempt to

isolate the source of each CUP, the following assembly annotation sets were obtained

from the UCSC Table browser (Haeussler et al., 2019) for both genome builds (table ID

given in brackets):

� gaps in the build (gap): regions that are not present in the build, including te-

lomeres, the short arms of specific chromosomes and gaps between known contigs.

The centromeres are present in the GRCh37 gap set (as they did not form part

of the assembly) but not in the GRCh38 gap set and so were removed from the

GRCh37 gap set prior to comparison.

� differences between contigs (hg38ContigDiff): regions that are different in the

GRCh38 and GRCh37 builds due to updates in individual contigs.

� segmental duplications (genomicSuperDups): regions longer than 1kb that have a

high degree of sequence identity with other regions.

Given the overlap between these sets, positions unique to each of the three sets, as

well as positions which were present in more than one set (multiple), or no set (other)

were considered (see Figure 3.3). It is worth noting that the “multiple” set on GRCh37

was composed entirely of the intersection between the contig differences and segmental

duplications. The same was virtually true for GRCh38, with a very small proportion

(0.0007%) arising from the intersection between the gaps and segmental duplications.

In both cases, the “multiple” set accounted for less than 6% of all positions in the

selected assembly annotation sets. For the CUPs identified above, contiguous entries

were collapsed into multi-base pair regions using bedtools (Quinlan & Hall, 2010),

to allow for quicker comparison with the assembly annotation sets. The proportion of

overlap in CUP category A of assembly annotation set B is defined as
|A ∩B|
|A|

, and was

computed using bedtools.
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Gap

ContigDiff SegDup

17.55%

65.68% 11.17%
5.64%

0.0% 0.0%

0.0%

(a)

Gap

ContigDiff SegDup

14.45%

69.53% 10.07%
5.945%

0.0% 0.0007%

0.0%

(b)

Figure 3.3: Venn diagrams for the overlap between the three selected assembly annotation
sets (green: gaps; blue: contig differences; red: segmental duplications; yellow: multiple sets)
for (a) GRCh37 and (b) GRCh38.
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For both builds, the proportion of overlap for each CUP category across all the assembly

annotation sets was at least 97.5% for all except the Reject 1 category on GRCh37,

where the proportion was 69.2% (see Figure 3.4). However, the centromeres that were

removed from the gap set (which do not overlap with the other assembly annotation

sets) account for an additional 29.4% of the Reject 1 category, giving a total overlap

proportion explained of 98.6%. The CUPs in the “Other” set for all categories were

examined using the UCSC Genome Browser (Haeussler et al., 2019), but there was no

consistent overlap between these positions and any other assembly annotation track.

For both builds, the Reject 1 category is dominated by the gap and contig differences

sets. This is a highly plausible explanation for these base pair positions as the conversion

tools will fail when regions of the genome are not present (or have been updated) in

the target build. For example, the centromeres were broadly reconstructed during the

assembly of GRCh38, so it is not surprising that they feature in the Reject 1 category on

GRCh37. The novel CUPs are largely composed of the intersection between the contig

differences and segmental duplications. If a region is contained in both a segmental

duplication and a contig difference, this may indicate that the region is better placed in

another part of the genome, which would explain the conversion instability.
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Figure 3.4: The proportion of conversion-unstable positions (CUPs) that overlap with the assembly annotation sets, for the GRCh37 (top panel) and
GRCh38 (bottom panel) builds. Here, “Multiple” represents positions present in one or more of the assembly annotation sets and “Other” represents
positions present in none of the assembly annotation sets (this includes the centromeres for GRCh37). Gap: gaps in the assembly; ContigDiff:
differences in contigs between builds; SegDup: segmental duplications.
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3.3 Application to WGS Data

3.3.1 Evaluation Data

As a proof of principle, the well-characterized NA12877 and NA12878 samples for the

CEPH 1463 family were used to examine the behaviour of SNVs from WGS data when

converting between builds. High confidence variant calls for both samples were obtained

from the publicly available Illumina Platinum Genomics project in VCF format on both

GRCh37 and GRCh38 (see “Web Resources”, Subsection A.2.2). These variants were

identified using several variant calling algorithms, and were validated using the genotypes

in the samples’ parents and children to remove Mendelian errors (Eberle et al., 2017).

As we are only considering the behaviour of SNVs and aim to compare the WGS data

with the full-genome data, only biallelic SNVs were extracted for both samples. Each

variant was given a unique ID containing the original aligned position, reference allele,

alternate allele, and source build for ease of identification.

A slightly modified version of the above algorithm was implemented using the LiftoverVcf

module from picard rather than liftOver, as liftOver does not handle VCF file

format. The LiftoverVcf module is based on liftOver but additionally checks the

reference allele of each variant with the target reference genome, removing any sites

where there is a mismatch. CrossMap can accommodate VCF file format, and updates

the reference allele to that of the target build where there is a discrepancy and returns

a failure if the alternate allele is the same as the updated reference allele on the target

build. If a reference allele was updated to an ambiguous base (denoted by International

Union of Pure and Applied Chemistry (IUPAC) codes), these were manually removed

and considered a mismatch. For the WGS data, two additional output categories were

included for variants which failed due to reference-allele mismatches on the first conver-

sion (Mismatch 1) or on the second conversion (Mismatch 2).

Since individual base pair positions are converted independently of one another, variants

which are present in any of the novel CUPs can also be excluded prior to conversion

to ensure all variants are stable and data are of high quality. These filtered data were

compared with the output from the algorithm on the original data to confirm that both

methods are equivalent. In addition to the VCF data files, BED files were generated

using position information extracted from the VCF data. This allowed us to apply our

original position-based algorithm (that used the liftOver and CrossMap tools) as a

sanity check to ensure that both versions of the algorithm behaved the same.
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3.3.2 CUPs in WGS Data

NA12877 had 3,518,008 SNVs on GRCh37 and 3,576,396 SNVs on GRCh38. NA12878

had 3,523,638 SNVs on GRCh37 and 3,594,064 SNVs on GRCh38. Each of these rep-

resent approximately 0.1% of the full genome data for their respective build. For both

samples, the CUPs identified from the VCF data were contained within the CUPs iden-

tified from the corresponding BED data, as expected. The only positions from the VCF

data that were not contained in the BED data were the mismatch categories. Further-

more, the CUPs identified from the BED positions from the WGS data were contained

within the respective full-genome CUPs. liftOver and CrossMap broadly agreed on the

CUPs derived from the VCF data, with differences arising purely due to how each tool

treats the reference allele in the target build, including ambiguous bases (Mismatch 1,

Mismatch 2).

The same stable SNVs were identified from the filtered data (variants at novel CUPs ex-

cluded) as for the original, unfiltered WGS data when the algorithm was applied to both

(see Table 3.2). Also, the only variants removed by the algorithm from the filtered data

were those in the Reject 1 and mismatch categories. As expected, no additional variants

in the CUP categories were identified on a successive application of the algorithm to

either the original data or to the filtered data. The SNVs at novel CUPs represented

approximately 0.13% of SNVs on either build.

Pan et al. reported conversion failure rates for WGS data of on average 1% from GRCh37

to GRCh38 and 5% from GRCh38 to GRCh37, noting that the SNVs that failed tended

to have much lower depth of coverage, and may represent false-positive variant calls

(Pan et al., 2019). Here, we observe much lower tool conversion failure rates of 0.14%

from GRCh37 to GRCh38 and 0.72% from GRCh38 to GRCh37 for the WGS data. We

note that this dataset is a particularly clean and accurate set of SNVs (Eberle et al.,

2017), which may account for the decrease in conversion failure rates compared to the

previous study. However, the trend in performance is in the same direction; converting

from GRCh37 to GRCh38 results in fewer conversion failures than GRCh38 to GRCh37.

While Pan et al. showed that read depth and variant quality may have an impact on

discordance rates, the variants examined here did not have this information available,

thus we were unfortunately not able to assess these aspects of the novel CUPs.
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Source Category

liftOver CrossMap

Original Filtered Original Filtered

Count % Count % Count % Count %

GRCh37

All 3,523,638 100.000 3,518,229 100.000 3,523,638 100.000 3,518,229 100.000

Reject 1 4,947 0.140 4,947 0.141 4,947 0.140 4,947 0.141

Mismatch 1 20,533 0.583 19,976 0.568 20,510 0.582 19,959 0.567

Mismatch 2 128 0.004 0 0.000 123 0.003 0 0.000

Novel CUPs 4,724 0.134 0 0.000 4,735 0.134 0 0.000

Stable 3,493,306 99.139 3,493,306 99.292 3,493,323 99.140 3,493,323 99.292

GRCh38

All 3,594,064 100.000 3,588,396 100.000 3,594,064 100.000 3,588,396 100.000

Reject 1 25,852 0.719 25,852 0.720 25,852 0.719 25,852 0.720

Mismatch 1 16,772 0.467 15,741 0.439 16,740 0.466 15,726 0.438

Mismatch 2 85 0.002 0 0.000 81 0.002 0 0.000

Novel CUPs 4,552 0.127 0 0.000 4,573 0.127 0 0.000

Stable 3,546,803 98.685 3,546,803 98.841 3,546,818 98.685 3,546,818 98.841

Table 3.2: Counts and proportions (%) of all SNVs present in WGS data for sample NA12878 broken down by genome build (GRCh37, GRCh38),
conversion tool (liftOver or CrossMap) and whether the original or filtered data was considered. All novel conversion-unstable positions (CUPs)
have been combined into one entry in the table (novel CUPs, highlighted in grey).
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3.3.3 Discordance Rates Between Aligned and Converted Data

Given that re-aligned data is considered the most accurate method to derive variants,

we compared SNVs from converted data to aligned data on both builds to evaluate the

error rates of the conversion process. The position discordance rate (computed using

bedtools) was defined as the proportion of SNVs in the converted data whose position

did not match that of a variant in the aligned data. The genotype discordance rate

(computed using GenotypeConcordance from picard) was defined as the proportion

of SNVs in the converted data whose position matched a variant in the aligned data,

but whose genotype did not match.

The combined position and genotype discordance rates were on average 3.07% when con-

verting from GRCh38 to GRCh37, and 1.68% when converting from GRCh37 to GRCh38

(see Table 3.3). When variants in the novel CUPs were pre-excluded, these rates re-

duced to 2.97% and 1.61% respectively. This is higher than the average discordance

rate observed by Pan et al. of 1.5%, however these rates are not directly comparable.

The average discordance rate from Pan et al. is taken across all bioinformatics pipelines,

across both builds and across both tools. Although Pan et al. do not provide the exact

rates to compare, our discordance rates are broadly in line with those observed in their

Figure 6A (Pan et al., 2019). As with the conversion failure rates, both this study and

Pan et al. found converting from GRCh38 to GRCh37 yields higher discordance rates.

We note that the genotype discordance rates are quite low at an average of 0.0011% for

both builds (see Table 3.3). This indicates that when the position of a variant has been

correctly converted, the genotype is also highly likely to be correct.

Finally, we examined the position and genotype discordance rates for SNVs at the novel

CUP categories with the aligned data (see Table 3.3). The position discordance rates

overall are much higher for variants in the novel CUP categories compared with the

filtered data, with an average of 83.2% on GRCh37 and 61.2% on GRCh38. Similarly,

the genotype discordance rates for variants at novel CUPs is higher than the filtered

data, with an average of 1.4% on GRCh37 and 0.4% on GRCh38. These rates indicate

that variants at CUPs are less likely to be identified in the aligned target build and give

support to our recommended strategy of removing them prior to conversion.
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Sample Tool Category
GRCh38 to GRCh37 GRCh37 to GRCh38

Pos Disc
(%)

Geno Disc
(%)

Pos Disc
(%)

Geno Disc
(%)

NA12877 liftOver original 3.0694 0.0012 1.8119 0.0012

NA12877 liftOver filtered 2.9754 0.0010 1.7369 0.0010

NA12877 liftOver novel CUPs 83.3893 1.5965 60.5490 0.3661

NA12877 CrossMap original 3.0703 0.0012 1.8123 0.0012

NA12877 CrossMap filtered 2.9759 0.0010 1.7371 0.0010

NA12877 CrossMap novel CUPs 83.4450 1.5965 60.6054 0.3661

NA12878 liftOver original 3.0691 0.0012 1.5544 0.0013

NA12878 liftOver filtered 2.9654 0.0011 1.4794 0.0011

NA12878 liftOver novel CUPs 82.9226 1.1436 61.8269 0.4978

NA12878 CrossMap original 3.0700 0.0012 1.5550 0.0013

NA12878 CrossMap filtered 2.9658 0.0011 1.4798 0.0011

NA12878 CrossMap novel CUPs 82.9851 1.1436 61.8749 0.4978

Table 3.3: Discordance rates between converted data and aligned data for position (Pos Disc) and genotype (Geno Disc), for both WGS samples,
both conversion tools, and comparing original data, filtered data or variants at conversion-unstable positions (CUPs). The entries containing the
novel CUPs are shaded in grey.
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3.4 Conclusions

Here, we have replicated the previously observed phenomenon whereby a small propor-

tion of SNVs change chromosome when they are converted to another genome build

(Liu et al., 2016). Additionally, we have identified all novel sites where base pair posi-

tion information does not behave as expected, or where a one-to-one mapping between

positions on both builds is not present. The novel CUPs represent 0.37% of the GRCh37

build and 0.65% of the GRCh38 build. We have clearly highlighted the care that must

be taken when converting between genome builds to ensure high quality data. Unless

the user is familiar with the instabilities we have described, we recommend the simple

strategy devised here of removing variants at novel CUPs to ensure high confidence data

when converting SNVs between builds of the human genome.
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Chapter 4

Copy Number Variant Calling for

Family-Based Sequencing Studies

Calling CNVs from short-read WGS data remains an ongoing challenge, and no “Best

Practice” guidelines exist. A commonly implemented approach is to take a consensus

of multiple calling methods to derive high-quality calls. However, this limits the CNV

discovery to the collective strengths of the chosen methods, which may have been selec-

ted arbitrarily. Here we discuss a novel consensus CNV calling pipeline for family-based

WGS data. By taking relatedness information into account, we were able to recover CNV

calls that would have been removed due to lack of a consensus. We benchmarked our

pipeline using a curated “Gold Standard” call set and showed that our method performs

well overall, and out-performs a comparable calling pipeline designed for family-based

data. This work was formulated jointly with Dr Niamh Ryan unless otherwise specified.

4.1 Introduction

CNVs are a form of SV defined as a deletion or duplication of a region in a genome

that spans at least 50 bp in size. An estimated 4.9-9.5% of the human genome contains

a CNV (Zarrei et al., 2015) and much work has been done to examine the contribu-

tion of CNVs to both Mendelian and complex genetic disorders (Girirajan et al., 2011;

Stankiewicz & Lupski, 2010; Weischenfeldt et al., 2013). Hybridization-based techniques

such as array CGH and SNP microarrays have been used historically to detect and gen-

otype CNVs (Alkan et al., 2011). However, such methods are highly dependent on the

design of the hybridization probes and so are limited in the size of the variants that they

can detect, as well as lacking the resolution to accurately detect their breakpoints.

NGS technologies can provide greater accuracy at CNV calling compared to previous

methods (Zhou et al., 2018). Many computational approaches leverage discrepancies in

read alignments to identify putative regions that exhibit copy number changes (M. Zhao

et al., 2013). Paired end read (PR) or split read (SR) tools detect CNVs by examining

where the paired-end reads are significantly different from the expected insert size for a
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collection of reads, or if one read in a pair doesn’t map properly with its mate (Pirooznia

et al., 2015). An example of a duplication is shown in Figure 4.1, where we can see

that the insert size of the reads at the breakpoints is much larger than that of reads

away from the CNV breakpoints. Read depth (RD) tools examine the number of reads

within a region, under the assumption that this is correlated with the copy number of

that segment of DNA (Pirooznia et al., 2015). Significant increases or decreases in

read depth can indicate the breakpoint of a duplication or deletion event respectively.

Returning to Figure 4.1, there is a noticeable increase in the read depth between the

breakpoints compared to the flanking regions.

Despite the wealth of software tools and methods, there are no “Best Practices” for CNV

calling from NGS data. A commonly used strategy is to use multiple tools to call CNVs

and accept a consensus of the tools, which can provide a level of validation (Friedrich

et al., 2020; Zarate et al., 2020). Despite the advantages of the consensus approach,

individual calling methods are often chosen for arbitrary reasons and the performance

of some of these ensembles may not have been formally examined. A comprehensive

evaluation of SV calling methods showed that while there is no single method that can

detect all variants, some tools are optimised for specific classes of variants (Kosugi et

al., 2019). Also, some specific calling methods (as well as categories of calling methods)

perform better together when a consensus approach is required. While this is useful for

any analysis making use of pairs of methods, it is insufficient for more complex ensembles.

Another drawbacks of a consensus approach is that if a specific tool is able to detect

certain variants that others cannot, these CNV calls will be lost due to lack of support.

We refer to calls identified by one tool only in a consensus as singleton calls. Khan

et al. attempted to partially resolve this issue using family call data which can provide

further evidence for CNV calls with low levels of support from a consensus (Khan et al.,

2018). Singleton CNVs in an individual were retained if another member of the pedigree

had the same CNV call identified by a consensus of tools. In studies of individuals who

are closely related, we might expect that the breakpoints for the same CNV are more

comparable than in an unrelated cohort. This strategy can enable consensus approaches

to reclaim the utility of the individual tools while maintaining some level of control on

false positives with in-family validation. In this chapter, we describe a novel family-based

consensus approach for CNV calling using four different calling methods. We evaluated

the performance of our consensus calls on a set of curated “Gold Standard” CNV calls

and compared this to previously published CNV calling methods for pedigree data.
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Figure 4.1: An example of a 34 kbp duplication on chromosome 13 in an individual identified from our WGS data (information described in
Chapter 5), visualised using samplot (Belyeu et al., 2021). The left-side y-axis shows the insert size between the paired-end reads, represented by
the black, blue, and red blocks connected with horizontal lines. The right-side y-axis shows the depth of coverage, represented as the grey histogram.
At the breakpoints of the CNV region (marked with a black horizontal bar at the top), the insert size of some reads is much higher than other reads,
and the depth of coverage changes compared to flanking regions.
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4.2 Calling Pipeline

We selected a trio of individuals from the CEPH 1463 pedigree (proband: NA12878;

father: NA12891; mother NA12892) on which to call CNVs. Sample NA12878 has been

studied extensively, and several sequencing technologies have been used to characterize

CNVs in this genome (Haraksingh et al., 2017; Rao et al., 2020; Zook et al., 2016). WGS

had been performed to approximately 50× coverage on all samples as part of the Illumina

Platinum Genomes project (Eberle et al., 2017), and publicly available FASTQ files were

obtained from the European Nucleotide Archive (ENA), project number PRJEB3381.

All paired-end FASTQ files were examined using FastQC and samtools (H. Li et al.,

2009) to screen for DNA contamination or degradation, and none was observed. Reads

were aligned to the GRCh38 reference genome and standard pre-processing was applied

as described in Subsection 2.2.1.

4.2.1 Per Individual

Our consensus approach combines two PR/SR tools and two RD tools. For deletions

and duplications larger than 1kbp, taking a consensus of callers both within and across

these calling classes has shown a reasonable improvement in CNV detection compared

to using the tools on their own (Kosugi et al., 2019). The tools we selected which

implement PR/SR calling were Manta (Chen et al., 2016) and LUMPY (Layer et al.,

2014). These two tools have been used in several CNV consensus calling approaches

such as bcbio-nextgen (Chapman et al., 2021), sv-callers (Kuzniar et al., 2020)

and Parliament2 (Zarate et al., 2020), and have been shown to perform well individu-

ally and as a pair (Gong et al., 2020). The RD tools selected were ERDS (Zhu et al.,

2012) and CNVnator (Abyzov et al., 2011). This pair of tools together has been shown

to outperform several other RD-based callers for NGS data (Trost et al., 2018). All four

calling methods were run using the default settings recommended by the authors. Based

on recommendations from the online documentation of CNVnator, we chose a bin size

of 50bp since our data has an average depth of coverage of 50×. ERDS requires SNV and

indel calls, which were derived from the input BAM files using the HaplotypeCaller

module from GATK following Subsection 2.2.2 above.

On a preliminary evaluation of the calling methods, we observed that they sometimes

generate several largely overlapping CNV calls which appear to represent one single

copy number event. This was more prevalent in the output of the two PR/SR callers

than the RD callers, likely because multiple read pairs close to one another may behave
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similarly for the same copy number event but may be called separately. To eliminate such

repetition, we implemented a collapsing strategy on the raw calls from each separate tool

to identify sets of equivalent CNVs, comparable to that described in Trost et al. (Trost

et al., 2018). These overlapping regions were reduced to single regions as follows:

� If two CNVs of the same type (either deletion or duplication) overlap reciprocally

by at least 25%, then they are added to the same set.

� If only one of the two CNVs is already in a set, then the other is added to that

set. If both CNVs are already in sets, then the two sets are combined.

� Once all sets have been created, each set is collapsed down to one region by taking

the union of all CNVs using bedtools (Quinlan & Hall, 2010).

A depiction of this collapsing method is shown in Figure Figure 4.2. A consensus CNV

call across all tools is generated by merging calls of the same type that overlap reciproc-

ally by 50%, first considering calls within calling method types (CNVnator vs ERDS, and

LUMPY vs Manta), and then across the resulting calling method types (PR/SR vs RD). A

depiction of this merging of CNV calls across call sets is also shown in Figure 4.2. CNV

calls were annotated with which calling method(s) identified the region.

CNV calling is known to be confounded by repeat and low complexity regions (RLCR),

which Trost et al. defined as:

1. assembly gaps, (UCSC “gap” table);

2. segmental duplications (UCSC “genomicSuperDups” table);

3. the pseudo-autosomal regions of the sex chromosomes.

It is worth noting that Trost et al. originally included repeat regions identified by

RepeatMasker (Smit et al., 2015), but noted that this reduced sensitivity to detect

rare, genic CNVs and so we excluded this from the RLCR definition (Trost et al., 2018).

In our analysis, CNV calls for which over 75% of their length comprise of RLCR were

removed. Finally, variants of length less than 1kbp were removed, since the RD callers

are known to be limited to this resolution (Trost et al., 2018). A workflow diagram for

the calling pipeline is shown in Figure 4.3.
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Call set 1

Call set 2

Merge

CNV1
CNV2

CNV3

CNV4

Figure 4.2: A visualisation of the collapsing and merging strategy for a single individual,
showing call sets from two CNV callers. The paler horizontal blocks represent CNV calls from
the same tool that are collapsed down to represent the one site within an individual (darker
blocks). Note that in Call set 1, two distinct regions (CNV1 and CNV2) are formed of calls
that satisfy the overlap criteria. Then across multiple call sets, we merge two CNV calls that
overlap reciprocally by 50% (CNV2 and CNV3) by taking the union, indicated by the dashed
vertical lines (CNV4).
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BAM FileSNV/indel VCF file

CNVnatorERDS LUMPY Manta

Collapse sets,
overlap at 25%

Collapse sets,
overlaps at 25%

Collapse sets,
overlaps at 25%

Collapse sets,
overlaps at 25%

Merge calls,
overlap at 50%

Merge calls,
overlap at 50%

Merge call sets,
overlap at 50%

Remove
RLCR variants

Remove CNVs
length ⩽ 1kbp

Figure 4.3: Workflow of the CNV calling pipeline per individual. PR/SR callers are shown in
red, and RD callers are shown in green. RLCR: repeat/low-complexity region.

We applied the above method to the CEPH 1463 trio, and the number of CNVs identified

in each sample is shown in Table 4.1. Upset plots for the intersection between each

caller for sample NA12878 are shown in Figure 4.4. We can see for NA12878 that

there are 1,257 singleton deletions (60.7%) and 575 singleton duplications (73.3%),

representing 64.2% of all CNVs called for that sample. CNVnator had the highest

number of singletons and Manta had the lowest number, across both deletions and

duplications.

Sample DEL DUP Total

NA12878 2,070 784 2,854

NA12891 2,867 1,115 3,982

NA12892 2,535 798 3,333

Table 4.1: Counts of the number of CNVs called for each of the three individuals in the CEPH
1463 trio. DEL: deletion; DUP: duplication.
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(a)

(b)

Figure 4.4: Upset plots showing the intersection and relative complements between the four
CNV calling methods in sample NA12878 for: (a) deletions; and (b) duplications. The black
dots indicate which caller is included in the intersection or complement, and the bar chart
above indicates the number of CNV calls per section. The horizontal bars at the bottom left
indicate the total number of CNVs called by each caller.
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4.2.2 Per Pedigree

All calls within a pedigree were combined, again taking the union of calls of the same

type with 50% reciprocal overlap. Following Khan et al., singleton calls that were not

detected by at least two callers in any of the individual’s direct relatives were removed

(Khan et al., 2018). This ensured that the final list of CNVs for any individual in the

pedigree either had support from at least two calling methods or was also present with

confidence in a relative. We applied this strategy to the CEPH 1463 trio, resulting in

2,371 deletions and 805 duplications. Upset plots for the overlap between the three

samples is shown in Figure 4.5.

(a)
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(b)

Figure 4.5: Upset plots for the three samples in the CEPH 1463 trio, split by: (a) deletions;
and (b) duplications.

4.3 Alternative Strategies

4.3.1 Individual Callers

We compared the final list of CNV calls for NA12878 to the calls that were identified by

each of the four callers alone. As before, we implemented the collapsing of overlapping

calls, removed calls RLCRs, and retained those at least 1kbp in length. Since we no

longer have a consensus, each call will be a singleton, so we relaxed the requirement for

a direct relative to carry the CNV. Additionally, we extracted the CNV calls that were

identified by the PR/SR callers and the RD callers separately. Given that we have two

callers each, we kept the check in direct relatives to retain singletons and applied the

pipeline as before.

4.3.2 Khan et al.

We also benchmarked the pipeline described in Khan et al. against our own (Khan et al.,

2018) to assess their relative performances. The authors applied this pipeline to samples

sequenced at an average of 16× coverage on build GRCh37, and used two different

calling methods to those we implement here: cn.mops (Klambauer et al., 2012) instead
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of ERDS, and DELLY (Rausch et al., 2012) instead of Manta. Given that our evaluation

samples were sequenced to an average of 50× coverage with 101bp read length, we

adjusted some of the input parameters of the calling methods to account for this. The

documentation for cn.mops recommends that a window size be selected such that on

average 100 reads are present in each window. Given our sequencing data, there will

be approximately 100 reads fully or partially contained in a window length of 200 bp.

Khan et al. removed CNVs with fewer than four supporting reads from LUMPY and

those with fewer than three supporting reads from DELLY. For both of these tools, CNVs

with genotype quality less than 20.0 were also removed. Since only three samples were

evaluated in our analysis, we did not remove samples based on outlier CNV counts for

any of the calling methods, as was done in Khan et al., where over 300 samples were

sequenced.

4.4 Benchmarking

4.4.1 Curated Gold Standard CNV Calls

The generation of a CNV call set for NA12878 was done by a member of our research

group (Dr Niamh Ryan) and is described in this Subsection for reference. Despite the

extensive study of sample NA12878, it is difficult to fully characterise all detectable

CNVs in their genome, since no single technology can detect all variants. With this in

mind, Dr Ryan examined the following studies which attempted to curate a list of CNV

calls detected using a variety of technologies:

� DGV - the Database of Genomic Variants is a catalogue of curated SVs observed

in the general population taken from multiple studies and resources (MacDonald

et al., 2014). Included are a set of CNV calls for NA12878 predominantly taken

from various Phases of The 1000 Genomes Project.

� LUMPY - in the companion paper to LUMPY (Layer et al., 2014), the authors

generated a list of CNV calls for NA12878 that had been validated by PacBio

and/or Illumina Moleculo long-read sequencing.

� Manta - in the companion paper to Manta (Chen et al., 2016), the authors

considered pedigree consistent CNV calls from all 17 members of the CEPH 1463

pedigree, generated using pindel (Ye et al., 2009) and DELLY (Rausch et al.,

2012).

� Mills - Mills et al. constructed a map of CNVs from 185 individuals (including
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NA12878) using a wide variety of sequencing strategies and variant callers (Mills

et al., 2011).

� Trost - in an evaluation of RD tools (Trost et al., 2018), the authors used a list of

previously generated CNV calls for NA12878 using PacBio long-read sequencing

as well as Illumina short- and long-read sequencing.

The website of the DGV notes that since not all CNV calls were generated from the

same source, what one study calls a deletion, another may call a duplication (see “Web

Resources”, Subsection A.2.3). Therefore, for the purposes of the benchmarking, Dr

Ryan considered the CNV regions only, and did not match for CNV type. There was

a relatively low overlap across the five call sets; an upset plot is shown in Figure 4.6.

One explanation for this is that CNVs were called with different technologies across

the five call sets (SNP genotype arrays, aCGH, cytogenic techniques, short-/long-read

sequencing, etc.), so it is reasonable that some methods will detect CNVs that others

cannot. There were 1,176 CNV regions (6.3%) on the autosomal chromosomes present

in at least two call sets, out of a total of 18,583 unique CNV regions. Of these, 638 were

greater than 1kbp in length, which is the recommended length for the RD callers (Trost

et al., 2018). This final list of CNV regions was used as the curated “Gold Standard”

list.

(a)
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(b)

Figure 4.6: Upset plot for the overlap of CNV regions between the five “Gold Standard”
NA12878 call sets for (a) all CNV calls; and (b) CNV calls with length greater than 1kbp.
For readability, empty intersections are not displayed.

4.4.2 Validation Metrics

To evaluate the accuracy of the pipelines considered, we calculated the precision of

the CNV call sets for NA12878 relative to the curated “Gold Standard” CNV calls.

Recall (or sensitivity) is defined as the proportion of curated “Gold Standard” CNV calls

that each query call set identified and is a measure of the pipeline’s ability to detect

true positives. Another often used metric is the precision (or positive predictive value),

defined as the proportion of the input call set that is present in the curated “Gold

Standard”. However, since the overlap of the five individual “Gold Standard” sets is

relatively small, it is possible that true positive variant calls were only identified by one

of the five studies, given the variety of sequencing/calling technologies used. Since the

curated “Gold Standard” is simply a set of high-confidence CNV calls for NA12878, the

absence of a CNV in this set does not necessarily indicate that it is a false positive.

Therefore, we will not use precision as a benchmarking metric for this curated “Gold

Standard” set.
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4.4.3 Results

The curated “Gold Standard” set was generated on build GRCh37, so we converted the

final list of CNV calls of length at least 1kbp from our pipeline and alternative pipelines to

this build using liftOver (Haeussler et al., 2019). The results of the benchmarking are

shown in Table 4.2. This analysis showed that our method outperformed the alternate

calling pipeline by Khan et al., while also performing better than any of the constituent

tools individually.

Pipeline
Total

In GS Recall
GRCh38 GRCh37

Our Method 2,255 1,964 557 87.30%

PR/SR 1,161 1,045 539 84.48%

LUMPY 1,201 1,072 538 84.33%

Manta 808 763 519 81.35%

RD 2,030 1,810 465 72.88%

ERDS 888 764 445 69.75%

CNVnator 1,940 1,749 434 68.03%

Khan et al. 6,778 6,115 382 59.87%

Table 4.2: A comparison of the CNV calling pipelines. Shown are the number of CNV calls
on build GRCh38 and GRCh37 (following liftOver), the number of CNV calls present in the
curated “Gold Standard” (GS) set out of a total of 638, and the recall values.

4.5 Conclusions

Here we have introduced a novel consensus CNV calling pipeline designed for pedigree

based NGS data, by selecting calling methods and classes known to support one another.

Following previous work, our pipeline is able to reclaim lower-confidence CNV calls by

considering calls from close relatives. We have shown that our pipeline performs well

at identifying a curated list of “Gold Standard” CNV calls from sample NA12878, and

out-performs an alternate pipeline designed for the same data.

60



Chapter 5

Rare Variant Analysis of

Discordant Monozygotic Twins

Monozygotic twins are often thought to have identical genomes, but recent work has

shown that early post-zygotic events can result in a spectrum of DNA variants that

are different between twins. Such variants may explain phenotypic discordance and

contribute to disease aetiology. Here we performed whole genome sequencing in 17 pairs

of MZ twins discordant for schizophrenia and related disorders. We identified seven genes

harbouring rare, predicted deleterious SNVs that were private to an affected sample in the

cohort. Four of the genes implicated had been reported to carry rare deleterious variants

in two previous case-control schizophrenia WES studies. A discordant missense variant in

POLG was observed in an individual with major depressive disorder. Deleterious variants

in this gene have been previously implicated in mood disorders and psychosis in both

human and mouse studies. Additionally, we identified seven rare genic CNVs private to

an affected sample, one of which was predicted to be pathogenic and has been observed

in autism and developmental delay cases.

5.1 Introduction

Monozygotic (MZ), or identical twins, occur when a zygote divides into two separate em-

bryos, and dizygotic (DZ) twins, or non-identical twins, occur when two ova are fertilised

separately during the same pregnancy. MZ twins are often described as sharing 100% of

their genomes, compared to DZ twins or other non-twin siblings who share approximately

50% of their genomes. Significant differences in concordance rates between MZ and DZ

twins classically indicate a genetic factor for a given phenotype. If the phenotype could

be explained purely by genetic factors, then we would expect that the concordance rates

between MZ twins to be close to 100%. Twin studies have several advantages over

case-control and other family study types, as twins are the same age and typically have

similar or comparable exposure to many environmental factors, (e.g. childhood trauma,

urbanicity, etc.) compared to non-twin siblings. Since non-shared factors may contrib-

ute to phenotypic differences between siblings, twin studies have been used to provide
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insights into the genetic aetiology of many diseases and disorders (Kato et al., 2005),

including schizophrenia.

Despite their similarity, MZ twins do not always have identical genomes. As with all

humans, post-zygotic DNA variation (i.e. variants that occur after fertilisation) can be

present in the twins’ genomes, but depending if the variation occurs before or after the

single fertilized zygote splits in two (known as the twinning event), they may be private

to an MZ twin (Jonsson et al., 2021). Post-zygotic variation can occur spontaneously

during DNA replication or can be induced by mutagens, resulting in somatic mosaicism,

i.e. the presence of different genomes in different cells within the same individual (Grif-

fiths et al., 2008) However, if these post-zygotic variants occur before the specification

of the embryonic cells that will eventually become germ cells (known as primordial germ

cells), they may be found in most cells in the body and may present as germline variants.

A depiction of this is shown in Figure 5.1 (Jonsson et al., 2021).

In Polymeropoulos et al., the authors observe that: “the [phenotypic] discordance could

be explained by the hypothesis that the . . . phenotype will remain silent unless released

by environmental and other non-familial stressors” (Polymeropoulos et al., 1993). Under

this hypothesis, both twins share a common genetic risk which alone is insufficient to

be causal for the phenotype, but rare, post-zygotic variation present in the affected twin

increases their disease-risk. Since these post-zygotic variants are typically not examined

during twin heritability analyses, they would be mistakenly counted as part of the envir-

onmental or even non-additive genetic effects (S. M. Singh et al., 2020). Rare variants

of interest are therefore de novo events within a twin pair, i.e. where one individual has

exactly one more copy of the allele of interest than their co-twin. We refer to these as

discordant variants.

Discordant SNVs and indels have been shown to be causal for several Mendelian dis-

orders for which MZ twins are discordant, for example: Darier’s Disease (Sakuntabhai

et al., 1999), Van der Woude Syndrome (Kondo et al., 2002) and otopalatodigital syn-

drome spectrum disorders (Robertson et al., 2006). Discordance for trinucleotide repeat

expansion length in the FMR1 gene is thought to be causal for the discordance of fragile

X syndrome (Helderman-van den Enden et al., 1999). Large discordant chromosomal

abnormalities such as aneuploidy have been observed, resulting in MZ twins discordant

for Down’s syndrome (Dahoun et al., 2008), Patau syndrome (Taylor et al., 2008) and

even sex (Zech et al., 2008).
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Figure 5.1: Post-zygotic variants may be shared in a twin pair if they occur before the twinning
event (left), or private to a twin if they occur after twinning (right). If they occur prior to
primordial germ cell specification (PGCS), they may be present in most germ and somatic
cells. This figure is adapted from Figure 1 of Jonsson et al. (Jonsson et al., 2021).

For psychiatric disorders, as with other complex traits, the genetic contribution of dis-

cordant variation is less clear. Older work focused on discordant CNVs, but while some

variants had been observed in schizophrenia samples (Castellani et al., 2014), such dis-

cordances were not widely replicated (Bloom et al., 2013; Laplana et al., 2014). More

recently, NGS analyses have identified post-zygotic variation in MZ twins discordant for

schizophrenia (Castellani et al., 2017; Tang et al., 2017), autism (Huang et al., 2019),

and Tourette’s syndrome (Vadgama et al., 2019) and so further investigation is warran-

ted. In this Chapter we examine WGS data from a cohort of MZ twins discordant for

schizophrenia and related disorders and investigate various classes of variants that may

be increasing the affected individuals’ risk for their respective phenotype.

5.2 Cohort Description

5.2.1 Sample Procurement

The schizophrenia and bipolar twin study in Sweden (STAR) has collected data on 462

MZ and DZ twin pairs with schizophrenia or bipolar disorder. The clinical assessment

and DNA sampling of the cohort are described in Johansson et al., described here briefly

(Johansson et al., 2019). The participants in this study were originally identified through

the Swedish twin register (STR) (Lichtenstein et al., 2006) and the National patient re-
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gister (NPR), which is administered by the social board of health and welfare. Potential

participants were invited to the STAR study if one twin in a pair had a registered treat-

ment episode of schizophrenia or bipolar disorder (diagnoses according to International

Statistical Classification of Diseases: ICD-8: 295 or 296, ICD-9: 295 or 296 or ICD-10:

F20, F30 or F31). Cases were categorized as schizophrenia (SCZ; ICD-10: F20), schi-

zoaffective disorder (SAD; ICD-10: F25), bipolar disorder (BD; ICD-10: F31), major

depressive disorder (MDD; ICD-10: F32-F33) or not affected by any of these diagnoses.

From the STAR cohort we selected all available phenotype discordant MZ twin pairs

in which one twin was diagnosed with either SCZ, SAD, or BD, and the co-twin was

unaffected (see Table 5.1). If the co-twin had been diagnosed with MDD previously, we

included the twin pair only if the severity level of the depression was mild and without

occurrence of psychotic symptoms. If only one sample in a twin pair had a diagnosis

(known as “narrow discordance”), we use the suffix “ A” to refer to the affected sample

and the suffix “ U” to refer to the unaffected sample. If the co-twin had a diagnosis of

MDD (known as “broad discordance”), we use the suffix “ A1” to refer to the non-MDD

sample and the suffix “ A2” to refer to the sample with MDD. DNA samples were sent

to us from our collaborators in the Karolinska Institutet, Sweden.

5.2.2 Sample Processing and WGS Data

DNA concentrations were quantified using Qubit, and the quality of DNA was determ-

ined by agarose gel electrophoresis by a member of our research team (Dr Amy Cole).

All samples were found to have sufficient DNA concentration to be sent for whole gen-

ome sequencing at EGCG. The pair T19 failed quality control metrics for sequencing and

were excluded from the study. All FASTQ files received from EGCG were examined using

FastQC and samtools to screen for DNA contamination or degradation, but none were

flagged at this stage. Reads had been aligned to GRCh38 by EGCG and variants were

called as described in Subsection 2.2.2. Genotype calling was performed jointly across

all samples, and variant quality score recalibration (VQSR) was performed on SNVs and

indels separately (see Subsection 2.3.1).

The software peddy (Pedersen & Quinlan, 2017) was used to check for relatedness in all

samples jointly as described in Section 2.4. To further examine the pairwise relatedness

in the cohort, we selected a subset of high-confidence variants. SNVs were retained if

they passed the following filters from the jointly genotyped data:

a) phred-scaled quality score (QUAL) > 1000.0;
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Pair
Sex

Age at Twin 1 Twin 2
Disc

ID Sampling ID Pheno ID Pheno

T01 M 35 T01 A1 SCZ T01 A2 MDD Broad

T02 M 38 T02 A SAD T02 U None Narrow

T03 F 34 T03 A SCZ T03 U None Narrow

T04 F 30 T04 A BD T04 U None Narrow

T05 M 25 T05 A1 SAD T05 A2 MDD Broad

T06 F 65 T06 A SAD T06 U None Narrow

T07 F 61 T07 A BD T07 U None Narrow

T08 F 60 T08 A SAD T08 U None Narrow

T09 F 59 T09 A BD T09 U None Narrow

T10 M 58 T10 A SCZ T10 U None Narrow

T11 F 52 T11 A BD T11 U None Narrow

T12 M 50, 51 T12 A BD T12 U None Narrow

T13 M 48 T13 A1 SCZ T13 A2 MDD Broad

T14 M 50, 51 T14 A BD T14 U None Narrow

T15 M 43 T15 A1 SAD T15 A2 MDD Broad

T16 M 46 T16 A BD T16 U None Narrow

T17 F 45 T17 A BD T17 U None Narrow

T18 F 27 T18 A1 SAD T18 A2 MDD Broad

T19 F 38 T19 A SAD T19 U None Narrow

Table 5.1: Phenotypic data for the 19 pairs of MZ twins. For the discordance (Disc), “broad”
indicates that both samples have a diagnosis and “narrow” indicates that only one sample
has a diagnosis. BD: bipolar disorder; MDD: major depressive disorder; SAD: schizoaffective
disorder; SCZ: schizophrenia.

b) DP > 100;

c) mapping quality across all reads (MQ) > 5.0;

d) VQSLOD > 10.0;

e) phred-scaled quality score normalised to read depth (QD) > 5.0.

These thresholds were obtained by manually examining the density plots for each of

the respective metrics to remove those at the lower end of the distribution. We then

performed LD pruning on the remaining SNVs using the --indep-pairwise command

from plink (Purcell et al., 2007) with parameters “50 5 0.2”. Finally, we calculated

the pairwise relatedness scores with vcftools as described in Section 2.4. A heatmap
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describing these relatedness scores is shown in Figure 5.2.

It was expected that each sample in the cohort should be perfectly related to themselves

and to their co-twin (red in the heatmap) and unrelated to all other samples (white in

the heatmap). However, sample T04 U appears to be related to all other twin samples.

Because of this relatedness issue, twin pair T04 was excluded from our cohort. Addition-

ally, from this heatmap it appears that some twin pairs have negative relatedness scores

with the other twin samples (displayed as blue in the heatmap). The relatedness scores

are estimates of the true proportion of shared DNA, and some amount of variability is

expected. However, the negative scores for twin pair T05 are more striking than all other

twin pairs. A negative KING relatedness score can often indicate the presence of differ-

ent genomic ancestry groups (Manichaikul et al., 2010). The PCA performed by peddy

identified that all samples were predicted to have European genomic ancestry with the

exception of twin pair T05 who were predicted to have East Asian genomic ancestry (see

Figure 5.3), which is consistent with the relatedness scores from the heatmap.

5.2.3 Zygosity Check

The zygosity of both samples within a twin pair was estimated using the above-described

set of high-confidence variants. Treating one sample in a pair as the “truth” sample, we

evaluated the sensitivity and genotype concordance using the GenotypeConcordance

module from picard. The sensitivity measures the proportion of variants in the call set

that are present in the truth set, and the genotype concordance measures the proportion

of variants with matching genotypes out of those which match a position in the truth

set. The results of this are displayed in Table 5.2 below. We can see that within each

pair, the sensitivity was at least 99.8% for all samples, and the genotype concordance

rate was at least 99.999% for all samples. This confirms that all samples within each

twin pair are monozygotic as expected.
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Figure 5.2: A heatmap of the pairwise relatedness scores for the 18 pairs of samples in the MZ twin cohort. Observed relatedness scores were
generated via the KING algorithm from vcftools.
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Figure 5.3: A plot of the first two principal components of the MZ twins and a background population from the 1000 Genomes Project, re-generated
from the output of peddy using the R statistical package (R Core Team, 2013). AFR: African; AMR: admixed Americas; EAS: East Asian; EUR:
European; MZT: monozygotic twins; SAS: South Asian.
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Twin
Pair

Truth
Sample

Call
Sample

Sens
(%)

Geno
Conc (%)

T01
T01 A1 T01 A2 99.8994 99.9998

T01 A2 T01 A1 99.9058 99.9998

T02
T02 A T02 U 99.8854 99.9997

T02 U T02 A 99.8908 99.9997

T03
T03 A T03 U 99.8925 99.9997

T03 U T03 A 99.8910 99.9997

T05
T05 A1 T05 A2 99.8848 99.9997

T05 A2 T05 A1 99.8904 99.9997

T06
T06 A T06 U 99.8949 99.9997

T06 U T06 A 99.8955 99.9997

T07
T07 A T07 U 99.8924 99.9997

T07 U T07 A 99.8912 99.9997

T08
T08 A T08 U 99.8881 99.9997

T08 U T08 A 99.8949 99.9997

T09
T09 A T09 U 99.8931 99.9997

T09 U T09 A 99.8906 99.9997

T10
T10 A T10 U 99.8944 99.9998

T10 U T10 A 99.8902 99.9998

T11
T11 A T11 U 99.8686 99.9997

T11 U T11 A 99.8867 99.9997

T12
T12 A T12 U 99.8920 99.9998

T12 U T12 A 99.8981 99.9998

T13
T13 A1 T13 A2 99.8739 99.9997

T13 A2 T13 A1 99.8952 99.9997

T14
T14 A T14 U 99.8709 99.9997

T14 U T14 A 99.8892 99.9997

T15
T15 A1 T15 A2 99.8871 99.9997

T15 A2 T15 A1 99.8936 99.9997

T16
T16 A T16 U 99.8986 99.9997

T16 U T16 A 99.8881 99.9997

T17
T17 A T17 U 99.8953 99.9997

T17 U T17 A 99.8950 99.9997

T18
T18 A1 T18 A2 99.9005 99.9998

T18 A2 T18 A1 99.8876 99.9998

Table 5.2: Within-pair concordance metrics on a set of high-confidence SNVs for the 17 MZ
twin pairs. Included are the sensitivity (Sens) and the genotype concordance rate (Geno Conc).
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5.2.4 Discordant Variants

After the above quality control measures, 17 pairs of twins were carried forward for ana-

lysis. Joint genotyping and VQSR was re-applied to these 34 samples so that the excluded

samples would not contribute to the variant metrics prior to quality control measures be-

ing applied. Multi-allelic sites were split into bi-allelic sites to further identify the patho-

genic allele, as per Subsection 2.3.2. Any variant with QUAL < 100.0 was considered

to be low-quality and removed (Castellani et al., 2017). Finally, we applied standard

genotype specific filters to all SNVs and indels (see Subsection 2.3.2). After removing

lower quality variants, each sample had an average of 44,306 discordant SNVs and in-

dels across the genome. Given that short read WGS detects approximately 4,000,000

variants per genome (Lappalainen et al., 2019), this implies approximately 1.1% of the

variants detected in each sample are discordant. As the estimated error rate is 0.1%

for short-read WGS on Illumina HiSeq technologies (Fox et al., 2014), this number is

unlikely to be attributed solely to sequencing errors.

5.3 Protein-Coding Variants

Our first analysis was to identify rare, damaging, protein-coding variants which may

be implicated in the phenotypic discordance. To this end, discordant variants were

annotated with vep including: functional impact; predicted deleteriousness (SIFT and

PolyPhen-2), and allele frequency (1000 Genomes Project and gnomAD v2.1.1), as

described in Section 2.6. Only SNVs were considered at this step, as SIFT and PolyPhen

do not provide scores for indels. To identify rare, putatively pathogenic variants, the

following filters were applied:

i) variant was present in the coding sequence of the canonical transcript of a protein-

coding gene as determined by RefSeq (O’Leary et al., 2016);

ii) SIFT was “deleterious” or PolyPhen was “damaging”;

iii) the allele frequency was <1% or absent in the appropriate population groups in

the 1000 Genomes Project and gnomAD databases; and

iv) variant was not observed in any other samples within the cohort.

Thirteen rare, predicted-deleterious discordant SNVs were identified across nine unique

genes, described in Table 5.3 below. Ten of the prioritised variants were present in an

affected twin across seven genes, and three variants were present in unaffected individu-

als across two genes. All SNVs were missense variants, with vep IMPACT classification
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of “MODERATE”. At three of these genes (CSMD3, FOXN1, and TIMP1), several

discordant variants were found to be in close proximity (<15bp) in the same individual.

This behaviour is somewhat unexpected given the strict filtering requirements, and one

explanation for such a phenomenon is that these variants are in fact a sequencing artefact.

To investigate this, we re-called variants from the original BAM files at a 300bp window

up and downstream from the variant sites with the same parameters used previously.

The window size of 300bp was chosen since the read length is 150bp, so this window

size would be expected to show the behaviour of the majority of the reads affecting the

variant sites. We also included the --bamout option from HaplotypeCaller to extract

the locally re-aligned reads and assembled haplotypes. Then we visualised the region

from the bamout files using the Integrative Genomics Viewer (IGV), (Robinson et al.,

2011). An example of such is given in Figure 5.4 below. The variant base pairs that were

in close proximity only appeared on the same re-constructed reads, which likely occurred

due to local re-alignment of the reads around indels by HaplotypeCaller during vari-

ant calling. Hence these variants in close proximity are likely due to the same indel event.

Of particular note, an individual with major depressive disorder carried a missense SNV

in POLG (DNA subunit polymerase-γ), which plays a role in mitochondrial DNA replic-

ation. This gene was found to be expressed in multiple brain tissue types according to

the Genotype Tissue Expression (GTEx) database (Keen & Moore, 2015). In a mouse

model study, samples which carried a specific missense variant in POLG exhibited symp-

toms consistent with mood disorders (Kasahara et al., 2016). In humans, deleterious

non-synonymous variants in this gene were found to be significantly enriched in bipolar

cases compared to controls (Kasahara et al., 2017). Case reports have noted psychiatric

symptoms in POLG variant carriers, such as recurrent major depression (Verhoeven et

al., 2011) and psychosis (Hakonen et al., 2005).

None of the 10 missense SNVs appeared in the SCHEMA database (T. Singh et al.,

2022), but rare SNVs at four of these genes (FAM90A1, FOXN1, KRTAP10-6 and

POLG ) had been reported in two previous schizophrenia WES studies (Genovese et al.,

2016; Howrigan et al., 2020).
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Chr Pos rsID Ref Alt Gene HGVSp SIFT PolyPhen Carrier Phenotype

chr6 31356433 rs12721827 G A HLA-B T118I D B T03 U None

chr8 112244420 rs1300679966 C A CSMD3 W3459L D D T06 U None

chr8 112244426 rs1204369873 T A CSMD3 N3457I D D T06 U None

chr9 96932219 rs112610837 C T NUTM2G P172S T D T13 A1 SCZ

chr12 8224750 rs201155866 A C FAM90A1 V28G T D T18 A2 MDD

chr15 89320970 rs752971760 C G POLG S926T T D T01 A2 MDD

chr17 28530789 rs1385768054 A C FOXN1 S291R D D T07 A BD

chr17 28530791 rs371766542 C A FOXN1 S291R D D T07 A BD

chr17 28530802 rs1220808552 G C FOXN1 S295T D D T07 A BD

chr17 28881251 - C T FLOT2 A347T D D T09 A BD

chr22 44592351 rs367621282 G C KRTAP10-6 P45R D D T10 A SCZ

chrX 47585615 rs1478486447 C A TIMP1 A134D D D T18 A2 MDD

chrX 47585618 rs1417127009 A G TIMP1 Q135R D D T18 A2 MDD

Table 5.3: Discordant protein-coding variants with a predicted deleterious effect. Each variant is annotated with: genomic positions (GRCh38), rs
identification numbers, the reference and alternative alleles, the gene harbouring the variant, the amino acid substitution (HGVSp), pathogenicity
scores from SIFT (D: deleterious; T: tolerated) and PolyPhen (D: damaging; B: benign), the sample carrying the variant, and their phenotype. All
prioritized variants are missense SNVs. BD: bipolar disorder; MDD: major depressive disorder; SCZ: schizophrenia.
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Figure 5.4: IGV plot of the bamout output of HaplotypeCaller for sample T07 A, showing three SNVs (highlighted in yellow) in FOXN1 arising
from re-constructed reads due to local re-alignment around indels. Reconstructed reads are displayed in colour, regular reads are shown in grey.
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5.4 Regulatory Variants

5.4.1 Rare Deleterious Variants

To investigate whether discordant variants across the genome had a predicted regulat-

ory effect, sites were annotated using RegulomeDB (Boyle et al., 2012). RegulomeDB

curates a collection of known and predicted regulatory elements across the genome and

scores each variant according to the accumulation of evidence that the site has a reg-

ulatory effect (see “Web Resources”, Subsection A.2.4). A RegulomeDB rank of 2

represents evidence of transcription factor binding (ChIP-seq data) and a transcription

factor motif, as well as evidence that the variant lies under a DNase hypersensitive peak.

A variant with a rank of 1 requires evidence suggesting it is within a known expression

quantitative trait locus (eQTL), as well as some of the same evidence as a rank of 2.

Discordant variants with predicted regulatory effect from RegulomeDB have been previ-

ously observed in MZ twins discordant for schizophrenia (Tang et al., 2017). The online

version of RegulomeDB is aligned to GRCh37, so we downloaded the database to incor-

porate it into our analysis. Variants at unstable positions were removed as described in

Chapter 3, and the positions for each variant were converted to GRCh38 using liftOver.

Variants were annotated with vep including: RegulomeDB scores on GRCh38, CADD

v1.6 scores, and allele frequency (1000 Genomes Project and gnomAD v3.1). Given

that variants with a regulatory effect can occur in non-coding regions, CADD was used

to estimate deleteriousness since it is defined for all positions in the human genome.

Additionally, gnomAD v3.1 was used since it has a higher collection of WGS samples

than v2.1.1. The following filters were applied to all discordant variants across the

genome:

i) RegulomeDB rank of the variant was 1 or 2;

ii) CADD Phred-like scores greater than 20.0;

iii) the allele frequency was <1% or absent in the appropriate population groups in

the 1000 Genomes Project and gnomAD databases; and

iv) variants were not observed in any other samples within the cohort.

After applying the above filters, no variants were retained.
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5.4.2 ENCODE Regulatory Features

We also evaluated whether there was an accumulation of discordant variants in regulatory

regions in affected compared to unaffected individuals. We compiled a list of features

with a known regulatory effect from the Encyclopedia of DNA Elements (ENCODE)

(Dunham et al., 2012). Specifically, we selected:

i) proximal and distal enhancers;

ii) canonical promoter-like signals;

iii) DNase hypersensitivity sites;

iv) anchors from chromatin loops (ChIA-PET); and

v) transcription factor binding sites with footprints.

To this list we added:

vi) brain specific open chromatin regions (Bryois et al., 2018; de la Torre-Ubieta et

al., 2018; Fullard et al., 2017, 2019);

vii) brain specific enhancers (D. Wang et al., 2018); and

viii) proximal promoters of protein-coding transcripts from GENCODE (Frankish et al.,

2019).

All discordant variants passing QC metrics were subset to these eight regulatory annota-

tion regions. Since the variants were assumed to be post-zygotic, they could be treated

as independent events within a twin pair. However, it is possible that some variants may

be part of the same linkage disequilibrium (LD) block. Due to a low overlap with refer-

ence data taken from the 1000 Genomes Project, we were unable to evaluate whether LD

structure was present within the discordant variants, which may have an effect on Type I

and Type II error rates for hypothesis testing. A two-tailed t-test at 95% significance was

performed using the R software package between samples with or without a diagnosis to

evaluate whether there was a significant difference in mean count of discordant variants

overlapping a given regulatory annotation. However, no significant difference in mean

counts was observed for any regulatory feature (see Figure 5.5 and Table 5.4 below).
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Figure 5.5: Boxplots of the counts of discordant variants within each of the eight regulatory
annotation sets. The long name of the regulatory feature is shown in Table 5.4 below The
22 affected samples are displayed in red, and the 12 unaffected samples are displayed in blue.
The p-value from a two-tailed t-test is displayed above each pair of boxplots. AFF: affected;
UNAFF: unaffected.
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Regulatory
Description

Affected Unaffected
d t p

Feature Mean SD Mean SD

pc promoter500 Promoters of protein-coding transcripts 155.82 19.95 148.08 16.63 0.421 -1.206 0.239

reg anchor Anchors from chromatin loops 2,444.41 102.50 2,432.75 101.38 0.114 -0.319 0.752

reg dhs DNase hypersensitivity sites 4,725.36 177.42 4,699.42 119.91 0.171 -0.506 0.616

reg enhancer Proximal/distal enhancers 2,221.55 84.42 2,209.75 82.05 0.142 -0.397 0.695

reg enhancerbrain Brain-specific enhancers 306.45 25.03 314.33 28.67 0.293 0.800 0.433

reg openbrain Brain-specific open chromatin regions 1,412.96 70.75 1,406.58 52.25 0.102 -0.299 0.767

reg promoter Promoter-like signals 63.95 11.49 60.00 8.79 0.387 -1.121 0.272

reg tfbs Transcription factor binding sites 2,086.23 107.08 2,056.08 71.01 0.332 -0.982 0.334

Table 5.4: Results from the two-sided t-tests to evaluate the enrichment of discordant variants in various regulatory features between affected
samples (n = 22) and unaffected samples (n = 12). Included is the mean and standard deviation (SD) of the counts, Cohen’s d, the t-test statistic,
and the p-value.
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5.5 Germline CNVs

Another likely source of post-zygotic variation that may be driving phenotypic discord-

ance is CNVs. Germline CNVs were called following the approach detailed in Chapter 4.

For each sample, CNVs were combined with those of their co-twin to identify concordant

and discordant CNVs. As described in Chapter 4, two CNVs were said to be the same

if they had a 50% reciprocal overlap.

5.5.1 Known SCZ-Associated CNVs

First, we screened all CNVs (concordant and discordant) against a list of 23 rare CNVs

previously implicated in schizophrenia (see Table 1.1 and Table 1.2). The breakpoints

for these CNVs were originally given for GRCh37 but were converted to GRCh38 using

liftOver for this analysis. Initially, it appeared that four SCZ-associated CNVs were

present in both samples of the six twin pairs, all of whom had narrow discordance (see

Table 5.5a). However, five of the six CNV calls were identified by LUMPY only in both

twin pairs. For these CNVs, the proportion of reads supporting a CNV at either break-

point was generally low in one or both twin pairs (see Table Table 5.5b). Therefore, we

excluded these five CNV calls from further analyses.

The remaining CNV (a duplication on chromosome 13q12.11) was identified by all four

CNV calling algorithms in both samples of twin pair T09. In a discovery association ana-

lysis, this CNV was noted to have a protective effect but was only nominally significantly

associated with schizophrenia (Marshall et al., 2017). Interestingly, the affected indi-

vidual in this twin pair T09 also has a rare, deleterious, discordant protein-coding variant

in the FLOT2 gene (see Table 5.3). FLOT2 (Flotillin-2) has been shown to be involved

in neuronal differentiation (Hanafusa & Hayashi, 2019) and flotillins are known to inter-

act with the NR2A and NR2B subunits of N-methyl-D-aspartate receptors (Swanwick et

al., 2009).
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Chr Start End ID
Twin Affected Unaffected

Pair C E L M C E L M

chr3 195945160 197641345 3q29 DEL T06 × ×
chr16 21776296 22592576 16p12.1 DEL T08 × ×
chr13 19841000 19874999 13q12.11 DUP T09 × × × × × × × ×
chr15 22776711 28851112 15q11.2 DEL T11 × ×
chr15 22775347 28851109 15q11.2 DEL T12 × ×
chr15 22776709 28851099 15q11.2 DEL T17 × ×

(a)

ID
Twin Affected Unaffected

Pair PE DP S (%) DP E (%) PE DP S (%) DP E (%)

3q29 DEL T06 4 89 (4%) 73 (5%) 4 131 (3%) 61 (7%)

16p12.1 DEL T08 7 51 (14%) 59 (12%) 4 57 (7%) 68 (6%)

15q11.2 DEL T11 10 53 (19%) 21 (48%) 11 40 (28%) 33 (33%)

15q11.2 DEL T12 4 34 (12%) 35 (11%) 9 34 (26%) 30 (30%)

15q11.2 DEL T17 4 25 (16%) 28 (14%) 4 41 (10%) 32 (4%)

(b)

Table 5.5: Putative SCZ-associated CNVs identified in the cohort. The start and end points are given for the GRCh38 reference genome. (a) A
breakdown of which of the four callers identified the CNV (C - CNVnator; E - ERDS; L - LUMPY; M - Manta). (b) For the three CNV regions identified
by LUMPY alone, the number of paired end (PE) reads that support the event, the read depth at the start of the CNV (DP S) and the read depth at
the end of the CNV (DP E). Also shown beside the DP is the proportion of PE reads at the start or end of the CNV.
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5.5.2 Rare and Pathogenic Discordant CNVs

Next, we examined discordant CNVs in the cohort. As described in Chapter 4, any

CNV that was found in one sample of the pair and identified by only one calling al-

gorithm was removed. Therefore, discordant CNVs have the support of at least two

calling algorithms. Variants were then removed if they had at least a 50% reciprocal

overlap with any common CNVs (i.e. frequency at least 1% in the appropriate popula-

tion group) in the following public databases: gnomAD (Karczewski et al., 2019), the

DECIPHER study (Firth et al., 2009), and the DGV (MacDonald et al., 2014), as de-

scribed in Section 2.5. As the DECIPHER and gnomAD databases were curated relative

to the GRCh37 genome build, the CNV files were converted to this build using liftOver.

After applying the above filters, seven rare CNVs that overlapped gene regions were

identified in affected individuals in the cohort (see Table 5.6). However, the same num-

ber of discordant CNVs were identified in the unaffected twins. Of note, a duplication

on chromosome 3q29 was observed in the affected sample of twin pair T17. While 3q29

deletions are associated with schizophrenia, 3q29 duplications have been implicated in

autism spectrum disorders and developmental delay (Rehm et al., 2015).

The presence of this 3q29 duplication prompted us to examine a more extensive list of

CNVs annotated by the NIH Clinical Genomics (ClinGen) CNV database as implicated in

psychiatric or neurodevelopmental disorders (Rehm et al., 2015). Any discordant CNV

that had a 50% reciprocal overlap with a variant labelled as “Pathogenic” in ClinGen

(UCSC “iscaPathogenic” table) was retained, regardless of population frequency. Since

ClinGen collates CNV calls from a wide collection of sources, each of which may use

different reference material for CNV calling, it is not possible to know if the type of

pathogenic CNV matches that of the CNV call in our data. Hence, CNV calls were

not matched for type at this stage. Pathogenic CNVs were retained if the associated

phenotype was psychiatric or neurodevelopmental in nature. Fourteen CNVs with a

clinical impact were identified across the samples (see Table 5.7), but only the 3q29

duplication was present solely in affected individuals.
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Chr Start End Length Locus Type Sample Pheno Path

chr1 32500722 32539739 39,017 1p35.1 DEL T15 A2 MDD

chr1 221964250 227275254 5,311,004 1q41-42.13 DUP T05 A2 MDD

chr3 38053588 48061842 10,008,254 3p22.2-21.31 DUP T06 U None

chr3 195940567 197638156 1,697,589 3q29 DUP T17 A BD ×
chr5 180634984 180636040 1,056 5q35.3 DEL T14 U None

chr7 98392886 98394241 1,355 7q21.3 DEL T15 A2 MDD

chr10 92847856 92849207 1,351 10q23.33 DEL T02 A SAD

chr11 19858200 19861999 3,799 11p15.1 DUP T17 U None

chr12 676066 1623296 947,230 12p13.33 DEL T06 U None ×
chr12 120201498 120204299 2,801 12q24.23 DEL T16 A BD

chr13 50013200 50015499 2,299 13q14.2 DEL T08 U None

chr19 2390200 2391236 1,036 19p13.3 DEL T14 U None

chr19 11261852 11262999 1,147 19p13.2 DEL T01 A1 SCZ

chr22 39243400 39245099 1,699 22q13.1 DEL T07 U None

Table 5.6: A list of rare discordant CNVs, including: the positions (GRCh38); length; type; the carrier sample ID; their phenotype (Pheno);
and if they are annotated as pathogenic (Path). DEL: deletion; DUP: duplication; BD: bipolar disorder; MDD: major depressive disorder; SAD:
schizoaffective disorder; SCZ: schizophrenia
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Chr Start End Length Locus Phenotype Type
Disc

All
A U

chr1 143707655 148368205 4,660,550 1q21.1-21.2 ASD; DD; GDD; ADHD; Seizures; ID DEL 0 1 3

chr2 95974322 97579728 1,605,406 2q11.1-11.2 DD; ASD; ID; Seizures DEL 4 1 7

chr3 1880400 6681218 4,800,818 3p26.3-26.1 DD; GDD
DEL 0 1 9

DUP 1 2 5

chr3 195940567 197638156 1,697,589 3q29 ASD; DD; GDD; Seizures DUP 1 0 1

chr5 141631941 142199762 567,821 5q31.3 DD; GDD
DUP 1 0 21

DEL 1 0 27

chr7 66392490 76087266 9,694,776 7q11.21-11.23 DD; ID
DEL 1 0 7

DUP 1 1 20

chr12 676066 1623296 947,230 12p13.33 DD; GDD; Seizures DEL 0 1 1

chr12 120442095 121624256 1,182,161 12q24.31 GDD, Seizures DUP 2 1 25

chr16 21935407 29107962 7,172,555 16p12.2-11.2 ID; DD; ASD DUP 1 1 12

chr16 28470489 29397846 927,357 16p12.1-11.2 DD; Seizures; ASD; GDD; ID DUP 1 0 11

chr17 36271243 37995798 1,724,555 17q12 DD; Seizures; GDD; ID; ASD; Anorexia DEL 2 1 11

chrX 66699870 84875177 18,175,307 Xq12-21.1 DD DUP 2 1 5

chrX 69751300 78489674 8,738,374 Xq13.1-21.1 DD
DUP 1 0 9

DEL 1 0 7

chrX 94704302 98524458 3,820,156 Xq21.33 Seizures DUP 1 0 3

Table 5.7: A list of CNVs with a predicted pathogenic effect in ClinGen, including: chromosome (Chr), start and end positions (GRCh38), length,
the associated phenotypes, CNV type, the number of affected (A) and unaffected (U) samples who carried a discordant variant (Disc), and the
overall number of samples who carried the variant (All). DEL: deletion; DUP: duplication; ADHD: Attention Deficit/Hyperactivity Disorder; ASD:
Autism Spectrum Disorder; DD: Developmental Delay; GDD: Global Developmental Delay; ID: Intellectual Disability.
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5.6 Somatic CNVs

As noted above, we assumed that the post-zygotic variation occurred sufficiently early

during embryogenesis, so they present as germline variants. However, somatic mosa-

icism can also have an effect on phenotypic discordance between twins (S. M. Singh et

al., 2020). The typical average depth of coverage for WGS data is often not sufficient

to detect somatic mosaicism present in a low proportion of cells for SNVs and indels.

However, the tool Mosaic Chromosomal Alterations (MoChA) was designed to investigate

the presence of somatic CNVs from genotype array or from NGS data (Loh et al., 2018).

MoChA operates similarly to the read-depth based callers from Chapter 4, but instead of

taking the BAM files as an input, it takes read-depth information from phased SNVs

and indels of the samples.

MoChA was applied to the jointly genotyped short variant VCF file with default settings,

including a list of regions to exclude for WGS data that was provided with the tool.

As part of the process, multi-allelic SNVs and indels are normalised and genotypes with

DP<10 or GQ < 20 are set to missing, as described in Subsection 2.3.2. A workflow

was recommended by the authors of the tool, which was provided on the tool’s GitHub

page (see “Web Resources”, Subsection A.2.4). As with germline CNVs in Chapter 4,

deletions or duplications for which at least 50% of their length comprised of RLCR were

removed (see Subsection 4.2.1). Any somatic CNV call that had also been identified

in an individual’s germline call set in Section 5.5 above was removed. Finally, CNV

calls present in both samples of a twin pair were removed to focus solely on discordant

somatic CNVs.

When MoChA was applied to the jointly genotyped data, 940 somatic CNV calls were

identified across all samples (449 deletions and 491 duplications), with an average of

27.6 calls per sample. The subsequent filtering resulted in 25 putative discordant somatic

CNVs (five deletions and 20 duplications), ranging in length from 9.5kbp to 404.1kbp.

To confirm that the calls were truly discordant, the read-depth profiles for the regions

of interest were plotted for carriers and their co-twin using the mocha plot.R script

provided with the tool. This script plots the read depth of the SNVs and indels in the

CNV region for all samples provided, allowing us to compare the discordant calls within

a twin pair. If the read depth plots appeared similar between both twin pairs despite

only being called by MoChA in one sample, then the CNV was rejected as a false positive

discordant call.
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Three of the prioritised CNVs did not generate a read depth plot, so they were rejected

as being low confidence calls. For each of the remaining 22 CNV calls, the read depth

profile was almost identical between the two samples. For example, a putative discord-

ant CNV call present in sample T07 A is shown in Figure 5.6a below. We can see that

although the CNV was only identified in one sample the read-depth profile is virtually

the same in the supposed non-carrier. Additionally, in Figure 5.6b, there appears to be

CNV calls in both samples, but in T08 A the end breakpoint of the CNV is different

to that of the co-twin despite their similar read-depth profiles. We queried these beha-

viours with the author of MoChA who informed us that: “Phasing does not work very well

with WGS data and there are many artifacts that tend to skew the variant allele fraction

causing to call many false positives” (G. Genovese, personal communication, 15/01/20).

Based on the above, all 25 prioritised CNV calls were rejected, and we conclude that

there does not appear to be conclusive evidence for the presence of discordant somatic

CNVs in these samples.

(a)
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(b)

Figure 5.6: Read depth plots of two putative discordant somatic CNV calls which were
subsequently rejected as false positives. The CNV of interest has points coloured in red, and
other CNVs are coloured in blue. (a) A duplication detected in T07 A, with a similar profile in
both twins. (b) A duplication detected in T08 A, but with different breakpoints to the CNV
of the co-twin, despite similar profiles in both twins.

5.7 Multi-Nucleotide Repeat Expansions

Multi-nucleotide repeat expansions (i.e. where a short segment of DNA is repeated

many times) are known to play a role in certain neurological disorders. However, there

is mounting evidence that they may also play a role in psychiatric disorders (Xiao et al.,

2021). For example, a GGCCCC repeat in C9ORF72 is known to be causal for fronto-

temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (DeJesus-Hernandez

et al., 2011), but carriers are reported to be likely to experience psychotic symptoms

(Devenney et al., 2017). A genome-wide enrichment of repeat expansions (also known

as short-tandem repeats) has been observed in autism samples (Mitra et al., 2021; Trost

et al., 2020) and recent work has shown an enrichment of rare, exon-disrupting repeats in

schizophrenia samples (Mojarad et al., 2022). We examined whether the repeats causal

for known disorders were present in the cohort. We selected 15 multi-nucleotide repeat

expansions from Orr et al. (Orr & Zoghbi, 2007), and added the C9ORF72 repeat. The

location and pathogenic repeat count for these disorders is described in Table 5.8.

Multi-nucleotide repeat expansions were called from the BAM files of all 34 MZ twin
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Disorder Alias Locus Repeat Count

Fragile X Syndrome FRAXA Xq27.3 CGC 200

Fragile X-Associated Tremor
Ataxia Syndrome

FXTAS Xq27.3 CGG 60

Fragile XE Syndrome FRAXE Xq28 CCG 200

Friedreich ataxia FRDA 9q21.11 GAA 200

Myotonic Dystrophy 1 DM1 19q13.32 CTG 50

Myotonic Dystrophy 2 DM2 3q21.3 CCTG 75

Spinobulbar Muscular
Atrophy

SBMA Xq11-12 CAG 38

Huntington Disease HD 4p16.3 CAG 36

Spinocerebellar Ataxia 1 SCA1 6p22.3 CAG 39

Spinocerebellar Ataxia 2 SCA2 12q24.12 CAG 32

Spinocerebellar Ataxia 3 SCA3 14q32.12 CAG 61

Spinocerebellar Ataxia 6 SCA6 19p13.13 CAG 20

Spinocerebellar Ataxia 7 SCA7 3p14.1 CAG 37

Spinocerebellar Ataxia 17 SCA17 6q27 CAG 47

Dentatorubropallidoluysian
atrophy

DRPLA 12p13.31 CAG 49

Amyotrophic Lateral
Sclerosis

ALS 9p21.2 GGGGCC 30

Table 5.8: A list of 16 selected disorders associated with a multi-nucleotide repeat expansion,
and their pathogenic repeat count threshold.

samples using ExpansionHunter (Dolzhenko et al., 2017) with default parameters.

Variant regions for the 16 multi-nucleotide repeat disorders were taken from the variant

catalogue provided with the tool. ExpansionHunter was developed for PCR-free WGS

data, whereas our data were generated with PCR-based methods. Since PCR-free data

can result in a more even depth of coverage across the genome, we accounted for this

difference by examining the coverage for each repeat region to ensure it was not low. The

average depth of coverage was at least 14× for all multi-nucleotide repeat regions across

all samples, and so the data were sufficient for repeat expansion calling (see Table 5.9).

While we did observe some differences in the repeat counts within some twin pairs,
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none of the samples had repeat counts above the specified pathogenic threshold for any

disorder (see Table 5.9).

Disorder
Average DP Repeat Count

Threshold
Mean Range Mean Range

FRAXA 25.3 14.0 - 37.8 13.6 4 - 30 200

FXTAS 33.5 19.1 - 54.2 13.6 4 - 30 60

FRAXE 42.5 33.6 - 54.0 6.3 4 - 17 200

FRDA 49.2 39.8 - 65.4 12.9 8 - 21 200

DM1 42.0 34.3 - 49.4 13.9 10 - 23 50

DM2 29.8 18.0 - 47.1 15.5 15 - 19 75

SBMA 40.2 32.4 - 52.6 23.4 18 - 27 38

HD 43.8 34.6 - 54.7 19.3 16 - 26 36

SCA1 28.0 16.7 - 47.6 31.5 29 - 37 39

SCA2 41.5 34.4 - 49.7 22.2 22 - 23 32

SCA3 37.6 25.6 - 53.0 20.9 18 - 25 61

SCA6 34.4 24.6 - 48.8 12.6 11 - 13 20

SCA7 43.3 37.6 - 51.3 10.6 8 - 13 37

SCA17 42.3 32.6 - 51.8 37.4 36 - 43 47

DRPLA 35.5 29.4 - 43.6 19.8 19 - 21 49

ALS 25.3 14.0 - 37.8 4.2 2 - 8 30

Table 5.9: For each of the multi-nucleotide repeat disorders, details across all 34 samples of
the average depth of coverage (DP) and the repeat counts, as well as the pathogenic count
threshold.

5.8 Conclusions

Here we report a WGS study where we assessed discordant post-zygotic variation in 17

MZ twins discordant for schizophrenia or a related disorder. We have investigated a

broad range of genomic variation, from SNVs (both protein-altering and regulatory), to

CNVs and repeat expansions. A rigorous filtering strategy identified 10 rare, deleterious,

discordant, protein-coding SNVs across seven genes, each present in an affected member
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CHAPTER 5. DISCORDANT MONOZYGOTIC TWINS

of the cohort (see Table 5.3). A missense variant in POLG was observed in an individual

with bipolar disorder, and this gene has been previously implicated in mood disorders.

We also identified seven rare, discordant CNVs present in affected samples only. One

such variant was a duplication in the 3q29 region in the affected sample of twin pair T17.

While only deletions in this region have been shown to be associated with schizophrenia,

this region has also been implicated in autism and developmental delay. This study is

important as it contributes novel findings to the current body of literature for variants

implicated in schizophrenia and related disorders and provides a framework for future

studies.
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Chapter 6

Rare Variant Analysis of Utah

Pedigrees

Family-based studies offer a unique opportunity to map rare genetic risk variants, since

risk in multiplex pedigrees is more likely to be influenced by the same collection of

variants than in an unrelated cohort. Here we examine WGS data from 41 individuals

across seven pedigrees multiply affected by schizophrenia. We applied an IBS filtering

pipeline to search for protein-coding variants that co-segregated with disease status

and further prioritised these based off results from the recent SCHEMA analysis. We

identified deleterious missense variants in three genes (ATP2B2, SLC25A28, and GSK3A)

that co-segregated with disease in three of the pedigrees. The most compelling evidence

is from ATP2B2, which is involved in intracellular calcium homeostasis, is expressed

in multiple brain tissue types, and is predicted to be intolerant to loss-of-function and

missense variants.

6.1 Introduction

Rare variant analyses are frequently proposed as one response to the missing heritab-

ility problem for complex disorders, providing a complementary approach to common

variant studies such as GWAS (Gibson, 2012). Indeed, 12 rare CNVs are known to

confer substantial risk for schizophrenia (Rees & Kirov, 2021), and mounting evidence

supports a contribution from rare protein-coding variants (Purcell et al., 2014; T. Singh

et al., 2016). Recently, the Schizophrenia Exome Meta-Analysis (SCHEMA) consortium

collated WES data on 24,248 schizophrenia cases and 97,322 controls from across mul-

tiple genomic ancestry super-populations (T. Singh et al., 2022). They examined the

contribution of three types of variants to schizophrenia:

� protein-truncating variants (PTVs), also known as loss-of-function (LoF) variants,

defined as: stop gained, frameshift, splice acceptor or splice donor variants;

� highly deleterious missense variants, with an MPC score ⩾ 3; and
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� moderately deleterious missense variants, with 2 ⩽ MPC < 3.

The first two types are referred to as Class I variants and the last type is referred to as

Class II variants. The analysis focused on ultra-rare variants (URVs) that affected genes

that were predicted to be intolerant to LoF variants. The SCHEMA consortium reported

10 genes in which the burden of URVs was significantly higher in cases when aggregated

across both classes of variants. Highly deleterious missense variants were found to have

as strong an effect size on schizophrenia as PTVs. Class II variants were also enriched

in cases compared to controls, but the effect size was more modest than for Class I vari-

ants. These signals persisted even when these 10 genes were removed, suggesting that

many more genes in which URVs contribute to schizophrenia risk are yet to be discovered.

Despite the success of the SCHEMA study, a major limiting factor is the sample sizes

required to examine the URVs. Family-based studies offer a unique, alternative oppor-

tunity to identify and evaluate URVs, since risk in large multiplex pedigrees are more

likely to be influenced by the same subset of variants compared to an unrelated cohort

(Glahn et al., 2019). This reduces the need for extremely large sample sizes. Here, we

examine WGS data from a collection of pedigrees multiply affected by schizophrenia.

Since the SCHEMA analysis focused on ultra-rare variants, we begin by considering

family-private variants, which have previously been shown to be enriched in multiplex

ASD pedigrees (Wilfert et al., 2021). Given the modest sample numbers, we apply an

IBS filtering approach to identify variants with reasonable co-segregation patterns with

schizophrenia, as described in Subsection 1.2.3 above. Then, we prioritise the classes of

variants examined from the SCHEMA analysis to find candidate causal variants within

each pedigree.

6.2 Cohort Description

6.2.1 Sample Procurement and Assessment

Methods used in sample ascertainment and assessment were approved by the University

of Utah Institutional Review Board (W. Byerley, personal communication, 10/06/21).

Multiplex pedigrees were identified by screening hospitalized patients with diagnoses

of schizophrenia. Following written informed consent, subjects were interviewed by a

clinician using the Schedule for Affective Disorders and Schizophrenia-Lifetime Version

(“SADS-L”) (Endicott & Spitzer, 1978). Medical records were obtained for any indi-

vidual who received psychiatric care. The interview results and any medical records were

then presented to a diagnostic panel comprising two clinicians who played no role in as-
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6.2. COHORT DESCRIPTION

certainment or assessment. Consensual diagnoses were made using Research Diagnostic

Criteria (“RDC”) (Spitzer et al., 1978).

6.2.2 Description of the Pedigrees

Ten pedigrees were identified in which either schizophrenia (SCZ), bipolar disorder (BD)

or major depressive disorder (MDD) was present in at least 4 individuals. Other psy-

chiatric phenotypes were also observed such as obsessive-compulsive disorder (OCD)

and suicide (SUI). Thirty-eight individuals across these pedigrees had previously under-

gone WGS (Batch 1) and 23 additional individuals were selected for sequencing at EGCG

(Batch 2), giving a total of 61 individuals across the ten pedigrees (see Table 6.1). From

this cohort, we selected the seven pedigrees in which schizophrenia was the dominant

phenotype for analysis. However, all samples in the cohort were included in the quality

control measures, since some of the tools used require a minimum number of samples.
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Pedigree In-Family Marry-In Phenotypes
Total

ID AFF UN AFF UN SCZ BD MDD OTH UN

K1480 4 - - 1 4 - - - 1 5

K1494 4 - - 1 4 - - - 1 5

K1501 5 2 - 1 4 - - 1 3 8

K1509 2 1 1 1 - 3 - - 2 5

K1524 5 - - - 5 - - - - 5

K1527 5 1 - 1 5 - - - 2 7

K1545 5 - - 1 5 - - - 1 6

K1546 5 2 - 1 5 - - - 3 8

K1561 6 - - 1 1 4 1 - 1 7

K2159 4 - - 1 3 1 - - 1 5

Total 45 6 1 9 36 8 1 1 15 61

Table 6.1: Counts of the number of samples sequenced from each of the ten pedigrees, broken down by whether they were within the family
or married in, and by their phenotype. AFF: affected (any diagnosis); BD: bipolar disorder; MDD: major depressive disorder; OTH: other related
phenotype; SCZ: schizophrenia; UN: unaffected.
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Figure 6.1: Pedigree diagrams for the seven pedigrees selected for analysis. Individuals fully shaded have a diagnosis of schizophrenia, and individuals
with the top left quarter shaded have a diagnosis of OCD. Individuals marked with a coloured dot (red: Batch 1; blue: Batch 2) underwent WGS.93
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6.3 WGS Data and Sample QC

6.3.1 Batch 1

WGS had been performed on the 38 samples in this batch by MedGenome, Inc. on

an Illumina HiSeqX to an average depth of coverage of at least 30× per sample (W.

Byerley, personal communication, 30/06/21). FASTQ files for 22 samples and BAM files

for the remaining 16 samples were transferred to local servers for analysis. These BAM

files had been aligned to the GRCh38 reference genome using the Sentieon Genomics

proprietary pipeline (Freed et al., 2017). Although this pipeline is modelled on the GATK

“Best Practices”, we decided to convert the BAM files to paired-end FASTQ files to

re-run the GATK alignment and variant calling pipeline. We converted the BAM files

following guidelines from the GATK v3 website which recommends stripping all alignment

information and shuffling the order of the reads prior to conversion to FASTQ. This is

advised since deduplication algorithms sometimes retain the first read observed in a set

of duplicates, so shuffling the order should minimize any biases from previous ordering.

The steps in converting the BAM to FASTQ were as follows:

� Index and sort the file with samtools, so picard will not fail due to unsorted

data;

� Revert the BAM to strip out any alignment information with picard RevertSam;

� Select any reads that have duplicated read names with samtools and remove

them with picard FilterSamReads;

� Verify the information between read pairs, and fix if required using picard

FixMateInformation;

� Add a default read group containing the sample ID with picard

AddOrReplaceReadGroups;

� Validate that the SAM file has no errors with picard ValidateSamFile;

� Split the BAM file into SAM files with a maximum of 10,000,000 reads per file

using the GNU split command;

� Shuffle each of the split SAM files using the GNU shuf command;

� Merge all the shuffled BAM files with samtools; and

� Convert the shuffled BAM file to paired-end FASTQ files with picard SamToFastq
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Bash code for the above process can be found on GitHub (see “Web Resources”, Subsec-

tion A.2.5). Following this process, we performed read alignment, data pre-processing,

and variant calling on all 38 samples as described in Section 2.2 above.

6.3.2 Batch 2

Based on the availability of DNA and the samples that had previously been sequenced,

we selected 23 additional samples for WGS. DNA concentrations were quantified locally

by Nanodrop and the quality of DNA was determined by agarose gel electrophoresis by a

member of our research group (Dr Amy Cole). All samples were sent to EGCG for WGS

on an Illumina HiSeqX to an average depth of coverage of at least 30× per sample.

Sample K1501 9 failed quality control metrics at EGCG and was not carried forward

for sequencing. All FASTQ files received from EGCG were examined using FastQC and

samtools (H. Li et al., 2009) to screen for DNA contamination or degradation, but no

sample from the 7 pedigrees was excluded on this basis.

6.3.3 Quality Control Measures

The software peddy (Pedersen & Quinlan, 2017) was used for sex, ancestry and re-

latedness checking for all samples jointly as described in Section 2.4. Sample K1527 20

was flagged as part of the sex check, as this sample appeared to be female from the

pedigree information but was classified as male from the genetic data. We noticed

that this sample also had a relatedness of close to 1.0 with sample K1527 21, who is

a male. Both the pedigree IDs and DNA tube IDs of these two samples are similar, so

it is likely that there was a sample ID mix-up when sending the DNA for sequencing.

Therefore, sample K1527 20 was removed from this analysis. Examining the relatedness

metrics also revealed that sample K1524 3 was unrelated to their four siblings, as well

as all other samples in the cohort, and so was removed from this analysis. All other

samples had pairwise observed relatedness scores that were consistent with expected

relatedness scores. The PCA revealed that all samples from nine of the pedigrees were

predicted to have European genomic ancestry, and all five samples from pedigree K1545

were predicted to have admixed American genomic ancestry (see Figure 6.2). Since the

SCHEMA study was a multi-ancestry analysis, we did not exclude any pedigrees based

on the results of the PCA.
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Figure 6.2: A plot of the first two principal components of the WGS samples and a background population from the 1000 Genomes Project,
re-generated from the output of peddy using R (R Core Team, 2013). AFR: African; AMR: admixed Americas; EAS: East Asian; EUR: European;
SAS: South Asian. WGS: all 57 WGS samples that passed QC criteria.
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6.3.4 Cross-Platform Biases

Given that we had two main sequencing batches it is possible that platform-specific biases

may be present in the data, despite the variant quality control measures implemented. To

identify any such biases, we applied the software XPAT to all samples that had not been

excluded from the analysis. XPAT performs two rounds of PCA in an attempt to cluster

samples based on sequencing platform (Yu et al., 2018). The first stage (“external PCA”)

is to identify genomic ancestry as standard, and the second stage (“internal PCA”) aims

to identify technological stratification. XPAT has minimum threshold requirements for the

different batches, so we included samples from all 10 pedigrees to achieve this minimum.

We examined the first two principal components of the XPAT internal PCA and did not

observe any complete separation of samples by batch, although we did observe clustering

by pedigree (see Figure 6.3). We note that the samples from pedigree K1501 were all

sequenced in the same batch and form the right arm of the PCA plot in Figure 6.3,

meaning that we cannot entirely rule out batch effects in this pedigree. Additionally, we

looked at pairs of the first 10 principal components (e.g. PC1 vs PC2, PC3 vs PC4, etc.)

but again only observed clustering by pedigree (see Figure 6.4). No pedigrees or samples

were excluded at this stage of the analysis, leaving 41 individuals sequenced across seven

pedigrees (see Table 6.2).

Pedigree
In-Family Marry

Total
SCZ UN In

K1480 4 - 1 5

K1494 4 - 1 5

K1501 4 2 1 7

K1524 4 - - 4

K1527 5 - 1 6

K1545 5 - 1 6

K1546 5 2 1 8

Total 31 4 6 41

Table 6.2: Counts of the number of samples sequenced from each of the ten pedigrees, broken
down by whether they were within the family or married in, and by their phenotype. AFF:
affected (any diagnosis); BD: bipolar disorder; MDD: major depressive disorder; OTH: other
related phenotype; SCZ: schizophrenia; UN: unaffected.
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(a) Batch colouring
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(b) Pedigree Colouring

Figure 6.3: Plot of the first two principal components from the internal PCA step of XPAT, aiming to identify technological stratification, with
points highlighted for: (a) the batches; and (b) the pedigrees.
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(a) Batch colouring
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(b) Pedigree Colouring

Figure 6.4: Plot of pairs of the first 10 principal components from the internal PCA step of XPAT, aiming to identify technological stratification,
with points coloured by: (a) batch; and (b) pedigree.
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6.4 Protein-Coding Variants

Because the variants under investigation are ultra-rare, we assumed that it is highly un-

likely that such variants would be present across multiple, unrelated pedigrees by chance.

Therefore, we first subset to family-private variants only. All ten families were included

in the family-private annotation, although only seven were carried forward for analysis as

previously indicated. Additionally, any variant with missingness greater than 20% was

removed. This percentage ensures that at least one individual outside every pedigree

has a non-missing genotype, since the largest number of samples per pedigree is in ped-

igree K1546, which represents 8/41 = 19.5% of the analysis cohort. This step makes

it less likely that family-private variants are due to sequencing artefacts since they are

confidently absent from other individuals in the cohort.

We considered all individuals with a diagnosis of schizophrenia to be cases, and all remain-

ing individuals to be controls. Next, variants were retained if there were no Mendelian

violations and they followed either a full co-segregation pattern, (carried by all in-family

cases, absent from all in-family controls and absent from all marry-in samples) or a

reduced co-segregation pattern (same as full co-segregation but allowing one in-family

case not to carry the variant). Custom JavaScript code was added to the FilterVcf

module from picard to identify the case/control status and in-family/marry-in status

of samples for the co-segregation filter (see Section A.4 for pseudocode). We removed

variants not present in the coding sequence of a protein-coding gene, as defined by the

RefSeq ncbiRefSeqCurated table (O’Leary et al., 2016), downloaded from the UCSC

Table Browser (Haeussler et al., 2019).

We used vep to annotate each variant, taking the canonical transcript of that gene.

Where variants overlapped multiple genes, we examined the canonical transcript of each

gene separately. As part of the annotation, we included the gnomAD v2.1.1 exome allele

frequencies and dbNSFP v4.1 from which several deleteriousness metrics were extracted,

namely: MPC, SIFT v2.2, PolyPhen2 v2.2.2 and CADD v1.6. Gene-based pLI scores,

missense Z-scores, and loeuf scores calculated from gnomAD allele frequencies were

also annotated from dbNSFP (see Subsection 2.5.3). Transcript-level information is

available from dbNSFP, so where multiple scores were given for a variant, we identified

the Ensembl canonical transcript ID from vep and extracted the scores from dbNSFP that

corresponded to the appropriate transcript. To prioritize variants likely to be implicated in

schizophrenia based on the SCHEMA work, we retained those that satisfied the following:

� ultra-rare in gnomAD, with minor allele count ⩽ 5 across all 125,748 samples;
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� either PTV or predicted-deleterious missense variants (MPC > 2); and

� present in a highly LoF-intolerant gene (pLI > 0.9).

In total 15,428,001 variants passed all quality control measures following the joint gen-

otyping of all samples, of which 2,371,087 were private to one of the seven families

(see Table 6.3). After applying the main prioritization filters, no ultra-rare, functionally

relevant variants were identified that had full co-segregation with cases. However, three

deleterious missense URVs (Class II variants from SCHEMA) that followed a reduced

co-segregation pattern were identified in three pedigrees (see Table 6.4 and Figure 6.5).

We note that none of these variants were present in the K1501 pedigree, so these vari-

ants are unlikely to stem from batch effects (see Subsection 6.3.4 above). None of the

three genes survived false discovery rate correction in the reported SCHEMA analysis,

but there was a suggestive excess of the same class of missense variants at ATP2B2 in

the schizophrenia cases compared to controls in the SCHEMA dataset (see Table 6.5).

ATP2B2 has the highest missense Z-score of the three genes, indicating that it is the

most intolerant to missense variants.

Description Variants

Quality control filters 15,428,001

Family-private variants 2,371,087

Co-segregation pattern
Full Reduced

41,644 129,721

In coding sequence 310 1,182

Ultra-rare in gnomAD 64 242

Functional relevance 0 10

LoF intolerant gene 0 3

Table 6.3: The number of variants remaining after each stage of the prioritisation process
across the seven pedigrees. Counts on the left are for full co-segregation and on the right are
for reduced co-segregation. LoF: loss-of-function.
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Pedigree Chr Position Variant Gene Exon HGVSp MAC MPC CADD SIFT PolyPhen2

K1546 3 10360021 G>A ATP2B2 13/23 R588C 1 2.23 31.0 D D

K1524 10 99610923 T>C SLC25A28 4/4 I341V 0 2.11 25.6 D D

K1494 19 42232651 A>G GSK3A 9/11 I377T 0 2.39 26.9 D D

Table 6.4: Details of the three prioritized variants with reduced co-segregation. Positions are given on GRCh38. Included are the protein sequence
ID for the variant (HGVSp), the minor allele count (MAC) from gnomAD exome data, and several deleteriousness prediction metrics. For SIFT and
PolyPhen2, D represents “damaging” and “deleterious” respectively.

Gene
Constraint SCHEMA (Class II)

pLI mis Z LOEUF OR p-value

ATP2B2 1.00 4.55 0.15 1.920 0.000719

SLC25A28 0.93 2.92 0.37 0.617 0.744000

GSK3A 1.00 3.22 0.13 0.830 0.835000

Table 6.5: Gene-level constraint information from gnomAD, including the pLI score, the missense Z-score, the LOEUF metric, and results (odds
ratio (OR), p-value) for Class II variants from the SCHEMA analysis.
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(a)

(b)

(c)

Figure 6.5: Pedigree images of (a) K1546; (b) K1524; and (c) K1494 which harbour an
ultra-rare SNV with reduced co-segregation. Fully shaded boxes denote individuals with a
diagnosis of schizophrenia, and sequenced individuals are marked with a coloured dot. The
genotype of the identified SNV is shown beneath all sequenced individuals that were carried
forward for analysis.
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ATP2B2 (“ATPase plasma membrane Ca2+ transporting 2”) is a member of the plasma

membrane Ca2+ ATPase (PMCA) protein family which is involved in intracellular calcium

homeostasis (O’Leary et al., 2016). It is found to be expressed in multiple brain tissue

types in the GTEx project (Keen & Moore, 2015). In a genome-wide meta-analysis of

ASD and schizophrenia, an intronic variant in this gene (rs9879311) was found to be

genome-wide significant (Anney et al., 2017). Additionally, damaging de novo variants

in ATP2B2 have been shown to be significantly enriched in ASD cases compared to un-

affected siblings in a Japanese cohort (Takata et al., 2018). A protein-protein interaction

analysis of genes implicated in schizophrenia from both rare variants (CNVs and de novo

SNVs) and common SNPs pointed to N-methyl-D-aspartate receptor (NMDAR) genes

as having significant combined effects between rare and common variants (Chang et al.,

2018). ATP2B2 was found to be connected to the core members of this NMDAR inter-

actome. A paralog of this gene is ATP2A2, which is a member of the sarco/endoplasmic

reticulum Ca2+ ATPase (SERCA) protein family. Variants in this gene cause Darier’s

disease, which is known to increase risk for schizophrenia and bipolar disorder (Cederlöf

et al., 2015). Fine-mapping of the significant loci from the PGC schizophrenia phase

3 GWAS identified an intronic variant of ATP2A2 as highly probable of being causal

(Ripke et al., 2020).

SLC25A28 (“Solute carrier Family 25 Member 28”) is part of the mitochondrial carrier

sub-group of the SLC gene family. It is a mitochondrial iron transporter that mediates

iron uptake, and is expressed in most tissue types, including several brain tissues (Keen

& Moore, 2015). There is no previous evidence of association between SLC25A28 and

schizophrenia or related disorders. GSK3A (“glycogen synthase kinase-3α”) is one of

the two isoforms of the GSK-3 protein kinase and is expressed in multiple brain tissues

(Keen & Moore, 2015). Lithium, used to treat bipolar disorder, inhibits the activity

of the paralog of this gene, GSK3B (Young, 2009). The variant in this gene was also

present in the SCHEMA analysis, where one allele was observed in an individual with

schizophrenia.

6.5 Copy Number Variants

CNVs were called according to Chapter 4. Within each pedigree, we removed CNV calls

that were identified by only one calling method and were only found in one individual.

The resulting calls have the support of either at least two calling methods or multiple

individuals in the same pedigree. As in Subsection 5.5.1, for variants identified by one

tool and present in multiple related samples, if the proportion of reads supporting an
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event at the breakpoints was low across samples, such calls were removed. We screened

CNV calls in all samples for any variants with a statistically significant association with

schizophrenia (see Table 1.1). Although several such variants were initially identified in

the cohort, most were excluded when examining the level of support at the breakpoints

(see Table 6.6). Only one rare variant was retained, a duplication on chromosome

16p11.2 in sample K1524 5. This CNV was called by both read-depth based callers and

was not observed in any other samples in this pedigree. Interestingly, this individual was

the only sample in the pedigree not to carry the deleterious missense URV in SLC25A28.
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Pedigree Sample Chr Start End Type Locus
Caller LUMPY Support

C E L M SU DP S (%) DP E (%)

K1501
K1501 12 chr15 22775323 28847756 DUP 15q11 × 4 44 (9%) 56 (7%)

K1501 15 chr15 22657718 28730831 DUP 15q11 × 4 40 (10%) 31 (13%)

K1524

K1524 5 chr15 30631954 32621480 DEL 15q13.3 × 4 28 (14%) 56 (7%)

K1524 9 chr15 30631898 32621467 DEL 15q13.3 × 4 22 (18%) 23 (17%)

K1524 5 chr16 29774001 30223000 DUP 16p11.2 × × - - -

K1546

K1546 4 chr3 195945211 197641359 DEL 3q29 × 4 68 (6%) 106 (4%)

K1546 17 chr3 195945145 197641370 DEL 3q29 × 4 134 (3%) 107 (4%)

K1546 8 chr3 195945163 197641349 DEL 3q29 × 4 104 (4%) 66 (6%)

K1546 11 chr3 195945211 197641365 DEL 3q29 × 7 91 (8%) 112 (6%)

Table 6.6: Schizophrenia risk CNVs putatively identified in the cohort with a breakdown of which of the four callers identified the CNV (C -
CNVnator; E - ERDS; L - LUMPY; M - Manta), and for the CNVs identified by LUMPY only, the number of reads that support the event (SU), the read
depth at the start of the CNV (DP S) and the read depth at the end of the CNV (DP E). Also shown beside the read depth is the proportion of
supporting reads at the start or end of the CNV. The start and end points are given for the GRCh38 reference genome.
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6.6 Conclusions

We examined WGS data from 41 individuals across seven pedigrees recruited from Utah

that were multiply affected by schizophrenia and performed an IBS filtering analysis to

identify variants which are likely to increase disease burden. Following recent work from

the SCHEMA consortium, we investigated the presence of ultra-rare, deleterious variants

in LoF-intolerant genes. While no fully co-segregating pathogenic URVs were found,

we did observe three missense variants with a reduced co-segregation pattern in three

families. All three variants were predicted to be deleterious by additional pathogenicity

metrics. In particular, ATP2B2 has previously been implicated in schizophrenia, and

the burden of URVs in this gene was nominally associated with schizophrenia in the

SCHEMA dataset. Only one individual across the six families was found to carry a rare,

schizophrenia risk CNV: a duplication on chromosome 16p11.2.
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Chapter 7

Evaluation of Two Software Tools for

Disease-Gene Prioritisation

Analysing pedigree based NGS data can be challenging, especially where sample sizes

limit the power to derive significant results from linkage analysis. Two tools that aim

to prioritise candidate disease-causing variants in a statistical framework are pVAAST

and PERCH, which integrate novel measures of co-segregation with deleteriousness met-

rics. To better understand the strengths and weaknesses of these tools, we applied

both to WGS data using a synthetic Mendelian phenotype in a three-generational ped-

igree. pVAAST performed well at identifying the pre-selected pseudo-causal variants,

although PERCH did not, resulting in the removal of PERCH from subsequent analyses.

We then applied pVAAST to the three pedigrees harbouring ultra-rare missense variants

from Chapter 6. However, pVAAST did not score the missense variants (or their genes)

favourably, likely due to the variants’ low allele frequencies. Based on this, we also

decided to remove pVAAST from subsequent analyses.

7.1 Introduction

In Chapter 6, we noted that genetic linkage analysis is the de facto methodology to

identify regions of the genome that are inherited by affected individuals in family-based

studies (Ott et al., 2015). A simpler, but non-statistical, IBS approach can also be ap-

plied, examining variants present in affected but absent in unaffected individuals within

the family. While this strategy has been successfully employed for psychiatric disorders

(Homann et al., 2016; Okayama et al., 2018; Steinberg et al., 2017), it has some lim-

itations. Firstly, because there is no measure of co-segregation, there is no way to

quantitatively rank or even combine results from different family structures. For ex-

ample, we cannot know whether there is more evidence for causality from a large sibship

or from a smaller but multi-generational family. Secondly, the requirement that all af-

fected individuals carry a risk variant may be overly simplistic for complex disorders where

there may be many risk variants at play, with reduced penetrance and even the presence

of phenocopies. There is no obvious approach to relaxing this assumption consistently
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across different family structures. In Chapter 6, we allowed one affected individual not

to carry the variant of interest, but this rule does not account for the pedigree structure.

Finally, the population-based filtering methods used to prioritise variants (e.g. deleteri-

ousness metrics), even if guided by empirical work, are arbitrary and may vary from one

research group to another. This hard filtering approach may remove reasonable candid-

ate causal variants because one of their metrics is slightly less than acceptable.

Two tools which aim to address these issues are pVAAST and PERCH (described below).

Both have their attractions in providing a framework for family-based next-generation

sequencing analysis. However, both implement novel methodologies, and it is not im-

mediately obvious how users could compare the output of such tools to more traditional

forms of co-segregation analysis, or indeed to one another. In this Chapter we evaluate

both tools, initially comparing their ability to identify variants causal for a synthetic

Mendelian phenotype, representing a clear signal in a less complex genetic architecture.

Since the gene-level scores are not directly comparable, we can estimate the null dis-

tribution of the scores of genes harbouring a causal variant. Next, we apply pVAAST

and PERCH to the pedigrees in Chapter 6 to see how the tools behave on a complex

phenotype, and to determine if they identify the same genes from the SCHEMA-based

IBS filtering approach previously applied.

7.2 Software Tools

7.2.1 Description

The Pedigree Variant Annotation, Analysis and Search Tool (pVAAST) prioritises genes

according to their evidence for association with a trait from both family and population

data (Hu et al., 2014). This is an extension of the VAAST toolkit which compares unre-

lated cases and controls to identify candidate disease-causing variants (Hu et al., 2013).

pVAAST implements a novel LOD score calculation for each variant based on classical

parametric linkage analysis but designed for NGS data. This calculation incorporates

the variant allele frequency and penetrance, and a grid search is used to find the values

of the penetrance that maximises the underlying likelihood function. For each variant

under consideration, pVAAST calculates a composite likelihood ratio test (CLRT) score

which is the combination of the LOD score for the variant with its VAAST CLRT score.

For each gene, a candidate variant is selected based on user-defined criteria, and the

pVAAST CLRT score is used as the gene-based score.
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pVAAST requires a set of target genomes (the pedigree data), a set of background gen-

omes (unrelated affected or unaffected individuals), a phenotype, and a set of genomic

features to be scored. Ideally, the target and background genomes should be generated

under identical sequencing, alignment, and variant calling pipelines to remove technical

stratification. Additionally, both cohorts should have similar genomic ancestry, so the

allele frequency estimation from the background genomes is applicable to the target

genomes. In the absence of pipeline- and population-matched controls, for this study

a collection of 1,057 EUR-clustering exomes from a variety of sources and sequencing

platforms aligned to GRCh37 was used (see “Web resources”, Subsection A.2.6).

Polymorphism Evaluation, Ranking, and Classification for Heritable traits (PERCH) con-

sists of a suite of independent Bayesian-based modules designed to evaluate a gene’s

relevance to a phenotype based on co-segregation, rare-variant association, and gene-

gene interactions (Feng, 2017). It also includes BayesDel, a novel variant deleteriousness

meta-predictor, trained using various conservation scores, other deleteriousness measures,

and allele frequency. The co-segregation module (BayesSeg) is adapted from Thompson

et al which calculates a log-Bayes Factor for the hypothesis that a variant is disease-

causing versus neutral (Thompson et al., 2003). BayesSeg calculates a gene-based score

by taking a weighted sum of the log-Bayes Factors for all variants within a gene passing

quality control measures. The weight for a given variant is the BayesDel score plus the

VQSLOD score derived from the VQSR process described in Subsection 2.3.1 above.

Within a gene, the weights for all candidate variants are normalised which, the author

states, ensures that the summation is robust to linkage disequilibrium.

7.2.2 Implementation

For pVAAST, the background genomes include some individuals from the CEPH 1463

pedigree (which we ultimately wish to use as our testing data), so these members were

removed from the dataset using the “cdr manipulator.pl” script provided. The target

genomes VCF files were converted to the “condenser” (CDR) format required by pVAAST

using the “vcf2cdr.pl” script provided. For the genomic features, GFF3 files for Ref-

Seq gene and exonic features are provided by the authors online (see “Web Resources”,

Subsection A.2.6). We used the “common complex many fam.ctl” parameter con-

trol file supplied with pVAAST. Since we are looking for highly penetrant variants, we

set the “penetrance lower bound” parameter to be 0.5. Additionally, we set the

“max prevalence filter” parameter to be 0.05. These values help simplify the para-

meter search space for pVAAST when calculating the co-segregation score. For each

pedigree, the default variant selected to generate the gene-based score is the one with
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the highest VAAST CLRT score. Since we are more interested in the co-segregation

aspect of pVAAST, we changed the “informative site selection” parameter to 2

which will select the variant with the highest LOD score as a gene representative.

During a preliminary evaluation of PERCH, several issues with the original source code

were identified:

1. The KING algorithm (Manichaikul et al., 2010) is used to estimate relatedness

between pairs of individuals. However, using the default scripts accompanying

the tool, KING fails in its execution. Prior to running KING, we added a plink

command to regenerate the input binary files with no modification. With this

change, the KING command executes successfully.

2. During PERCH’s quality control step, a PCA is performed using plink. However,

if there is a small number of individuals sequenced, the selected founders may not

carry all variants in the call set. In this instance, the PCA will fail since at least

one variant will have an estimated minor allele frequency of 0. To overcome this,

we added the “--nonfounders” command to the plink PCA, which treats all

samples as founders. This will create bias in the allele frequency estimation due to

relatedness of the samples, but since the results of the PCA are not incorporated

into the BayesSeg module, this was not expected to affect downstream results.

3. During the PCA clustering using the k-means algorithm, the number of clusters

is set to 15. However, if there are fewer than 15 individuals, this will fail, as

the maximum number of clusters possible will be the number of individuals. We

modified the number of clusters to be the minimum of 15 or one less than the

number of individuals in the analysis. As above, this was not expected to affect

downstream results.

4. The vGrp module is used to generate gene-level scores from variant-level inform-

ation. During the execution of PERCH, this tool encountered a segmentation fault

with no additional details from the execution. When re-generating the C++ source

code, we included a “-g” flag to the compiler in the Makefile to allow for code

profiling. When the newly compiled version of the executable was run on identical

input as before, no segmentation fault was observed for vGrp.

The above points were discussed with the author of the tool (Dr Bing-Jian Feng),

who accepted the proposed changes as appropriate solutions to the issues (B.J. Feng,

personal communication, 30/01/2020). Additionally, as discussed with the author, we

set the “--penetrance” parameter to “0.01,0.5,0.5” which represents a dominant
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effect, with a prevalence in the general population of 1%. PERCH includes additional

variant level filtering as part of its quality control, examining metrics such as depth of

coverage, genotype quality, etc. Since these have already been incorporated into the

VQSR process (described in Subsection 2.3.1 above), these filters were disabled.

7.3 Mendelian Phenotype: CEPH 1463 Pedigree

7.3.1 Data

The ideal data to compare both software tools would be publicly available NGS data

from a large number of members of a pedigree with a known genetic disorder, or a

pedigree harbouring a variant highly validated as pathogenic for a particular phenotype.

However, this scenario is uncommon as typically such variants may be identified from tar-

geted sequencing or genotype array data. Here we obtained data from the CEPH 1463

pedigree from the database of genotypes and phenotypes (dbGaP, accession number

phs001224.v1.p1), and generated a synthetic phenotype within this family. Seventeen

samples from this pedigree underwent WGS to an average of 50x coverage on a HiSeq

2000 as part of the Illumina Platinum Genomes Project (Eberle et al., 2017).

Paired-end FASTQ files for each sample were obtained using the SRA toolkit (see “Web

Resources”, Subsection A.2.6). However, the tool encountered several “timeout ex-

hausted” errors, resulting in small amounts of data loss for each file. This led to some

lines in the FASTQ files being truncated, resulting in malformed reads and also the read

order between paired FASTQ files being out of sync. This network issue was queried with

the systems administrator of our server, but it was determined that this was not resolv-

able locally, given that the timeout could have occurred at any stage of the network.

This was echoed by the authors of the SRA toolkit on their GitHub profile (see “Web

Resources”, Subsection A.2.6). These sync errors were resolved by removing singleton

reads using the “repair.sh” command from the BBMap toolkit (see “Web Resources”,

Subsection A.2.6) with default parameters. An average of 0.1% of reads (range 0.07

- 0.2%) were removed from the FASTQ files. Given that this proportion is small, we

deemed that the downstream data should not be severely affected as long as the average

depth of coverage remained sufficiently high.

pVAAST requires that any marry-in individuals in a pedigree cannot have parental geno-

type data, so the route of transmission of the causal variant is pre-defined. Therefore,

we excluded the two paternal grandparents and decided that the synthetic phenotype
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would originate from the maternal grandfather. Additionally, pVAAST cannot be run

using the GRCh38 reference genome, only on GRCh37 or GRCh36. Given that GRCh38

is our primary reference build, we aligned the WGS data to both GRCh38 and GRCh37

for later comparison. Read alignment, data post-processing, variant calling, and VQSR

for the 15 samples in the pedigree were performed as described in Section 2.2 above.

No sex or relatedness issues were detected using peddy, and samples NA12877 and

NA12878 form part of the 1000 Genomes Project EUR individuals, so this pedigree must

have European genomic ancestry. Variant-level quality control measures as described in

Subsection 2.3.2 above were also applied. The average depth of coverage for the 15

samples was 47× (range 43-52×) when aligned to either genome build.

7.3.2 Pseudo-Causal Variant Selection

Given that there is no known genetic disorder in the CEPH 1463 pedigree, we created

a synthetic phenotype by specifying a collection of inheritance patterns we might ex-

pect from a Mendelian disorder (see Figure 7.1 below). Creating such a phenotype

gives us more control over the results, allowing us to be definitive about which variants

are “disease-causing”. We required that the maternal grandfather (NA12891) and the

mother (NA12878) were affected, and that the maternal grandmother (NA12892) and

the father (NA12877) were unaffected. To include as large a number of potential causal

genes, we did not specify a phenotype status in the third generation. Alternatively, we

can think of this as considering all 211 = 2, 048 phenotype permutations possible in the

third generation and selecting those for which a variant is present in the WGS data that

has a dominant inheritance pattern with this synthetic phenotype.

We retained SNVs and indels that satisfied the following properties:

� functional impact: alters the amino acid chain in the canonical transcript of a

protein-coding exon, determined by RefSeq (O’Leary et al., 2016);

� inheritance: present in all affected individuals, absent from all unaffected indi-

viduals, and non-missing genotypes in all samples in the third generation; and

� deleteriousness: CADD v1.6 Phred-scaled score of greater than 30.0, indicating

that they are ranked in the top 0.1% of all DNA variants.

Variants satisfying the above are referred to as pseudo-causal variants (PCVs). We se-

lected these filters as they mirror how causal variants for a Mendelian phenotype may

present. As both tools use measures of deleteriousness in their score calculations, a
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Figure 7.1: The CEPH 1463 pedigree with the paternal grandparents removed. Black boxes
are affected, white boxes are unaffected and grey boxes may be either.

high CADD score should make the PCV evident when investigated. Initially, 26 such

variants were identified in the pedigree. Since the data are aligned to GRCh38, we

converted all variants in our original call set to GRCh37 (removing SNVs at unstable

positions, as per Chapter 3) and applied the above filters to identify the PCVs. We also

applied the same filters to data aligned to GRCh37 to compare the two lists of PCVs

(see Table 7.1). We note that there are two PCVs which were present in the converted

data list that were not present in the aligned data list. The GPANK1 variant was not

found in the GRCh37 aligned data, whereas the MAGEB16 variant had a missing geno-

type for one sample in both the aligned and lifted data, and so was removed from the list.

During testing of both tools, there were some issues with the RefSeq annotation informa-

tion for two variants which passed filtering. pVAAST takes gene feature information such

as exon boundaries from a GFF3 file downloaded from the tool website (see “Web Re-

sources”, Subsection A.2.6). However, while the gene boundaries for OR2J1 are present

in this file, there is no exon boundary information, so no variant in the coding sequence

can be evaluated. Similarly, PERCH takes gene feature information from a RefSeq-derived

file provided with the tool. However, the gene boundaries for KHDC1 in this file indicate

that the prioritised PCV for this gene is actually intergenic. This is likely due to an older

version of the transcript framework being used than that which identified the variant

via filtering. For this reason, both OR2J1 and KHDC1 were removed from the list of

PCVs. Thus, 24 PCVs were identified from the data converted to GRCh37, and all but

two were also identified from the data aligned to GRCh37.
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Chr Position Ref/Alt Alleles Gene Consequence A/A CADD Align Lift

chr1 53370357 G/T ECHDC2 stop gained Y/* 36 × ×

chr1 78392446 G/A NEXN missense G/R 31 × ×

chr1 156314497 C/T TSACC missense S/L 32 × ×

chr1 159410340 T/A OR10J1 stop gained C/* 33 × ×

chr2 32983480 G/A TTC27 missense R/H 31 × ×

chr2 88409984 G/A SMYD1 missense E/K 31 × ×

chr2 175292580 TTCAAATTTATCAG/T SCRN3 frameshift IQIYQ/X 33 × ×

chr3 98217178 T/A OR5K2 stop gained Y/* 33 × ×

chr3 113955187 A/C ZNF80 stop gained Y/* 31 × ×

chr4 38775922 G/T TLR10 stop gained Y/* 36 × ×

chr5 1240757 C/G SLC6A18 stop gained Y/* 34 × ×

chr6 31632134 C/A GPANK1 missense R/L 31 ×

chr9 125239501 G/T OR1J1 stop gained C/* 36 × ×

chr9 131475583 G/C PKN3 missense D/H 31 × ×

chr11 55322818 G/T OR4C15 stop gained E/* 46 × ×

chr11 55339652 C/T OR4C16 stop gained Q/* 36 × ×

chr11 63057925 G/A SLC22A10 stop gained W/* 35 × ×
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chr12 2943924 G/A NRIP2 stop gained R/* 35 × ×

chr12 52827608 C/T KRT75 missense A/T 31 × ×

chr13 78178550 G/A SCEL missense R/K 35 × ×

chr16 89261482 C/A CDH15 stop gained Y/* 35 × ×

chr17 4803711 G/A C17orf107 stop gained W/* 39 × ×

chr17 74077797 C/T ZACN stop gained Q/* 39 × ×

chrX 35821127 C/T MAGEB16 stop gained R/* 33 ×

Table 7.1: The pseudo-causal variants identified by the filtering process, including: chromosome (Chr) and position (on GRCh37), variant (refer-
ence/alternate allele), gene symbol, predicted functional consequence, amino acid substitution (A/A), CADD v1.6 Phred-scaled score, and whether
the variant was identified in the data aligned to (Align) or lifted to (Lift) GRCh37.
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7.3.3 Results

For each of the PCVs, we ran pVAAST and PERCH on the same CEPH 1463 input data

to evaluate how well both tools could identify such variants and their genes. For a given

PCV, we selected the phenotypes in the third generation so that the variant would have

a dominant inheritance pattern. For each tool, we determined the rank of the gene

harbouring the PCV according to the respective score. Additionally, we could determine

whether the PCV contributed to the gene-level score.

For pVAAST, NA12878 was designated the pedigree representative since they must be a

variant carrier for all the PCVs by design. For all PCVs, each gene was ranked in the

top 10 genes according to the overall pVAAST score (see Figure 7.2). The LOD score

for each gene was the maximum LOD score achieved by all genes for that phenotype

combination, so we can consider the pseudo-causal gene to be ranked joint first in all

analyses when ranking by the LOD score alone. Additionally, for each pseudo-causal

gene, the PCV was listed as one of the candidate causal variants, having achieved the

maximum LOD score in that gene. From this, we see that pVAAST performs well at

identifying variants following dominant inheritance patterns with high CADD scores.

For PERCH, the initial pre-processing and annotation stages were run using the default

script provided with the tool. Fourteen of the genes harbouring PCVs received a pos-

itive BayesSeg score and were ranked either first or second in all genes scored (see

Figure 7.3). However, nine of the genes received a BayesSeg score of 0, indicating

either that the gene could not be scored, or possibly that there was equal evidence for

the pathogenic model as for the neutral model. One gene (SLC22A25) got a negative

score of -1.57, indicating that there is greater evidence that the gene does not harbour

variants co-segregating with the synthetic phenotype. PERCH identified three variants

from SLC22A25 which may contribute to the final BayesSeg score: the PCV, a variant

with an identical genotype pattern to the PCV and a third variant present only in the

maternal grandfather. However, BayesSeg gave all three variants a co-segregation score

of -1.57, which is not expected given the obvious differences in co-segregation between

these three variants. We queried this unusual behaviour with the author of PERCH but

did not receive a reply.
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Figure 7.2: The pVAAST CLRT scores for all genes harbouring a PCV. The corresponding LOD scores are indicated by the colour, and the functional
consequence of the PCV are indicated by the shape. The rank of the gene out of 19,492 genes scored is displayed at the top of the graph. Genes
are ordered according to genomic position.121
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Figure 7.3: The BayesSeg scores from PERCH for all genes harbouring a PCV. Positive scores indicate evidence for causality, negative scores indicate
evidence against causality and scores of zero indicate that the test was inconclusive. The functional consequence of the PCV is indicated by the
shape. The rank of the gene out of 13,124 genes scored is displayed at the top of the graph. Genes are ordered according to genomic position.
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7.3.4 Empirical Significance Calculation

Both the CLRT score from pVAAST and the BayesSeg score from PERCH integrate a novel

measure of co-segregation variant deleteriousness to give rise to a gene-based score. To

allow for comparison, we estimated the null distribution of these two scores by permuting

the phenotype status of the individuals in the pedigree and running both tools on the

same genetic data as before. Since there are 24 genes harbouring PCVs, we require at

least 24/0.05=480 phenotype permutations to accurately determine significance after

Bonferroni correction for multiple testing. We chose 1,000 random permutations of the

phenotypes for our estimation. The pVAAST CLRT score was found to be significant

for all genes except TLR10, where the empirical p-value falls short of the corrected cut-

off threshold, discussed below. The PERCH BayesSeg score was significant for all genes

which received a positive score and was not significant for all other genes (see Figure 7.4).

For TLR10, three permutations generated a pVAAST CLRT score greater than the score

for the true phenotype configuration. In each of these instances, the PCV was identified

as one of the candidate causal variants for that gene, but the variant received a mod-

est LOD score (LOD=0.97 for all three permutations) compared to the score for the

true phenotype configuration (LOD=3.61). The pVAAST CLRT is given by the formula

CLRTp = 2 log(10)×LOD+CLRTv where CLRTv is the VAAST score. This VAAST CLRT

score is not fixed for each variant like other deleteriousness metrics but depends on the

allele frequency in the affected and unaffected cohorts. These values are estimated from

the target and background data, so a change in the phenotype configuration will have

an impact on the VAAST CLRT score, since the allele frequencies in the affected and

unaffected cohorts will have changed. The VAAST CLRT score for the PCV in TLR10 is

8.48, which is the lowest VAAST score across all genes harbouring a PCV. Comparatively,

under the three other phenotype configurations, the VAAST CLRT score for the PCV was

20.67. This is the likely explanation for the other variants with modest LOD scores, but

comparatively high VAAST scores, ranking higher than the true pVAAST score for TLR10.

Based on these results, we decided to continue to examine the performance of pVAAST

in non-synthetic pedigree data, with a more complex genetic architecture. While the

behaviour of pVAAST for TLR10 is not precisely consistent with our expectations, pVAAST

does perform well overall. However, at this point we decided to exclude PERCH from

further analyses, given that we were unable to find an explanation for the unexpected

behaviour of the algorithm with the genes harbouring PCVs.
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Figure 7.4: The empirical p-values of the co-segregation scores from pVAAST and PERCH plotted on the -log10 scale for the genes harbouring the
PCVs. The red dashed line indicates the Bonferroni-corrected cut-off threshold. Genes are ordered according to genomic position.
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7.4 Complex Phenotype: Utah Pedigrees

We examined how pVAAST would perform in the analysis of the three Utah pedigrees

from Chapter 6 to see if it could identify the genes containing the three SNVs prioritised

using our IBS filtering approach. The co-segregation of these variants does not follow

a dominant inheritance pattern (although all sequenced carriers are affected) and the

CADD v1.6 (GRCh38) scores for these variants are 25.6, 26.9, and 31.0, so this should

add some complexity to the disease-gene prioritisation. However, it is expected that the

three genes should score well overall.

Since the data for the Utah pedigrees were generated on GRCh38, we removed variants

at unstable positions according to Chapter 3 and converted the quality-controlled data

to GRCh37. We ran pVAAST on each of the three pedigrees separately to determine

whether the three prioritised genes would be identified. However, both SLC25A28 and

GSK3A received CLRT and LOD scores of zero (see Table 7.2). We note that the vari-

ants in these two genes were not found in the background genomes file, likely because

they are ultra-rare across multiple genomic ancestry groups. pVAAST includes the option

to pass external allele frequencies for the background genomes, and so we extracted

allele frequencies for all variants in the three pedigrees from gnomAD v2 exome data for

the non-Finish European (NFE) group. However, when these external allele frequencies

were provided, pVAAST stalled in its execution every time it was run and never completed

its scoring.

ATP2B2 received a non-zero CLRT score (likely since the prioritised variant was found

in one sample in the background genomes), but the LOD score was 0.14. While fewer

samples were sequenced in K1546 than in the CEPH 1463 pedigree, the largest LOD

score returned by pVAAST for K1546 was 2.16, so a near-perfectly co-segregating variant

should not have so low a score. While examining the other gene and variant scores for

this pedigree, we observed a variant in INPP5K which received a LOD score of 0.61

and ranked 7th overall. However, this variant was present in one sample in the final

generation of the pedigree, and either absent or missing from all remaining samples.

These LOD scores are not consistent with what we might have expected based on the

observed co-segregation pattern within the pedigree. We queried this behaviour with

the authors of pVAAST but did not receive a reply.
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Pedigree Gene
CADD v1.6 pVAAST

GRCh37 GRCh38 Rank CLRT LOD

K1546
ATP2B2 28.3 31.0 212 16.35 0.14

INPP5K ∗ 35.0 36.0 7 24.15 0.61

K1524 SLC25A28 25.0 25.6 6,173 0.00 0.00

K1494 GSK3A 27.7 26.9 11,749 0.00 0.00

Table 7.2: The pVAAST scores for the three genes prioritised from Chapter 6, along with an
additional gene from pedigree K1546, marked with an asterisk (∗).

7.5 Conclusions

We have shown that pVAAST performs well at identifying deleterious variants with a

Mendelian inheritance pattern in the CEPH 1463 pedigree but has a limited ability to

detect URVs with a complex inheritance pattern in the three Utah pedigrees. We also

showed that PERCH was unable to detect many of the deleterious, Mendelian variants.

Both tools appear to have much to offer for disease gene prioritisation, combining mul-

tiple orthogonal data sources in a unified framework. However, the limitations described

above make them unusable as comparison tools for our data, so we discounted them

from further analyses.
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Chapter 8

A Bayesian Framework for

Pedigree-Based Causality

Identity-by-state filtering is commonly used for pedigree-based genetic analyses but suf-

fers from limitations due to its non-statistical nature. For example, it is not clear how

to quantitatively rank or combine information from multiple pedigrees or how family

structure may be accounted for consistently. Here, we present a Bayesian framework

to model causality of genomic variants in pedigrees. For each input variant, a Bayes

factor for causality is calculated under the assumptions that a causal variant will be

rare and have a dominant effect. A prior probability of causality can be calculated

from population-derived metrics such as deleteriousness, allele frequency, and functional

consequence. We applied this method to the CEPH 1463 pedigree and to the three ped-

igrees in Chapter 6 in which variants had been previously prioritised by identity-by-state

filtering. The resulting metrics for the prioritised variants ranked favourably among all

other variants, but our Bayesian approach now provides the advantage of a quantitative

measure for prioritisation. Additionally, other genes of interest in the Utah pedigrees of

Chapter 6 are identified by our model that were removed by the hard filtering strategy.

8.1 Introduction

One of the issues highlighted in the previous chapter is that the novel metrics used

by pVAAST and PERCH to prioritise variants and genes may be difficult to interpret. In

Bayesian modelling, a Bayes factor is used to compare the evidence for two compet-

ing models based on a specific set of data, e.g. that a variant is disease-causing verses

that it is not. This is comparable to frequentist statistics where a null and alternate

hypothesis are formulated, often evaluated using a p-value. However, such tests using

frequentist statistics make no statement about how likely either of the hypotheses are a

priori. Bayesian statistics can resolve this by allowing a prior distribution of the models

to be incorporated.

Bayesian inference models have been used to evaluate variants based on their co-
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segregation within a pedigree. To classify variants of unknown clinical significance,

Petersen et al. derived an approach which calculates a Bayes factor for a variant to be

disease-causing (Petersen et al., 1998). This model was originally designed for missense

variants with a predicted dominant effect in BRCA1 and BRCA2, which are associated

with breast and ovarian cancer. Parameters underlying the model are the family-specific

penetrance of the variant (the probability of the phenotype for variant carriers), the

phenocopy rate (the probability of the phenotype for variant non-carriers) and the allele

frequency of the variant. A proband (an affected variant carrier) is selected, and the

Bayes factor is calculated using the genotypes of the affected variant carriers in the pedi-

gree. The backbone of this term is the probability of the observed genotypes conditional

on the genotype of the proband.

This model was extended by Thompson et al., who included the genotypes of unaffected

variant carriers (Thompson et al., 2003). This down-weighted variants with high pheno-

copy rates, even if they had a high penetrance. Additionally, some individuals without

genetic data may have their genotypes inferred based on the inheritance pattern, e.g.

in-family parents of known carriers. These extensions allow all available genetic data to

be incorporated into the co-segregation model. This is the model used to calculate a

LOD score by BayesSeg, the co-segregation module of PERCH (Feng, 2017), but the

gene-based LOD score is a weighted sum over multiple variants rather than a straight-

forward Bayes factor.

Mohammadi et al. considered a similar setup but calculated a likelihood ratio for caus-

ality also conditional on the phenotypes of the pedigree (Mohammadi et al., 2009). In

addition, they assumed that the causal variant would be rare in the general population,

which reduces the search space of all variants. Part of the likelihood ratio calculation

involves iterating over all possibilities for the unobserved genotypes in the pedigree, and

the authors describe strategies for simplifying this process with the rare-variant assump-

tion. Additionally, Mohammadi et al. allow for age-specific penetrance and phenocopy

rates, which are assumed to follow a normal distribution. This is more realistic for cancer

phenotypes and adult psychiatric disorders, since an individual may carry a causal variant

but may not present with the phenotype until later in life.

Despite their differences, both Thompson et al. and Mohammadi et al. methods have

been shown to perform similarly at classifying simulated pathogenic and benign variants

co-segregating in known cancer genes such as BRCA1 and MLH1 (Rañola et al., 2018).

However, the likelihood ratios contain information about co-segregation only by design,
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and no measure is included about the pathogenicity of the variant in question. Our

aim in this chapter is to calculate a Bayes factor based on the method described in

Mohammadi et al. Then, we can use population-derived metrics such as allele frequency

and deleteriousness to construct a prior probability for causality, instead of considering

a flat/uninformative prior as in the previous models (Petersen et al., 1998; Rañola et

al., 2018). Finally, this new prior and the Bayes factor may be combined to generate

a posterior probability of causality. This posterior will be a well-defined measure to

quantitatively rank variants based on their contribution to the phenotype of interest.

8.2 Overview

8.2.1 Summary of Equations

There are three main components to a Bayesian inference model: the prior, the likelihood,

and the posterior (Gelman et al., 1995). For a given variant, our causal model (M1)

states that the variant is a primary contributor to the phenotype. For observed data

(D), the posterior is the probability of observing this model given the data, which may

be calculated using Bayes Theorem:

P (M1 |D) =
P (D |M1)P (M1)

P (D)

The prior P (M1) represents the probability that a variant is causal before we observe

the pedigree data, and the likelihood P (D |M1) is the probability of observing the data,

assuming the causal model is true. The P (D) term is known as the normalising constant

and does not depend on the model, and thus the above equation can be written as

P (M1 |D) ∝ P (D |M1)P (M1)

or equivalently:

posterior ∝ likelihood × prior

As an alternative to the above, we can consider the neutral model (M2) which states

that the variant does not contribute to the phenotype. The corresponding posterior for

this model is given by:

P (M2 |D) =
P (D |M2)P (M2)

P (D)

Dividing the posteriors for each model, we see that:

P (M1 |D)

P (M2 |D)
=

P (D |M1)P (M1)

P (D)

P (D)

P (D |M2)P (M2)
=

P (D |M1)

P (D |M2)
× P (M1)

P (M2)
(8.1)
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This is often written more succinctly as:

Oddsposterior = Bayes Factor × Oddsprior

We can use the Bayes factor to compare the evidence for the causal model P (D |M1)

and the neutral model P (D |M2) solely based on the co-segregation with the phenotype.

These likelihoods will themselves be functions of the parameters of the model (described

in Subsection 8.2.2 below). Since M1 and M2 are complementary to one another, we

can let the prior probability of M2 be given by P (M2) = 1− P (M1). Note that we can

convert a probability p to its odds form o (and vice versa) as:

o =
p

1− p
⇔ p =

o

o+ 1

The posterior odds converted to a probability (which we refer to as the posterior prob-

ability for causality) will be our well-defined metric to prioritise variants in this Bayesian

inference model.

8.2.2 Model Parameters and Assumptions

Following Mohammadi et al., we assume that the variant under consideration is rare in

the general population (Mohammadi et al., 2009). This allows us to conclude that the

variant originates from one founder within the pedigree, and so cannot be carried by

marry-in individuals. In determining the phenotypes conditional on the genotypes, we

will have different assumptions based on which model we are evaluating.

� M1 (Causal model) - the variant has a dominant effect on the phenotype: this

means that an individual’s phenotype is determined solely by their genotype. This

also reduces the search space when iterating over unobserved genotypes compared

to an additive model, for example.

� M2 (Neutral model) - the phenotypes are entirely independent of all genotypes

and are determined by the population incidence rate.

In Bayesian inference models, we need to specify which random variables are parameters

and which are data. The observed data represent fixed quantities that are specific to

each pedigree. The data in our model comprises of the following:

� the observed genotypes (GO); and

� the known phenotypes of the pedigree members (PF ). We assume that every

sample has a phenotype specified.
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The parameters, on the other hand, are unknown quantities in our model, and for each

pedigree we can consider prior distributions for the parameters which can be determined

from data-independent information about the phenotype. From this description, our

parameters are:

� the unobserved genotypes (GU), which follow a distribution determined by Mendelian

segregation;

� the in-family penetrance (β), i.e. the probability of the phenotype for variant

carriers, whose distribution is discussed below;

� the in-family phenocopy rate (φ), i.e. the probability of the phenotype for variant

non-carriers, whose distribution is discussed below;

� the population incidence rate (α) whose distribution is discussed below; and

� the proband (p) who is selected at random from the affected carriers.

For convenience, we will let θ = (β, φ), since those two terms will often be grouped

together, and both β and φ can take values between 0 and 1. We can construct a

relationship between β, φ and α. If p is the allele frequency of a causal variant and

q = 1− p, then we have:

α = P (P )

= P (P |Geno)P (Geno) + P (P | not Geno)P (not Geno)

= β(1− q2) + φ(q2)

(8.2)

Here, “Geno” refers to having a genotype that confers risk for the phenotype P in a

dominant fashion, so heterozygous or homozygous variant genotypes. We can see that

α is a weighted average of β and φ, so we have three scenarios:

� Scenario 1: φ < α < β - recommended by Petersen et al. under the causal

model (Petersen et al., 1998);

� Scenario 2: φ = α = β - the phenotype is independent of the genotype, which

corresponds to the neutral model; and

� Scenario 3: β < α < φ - having the variant reduces the probability of the

phenotype compared to the incidence rate and compared to not having the variant.

This corresponds to a variant with a protective effect, which the causal model does

not account for.

We assume Scenario 1 for the causal model and Scenario 2 for the neutral model.

131



CHAPTER 8. A BAYESIAN FRAMEWORK FOR CAUSALITY

8.3 Bayes Factor

The full derivation of the Bayes factor calculation is given in Appendix B, which we will

summarize here.

8.3.1 Causal Model: Likelihood

To evaluate our Bayes factor, we first need to calculate the probability of the data

under the causal model, i.e. P (D|M1). We can re-arrange the equations, so we are left

with three terms of interest: the probability of the phenotypes, the probability of the

genotypes and the prior probability of the parameters, as shown in Equation 8.3 below.

P (D |M1) =

k1∑
p=1

∑
GU

∫∫
Ω

P (PF |GF , p, θ,M1)︸ ︷︷ ︸
phenotypes

P (GF | p)︸ ︷︷ ︸
inheritance

P (p, θ |M1)︸ ︷︷ ︸
parameters

dθ (8.3)

As described in Mohammadi et al., the assumption of a dominant effect means that

the phenotypes are determined by the genotype alone, and so the “phenotypes” term

in Equation 8.3 will just be a product of the penetrance values and phenocopy rates.

Under the causal model, if k1, k2 are the number of affected/unaffected variant carriers

and l1, l2 are the number of affected/unaffected variant non-carriers, then:

P (PF |GF , p, θ,M1) =
n∏

i=1

P (Pi |Gi, θ,M1) = βk1(1− β)k2φl1(1− φ)l2 (8.4)

When we iterate over all unobserved genotypes, there are some configurations that we

may ignore due to the rare variant assumption. To illustrate this, consider the simulated

pedigree in Figure 8.1 taken from Mohammadi et al. Here, individuals 1 and 3 are known

to have breast cancer and they also carry the variant of interest, and all other individuals

are unaffected, with their genotypes unknown. If individual 3 is the current proband,

the potential founders are individuals 6 and 7. If individual 1 is the current proband,

the potential founders are individuals 2, 6 and 7. However, since individual 3 is not

descended from individual 2, individual 2 cannot be a founder for the entire pedigree.

So, the only pedigree founders we need consider are individuals 6 and 7, which is the

same regardless of the selected proband. Since our inheritance term P (GF | p) is now

independent of the choice of proband, we will simply write it as P (GF ). As described

in Mohammadi et al., we can calculate this term as 0.5 to the power of the number

of times the variant is or isn’t transmitted to a child from a parent who is a carrier.

Note that this transmission probability only holds for autosomal variants. For example,
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a variant on the X chromosome will have different transmission probabilities depending

on the sex of the parent and child. The Bayesian model we are proposing here only

considers autosomal variants.

Figure 8.1: Hypothetical breast cancer pedigree taken from Mohammadi et al (Mohammadi
et al., 2009). Variant carriers are denoted with a + sign, and affected individuals are coloured
black.

Finally, we need to consider the prior distribution for our parameters β, φ under the causal

model. While Mohammadi et al. allowed for age-specific values for these parameters,

for simplicity we will assume that they are not age-dependent. One simple choice in the

absence of any additional information is to let the distributions of both parameters take

all values over [0, 1] with equal probability, i.e. a Uniform distribution, as described in

Figure 8.2a below. However, this would allow for variants with high penetrance values

and high phenocopy rates, which we would like to avoid. Instead, a plausible scenario

for our causal variants is that they are more likely to have high penetrance values and

low phenocopy rates. Therefore, we will consider a simple prior described in Figure 8.2b

and Figure 8.2c that reflects this. We can see that higher values of the penetrance are

more likely than lower values, and that the reverse is true for the phenocopy rate. Since
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we have the assumption that φ < β for the causal model, values of the phenocopy rate

that are higher than the penetrance are given a probability of zero. We refer to this prior

distribution of the parameters β and φ as the Linear prior.

(a)

(b) (c)

Figure 8.2: The density plots of (a) the Uniform prior distribution of for β; (b) the Linear
prior distribution of for β; and (c) the Linear prior distribution of for φ, conditional on a fixed
value of β = 0.667. Note the assumption that φ < β.

8.3.2 Neutral Model: Likelihood

Next, we will calculate the likelihood for the neutral model, given by:

P (D |M2) =

k1+l1∑
p=1

∑
GU

∫ 1

0

P (PF | p, α,M2)︸ ︷︷ ︸
phenotypes

P (GF | p)︸ ︷︷ ︸
inheritance

P (p, α |M2)︸ ︷︷ ︸
parameters

dα (8.5)

The the main difference here from the causal model is that instead of the penetrance

and phenocopy terms, this model depends on the population incidence α. Also, the
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phenotypes term is simplified since the genotypes are independent of the phenotypes.

We can calculate this term as:

P (PF | p, α,M2) =
n∏

i=1

P (Pi |α,M2) = αk1+l1(1− α)k2+l2 (8.6)

The inheritance term is calculated exactly as described in the previous section. We will

assume that the population incidence rate α has a Uniform prior distribution on [0, 1]

for simplicity.

8.3.3 Prior Sensitivity

Now that we have derived an expression for the Bayes factor from Equation 8.1 above,

we will examine how it will be affected by the two different prior distributions (Uniform

and Linear) for the parameter terms β and φ described above. To do this, we considered

a specific phenotype combination for the CEPH 1463 pedigree (see Figure 8.3). As

described in Subsection 7.3.2 above, the inheritance pattern in the first two generations

is set to identify the true route of transmission. For simplicity, we set the first five

children as affected, and the remaining six children as unaffected.

Figure 8.3: The CEPH 1463 pedigree with a specific phenotype pattern selected. Black boxes
are affected, and white boxes are unaffected. Variant carriers are marked with a “+”, variant
non-carriers are marked with a “-”, and unknown genotypes are marked with a “?”.

We let the genotypes of the first two generations be pre-defined: carriers are affected

and non-carriers are unaffected. For the third generation, we examined all 211 = 2, 048

theoretical genotype combinations, where each child could be a carrier or non-carrier.

This allows us to examine how the Bayes factors change for all potential co-segregation
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configurations. For each variant, we can compute the in-family penetrance and pheno-

copy rates. Note that given the fixed genotypes in the first two generations, we will

not be able to find a variant with completely “opposite co-segregation” (carried by all

unaffected samples, absent from all affected samples). One variant had perfect co-

segregation in the entire pedigree, and one other variant had opposite co-segregation

among the third generation. All other variants had a mix of co-segregation types with

varying penetrance and phenocopy rates.

We examined the change in Bayes factor when we swap from the Uniform prior to the

Linear prior in the causal model (M1). Note that if two different variants had the same

penetrance and phenocopy rates, then they received the same Bayes factor, so none of

the probability terms within the Bayes factor calculation change. This is because only the

genotypes are being changed within a sibship, so the numbers of affected and unaffected

carriers do not change, and the inheritance probability term in the Bayes factor term also

does not change. For each pair of penetrance versus phenocopy rates, we calculated the

ratio of the Bayes factors under both the prior distributions. We can view the results in

Figure 8.4 below.

Figure 8.4: For each input variant, we plotted the in-family penetrance (β) and phenocopy
rate (φ). The green dashed line represents where the penetrance equals the phenocopy rate.
The shape represents whether the Bayes factor was greater than 1 or not. The colour represents
the ratio of the Bayes factors under the Linear prior and the Uniform prior. Note that two
variants which had the same penetrance values and the same phenocopy rates resulted in the
same Bayes factors, so are represented by one point on the graph.
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While the change in prior had an effect on the Bayes factors, if a variant had BF > 1

under the Uniform prior, the same was true for the Linear prior. Variants with the same

penetrance values and phenocopy rates received the same Bayes factor, using either

prior distribution. Figure 8.4 shows the broad inverse linear relationship between the

penetrance and phenocopy rate. We see that for all variants with β < φ (above the

green line), the Bayes factor was decreased when we changed to the Linear prior. Only

variants satisfying φ < β (below the green line) had an increase in Bayes factors under

the Linear prior. Some variants with φ < β had their Bayes factor decreased but many

of these variants represent mixed co-segregation information, with modest penetrance

values. From this, we can see that the Linear prior appropriately down-weights variants

with poor co-segregation and up-weights variants with good co-segregation. Based on

the above, the Linear prior for β and φ was chosen for the Bayes factor calculations.

8.4 General Prior Probability for Causality

The final component in our Bayesian inference model is the prior odds that a variant is

causal. To construct this prior, we will use the ClinVar database (Landrum et al., 2018) to

generate a list of known pathogenic and benign variants and develop a prediction model

for causality trained on these variants. Since these variants are predominantly protein-

coding, we will restrict the following prior probability calculation to variants that affect

the transcript of a protein-coding gene only. Non-protein-coding variants will be given a

flat prior probability of causality of 0.5. We downloaded the VCF version of ClinVar (date

downloaded: 29/01/22; see “Web Resources”, Subsection A.2.7) containing 1,117,603

variants, and retained those that satisfied all of the following:

� an SNV or an indel;

� the clinical significance was Benign and/or Likely Benign (referred to simply as

Benign), or the clinical significance was Pathogenic and/or Likely Pathogenic (re-

ferred to as Pathogenic);

� submitted by multiple submitters with no conflicts in significance;

� overlapped one gene with one functional consequence; and

� present on an autosomal chromosome.

Pathogenic variants are unlikely to be common in the general population compared to

benign variants which could be rare or common, so we included allele frequency as a

predictor of causality. Allele frequencies were taken from gnomAD v2.1.1 exome data,
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since this has the highest number of samples covering protein-coding regions. We also

included the following deleteriousness metrics as predictors: CADD, MPC, SIFT, Poly-

Phen2, REVEL, and FATHMM. REVEL (Ioannidis et al., 2016) and FATHMM (Shihab et

al., 2013) have been shown to perform well at classifying known pathogenic and benign

variants respectively (Cubuk et al., 2021; Gunning et al., 2021; Niroula & Vihinen, 2019;

Tian et al., 2019). Additionally, meta-predictors have shown increased performance to

classify variants over stand-alone tools (Gunning et al., 2021). Note that CADD (which

is a meta-predictor) is defined for all SNVs in the genome (as well as many indels),

whereas the other five predictors are specific to missense variants only.

Another predictor we considered is GERP++ conservation scores (Davydov et al., 2010),

since conservation can indicate pathogenicity (Richards et al., 2015) and the scores are

defined for most positions in the genome. However, GERP++ scores are included as

training predictors to CADD, so including them here could introduce additional multicol-

linearity into the models. We evaluated this by calculating the variance inflation factors

(VIF) for all selected predictors. It was found during initial testing that GERP++ had a

VIF greater than 10 in almost all instances (typically indicating multicollinearity (Kutner,

2005)) and had the highest VIF of all predictors. When GERP++ was removed, the VIF

for all remaining predictors fell to less than 10 (with one exception, described below).

Therefore, we decided not to include GERP++ as a predictor.

ClinVar variants were used to train the MPC prediction score (Samocha et al., 2017).

We identified these variants from the training set and converted them to GRCh38 with

liftOver, removing those at unstable positions as per Chapter 3. We then removed

the 344 variants in our ClinVar dataset that overlapped with the MPC training set to

avoid circularity bias (Grimm et al., 2015). Each of the remaining ClinVar variants

was annotated with the metrics described above, taking the missense-specific scores

from dbNSFP as described in Section 2.6. Where multiple transcripts were present

in dbNSFP, we took the most severe score across all transcripts as the representative

score. Finally, we removed variants if the ClinVar gene or functional consequence did

not match with that of vep. This resulted in a final list of 76,613 annotated variants

(16,894 Pathogenic and 59,719 Benign), which represents 6.9% of the total variants from

the original ClinVar VCF file. A breakdown of the clinical significances and functional

consequences is given in Table 8.1 below. We can see that some functional consequence

classes are almost exclusively Benign or Pathogenic (e.g. synonymous, frameshift, stop

gained, etc.) whereas for others the split is less one-sided (missense variants, inframe

deletions, etc.).
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Consequence
SNV Indel

BEN PATH Total % PATH BEN PATH Total % PATH

3’ UTR variant 1,496 2 1,498 0.1% 153 0 153 0.0%

5’ UTR variant 667 10 677 1.5% 40 0 40 0.0%

Frameshift variant - - - - 37 4,156 4,193 99.1%

Inframe deletion - - - - 210 166 376 44.1%

Inframe insertion - - - - 138 21 159 13.2%

Intron variant 13,444 315 13,759 2.3% 1,744 16 1,760 0.9%

Missense variant 11,167 5,314 16,481 32.2% - - - -

Splice acceptor variant 4 1,018 1,022 99.6% 7 60 67 89.6%

Splice donor variant 7 1,470 1,477 99.5% 10 112 122 91.8%

Stop gained 19 4,112 4,131 99.5% 0 59 59 100.0%

Stop lost 1 2 3 66.7% - - - -

Synonymous variant 30,575 61 30,636 0.2% - - - -

Total 57,380 12,304 69,684 17.7% 2,339 4,590 6,929 66.2%

Table 8.1: The selected ClinVar variants broken down by variant type and functional consequence, showing counts for Benign (BEN) and Pathogenic
(PATH) variants and the proportion of pathogenic (% PATH) for that functional consequence.
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We used logistic regression as the basis for classifying pathogenicity using the above

described predictors for each input variant. The coefficients from the regression model

can be used to calculate the probability of pathogenicity, which we will use as the prior

probability for causality in our Bayesian inference model. We examined five separate

regression models, as detailed in Table 8.2. The simplest model is to train on all variants

together using CADD scores, allele frequency, functional consequence, and variant type

(Model 1). However, since the predictors may have different distributions depending on

the variant type, we examined regression models for SNVs and indels separately (Model

2). Similarly, we examined regression models for missense and non-missense variants

separately since we have additional missense-specific predictors (Model 3). When we

added the five missense-specific predictors, the VIF of CADD was 14.96, so we decided

to remove CADD as a predictor from the missense variant regerssion in Model 3. To

evaluate how well the missense-specific variants performed, we examined an alternate

version where CADD was the sole deleteriousness predictor for missense variants (Model

4). Finally, we also split non-missense variants by type (Model 5).

Model Variant Predictors

1 All variants CADD + AF + CSQ + TYPE

2
SNV CADD + AF + CSQ

Indel CADD + AF + CSQ

3
Missense MissPred + AF

Non-missense CADD + AF + CSQ + TYPE

4
Missense CADD + AF

Non-missense CADD + AF + CSQ + TYPE

5

Indel CADD + AF + CSQ

Missense MissPred + AF

Non-missense SNVs CADD + AF + CSQ

Table 8.2: Description of the logistic regression models and the predictors for each. AF:
gnomAD allele frequency; CSQ: functional consequence; MissPred: the five missense-specific
predictors (SIFT, PolyPhen2, MPC, REVEL, FATHMM). TYPE: whether the variant is an
SNV or indel.

To evaluate the performance of each regression model, we calculated the sensitivity,

specificity, and Matthews Correlation Coefficient (MCC), defined in Equation 8.7 below.

The MCC is a robust performance metric for unbalanced data (Boughorbel et al., 2017),
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as is the case with our ClinVar variants since only 22.1% of the variants are pathogenic.

Additionally, the MCC is a useful stand-alone metric since a model will only have a high

MCC score if it also has both a high sensitivity and specificity.

Sensitivity =
TP

TP + TN
=

TP

P

Specificity =
TN

TN + FP
=

TN

N

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(8.7)

For each regression model, we split the appropriate variant groups into training (80%)

and testing (20%) datasets. The variant type and functional consequence are both cat-

egorical inputs to the models, so we converted these to a collection of dummy variables

representing each category which take on either 0 or 1. To avoid perfect multicollin-

earity due to the dummy variable trap, the first value alphabetically in each category

was dropped from the list. For the functional consequence this was 3’ UTR variants,

and for variant type this was SNVs. There were varying levels of missingness within the

predictors, so we imputed missing predictors by taking the median value of each pre-

dictor across the training data. This method is blunt and more sophisticated imputation

methods exist, but it has the advantage of simplicity, and it is easy to apply to other

datasets. The exception to this was that a missing minor allele frequency is set to zero,

since the median would be a poor estimate of the true frequency, which is less than

the minimum frequency observed in the entire dataset. Finally, we scaled the imputed

predictors to [0, 1] so all of the regression coefficients could be compared.

We fit the logistic regression models to the scaled and imputed training data taking the

ClinVar clinical significances as our output. We applied the same training imputation

and scaling to the testing data. During scaling, values in the testing data that fell out-

side [0, 1] were clipped to ensure the testing would be comparable to the training data.

We then applied the regression model to the scaled, imputed testing data to classify

each variant. Finally, where variants were split by type within a model, we combined

the individual predictions and calculated the performance metrics of the model on the

training and testing dataset. To try to minimise overfitting to the training data, we used

the metrics on the testing data only to compare the models. We used 1,000 bootstrap

resamples on the training and testing data to estimate a central 95% confidence interval

for each of the performance metrics. The results are shown in Figure 8.5 below.

141



CHAPTER 8. A BAYESIAN FRAMEWORK FOR CAUSALITY

Figure 8.5: The performance metrics (sensitivity, specificity and Matthews correlation coeffi-
cient (MCC)) of the five regression models on the ClinVar training and testing datasets.

We can see that Models 1, 2, and 5 perform comparably in terms of sensitivity, and Mod-

els 3 and 5 perform comparably in terms of specificity. Based on the overall performance

scores, we decided to use Model 5 as our main regression model to calculate the prior

probability of causality. However, it is worth noting that Model 1 performs well overall

and is a reasonable alternative if a simpler model is desired. The relative difference

in performance between Models 3 and 4 indicates that the selected missense-specific

predictors add value compared to using CADD alone. Relative to Model 1, splitting by

variant type (Model 2) does not appear to improve performance as much as splitting into

missense verses non-missense (Model 3). Finally, we note that given that the metrics

for the training and testing are broadly the same for all metrics, there does not appear

to be evidence of overfitting of each of the models to the training data.

The regression coefficients from Model 5 are shown in Table 8.3 below. Note that

these coefficients are the natural logarithm of their corresponding effect sizes, so the

larger a coefficient is in absolute value, the more important to the prediction model

it is. We can see that the predictor with the strongest effect on the output is the

allele frequency. Variants with high allele frequencies will have lower prior probabilities

of pathogenicity due to the fact that the vast majority of common variants in ClinVar

are Benign. For indels, the variant functional consequence is more important than

CADD scores. For missense variants, REVEL and FATHMM scores do well at classifying
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Pathogenic variants, compared to the well-known SIFT and PolyPhen scores. For non-

missense SNVs, CADD scores are important, but so too are some of the functional

consequences such as being a frameshift, splice-site, or stop-gained variant.

Predictor Indel Missense
Non-Missense

SNV

Intercept -407.268 -5.374 -34.553

Allele frequency -1404.457 -1970.702 -644.398

CADD 2.509 - 21.938

MPC - 1.549 -

PolyPhen2 - -0.024 -

REVEL - 9.412 -

SIFT - -1.115 -

FATHMM - 3.296 -

5’ UTR variant -460.211 - 25.719

Frameshift variant 412.750 - -

Inframe deletion 407.479 - -

Inframe insertion 405.489 - -

Intron variant 403.397 - 27.438

Splice acceptor variant 434.589 - 28.690

Splice donor variant 409.648 - 33.457

Stop gained 854.191 - 29.206

Stop lost - - 29.105

Synonymous variant - - 25.150

Table 8.3: List of the coefficients of regression Model 5, split into indels, missense variants
and non-missense SNVs.

While the selected regression model performs well, we wished to examine why variants in

the Benign or Pathogenic sets were mis-classified. Benign variants with a prior of 0.5 or

greater and Pathogenic variants with a prior less than 0.5 were labelled as “incorrect”.

All other variants were labelled as “correct”. Firstly, we calculated the proportion of

correctly and incorrectly classified variants that fell into each functional consequence

category, shown in Table 8.4 below. We can see that the majority (79.94%) of incorrectly

classified Benign variants are missense variants. However, a further 8.15% of variants are

in-frame deletions, compared to 0.27% of correctly classified Benign variants. Similarly,
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in the incorrectly classified Pathogenic variants, there are virtually no frameshift, splice-

site and stop gained variants (which are strongly present in the correctly classified group),

and the majority are missense (66.32%) or intronic (19.91%).

Consequence
Benign Pathogenic

% INC
CORR INC CORR INC

3’ UTR 2.79% 0.00% 0.00% 0.30% 0.12%

5’ UTR 1.20% 0.00% 0.00% 1.50% 1.39%

Frameshift 0.05% 1.57% 25.60% 0.30% 0.29%

Inframe deletion 0.27% 8.15% 1.02% 0.00% 13.83%

Inframe insertion 0.23% 0.00% 0.00% 3.14% 13.21%

Intron 25.63% 6.90% 1.22% 19.91% 1.14%

Missense 18.04% 79.94% 30.02% 66.32% 5.78%

Splice acceptor 0.01% 0.47% 6.64% 0.15% 0.37%

Splice donor 0.02% 1.25% 9.74% 0.15% 0.56%

Stop gained 0.02% 1.41% 25.69% 0.30% 0.26%

Stop lost 0.00% 0.16% 0.01% 0.15% 66.67%

Synonymous 51.75% 0.16% 0.06% 7.78% 0.17%

Table 8.4: The proportion of each functional consequence in the correctly and incorrectly
classified Benign and Pathogenic variants, as well as the total proportion of incorrectly classified
variants per consequence. CORR: correctly classified; INC incorrectly classified.

Based on the above, we examined the distribution of the scaled, imputed deleteriousness

predictors, as shown in Figure 8.6a below. We know from the regression coefficients

that REVEL and FATHMM scores are important for the missense model and that CADD

scores are important for the indel and non-missense models. We can see that for all three

scores, the distribution of incorrectly classified Pathogenic variants is shifted down com-

pared to correctly classified Pathogenic variants. Similarly, the distribution of incorrectly

classified Benign variants is shifted up compared to correctly classified Benign variants.

Violin plots for the allele frequencies less than 5% are shown in Figure Figure 8.6b. The

densities for the incorrectly classified categories largely overlap the densities for their

corresponding correctly classified categories, so allele frequency is not likely to play as

large a role in the misclassification as the other predictors. Based on the above, the dele-

teriousness metrics are likely what is resulting in the misclassification of missense variants.
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(a)

(b)

Figure 8.6: Violin plots for Benign and Pathogenic variants split by whether they were mis-
classified or not. (a) The deleteriousness metrics; (b) The allele frequency less than 5%. BEN:
Benign; PATH: Pathogenic; CORR: correctly classified; INC incorrectly classified.
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As a positive control, we also examined all variants of unknown significance (VUS) from

ClinVar. For these variants, there is no clear accumulation of evidence for or against

pathogenicity, so we expect a more mixed distribution of the prior probabilities for causal-

ity for VUS than those of Benign or Pathogenic variants. As before, we selected variants

on the autosomal chromosomes, but relaxed the requirement for multiple submitters

to have supported the significance. This resulted in 405,808 VUS in total. Since we

are no longer evaluating the performance of the regression model, we do not need the

training and testing subsets of the Pathogenic/Benign variants, so we re-trained Model

5 with the entire Pathogenic/Benign data. Using the resulting regression coefficients,

we calculated prior probabilities of causality for all Benign variants, Pathogenic variants,

and variants of unknown significance.

Boxplots of these prior probabilities are shown in Figure 8.7. We can see that the vast

majority of Benign variants receive a low prior probability of causality, and the majority

of Pathogenic variants receive a high prior probability of causality, as expected. The

distribution of prior probability for VUS lies between those of Benign and Pathogenic

variants. Additionally, the majority of VUS have a prior probability less than 0.5, indic-

ating that they are less likely to be pathogenic. This is consistent with what we might

expect, given that variants with no clear evidence for pathogenicity are in general more

numerous than known pathogenic variants.

Figure 8.7: Boxplots of the prior probabilities of causality for Benign variants (green), variants
of unknown significance (blue), and Pathogenic variants (red) from ClinVar.
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8.5 Mendelian Phenotype: CEPH 1463 Pedigree

To test the full Bayesian inference model, we examined the CEPH 1463 pedigree, and

the pseudo-causal variants as defined in Subsection 7.3.2 above. Using the same input

data as for the evaluation of pVAAST and PERCH above, we calculated Bayes factors

for each variant using the 20 unique phenotype configurations matching the 23 auto-

somal pseudo-causal variants. Given that these data had been converted to GRCh37,

we re-generated the ClinVar dataset that had been curated on this reference genome

(date downloaded: 29/01/22, see “Web Resources”, Subsection A.2.7) to construct the

prior probability of causality. Using the same selection criteria as before, we retained

75,458 variants (16,651 Pathogenic and 58,807 Benign). Variants also present in the

CEPH 1463 pedigree were removed prior to training. The ClinVar variants were annot-

ated using the GRCh37 versions of CADD, gnomAD and dbNSFP. The regression model

was applied exactly as described above (using the entire dataset to train the regression

model), and prior probabilities for causality were calculated for every variant examined

in the pedigree using the coefficients of Model 5.

For each phenotype configuration we calculated the posterior probability of causality

based on Equation 8.1 above and used this to rank all variants in the CEPH 1463 pedi-

gree. The results of this are shown in Table 8.5 below. We can see that the Bayes factors

for each of the pseudo-causal variants ranked joint first amongst all variants evaluated.

This is consistent with the fact that the pseudo-causal variants were selected to have

perfect co-segregation, so there should be no variants with a better Bayes factor. The

prior probabilities for causality, on the other hand, are mixed with both high and low

values. This is expected since the pseudo-causal variants were not selected based on an

allele frequency filter, so we will be able to examine how the model behaves on for rare

and common variants.

Variants with a prior of at least 0.5 have an allele frequency of 0.2% or lower. Conversely,

variants with a prior less than 0.5 had an allele frequency of at least 1.6% (with the ex-

ception of the variant in SMYD1, discussed below). This behaviour is consistent with

what we expect from the regression model, given that Pathogenic variants in ClinVar are

rare in the general population. The missense variant in SMYD1 has an allele frequency

of 0.22%. In the missense regression model, REVEL and FATHMM scores are the next

best predictors after allele frequency. However, the variant’s REVEL score was low at

0.18, and the FATHMM score was 1.8, indicating that the variant is not deleterious. So,

although the variant is rare in the general population and ranked highly by CADD, there
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is disagreement with the other deleteriousness predictors, resulting in this variant having

a low prior.

The variability in the priors is reflected in the posterior probability for causality. The

rare pseudo-causal variants (with the exception of the SMYD1 variant) ranked in the

top 10 variants, with a posterior probability of causality higher than 99.999%. This

shows that our model performs well at identifying rare, deleterious variants that follow

a dominant Mendelian inheritance pattern. The prior (and posterior) probabilities for

common pseudo-causal variants are close to zero, indicating that even variants with

high co-segregation scores will receive low posterior probabilities if their priors indicate

that they are not relevant to pathogenicity. This is important, as we expect to observe

low-impact common variants that co-segregate with a phenotype by chance, given the

density of variants generated by NGS data.
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BF
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OR4C15 stop gained 31 0.204% 4,650.537 1∗ 99.995% 100.000% 4

ECHDC2 stop gained 31 0.002% 2,314.488 1∗ 99.970% 100.000% 7

TLR10 stop gained 33 0.002% 4,666.715 1∗ 99.970% 100.000% 6

NRIP2 stop gained 31 0.084% 4,650.537 1∗ 99.871% 100.000% 6

PKN3 missense 31 0.001% 3,689.634 1∗ 97.466% 99.999% 9

SMYD1 missense 31 0.223% 1,167.091 1∗ 0.263% 75.451% 370,159

OR1J1 stop gained 31 1.608% 4,666.715 1∗ 0.001% 2.380% 1,637,140

TSACC missense 36 2.258% 4,666.715 1∗ 0.000% 0.000% 2,480,335

OR10J1 stop gained 35 15.426% 4,666.715 1∗ 0.000% 0.000% 2,486,995

OR5K2 stop gained 32 18.811% 3,729.780 1∗ 0.000% 0.000% 2,470,523

CDH15 stop gained 36 19.100% 2,314.488 1∗ 0.000% 0.000% 2,585,340

ZNF80 stop gained 33 29.877% 4,666.715 1∗ 0.000% 0.000% 2,516,683

KRT75 missense 39 19.080% 3,689.634 1∗ 0.000% 0.000% 2,575,685

GPANK1 missense 35 19.898% 4,650.537 1∗ 0.000% 0.000% 2,546,616

SCRN3 frameshift 36 35.002% 3,729.780 1∗ 0.000% 0.000% 2,475,800

TTC27 missense 46 21.296% 4,650.537 1∗ 0.000% 0.000% 2,551,188
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C17orf107 stop gained 35 37.736% 3,729.780 1∗ 0.000% 0.000% 2,443,860

ZACN stop gained 35 39.629% 4,650.537 1∗ 0.000% 0.000% 2,593,918

SLC6A18 stop gained 31 39.958% 4,666.715 1∗ 0.000% 0.000% 2,553,387

OR4C16 stop gained 33 40.878% 4,650.537 1∗ 0.000% 0.000% 2,609,627

NEXN missense 36 39.523% 4,666.715 1∗ 0.000% 0.000% 2,570,431

SLC22A10 stop gained 39 57.542% 4,650.537 1∗ 0.000% 0.000% 2,614,966

SCEL missense 34 57.313% 3,689.634 1∗ 0.000% 0.000% 2,632,456

Table 8.5: The results for the pseudo-causal variants on applying the fully Bayesian inference model to the CEPH 1463 pedigree. Variants are
ordered by their posterior probability for causality. Shown for each variant is: the gene, the functional consequence, the CADD v1.6 score, the
gnomAD v2.1.1 population maximum allele frequency (AF), the Bayes factor (BF), the prior and posterior probabilities of causality. An asterisk (∗)
beside a rank indicates that the rank is joint with other variants in that specific phenotype configuration. Note that the probabilities are rounded to
three decimal places.
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8.6 Complex Phenotype: Utah Pedigrees

To examine the model on a complex phenotype, we applied the full Bayesian inference

model to the three Utah pedigrees harbouring a variant prioritised from the SCHEMA-

based IBS filtering from Chapter 6. Bayes factors were calculated using the Linear prior

for the penetrance and phenocopy rates, as described above. While the General prior

probability of causality described in the previous section classifies ClinVar variants well,

there is no guarantee that it will perform as well at identifying variants that are implic-

ated in schizophrenia. To mitigate this, we generated a new prior probability of causality

based on the SCHEMA filtering analysis. We took Model 5 in the previous section as

the basis for our regression model but removed any predictor that was not present in

SCHEMA. Note that in the SCHEMA filtering analysis, the minor allele count (MAC)

was used to prioritise ultra-rare variants instead of the minor allele frequency (MAF).

However, for common and low frequency variants, the MAC may be less representative

of the true population MAF, especially as the total observed alleles (the denominator of

the MAF calculation) is not specified. For example, a variant may have a high MAC,

but still be rare across all genomic ancestry groups. For this reason, we opted to use the

maximum MAF across genomic ancestry groups as before.

For the “indel” and “non-missense SNV” regression models we used allele frequency and

functional consequence as predictors, and for the “missense” model we used allele fre-

quency and the MPC score. The only SCHEMA prioritisation step that is not accounted

for is the pLI scores. However, since pLI is a gene-based score, a benign and pathogenic

variant in the same gene would get the same score, so it is not appropriate to include

pLI scores as part of this regression model. All other aspects of the model (training vs

testing, imputation, scaling, etc.) were implemented as described for the General prior

probability of causality above.

The performance metrics for the regression models underlying the General prior and the

SCHEMA prior are shown in Figure 8.8 below. The SCHEMA prior regression does not

perform as well as the General prior regression, which is to be expected as we have

removed some predictors which are known to be useful to the model e.g. CADD and

REVEL. That said, the regression model for the SCHEMA prior performs reasonably well

overall, and the coefficients should suffice for generating a prior probability of causality

that reflects the prioritisation paradigm in the SCHEMA filtering analysis. The regression

coefficients using the entire ClinVar dataset (i.e. not split into training/testing, with the

overlapping variants from the pedigrees removed) are shown in Table 8.6.
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Figure 8.8: The performance metrics (sensitivity, specificity and Matthews correlation coeffi-
cient (MCC)) of the regression model underlying the SCHEMA prior compared to the regression
model underlying the General prior at classifying ClinVar variants.

Predictor Indel Missense
Non-Missense

SNV

Intercept -428.689 1.083 -22.407

Allele frequency -1232.208 -2728.476 -947.059

MPC - 5.669 -

5’ UTR variant -376.139 - 19.298

Frameshift variant 435.214 - -

Inframe deletion 429.839 - -

Inframe insertion 427.746 - -

Intron variant 425.312 - 19.906

Splice acceptor variant 452.399 - 28.573

Splice donor variant 432.194 - 29.158

Stop gained 819.443 - 30.580

Stop lost - - 24.971

Synonymous variant - - 16.892

Synonymous variant - - 25.150

Table 8.6: List of the coefficients of the regression models underlying the SCHEMA prior,
split into indels, missense variants, and non-missense SNVs.
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As with the General prior, we examined the variants that had been misclassified by the

SCHEMA prior. The proportion of correctly and incorrectly classified variants that fell

into each functional consequence cattegory is shown in Table 8.7. These proportions are

broadly the same as those calculated under the General prior Table 8.4.

Consequence
Benign Pathogenic

% INC
CORR INC CORR INC

3’ UTR 2.73% 0.00% 0.00% 0.35% 0.13%

5’ UTR 1.17% 0.00% 0.00% 1.75% 1.5%

Frameshift 0.05% 0.99% 25.47% 0.35% 0.24%

Inframe deletion 0.27% 6.16% 1.02% 0.00% 13.59%

Inframe insertion 0.23% 0.00% 0.00% 3.66% 13.91%

Intron 25.66% 0.00% 0.00% 57.42% 2.23%

Missense 17.19% 91.26% 31.67% 24.96% 5.63%

Splice acceptor 0.01% 0.37% 6.60% 0.17% 0.37%

Splice donor 0.02% 0.49% 9.69% 0.00% 0.25%

Stop gained 0.02% 0.62% 25.53% 0.70% 0.22%

Stop lost 0.00% 0.12% 0.01% 0.00% 33.33%

Synonymous 52.65% 0.00% 0.00% 10.65% 0.21%

Table 8.7: The proportion of each functional consequence in the correctly and incorrectly
classified Benign and Pathogenic variants, as well as the total proportion of incorrectly classified
variants per consequence under the SCHEMA prior. CORR: correctly classified; INC incorrectly
classified.

We generated posterior probabilities for causality for the family private variants in ped-

igrees K1546, K1494, and K1524. To ensure our results were consistent with the

SCHEMA filtering analysis, we considered variants in genes with pLI > 0.9. For ease of

presentation, we have shown the top 10 variants ranked by their posterior probability of

causality in Table 8.8. The variants that had been prioritised from Chapter 6 are shown

in green. The IBS-prioritised variants were ranked at least 4th in each pedigree, and the

posterior probability for causality was over 98% for all three variants. The ranking of the

Bayes factors across all variants scored is moderate, which is consistent with the fact

that the variants have a reduced co-segregation pattern. However, for each of the three
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IBS-prioritised variants, the prior probability of causality is high (greater than 97%),

which results in the large posterior probabilities of causality.

For the posterior ranking, six variants ranked higher than the IBS-prioritised variants

overall in their respective pedigees. Of these six, all were rare or absent from gnomAD,

five were LoF variants, and the remaining variant was missense. Ultra-rare LoF variants

tend to receive a high prior due to the fact that ClinVar LoF variants are almost exclus-

ively pathogenic. Missense variants require additional evidence from the MPC score to

be causal, and this is likely why the five LoF variants are ranking higher according to the

posterior ranking than the three IBS-prioritised missense variants. Based on the posterior

probabilities of the three prioritised variants in their respective pedigrees, we can see that

the missense variant in ATP2B2 has the most evidence for causality. Additionally, the

Bayes factor for the ATP2B2 variant is also the largest out of the three, showing that

it has the most evidence for causality based solely on co-segregation within the pedigrees.

While it is reassuring that the model gave high posterior probabilities to the IBS-

prioritised variants, we were also interested in the other variants prioritised by the

Bayesian model as shown in Table 8.8. One finding of particular interest is a frameshift

variant in KDM2B that perfectly co-segregates with schizophrenia in pedigree K1546.

This variant has a Bayes factor of 46.981 (the highest achieved in the pedigree), a prior

probability of causality of 78.259% and a posterior probability of causality of 99.412%.

This frameshift variant is rare in the general population (maximum allele frequency of

0.4%) but was not sufficiently rare to have been included in the SCHEMA-based analysis

in Chapter 6 (minor allele count of 709).

KDM2B (lysine demethylase 2B) is involved in histone demethylation and has been linked

to defects in embryonic development (Boulard et al., 2015). A recent study identified

an ultra-rare missense variant in this gene perfectly co-segregating with schizophrenia in

a Japanese pedigree, using linkage analysis and targeted exome sequencing (Yokotsuka-

Ishida et al., 2021). The expression of KDM2B was found to be halved in the proband

of this pedigree compared to five unrelated controls, and the psychiatric symptoms were

more severe in the variant carriers compared to their non-carrier relatives. The authors

suggest that haploinsufficiency of this gene is likely contributing to schizophrenia in this

pedigree. The frameshift variant we observed in pedigree K1546 is present in the first

exon of KDM2B, so if haploinsufficiency of this gene is implicated in schizophrenia, it

is possible that this loss-of-function variant at the start of the amino acid chain may be

having a similar effect in pedigree K1546.
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An ultra-rare missense variant in PBRM1 was observed in pedigree K1494 that had a

reduced co-segregation pattern with schizophrenia. This variant has a Bayes factor of

5.102 (the second highest achieved in the pedigree), a prior probability of causality of

79.955% and a posterior probability of causality of 95.317%. The variant wasn’t given

an MPC score, so was removed from the previous analysis in Chapter 6. PBRM1 (poly-

bromo 1) is known to play a role in transcriptional activation (O’Leary et al., 2016),

and is found to be expressed in many tissue types, including the brain (Lonsdale et al.,

2013). GWAS for schizophrenia (Ikeda et al., 2019) and bipolar disorder (Mullins et al.,

2021) have shown associations with PBRM1, and recently a SNP on chr3p21.1 (which

contains PBRM1) was found to be associated with schizophrenia from a trio-based WES

study (M. Li et al., 2020).

Finally, an ultra-rare missense variant in TTBK1 in K1524 co-segregated perfectly with

schizophrenia. This variant has a Bayes factor of 6.039 (the highest achieved in the

pedigree), a prior probability of causality of 87.199% and a posterior probability of

causality of 97.627%. This variant had a low MPC score of 1.04 and so was not included

in the analysis in Chapter 6. TTBK1 (tau tubulin kinase 1) is involved in the regulation of

the phosphorylation of the tau protein (O’Leary et al., 2016) and is found to be expressed

predominantly in brain tissue types (Lonsdale et al., 2013). A de novo missense variant

in this gene has been implicated in childhood-onset schizophrenia (Ambalavanan et al.,

2016).
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chr1:35189207:G:A SFPQ stop gained 0 - 0.000% 1.550 6,349∗ 99.937% 99.959% 1

chr2:72135150:G:T CYP26B1 stop gained 76 - 0.083% 4.116 1,276∗ 99.821% 99.956% 2

chr4:68322867:C:CG YTHDC1 frameshift 0 - 0.000% 1.318 14,063∗ 99.883% 99.912% 3

chr3:10360021:G:A ATP2B2 missense 1 2.23 0.003% 6.277 719∗ 97.372% 99.572% 4

chr6:130120959:G:T L3MBTL3 splice donor 322 - 0.410% 1.295 17,727∗ 97.372% 99.504% 5

chr12:121580827:CTG:C KDM2B frameshift 709 - 0.421% 46.981 1∗ 78.259% 99.412% 6

chr19:41986225:T:G ATP1A3 missense 0 3.10 0.000% 1.055 17,797∗ 99.106% 99.152% 7

chr19:41986226:A:G ATP1A3 missense 0 2.91 0.000% 1.055 17,797∗ 98.894% 98.951% 8

chr6:75117532:C:T COL12A1 missense 0 1.23 0.000% 6.277 719∗ 92.609% 98.745% 9

chr3:39410844:G:A RPSA missense 0 N/A 0.000% 6.277 719∗ 92.401% 98.707% 10

(a)
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chr5:136172478:AT:A SMAD5 frameshift 11 - 0.013% 0.981 11,437∗ 99.883% 99.881% 1

chr14:71724684:A:G SIPA1L1 missense 0 1.26 0.000% 10.608 1∗ 92.902% 99.285% 2

chr19:42232651:A:G GSK3A missense 0 2.39 0.000% 2.056 3,696∗ 97.989% 99.012% 3

chr16:30669556:G:A FBRS missense 0 0.34 0.000% 10.608 1∗ 81.748% 97.939% 4

chr15:87929240:A:G NTRK3 missense 4 1.49 0.003% 2.056 3,696∗ 94.047% 97.014% 5

chr11:8712724:G:A ST5 missense 2 1.95 0.003% 0.981 11,437∗ 96.365% 96.297% 6

chr22:18083561:C:T PEX26 missense 25 0.68 0.014% 5.102 2,199∗ 81.066% 95.623% 7

chr3:52634810:G:A PBRM1 missense 61 N/A 0.051% 5.102 2,199∗ 79.955% 95.317% 8

chr16:53462597:A:C RBL2 missense 54 0.91 0.051% 10.608 1∗ 65.417% 95.253% 9

chr11:67250601:G:T KDM2A missense 1 0.92 0.001% 2.056 3,696∗ 89.525% 94.616% 10

(b)
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chr16:70557024:C:CTA SF3B3 frameshift 1 - 0.001% 0.724 9,508∗ 99.883% 99.839% 1

chr10:99610923:T:C SLC25A28 missense 0 2.12 0.000% 1.608 2,576∗ 97.251% 98.272% 2

chr20:51674280:T:C ATP9A missense 0 0.93 0.000% 6.039 1∗ 89.917% 98.177% 3

chr6:43257902:C:T TTBK1 missense 8 1.04 0.013% 6.039 1∗ 87.199% 97.627% 4

chr7:5313814:A:T TNRC18 missense 7 0.87 0.009% 6.039 1∗ 86.443% 97.469% 5

chr2:233198115:C:T INPP5D missense 11 N/A 0.010% 6.039 1∗ 82.282% 96.557% 6

chr10:75398805:G:A ZNF503 missense 0 1.51 0.000% 1.608 2,576∗ 94.566% 96.550% 7

chr6:157200828:T:G ARID1B missense 23 N/A 0.016% 6.039 1∗ 77.832% 95.496% 8

chr3:170178789:T:C PHC3 missense 2 2.00 0.002% 0.724 9,508∗ 96.678% 95.472% 9

chr2:86466529:A:G KDM3A missense 0 0.10 0.000% 6.039 1∗ 77.199% 95.337% 10

(c)

Table 8.8: The top 10 variants ranked by their posterior probability of causality for pedigrees: (a) K1546; (b) K1494; and (c) K1524. The variants
identified from the filtering approach in Chapter 6 are shown in green. Other variants of interest are marked in yellow. Metrics displayed in red would
not have passed the SCHEMA hard-filtering thresholds. Ranks marked with an asterisk (∗) are joint with other variants in that pedigree. Variants
with MPC marked as “N/A” had no score in dbNSFP for the vep canonical transcript. CHR: chromosome; POS: genomic position on GRCh38;
REF: reference allele; ALT: alternate allele; CSQ: consequence; MAC: minor allele count in gnomAD; AF: population maximum allele frequency in
gnomAD; BF: Bayes factor.
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8.7 Conclusions

Overall, our novel Bayesian inference model performs well at identifying candidate disease-

causing variants that have been prioritised using commonly applied filtering approaches,

both for Mendelian and complex phenotypes. The model also discovers additional genes

that are of interest to schizophrenia that were missed by the strict filtering approach

applied in Chapter 6, highlighting the benefits of a more nuanced, integrated approach.

The analysis is not limited by the frequency of the variants as we found with pVAAST,

and the various scores are consistent with our expectations. Finally, the resulting metric

used to prioritise variants is a well-defined probability, which allows for a more readily

interpretable comparison of the evidence for causality of different variants across pedi-

grees.
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Chapter 9

Conclusions and Future Work

This chapter summarises the results and conclusions of the primary analysis chapters of

my thesis. I highlight some of the strengths and weaknesses of the individual analyses

and suggest some future directions for this research.

9.1 Converting Single Nucleotide Variants Between

Genome Builds

Chapter 3 investigated the known instabilities in converting SNVs between builds GRCh37

and GRCh38 of the human reference genome with the commonly used tools liftOver

and CrossMap. I identified every position between the builds that either did not have a

uniquely invertible mapping or mapped to a different chromosome, approximately 0.5%

of either build. These instabilities were primarily located in either segmental duplications

and/or sections of the genome that were updated between builds. I applied a similar

methodology to two WGS samples and showed that the unstable positions were the

same as previously characterised. Pre-filtering SNVs at these unstable positions prior

to conversion resulted in variants that were entirely stable to the conversion process.

This pre-filtering would have removed the missense variant we described in Section 3.1

which swapped to a different chromosome following conversion and whose CADD score

changed from 20.8 to 0.009. The methodology implemented here is easily generalisable

to any pairs of genome builds, requiring only a chain file. I have included the source

code to run the algorithm as well as BED files describing the novel CUPs on GitHub

(see “Web Resources”, Subsection A.2.2).

Since two independent conversion tools generate identical CUPs, I concluded that these

regions are determined by the chain files. This is important to note, as alternative chain

files exist for converting between GRCh37 and GRCh38, and so the full algorithm would

need to be applied for different chain files. However, the chain files used here are the only

ones supplied by the authors of liftOver and CrossMap. While the full-genome data

give insight into the behaviour of SNVs under build conversion, this does not account
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for regions spanning multiple base pairs, as conversion tools are typically sensitive to

this (Luu et al., 2020). A simple resolution to this might be to exclude regions that

overlap any unstable positions, but this could potentially remove a large proportion of

the input data. Recently, the Telomere-to-Telomere (T2T) consortium released a new

build of the human reference genome, predominantly assembled using ultra-long read

sequencing (Nurk et al., 2022). This new build (T2T-CHM13) uncovers the remaining

8% of the genome that has eluded sequencing technologies since the first release of the

human genome over 20 years ago. Identifying conversion instabilities between this new

build and the two examined here would be a straightforward extension of my work, and

will no doubt prove crucial as T2T-CHM13 becomes more widely used.

9.2 CNV Calling Pipeline for Family-Based WGS Data

In Chapter 4, I present a novel CNV calling pipeline for family-based WGS data. This

work was conceived and implemented jointly with a member of our research team (Dr

Niamh Ryan). This pipeline implements a consensus of four CNV calling methods, com-

prising two RD-based methods, and two PR/SR-based methods. CNVs were required to

have been called by at least two methods, but by considering calls from close relatives,

we were able to recover CNVs that had no consensus call. Additionally, we benchmarked

this pipeline and a method designed for the same data (Khan et al., 2018) against a

set of curated “Gold Standard” CNV calls from a reference sample. We found that our

pipeline outperformed all other comparison pipelines at calling CNVs of length at least

1kbp. Given the wide detection ability of CNV calling methods, both individually and as

a pair (Kosugi et al., 2019), this benchmarking evaluation is important when selecting

a consensus, and is not often performed prior to CNV analysis.

We decided to maximise the ability of our pipeline at detecting true positives, but by

design this will lead to the inclusion of false positives, which our pipeline does not ad-

dress. One resolution to this would be to consider CNV genotyping software to provide

probabilistic estimates of the veracity of the CNV calls. Such methods often require

additional tuning and may have an impact on the performance metrics but have the

ability to remove putative CNV calls that are the result of sequencing artefacts. Another

limitation of this work is the curated “Gold Standard” CNV calls. This collection was

generated from five different CNV call sets on the same reference sample, but a low over-

lap was observed between these call sets. Some CNV calls were identified using long-read

sequencing, which may not be detectable using short-read sequencing. Additionally, it

was not possible to determine the type for each CNV (i.e. deletion or duplication), so
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only CNV regions were examined. CNV callers are known to have variable performance

on CNV type and length, so resolving this issue would provide greater insights into the

performance of the benchmarked pipelines.

9.3 WGS Study of Discordant Identical Twins

In Chapter 5, I examined WGS data in a cohort of 17 monozygotic twins discordant for

psychiatric illness. I examined various classes of common and rare discordant variants, i.e.

not present in the co-twin. This analysis identified seven genes containing rare, family-

private, predicted-deleterious, missense variants present in affected individuals. One such

variant was found in a sample with major depressive disorder in POLG, which has pre-

viously been implicated in mood disorders and psychosis. Seven rare, gene-disrupting

CNVs in affected individuals were also observed, one of which (a duplication at 3q29 in

a sample with bipolar disorder) was predicted to be pathogenic in ClinGen. Deletions of

this region are associated with schizophrenia, but duplications of this region have been

observed in individuals with autism and intellectual disabilities (Rehm et al., 2015). I

also examined other likely sources of schizophrenic genomic risk (regulatory variants,

somatic CNVs, multi-nucleotide expansions) but observed no conclusive findings from

these discordant variants. To the best of our knowledge this is the largest NGS study

of discordant, psychiatric MZ twins. A previous study on eight MZ twins discordant for

schizophrenia did not report any discordant de novo variants in protein-coding regions

(Tang et al., 2017).

Somatic mosaicism has been implicated as a likely contributor to schizophrenia risk in

discordant MZ twins using WES data (Nishioka et al., 2018). However, the depth of

coverage for WGS data is likely not sufficient to accurately detect somatic variants,

which may explain the negative findings of our somatic CNV analysis. Additionally, we

have identified variants from blood-derived DNA, but there is no guarantee that these de

novo variants will also be present in brain tissue, which has been shown to be important

for schizophrenia (Fullard et al., 2019). Other plausible biological factors such as DNA

methylation may be driving the discordance between the twins, which has been examined

previously for schizophrenia (Castellani et al., 2015; Q. Li et al., 2021). Long-read se-

quencing technologies from Oxford Nanopore allow for the simultaneous examination of

DNA sequences as well as methylation changes (Jain et al., 2016), so this could be an

attractive option for targeted re-sequencing of known risk genes.
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On a phenotype level, it is still possible that the “unaffected” twin within a pair may go

on to receive a psychiatric diagnosis, although this is unlikely for the twin-pairs that were

sampled after the typical age-of-onset. Given the age profile of some of the twin pairs,

some of them may have children old enough to have a reliable psychiatric diagnosis. A

follow up study including offspring of the twin pairs could allow for the examination of

transmission and segregation of the prioritised variants in the next generation. While I

have identified post-zygotic variants in blood tissue, almost 10% of de novo variants are

estimated to occur post-fertilization and prior to progenitor germ cell specification and

are likely to be present in both germ and blood cells (Sasani et al., 2019). Additionally,

2.1% of de novo variants are estimated to occur after the twinning event, but prior

to progenitor germ cell specification (Jonsson et al., 2021). Given these relatively low

transmission rates, if the variants identified here were found in affected offspring of the

MZ twins, this would provide additional support for these variants as disease-causing

within that pedigree.

9.4 WGS Study of Multiplex Utah Pedigrees

In Chapter 6, I examined WGS data from a cohort of 41 individuals from seven Utah

pedigrees multiply affected with schizophrenia. In the absence of sufficient sample num-

bers to perform linkage analysis, I applied an IBS filtering approach to prioritise family-

private variants based on the results of the recent SCHEMA analysis. This analysis did

not identify any ultra-rare variants that perfectly co-segregated with schizophrenia in

any pedigree, but I did identify three ultra-rare missense variants in three pedigrees that

had a reduced co-segregation pattern. The most compelling evidence was from the gene

ATP2B2 in pedigree K1546 which has been implicated in a meta-analysis of common

variants from schizophrenia and autism samples (Anney et al., 2017). In pedigree K1524,

I observed one schizophrenia risk CNV (16p11.2 proximal duplication), which was present

in the only affected sample not carrying a prioritised ultra-rare missense variant. The

methodology implemented here is robust and follows practices established by large-scale

genomics consortia.

The IBS filtering method implemented here is non-statistical, so cannot quantitatively

compare the amount of evidence for causality for the three prioritised variants. Addi-

tionally, it is possible that some of the un-sequenced unaffected individuals may carry

the prioritised variant, which would then exclude the prioritised variants based on the

co-segregation criteria. While I did not allow for variants to be present in the unaffecteds

(i.e. reduced in-family penetrance), this may be overly strict given that no Mendelian
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sub-types of schizophrenia are known (Giusti-Rodŕıguez & Sullivan, 2013). Relaxing this

restriction may reveal other variants of interest, although the interpretation may be chal-

lenging given the low sample numbers. This work is an exploratory analysis of these seven

pedigrees, and while the three missense variants are interesting, there may be additional

genetic factors contributing to schizophrenia risk in these pedigrees. Other classes of

rare DNA variants such as CNVs or multi-nucleotide repeats may also be co-segregating

with schizophrenia in these pedigrees, which warrant further investigation.

9.5 Evaluation of Two Software Tools for Disease-

Gene Prioritisation

Chapter 7 evaluates the ability of pVAAST and PERCH to detect candidate causal vari-

ants based on co-segregation within a pedigree. Using a synthetic Mendelian phenotype

from the three-generational CEPH 1463 pedigree, I showed that pVAAST performs well

at identifying the pre-selected pseudo-causal variants. PERCH, on the other hand, cor-

rectly identified only 14 of the 24 pre-selected pseudo-causal variants, and the remaining

10 variants received either no score or a score indicating evidence against causality. I

attempted to explore the components of PERCH’s underlying co-segregation model but

could not explain this unexpected behaviour. I estimated the null distribution of the

scores for each pseudo causal gene using both tools using a permutation test, and the

significance values broadly reflected the above observations about the tools. Next, I

applied pVAAST to the three pedigrees from Chapter 6, but the three variants prioritised

from the IBS filtering strategy did not score well. The co-segregation scores for two

of the variants were zero, while the third was not consistent with other co-segregation

scores in the same pedigree on visual inspection.

One major limitation with this benchmarking is the time taken to run the individual

tools. PERCH took approximately 1-2 minutes to complete scoring on the CEPH 1463

pedigree, compared to 30-45 minutes for pVAAST on the 24 pseudo-causal genes only.

This means that generating a sufficient number of permutations to accurately estimate

the null distribution can be time-consuming, (e.g. over one month for 1,000 permutations

for pVAAST). It is likely that pVAAST performs poorly on the three Utah pedigrees because

the prioritised variants are ultra-rare in gnomAD, and pVAAST estimates allele frequencies

from the exome aggregation consortium (ExAC), a predecessor of gnomAD. I was unable

to supply external allele frequencies to pVAAST but resolving this issue might allow

pVAAST to score a larger number of variants in the pedigrees. The limited ability of

the tools to detect the variants prioritised from my IBS filtering make them unusable as
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comparison tools for my data, so I removed them from further analysis.

9.6 Bayesian Inference Model to Measure Co-Segre-

gation in Pedigrees

In Chapter 8, I developed a Bayesian model to measure pedigree-based causality using

NGS data. The Bayes factor calculation extended previous work (Mohammadi et al.,

2009) and compares the likelihood that a variant is causal for a phenotype in a pedi-

gree to the likelihood that the variant is not causal. The prior probability for causality

for a variant is determined by functional consequence, allele frequency and deleterious

measures. These probabilities were calculated from coefficients derived from a logistic

regression model, trained using benign and pathogenic variants taken from ClinVar. The

resulting posterior probability for causality was used to rank variants in a given pedigree.

This novel Bayesian model has the advantage over tools like pVAAST and PERCH that the

resulting metric is a well-defined probability that incorporates prior information about

the models in a more coherent format. This final metric is more readily interpreted and

enables a more consistent comparison across pedigrees.

I applied this model to the CEPH 1463 pedigree described in Chapter 7, to determine

how well the model could identify the pseudo-causal variants from a synthetic Mendelian

phenotype. The Bayes factor for each pseudo-causal variant was the joint highest in the

pedigree, as expected. The prior probabilities for causality were negatively correlated

with the allele frequency, which was expected given that pathogenic variants in ClinVar

are rare in the general population. Next, I applied the model to the three pedigrees from

Chapter 6, and the three prioritised variants were in the top four of all family private

variants in constrained genes for each pedigree. Finally, I extended our search to other

highly scoring variants in these three pedigrees. This uncovered a frameshift variant in

KDM2B observed in pedigree K1546 that perfectly co-segregated with schizophrenia.

This variant was rare in the general population, but not sufficiently rare to have been

included in the IBS filtering in Chapter 6. A missense variant in this gene has been

reported to co-segregate with schizophrenia in a Japanese pedigree (Yokotsuka-Ishida

et al., 2021). This shows the benefit of a more integrated approach to measuring co-

segregation compared to a blunt IBS filtering method.

Despite its advantages over other approaches studied in this thesis, the novel Bayesian

model has its limitations. Since the prior probability for causality is heavily dominated

by allele frequency, rare variants can expect to have high posterior probabilities unless
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they have low Bayes factors. The minimum value a Bayes factor can take will be

influenced by the number of unaffected individuals in the pedigree carrying the variant.

Since there were low numbers of unaffected individuals, the model may not be able

to correctly down-weight ultra-rare variants due to a lack of noteworthy co-segregation

scores. However, information from multiple pedigrees can be combined by multiplying

Bayes factors for the same variant, so expanding the search space to non-family private

variants may help alleviate this issue. This will depend on polygenicity of the phenotype

being examined, and how likely it is that many rare variants have an influence. The

prior distributions for the parameter terms were selected for ease of integration into

the model. Facilitating other distributions (e.g. the Beta distribution) could allow for

greater flexibility for modelling phenotypes, although this would result in a non-closed-

form calculation for the Bayes factors, which may come at the cost of the runtime of the

code. An additional modification would be to allow for age-specific distributions, which

would be particularly useful for schizophrenia.

9.7 Final Remarks

In this thesis, I identified and characterised rare DNA variants likely implicated in schizo-

phrenia and related disorders using WGS data in various family structures. My work

highlighted some pitfalls and inconsistencies often encountered when working with vari-

ous classes of variants using NGS data and provided robust solutions to avoid them.

Finally, I have examined the strengths and weaknesses of several strategies for disease-

gene prioritisation in family based NGS studies. Based on this, I have created a novel

Bayesian framework to resolve some of the issues observed, which should help researchers

further explore the aetiology of complex genetic disorders in pedigree data.
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Supplementary Information

A.1 WGS Details

The following is adapted from a report provided by Edinburgh Genomics on the release

of data.

EGCG utilises Illumina SeqLab, which integrates Illumina TruSeq library preparation, Il-

lumina cBot2 cluster generation, Illumina HiSeqX sequencing, Hamilton Microlab STAR

integrative automation, and Genologics Clarity LIMS X Edition.

Sample QC: Genomic DNA (gDNA) samples were evaluated for quantity and quality

using an AATI Fragment Analyzer and the DNF-487 Standard Sensitivity Genomic DNA

Analysis Kit. The AATI ProSize 2.0 software provides a quantification value and a quality

(integrity) score for each gDNA sample. gDNA samples failed sample QC if they were

found to have i) a quality score < 7 and ii) little or no high molecular weight material.

For such samples, replacement samples were requested. Based on the quantification

results, gDNA samples were pre-normalised to fall within the acceptable range of the

Illumina SeqLab TruSeq Nano library preparation method using the Hamilton MicroLab

STAR.

Library Preparation: Next Generation sequencing libraries were prepared using Illumina

SeqLab specific TruSeq Nano High Throughput library preparation kits in conjunction

with the Hamilton MicroLab STAR and Clarity LIMS X Edition. The gDNA samples

were normalised to the concentration and volume required for the Illumina TruSeq Nano

library preparation kits, then sheared to a 450bp mean insert size using a Covaris LE220

focused-ultrasonicator. The inserts were ligated with blunt ended, Atailed, size selected,

TruSeq adapters and enriched using 8 cycles of PCR amplification.

Library QC: The libraries were evaluated for mean peak size and quantity using the

Caliper GX Touch with a HT DNA 1k/12K/HI SENS LabChip and HT DNA HI SENS

Reagent Kit. The libraries were normalised to 5nM using the GX data and the actual
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concentration was established using a Roche LightCycler 480 and a Kapa Illumina Lib-

rary Quantification kit and Standards.

Sequencing: The libraries were normalised, denatured, and pooled in eights for cluster-

ing and sequencing using a Hamilton MicroLab STAR with Genologics Clarity LIMS X

Edition. Libraries were clustered onto HiSeqX Flow cell v2.5 on cBot2s and the clustered

flow cell was transferred to a HiSeqX for sequencing using a HiSeqX Ten Reagent kit v2.5.

Yield and Coverage: Yield was calculated as the number of bases provided in the

FASTQ files, expressed in gigabases (Gb). Coverage was defined as the average num-

ber of bases covering each position of the reference genome. The expected yield and

coverage for all samples is 120 Gb and 30x respectively. Samples that fell below both

thresholds were resequenced.

Bioinformatics Demultiplexing was performed using bcl2fastq (2.17.1.14), allowing

1 mismatch when assigning reads to barcodes. Adapters were trimmed during the de-

multiplexing process. BCBio-Nextgen (0.9.7) was used to perform alignment, BAM

file preparation and variant detection. BCBio uses bwa mem (0.7.13) to align the raw

reads to the GRCh38 (with alt, decoy and HLA sequences) genome, then samblaster

(0.1.22) to mark the duplicated fragments, and the Genome Analysis ToolKit (3.4-

0-g7e26428) for the indel realignment and base recalibration. The genotype likelihoods

were calculated using Genome Analysis Toolkit (3.4-0-g7e26428) HaplotypeCaller

creating a final gVCF file.
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A.2 Web Resources

The URLs supplied in this section were accessible on 30/06/22.

A.2.1 Chapter 2

� The FastQC tool:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

� Read alignment and variant calling pipeline:

https://github.com/cathaloruaidh/WGS Alignment Calling

� picard tools

https://broadinstitute.github.io/picard/

� VQSR and variant filtering pipeline:

https://github.com/cathaloruaidh/WGS JointGeno VQSR

� GATK advice on hard filtering:

https://gatk.broadinstitute.org/hc/en-us/articles/360037499012-I

-am-unable-to-use-VQSR-recalibration-to-filter-variants

� peddy open issue regarding half-siblings:

https://github.com/brentp/peddy/issues/21

� peddy open issue regarding consanguinity:

https://github.com/brentp/peddy/issues/56

A.2.2 Chapter 3

� UCSC Genome Browser user guide on build conversion:

https://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html#Convert

� UCSC Genome Browser support forum on liftOver errors, with variants swapping

chromosomes:

https://groups.google.com/a/soe.ucsc.edu/g/genome/c/P3M1Q5baozM/

m/Slyjdco5BwAJ

� The online implementation of liftOver:

https://genome.ucsc.edu/cgi-bin/hgLiftOver

� The executable file for the version of liftOver used here:

http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86 64.v369/liftOver
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� The online manual for CrossMap:

https://crossmap.readthedocs.io/en/latest/

� Chain file for GRCh37 to GRCh38, provided by the UCSC Genomics Institute:

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/hg19ToHg38

.over.chain.gz

� Chain file for GRCh38 to GRCh37, provided by the UCSC Genomics Institute:

http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/hg38ToHg19

.over.chain.gz

� The UCSC Genomics Institute recommendation on the minimum proportion of

sequence identity:

http://genomewiki.ucsc.edu/index.php/LiftOver Howto

� The Illumina Platinum Genomes project:

https://www.illumina.com/platinumgenomes.html

� List of URLs for the VCF files used in the WGS section (“small variants” for

NA12877 and NA12878):

https://github.com/Illumina/PlatinumGenomes/blob/master/files/2017

-1.0.files

� Source code for the algorithm to identify conversion unstable positions, as well as

the BED files for all positions on GRCh37 and GRCh38:

https://github.com/cathaloruaidh/genomeBuildConversion

A.2.3 Chapter 4

� The Database of Genomic Variants on the difficulty of determining whether a CNV

is a deletion or duplication:

http://dgv.tcag.ca/dgv/app/faq?ref=GRCh37/hg19#q2

A.2.4 Chapter 5

� RegulomeDB:

https://regulomedb.org/regulome-search/

� MoChA (Mosaic Chromosomal Alterations):

https://github.com/freeseek/mocha
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A.2. WEB RESOURCES

A.2.5 Chapter 6

� BAM to FASTQ revertion:

https://github.com/cathaloruaidh/BAMtoFASTQ

A.2.6 Chapter 7

� SRA toolkit:

https://hpc.nih.gov/apps/sratoolkit.html

� Discussion on the “network timeout” issue from the authors of the SRA toolkit:

https://github.com/ncbi/sra-tools/issues/139#issuecomment-405562470

� BBMap:

https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools

-user-guide/bbmap-guide/

� Background exome data supplied with pVAAST:

http://www.yandell-lab.org/software/VAAST/data/VAAST2/GRCh37/Background

CDR/

� RefSeq genomic feature GFF3 file:

http://www.yandell-lab.org/software/VAAST/data/VAAST2/GRCh37/Features/

A.2.7 Chapter 8

� The GRCh37 version of ClinVar (released 29/01/2022):

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf GRCh37/weekly/clinvar

20220129.vcf.gz

� The GRCh38 version of ClinVar (released 29/01/2022):

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf GRCh38/weekly/clinvar

20220129.vcf.gz
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A.3 Software Versions

Software Version Software Version

BBMap 38 MoChA 2019-10-16

bcftools 1.11 peddy 0.4.3

bedtools 2.28.0 PERCH 1.0

bgzip 1.4.1 picard 2.9.2

BWA-MEM 0.7.13 plink 1.9

cn.mops 3.8 pVAAST 2.2.0

CNVnator 0.3.3 R 2.4.1

CrossMap 0.4.2 samblaster 0.1.22

DELLY 0.8.1 samplot 1.3.0

ERDS 1.1 samtools 1.4.1

ExpansionHunter 3.0.0 shuf 8.22

FastQC 0.11.5 SnpSift 5.0

GATK 3.4/3.8 split 8.22

IGV 2.8.9 tabix 1.4.1

kinship2 1.8.5 vcftools 0.1.15

LUMPY 0.2.13 vep 97.0

Manta 1.4.0 XPAT 1.0

Table A.1: Versions of the software used in this thesis.
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A.4 Novel Javascript Code

Function Accept(genotypes )

fam aff ← [. . . ] # IDs of affected family members

fam unaff ← [. . . ] # IDs of unaffected family members

fam req ← [. . . ] # IDs of family members required to carry the variant

fam marry ← [. . . ] # IDs of marry-in family members

num aff ← 0

for i ← 0 to numSamples do

if i in fam aff and i is not HomRef then
num aff ← num aff + 1

end

else if i in fam unaff and i is not HomRef then
return false

if i in fam req and i is HomRef then
return false

end

else if i in fam marry and i is not HomRef then
return false

else if i in fam unaff and i is not HomRef then
return false

if num aff == length(fam aff) then
return true

end

end

end
Algorithm 1: Accept compares the genotypes of a variant to the pedigree pheno-

types to ensure full co-segregation. Reduced co-segregation is achieved by changing

the number of affected individuals required.
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Appendix B

Mathematical Details for the

Bayesian Inference Model

B.1 Definitions and Theorems

Define the following variables/expressions for a given variant in a family:

p the proband

Gi the genotype of the variant for individual i, equal to 0 or 1

Gp the genotype of the proband (assumed to carry the variant)

GO the genotypes observed in the family (sequenced individuals)

GU the genotypes of the individuals not observed in the family

GF the genotypes of all individuals in the family

PF the phenotypes of the family

β the family-based penetrance, i.e. P (Pi = 1 |Gi = 1)

φ the family-based phenocopy rate, i.e. P (Pi = 1 |Gi = 0)

α the population incidence rate, i.e. P (P = 1)

D the data in the model

M1 the causal model for the variant

M2 the neutral model for the variant

k1 number of affected carriers (Pi = 1, Gi = 1)

k2 number of unaffected carriers (Pi = 0, Gi = 1)

k number of carriers (k1 + k2)

l1 number of affected non-carriers (Pi = 1, Gi = 0)

l2 number of unaffected non-carriers (Pi = 0, Gi = 0)

l number of non-carriers (l1 + l2)

n number of individuals in the family (k + l)

Theorem B.1 (Binomial Theorem). Given any two real numbers x, y ∈ R and a natural
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number n ∈ N+, we have:

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk

where

(
n

k

)
=

n!

(n− k)!k!

Corollary B.2. Given any real number a ∈ R and a natural number n ∈ N+, we have:

(1− a)n =
n∑

k=0

(
n

k

)
(−1)kak

B.2 Overview

B.2.1 Data and Parameters

The data D in our model refer to the observed genotypes (GO), and the known pheno-

types in the family (PF ). We assume that every sample has a phenotype specified, but

samples may have missing genotypes.

The unobserved genotypes (GU) are a discrete random variable with probabilities de-

termined by Mendelian segregation. The in-family penetrance (β) and the in-family

phenocopy rate (φ) are probabilities, and so are continuous random variables. For con-

venience, let θ = (β, φ), and let Ω = [0, 1]× [0, 1] be the domain of θ. The population

prevalence (α) is also a continuous variable in [0, 1]. p is the proband, which should be

selected at random from the affected variant carriers.

B.2.2 Models

For a given variant the causal model (M1) states that the variant is a primary contrib-

utor to the phenotype. As an alternate to this, the neutral model (M2) states that the

variant under examination does not contribute to the phenotype of interest. Ultimately

we will calulcate a Bayes factor for these two models based on our data, which is the

ratio of the likelihood for the causal model and the likelihood of the neutral model:

BF =
P (D |M1)

P (D |M2)
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B.2.3 Assumptions

Following Mohammadi et al., we assume that the variant is rare in the general popula-

tion (Mohammadi et al., 2009). This allows us to conclude that the variant originates

from one founder within the pedigree, and so cannot be carried by marry-in individu-

als. In determining the phenotypes conditional on the genotypes, we will have different

assumptions based on which model we are evaluating:

� M1 (Causal Model) - the variant has a dominant effect on the phenotype: this

means that an individual’s phenotype is determined solely by their genotype

� M2 (Neutral Model) - the phenotypes are entirely independent of all genotypes

and are determined by the population incidence rate

B.2.4 Variables

We can construct a relationship between φ and β. If α is the population incidence of a

phenotype, p is the allele frequency of a causal variant and q = 1− p, then we have:

α = P (P )

= P (P |Geno)P (Geno) + P (P | not Geno)P (not Geno)

= β(1− q2) + φ(q2)

(B.1)

Here, “Geno” refers to having a genotype that confers risk for the phenotype in a

dominant fashion, so heterozygous or homozygous variant genotypes. We can see that

α is a weighted average of β and φ, so we have three scenarios:

� Scenario 1: φ < α < β - recommended by Petersen et al. under the causal

model (Petersen et al., 1998);

� Scenario 2: φ = α = β - here, the phenotype is independent of the genotype,

which corresponds to the neutral model; and

� Scenario 3: β < α < φ - having the variant reduces the probability of the

phenotype compared to the incidence rate, and compared to not having the variant.

This corresponds to a variant with a protective effect, which the causal model does

not account for.

We assume Scenario 1 for the causal model and Scenario 2 for the neutral model.
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B.3 Causal Model

To calculate P (D |M1), we first marginalise over the parameters:

P (D |M1) =

∫
P (D |Θ,M1)P (Θ |M1) dΘ

=

k1∑
p=1

∑
GU

∫∫
Ω

P (GO, PF | p,GU , θ,M1)P (p,GU , θ |M1) dθ
(B.2)

We can re-write the probability terms of the integrand in Equation B.2 as follows:

P (GO, PF | p,GU , θ,M1) =

phenotypes︷ ︸︸ ︷
P (PF |GO, p, GU , θ,M1)P (GO | p,GU , θ,M1)

P (GO | p,GU , θ,M1) =

inheritance︷ ︸︸ ︷
P (GO, GU | p, θ,M1)

P (GU | p, θ,M1)

P (p,GU , θ |M1) = P (GU | p, θ,M1)

parameters︷ ︸︸ ︷
P (p, θ |M1)

(B.3)

For convenience, we will write GF = GO, GU . In the inheritance term, once the proband,

the observed and the unobserved genotypes are specified, this probability is independ-

ent of β, φ and the model, so we can write it as P (GF | p). Combining these into

Equation B.2 we get:

P (D |M1) =

k1∑
p=1

∑
GU

∫∫
Ω

P (PF |GF , p, θ,M1)︸ ︷︷ ︸
phenotypes

P (GF | p)︸ ︷︷ ︸
inheritance

P (p, θ |M1)︸ ︷︷ ︸
parameters

dθ (B.4)

When we iterate over all unobserved genotypes and calculate the inheritance probability

term P (GF | p), there are some genotype configurations that we may ignore due to

the rare variant assumption. For example: given a proband, their married-in parent

is a theoretical source for the variant (i.e. a founder). However, if there are other

candidate probands in the pedigree that are unrelated to the marry-in individual, the

marry-in individual should be ignored since they cannot carry the variant when considering

the other probands. This means that the only founders we need consider are those

that are ancestors of all carriers for a given variant. Such founders will give rise to

an identical collection of permissible unobserved genotypes regardless of the proband

selection. Pseudocode for the algorithms to enumerate the permissible genotypes is
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shown in Section B.6. As an example to illustrate this, consider the pedigree in Figure B.1

taken from Mohammadi et al.:

Figure B.1: A simulated breast cancer (BrC) pedigree showing affected individuals (shaded)
and theoretical BRCA1 carriers (+) (Mohammadi et al., 2009). The first level labels are the
individuals’ IDs, the second level are their ages at sampling, and the third level are the ages
and diagnoses, if applicable.

Here, individuals 1 and 3 are known to have breast cancer and they also carry the vari-

ant of interest. All other individuals are unaffected and their genotypes are unknown.

If individual 3 is the current proband, the potential founders are individuals 6 and 7.

If individual 1 is the current proband, the potential founders are individuals 2, 6 and

7. However, since individual 3 is not descended from individual 2, individual 2 cannot

be a founder for the entire pedigree. So, the only pedigree founders we need consider

are individuals 6 and 7, which is the same regardless of the proband selection. Since

P (GF | p) is now independent of the choice of proband, we will simply write it as P (GF ).

Given that we have a fixed collection of founders, this will give rise to the same set

of unobserved genotypes regardless of the proband selection. Hence, we can simplify
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Equation B.4:

P (D |M1) =

k1∑
p=1

∑
GU

∫∫
Ω

P (PF |GF , p, θ,M1)P (GF )P (p, θ |M1) dθ

= k1
∑
GU

∫∫
Ω

P (PF |GF , p, θ,M1)P (GF )P (p, θ |M1) dθ

(B.5)

Following Mohammadi et al., since the variant is assumed to have a dominant effect, the

phenotypes are determined solely by an individual’s genotype, and so are independent

within the family. This means that the phenotype term can be expressed as a product

of β and φ:

P (PF |GF , p, θ,M1) =
n∏

i=1

P (Pi |Gi, θ,M1) = βk1(1− β)k2φl1(1− φ)l2 (B.6)

This gives:

P (D |M1) = k1
∑
GU

∫∫
Ω

P (PF |GF , p, θ,M1)P (GF )P (p, θ |M1) dθ

= k1
∑
GU

P (GF )

∫ 1

0

∫ 1

0

βk1(1− β)k2φl1(1− φ)l2P (p, β, φ |M1) dβ dφ

(B.7)

The choice of proband is independent of β and φ, and we will let the prior probability

for this selection be uniform over the k1 potential probands, giving P (p, β, φ |M1) =
1
k1
P (β, φ |M1).

It is worth noting that the prior probability for the choice of proband is dependent on the

data, in particular the number of probands for a given variant in the pedigree. Strictly

speaking, this breaks the principle in Bayesian inference modelling that the prior distri-

butions should be determined independently from the data. However, as discussed by

Andrew Gelman on his blog (Gelman, 2016), we can consider this data-dependent prior

as an approximation to the true prior distribution for the parameter. If the proband

selection has a prior distribution that depends on some hyperparameter N , we can ap-

proximate N by a simple point estimate of k1.
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Returning to Equation B.7, we have:

P (D |M1) = k1
∑
GU

P (GF )
1

k1

∫ 1

0

∫ 1

0

βk1(1− β)k2φl1(1− φ)l2P (β, φ |M1) dβ dφ

=
∑
GU

P (GF )

∫ 1

0

∫ 1

0

βk1(1− β)k2φl1(1− φ)l2P (β, φ |M1) dβ dφ︸ ︷︷ ︸
I

(B.8)

B.3.1 Uniform Prior

In the absence of additional information, we’ll let the prior joint distribution for β and

φ be uniform over β ∈ [0, 1], φ ∈ [0, 1] with the assumption that φ < β. This means

that the joint density function is given by:

f(β, φ) =

{
2 if 0 ⩽ φ < β ⩽ 1

0 otherwise

}
(B.9)

We can confirm that this is a valid density function since:∫ 1

0

∫ 1

0

f(β, φ) dφ dβ =

∫ 1

0

∫ β

0

2 dφ dβ = 2

∫ 1

0

β dβ = 2

[
β2

2

]1
0

= 2
[
1
2

]
= 1

Alternatively, swapping the order of integration:

∫ 1

0

∫ 1

0

f(β, φ) dβ dφ =

∫ 1

0

∫ 1

φ

2 dβ dφ = 2

∫ 1

0

(1−φ) dφ = 2

[
φ− φ2

2

]1
0

= 2
[
1− 1

2

]
= 1

We can simplify the integral I in Equation B.8 above as follows:

I =

∫ 1

0

∫ 1

0

βk1(1− β)k2φl1(1− φ)l2P (β, φ |M1) dφ dβ

=

∫ 1

0

∫ β

0

βk1(1− β)k2φl1(1− φ)l2(2) dφ dβ

= 2

∫ 1

0

βk1(1− β)k2
(∫ β

0

φl1(1− φ)l2 dφ

)
︸ ︷︷ ︸

Iφ

dβ

(B.10)

We can evaluate Iφ by using Corollary B.2 on (1− φ)l2 , which is valid since l2 ⩾ 0.
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Iφ =

∫ β

0

φl1(1− φ)l2 dφ

=

∫ β

0

φl1

{
l2∑
i=0

(
l2
i

)
(−1)l2−i(φ)l2−i

}
dφ

=

l2∑
i=0

(
l2
i

)
(−1)l2−i

{∫ β

0

φl1+l2−i dφ

}

=

l2∑
i=0

(
l2
i

)
(−1)l2−i

[
φl−i+1

l − i+ 1

]φ=β

φ=0

=

l2∑
i=0

(
l2
i

)
(−1)l2−i

(
βl−i+1

l − i+ 1

)

(B.11)

The exponent in the final integrand is positive since l2 ⩾ i, and so l = l1+ l2 ⩾ i, giving

l − i+ 1 ⩾ 1. Now, we can substitute the above into Equation B.10:

I = 2

∫ 1

0

βk1(1− β)k2Iφ dβ

= 2

∫ 1

0

βk1(1− β)k2

[
l2∑
i=0

(
l2
i

)
(−1)l2−i

(
βl−i+1

l − i+ 1

)]
dβ

= 2

l2∑
i=0

(
l2
i

)
(−1)l2−i

l − i+ 1

∫ 1

0

βk1+l−i+1(1− β)k2 dβ

= 2

l2∑
i=0

(
l2
i

)
(−1)l2−i

l − i+ 1

(k1 + l − i+ 1)!(k2)!

(n− i+ 2)!

= 2

l2∑
i=0

(
l2
i

)
(−1)l2−i

l − i+ 1

1

(n− i+ 2)

(
n− i+ 1

k2

)

(B.12)

where we have used the Beta and Gamma functions for positive integers x and y to

simplify:

B(x+ 1, y + 1) :=

∫ 1

0

tx(1− t)y dt =
Γ(x+ 1)Γ(y + 1)

Γ(x+ y + 2)
=

x!y!

(x+ y + 1)!

Γ(x+ 1) = x!

Finally, substituting this into Equation B.8 we get
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P (D |M1) = 2
∑
GU

P (GF )

l2∑
i=0

(
l2
i

)
(−1)l2−i

l − i+ 1

1

(n− i+ 2)

(
n− i+ 1

k2

) (B.13)

B.3.2 Beta Prior

Given the form Equation B.8, a sensible option for the prior distribution of β and φ

is the Beta distribution. This distribution is a conjugate prior to the integrand above

and based on two hyper-parameters x and y. The Beta distribution is often used to

model the random behaviour of probabilities, which fits with the definition of β and φ.

Additionally, when x = y = 1, the Beta distribution becomes the uniform distribution.

Suppose β and φ have Beta prior distributions with hyperparameters xβ, yβ and xφ, yφ

respectively, with xβ, yβ, xφ, yφ ∈ N+. We require the hyperparameters to be integers

to apply the Binomial Theorem later on. It is possible to have non-integer hyperpara-

meters, but this would involve evaluating the Beta function at non-integer values, which

does not have a closed form. Such integrals would likely only be solved by numerical

methods, which are typically computationally expensive.

For a given β ∈ [0, 1] and with the assumption that φ < β, we have the following

probability density function for φ:

P (φ | β,M1) =


1

f(β, xφ, yφ)

φxφ−1(1− φ)yφ−1

B(xφ, yφ)
if 0 ⩽ φ < β

0 otherwise

where f is some normalisation function that is constant with respect to φ. This function

is required since φ is only non-zero on [0, β], so we need to scale the new density function

appropriately. For this to be a valid probability density function, it must integrate to 1,

so:

1 =

∫ 1

0

P (φ | β,M1) dφ

=
1

f(β, xφ, yφ)

∫ β

0

φxφ−1(1− φ)yφ−1

B(xφ, yφ)
dφ

=
I(β;xφ, yφ)

f(β, xφ, yφ)
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This gives us the relation f(β, xφ, yφ) = I(β;xφ, yφ), where I(x; a, b) is the regularized

incomplete Beta function. When xφ = 1 or yφ = 1, this function takes specific values,

so we have:

f(β, xφ, yφ) =

{
1− (1− β)yφ if xφ = 1

βxφ if yφ = 1

Other values for xφ or yφ are possible, but this function is defined iteratively. The prior

distribution for β is also a Beta distribution, but no adjustment is needed since it is

defined for 0 ⩽ β ⩽ 1.

Alternatively, we can fix φ and with the assumption that φ < β, we get the following

probability density function for β:

P (β |φ,M1) =


1

g(φ, xβ, yβ)

βxβ−1(1− β)yβ−1

B(xβ, yβ)
if 0 ⩽ φ < β ⩽ 1

0 otherwise

where g is some normalisation function that is constant with respect to β. Again, this

density function must integrate to 1, so:

1 =

∫ 1

0

P (β |φ,M1) dβ

=
1

g(φ, xβ, yβ)

∫ 1

φ

βxβ−1(1− β)yβ−1

B(xβ, yβ)
dβ

=
1

g(φ, xβ, yβ)

(∫ 1

0

βxβ−1(1− β)yβ−1

B(xβ, yβ)
dβ −

∫ φ

0

βxβ−1(1− β)yβ−1

B(xβ, yβ)
dβ

)
=

1

g(φ, xβ, yβ)
(1− I(φ;xβ, yβ))

This gives us the relation g(φ, xβ, yβ) = 1− I(φ;xβ, yβ), which reduces to:

g(φ, xβ, yβ) =

{
(1− φ)yβ if xβ = 1

1− φxβ if yβ = 1

We will use the former method (φ ∈ [0, β] and β ∈ [0, 1]) to evaluate part of the integral

term in Equation B.8 now:
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I =

∫ 1

0

∫ 1

0

βk1(1− β)k2φl1(1− φ)l2P (β, φ |M1) dβ dφ

=

∫ 1

0

∫ β

0

βk1(1− β)k2φl1(1− φ)l2
1

f(β, xφ, yφ)

βxβ−1(1− β)yβ−1

B(xβ, yβ)

φxφ−1(1− φ)yφ−1

B(xφ, yφ)
dφ dβ

=
1

B(xβ, yβ)B(xφ, yφ)

∫ 1

0

βk1+xβ−1(1− β)k2+yβ−1

f(β, xφ, yφ)

(∫ β

0

φl1+xφ−1(1− φ)l2+yφ−1 dφ

)
︸ ︷︷ ︸

Iφ

dβ

(B.14)

Iφ can be evaluated almost identically as with the uniform prior in Equation B.12, since

the hyperparameters are absorbed into the other exponents in the integrand:

Iφ =

∫ β

0

φl1+xφ−1(1− φ)l2+yφ−1 dφ

=

l2+yφ−1∑
i=0

(
l2 + yφ − 1

i

)
(−1)l2+yφ−1−i

(
βl+xφ+yφ−i−1

l + xφ + yφ − i− 1

) (B.15)

When we re-arrange Equation B.14, we will have to evaluate the following integral:∫ 1

0

βk1+l+xβ+xφ+yφ−i−2(1− β)k2+yβ−1

f(β, xφ, yφ)
dβ

This integral will be solved differently depending on the form of f(β, xφ, yφ). For ex-

ample, if xβ = 2 and yβ = 1, the integral may involve a logarithm term, such as:∫ 1

0

β3(1− β)1

1− (1− β)2
dβ =

17

6
− 4 log(2)

However, if xβ = 3 and yβ = 1, the integral may result in an arc-tangent and a logarithm

term, such as: ∫ 1

0

β4(1− β)1

1− (1− β)3
dβ = −13

3
+

√
3

2
π +

3

2
log(3)

Since there is no general solution for this, we will consider a special case of the Beta

prior which will help with the calculations.

B.3.3 Linear Prior

A plausible scenario for our causal variants is that they are more likely to have higher

penetrance and lower phenocopy rates. Therefore, we will let xβ = 2, yβ = 1 and

xφ = 1, yφ = 2, which give rise to the prior probability distributions in Figure B.2 below.
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We will refer to this as the Linear Prior for β and φ, with the understanding that the

condition φ < β also holds.

(a) (b)

Figure B.2: Linear prior distribution for (a) β; (b) φ conditional on a given β.

In Equation B.15, we can substitute the known values for the hyperparameters:

Iφ =

l2+yφ−1∑
i=0

(
l2 + yφ − 1

i

)
(−1)l2+yφ−1−i

(
βl+xφ+yφ−i−1

l + xφ + yφ − i− 1

)

=

l2+1∑
i=0

(
l2 + 1

i

)
(−1)l2+1−i

(
βl+2−i

l + 2− i

) (B.16)

Returning to the original I, we have

I =
1

B(xβ, yβ)B(xφ, yφ)

∫ 1

0

βk1+xβ−1(1− β)k2+yβ−1

f(β, xφ, yφ)
[Iφ] dβ

=
1

B(2, 1)B(1, 2)

∫ 1

0

βk1+1(1− β)k2

f(β, 2, 1)

[
l2+1∑
i=0

(
l2 + 1

i

)
(−1)l2+1−i

(
βl+2−i

l + 2− i

)]
dβ

= 4

l2+1∑
i=0

(
l2 + 1

i

)
(−1)l2+1−i

l + 2− i

∫ 1

0

βk1+l+3−i(1− β)k2

1− (1− β)2
dβ

= 4

l2+1∑
i=0

(
l2 + 1

i

)
(−1)l2+1−i

l + 2− i

∫ 1

0

βk1+l+2−i(1− β)k2

2− β
dβ︸ ︷︷ ︸

Iβ

(B.17)

We will apply a change of variables of t = 2− β and the Binomial Theorem to evaluate

Iβ:
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Iβ =

∫ 1

0

βk1+l+2−i(1− β)k2

2− β
dβ

=

∫ 2

1

(2− t)k1+l+2−i(t− 1)k2

t
dt

=

∫ 2

1

{
1

t

(
k1+l+2−i∑

q=0

(
k1 + l + 2− i

q

)
2q(−1)k1+l+2−i−qtk1+l+2−i−q

)
× · · ·

· · · ×

(
k2∑
r=0

(
k2
r

)
tr(−1)k2−r

)
dt

}

=

k1+l+2−i∑
q=0

(
k1 + l + 2− i

q

)
2q(−1)k1+l+2−i−q

k2∑
r=0

(
k2
r

)
(−1)k2−r

∫ 2

1

tk1+l+1−i−q+r dt

(B.18)

If q = k1+l+2−i and r = 0, then the exponent in the integrand of Iβ will be −1, giving
rise to a logarithm. Otherwise, the exponent will be positive, and thus the integrand will

be a polynomial. For brevity in the following summations, we will implicitly ignore the

term that gives rise to a logarithm and add it separately. We use
∑′ to denote this.

Iβ =

k1+l+2−i∑
q=0

′
(
k1 + l + 2− i

q

)
2q(−1)k1+l+2−i−q

k2∑
r=0

′
(
k2
r

)
(−1)k2−r 2k1+l+2−i−q+r − 1

k1 + l + 2− i− q + r

+ 2k1+l+2−i(−1)k2 log(2)

(B.19)

B.4 Neutral Model

Here, we assume that the phenotypes and genotypes for the current variant are inde-

pendent. However, the phenotypes are not independent of the choice of proband, seeing

as the proband is a case. Additionally, since the variant is not causal, the general prob-

ability of having the phenotype does not depend on the genotype status, so β = φ,

which should be equal to the population incidence rate α. We will use α ∈ [0, 1] instead

of θ = (β, φ) for convenience.
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We can follow the same idea to derive Equation B.4 above, giving us:

P (D |M2) =

∫
P (D |Θ,M2)P (Θ |M2) dΘ

=

k1+l1∑
p=1

∑
GU

∫ 1

0

P (PF |GF , p, α,M2)P (GF | p)P (p, α |M2) dα

P (D |M2) =

k1+l1∑
p=1

∑
GU

∫ 1

0

P (PF | p, α,M2)︸ ︷︷ ︸
phenotypes

P (GF | p)︸ ︷︷ ︸
inheritance

P (p, α |M2)︸ ︷︷ ︸
parameters

dα

(B.20)

Note: if we started by splitting the P (GO, PF |Θ,M2) term due to independence, we

would end up with the same final equation. As before, the selection of the proband

is independent of the population incidence rate. Note that there are k1 + l1 affected

individuals with genomic data for the variant, so this determines the prior for the proband

selection, which gives us

P (D |M2) =

k1+l1∑
p=1

∑
GU

P (GF | p)
k1 + l1

∫ 1

0

P (PF | p, α,M2)P (α |M2) dα (B.21)

As before, the unobserved genotypes will be the same regardless of the proband selection

due to the rare variant assumption. Therefore, we can simplify the above:

P (D |M2) =

k1+l1∑
p=1

∑
GU

P (GF | p)
k1 + l1

∫ 1

0

P (PF | p, α,M2)P (α |M2) dα

= (k1 + l1)
∑
GU

P (GF )

k1 + l1

∫ 1

0

P (PF | p, α,M2)P (α |M2) dα

=
∑
GU

P (GF )

∫ 1

0

P (PF | p, α,M2)P (α |M2) dα

(B.22)

We assumed that the phenotype are determined by the population incidence rate, giving:

P (PF | p, α,M2) =
n∏

i=1

P (Pi |α,M2) = αk1+l1(1− α)k2+l2

Substituting this into Equation B.22, we get:

P (D |M2) =
∑
GU

P (GF )

∫ 1

0

αk1+l1(1− α)k2+l2P (α |M2) dα (B.23)
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B.4.1 Uniform Priors

We will let α have a uniform prior, giving us P (α |M2) = 1 on [0, 1], and so:

P (D |M2) =
∑
GU

P (GF )

∫ 1

0

αk1+l1(1− α)k2+l2 dα

=
∑
GU

P (GF )
(k1 + l1)!(k2 + l2)!

(n+ 1)!

=
∑
GU

P (GF )
1

(n+ 1)

(
n

k1 + l1

)
(B.24)
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B.5 Summary of Formulae

B.5.1 Causal Model

Uniform prior for β and φ:

P (D |M1) = 2
∑
GU

P (GF )

l2∑
i=0

(
l2
i

)
(−1)l2−i

l − i+ 1

1

(n− i+ 2)

(
n− i+ 1

k2

) (B.25)

Linear Prior, i.e. β ∼ Beta(2, 1) and φ ∼ Beta(1, 2) with φ < β:

P (D |M1) = 4
∑
GU

P (GF )

l2+1∑
i=0

(
l2 + 1

i

)
(−1)l2+1−i

l + 2− i
(I)

I =

k1+l+2−i∑
q=0

′
(
k1 + l + 2− i

q

)
2q(−1)k1+l+2−i−q

k2∑
r=0

′
(
k2
r

)
(−1)k2−r 2k1+l+2−i−q+r − 1

k1 + l + 2− i− q + r
+ 2k1+l+2−i log(2)

(B.26)

where the
∑′ indicates that the case that q = k1 + l + 2− i and r = 0 is ignored, since it is integrated separately.

B.5.2 Neutral Model

Uniform prior for α:

P (D |M2) =
∑
GU

P (GF )
1

(n+ 1)

(
n

k1 + l1

) (B.27)
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B.6 Algorithms

Function SetGenerations(vector, list )

minGen ← min{ vector[i] : vector[i] ⩾ 1}
minI ← min{ i : vector[i] == minGen }
if minGen == 0 or undefined then

return

end

if minGen == 1 then

add vector to list

return

end

tmp1 ← vector

tmp1[minI] ← 0

SetGenerations (tmp1, list)

if individual minI has one parent p with vector[p] == 1 then

tmp2 ← vector

tmp2[minI] ← 1

SetGenerations (tmp2, list)

end

end
Algorithm 2: SetGenerations finds all permissible genotypes given a genotype

vector by setting the generations of genotypes ⩾ 2.
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Function FindGenerations(vector, list )

find all probands for the variant

if number of probands == 0 then

return

end

find the founders of all carriers

if number of founders == 0 then

return

end

for founder in founders do
mark the founder as a carrier (if their genotype is unknown)

if another founder is a carrier then

return

end

mark all other founders as non-carriers

mark all descendants of pairs of non-carriers as non-carriers

mark all descendants of the founder who are ancestors of a carrier as

carriers

if only one parent p has vector[p] ⩾ 1 then

vector[i] ← vector[p] + 1

end

SetGenerations (vector, list)

end

end
Algorithm 3: FindGenerations finds all permissible genotypes given a genotype

vector by setting the generations of genotypes ⩾ 2.
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Appendix C

Published Material

Here we show for completeness the material based on Chapter 3 published in Briefings

in Bioinformatics (Ormond et al., 2021).
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Converting single nucleotide variants between
genome builds: from cautionary tale to solution
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Abstract

Next-generation sequencing studies are dependent on a high-quality reference genome for single nucleotide variant (SNV)
calling. Although the two most recent builds of the human genome are widely used, position information is typically not
directly comparable between them. Re-alignment gives the most accurate position information, but this procedure is often
computationally expensive, and therefore, tools such as liftOver and CrossMap are used to convert data from one build to
another. However, the positions of converted SNVs do not always match SNVs derived from aligned data, and in some
instances, SNVs are known to change chromosome when converted. This is a significant problem when compiling
sequencing resources or comparing results across studies. Here, we describe a novel algorithm to identify positions that are
unstable when converting between human genome reference builds. These positions are detected independent of the
conversion tools and are determined by the chain files, which provide a mapping of contiguous positions from one build to
another. We also provide the list of unstable positions for converting between the two most commonly used builds GRCh37
and GRCh38. Pre-excluding SNVs at these positions, prior to conversion, results in SNVs that are stable to conversion. This
simple procedure gives the same final list of stable SNVs as applying the algorithm and subsequently removing variants at
unstable positions. This work highlights the care that must be taken when converting SNVs between genome builds and
provides a simple method for ensuring higher confidence converted data. Unstable positions and algorithm code, available
at https://github.com/cathaloruaidh/genomeBuildConversion

Key words: genome build conversion; liftOver; CrossMap; GRCh37; GRCh38

INTRODUCTION
The human reference genome is a fundamental and essen-
tial resource for next-generation sequencing studies, aiding in
tasks such as genome assembly and variant calling. Without a
reference, de novo assembly of each sequenced genome would
need to take place, which is computationally intensive and in
certain scenarios may result in a poor quality assembly [1].
The most frequently used human reference genomes are those
constructed by the Genome Reference Consortium (GRC) [2], who
to date have released 38 iterative reference builds. The two most
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which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

recent builds of the genome are GRCh37 (released in 2009) and
GRCh38 (released in 2013). The UCSC Genomics Institute have
also released analogous versions of these builds, referred to as
hg19 and hg38, respectively [3].

Both GRCh37 and GRCh38 were generated by sequencing
DNA from a collection of human donors, predominantly using
Sanger sequencing [4, 5]. DNA sequences were combined to
form high-confidence contiguous segments known as contigs,
which were joined to form a de novo assembly of the reference
genome. One of the major updates in GRCh38 was the closing
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of numerous gaps where sequencing had previously not been
possible [6]. GRCh38 also contains a much larger collection of
unlocalized (known sequence and chromosome but position
unknown) and unplaced (known sequence, but chromosome and
position unknown) contigs, as well as alternate contigs (known
alternate representations of specific regions of the genome to
account for population differences) [6]. Users need to be aware
that different builds result in different genome assemblies and
subsequently can impact genomic analyses, including single
nucleotide variant (SNV) analyses [7].

Despite the improvements that the latest build brings,
updates to the base-pair coordinates typically mean that not
all positions are comparable between builds. Researchers are
sometimes hesitant to switch to GRCh38, as there exists a
wealth of annotation information available for GRCh37 and
many pipelines and tools are still based on the older, GRCh37,
version [7]. A similar problem arises when comparing new
sequencing data to data aligned to an older build, as both
data sets must be aligned to the same build to be comparable.
Although re-alignment of the original sequence data to the new
build typically provides the most accurate base-pair position
information, this can be quite computationally expensive [7].
Also, the raw sequence data required for alignment, if available,
can be large, so long-term storage may not be feasible. An
alternative approach to re-alignment is to convert between
genome builds using tools such as liftOver (provided as part
of the Genome Browser tool [3] hosted by the UCSC Genomics
Institute), CrossMap [8] or Remap (hosted by the National Centre
for Biotechnology Information [9]). This process is aided by a
chain file, which provides a mapping of contiguous positions
from one build to another. The ability to convert between builds
using these tools has proved vital, allowing the integration of a
wide range of SNV annotation databases and sequence data,
regardless of how they were originally aligned, for example
gnomAD [10], CADD [11] and dbNSFP [12].

For those who do choose to convert between GRCh37 and
GRCh38, there are known problems with this conversion process,
particularly for SNVs. In the online user guide for the UCSC
Genome Browser, the authors note that ‘occasionally, a chunk of
sequence may be moved to an entirely different chromosome’
(see Web resources in Methods section). This is echoed in
Liu et al. [12], where the authors note that after converting
the dbNSFP database to other builds using liftOver, ‘there are
a few SNVs whose coordinates in hg38 and hg19 . . . have
inconsistent chromosome numbers’. This phenomenon can
prove problematic for downstream analyses if, for example,
annotation information from converted data is not consistent
with annotation information from re-aligned data. For example,
suppose we wish to examine variants in protein coding regions
of the genome, prioritized using the CADD deleteriousness score
[11]. Consider the T > A substitution at position 15690247 on
chromosome 22 of GRCh38 (chr22:c.15690247 T > A), contained
in the first exon of the POTEH gene. CADD v1.6 gives the variant
a C-score of 20.8, indicating that it is in the top percentile of
all ranked deleterious variants. If we convert the position to
GRCh37 (using either liftOver or CrossMap), this variant maps
to position 19553586 on chromosome 14, where the reference
allele is still T (chr14:c.19553586 T > A) but the variant is now
in the first exon of POTEG. CADD v1.6 for GRCh37 gives this
variant a C-score of 0.009, indicating that it is now in the
bottom percentile of all ranked deleterious variants in the
genome. This inconsistency shows how downstream results
can be negatively impacted by instabilities in the conversion
process.

Pan et al. (2019) [13] examined SNVs from data aligned under
a range of bioinformatics pipelines to data converted between
GRCh37 and GRCh38 using both liftOver and CrossMap. The
authors noted that on average, 1% of SNVs did not convert
from GRCh37 to GRCh38, and an average of 5% of SNVs did not
convert from GRCh38 to GRCh37. Furthermore, on average, 1.5%
of SNVs which were successfully converted were not found in the
corresponding aligned data, a trend that was more pronounced
when converting from GRCh38 to GRCh37. Such discordant sites
were noted to be low-confidence calls, have lower average read
depth and have a higher than average GC content. The authors
urged caution when converting SNVs between builds.

Recently, Luu et al. (2020) [14] benchmarked six tools (includ-
ing liftOver, CrossMap and Remap) for converting multi-base-pair
regions derived from epigenetic data from GRCh37 to GRCh38.
The authors found a high degree of correlation between the
six tools but noted that gapped regions in both chain files can
result in conversion failure, or even regions mapping to incorrect
locations. A guideline to improve conversion is offered, which
involves removing input data which overlap with the gapped
regions, as well as removing input data which map to multi-
ple regions or alternate contigs. However, if this strategy were
applied to SNV data, some variants (such as those in un-gapped
regions which also change chromosome under conversion) may
not necessarily be removed.

Here, we present a novel algorithm to identify base-pair posi-
tions in the human genome which exhibit unstable behaviour
when converting between genome reference builds. In addition,
we are providing the list of these unstable positions for the two
most recent builds (GRCh37 and GRCh38). This list can be used
to pre-exclude SNVs prior to conversion to remove potentially
problematic variants, resulting in stable SNVs and improving the
quality of sequencing data post-conversion.

METHODS
Full-genome data

As genome build conversion tools are primarily based on base-
pair position information only, it is possible to examine all base-
pair positions in the genome. This allows the behaviour of all
potential SNVs to be examined when converting between builds,
rather than just a subset that might be found on an individual
sample’s genome. To this effect, a BED entry was created for
each base-pair position in both the GRCh37 (GCA_000001405.1)
and GRCh38 (GCA_000001405.15) reference genomes, which we
refer to as the full-genome data. This includes positions that are
not typically amenable to short-read whole genome sequencing
(WGS), such as known gaps in the genome assembly. Positions
on the unplaced, unlocalized and alternate contigs were not
included in the input data, and so only the standard 23 pairs of
chromosomes were considered. Each entry was given a label con-
taining the original chromosome and start position for unique
identification, and the input BED file was split by chromosome
for parallelization [15]. This generated 3 095 677 412 positions for
GRCh37 and 3 088 269 832 positions for GRCh38.

Algorithm to identify novel
conversion-unstable positions

To identify base-pair positions that are unstable in the conver-
sion process (defined below), each input file was converted from
the source build to the target build and then back to the source
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Figure 1. Flow chart of the algorithm to identify novel CUPs.

build again (Figure 1). Entries in the output files were extracted
if they satisfied one of the following conditions:

• positions which failed on the first conversion (Reject_1),
• positions which mapped to a different chromosome on the

first conversion (CHR_Jump_1),
• positions which failed on the second conversion (Reject_2),
• positions which did not map back to the original chromo-

some on the second conversion (CHR_Jump_2) and
• positions which did not map back to the original position

on the second conversion (POS_Jump).

We refer to these collectively as conversion-unstable posi-
tions (CUPs), and all other positions are referred to as stable.
Note that entries in the Reject_1 category are typically identified
by the conversion tool, so the latter four entries are what we
refer to from here on collectively as novel CUPs. Reject_1 and
CHR_Jump_1 positions were removed prior to the second con-
version (from the target build back to the source build). Despite
not being included in the input data, entries that mapped to
the unplaced, unlocalized, and alternate contigs were retained
in the CHR_Jump_1 and CHR_Jump_2 categories to ensure that
each base-pair position had an accurate category designation.

Both liftOver and CrossMap (v0.4.2) were used for the con-
version. Remap was not considered as its input file is limited
to 250 000 entries, which is much smaller than the lengths
of the input chromosomes. Integral to this conversion process
is a build-specific chain file, allowing for small-scale differ-
ences, e.g. discrepancies arising from fixing base-pair position
errors between builds. Chain files mapping between GRCh37
and GRCh38 (one for each direction) were obtained from the
liftOver website hosted by the UCSC Genomics Institute (see Web
resources in Methods section) and the same chain files are used
by both liftOver and CrossMap, allowing us to also check the
robustness of CUP identification, as a consensus between tools
would give higher confidence in the output. This algorithm was

run twice, once for the GRCh37 build as the source and once for
the GRCh38 build as the source.

Comparison with assembly annotation sets

To better understand the possible reasons for CUPs occurring,
we also identified where these positions originated. Given the
reconstruction of some contigs in the development of GRCh38
[6], one explanation for base-pair positions being rejected during
a conversion is that the position is not in the target build. In
the online support forum for the UCSC Genome Browser, it is
noted that variants may change chromosomes between builds
because they lie in repetitive regions or segmental duplications
(see Web resources in Methods section). In an attempt to isolate
the source of each CUP, the following assembly annotation sets
were obtained from the UCSC Table browser [3] for both genome
builds:

• Gaps in the build (gap): regions that are not present in
the build, including telomeres, the short arms of specific
chromosomes and gaps between known contigs. The cen-
tromeres are present in the GRCh37 gap set (as they did not
form part of the assembly) but are not in the GRCh38 gap
set. In the interests of a fairer comparison, the centromeres
were removed from the GRCh37 gap set prior to comparison.

• Differences between contigs (hg38ContigDiff): regions that
are different in the GRCh38 and GRCh37 builds due to
updates in individual contigs.

• Segmental duplications (genomicSuperDups): regions
longer than 1 kb that have a high degree of similarity with
other regions.

Given the overlap between these sets, positions unique to
each of the three sets, as well as positions which were present in
more than one set (multiple) or no set (other), were considered
(Supplementary Figure S1, Supplementary Data available online
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at http://bib.oxfordjournals.org/). For the CUPs identified above,
contiguous entries were collapsed into multi-base-pair regions
using bedtools [16], to allow for quicker comparison with the
assembly annotation sets. The proportion of overlap in CUP
category A of assembly annotation set B is defined as |A ∩ B|/|A|
and was computed using bedtools.

Whole genome sequence data

The well-characterized NA12877 and NA12878 samples for the
Coriell Institute CEPH 1463 family were used to examine the
behaviour of SNVs from WGS data when converting between
builds. High-confidence, pedigree-validated variant calls for
both samples were obtained from the Illumina Platinum
Genomics project in VCF format on both GRCh37 and GRCh38
[17]. As we are only considering the behaviour of SNVs and aim to
compare the WGS data with the full-genome data, only biallelic
SNVs were extracted for both samples. A slightly modified
version of the above algorithm was implemented using the
LiftoverVcf module from picard rather than liftOver, as liftOver
does not handle VCF file format. CrossMap can accommodate
VCF file format. The LiftoverVcf module is based on liftOver but
additionally checks the reference allele of each variant with the
target reference genome, removing any sites where there is a
mismatch. For VCF files, CrossMap updates the reference allele to
that of the target build where there is a discrepancy and returns
a failure if the alternate allele on the source build is the same
as the updated reference allele on the target build. If a reference
allele was updated to an ambiguous base (denoted by IUPAC
codes), these were removed and considered a mismatch. For
the WGS data, two additional output categories were included
for variants which failed due to reference-allele mismatches on
the first conversion (Mismatch_1) or on the second conversion
(Mismatch_2). Position and genotype discordance rates between
the converted and the aligned data were computed using bedtools
and GenotypeConcordance (from picard), respectively. These were
calculated as the proportion of variants in the converted data
where the position/genotype did not match that of a variant in
the aligned data. Genotype discordance rates are calculated as a
proportion of variants whose position matched a variant in the
aligned data.

Since individual base-pair positions are converted indepen-
dently of one another, variants, which are present in any of the
novel CUPs can also be excluded prior to conversion to ensure
all variants, are stable and data are of high quality. These filtered
data were compared with the output from the algorithm on the
original data to confirm that both methods are equivalent. In
addition to the VCF data files, BED files were generated using
position information extracted from the VCF data. This allowed
us to apply our original position-based algorithm (that used the
liftOver and CrossMap tools) for comparison.

Web resources
• UCSC Genome Browser user guide on build conversion:

https://genome.ucsc.edu/goldenPath/help/hgTracksHelp.
html#Convert

• UCSC Genome Browser support forum on liftOver errors,
with variants swapping chromosomes: https://groups.
google.com/a/soe.ucsc.edu/g/genome/c/P3M1Q5baozM/m/
Slyjdco5BwAJ

• The online implementation of liftOver: https://genome.u
csc.edu/cgi-bin/hgLiftOver

• The online manual for CrossMap: https://crossmap.readthe
docs.io/en/latest/

• Chain files for GRCh37 to GRCh38, provided by the UCSC
Genomics Institute: http://hgdownload.cse.ucsc.edu/golde
npath/hg19/liftOver/hg19ToHg38.over.chain.gz

• Chain files for GRCh38 to GRCh37, provided by the UCSC
Genomics Institute: http://hgdownload.cse.ucsc.edu/golde
npath/hg38/liftOver/hg38ToHg19.over.chain.gz

• Illumina Platinum Genomes project: https://www.illumina.
com/platinumgenomes.html

RESULTS
Full-genome data

We examined every base-pair position in both builds of
the human reference genome to identify positions that are
unstable to conversion. Both liftOver and CrossMap gave
identical output for the same input data (Table 1; Supple-
mentary Table S1, Supplementary Data available online at
http://bib.oxfordjournals.org/). On GRCh37, ∼11.3 Mb of novel
CUPs were identified (representing 0.37% of the build), and on
GRCh38, ∼20 Mb of novel CUPs were identified (0.65% of the
build). For both builds, a successive application of the algorithm
on the stable positions using either tool did not identify any
additional base-pair positions for any of the CUP categories.

We compared each of the CUPs with three assembly annota-
tion sets (gaps in the assembly, contig differences and segmental
duplications). For both builds, the proportion of overlap for each
CUP category across all the assembly annotation sets was at
least 97.5% for all except the Reject_1 category on GRCh37, where
the proportion was 69.2% (Figure 2). However, the centromeres
that were removed from the gap set (which do not overlap with
the other assembly annotation sets) account for an additional
29.4% of the Reject_1 category, giving a total overlap proportion
explained of 98.6% (Supplementary Table S2, Supplementary
Data available online at http://bib.oxfordjournals.org/). A large
proportion (∼70%) of Reject_1 categories on both builds are
composed of the gap set, whereas the novel CUPs are heavily
dominated by the contig differences and segmental duplications.

WGS data

As a proof of principle, we also examined the presence of CUPs in
WGS data for two individuals from the CEPH 1463 family. Sample
NA12877 had 3 518 008 SNVs on GRCh37 and 3 576 396 SNVs on
GRCh38. Sample NA12878 had 3 523 638 SNVs on GRCh37 and
3 594 064 SNVs on GRCh38. Each of these represents ∼0.1% of
the full genome data for their respective build. For both samples,
the CUPs identified from the VCF data were contained within the
CUPs identified from the corresponding BED data, as expected.
The only positions from the VCF data that were not contained
in the BED data were the mismatch categories (due to refer-
ence allele mismatches). Furthermore, the CUPs identified from
the BED positions from the WGS data were contained within
the respective full-genome CUPs. liftOver and CrossMap broadly
agreed on the CUPs derived from the VCF data, with differences
arising purely due to how each tool treats the reference allele
in the target build, including ambiguous bases (Mismatch_1,
Mismatch_2).

The number of stable SNVs was the same for the filtered
data (novel CUPs excluded) as for the unfiltered original WGS
data when the algorithm was applied (Table 2; Supplementary
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Table 1. Details of the stable positions and CUPs for the full-genome data for GRCh37 and GRCh38, including the number of base-pairs (bps) for
each category and the proportion of the genome build covered (%). Novel CUPs are highlighted in grey

Category GRCh37 GRCh38

GRCh37 to
GRCh38
(bps)

% of Source GRCh38 to
GRCh37
(bps)

% of Source GRCh38 to
GRCh37
(bps)

% of Source GRCh37 to
GRCh38
(bps)

% of Source

All 3 095 677 412 100.000 2 859 470 792 92.370 3 088 269 832 100.000 2 862 067 878 92.675
Reject_1 234 712 067 7.582 – – 218 510 733 7.076 – –
CHR_Jump_1 1 494 553 0.048 – – 7 691 221 0.249 – –
Reject_2 – – 100 180 0.003 – – 73 770 0.002
CHR_Jump_2 – – 799 922 0.026 – – 292 083 0.009
POS_Jump – – 8,907,439 0.288 – – 12 038 774 0.390
Stable 2 859 470 792 92.370 2 849 663 251 92.053 2 862 067 878 92.675 2 849 663 251 92.274
Novel CUPs – – 11 302 094 0.365 – – 20 095 848 0.651

Figure 2. The proportion of CUPs that overlaps with the assembly annotation sets, for the GRCh37 (top) and GRCh38 (bottom) builds. Here, ‘Multiple’ represents positions

present in one or more of the assembly annotation sets and ‘Other’ represents positions present in none of the assembly annotation sets (this includes the centromeres

for GRCh37). Gap: gaps in the assembly; ContigDiff: differences in contigs between builds; SegDup: segmental duplications.

Tables S3 and S4, Supplementary Data available online at
http://bib.oxfordjournals.org/). As expected, no additional
variants in the CUP categories were identified on a successive
application of the algorithm to either the original data or to the
filtered data. The SNVs at novel CUPs represented ∼0.13% of
SNVs on either build. The position and genotype discordance
metrics between the converted and aligned data are given in
Supplementary Table S5, Supplementary Data available online
at http://bib.oxfordjournals.org/.

DISCUSSION
Here, we have replicated the previously observed phenomenon
whereby a small proportion of SNVs change chromosome when
they are converted to another genome build [12]. Additionally,
we have identified novel sites where base-pair position infor-
mation does not behave as expected or where a one-to-one
mapping between positions on both builds is not present. The

novel CUPs represent 0.37% of the GRCh37 build and 0.65% of
the GRCh38 build. This is important, as annotation data rely
heavily on position information and downstream analysis can
be negatively impacted by inaccuracies during the conversion
process, as evidenced by our motivating example above.

The CUPs show a high degree of overlap with the three
assembly annotation sets. For both builds, the Reject_1 positions
(failure of the first conversion between builds) are dominated
by the gap and contig differences sets. This is a highly plausible
explanation for these base-pair positions as the conversion tools
will fail when regions of the genome are not present, or have
been updated, in the target build. For example, on GRCh37, the
centromeres make up ∼30% of the Reject_1 category (appearing
in the ‘Other’ set in Figure 2), which is to be expected as the
centromeres were broadly reconstructed during the assembly
of GRCh38. The intersection between the contig differences and
segmental duplications accounts for less than 6% of all the
assembly annotation sets (Supplementary Figure S1, Supple-
mentary Data available online at http://bib.oxfordjournals.org/);
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Table 2. Counts of base-pair positions (bps) and proportions (%) of all SNVs present in WGS data for sample NA12878 broken down by genome
build (GRCh37, GRCh38), conversion tool (liftOver or CrossMap) and whether the original or filtered data were considered

Source Category liftOver CrossMap

Original Filtered Original Filtered

Count (bps) % Count (bps) % Count (bps) % Count (bps) %

GRCh37 All 3 523 638 100.000 3 518 229 100.000 3 523 638 100.000 3 518 229 100.000
Reject_1 4947 0.140 4947 0.141 4947 0.140 4947 0.141
Mismatch_1 20 533 0.583 19 976 0.568 20 510 0.582 19 959 0.567
Mismatch_2 128 0.004 0 0.000 123 0.003 0 0.000
Novel CUPs 4724 0.134 0 0.000 4735 0.134 0 0.000
Stable 3 493 306 99.139 3 493 306 99.292 3 493 323 99.140 3 493 323 99.292

GRCh38 All 3 594 064 100.000 3 588 396 100.000 3 594 064 100.000 3 588 396 100.000
Reject_1 25 852 0.719 25 852 0.720 25 852 0.719 25 852 0.720
Mismatch_1 16 772 0.467 15 741 0.439 16 740 0.466 15 726 0.438
Mismatch_2 85 0.002 0 0.000 81 0.002 0 0.000
Novel CUPs 4552 0.127 0 0.000 4573 0.127 0 0.000
Stable 3 546 803 98.685 3 546 803 98.841 3 546 818 98.685 3 546 818 98.841

All novel CUPs have been combined into one entry in the table (novel CUPs, highlighted in grey), see Supplementary Tables S3 and S4, Supplementary Data available
online at http://bib.oxfordjournals.org/, for a full breakdown of the individual novel CUP categories.

however, the novel CUPs are largely composed of this inter-
section. If a region is contained in both a segmental duplica-
tion and a contig difference, this may indicate that the region
is better placed in another part of the genome, which would
explain the conversion instability. There remains a small pro-
portion of each of the unstable regions that is not covered by
at least one of the three assembly annotation sets (Figure 2,
Supplementary Table S2, Supplementary Data available online
at http://bib.oxfordjournals.org/).

In our study, both conversion tools identified the same unsta-
ble regions, which accords with the findings of Luu et al. 2020
[14], in their study of six conversion tools (including liftOver and
CrossMap). Additionally, once the novel CUPs are removed from
the full-genome data, a successive application of the algorithm
on the stable positions does not identify any further novel CUPs,
meaning that there is a one-to-one mapping for all stable base-
pair positions between builds. Finally, the WGS data fully agree
with the theoretical full-genome data. The comparison between
filtered and original WGS data shows that pre-excluding variants
at novel CUPs results in the same list of stable variants as
applying the full-genome algorithm to the original WGS data. We
provide a list of regions to exclude so that the user may remove
any variants in novel CUPs prior to conversion.

Pan et al. 2019 [13] reported conversion failure rates for WGS
data of on average 1% from GRCh37 to GRCh38 and 5% from
GRCh38 to GRCh37, noting that the SNVs that failed tended
to have much lower depth of coverage and may represent
false-positive variant calls. Here, we observe much lower tool
conversion failure rates of 0.14% from GRCh37 to GRCh38 and
0.72% from GRCh38 to GRCh37 for the WGS data. We note
that the SNVs used in the analysis here were detected by
multiple calling algorithms and have been pedigree-validated
by confirming a Mendelian inheritance pattern in the samples’
children, suggesting that this dataset is a particularly clean
and accurate set of SNVs [17]. This may account for the
decrease in conversion failure rates compared with the previous
study. However, we note that the trend in performance is
in the same direction and that converting from GRCh37 to
GRCh38 is more accurate than GRCh38 to GRCh37. While Pan
et al. (2019) show that read depth and variant quality may

have an impact on discordance rates, the variants examined
here did not have this information available, and thus, we
were unfortunately not able to assess these aspects of the
novel CUPs.

The combined position and genotype discordance rates
were on average 3.07% when converting from GRCh38 to
GRCh37 and 1.68% when converting from GRCh37 to GRCh38
(Supplementary Table S5, Supplementary Data available online
at http://bib.oxfordjournals.org/). When variants in the novel
CUPs were pre-excluded, these rates reduced to 2.97 and 1.61%,
respectively. This is higher than the average discordance rate
observed by Pan et al. (2019) of 1.5%; however, these rates are
not directly comparable. Pan et al.’s average discordance rate
is taken across all bioinformatics pipelines, across both builds
and across both tools. Although Pan et al. (2019) do not provide
the exact rates to compare, our discordance rates are broadly
in line with those observed in their Figure 6A [13]. As with the
conversion failure rates, both this study and Pan et al. (2019)
found that converting from GRCh38 to GRCh37 yields higher
discordance rates. We note that the genotype discordance
rates are quite low at an average of 0.0011% for both builds
(Supplementary Table S5, Supplementary Data available online
at http://bib.oxfordjournals.org/). This indicates that when the
position of a variant has been correctly converted, the genotype
is also highly likely to be correct.

This study has some limitations. Firstly, since two inde-
pendent conversion tools generate identical CUPs, we conclude
that these regions are determined by the chain files as both
tools utilize the same chain files. This is important to note,
as alternative chain files exist for converting between GRCh37
and GRCh38, and therefore, the full algorithm will need to be
applied if different chain files are used. A link to the source code
used to generate the CUPs is provided for this purpose. However,
it is worth noting that the chain files used here are the only
ones supplied by the authors of liftOver and CrossMap. Secondly,
while the full-genome data give insight into the behaviour of
SNVs under build conversion, this does not account for regions
spanning multiple base-pairs, as conversion tools are typically
sensitive to this [14]. Finally, we have used aligned WGS data
as a gold standard for evaluating the accuracy of converted
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data, but it is important to note that although the SNVs are
pedigree-validated, they may still contain false positive variant
calls.

Here, we have clearly highlighted the care that must be
taken when converting between genome builds to ensure high-
quality data. Although we have shown results for the two most
recent builds of the human genome, the same argument can be
applied when converting between any other build pair, or indeed
for non-human genomes. Unless the user is familiar with the
instabilities we have described, we recommend following the
simple strategy devised here of removing variants at novel CUPs
to ensure high-confidence data when converting SNVs between
the two most recent builds of the human genome.

Key Points
• When using tools such as liftOver and CrossMap to

convert SNVs between the two most recent builds of
the human reference genome (GRCh37 and GRCh38),
some base-pair positions map to different chromo-
somes.

• Additionally, when converting from target build back
to the source build, there are base-pair positions
which do not map back to the same original position.
This means that for these base-pair positions, a one-
to-one correspondence between builds does not exist.

• These CUPs are predominantly comprised of regions
with known annotation: gaps in the assembly, contig
differences between builds and segmental duplica-
tions.

• The CUPs identified for the full-genome data were the
same regardless of the conversion tool used, indicat-
ing that they are determined by the chain files.

• Pre-excluding SNVs at these CUPs prior to conversion
results in SNVs that are stable to conversion.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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Tiihonen, J., Lönnqvist, J., Wahlbeck, K., Klaukka, T., Niskanen, L., Tanskanen, A., &

Haukka, J. (2009, Aug). 11-year follow-up of mortality in patients with schizophrenia:

a population-based cohort study (FIN11 study). Lancet, 374(9690), 620–627.

14

Treangen, T. J., & Salzberg, S. L. (2011, Nov). Repetitive DNA and next-generation

sequencing: computational challenges and solutions. Nat Rev Genet, 13(1), 36–46.

29

Trost, B., Engchuan, W., Nguyen, C. M., Thiruvahindrapuram, B., Dolzhenko, E., Back-

strom, I., . . . Yuen, R. K. C. (2020, 10). Genome-wide detection of tandem DNA

repeats that are expanded in autism. Nature, 586(7827), 80–86.

85

Trost, B., Walker, S., Wang, Z., Thiruvahindrapuram, B., MacDonald, J. R., Sung,

W. W. L., . . . Scherer, S. W. (2018, 01). A Comprehensive Workflow for Read

Depth-Based Identification of Copy-Number Variation from Whole-Genome Sequence

Data. Am. J. Hum. Genet., 102(1), 142–155.

50, 51, 58
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