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Summary

Complex genetic disorders are impacted by a range of DNA variation. Next generation
sequencing (NGS) allows for the direct examination of this variation, but large sample
numbers are required to identify rare variants in unrelated cohorts. Pedigree-based co-
horts can partly resolve this, as densely affected pedigrees are likely to be influenced
by the same collection of rare variants. In this thesis, we examined approaches for
disease-gene prioritisation from pedigree-based NGS data for complex disorders. As a
model phenotype, we consider schizophrenia. A spectrum of rare and common variants
is known to increase individual risk for schizophrenia, although identifying such variants

remains challenging.

To begin, we examined some issues with variants derived from NGS data. Converting
base pair positions between builds of a reference genome can result in instabilities that
can impact downstream analysis. We characterised all such unstable positions between
two builds of the human reference genome. We replicated these instabilities in whole
genome sequencing (WGS) data and showed that removing variants at unstable posi-
tions results in variants stable to the conversion process. Next, we developed a novel
pipeline for calling copy number variants (CNVs) that takes a consensus of four calling
methods. By incorporating relatedness information, we can reclaim lower confidence
CNV calls in our consensus approach. We benchmarked this pipeline against a curated
“Gold Standard” set of CNV calls and showed that our method outperforms all other

comparison pipelines selected.

We examined WGS data from a collection of identical twins discordant for schizophrenia
and related disorders. We identified seven rare, deleterious, missense variants present
in an affected sample but absent from their co-twin. One impacted gene (POLG) has
previously been implicated in mood disorders and psychosis. We also identified a rare
duplication at chromosome 3q29 private to one affected sample. Duplications in this

region have previously been observed in autism and developmental delay.

Next, we investigated WGS data from a cohort of seven Utah pedigrees multiply affected
with schizophrenia. We considered an identity-by-state (IBS) filtering approach and pri-
oritised ultra-rare, protein-coding variants in constrained genes. We identified three such
variants with a reduced co-segregation pattern in three separate pedigrees. One such

gene (ATP2B2) has been implicated in common variants associated with schizophrenia



and was found to be nominally associated with schizophrenia in a recent rare-variant

case-control analysis.

We evaluated two tools (pVAAST and PERCH) which aim to prioritise variants from
pedigree-based NGS data in a more unified framework compared to the IBS filtering.
We found that pVAAST correctly identified deleterious variants that followed a Mendelian
inheritance pattern using a synthetic phenotype but was unable to identify the three vari-
ants prioritised in the IBS analysis of the Utah pedigrees. PERCH did not identify several of
the deleterious Mendelian variants, and so both tools were removed from future analyses.

To address some of the limitations of previous methodologies, we developed a novel
Bayesian model to measure pedigree-based causality from NGS data. We found that
our method performed well at identifying the correct variants from the synthetic phen-
otype and the Utah pedigrees. Additionally, our method identified a rare frameshift
variant in KDM2B perfectly co-segregating with schizophrenia that was discounted by
the IBS analysis. A variant in gene has been recently implicated in schizophrenia from

co-segregation in a Japanese pedigree.

Our work has wider implications, making substantial contributions in aiding researchers
to elucidate the genetic architecture of pedigree-based NGS data for complex genetic

disorders in psychiatry and beyond.
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Chapter 1

Introduction and Background

Identifying the genetic basis of diseases is important if we are to understand disease
pathogenesis and improve patient outcomes. Mendelian disorders, with a simple genetic
architecture, are rare, with the bulk of disease morbidity involving a complex interplay
of genetic and environmental risk. This complexity necessitates multiple methodological
approaches to DNA variant discovery. Studying families, which share genetic variants,
can be useful where the emphasis is on variants that are rare in the wider population.
The focus of this thesis is learning about and developing methods for analysing rare
variants from human sequence data (in [Chapter 4, |Chapter 7, and |Chapter 8), and
applying this to schizophrenia, a heritable brain disorder (in |Chapter 5, |Chapter 6| and
Chapter 8)). Here we discuss some of the technologies and techniques used to investigate
complex genetic disorders before providing a brief overview of the current understanding

of schizophrenia genetics.

1.1 Genetic Models

1.1.1 Overview of Complex Disorders

In comparison to Mendelian disorders, complex genetic disorders are influenced by mul-
tiple genetic factors and different models for the genetic architecture involved have been
proposed (Mitchell, 2012)). The common-variant hypothesis states that there are many
common DNA variants, each with a small effect on the phenotype. This can range from a
modest number of variants (oligogenic) to hundreds, or thousands in a polygenic model.
At the other extreme, the rare-variant hypothesis proposes involvement of many rare
variants, each with a moderate to large effect on the phenotype. Both hypotheses have
merits and should be seen as complementary rather than competitive (Gibson, 2012;
Schork et al., 2009). The liability threshold model states that complex disorders have
some underlying distribution of risk, either genetic, environmental, or both (Falconer,
1965; |Pearson, 1901)). An accumulation of risk factors pushing an individual above some
threshold results in that individual having the phenotype. This model provides some

harmonisation between the common-variant and rare-variant hypotheses.



CHAPTER 1. INTRODUCTION AND BACKGROUND

DNA microarrays have been used for many decades to genotype single nucleotide poly-
morphisms (SNPs) which are individual DNA base pair (bp) changes to the genome.
To be classified as a SNP, a variant must be found in at least 1% of the population.
Their frequency, and the development of arrays that can genotype a million SNPs or
more (LaFramboise, 2009), made possible the comprehensive genetic analysis of com-
mon variants predicted by Risch and Merikangas (Risch & Merikangas, 1996)). Over
the last two decades, genome-wide association study (GWAS) have used SNP arrays
to evaluate the common-variant hypothesis by examining differences in SNP frequencies
across a given phenotype in cohorts of unrelated individuals (Bush & Moore, 2012). This
work has mapped out a significant contribution of common genetic risk across a wide
range of conditions. However, each SNP identified typically represents a linkage disequi-
librium (LD) block which may contain many DNA variants, so the causal mechanism of
a GWAS association peak can be hard to establish. Significant loci from GWAS can be
summarised at an individual level as a polygenic (risk) score, which is the sum of the

number of alleles carried by that individual, weighted by the effect sizes of the loci.

1.1.2 Pedigree-Based Studies

The heritability explained by SNPs alone may fall short of the known family-based her-
itability estimates, a phenomenon known as the “missing heritability” problem (Manolio
et al., 2009). One explanation for this is that rare variants, whose signal may not be
readily detectable from SNP genotype arrays, account for a substantial proportion of
the remaining heritability (Zuk et al., 2014). The rationale is that pathogenic variants
with strong effects on a phenotype are likely to be rare in the general population due
to purifying selection. ldentifying such variants may be particularly important in un-
derstanding biological mechanisms that underpin phenotypes. Rare variants that affect
the amino-acid chain of protein-coding regions are more readily interpretable in a bio-
logical context than tagging SNPs under association peaks, the majority of which are
non-coding (Cano-Gamez & Trynka, 2020). Additionally, such rare variants are often
amenable to follow-up molecular analyses to provide biological validation to statistical
identification. These variants that are not typically captured by SNP arrays could only
be systematically investigated with the advent of next-generation sequencing (NGS), de-
scribed below. However, large sample sizes are required to perform a gene-based burden
analysis of rare variants in an unrelated cohort, and greater sizes again are needed to

discover specific risk variants (Sanders et al., 2017)).

Pedigree-based analyses offer a solution to this issue (DeLisi, 2016; |Glahn et al., 2019). A
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1.2. GENOMIC TECHNOLOGIES

rare variant present in a founder of a pedigree is more likely to be present in the founder's
immediate descendants than in the general population. The assumption is that densely
affected pedigrees will be enriched for highly penetrant, rare variants, reducing the need
for the extremely large sample sizes that are required in unrelated cohorts (Sullivan et al.,
2012). LD-structure differences and population stratification are less likely to occur in
closely related individuals within a pedigree, although care should be taken with marry-in
individuals who may have different genomic ancestry. Another potential advantage is
that there tends to be less variation in environmental factors between individuals in a
pedigree compared to unrelated cohorts (Morris et al., 2015), and unaffected individuals

within a pedigree can often serve as controls.

1.2 Genomic Technologies

1.2.1 Next-Generation Sequencing

Traditional Sanger sequencing allows for the examination of contiguous DNA sequences
but is typically limited to segments of less than 1kbp in length (Crossley et al., 2020).
Where longer DNA sequences are required, shotgun sequencing of overlapping segments
can be performed (Heather & Chain, 2016). However, this process is not always feasible
for several genomic loci at once due to its cost, so genomic regions need to be prioritised
in advance by some other method. This issue found a powerful resolution with the wide-
spread use of short-read NGS technologies. In the 2000s, the cost of NGS fell rapidly,
and its scalability made it an attractive alternative to Sanger sequencing (Goodwin et
al., 2016). While DNA sequencing is typically orders of magnitude more expensive than
SNP genotyping, it facilitates the direct evaluation of DNA with no requirement for

imputation panels or careful probe design.

NGS involves splitting the DNA into short, contiguous fragments which may be amp-
lified by polymerase chain reaction (PCR) (McCombie et al., 2019). These fragments
(typically 100-300 bp in length) are sequenced to generate a read, which contains the
ordered DNA nucleotides and their sequencing quality score. Reads can be assembled to
re-construct the original genome of the sample (Reinert et al., 2015)). Sequencing may
be restricted to protein-coding regions, known as whole-exome sequencing (WES), or
cover the entire genome, known as whole-genome sequencing (WGS). By analysing the
assembled reads, various classes of DNA variants may be called, whose genotypes can
be inferred by probabilistic modelling (Van der Auwera et al., 2013)). While SNP probes

on genotype arrays are chosen to be reasonably common in a given population, NGS has
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the ability to examine single nucleotide variants (SNVs) or short insertions or deletions

(indels) of any population frequency.

A key component to read alignment and variant calling with NGS data is a reference
genome, which is a standardised, representative genome for a given species. The most
frequently used human reference genomes are those constructed by the Genome Ref-
erence Consortium (GRC) (Church et al., 2011) who to date have released thirty-eight
iterative reference builds; the two most recent being GRCh37 (released in 2009) and
GRCh38 (released in 2013). The University of California, Santa Cruz (UCSC) Genomics
Institute have also released analogous versions of these builds, referred to as hgl9 and
hg38 respectively (Haeussler et al., 2019). Both GRCh37 and GRCh38 were generated
by sequencing DNA from a collection of human donors, predominantly using Sanger
sequencing (Genome Reference Consortium, 2010; |Consortium, 2013). DNA sequences
were combined to form high-confidence contiguous segments known as contigs, which
were joined to form a de novo assembly of the reference genome. One of the major
updates in GRCh38 was the closing of numerous gaps where sequencing had previously
not been possible (Schneider et al., 2017)).

Updates to the base pair coordinates in the reference genome mean that not all pos-
itions are comparable between builds. While the most accurate solution would be the
realignment of reads to a common reference genome, this is a computationally expensive
task (Guo et al., 2017). This means that resources curated relative to different builds of
the reference genome must be pre-processed to make them comparable. Tools exist to
convert the coordinates between builds (Haeussler et al., 2019; M. Zhao et al., 2013)),

but the process is known to have instabilities (Liu et al., 2016).

1.2.2 Structural Variants

A structural variant (SV) is a large-scale change to a chromosome. Microscopic events
such as an abnormal number of chromosomes have historically been detected using ka-
ryotyping. On a sub-microscopic level, SVs typically take the form of deletions, duplic-
ations, insertions, inversion or translocations (Feuk et al., 2006)). Copy number variants
(CNVs) are simply deletion or duplication events, which are estimated to make up 4.8-
9.5% of the human genome (Zarrei et al., 2015). SVs were historically detected by
cytogenic techniques, such as fluorescent in situ hybridization (FISH) and comparative
genomic hybridization (CGH) (K. Wang & Bucan, 2008). Both methods have limita-
tions, the most important of which is a low level of resolution. Also, FISH can only
detect SVs in regions targeted by the fluorescent probes, and CGH cannot detect bal-
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anced structural changes such as certain translocations or inversions (Weiss et al., 1999).

SNP-arrays allow a higher resolution of SV detection, given the density of SNP probes
available on most modern arrays (Coughlin et al., 2012)). SV calling algorithms for SNP-
arrays are sensitive to probe designs, and so different arrays may not be empowered
to detect all types of SVs (Haraksingh et al., 2017). One recommended strategy is to
combine the results from multiple calling algorithms to improve the power to detect all
variants (Kim et al., 2012)), but the results will always be limited by the distribution and
density of the probes in the array. Additionally, it is not always possible to determine
the breakpoints of SVs with accuracy. NGS technologies have the potential to provide a
solution to this issue, given that they examine all base pairs in the genome/exome, and
are not dependent on tagging SNPs (M. Zhao et al., 2013). However, there are several
different computational approaches to calling CNVs from NGS data, and there is a wide
variability in performance of calling software tools (Kosugi et al., 2019). Unlike SNVs
and indels, there are no “Best Practices” for calling CNVs from NGS data, so studies

are not able to benchmark the ability of their pipeline to detect CNVs.

1.2.3 NGS Pedigree Analysis

Linkage analysis is the de facto standard used to identify candidate causal genes or re-
gions in pedigrees. Typically, multiple generations and a minimum number of samples
are required for linkage analysis to achieve statistical significance, which is not always
feasible, especially for NGS data (Ott et al., 2015). An alternative approach is co-
segregation analysis which we refer to as identity by state (IBS) filtering. One strategy
is to examine the subset of variants present in affected individuals and absent from unaf-
fected individuals. As with linkage analysis, characteristics common to complex disorders
such as reduced penetrance and the presence of phenocopies may also be incorporated
into such filtering. This method is non-statistical but has the advantage of simplicity
and is a reasonable alternative when linkage analysis is not possible. Variants may be
further prioritised by filtering on population-derived metrics such as conservation, dele-

teriousness, or allele frequency.

While IBS filtering is often implemented, it has its limitations. Firstly, there is no
measure of co-segregation, so there is no way to compare results from different pedigrees.
For example, we cannot know whether there is more evidence from a large sibship or
from a smaller but multi-generational family. Secondly, there is no obvious approach
to relaxing the requirement that all affected individuals carry a risk variant consistently

across different family structures. Finally, the population-based filtering methods used
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to prioritise variants, even if guided by empirical work, are arbitrary and may vary from
one research group to another. Some tools have been designed to provide a statistical
framework for pedigree-based NGS data analysis (Feng, 2017; Hu et al., 2014), but their
novel metrics make them difficult to interpret or to compare to more traditional methods.
Additionally, as with most frequentist statistical approaches, they make no statement

about how likely any of the tested hypotheses are a priori.

1.3 Schizophrenia

1.3.1 Phenotype

Schizophrenia is a debilitating psychiatric disorder with an estimated lifetime prevalence
of 1% and a reduction in life expectancy of up to 25 years (Tiihonen et al., 2009).
The core features of schizophrenia are: hallucinations, delusions, disorganized speech
or behaviour, and “negative symptoms” such as diminished emotional expression and
avolition (Association, 2013). Environmental effects are known to have an impact on
schizophrenia (Stilo & Murray, 2019)), but genetic heritability has been estimated from
twin studies at ~ 0.81 (Sullivan & Geschwind, 2019)). Furthermore, there is an increased
rate of other psychiatric conditions (e.g. bipolar disorder) in first-degree relatives of
people with schizophrenia (Lichtenstein et al., 2009) and more recent work indicates a
likely shared heritability across many psychiatric disorders (Anttila et al., 2018). As such,
understanding the genetic aetiology of schizophrenia may provide wider insight into the

genetics of mental disorders.

1.3.2 Genomics

The first large-scale studies of common variants in schizophrenia in 2009 found a handful
of significantly associated loci including the major histocompatibility complex (Purcell
et al., 2009; Stefansson et al., 2009). Over a decade later, the Psychiatric Genomics
Consortium (PGC) wave 3 GWAS identified 287 loci associated with schizophrenia across
multiple genomic ancestry groups (Trubetskoy et al., 2022). Parallel analysis of rare
CNVs from SNP array data enabled the detection of twelve CNVs with a statistically
significant association with schizophrenia (Marshall et al., 2017, Rees et al., 2014).
Details of these loci are shown in [Table 1.1, Some of these CNVs are associated with
related disorders such as bipolar disorder (Green et al., 2016)), major depressive disorder
(Kendall et al., 2019), intellectual disability (Coe et al., 2014), and autism (Malhotra
& Sebat, 2012} Sanders, 2015). Additionally, 11 CNVs were found to be nominally

associated with schizophrenia, some of which had a protective effect (see [Table 1.2).
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Cytoband Type OR | Notes Other

1q21.1 DUP 3.45 ID, ASD, MDD
DEL 8.35 ID, ASD

2pl6.3 DEL 9.01 | NRXN1I ID, ASD

3929 DEL | 57.65 ID, ASD

7q11.23 DUP | 11.35 | Williams-Beuren syndrome | ID. ASD

15q11.2 DEL 2.15 ID

15q11-q13 DUP | 13.20 | Prader-Willi syndrome MDD, ID, ASD

15q13.3 DEL 7.52 ID, ASD

16p13.11 DUP 2.30 ID

16p11.2, dist. | DEL | 20.60 ID, ASD

16p11.2, prox. | DUP | 11.52 MDD, BD, ID

22q11.2 DEL | 67.70 | Velocardiofacial syndrome | ID, ASD

Table 1.1: Details of 12 rare CNVs from 11 unique regions with a statistically significant
association with schizophrenia, including the odds ratio (Rees et al., 2014) and other pheno-
types also associated with the CNV. The odds ratios for the 16p11.2 distal deletion and the
22q11.2 deletion were taken from Marshall et al. (Marshall et al., 2017)). DEL: deletion; DUP:
duplication; ID: intellectual disability; ASD: autism spectrum disorder; MDD: major depressive
disorder; BD: bipolar disorder; dist.: distal; prox.: proximal.

Table 1.2:

Cytoband | Type OR | Notes Other

7ql11.21 DEL/DUP | 0.66 | ZNF92

7p36.3 DEL/DUP | 3.50 | VIPR2, WDR60

8q22.2 DEL 1450 | VPS13B

9p24.3 DEL/DUP | 12.40 | DMRT1

13q12.11 DUP 0.36 | ZMYM5

22ql1.2 DUP 0.15 ID, ASD

Xq28 DUP 0.35 | MAGEAL11

Xq28, dist. | DUP 8.90

Details of 11 CNVs from eight unique regions that are nominally associated

with schizophrenia (Marshall et al., 2017). DEL: deletion; DUP: duplication; ID: intellectual
disability, ASD: autism spectrum disorder; dist: distal.
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Recently, the Schizophrenia Exome Meta-Analysis (SCHEMA) Consortium collated WES
data on 24,248 schizophrenia cases and 97,322 controls from across five genomic an-
cestry super-populations (T. Singh et al., 2022). The analysis focused on ultra-rare
variants (URVs) affecting genes that were predicted to be intolerant to loss-of-function
variants. The SCHEMA consortium reported 10 genes in which the burden of URVs was
significantly higher in cases than controls and suggested that many more genes in which
URVs contribute to schizophrenia risk are yet to be discovered. A summary of known
rare and common variants implicated in schizophrenia as described by Singh et al. is

shown in [Figure 1.1]

100 4 _—3g29 del
GRIA3 22q11.21 del @ Common variants
50 - 'XPO? Copy number variants
P 16p11.2, distal del @ Protein-truncating variants
CUL1 / 7q11.23 dup
o 20 SETDLA [ ] 15g13.3 del
= GRINzZA ——2p16.3 (NRXNT) del
o 104  mBBICCT® __16p11.2, proximal dup
©
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Figure 1.1: An overview of variants with a known association with schizophrenia taken from
Singh et al., showing the broadly inverse relationship between the variant’s allele frequency
(x-axis), and the odds ratio of that variant (y-axis) (T. Singh et al., 2022). Common SNPs
from GWAS are shown in blue, rare CNVs are shown in yellow, and genes harbouring ultra-rare,
protein-truncating SNVs and indels are shown in red.
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1.4 Aims of the Thesis

e To compare two tools (1iftOver (Haeussler et al., 2019) and CrossMap (M. Zhao
et al., 2013))) for converting SNVs between genome builds, and to characterize

instabilities in the conversion process.

e To develop and benchmark a consensus pipeline for calling CNVs from WGS data

in a pedigree-based cohort.

e To investigate the presence of rare, post-zygotic variants from WGS data in a

cohort of identical twins discordant for psychiatric diagnosis.

e To analyse rare variants in a cohort of multiplex schizophrenia pedigrees from Utah

using an IBS filtering approach.

e To evaluate the strengths and weaknesses of two software tools (pVAAST (Hu et al.,
2014) and PERCH (Feng, 2017))) for disease-gene prioritisation from pedigree-based
NGS data.

e To develop a Bayesian framework for measuring pedigree-based causality of rare

variants.

17






Chapter 2

General Methods

In this chapter, we detail some of the general bioinformatics processes applied to prepare
our WGS data for the primary analyses. We describe the read alignment pipeline applic-
able to all NGS data that is based on well-established “Best Practices”. For some of our
data, this was performed by a sequencing facility, whereas for data obtained from collab-
orators or from online resources, this was performed locally. Next, we call and genotype
SNVs and indels across all samples in a cohort and re-calibrate the variant-level quality
control scores to remove lower-confidence calls. Finally, we select various metrics from

publicly available databases with which we annotate our variant call sets.

2.1 File Formats

2.1.1 FASTQ

FASTQ files are the standard format for storing raw sequencing reads from lllumina
platforms and are considered the de facto standard for most other sequencing platforms
(Cock et al., 2010). A FASTQ file is organised into four lines per read: the sequence
identifier and optional meta-data (line begins with “@"), the raw nucleotide sequence,
optional repeat of the title (line begins with “+"), and the per-base quality scores. The
quality scores are phred-scaled and are stored as ASCII characters so that one character
represents the score of each nucleotide in the read. Paired-end sequencing results in two
files: the forward reads and the reverse reads. The files are matched so that the order of
the reads is the same for both files, and typically tools will fail to process FASTQ files
where the read order is out of sync. For WGS data, these files can be large, so they are

typically compressed with bgzip and indexed with tabix (H. Li, 2011)) for quicker access.

For the FASTQ data in this thesis, the tool FastQC (see “Web Resources”, Subsec-
tion A.2.1) was applied to all files identify any potential quality control issues. FastQC
generates figures on several metrics such as: base pair quality score, GC content (propor-
tion of G or C nucleotides), N content (proportion of no-call bases), sequence duplication

levels, etc. Samples which showed low base pair quality scores across their reads were
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flagged as not having sufficiently high-quality data to continue analysis. The GC content
across all chromosomes in homo sapiens is known to be approximately normally distrib-
uted, centred around 41% (Lander et al., 2001). Any deviation from this is usually
an indicator of the presence of DNA of a different organism. Thus, samples were ex-
cluded if the distribution of GC content was multi-modal, as this is likely due to bacterial

contamination of the DNA sample, or possibly the presence of tumour samples.

2.1.2 SAM/BAM/CRAM

After read alignment (discussed below), reads are stored in a sequence alignment map
(SAM) format (H. Li et al., 2009). At the top of the file is a header section (lines
beginning with “@") which contains meta-information about the alignment, such as the
chromosomes present, the read group, the commands used to generate the file, etc. Next
comes the alignment section with information from one sequencing read per line. The
alignment section has 11 mandatory columns which describe the mapping of the read to
the reference genome, as well as all information from the FASTQ file. Since SAM files
are typically large for WGS data, they can be converted to binary alignment map (BAM)
files, which are smaller in size. An efficient alternative to BAM format is compressed
alignment map (CRAM) format (Cochrane et al., 2013)), which can offer significant
storage improvements over BAM format. However, while most tools which process
aligned data accept BAM files as an input, many tools are not capable of processing
CRAM files so decompression is often required. Typically, we use BAM files when calling
variants and compress to CRAM for long-term storage. SAM, BAM and CRAM files
were created and manipulated with samtools (H. Li et al., 2009).

2.1.3 VCF

The variant call format (VCF) is generated from an alignment file and stores information
about genetic variants (Danecek et al., 2011). This file format can be used to describe
SNVs, indels, or SVs. As with the alignment files, VCF files begin with a header (lines
beginning with a “##") which contains meta-data on the main body of the file, in-
cluding: the chromosomes present, annotation information about the variants, how the
data were generated, variant filters, etc. Next comes a line beginning with a “#" which
describes the fields, and following this is the data section, with one variant per line. The
mandatory eight fields are: the chromosome, the base pair position of the start of the
variant, an ID string, the reference allele, the alternate allele(s), a phred-scaled quality

score, any filtering info, and any user-defined information about the variant.
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If samples are provided, the ninth column describes the format of the sample-level inform-
ation, and then data for each sample are displayed as additional columns, one column per
sample. Typically, the sample columns contain the genotype (GT) of the individual for
the variant, the depth of coverage (DP) at the variant site and the genotype quality score
(GQ) which represents the confidence of the genotype call. For diploid chromosomes,
the genotypes may be homozygous for the reference allele (represented by “0/0"), het-
erozygous (“0/1" or “1/0"), homozygous for the alternate allele (“1/1"), or missing
(*./."). A variant may have multiples alleles, which is reflected in the genotype. For
example, a genotype of 0/2 means an individual is heterozygous for the second allele in
the allele column. As with FASTQ files, VCF are typically compressed with bgzip and

indexed with tabix.

2.1.4 FAM

A FAM file describes information about individuals in a cohort, and any family information
that may be present. Each line represents one individual, and the file contains six
columns: the family ID, the individual ID, the ID of the father, the ID of the mother,
the sex, and the phenotype code. Unknown values for the ID of the parents or the sex
are coded as a “0", and unknown phenotype values are usually coded as “-9". Using
this information, a pedigree diagram for a family may be constructed, and the pairwise
relatedness between any two individuals in the file may be estimated. Note that multiple

families may be present in the one file.

2.2 SNV and Indel Calling

2.2.1 Read Alignment and Post-Processing

The read alignment and post-processing of WGS data were mostly performed at Ed-
inburgh Genomics, Clinical Genomics (EGCG). This pipeline was broadly based on the
well-known genome analysis toolkit (GATK) “Best Practices” v3 (Van der Auwera et al.,
2013), with some modifications for speed and optimisation. However, where raw data
was obtained directly (either from collaborators or downloaded from public resources),
this pipeline was applied on local servers. To ensure compatibility, the BAM and FASTQ
files obtained from EGCG were examined, and identical parameters were used for the local
instance of the pipeline. An overview of this pipeline is shown in[Figure 2.1l Source code
for the alignment process is available online (see “Web Resources”, Subsection A.2.1)).
Either the GRCh38 reference genome (including decoy, HLA and alternative contigs,
GenBank accession: GCA_000001405.15) or the GRCh37 reference genome (GenBank
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accession: GCA_000001405.14) was selected, depending on the analysis.

The alignment and post processing consisted of the following steps:

22

. pairs of FASTQ files were aligned to the chosen reference genome using the

BWA-MEM algorithm (H. Li, 2013).

. the chromosomes were re-ordered and the reads within the chromosomes were

sorted using the ReorderSam and SortSam modules from picard respectively
(see “Web Resources”, Subsection A.2.1).

. the BAM file was validated with ValidateSamFile module from picard to ensure

that there were no errors with the read alignment or file formatting.

. PCR duplicates from the sequencing process were marked. BAM files processed

by EGCG had duplicates marked with samblaster (Faust & Hall, 2014), whereas
BAM files processed locally had duplicates marked using the MarkDuplicates
module from picard. Both tools perform comparably, but samblaster is optim-

ised for speed.

. local re-alignment around indels was performed using GATK v3.4. This step is

unnecessary when later versions of GATK are used but was retained for compatibility
with data from EGCG.

. base quality score recalibration (BQSR) was performed to correct for potential

errors in the sequencing chemistry and platform using the BaseRecalibrator
module from GATK. The error rates before and after adjustment are plotted by the
AnalyzeCovariates module of GATK, and the adjustments are applied by the

PrintReads module.

. the BAM file was validated once more using the ValidateSamFile module from

picard, since this is the final stage of read post-processing.
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2.2.2 Variant Calling and Joint Genotyping

Once read alignment and post-processing was performed, variants were called using the
HaplotypeCaller module from GATK. GVCF mode was selected, whereby all positions
in the genome are evaluated for having a variant or not, so likelihoods for a site being
homozygous reference can be calculated. Instead of a standard VCF file, a genomic
VCF (gVCF) file is produced with records for non-variant sites as well as candidate
variant sites. For convenience, neighbouring non-variant records in the gVCF file are
combined so intervals may be represented as a single record (or block) in which the
genotype likelihoods are binned. After variants were called with HaplotypeCaller in
GVCF mode, genotypes for all samples were assigned jointly using the GenotypeGVCFs
module from GATK v3.8. A newer version of GATK was used for this and subsequent steps,
since v3.4 had a known bug and was not able to process spanning deletions (i.e. sites
where one sample had a deletion, but another sample had an SNV within the deleted

region ).

2.3 Variant Quality Control

2.3.1 Variant Quality Score Recalibration

After genotyping, variants on the standard 23 pairs of chromosomes were retained. As
recommended from the GATK “Best Practices”, variants whose depth of coverage was
greater than five standard deviations above the average coverage across all sites were
removed (see “Web Resources”, |Subsection A.2.1). To remove low-quality variants,
variant quality score recalibration (VQSR) is applied to calculate a new metric, the
variant quality score, logarithm of odds (VQSLOD) (Van der Auwera et al., 2013).
Variants were split by type using the SelectVariants module from GATK. VQSLOD
scores were calculated by the VariantRecalibrator module and annotated by the
ApplyRecalibration module, both from GATK. The recommended VQSLOD tranche
thresholds are 99.9% for SNVs and 99.0% for indels. For variants which are neither
SNVs nor indels (spanning deletions, multi-nucleotide variants, etc.), the following hard

filters (recommended for indels from the GATK “Best Practices”) were applied:
QD < 2 || FS > 200 || SOR > 10 || ReadPosRankSum < -20

SNVs, indels and other variants were then merged with CombineVariants and the
VCF file was validated with ValidateVariants, both from GATK. At this stage, the
sample IDs within the VCF files were assessed for consistency and where necessary

samples were renamed with bcftools reheader (Danecek et al., 2021). Source code
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for the joint genotyping process and VQSR is available on GitHub (see “Web Resources”,
Subsection A.2.1)

2.3.2 Genotype-Level Metrics

During joint genotyping of multiple samples, two different variants may be present at the
same site, e.g. two alternate alleles of an SNV, or an SNV in one sample and an indel
in another. It is often useful to separate these variants so that they may be processed
independently, especially if allele-specific information is being used. To do this, we used
the norm module from bcftools, which separates out the genotype-specific metrics
for each alternate allele. Following the split of multi-allelic sites, we required that each
sample had a minimum of evidence for a genotype to be correctly called. We required
that there were at least 10 reads supporting the genotype, or DP > 10. Also, we required
that the Phred-scaled GQ score was at least 20. This means that the likelihood for the
genotype was at least 100 times greater than the likelihood for the next most likely
genotype. These filters were applied using the VariantFiltration module from GATK.
Genotypes which failed these filters were set to missing using the SelectVariants
module from GATK.

2.4 Pedigree Consistency

The software peddy was used to check the consistency of the pedigree information with
the genetic data (Pedersen & Quinlan, 2017)). The following quality control measures are
examined: expected versus observed relatedness (by the KING algorithm (Manichaikul
et al., 2010))), predicted sex concordance, median depth of coverage, and genomic an-
cestry clustering prediction following principal component analysis (PCA). peddy has
known bugs when calculating the expected relatedness from complex pedigree struc-
tures, such as when half-siblings or consanguinity are present (see “Web Resources”,
Subsection A.2.1). In this instance, the observed relatedness scores are calculated using
vcftools (Danecek et al., 2011) which also implements the KING algorithm, and the
expected relatedness scores are calculated with the kinship2 package from R (Sinnwell
et al., 2014).

2.5 Public Databases and Resources

2.5.1 Allele Frequency Databases

The following allele frequency databases are used throughout the thesis:
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e The 1000 Genomes Project (Phase Ill) examines NGS and SNP genotype data
on 2,504 individuals from five genomic ancestry groups: African (AFR), admixed
American (AMR), East Asian (EAS), European (EUR) and South Asian (SAS)
(Auton et al., 2015).

e The genome aggregation database (gnomAD) includes population-level allele fre-
quencies for a range of super- and sub-populations of genetic ancestry (Karczewski
et al., 2020). Version 2.1.1 of gnomAD is considered by the authors to be the
preferred version for analysis of protein-coding regions due to the large sample
numbers (125,748 exomes). Version 3.1 of gnomAD is composed of 76,156 WGS
samples and so is preferred for examining non-coding variants. Additionally, a
collection of structural variants is compiled for 14,891 individuals (Collins et al.,
2020).

e The Database of Chromosomal Imbalance and Phenotype in Humans using En-
sembl Resources (DECIPHER) collates a list of CNVs and their allele frequencies
in the general population (Firth et al., 2009).

e The Database of Genomic Variants (DGV), a similar project which aims to cata-

logue structural variants from healthy controls (MacDonald et al., 2014)).

2.5.2 Variant Deleteriousness Metrics

The functional interpretation of genetic variants can be challenging, even for variants
in protein-coding genes. If we have not observed a variant in an individual (or many
individuals) with a phenotype, we have no evidence to implicate that variant with the
phenotype. Various scores (known as deleteriousness metrics) aim to predict how dam-
aging a variant is or how likely a variant is to be implicated in diseases or disorders in
general. These scores can be used to remove variants that are unlikely to be disease-
causing candidates. Some examples of commonly used metrics are described below and

are used in aspects of the work in this thesis.

Sorting Intolerant From Tolerant (SIFT) scores can be calculated for all non-synonymous
variants and are based on the prediction of whether the amino acid substitution will affect
protein function or not (Ng & Henikoff, 2003)). Given a query protein, related proteins
are examined to identify if similar amino acid substitutions are observed in protein se-
quence databases. Substitutions not observed are assumed to be selected against, and

so variants resulting in these amino acid substitutions are predicted to be deleterious.
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SIFT generates a score from 0 to 1, with smaller scores representing deleterious variants.

Polymorphism Phenotyping v2 (PolyPhen2) scores can also be calculated for all non-
synonymous variants and are based on amino acid substitutions (Adzhubei et al., 2013)).
A naive Bayes classifier is used to predict the functional importance of a variant from a
set of sequence-based as well as protein-structure-based features. Two datasets are used
to train the model (HumDiv and HumVar), which give varying degrees of performance
accuracy. PolyPhen2 generates a score from 0 to 1, but the scale is in the opposite

direction to SIFT; variants with high scores are predicted to be damaging.

Combined Annotation Dependent Depletion (CADD) is a machine learning model built
using over 60 genomic features, including deleteriousness, conservation, genetic func-
tional consequence, epigenomic modification, etc. (Rentzsch et al., 2019). It is trained
on a set of evolutionarily simulated variants rather than curated benign/pathogenic sets,
which allows all positions in the genome to be scored for a given alternate allele. This
is especially useful for considering non-coding variants. CADD reports raw scores as
the output of the penalised logistic regression model, but more frequently used are the
ranked, Phred-transformed C-scores. A CADD C-score of 20, for example, indicates that
a variant is in the top 1% of all variants when ranked by the raw CADD score. The

C-scores range from 0.001 to 99, with larger scores being more deleterious.

The Missense badness, PolyPhen2 and missense Constraint (MPC) score combines three
measures of deleteriousness for missense variants (Samocha et al., 2017)). Instead of as-
suming a uniform distribution of observed/expected missense variants, a transcript of a
gene may be split into segments where missense variants are enriched/depleted. This
identifies regions of the transcript that are constrained for missense variants. Additionally,
all potential amino acid substitutions across overlapping transcripts for a given variant
may be evaluated, and the “badness” score represents the fold enrichment of amino acid
substitutions in constrained versus unconstrained regions. Both missense constraint and
missense badness were combined with the PolyPhen2 score as a composite predictor of

deleteriousness. The MPC ranges from 0 to 5, with higher scores being more deleterious.

A useful resource for the above metrics is the database of non-synonymous functional
prediction (dbNSFP) which collates transcript-specific information on all potential non-
synonymous SNVs, over 84 million variants (Liu et al., 2020)). Included is a wide range of
variant-level information, including many deleteriousness predictors. Position information
is given for both the GRCh37 and GRCh38 reference genomes.
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2.5.3 Gene Constraint Scores

Due to negative selection, deleterious variants are expected to occur less frequently in
the genome than benign variants (Lek et al., 2016). The difference between the observed
and the expected number of variants in a gene can indicate how tolerant that gene is
to different variant categories. Lek et al. quantified this deviation from the expected
number of protein-truncating variants which results in a probability of loss-of-function
intolerant (pLI) score. This gene-based constraint score ranges from 0 to 1, and the
authors classify genes with pLI > 0.9 as highly intolerant to loss-of-function variants.
Karczewski et al. calculated a modified version of this from gnomAD called the oe score
(Karczewski et al., 2020). The loss-of-function observed/expected upper-bound fraction
(loeuf) is recommended by the authors as a measure of gene constraint. This loeuf score
should be used as a continuous metric between 0 and 1, but the authors suggest that
genes with loeuf < 0.35 may be considered constrained. The gene-constraint scores
described here are also included in dbNSFP.

2.6 Variant Annotation

2.6.1 vep

Variants were annotated with external databases and resources using the variant effect
predictor (vep) (McLaren et al., 2016)). Since all gene-based information queried by vep
is specific to individual transcripts, care must be taken when variants overlap multiple
transcripts, or even multiple genes. The “--per_gene” flag selects one transcript per
gene (determined by a pre-defined hierarchy, typically the canonical transcript) and re-
ports one annotation report (“consequence”) per overlapping gene. In addition to the
default resources, other databases can be supplied to vep for annotation. In particular
the following information was manually supplied: allele frequencies from gnomAD v2.1.1
or v3, CADD v1.6 scores and functional prediction metrics from dbNSFP v4.1.

2.6.2 SnpSift

We are often interested in examining variants that may only be present in a particu-
lar pedigree out of a jointly genotyped cohort. We annotated these variants with the
private module from SnpSift (Cingolani et al., 2012)). SnpSift takes a VCF file and
a FAM file as input and outputs a VCF file with a “Private” tag annotated for each

record that is only found in one pedigree.
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Chapter 3

Converting Single Nucleotide

Variants between Genome Builds

NGS studies require a high-quality reference genome for SNV calling. Although the
two most recent builds of the human genome are widely used, position information is
typically not directly comparable between them. Re-aligning positions to a particular
genome build is computationally expensive, and so tools are used to convert data from
one build to another. However, the positions of converted SNVs do not always match
SNVs derived from aligned data and in some instances, SNVs are known to change
chromosome when converted. In this chapter, we describe a novel algorithm to identify
positions that are unstable when converting between human genome reference builds.
These positions are detected independent of the conversion tools and are determined
by the chain files. Pre-excluding SNVs at these positions, prior to conversion, results
in SNVs that are stable to conversion. This work has been published (Ormond et al.,

2021) and is included in |Appendix C| for reference.

3.1 Introduction

The human reference genome is fundamental to genome assembly and variant calling
for NGS studies (Church et al., 2011} |Guo et al., 2017). Without a reference, de novo
assembly of each sequenced genome would need to take place, which is computation-
ally intensive and in certain scenarios may result in a poor quality assembly (Treangen
& Salzberg, 2011). The current builds of the human reference genome (GRCh37 and
GRCh38) are the most widely adopted builds for genomic analysis. However, further
iterations are inevitable as GRCh38 also contains a much larger collection of unloc-
alized (known sequence and chromosome but position unknown) and unplaced (known
sequence, but chromosome and position unknown) contigs, as well as including alternate
contigs (known alternate representations of specific regions of the genome to account
for population differences) (Schneider et al., 2017). Different builds result in different
genome assemblies which will impact downstream analysis of genomic variants (Guo et
al., 2017).
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Each genome build brings improvements, but updates to the base pair coordinates mean
that not all positions are comparable between builds. Because a wealth of annotation
information is available for GRCh37 and many pipelines and tools are still based on this
older version (Guo et al., 2017)), researchers are sometimes hesitant to switch to the
newer version. Where a newer build is adopted, a similar problem arises when trying
to compare new sequences to data aligned to an older build: both data sets must be
aligned to the same build to be comparable. Obviously, re-aligning sequence data to the
newest build will typically provide the most accurate base pair position information, but
this can be quite computationally expensive (Guo et al., 2017). Also, the raw sequence
data required for alignment, if available, can be large, so long-term storage may not be

feasible.

An alternative approach to re-alignment is to convert between genome builds using tools
such as 1iftQOver (provided as part of the Genome Browser tool (Haeussler et al., 2019)
hosted by the UCSC Genomics Institute), CrossMap (H. Zhao et al., 2014) or Remap
(hosted by the National Centre for Biotechnology Information (NCBI) (Agarwala et al.,
2018)). This process is aided by a chain file, which provides a mapping of contiguous po-
sitions from one build to another. The ability to convert between builds using these tools
has proved vital, allowing the integration of a wide range of SNV annotation databases
and sequence data, regardless of how they were originally aligned, for example gnomAD
(Karczewski et al., 2019)), CADD (Rentzsch et al., 2019)) and dbNSFP (Liu et al., 2016).

For those who do choose to convert between GRCh37 and GRCh38, there are known
problems with this conversion process, particularly for SNVs. In the online user guide for
the UCSC Genome Browser, the authors note that “occasionally, a chunk of sequence
may be moved to an entirely different chromosome” (see “Web Resources”, Subsec-
tion A.2.2)). This is echoed in Liu et al., where the authors note that after converting the
dbNSFP database to other builds using 1ift0ver, “there are a few SNV's whose coordin-
ates in hg38 and hgl9 ... have inconsistent chromosome numbers" (Liu et al., 2016).
This phenomenon can inevitably prove problematic for downstream analyses. Taking a
real world example, suppose we wish to examine variants in protein-coding regions of
the genome, prioritised using CADD scores. Consider the T>A missense substitution at
position 15690247 on chromosome 22 of GRCh38 (chr22:¢.15690247T>A), contained in
the first exon of POTEH. CADD v1.6 gives the variant a C-score of 20.8, indicating that
it is in the top percentile of all ranked deleterious variants. If we convert the position to
GRCh37 (using either 1iftOver or CrossMap), this variant maps to position 19553586
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on chromosome 14, where the reference allele is still T (chr14:c.19553586T>A) but the
variant is now in the first exon of POTEG. CADD v1.6 for GRCh37 gives this variant a
C-score of 0.009, indicating that it is now in the bottom percentile of all ranked deleter-

ious variants in the genome.

Pan et al. (2019) examined SNVs from data aligned under a range of bioinformatics
pipelines to data converted between GRCh37 and GRCh38 using both 1iftOver and
CrossMap (Pan et al., 2019). The authors noted that on average 1% of SNVs did not
convert from GRCh37 to GRCh38, and an average of 5% of SNVs did not convert from
GRCh38 to GRCh37. Furthermore, on average 1.5% of SNVs which were successfully
converted were not found in the corresponding aligned data, a trend that was more pro-
nounced when converting from GRCh38 to GRCh37. Such discordant sites were noted to
be low-confidence calls, have lower average read depth, and have a higher than average

GC content. The authors urged caution when converting SNVs between builds.

Recently, Luu et al. (2020) benchmarked six tools (including 1iftOver, CrossMap and
Remap) for converting multi-base pair regions derived from epigenetic data from GRCh37
to GRCh38 (Luu et al., 2020). The authors found a high degree of correlation between
the six tools but noted that gapped regions in both chain files can result in conversion
failure, or even regions mapping to incorrect locations. A guideline to improve conversion
is offered, which involves removing input data which overlap with the gapped regions, as
well as removing input data which map to multiple regions or alternate contigs. However,
if this strategy were applied to SNV data, some variants may not necessarily be removed,

such as those in un-gapped regions which also change chromosome under conversion.

Here we present a novel algorithm to identify base pair positions in the human genome
which exhibit unstable behaviour when converting between genome reference builds. In
addition, we are providing the list of these unstable positions for the two most recent
builds (GRCh37 and GRCh38) on GitHub (see “Web Resources”, Subsection A.2.2).
This list can be used to pre-exclude SNVs prior to conversion to remove potentially
problematic variants, resulting in stable SNVs and improving the quality of sequencing

data post-conversion.
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3.2 Identification of Unstable Positions

3.2.1 Chain File

A chain file provides a mapping of the analogous positions from one genome build to
another. Given a sequence of DNA on both builds, it details the count (and hence pos-
ition) of contiguous bases where the sequences match and allows for gaps to be present
in either build. A visual depiction is given in below. Chain files may only be
used in one direction i.e. from the source build to the target build. When creating a
chain file, tools such as BLAST (Altschul et al., 1990) or BLAT are used to
ensure that the overall matching regions have a sufficiently high proportion of matching

base pairs, known as sequence identity (e.g. at least 98%, see “Web Resources”,
section A.2.2). This allows for a small number of differences in the sequence between
matched regions, which may arise due to errors in the genome build being corrected in
minor patches. Chain files mapping between GRCh37 and GRCh38 (one for each direc-
tion) were obtained from the 1iftOver website hosted by the UCSC Genomics Institute

(see "Web Resources”, Subsection A.2.2), since these files were recommended by the

selected conversion tools.

107654 108554
Source | il m m m 300
Target - [0 m m 300

102173 103123

Figure 3.1: A visual depiction of a chain file showing the pairwise mapping between the
source and target, allowing for gapped regions in either build (grey blocks). Identifying the
contiguous bases and gaps allows for positions in one build to be mapped to another.

3.2.2 Full-Genome Data

Genome build conversion tools use base pair position information only, so it is possible to
examine the stability of all base pair positions in the genome. This allows the behaviour
of all potential SNVs to be examined when converting between builds, rather than just
a subset that might be found on an individual sample’s genome. To this effect, browsed
extensible data (BED) files were created containing an entry for each base pair position in
both the GRCh37 and GRCh38 reference genomes, which we refer to as the full-genome
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3.2. IDENTIFICATION OF UNSTABLE POSITIONS

data. This includes positions that are not typically amenable to short-read WGS, such
as known gaps in the genome assembly. Positions on the unplaced, unlocalized and
alternate contigs were not included in the input data, and so only the standard 23 pairs
of chromosomes were considered. The mitochondrial chromosome was excluded since
variant calling on the mitochondrial chromosome often uses a separate reference genome
(Bandelt et al., 2014). Each entry in the input BED file was given a label containing the
original chromosome and start position for unique identification, and the file was split by
chromosome for parallelisation (Tange, 2011). This generated 3,095,677,412 positions
for GRCh37 and 3,088,269,832 positions for GRCh38.

3.2.3 Algorithm to Identify Novel Conversion-Unstable Positions

To identify base pair positions that are unstable in the conversion process (defined below),
each input file was converted from the source build to the target build and then back to
the source build again (see |Figure 3.2 below). Entries in the output files were extracted

if they satisfied one of the following conditions:

e positions which failed on the first conversion (“Reject_1");

e positions which mapped to a different chromosome on the first conversion
("CHR Jump_1");

e positions which failed on the second conversion ( “Reject_2");

e positions which did not map back to the original chromosome on the second
conversion (“CHR_Jump_2"); and

e positions which did not map back to the original position on the second conversion

("POS_Jump")

We refer to these collectively as conversion-unstable positions (CUPs), and all other po-
sitions are referred to as stable. Note that entries in the Reject_1 category are typically
identified by the conversion tool, so the latter four entries are what we refer to collectively
as novel CUPs. Reject_1 and CHR_Jump_1 positions were removed prior to the second
conversion (from the target build back to the source build). Despite not being included
in the input data, entries that mapped to the unplaced, unlocalized, and alternate con-
tigs were retained in the CHR_Jump_1 and CHR_Jump_2 categories to ensure each base
pair position in the source build had an accurate category designation. Both 1iftQOver
and CrossMap were used for the conversion (see “Web Resources”, Subsection A.2.2).

Remap was not considered as its input file is limited to 250,000 entries, which is much
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CHAPTER 3. CONVERTING SINGLE NUCLEOTIDE VARIANTS

smaller than the lengths of the input chromosomes. The same chain files were used
by both 1iftOver and CrossMap, allowing us to also check the robustness of CUP
identification, as a consensus between tools would give higher confidence in the output.
This algorithm was run twice, once for the GRCh37 build as the source and once for the
GRCh38 build as the source.

Both 1iftOver and CrossMap gave identical output for the same input data (see
Table 3.1). On GRCh37, approximately 11.3Mbp of novel CUPs were identified (repres-
enting 0.37% of the build) and on GRCh38 20Mbp of novel CUPs were identified (0.65%
of the build). For both builds, a successive application of the algorithm on the stable
positions using either tool did not identify any additional base pair positions for any of
the CUP categories, as expected.

34



Ge

. Removed
' by tool

_/ 1
' Incorrect
Pass ' chromosomes

SOURCE
Input File _— to
TARGET
-
TARGET
—> to
SOURCE

: No posi-
' tion found

—_ '
. Incorrect
Pass ' chromosomes

: Incorrect
' positions

Figure 3.2: Flow chart of the algorithm to identify novel conversion-unstable positions.

Novel
CUPs

> CUPs

¢

SNOILISOd 319VLSNN 40 NOILVDI4ILN3dI
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Category GRCh37 to % of GRCh38 to % of
GRCh38 (bp) | Source | GRCh37 (bp) | Source
All 3,095,677,412 | 100.000 2,859,470,792 | 92.370
Reject_1 234,712,067 7.582 - -
CHR_Jump_1 1,494,553 0.048 - -
Reject_2 - - 100,180 0.003
CHR_Jump_2 - - 799,922 0.026
POS_Jump - - 8,907,439 0.288
Stable 2,859,470,792 | 92.370 2,849,663,251 | 92.053
Novel CUPs - - 11,302,094 0.365
(a)
Category GRCh38 to % of GRCh37 to % of
GRCh37 (bp) | Source | GRCh38 (bp) | Source
All 3,088,269,832 | 100.000 2,862,067,878 | 92.675
Reject_1 218,510,733 7.076 - -
CHR_Jump_1 7,691,221 0.249 - -
Reject_2 - - 73,770 0.002
CHR_Jump_2 - - 292,083 0.009
POS_Jump - - 12,038,774 0.390
Stable 2,862,067,878 | 92.675 2,849,663,251 | 92.274
Novel CUPs - - 20,095,848 0.651
(b)

Table 3.1: Details of the stable positions and conversion-unstable positions (CUPs) for the
full-genome data for (a) GRCh37 as the source and (b) GRCh38 as the source, including the
number of base pairs (bp) for each category, and the proportion of the source genome build
covered (%). Novel CUP category names are highlighted in green.
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3.2. IDENTIFICATION OF UNSTABLE POSITIONS

3.2.4 Comparison with Assembly Annotation Sets

To better understand the possible reasons for CUPs occurring, we also identified where
these positions originated in the genome. Given the reconstruction of some contigs
in the development of GRCh38 (Schneider et al., 2017), one explanation for base pair
positions being rejected during a conversion is that the position is not in the target build.
Additionally, in the online support forum for the UCSC Genome Browser, it is noted that
variants may change chromosomes between builds because they lie in repetitive regions
or segmental duplications (see “Web Resources”, Subsection A.2.2). In an attempt to
isolate the source of each CUP, the following assembly annotation sets were obtained
from the UCSC Table browser (Haeussler et al., 2019)) for both genome builds (table ID

given in brackets):

e gaps in the build (gap): regions that are not present in the build, including te-
lomeres, the short arms of specific chromosomes and gaps between known contigs.
The centromeres are present in the GRCh37 gap set (as they did not form part
of the assembly) but not in the GRCh38 gap set and so were removed from the
GRCh37 gap set prior to comparison.

e differences between contigs (hg38ContigDiff): regions that are different in the
GRCh38 and GRCh37 builds due to updates in individual contigs.

e segmental duplications (genomicSuperDups): regions longer than 1kb that have a

high degree of sequence identity with other regions.

Given the overlap between these sets, positions unique to each of the three sets, as
well as positions which were present in more than one set (multiple), or no set (other)
were considered (see Figure 3.3)). It is worth noting that the “multiple” set on GRCh37
was composed entirely of the intersection between the contig differences and segmental
duplications. The same was virtually true for GRCh38, with a very small proportion
(0.0007%) arising from the intersection between the gaps and segmental duplications.
In both cases, the “multiple” set accounted for less than 6% of all positions in the
selected assembly annotation sets. For the CUPs identified above, contiguous entries
were collapsed into multi-base pair regions using bedtools (Quinlan & Hall, 2010),

to allow for quicker comparison with the assembly annotation sets. The proportion of

|AN B
|A]

overlap in CUP category A of assembly annotation set B is defined as , and was

computed using bedtools.
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Gap

ContigDiff SegDup
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ContigDiff SegDup
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Figure 3.3: Venn diagrams for the overlap between the three selected assembly annotation
sets (green: gaps; blue: contig differences; red: segmental duplications; yellow: multiple sets)

for (a) GRCh37 and (b) GRCh38.
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For both builds, the proportion of overlap for each CUP category across all the assembly
annotation sets was at least 97.5% for all except the Reject_1 category on GRCh37,
where the proportion was 69.2% (see [Figure 3.4). However, the centromeres that were
removed from the gap set (which do not overlap with the other assembly annotation
sets) account for an additional 29.4% of the Reject_1 category, giving a total overlap
proportion explained of 98.6%. The CUPs in the “Other" set for all categories were
examined using the UCSC Genome Browser (Haeussler et al., 2019)), but there was no

consistent overlap between these positions and any other assembly annotation track.

For both builds, the Reject_1 category is dominated by the gap and contig differences
sets. This is a highly plausible explanation for these base pair positions as the conversion
tools will fail when regions of the genome are not present (or have been updated) in
the target build. For example, the centromeres were broadly reconstructed during the
assembly of GRCh38, so it is not surprising that they feature in the Reject_1 category on
GRCh37. The novel CUPs are largely composed of the intersection between the contig
differences and segmental duplications. If a region is contained in both a segmental
duplication and a contig difference, this may indicate that the region is better placed in

another part of the genome, which would explain the conversion instability.
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differences in contigs between builds; SegDup: segmental duplications.
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3.3 Application to WGS Data

3.3.1 Evaluation Data

As a proof of principle, the well-characterized NA12877 and NA12878 samples for the
CEPH 1463 family were used to examine the behaviour of SNVs from WGS data when
converting between builds. High confidence variant calls for both samples were obtained
from the publicly available lllumina Platinum Genomics project in VCF format on both
GRCh37 and GRCh38 (see "Web Resources”, Subsection A.2.2). These variants were
identified using several variant calling algorithms, and were validated using the genotypes
in the samples’ parents and children to remove Mendelian errors (Eberle et al., 2017)).
As we are only considering the behaviour of SNVs and aim to compare the WGS data
with the full-genome data, only biallelic SNVs were extracted for both samples. Each
variant was given a unique ID containing the original aligned position, reference allele,

alternate allele, and source build for ease of identification.

A slightly modified version of the above algorithm was implemented using the LiftoverVcf
module from picard rather than 1iftQOver, as liftOver does not handle VCF file
format. The LiftoverVcf module is based on 1iftOver but additionally checks the
reference allele of each variant with the target reference genome, removing any sites
where there is a mismatch. CrossMap can accommodate VCF file format, and updates
the reference allele to that of the target build where there is a discrepancy and returns
a failure if the alternate allele is the same as the updated reference allele on the target
build. If a reference allele was updated to an ambiguous base (denoted by International
Union of Pure and Applied Chemistry (IUPAC) codes), these were manually removed
and considered a mismatch. For the WGS data, two additional output categories were
included for variants which failed due to reference-allele mismatches on the first conver-

sion (Mismatch_1) or on the second conversion (Mismatch_2).

Since individual base pair positions are converted independently of one another, variants
which are present in any of the novel CUPs can also be excluded prior to conversion
to ensure all variants are stable and data are of high quality. These filtered data were
compared with the output from the algorithm on the original data to confirm that both
methods are equivalent. In addition to the VCF data files, BED files were generated
using position information extracted from the VCF data. This allowed us to apply our
original position-based algorithm (that used the 1iftOver and CrossMap tools) as a

sanity check to ensure that both versions of the algorithm behaved the same.
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3.3.2 CUPs in WGS Data

NA12877 had 3,518,008 SNVs on GRCh37 and 3,576,396 SNVs on GRCh38. NA12878
had 3,523,638 SNVs on GRCh37 and 3,594,064 SNVs on GRCh38. Each of these rep-
resent approximately 0.1% of the full genome data for their respective build. For both
samples, the CUPs identified from the VCF data were contained within the CUPs iden-
tified from the corresponding BED data, as expected. The only positions from the VCF
data that were not contained in the BED data were the mismatch categories. Further-
more, the CUPs identified from the BED positions from the WGS data were contained
within the respective full-genome CUPs. 1ift0Over and CrossMap broadly agreed on the
CUPs derived from the VCF data, with differences arising purely due to how each tool
treats the reference allele in the target build, including ambiguous bases (Mismatch_1,
Mismatch_2).

The same stable SNVs were identified from the filtered data (variants at novel CUPs ex-
cluded) as for the original, unfiltered WGS data when the algorithm was applied to both
(see|Table 3.2). Also, the only variants removed by the algorithm from the filtered data
were those in the Reject_1 and mismatch categories. As expected, no additional variants
in the CUP categories were identified on a successive application of the algorithm to
either the original data or to the filtered data. The SNVs at novel CUPs represented
approximately 0.13% of SNVs on either build.

Pan et al. reported conversion failure rates for WGS data of on average 1% from GRCh37
to GRCh38 and 5% from GRCh38 to GRCh37, noting that the SNVs that failed tended
to have much lower depth of coverage, and may represent false-positive variant calls
(Pan et al., 2019). Here, we observe much lower tool conversion failure rates of 0.14%
from GRCh37 to GRCh38 and 0.72% from GRCh38 to GRCh37 for the WGS data. We
note that this dataset is a particularly clean and accurate set of SNVs (Eberle et al.,
2017)), which may account for the decrease in conversion failure rates compared to the
previous study. However, the trend in performance is in the same direction; converting
from GRCh37 to GRCh38 results in fewer conversion failures than GRCh38 to GRCh37.
While Pan et al. showed that read depth and variant quality may have an impact on
discordance rates, the variants examined here did not have this information available,

thus we were unfortunately not able to assess these aspects of the novel CUPs.
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liftOver CrossMap
Source Category Original Filtered Original Filtered
Count % Count % Count % Count %

All 3,523,638 | 100.000 | 3,518,229 | 100.000 || 3,523,638 | 100.000 | 3,518,229 | 100.000
Reject_1 4,947 0.140 4,947 0.141 4,947 0.140 4,947 0.141

GRCh37 Mismatch_1 20,533 0.583 19,976 0.568 20,510 0.582 19,959 0.567
Mismatch_2 128 0.004 0 0.000 123 0.003 0 0.000
Novel CUPs 4,724 0.134 0 0.000 4,735 0.134 0 0.000
Stable 3,493,306 | 99.139 | 3,493,306 | 99.292 || 3,493,323 | 99.140 | 3,493,323 | 99.292
All 3,594,064 | 100.000 | 3,588,396 | 100.000 || 3,594,064 | 100.000 | 3,588,396 | 100.000
Reject_1 25,852 0.719 25,852 0.720 25,852 0.719 25,852 0.720

GRCh38 Mismatch_1 16,772 0.467 15,741 0.439 16,740 0.466 15,726 0.438
Mismatch_2 85 0.002 0 0.000 81 0.002 0 0.000
Novel CUPs 4,552 0.127 0 0.000 4,573 0.127 0 0.000
Stable 3,546,803 | 98.685 | 3,546,803 | 98.841 || 3,546,818 | 98.685 | 3,546,818 | 98.841

Table 3.2: Counts and proportions (%) of all SNVs present in WGS data for sample NA12878 broken down by genome build (GRCh37, GRCh38),
conversion tool (1iftOver or CrossMap) and whether the original or filtered data was considered. All novel conversion-unstable positions (CUPs)
have been combined into one entry in the table (novel CUPs, highlighted in grey).
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3.3.3 Discordance Rates Between Aligned and Converted Data

Given that re-aligned data is considered the most accurate method to derive variants,
we compared SNVs from converted data to aligned data on both builds to evaluate the
error rates of the conversion process. The position discordance rate (computed using
bedtools) was defined as the proportion of SNVs in the converted data whose position
did not match that of a variant in the aligned data. The genotype discordance rate
(computed using GenotypeConcordance from picard) was defined as the proportion
of SNVs in the converted data whose position matched a variant in the aligned data,

but whose genotype did not match.

The combined position and genotype discordance rates were on average 3.07% when con-
verting from GRCh38 to GRCh37, and 1.68% when converting from GRCh37 to GRCh38
(see |Table 3.3). When variants in the novel CUPs were pre-excluded, these rates re-
duced to 2.97% and 1.61% respectively. This is higher than the average discordance
rate observed by Pan et al. of 1.5%, however these rates are not directly comparable.
The average discordance rate from Pan et al. is taken across all bioinformatics pipelines,
across both builds and across both tools. Although Pan et al. do not provide the exact
rates to compare, our discordance rates are broadly in line with those observed in their
Figure 6A (Pan et al., 2019). As with the conversion failure rates, both this study and
Pan et al. found converting from GRCh38 to GRCh37 yields higher discordance rates.
We note that the genotype discordance rates are quite low at an average of 0.0011% for
both builds (see [Table 3.3). This indicates that when the position of a variant has been

correctly converted, the genotype is also highly likely to be correct.

Finally, we examined the position and genotype discordance rates for SNVs at the novel
CUP categories with the aligned data (see [Table 3.3). The position discordance rates
overall are much higher for variants in the novel CUP categories compared with the
filtered data, with an average of 83.2% on GRCh37 and 61.2% on GRCh38. Similarly,
the genotype discordance rates for variants at novel CUPs is higher than the filtered
data, with an average of 1.4% on GRCh37 and 0.4% on GRCh38. These rates indicate
that variants at CUPs are less likely to be identified in the aligned target build and give
support to our recommended strategy of removing them prior to conversion.
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Sample | Tool Category GRCh38 to GRCh37 GRCh37 to GRCh38
Pos Disc | Geno Disc | Pos Disc | Geno Disc
(%) (%) (%) (%)
NA12877 | 1iftOver | original 3.0694 0.0012 1.8119 0.0012
NA12877 | 1iftOver | filtered 2.9754 0.0010 1.7369 0.0010
NA12877 | 1iftOver | novel CUPs 83.3893 1.5965 60.5490 0.3661
NA12877 | CrossMap | original 3.0703 0.0012 1.8123 0.0012
NA12877 | CrossMap | filtered 2.9759 0.0010 1.7371 0.0010
NA12877 | CrossMap | novel CUPs 83.4450 1.5965 60.6054 0.3661
NA12878 | 1iftOver | original 3.0691 0.0012 1.5544 0.0013
NA12878 | 1iftOver | filtered 2.9654 0.0011 1.4794 0.0011
NA12878 | 1ift0Over | novel CUPs 82.9226 1.1436 61.8269 0.4978
NA12878 | CrossMap | original 3.0700 0.0012 1.5550 0.0013
NA12878 | CrossMap | filtered 2.9658 0.0011 1.4798 0.0011
NA12878 | CrossMap | novel CUPs 82.9851 1.1436 61.8749 0.4978

Table 3.3: Discordance rates between converted data and aligned data for position (Pos Disc) and genotype (Geno Disc), for both WGS samples,
both conversion tools, and comparing original data, filtered data or variants at conversion-unstable positions (CUPs). The entries containing the

novel CUPs are shaded in grey.
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CHAPTER 3. CONVERTING SINGLE NUCLEOTIDE VARIANTS

3.4 Conclusions

Here, we have replicated the previously observed phenomenon whereby a small propor-
tion of SNVs change chromosome when they are converted to another genome build
(Liu et al., 2016)). Additionally, we have identified all novel sites where base pair posi-
tion information does not behave as expected, or where a one-to-one mapping between
positions on both builds is not present. The novel CUPs represent 0.37% of the GRCh37
build and 0.65% of the GRCh38 build. We have clearly highlighted the care that must
be taken when converting between genome builds to ensure high quality data. Unless
the user is familiar with the instabilities we have described, we recommend the simple
strategy devised here of removing variants at novel CUPs to ensure high confidence data

when converting SNVs between builds of the human genome.
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Chapter 4

Copy Number Variant Calling for
Family-Based Sequencing Studies

Calling CNVs from short-read WGS data remains an ongoing challenge, and no “Best
Practice” guidelines exist. A commonly implemented approach is to take a consensus
of multiple calling methods to derive high-quality calls. However, this limits the CNV
discovery to the collective strengths of the chosen methods, which may have been selec-
ted arbitrarily. Here we discuss a novel consensus CNV calling pipeline for family-based
WGS data. By taking relatedness information into account, we were able to recover CNV
calls that would have been removed due to lack of a consensus. We benchmarked our
pipeline using a curated “Gold Standard” call set and showed that our method performs
well overall, and out-performs a comparable calling pipeline designed for family-based

data. This work was formulated jointly with Dr Niamh Ryan unless otherwise specified.

4.1 Introduction

CNVs are a form of SV defined as a deletion or duplication of a region in a genome
that spans at least 50 bp in size. An estimated 4.9-9.5% of the human genome contains
a CNV (Zarrei et al., 2015) and much work has been done to examine the contribu-
tion of CNVs to both Mendelian and complex genetic disorders (Girirajan et al., 2011}
Stankiewicz & Lupski, 2010; |Weischenfeldt et al., 2013). Hybridization-based techniques
such as array CGH and SNP microarrays have been used historically to detect and gen-
otype CNVs (Alkan et al., 2011). However, such methods are highly dependent on the
design of the hybridization probes and so are limited in the size of the variants that they

can detect, as well as lacking the resolution to accurately detect their breakpoints.

NGS technologies can provide greater accuracy at CNV calling compared to previous
methods (Zhou et al., 2018). Many computational approaches leverage discrepancies in
read alignments to identify putative regions that exhibit copy number changes (M. Zhao
et al., 2013). Paired end read (PR) or split read (SR) tools detect CNVs by examining

where the paired-end reads are significantly different from the expected insert size for a
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CHAPTER 4. COPY NUMBER VARIANT CALLING

collection of reads, or if one read in a pair doesn't map properly with its mate (Pirooznia
et al., 2015). An example of a duplication is shown in |Figure 4.1, where we can see
that the insert size of the reads at the breakpoints is much larger than that of reads
away from the CNV breakpoints. Read depth (RD) tools examine the number of reads
within a region, under the assumption that this is correlated with the copy number of
that segment of DNA (Pirooznia et al., 2015). Significant increases or decreases in
read depth can indicate the breakpoint of a duplication or deletion event respectively.
Returning to |Figure 4.1, there is a noticeable increase in the read depth between the

breakpoints compared to the flanking regions.

Despite the wealth of software tools and methods, there are no “Best Practices” for CNV
calling from NGS data. A commonly used strategy is to use multiple tools to call CNVs
and accept a consensus of the tools, which can provide a level of validation (Friedrich
et al., 2020; Zarate et al., 2020)). Despite the advantages of the consensus approach,
individual calling methods are often chosen for arbitrary reasons and the performance
of some of these ensembles may not have been formally examined. A comprehensive
evaluation of SV calling methods showed that while there is no single method that can
detect all variants, some tools are optimised for specific classes of variants (Kosugi et
al., 2019). Also, some specific calling methods (as well as categories of calling methods)
perform better together when a consensus approach is required. While this is useful for

any analysis making use of pairs of methods, it is insufficient for more complex ensembles.

Another drawbacks of a consensus approach is that if a specific tool is able to detect
certain variants that others cannot, these CNV calls will be lost due to lack of support.
We refer to calls identified by one tool only in a consensus as singleton calls. Khan
et al. attempted to partially resolve this issue using family call data which can provide
further evidence for CNV calls with low levels of support from a consensus (Khan et al.,
2018). Singleton CNVs in an individual were retained if another member of the pedigree
had the same CNV call identified by a consensus of tools. In studies of individuals who
are closely related, we might expect that the breakpoints for the same CNV are more
comparable than in an unrelated cohort. This strategy can enable consensus approaches
to reclaim the utility of the individual tools while maintaining some level of control on
false positives with in-family validation. In this chapter, we describe a novel family-based
consensus approach for CNV calling using four different calling methods. We evaluated
the performance of our consensus calls on a set of curated “Gold Standard” CNV calls

and compared this to previously published CNV calling methods for pedigree data.
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Figure 4.1: An example of a 34 kbp duplication on chromosome 13 in an individual identified from our WGS data (information described in
Chapter 5), visualised using samplot (Belyeu et al., 2021). The left-side y-axis shows the insert size between the paired-end reads, represented by
the black, blue, and red blocks connected with horizontal lines. The right-side y-axis shows the depth of coverage, represented as the grey histogram.
At the breakpoints of the CNV region (marked with a black horizontal bar at the top), the insert size of some reads is much higher than other reads,
and the depth of coverage changes compared to flanking regions.
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CHAPTER 4. COPY NUMBER VARIANT CALLING

4.2 Calling Pipeline

We selected a trio of individuals from the CEPH 1463 pedigree (proband: NA12878;
father: NA12891; mother NA12892) on which to call CNVs. Sample NA12878 has been
studied extensively, and several sequencing technologies have been used to characterize
CNVs in this genome (Haraksingh et al., 2017} Rao et al., 2020; |Zook et al., 2016)). WGS
had been performed to approximately 50 x coverage on all samples as part of the lllumina
Platinum Genomes project (Eberle et al., 2017)), and publicly available FASTQ files were
obtained from the European Nucleotide Archive (ENA), project number PRJEB3381.
All paired-end FASTQ files were examined using FastQC and samtools (H. Li et al.,
2009) to screen for DNA contamination or degradation, and none was observed. Reads
were aligned to the GRCh38 reference genome and standard pre-processing was applied

as described in [Subsection 2.2.1l

4.2.1 Per Individual

Our consensus approach combines two PR/SR tools and two RD tools. For deletions
and duplications larger than 1lkbp, taking a consensus of callers both within and across
these calling classes has shown a reasonable improvement in CNV detection compared
to using the tools on their own (Kosugi et al., 2019). The tools we selected which
implement PR/SR calling were Manta (Chen et al., 2016) and LUMPY (Layer et al.,
2014). These two tools have been used in several CNV consensus calling approaches
such as bcbio-nextgen (Chapman et al., 2021)), sv-callers (Kuzniar et al., 2020)
and Parliament?2 (Zarate et al., 2020)), and have been shown to perform well individu-
ally and as a pair (Gong et al., 2020). The RD tools selected were ERDS (Zhu et al.,
2012) and CNVnator (Abyzov et al., 2011). This pair of tools together has been shown
to outperform several other RD-based callers for NGS data (Trost et al., 2018). All four
calling methods were run using the default settings recommended by the authors. Based
on recommendations from the online documentation of CNVnator, we chose a bin size
of 50bp since our data has an average depth of coverage of 50x. ERDS requires SNV and
indel calls, which were derived from the input BAM files using the HaplotypeCaller
module from GATK following Subsection 2.2.2| above.

On a preliminary evaluation of the calling methods, we observed that they sometimes
generate several largely overlapping CNV calls which appear to represent one single
copy number event. This was more prevalent in the output of the two PR/SR callers

than the RD callers, likely because multiple read pairs close to one another may behave
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4.2. CALLING PIPELINE

similarly for the same copy number event but may be called separately. To eliminate such
repetition, we implemented a collapsing strategy on the raw calls from each separate tool
to identify sets of equivalent CNVs, comparable to that described in Trost et al. (Trost

et al., 2018). These overlapping regions were reduced to single regions as follows:

e If two CNVs of the same type (either deletion or duplication) overlap reciprocally
by at least 25%, then they are added to the same set.

e If only one of the two CNVs is already in a set, then the other is added to that

set. If both CNVs are already in sets, then the two sets are combined.

e Once all sets have been created, each set is collapsed down to one region by taking
the union of all CNVs using bedtools (Quinlan & Hall, 2010).

A depiction of this collapsing method is shown in Figure [Figure 4.2, A consensus CNV
call across all tools is generated by merging calls of the same type that overlap reciproc-
ally by 50%, first considering calls within calling method types (CNVnator vs ERDS, and
LUMPY vs Manta), and then across the resulting calling method types (PR/SR vs RD). A
depiction of this merging of CNV calls across call sets is also shown in |[Figure 4.2. CNV

calls were annotated with which calling method(s) identified the region.

CNV calling is known to be confounded by repeat and low complexity regions (RLCR),

which Trost et al. defined as:
1. assembly gaps, (UCSC “gap” table);
2. segmental duplications (UCSC “genomicSuperDups” table);
3. the pseudo-autosomal regions of the sex chromosomes.

It is worth noting that Trost et al. originally included repeat regions identified by
RepeatMasker (Smit et al., 2015), but noted that this reduced sensitivity to detect
rare, genic CNVs and so we excluded this from the RLCR definition ([Trost et al., 2018)).
In our analysis, CNV calls for which over 75% of their length comprise of RLCR were
removed. Finally, variants of length less than 1kbp were removed, since the RD callers
are known to be limited to this resolution (Trost et al., 2018)). A workflow diagram for

the calling pipeline is shown in |Figure 4.3|
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Call set 1
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Call set 2
I —————— .
Merge W g\\V/

Figure 4.2: A visualisation of the collapsing and merging strategy for a single individual,
showing call sets from two CNV callers. The paler horizontal blocks represent CNV calls from
the same tool that are collapsed down to represent the one site within an individual (darker
blocks). Note that in Call set 1, two distinct regions (CNV1 and CNV2) are formed of calls
that satisfy the overlap criteria. Then across multiple call sets, we merge two CNV calls that
overlap reciprocally by 50% (CNV2 and CNV3) by taking the union, indicated by the dashed
vertical lines (CNV4).
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Figure 4.3: Workflow of the CNV calling pipeline per individual. PR/SR callers are shown in
red, and RD callers are shown in green. RLCR: repeat/low-complexity region.

We applied the above method to the CEPH 1463 trio, and the number of CNVs identified
in each sample is shown in [Table 4.1, Upset plots for the intersection between each
caller for sample NA12878 are shown in [Figure 4.4, We can see for NA12878 that
there are 1,257 singleton deletions (60.7%) and 575 singleton duplications (73.3%),
representing 64.2% of all CNVs called for that sample. CNVnator had the highest
number of singletons and Manta had the lowest number, across both deletions and

duplications.

Sample | DEL | DUP | Total
NA12878 | 2,070 | 784 | 2,854
NA12891 | 2,867 | 1,115 | 3,982
NA12892 | 2,535 798 | 3,333

Table 4.1: Counts of the number of CNVs called for each of the three individuals in the CEPH
1463 trio. DEL: deletion; DUP: duplication.
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Figure 4.4: Upset plots showing the intersection and relative complements between the four
CNV calling methods in sample NA12878 for: (a) deletions; and (b) duplications. The black
dots indicate which caller is included in the intersection or complement, and the bar chart
above indicates the number of CNV calls per section. The horizontal bars at the bottom left
indicate the total number of CNVs called by each caller.

54



4.2. CALLING PIPELINE

4.2.2 Per Pedigree

All calls within a pedigree were combined, again taking the union of calls of the same
type with 50% reciprocal overlap. Following Khan et al., singleton calls that were not
detected by at least two callers in any of the individual's direct relatives were removed
(Khan et al., 2018)). This ensured that the final list of CNVs for any individual in the

pedigree either had support from at least two calling methods or was also present with

confidence in a relative. We applied this strategy to the CEPH 1463 trio, resulting in
2,371 deletions and 805 duplications. Upset plots for the overlap between the three

samples is shown in [Figure 4.5|
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Figure 4.5: Upset plots for the three samples in the CEPH 1463 trio, split by: (a) deletions;
and (b) duplications.

4.3 Alternative Strategies

4.3.1 Individual Callers

We compared the final list of CNV calls for NA12878 to the calls that were identified by
each of the four callers alone. As before, we implemented the collapsing of overlapping
calls, removed calls RLCRs, and retained those at least 1kbp in length. Since we no
longer have a consensus, each call will be a singleton, so we relaxed the requirement for
a direct relative to carry the CNV. Additionally, we extracted the CNV calls that were
identified by the PR/SR callers and the RD callers separately. Given that we have two
callers each, we kept the check in direct relatives to retain singletons and applied the

pipeline as before.

4.3.2 Khan et al.

We also benchmarked the pipeline described in Khan et al. against our own (Khan et al.,
2018) to assess their relative performances. The authors applied this pipeline to samples
sequenced at an average of 16x coverage on build GRCh37, and used two different

calling methods to those we implement here: cn.mops (Klambauer et al., 2012) instead
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of ERDS, and DELLY (Rausch et al., 2012) instead of Manta. Given that our evaluation
samples were sequenced to an average of 50x coverage with 101bp read length, we
adjusted some of the input parameters of the calling methods to account for this. The
documentation for cn.mops recommends that a window size be selected such that on
average 100 reads are present in each window. Given our sequencing data, there will
be approximately 100 reads fully or partially contained in a window length of 200 bp.
Khan et al. removed CNVs with fewer than four supporting reads from LUMPY and
those with fewer than three supporting reads from DELLY. For both of these tools, CNVs
with genotype quality less than 20.0 were also removed. Since only three samples were
evaluated in our analysis, we did not remove samples based on outlier CNV counts for
any of the calling methods, as was done in Khan et al., where over 300 samples were

sequenced.

4.4 Benchmarking

4.4.1 Curated Gold Standard CNV Calls

The generation of a CNV call set for NA12878 was done by a member of our research
group (Dr Niamh Ryan) and is described in this Subsection for reference. Despite the
extensive study of sample NA12878, it is difficult to fully characterise all detectable
CNVs in their genome, since no single technology can detect all variants. With this in
mind, Dr Ryan examined the following studies which attempted to curate a list of CNV

calls detected using a variety of technologies:

e DGV - the Database of Genomic Variants is a catalogue of curated SVs observed
in the general population taken from multiple studies and resources (MacDonald
et al., 2014)). Included are a set of CNV calls for NA12878 predominantly taken

from various Phases of The 1000 Genomes Project.

e LUMPY - in the companion paper to LUMPY (Layer et al., 2014), the authors
generated a list of CNV calls for NA12878 that had been validated by PacBio

and/or lllumina Moleculo long-read sequencing.

e Manta - in the companion paper to Manta (Chen et al., 2016), the authors
considered pedigree consistent CNV calls from all 17 members of the CEPH 1463
pedigree, generated using pindel (Ye et al., 2009) and DELLY (Rausch et al.,
2012).

e Mills - Mills et al. constructed a map of CNVs from 185 individuals (including
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NA12878) using a wide variety of sequencing strategies and variant callers (Mills

et al., 2011).

e Trost - in an evaluation of RD tools (Trost et al., 2018), the authors used a list of

previously generated CNV calls for NA12878 using PacBio long-read sequencing
as well as Illumina short- and long-read sequencing.

The website of the DGV notes that since not all CNV calls were generated from the
same source, what one study calls a deletion, another may call a duplication (see “Web

Resources”, Subsection A.2.3). Therefore, for the purposes of the benchmarking, Dr

Ryan considered the CNV regions only, and did not match for CNV type. There was
a relatively low overlap across the five call sets; an upset plot is shown in [Figure 4.6
One explanation for this is that CNVs were called with different technologies across
the five call sets (SNP genotype arrays, aCGH, cytogenic techniques, short-/long-read
sequencing, etc.), so it is reasonable that some methods will detect CNVs that others
cannot. There were 1,176 CNV regions (6.3%) on the autosomal chromosomes present
in at least two call sets, out of a total of 18,583 unique CNV regions. Of these, 638 were
greater than 1kbp in length, which is the recommended length for the RD callers ([Trost
et al., 2018). This final list of CNV regions was used as the curated “Gold Standard”
list.
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Figure 4.6: Upset plot for the overlap of CNV regions between the five “Gold Standard”
NA12878 call sets for (a) all CNV calls; and (b) CNV calls with length greater than 1kbp.
For readability, empty intersections are not displayed.

4.4.2 Validation Metrics

To evaluate the accuracy of the pipelines considered, we calculated the precision of
the CNV call sets for NA12878 relative to the curated “Gold Standard” CNV calls.
Recall (or sensitivity) is defined as the proportion of curated “Gold Standard” CNV calls
that each query call set identified and is a measure of the pipeline’s ability to detect
true positives. Another often used metric is the precision (or positive predictive value),
defined as the proportion of the input call set that is present in the curated “Gold
Standard”. However, since the overlap of the five individual “Gold Standard” sets is
relatively small, it is possible that true positive variant calls were only identified by one
of the five studies, given the variety of sequencing/calling technologies used. Since the
curated “Gold Standard” is simply a set of high-confidence CNV calls for NA12878, the
absence of a CNV in this set does not necessarily indicate that it is a false positive.
Therefore, we will not use precision as a benchmarking metric for this curated “Gold
Standard” set.
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4.4.3 Results

The curated “Gold Standard” set was generated on build GRCh37, so we converted the
final list of CNV calls of length at least 1kbp from our pipeline and alternative pipelines to
this build using 1ift0Over (Haeussler et al., 2019)). The results of the benchmarking are
shown in |[Table 4.2, This analysis showed that our method outperformed the alternate
calling pipeline by Khan et al., while also performing better than any of the constituent

tools individually.

Pipeline Total In GS | Recall
GRCh38 | GRCh37

Our Method 2,255 1,964 557 | 87.30%
PR/SR 1,161 1,045 539 | 84.48%
LUMPY 1,201 1,072 538 | 84.33%
Manta 808 763 519 | 81.35%
RD 2,030 1,810 465 | 72.88%
ERDS 888 764 445 | 69.75%
CNVnator 1,940 1,749 434 | 68.03%
Khan et al. 6,778 6,115 382 | 59.87%

Table 4.2: A comparison of the CNV calling pipelines. Shown are the number of CNV calls
on build GRCh38 and GRCh37 (following 1iftOver), the number of CNV calls present in the
curated “Gold Standard” (GS) set out of a total of 638, and the recall values.

4.5 Conclusions

Here we have introduced a novel consensus CNV calling pipeline designed for pedigree
based NGS data, by selecting calling methods and classes known to support one another.
Following previous work, our pipeline is able to reclaim lower-confidence CNV calls by
considering calls from close relatives. We have shown that our pipeline performs well
at identifying a curated list of “Gold Standard” CNV calls from sample NA12878, and

out-performs an alternate pipeline designed for the same data.
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Chapter 5

Rare Variant Analysis of

Discordant Monozygotic Twins

Monozygotic twins are often thought to have identical genomes, but recent work has
shown that early post-zygotic events can result in a spectrum of DNA variants that
are different between twins. Such variants may explain phenotypic discordance and
contribute to disease aetiology. Here we performed whole genome sequencing in 17 pairs
of MZ twins discordant for schizophrenia and related disorders. We identified seven genes
harbouring rare, predicted deleterious SNVs that were private to an affected sample in the
cohort. Four of the genes implicated had been reported to carry rare deleterious variants
in two previous case-control schizophrenia WES studies. A discordant missense variant in
POLG was observed in an individual with major depressive disorder. Deleterious variants
in this gene have been previously implicated in mood disorders and psychosis in both
human and mouse studies. Additionally, we identified seven rare genic CNVs private to
an affected sample, one of which was predicted to be pathogenic and has been observed

in autism and developmental delay cases.

5.1 Introduction

Monozygotic (MZ), or identical twins, occur when a zygote divides into two separate em-
bryos, and dizygotic (DZ) twins, or non-identical twins, occur when two ova are fertilised
separately during the same pregnancy. MZ twins are often described as sharing 100% of
their genomes, compared to DZ twins or other non-twin siblings who share approximately
50% of their genomes. Significant differences in concordance rates between MZ and DZ
twins classically indicate a genetic factor for a given phenotype. If the phenotype could
be explained purely by genetic factors, then we would expect that the concordance rates
between MZ twins to be close to 100%. Twin studies have several advantages over
case-control and other family study types, as twins are the same age and typically have
similar or comparable exposure to many environmental factors, (e.g. childhood trauma,
urbanicity, etc.) compared to non-twin siblings. Since non-shared factors may contrib-

ute to phenotypic differences between siblings, twin studies have been used to provide
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insights into the genetic aetiology of many diseases and disorders (Kato et al., 2005),

including schizophrenia.

Despite their similarity, MZ twins do not always have identical genomes. As with all
humans, post-zygotic DNA variation (i.e. variants that occur after fertilisation) can be
present in the twins' genomes, but depending if the variation occurs before or after the
single fertilized zygote splits in two (known as the twinning event), they may be private
to an MZ twin (Jonsson et al., 2021)). Post-zygotic variation can occur spontaneously
during DNA replication or can be induced by mutagens, resulting in somatic mosaicism,
i.e. the presence of different genomes in different cells within the same individual (Grif-
fiths et al., 2008) However, if these post-zygotic variants occur before the specification
of the embryonic cells that will eventually become germ cells (known as primordial germ
cells), they may be found in most cells in the body and may present as germline variants.

A depiction of this is shown in [Figure 5.1| (Jonsson et al., 2021)).

In Polymeropoulos et al., the authors observe that: “the [phenotypic] discordance could
be explained by the hypothesis that the ... phenotype will remain silent unless released
by environmental and other non-familial stressors” (Polymeropoulos et al., 1993). Under
this hypothesis, both twins share a common genetic risk which alone is insufficient to
be causal for the phenotype, but rare, post-zygotic variation present in the affected twin
increases their disease-risk. Since these post-zygotic variants are typically not examined
during twin heritability analyses, they would be mistakenly counted as part of the envir-
onmental or even non-additive genetic effects (S. M. Singh et al., 2020). Rare variants
of interest are therefore de novo events within a twin pair, i.e. where one individual has
exactly one more copy of the allele of interest than their co-twin. We refer to these as

discordant variants.

Discordant SNVs and indels have been shown to be causal for several Mendelian dis-
orders for which MZ twins are discordant, for example: Darier's Disease (Sakuntabhai
et al., 1999), Van der Woude Syndrome (Kondo et al., 2002)) and otopalatodigital syn-
drome spectrum disorders (Robertson et al., 2006). Discordance for trinucleotide repeat
expansion length in the FMRI gene is thought to be causal for the discordance of fragile
X syndrome (Helderman-van den Enden et al., 1999). Large discordant chromosomal
abnormalities such as aneuploidy have been observed, resulting in MZ twins discordant
for Down's syndrome (Dahoun et al., 2008)), Patau syndrome (Taylor et al., 2008) and
even sex (Zech et al., 2008).
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Shared mutation Mutation not shared
Father Mother Father Mother

Twinning

Proband

Twinning

Proband

Germ cells Somatic cells Germ cells Somatic cells

Figure 5.1: Post-zygotic variants may be shared in a twin pair if they occur before the twinning
event (left), or private to a twin if they occur after twinning (right). If they occur prior to
primordial germ cell specification (PGCS), they may be present in most germ and somatic
cells. This figure is adapted from Figure 1 of Jonsson et al. (Jonsson et al., 2021]).

For psychiatric disorders, as with other complex traits, the genetic contribution of dis-
cordant variation is less clear. Older work focused on discordant CNVs, but while some
variants had been observed in schizophrenia samples (Castellani et al., 2014)), such dis-
cordances were not widely replicated (Bloom et al., 2013} [Laplana et al., 2014). More
recently, NGS analyses have identified post-zygotic variation in MZ twins discordant for
schizophrenia ((Castellani et al., 2017} [Tang et al., 2017)), autism (Huang et al., 2019),
and Tourette's syndrome (Vadgama et al., 2019)) and so further investigation is warran-
ted. In this Chapter we examine WGS data from a cohort of MZ twins discordant for
schizophrenia and related disorders and investigate various classes of variants that may

be increasing the affected individuals' risk for their respective phenotype.

5.2 Cohort Description

5.2.1 Sample Procurement

The schizophrenia and bipolar twin study in Sweden (STAR) has collected data on 462
MZ and DZ twin pairs with schizophrenia or bipolar disorder. The clinical assessment
and DNA sampling of the cohort are described in Johansson et al., described here briefly
(Johansson et al., 2019). The participants in this study were originally identified through
the Swedish twin register (STR) (Lichtenstein et al., 2006)) and the National patient re-
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gister (NPR), which is administered by the social board of health and welfare. Potential
participants were invited to the STAR study if one twin in a pair had a registered treat-
ment episode of schizophrenia or bipolar disorder (diagnoses according to International
Statistical Classification of Diseases: 1CD-8: 295 or 296, ICD-9: 295 or 296 or ICD-10:
F20, F30 or F31). Cases were categorized as schizophrenia (SCZ; ICD-10: F20), schi-
zoaffective disorder (SAD; ICD-10: F25), bipolar disorder (BD; ICD-10: F31), major
depressive disorder (MDD; ICD-10: F32-F33) or not affected by any of these diagnoses.

From the STAR cohort we selected all available phenotype discordant MZ twin pairs
in which one twin was diagnosed with either SCZ, SAD, or BD, and the co-twin was
unaffected (see Table 5.1). If the co-twin had been diagnosed with MDD previously, we
included the twin pair only if the severity level of the depression was mild and without
occurrence of psychotic symptoms. If only one sample in a twin pair had a diagnosis
(known as “narrow discordance” ), we use the suffix “_A” to refer to the affected sample
and the suffix “_U"” to refer to the unaffected sample. If the co-twin had a diagnosis of
MDD (known as “broad discordance” ), we use the suffix “_Al" to refer to the non-MDD
sample and the suffix “_A2" to refer to the sample with MDD. DNA samples were sent

to us from our collaborators in the Karolinska Institutet, Sweden.

5.2.2 Sample Processing and WGS Data

DNA concentrations were quantified using Qubit, and the quality of DNA was determ-
ined by agarose gel electrophoresis by a member of our research team (Dr Amy Cole).
All samples were found to have sufficient DNA concentration to be sent for whole gen-
ome sequencing at EGCG. The pair T19 failed quality control metrics for sequencing and
were excluded from the study. All FASTQ files received from EGCG were examined using
FastQC and samtools to screen for DNA contamination or degradation, but none were
flagged at this stage. Reads had been aligned to GRCh38 by EGCG and variants were
called as described in Subsection 2.2.2. Genotype calling was performed jointly across
all samples, and variant quality score recalibration (VQSR) was performed on SNVs and

indels separately (see |Subsection 2.3.1)).

The software peddy (Pedersen & Quinlan, 2017) was used to check for relatedness in all
samples jointly as described in |Section 2.4. To further examine the pairwise relatedness
in the cohort, we selected a subset of high-confidence variants. SNVs were retained if

they passed the following filters from the jointly genotyped data:
a) phred-scaled quality score (QUAL) > 1000.0;
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Pair Age at Twin 1 Twin 2 )
Sex Disc
ID Sampling ID Pheno ID Pheno
TO1L | M 35 TO1_A1 | SCZ TO1_.A2 | MDD | Broad
T02 | M 38 T02_A | SAD T02_.U | None Narrow
TO3 | F 34 TO3_A | SCZ TO3_U | None Narrow
T04 F 30 TO4_ A | BD TO4_U | None Narrow
TO5 | M 25 TO05_A1 | SAD T05_A2 | MDD | Broad
T06 | F 65 TOo6_A | SAD T06_U | None Narrow
TO7 F 61 TOo7 A | BD TO7_U | None Narrow
TO8 | F 60 TO8_A | SAD TO8_U | None Narrow
T09 F 59 TO9A | BD TO9_U | None Narrow
T10 | M 58 T10.A | SCZ T10_.U | None Narrow
T11 F 52 T11.A | BD T11_.U | None Narrow
T12 M 50, 51 T12.A | BD T12_U None Narrow
T13 | M 48 T13_A1 | SCZ T13_.A2 | MDD | Broad
T4 | M 50, 51 T14. A | BD T14_U | None Narrow
T15 | M 43 T15_A1 | SAD T15_A2 | MDD | Broad
Ti6 | M 46 T16_.A | BD T16_U | None Narrow
T17 F 45 T17.A | BD T17_U | None Narrow
T18 | F 27 T18_Al1 | SAD T18_.A2 | MDD | Broad
T19 F 38 T19_.A | SAD T19_.U | None Narrow

Table 5.1: Phenotypic data for the 19 pairs of MZ twins. For the discordance (Disc), “broad”
indicates that both samples have a diagnosis and “narrow” indicates that only one sample
has a diagnosis. BD: bipolar disorder; MDD: major depressive disorder; SAD: schizoaffective
disorder; SCZ: schizophrenia.

b) DP > 100;
c) mapping quality across all reads (MQ) > 5.0;
d) VQSLOD > 10.0;

e) phred-scaled quality score normalised to read depth (QD) > 5.0.

These thresholds were obtained by manually examining the density plots for each of
the respective metrics to remove those at the lower end of the distribution. We then
performed LD pruning on the remaining SNVs using the -—-indep-pairwise command
from plink (Purcell et al., 2007)) with parameters “50 5 0.2". Finally, we calculated

the pairwise relatedness scores with vcftools as described in |Section 2.4, A heatmap
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describing these relatedness scores is shown in |Figure 5.2,

It was expected that each sample in the cohort should be perfectly related to themselves
and to their co-twin (red in the heatmap) and unrelated to all other samples (white in
the heatmap). However, sample T04_U appears to be related to all other twin samples.
Because of this relatedness issue, twin pair T04 was excluded from our cohort. Addition-
ally, from this heatmap it appears that some twin pairs have negative relatedness scores
with the other twin samples (displayed as blue in the heatmap). The relatedness scores
are estimates of the true proportion of shared DNA, and some amount of variability is
expected. However, the negative scores for twin pair TO5 are more striking than all other
twin pairs. A negative KING relatedness score can often indicate the presence of differ-
ent genomic ancestry groups (Manichaikul et al., 2010). The PCA performed by peddy
identified that all samples were predicted to have European genomic ancestry with the
exception of twin pair T05 who were predicted to have East Asian genomic ancestry (see

Figure 5.3), which is consistent with the relatedness scores from the heatmap.

5.2.3 Zygosity Check

The zygosity of both samples within a twin pair was estimated using the above-described
set of high-confidence variants. Treating one sample in a pair as the “truth” sample, we
evaluated the sensitivity and genotype concordance using the GenotypeConcordance
module from picard. The sensitivity measures the proportion of variants in the call set
that are present in the truth set, and the genotype concordance measures the proportion
of variants with matching genotypes out of those which match a position in the truth
set. The results of this are displayed in [Table 5.2 below. We can see that within each
pair, the sensitivity was at least 99.8% for all samples, and the genotype concordance
rate was at least 99.999% for all samples. This confirms that all samples within each

twin pair are monozygotic as expected.
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5.2. COHORT DESCRIPTION

Twin Truth Call Sens Geno
Pair | Sample | Sample (%) Conc (%)
To1 TO1_Al TO1_A2 99.8994 99.9998
TO1_A2 TO1_Al 99.9058 99.9998
T T02_A T02_U 99.8854 99.9997
T02_U T02_A 99.8908 99.9997
T03 TO3_A T03_U 99.8925 99.9997
T03_U TO3_A 99.8910 99.9997
TO5 TO05_A1 TO05_A2 09.8848 99.9997
TO05_A2 TO05_A1 99.8904 99.9997
TO6 TO06_A T06_U 99.8949 99.9997
T06_U TO6_A 99.8955 99.9997
To7 TO7_A TO7_U 09.8924 99.9997
T07_U TO7_A 99.8912 99.9997
To8 TO08_A T08_U 09.8881 99.9997
T08_U TO08_A 99.8949 99.9997
T09 T09_A T09_U 99.8931 99.9997
T09_U T09_A 99.8906 99.9997
T10 T10_A T10_U 99.8944 99.9998
T10_U T10_A 99.8902 99.9998
T11 T11_A T11.U 99.8636 99.9997
T11.U T11 A 99.8867 99.9997
T12 T12_A T12.U 99.8920 99.9998
T12_U T12_A 99.8981 99.9998
T13 T13.A1 T13_A2 99.8739 99.9997
T13_A2 T13_A1 99.8952 99.9997
T14 T14_A T14_U 99.8709 99.9997
T14_U T14_A 99.8892 99.9997
T15 T15_A1 T15_A2 99.8871 99.9997
T15_A2 T15_A1 99.8936 99.9997
T16 T16_A T16_U 99.8986 99.9997
T16_U T16_A 09.8881 99.9997
T17 T17_A T17_U 99.8953 99.9997
T17_U T17 A 99.8950 99.9997
T1s T18_Al T18_A2 99.9005 99.9998
T18_A2 T18_Al 99.8876 99.9998

Table 5.2: Within-pair concordance metrics on a set of high-confidence SNVs for the 17 MZ
twin pairs. Included are the sensitivity (Sens) and the genotype concordance rate (Geno Conc).
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5.2.4 Discordant Variants

After the above quality control measures, 17 pairs of twins were carried forward for ana-
lysis. Joint genotyping and VQSR was re-applied to these 34 samples so that the excluded
samples would not contribute to the variant metrics prior to quality control measures be-
ing applied. Multi-allelic sites were split into bi-allelic sites to further identify the patho-
genic allele, as per Subsection 2.3.2, Any variant with QUAL < 100.0 was considered
to be low-quality and removed (Castellani et al., 2017). Finally, we applied standard
genotype specific filters to all SNVs and indels (see Subsection 2.3.2). After removing
lower quality variants, each sample had an average of 44,306 discordant SNVs and in-
dels across the genome. Given that short read WGS detects approximately 4,000,000
variants per genome (Lappalainen et al., 2019), this implies approximately 1.1% of the
variants detected in each sample are discordant. As the estimated error rate is 0.1%
for short-read WGS on lllumina HiSeq technologies (Fox et al., 2014)), this number is

unlikely to be attributed solely to sequencing errors.

5.3 Protein-Coding Variants

Our first analysis was to identify rare, damaging, protein-coding variants which may
be implicated in the phenotypic discordance. To this end, discordant variants were
annotated with vep including: functional impact; predicted deleteriousness (SIFT and
PolyPhen-2), and allele frequency (1000 Genomes Project and gnomAD v2.1.1), as
described in Section 2.6, Only SNVs were considered at this step, as SIFT and PolyPhen
do not provide scores for indels. To identify rare, putatively pathogenic variants, the

following filters were applied:

i) variant was present in the coding sequence of the canonical transcript of a protein-

coding gene as determined by RefSeq (O’Leary et al., 2016));
ii) SIFT was “deleterious” or PolyPhen was “damaging”;

i) the allele frequency was <1% or absent in the appropriate population groups in

the 1000 Genomes Project and gnomAD databases; and

iv) variant was not observed in any other samples within the cohort.

Thirteen rare, predicted-deleterious discordant SNVs were identified across nine unique
genes, described in [Table 5.3| below. Ten of the prioritised variants were present in an
affected twin across seven genes, and three variants were present in unaffected individu-

als across two genes. All SNVs were missense variants, with vep IMPACT classification
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of "MODERATE". At three of these genes (CSMD3, FOXNI, and TIMPI1), several
discordant variants were found to be in close proximity (<15bp) in the same individual.
This behaviour is somewhat unexpected given the strict filtering requirements, and one

explanation for such a phenomenon is that these variants are in fact a sequencing artefact.

To investigate this, we re-called variants from the original BAM files at a 300bp window
up and downstream from the variant sites with the same parameters used previously.
The window size of 300bp was chosen since the read length is 150bp, so this window
size would be expected to show the behaviour of the majority of the reads affecting the
variant sites. We also included the —-bamout option from HaplotypeCaller to extract
the locally re-aligned reads and assembled haplotypes. Then we visualised the region
from the bamout files using the Integrative Genomics Viewer (IGV), (Robinson et al.,
2011). An example of such is given in |Figure 5.4/ below. The variant base pairs that were
in close proximity only appeared on the same re-constructed reads, which likely occurred
due to local re-alignment of the reads around indels by HaplotypeCaller during vari-

ant calling. Hence these variants in close proximity are likely due to the same indel event.

Of particular note, an individual with major depressive disorder carried a missense SNV
in POLG (DNA subunit polymerase-7y), which plays a role in mitochondrial DNA replic-
ation. This gene was found to be expressed in multiple brain tissue types according to
the Genotype Tissue Expression (GTEx) database (Keen & Moore, 2015). In a mouse
model study, samples which carried a specific missense variant in POLG exhibited symp-
toms consistent with mood disorders (Kasahara et al., 2016)). In humans, deleterious
non-synonymous variants in this gene were found to be significantly enriched in bipolar
cases compared to controls (Kasahara et al., 2017)). Case reports have noted psychiatric
symptoms in POLG variant carriers, such as recurrent major depression (Verhoeven et
al., 2011)) and psychosis (Hakonen et al., 2005).

None of the 10 missense SNVs appeared in the SCHEMA database (T. Singh et al.,
2022), but rare SNVs at four of these genes (FAM90A1, FOXNI1, KRTAP10-6 and
POLG) had been reported in two previous schizophrenia WES studies (Genovese et al.,
2016} |Howrigan et al., 2020)).
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Chr | Pos rsID Ref | Alt | Gene HGVSp | SIFT | PolyPhen | Carrier | Phenotype
chr6 | 31356433 | rs12721827 G A | HLA-B T118lI B TO3_.U | None
chr8 | 112244420 | rs1300679966 | C A | CSMD3 W3459L | D D T06_U | None
chr8 | 112244426 | rs1204369873 | T A | CSMD3 N34571 | D D T06_U | None
chr9 | 96932219 | rs112610837 | C T | NUTM2G P172S | T D T13_ Al | SCZ
chrl2 | 8224750 rs201155866 | A C | FAM90AI V28G T D T18_A2 | MDD
chrl5 | 89320970 | rs752971760 | C G | POLG S926T | T D T01_A2 | MDD
chrl7 | 28530789 | rs1385768054 | A C | FOXNI S291R | D D TO7-A | BD
chrl7 | 28530791 | rs371766542 | C A | FOXNI S291R | D D TO7_A | BD
chrl7 | 28530802 | rs1220808552 | G C | FOXNI S295T | D D TO7-A | BD
chrl7 | 28881251 - C T | FLOT2 A347T | D D T09_A | BD
chr22 | 44592351 | rs367621282 | G C | KRTAP10-6 | P45R D D T10.A | SCZ
chrX | 47585615 | rs1478486447 | C A TIMP1 A134D | D D T18_A2 | MDD
chrX | 47585618 | rs1417127009 | A G TIMP1 Q135R | D D T18_A2 | MDD

Table 5.3: Discordant protein-coding variants with a predicted deleterious effect. Each variant is annotated with: genomic positions (GRCh38), rs
identification numbers, the reference and alternative alleles, the gene harbouring the variant, the amino acid substitution (HGVSp), pathogenicity
scores from SIFT (D: deleterious; T: tolerated) and PolyPhen (D: damaging; B: benign), the sample carrying the variant, and their phenotype. All

prioritized variants are missense SNVs. BD: bipolar disorder; MDD: major depressive disorder; SCZ: schizophrenia.
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5.4 Regulatory Variants

5.4.1 Rare Deleterious Variants

To investigate whether discordant variants across the genome had a predicted regulat-
ory effect, sites were annotated using RegulomeDB (Boyle et al., 2012). RegulomeDB
curates a collection of known and predicted regulatory elements across the genome and
scores each variant according to the accumulation of evidence that the site has a reg-
ulatory effect (see “Web Resources”, Subsection A.2.4). A RegulomeDB rank of 2
represents evidence of transcription factor binding (ChlP-seq data) and a transcription
factor motif, as well as evidence that the variant lies under a DNase hypersensitive peak.
A variant with a rank of 1 requires evidence suggesting it is within a known expression
quantitative trait locus (eQTL), as well as some of the same evidence as a rank of 2.
Discordant variants with predicted regulatory effect from RegulomeDB have been previ-
ously observed in MZ twins discordant for schizophrenia (Tang et al., 2017)). The online
version of RegulomeDB is aligned to GRCh37, so we downloaded the database to incor-
porate it into our analysis. Variants at unstable positions were removed as described in

Chapter 3, and the positions for each variant were converted to GRCh38 using 1iftQ0ver.

Variants were annotated with vep including: RegulomeDB scores on GRCh38, CADD
v1.6 scores, and allele frequency (1000 Genomes Project and gnomAD v3.1). Given
that variants with a regulatory effect can occur in non-coding regions, CADD was used
to estimate deleteriousness since it is defined for all positions in the human genome.
Additionally, gnomAD v3.1 was used since it has a higher collection of WGS samples
than v2.1.1. The following filters were applied to all discordant variants across the

genome:

i) RegulomeDB rank of the variant was 1 or 2;
i) CADD Phred-like scores greater than 20.0;

i) the allele frequency was <1% or absent in the appropriate population groups in

the 1000 Genomes Project and gnomAD databases; and

iv) variants were not observed in any other samples within the cohort.

After applying the above filters, no variants were retained.
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5.4.2 ENCODE Regulatory Features

We also evaluated whether there was an accumulation of discordant variants in regulatory
regions in affected compared to unaffected individuals. We compiled a list of features
with a known regulatory effect from the Encyclopedia of DNA Elements (ENCODE)
(Dunham et al., 2012). Specifically, we selected:

i) proximal and distal enhancers;
ii) canonical promoter-like signals;
iii) DNase hypersensitivity sites;
iv) anchors from chromatin loops (ChIA-PET); and

v) transcription factor binding sites with footprints.
To this list we added:

vi) brain specific open chromatin regions (Bryois et al., 2018; |de la Torre-Ubieta et
al., 2018; |Fullard et al., 2017, 2019);

vii) brain specific enhancers (D. Wang et al., 2018)); and

viii) proximal promoters of protein-coding transcripts from GENCODE ([Frankish et al.,
2019).

All discordant variants passing QC metrics were subset to these eight regulatory annota-
tion regions. Since the variants were assumed to be post-zygotic, they could be treated
as independent events within a twin pair. However, it is possible that some variants may
be part of the same linkage disequilibrium (LD) block. Due to a low overlap with refer-
ence data taken from the 1000 Genomes Project, we were unable to evaluate whether LD
structure was present within the discordant variants, which may have an effect on Type |
and Type Il error rates for hypothesis testing. A two-tailed ¢-test at 95% significance was
performed using the R software package between samples with or without a diagnosis to
evaluate whether there was a significant difference in mean count of discordant variants
overlapping a given regulatory annotation. However, no significant difference in mean

counts was observed for any regulatory feature (see Figure 5.5 and Table 5.4 below).
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Figure 5.5: Boxplots of the counts of discordant variants within each of the eight regulatory
annotation sets. The long name of the regulatory feature is shown in below The
22 affected samples are displayed in red, and the 12 unaffected samples are displayed in blue.
The p-value from a two-tailed ¢-test is displayed above each pair of boxplots. AFF: affected,;

UNAFF: unaffected.
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Regulatory Description Affected Unaffected p . )
Feature Mean SD Mean SD
pc_promoter500 Promoters of protein-coding transcripts 155.82 | 19.95 148.08 | 16.63 | 0.421 | -1.206 | 0.239
reg_anchor Anchors from chromatin loops 2,444 .41 | 102.50 | 2,432.75 | 101.38 | 0.114 | -0.319 | 0.752
reg_dhs DNase hypersensitivity sites 4,725.36 | 177.42 | 4,699.42 | 119.91 | 0.171 | -0.506 | 0.616
reg_enhancer Proximal/distal enhancers 2,221.55 | 84.42 | 2,209.75 | 82.05 | 0.142 | -0.397 | 0.695
reg_enhancerbrain | Brain-specific enhancers 306.45 | 25.03 31433 | 28.67 | 0.293 | 0.800 | 0.433
reg_openbrain Brain-specific open chromatin regions 1,412.96 | 70.75 | 1,406.58 | 52.25 | 0.102 | -0.299 | 0.767
reg_promoter Promoter-like signals 63.95 | 11.49 60.00 8.79 | 0.387 | -1.121 | 0.272
reg_tfbs Transcription factor binding sites 2,086.23 | 107.08 | 2,056.08 | 71.01 | 0.332 | -0.982 | 0.334

Table 5.4: Results from the two-sided t-tests to evaluate the enrichment of discordant variants in various regulatory features between affected
samples (n = 22) and unaffected samples (n = 12). Included is the mean and standard deviation (SD) of the counts, Cohen's d, the t-test statistic,
and the p-value.
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CHAPTER 5. DISCORDANT MONOZYGOTIC TWINS

5.5 Germline CNVs

Another likely source of post-zygotic variation that may be driving phenotypic discord-
ance is CNVs. Germline CNVs were called following the approach detailed in [Chapter 4|
For each sample, CNVs were combined with those of their co-twin to identify concordant
and discordant CNVs. As described in |Chapter 4, two CNVs were said to be the same
if they had a 50% reciprocal overlap.

5.5.1 Known SCZ-Associated CNVs

First, we screened all CNVs (concordant and discordant) against a list of 23 rare CNVs
previously implicated in schizophrenia (see [Table 1.1 and [Table 1.2). The breakpoints
for these CNVs were originally given for GRCh37 but were converted to GRCh38 using
liftOver for this analysis. Initially, it appeared that four SCZ-associated CNVs were
present in both samples of the six twin pairs, all of whom had narrow discordance (see
Table 5.5a). However, five of the six CNV calls were identified by LUMPY only in both
twin pairs. For these CNVs, the proportion of reads supporting a CNV at either break-
point was generally low in one or both twin pairs (see Table [Table 5.5b)). Therefore, we

excluded these five CNV calls from further analyses.

The remaining CNV (a duplication on chromosome 13q12.11) was identified by all four
CNV calling algorithms in both samples of twin pair T09. In a discovery association ana-
lysis, this CNV was noted to have a protective effect but was only nominally significantly
associated with schizophrenia (Marshall et al., 2017). Interestingly, the affected indi-
vidual in this twin pair T09 also has a rare, deleterious, discordant protein-coding variant
in the FLOT2 gene (see Table 5.3). FLOT2 (Flotillin-2) has been shown to be involved
in neuronal differentiation (Hanafusa & Hayashi, 2019) and flotillins are known to inter-
act with the NR2A and NR2B subunits of N-methyl-D-aspartate receptors (Swanwick et
al., 2009).
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Chr Start End ID Twin Affected Unaffected
Par |[C/ E|L M |C | E|L| M
chr3 | 195945160 | 197641345 | 3q29_DEL TO6 X X
chrle | 21776296 | 22592576 | 16p12.1 DEL T08 X X
chrl3 | 19841000 | 19874999 | 13q12.11_.DUP | T09 X | X | X | x| x| x|x]x
chrlb | 22776711 | 28851112 | 15q11.2_ DEL T11 X X
chrlb | 22775347 | 28851109 | 15q11.2_DEL T12 X X
chrlb | 22776709 | 28851099 | 15q11.2_DEL T17 X X
(a)
D Twin Affected Unaffected
Pair | PE | DP.S (%) | DP_E (%) | PE | DP.S (%) | DP_E (%)
3q29_DEL TO6 | 4 89 (4%) 73 (5%) 131 (3%) 61 (7%)
16p12.1_DEL | T08 51 (14%) 59 (12%) 57 (7%) 68 (6%)
15q11.2 DEL | T11 10 | 53 (19%) 21 (48%) 11 | 40 (28%) 33 (33%)
15q11.2 DEL | T12 34 (12%) 35 (11%) 34 (26%) 30 (30%)
15q11.2_ DEL | T17 25 (16%) 28 (14%) 41 (10%) 32 (4%)
(b)

Table 5.5: Putative SCZ-associated CNVs identified in the cohort. The start and end points are given for the GRCh38 reference genome. (a) A
breakdown of which of the four callers identified the CNV (C - CNVnator; E - ERDS; L - LUMPY; M - Manta). (b) For the three CNV regions identified
by LUMPY alone, the number of paired end (PE) reads that support the event, the read depth at the start of the CNV (DP_S) and the read depth at

the end of the CNV (DP_E). Also shown beside the DP is the proportion of PE reads at the start or end of the CNV.
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CHAPTER 5. DISCORDANT MONOZYGOTIC TWINS

5.5.2 Rare and Pathogenic Discordant CNVs

Next, we examined discordant CNVs in the cohort. As described in |Chapter 4, any
CNV that was found in one sample of the pair and identified by only one calling al-
gorithm was removed. Therefore, discordant CNVs have the support of at least two
calling algorithms. Variants were then removed if they had at least a 50% reciprocal
overlap with any common CNVs (i.e. frequency at least 1% in the appropriate popula-
tion group) in the following public databases: gnomAD (Karczewski et al., 2019), the
DECIPHER study (Firth et al., 2009)), and the DGV (MacDonald et al., 2014)), as de-
scribed in |Section 2.5, As the DECIPHER and gnomAD databases were curated relative
to the GRCh37 genome build, the CNV files were converted to this build using 1ift0ver.

After applying the above filters, seven rare CNVs that overlapped gene regions were
identified in affected individuals in the cohort (see Table 5.6). However, the same num-
ber of discordant CNVs were identified in the unaffected twins. Of note, a duplication
on chromosome 3929 was observed in the affected sample of twin pair T17. While 3q29
deletions are associated with schizophrenia, 3929 duplications have been implicated in

autism spectrum disorders and developmental delay (Rehm et al., 2015)).

The presence of this 3q29 duplication prompted us to examine a more extensive list of
CNVs annotated by the NIH Clinical Genomics (ClinGen) CNV database as implicated in
psychiatric or neurodevelopmental disorders (Rehm et al., 2015). Any discordant CNV
that had a 50% reciprocal overlap with a variant labelled as “Pathogenic” in ClinGen
(UCSC “iscaPathogenic" table) was retained, regardless of population frequency. Since
ClinGen collates CNV calls from a wide collection of sources, each of which may use
different reference material for CNV calling, it is not possible to know if the type of
pathogenic CNV matches that of the CNV call in our data. Hence, CNV calls were
not matched for type at this stage. Pathogenic CNVs were retained if the associated
phenotype was psychiatric or neurodevelopmental in nature. Fourteen CNVs with a
clinical impact were identified across the samples (see Table 5.7), but only the 3g29

duplication was present solely in affected individuals.

80



18

Chr Start End Length | Locus Type | Sample | Pheno | Path
chrl 32500722 | 32539739 39,017 | 1p35.1 DEL | T15.A2 | MDD

chrl | 221964250 | 227275254 | 5,311,004 | 1q41-42.13 DUP | T0O5_A2 | MDD

chr3 38053588 | 48061842 | 10,008,254 | 3p22.2-21.31 | DUP | T06_.U | None

chr3 | 195940567 | 197638156 | 1,697,589 | 3q29 DUP | T17.A | BD X
chrb | 180634984 | 180636040 1,056 | 5g35.3 DEL | T14.U | None

chr7 08392886 | 98394241 1,355 | 7g21.3 DEL | T15.A2 | MDD

chrl0 | 92847856 | 92849207 1,351 | 10923.33 DEL | T0O2.A | SAD

chrll | 19858200 | 19861999 3,799 | 11p15.1 DUP | T17.U | None

chrl2 676066 1623296 947,230 | 12p13.33 DEL | T0O6_.U | None X
chr12 | 120201498 | 120204299 2,801 | 12q24.23 DEL | T16.A BD

chrl3 | 50013200 | 50015499 2,299 | 13q14.2 DEL | TO8.U | None

chrl9 2390200 2391236 1,036 | 19p13.3 DEL | T14.U | None

chr19 | 11261852 | 11262999 1,147 | 19p13.2 DEL | TO1.Al1 | SCZ

chr22 | 39243400 | 39245099 1,699 | 22q13.1 DEL | TO7.U | None

Table 5.6: A list of rare discordant CNVs, including: the positions (GRCh38); length; type; the carrier sample ID; their phenotype (Pheno);
and if they are annotated as pathogenic (Path). DEL: deletion; DUP: duplication; BD: bipolar disorder; MDD: major depressive disorder; SAD:
schizoaffective disorder; SCZ: schizophrenia
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Di
Chr Start End Length | Locus Phenotype Type A IS(I:J All
chrl | 143707655 | 148368205 | 4,660,550 | 1gq21.1-21.2 ASD; DD; GDD; ADHD:; Seizures; ID DEL |0 | 1| 3
chr2 95974322 | 97579728 | 1,605,406 | 2q11.1-11.2 DD; ASD; ID; Seizures DEL |4 | 1| 7
DEL 1
chr3 1880400 6681218 | 4,800,818 | 3p26.3-26.1 DD; GDD 0 2
DUP |12 | 5
chr3 | 195940567 | 197638156 | 1,697,589 | 3929 ASD: DD:; GDD; Seizures DUP |10 | 1
chrb | 141631941 | 142199762 567,821 | 5931.3 DD:; GDD bubP | 11021
DEL | 1] 0| 27
DEL | 1
chr? 66392490 | 76087266 | 9,694,776 | 7q11.21-11.23 | DD; ID 0] 7
DUP | 1 ]1/|20
chr12 676066 1623296 947,230 | 12p13.33 DD: GDD; Seizures DEL |0 |1 | 1
chr12 | 120442095 | 121624256 1,182,161 | 12q24.31 GDD, Seizures DUP | 2 |1 25
chrle | 21935407 | 29107962 | 7,172,555 | 16p12.2-11.2 | ID; DD; ASD DUP | 1|1/ 12
chrl6 | 28470489 | 29397846 927,357 | 16p12.1-11.2 | DD; Seizures; ASD; GDD; ID DUP | 1|0 | 11
chrl7 | 36271243 | 37995798 | 1,724,555 | 17q12 DD; Seizures; GDD; ID; ASD; Anorexia | DEL | 2 | 1 | 11
chrX 66699870 | 84875177 | 18,175,307 | Xql12-21.1 DD DUP | 21| 5
chrX 69751300 | 78489674 | 8,738,374 | Xql13.1-21.1 DD bubp | 110 9
DEL |1 |0 | 7
chrX 94704302 | 98524458 | 3,820,156 | Xq21.33 Seizures DUP |1 (0| 3

Table 5.7: A list of CNVs with a predicted pathogenic effect in ClinGen, including: chromosome (Chr), start and end positions (GRCh38), length,
the associated phenotypes, CNV type, the number of affected (A) and unaffected (U) samples who carried a discordant variant (Disc), and the
overall number of samples who carried the variant (All). DEL: deletion; DUP: duplication; ADHD: Attention Deficit/Hyperactivity Disorder; ASD:

Autism Spectrum Disorder; DD: Developmental Delay; GDD: Global Developmental Delay; ID: Intellectual Disability.
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5.6. SOMATIC CNVS

5.6 Somatic CNVs

As noted above, we assumed that the post-zygotic variation occurred sufficiently early
during embryogenesis, so they present as germline variants. However, somatic mosa-
icism can also have an effect on phenotypic discordance between twins (S. M. Singh et
al., 2020). The typical average depth of coverage for WGS data is often not sufficient
to detect somatic mosaicism present in a low proportion of cells for SNVs and indels.
However, the tool Mosaic Chromosomal Alterations (MoChA) was designed to investigate
the presence of somatic CNVs from genotype array or from NGS data (Loh et al., 2018).
MoChA operates similarly to the read-depth based callers from [Chapter 4, but instead of
taking the BAM files as an input, it takes read-depth information from phased SNVs

and indels of the samples.

MoChA was applied to the jointly genotyped short variant VCF file with default settings,
including a list of regions to exclude for WGS data that was provided with the tool.
As part of the process, multi-allelic SNVs and indels are normalised and genotypes with
DP<10 or GQ < 20 are set to missing, as described in Subsection 2.3.2. A workflow
was recommended by the authors of the tool, which was provided on the tool's GitHub
page (see “Web Resources”, Subsection A.2.4). As with germline CNVs in |Chapter 4,
deletions or duplications for which at least 50% of their length comprised of RLCR were
removed (see Subsection 4.2.1). Any somatic CNV call that had also been identified
in an individual's germline call set in Section 5.5 above was removed. Finally, CNV
calls present in both samples of a twin pair were removed to focus solely on discordant
somatic CNVs.

When MoChA was applied to the jointly genotyped data, 940 somatic CNV calls were
identified across all samples (449 deletions and 491 duplications), with an average of
27.6 calls per sample. The subsequent filtering resulted in 25 putative discordant somatic
CNVs (five deletions and 20 duplications), ranging in length from 9.5kbp to 404.1kbp.
To confirm that the calls were truly discordant, the read-depth profiles for the regions
of interest were plotted for carriers and their co-twin using the mocha_plot.R script
provided with the tool. This script plots the read depth of the SNVs and indels in the
CNV region for all samples provided, allowing us to compare the discordant calls within
a twin pair. If the read depth plots appeared similar between both twin pairs despite
only being called by MoChA in one sample, then the CNV was rejected as a false positive

discordant call.
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CHAPTER 5. DISCORDANT MONOZYGOTIC TWINS

Three of the prioritised CNVs did not generate a read depth plot, so they were rejected
as being low confidence calls. For each of the remaining 22 CNV calls, the read depth
profile was almost identical between the two samples. For example, a putative discord-
ant CNV call present in sample TO7_A is shown in below. We can see that
although the CNV was only identified in one sample the read-depth profile is virtually
the same in the supposed non-carrier. Additionally, in [Figure 5.6b| there appears to be
CNV calls in both samples, but in TO8_A the end breakpoint of the CNV is different
to that of the co-twin despite their similar read-depth profiles. We queried these beha-
viours with the author of MoChA who informed us that: “Phasing does not work very well
with WGS data and there are many artifacts that tend to skew the variant allele fraction

causing to call many false positives” (G. Genovese, personal communication, 15/01/20).

Based on the above, all 25 prioritised CNV calls were rejected, and we conclude that
there does not appear to be conclusive evidence for the presence of discordant somatic
CNVs in these samples.
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5.7. REPEAT EXPANSIONS
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Figure 5.6: Read depth plots of two putative discordant somatic CNV calls which were
subsequently rejected as false positives. The CNV of interest has points coloured in red, and
other CNVs are coloured in blue. (a) A duplication detected in TO7_A, with a similar profile in
both twins. (b) A duplication detected in TO8_A, but with different breakpoints to the CNV
of the co-twin, despite similar profiles in both twins.

5.7 Multi-Nucleotide Repeat Expansions

Multi-nucleotide repeat expansions (i.e. where a short segment of DNA is repeated
many times) are known to play a role in certain neurological disorders. However, there
is mounting evidence that they may also play a role in psychiatric disorders (Xiao et al.,
2021)). For example, a GGCCCC repeat in C9ORF72 is known to be causal for fronto-
temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (DeJesus-Hernandez
et al., 2011), but carriers are reported to be likely to experience psychotic symptoms
(Devenney et al., 2017). A genome-wide enrichment of repeat expansions (also known
as short-tandem repeats) has been observed in autism samples (Mitra et al., 2021; Trost
et al., 2020) and recent work has shown an enrichment of rare, exon-disrupting repeats in
schizophrenia samples (Mojarad et al., 2022). We examined whether the repeats causal
for known disorders were present in the cohort. We selected 15 multi-nucleotide repeat
expansions from Orr et al. (Orr & Zoghbi, 2007)), and added the C9ORF72 repeat. The

location and pathogenic repeat count for these disorders is described in |Table 5.8.

Multi-nucleotide repeat expansions were called from the BAM files of all 34 MZ twin
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CHAPTER 5. DISCORDANT MONOZYGOTIC TWINS

Disorder Alias Locus Repeat | Count
Fragile X Syndrome FRAXA | Xq27.3 CGC 200
f\rtziiif ;(y'rijsf;’;ijted Tremor | exTas | xq27.3 | CGG 60
Fragile XE Syndrome FRAXE | Xq28 CCG 200
Friedreich ataxia FRDA | 9g21.11 | GAA 200
Myotonic Dystrophy 1 DM1 19q13.32 | CTG 50
Myotonic Dystrophy 2 DM?2 3g21.3 CCTG 75
i‘:ig‘;ﬁ;'bar Muscular SBMA | Xq11-12 | CAG 38
Huntington Disease HD 4p16.3 CAG 36
Spinocerebellar Ataxia 1 SCAl 6p22.3 CAG 39
Spinocerebellar Ataxia 2 SCA2 12q24.12 | CAG 32
Spinocerebellar Ataxia 3 SCA3 14q32.12 | CAG 61
Spinocerebellar Ataxia 6 SCA6 19p13.13 | CAG 20
Spinocerebellar Ataxia 7 SCA7 3pl4d.l CAG 37
Spinocerebellar Ataxia 17 SCA17 | 6927 CAG 47
aDttalr(r;’lc;;;c;)rubropallidoluysian DRPLA | 12p13.31 | CAG 49
écnl"eyr‘;tsri‘s)phic Lateral ALS | op212 | GGGGCC | 30

Table 5.8: A list of 16 selected disorders associated with a multi-nucleotide repeat expansion,
and their pathogenic repeat count threshold.

samples using ExpansionHunter (Dolzhenko et al., 2017) with default parameters.
Variant regions for the 16 multi-nucleotide repeat disorders were taken from the variant
catalogue provided with the tool. ExpansionHunter was developed for PCR-free WGS
data, whereas our data were generated with PCR-based methods. Since PCR-free data
can result in a more even depth of coverage across the genome, we accounted for this
difference by examining the coverage for each repeat region to ensure it was not low. The
average depth of coverage was at least 14x for all multi-nucleotide repeat regions across

all samples, and so the data were sufficient for repeat expansion calling (see |Table 5.9).

While we did observe some differences in the repeat counts within some twin pairs,

86



5.8. CONCLUSIONS

none of the samples had repeat counts above the specified pathogenic threshold for any
disorder (see [Table 5.9).

Disorder Average DP Repeat Count Threshold
Mean Range Mean | Range
FRAXA | 253 14.0-37.8 | 13.6 4-30 200
FXTAS 335 19.1-542 | 13.6 4-30 60
FRAXE | 425 33.6-540 | 6.3 4-17 200
FRDA 49.2 39.8-654 | 129 8-21 200
DM1 42.0 343-494 | 13.9 10 - 23 50
DM2 29.8 18.0-47.1 | 155 15-19 75
SBMA 40.2 324-526 | 234 18 - 27 38
HD 43.8 34.6 - 54.7 | 19.3 16 - 26 36
SCAlL 28.0 16.7 - 47.6 | 31.5 29 - 37 39
SCA2 41.5 344 -49.7 | 22.2 22-23 32
SCA3 37.6 25.6-53.0 | 20.9 18 - 25 61
SCAG6 34.4 246 - 48.8 | 12.6 11-13 20
SCA7 43.3 37.6 -51.3 | 10.6 8-13 37
SCA17 423 326-518|37.4 36 - 43 47
DRPLA | 355 20.4-436 | 19.8 19-21 49
ALS 25.3 140-378 | 4.2 2-8 30

Table 5.9: For each of the multi-nucleotide repeat disorders, details across all 34 samples of
the average depth of coverage (DP) and the repeat counts, as well as the pathogenic count
threshold.

5.8 Conclusions

Here we report a WGS study where we assessed discordant post-zygotic variation in 17
MZ twins discordant for schizophrenia or a related disorder. We have investigated a
broad range of genomic variation, from SNVs (both protein-altering and regulatory), to
CNVs and repeat expansions. A rigorous filtering strategy identified 10 rare, deleterious,

discordant, protein-coding SNVs across seven genes, each 