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ABSTRACT  

Human pressure as an ecological force across scales and systems. Caroline Margaret McKeon 

Historically, climate has been seen as the main driver of global vegetation patterns, but ecological 

paradigms have recently expanded to acknowledge human activity as a critical determinant of 

species biogeography. Today, human land use is the primary direct anthropogenic driver of global 

biodiversity decline, but not all species respond in the same way. How do species differentially 

respond to direct human disturbance and to climate? And how do the importance of these factors 

compare? I investigate these questions through the lens of species inherent characteristics (life 

form and life history) in different systems (flowering plants and fish) across multiple scales. 

Drawing on publicly available global databases, I integrate data on climate and different forms of 

human pressure to assess how these forces compare across dimensions of biodiversity. I 

investigate: how human land use compares to climate in driving plant life form occurrence and 

abundance (global); how cumulative human pressure compares to climate in affecting spatial 

patterning in endemic European plant species (continental); how climate compares to fishing 

pressure in affecting fish community life history strategy in the North East Atlantic (regional), and 

how nutrient addition and abandonment of traditional management practises impact 

productivity, diversity and community composition in a unique high diversity Irish grassland 

(hyper-local). Across scales and systems, I find that direct human influence is a factor affecting 

ecological patterns, and that the relative influence of different ecological drivers depends on the 

extent and resolution at which they are studied. Climate and human disturbance act in tandem as 

filters shaping the realised niches of species through space. Additionally, human disturbance may 

produce more divergent outcomes than climate across species inherent traits, contracting the 

niche of species with slower life history and expanding the niche of disturbance tolerant species. 

My findings highlight the urgent need to include direct human disturbance in all investigations of 

fundamental ecological patterns, and to explicitly consider the scale at which are ecological 

questions are being asked. If biodiversity is to be protected, and broad patterns of life in space 

and time understood, we must consider ecology within the context of pervasive human influence.  
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SUMMARY 

 
Human activity has been part of the natural world for thousands of years, and our influence has 

been increasing dramatically in the last century, such that it is not possible to fully understand the 

natural world without considering our effect on it. In spite of this, it is still not the de facto 

position in ecological research to consider human influence as an ecological force. The 

relationship between ecological patterns and their environment is scale dependant, meaning that 

the signal and relative importance of ecological variables depends on how they are observed. The 

theme of this thesis is the explicit inclusion of human influence in investigations of ecological 

patterns including an additional consideration of scale with the aim of improving our 

understanding of patterns as they occur in today’s world, and providing evidence for the 

ecological impacts of the main driver of global change. I use open source data, a manipulative 

field experiment, and Bayesian and Frequentist Hierarchical modelling to address these aims. 

Across different dimensions of spatial scale, I focus on how human pressure compares to climate 

in affecting plants across their intrinsic traits (Chapter 2) and in their patterning through space 

(Chapter 3). I then investigate how spatial scale affects the signal of human pressure on traits in 

Marine communities (Chapter 4), and how two human activities compare and interact in affecting 

biodiversity in a high resolution case study (Chapter 5). At all scales, I find human pressure to be 

affecting ecological patterns. The relative importance of human pressure compared to other 

ecological factors varies with the scale of investigation, and at some scales, human pressure is 

comparable in importance to non-human variables (i.e. climate) in its ecological impacts. Where 

data was available, I found species’ responses to human pressure to be mediated by their intrinsic 

traits. Considering human influence in ecological studies is a realistic and informative step needed 

in understanding the natural world and in efforts to protect it in light of global change. 

Importantly, understanding the full suite of factors impacting ecology can be best achieved by 

explicitly considering the scales at which they are studied.  
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Chapter 1 General introduction 

1.1 Human influence on the N-dimensional niche 

Global change is having massive impact on the natural world (Almond et al., 2020; Boyce et al., 

2010; Brondizio et al., 2019; Díaz et al., 2019; Masson- Delmotte et al., 2021). Both for our 

fundamental understanding of ecology, and in order to protect and benefit from the natural 

world, it is important to understand how global change is affecting species. Climate is 

acknowledged as a critical factor shaping ecological patterns (Elsen et al., 2021; Foden et al., 

2019; Gaston, 2003; Olson et al., 2001; Smith, 1909; Whittaker, 1970). As such, much ecological 

research has focused on the impacts of current and future climate across levels of biological 

organisation (Corlett & Westcott, 2013; Elsen et al., 2021; Malhi et al., 2020; Weiskopf et al., 

2020).  In addition to climate change, another more immediate component of global change is 

direct human pressure (Almond et al., 2020; Díaz et al., 2019; Grooten et al., 2018). In terrestrial 

environments, direct pressure manifests as human land use - currently the leading cause of global 

biodiversity loss (Almond et al., 2020; Díaz et al., 2019; Grooten et al., 2018; Newbold et al., 

2015). Human pressure is highest in the most biologically productive environments (Kennedy et 

al., 2019; Venter et al., 2016), affecting the composition (Newbold et al., 2016) and heterogeneity 

(Newbold et al., 2018) of ecological communities, and interacting with climate change to affect 

trends in species’ populations (Williams et al., 2021). In marine environments, direct human 

pressure appears as fishing pressure and habitat loss (Fu et al., 2012; Halpern et al., 2008; 

Moullec et al., 2021), which are negatively impacting marine systems (Halpern et al., 2015; 

Jackson et al., 2001; Sala & Knowlton, 2006). 

 

While there is clear evidence of the largely negative impacts of recent human activity on global 

biodiversity trends, there is still a lack of studies integrating human influence into ecological 

research (Estes et al., 2018; Liu et al., 2007). Despite evidence for the pervasiveness of human 

impact in ecology, much work seeks to study ecology as it “would have” happened, in the absence 

of human influence (Ellis, 2019). Three ideas may be contributing to this disparity. Firstly, humans 

and nature are seen as independent i.e. there are currently places on the planet that are “wild”, 

when in reality, excluding Antarctica, 95% of terrestrial land shows some evidence of human 

modification (Kennedy et al., 2019). A second more philosophical reason why “true” ecology and 

human influence are often separated is that humans have been seen as “outside nature”, not 

subject to its laws. Rather than being grounded in scientific evidence, the idea of nature as 

untouched by and independent from people (Prümers et al., 2022), or latterly as a resource that 
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can be optimised for extraction (Mace, 2014; McCauley, 2006) is a result of historic, colonial and 

capitalist ideology (Redford & Adams, 2009), and still informs much of ecological thinking (Ellis, 

2019; Fletcher et al., 2021; Mace, 2014). Ecological and conservation sciences have only recently 

begun to view human and “natural” systems as integrated (Folke et al., 2021; Liu et al., 2007; 

Mace, 2014), as the inaccuracy and unsustainability of earlier views are increasingly recognised 

(Clement et al., 2021; Fletcher et al., 2021; Folke et al., 2021; Roberts et al., 2021). Thirdly, human 

influence is not viewed as an extrinsic ecological factor because pervasive human impact is often 

still seen as a relatively recent phenomenon. However, in the terrestrial environment, human 

activity has been shaping ecology globally for at least the last 12,000 years (Ellis et al., 2021; 

Tallavaara et al., 2015; Prümers et al., 2022; Pires et al., 2015; Sales et al., 2022; Fricke et al., 

2022), with an increase in intensity in the last 300 years (Ellis et al., 2021, 2010), and a further 

dramatic increase during the last 70 years (Kennedy et al., 2019; Steffen et al., 2015; Venter et al., 

2016). These “aboriginal” (beginning approximately 12000 to 5000 years ago - in some cases 

beginning 35-40000 years ago), “colonial” (beginning 500-100 years ago) and “global” (beginning 

in the last 100 years) periods of different intensities of human activity/extraction have also been 

described in the marine environment (Jackson et al., 2001). Viewing human influence as distinct 

from other ecological forces is therefore inaccurate and limits our understanding of ecology (Liu 

et al., 2007; Sullivan et al., 2017).  

 

Just as current climate change is different from past climate changes by virtue of the rate rather 

than the magnitude of change, current human activity is markedly different to the long history of 

human terrestrial and marine presence that came before (Ellis et al., 2021; Fletcher et al., 2021; 

Folke et al., 2021; Jackson et al., 2001; Steffen et al., 2015). Human presence and activity has 

coincided with (Araújo, 2003; Prümers et al., 2022) or been responsible for promoting high 

biodiversity in many places for thousands of years (Ellis et al., 2021), (though not always, and not 

for all types of species (Fricke et al., 2022; Pires et al., 2015; Sales et al., 2022)). I therefore 

distinguish between human presence - our long history of interaction with the rest of the natural 

world,  and human pressure – the dimension of rapid and escalating global change coinciding with 

drastic biodiversity trends i.e. the sixth mass extinction (Barnosky et al., 2011). Human influence, 

both past and present, is a pervasive and unignorable ecological force. If ecological patterns are 

to be properly explained and understood, and a sustainable future created for ecological systems, 

human influence must be integrated into the study of ecology (Ellis, 2015; Cepic et al., 2022; I. 

Dullinger et al., 2021; Folke et al., 2021). 
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1.2 Pattern and scale 

At different spatial and temporal scales, factors contributing to patterns in ecology are of 

different relative importance (Chase, 2014; Chase & Knight, 2013) - “no single mechanism 

explains patterns on all scales” (Levin, 1992). Consider Plantago lanceolata in a field in the Burren 

in Ireland. The pattern of its genetic distance from other species in that field may be best 

explained by processes (geological, climatic, evolutionary) at a phylogenic time scale – millions of 

years (Spiridonov & Lovejoy, 2022). The pattern of this plant’s presence in this field in relation to 

its global distribution (i.e. it’s biogeographic range) may be best explained by climate on a time 

scale of thousands of years (maybe since the Last Glacial Maximum in Europe) (Svenning & Skov, 

2007), by the movement and agricultural practises of humans (Smith et al., 2020), and by 

Plantago’s dispersal ability (Estrada et al., 2015; Sporbert et al., 2021). The relative abundance of 

the plant in this field might be best explained by the nuances of the human management of the 

field (Borer, Seabloom, et al., 2014; Dunford & Feehan, 2001) (grazing to provide disturbance) and 

abiotic conditions (rainfall and soil nutrients) (Parr et al., 2009) in addition to biotic interactions 

(Gurevitch et al., 2016), while the realised life history strategy of a plant in this field might be 

influenced by the suitability of climatic conditions (Csergő et al., 2017). None of these factors are 

the single most important factor in Plantago ecology, but different factors and their interactions 

may have more or less relevance depending on the spatial and temporal extent and resolution of 

ecological patterns under study (Sandel & Smith, 2009; Sporbert et al., 2020).  

 

The relative importance of factors to ecological patterns is related to the amount of variance in 

these factors experienced by the ecological units being studied - “spatial and temporal variability 

will be a function of the size of the window used to view the world: as window size is increased, 

variability will decay” (Levin, 1992). There are at least four dimensions of scale to consider. Firstly, 

we can consider scale across time and space. Secondly, for both time and space, we can consider 

scale as extent, and as resolution. Extent describes the range of data under consideration, i.e. the 

extent of study through time could be data from 24000 years ago up until the year 2000, and the 

temporal resolution could be one data point every 500 years (coarser resolution), or one data 

point every three months (finer resolution). Similarly, the spatial extent of a study could be 

terrestrial Europe, bounded by 30 to 82 degrees latitude and -33 to 67 longitude, and the spatial 

resolution could be one the presence or absence of a species every 50 x 50km (coarser 

resolution), or one data point every 1km2 (finer resolution).  

 

Processes at one scale may feed into patterns at another scale, i.e. there can be mismatches in 

time and space between the ecological forces and their outcomes manifesting as ecological 
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patterns (Sandel & Smith, 2009; Jackson et al., 2001; Chase et al., 2019). This thesis focuses on 

assessing the relative importance of human and climatic factors to patterns at a range of scales, 

from local to global. There is no objectively correct scale at which to study ecological patterns, but 

the scale at which the relationship between a pattern and a factor is studied should be 

ecologically appropriate to that pattern (Catford et al., 2022). Studying factors at different spatial 

and temporal scales is needed to disentangle the multifaceted and complex workings of ecology 

(Estes et al., 2018; Levin, 1992; Sandel & Smith, 2009; Windsor et al., 2022). As I demonstrate in 

chapters three and four, matching the scale at which a pattern is studied to the scale at which 

factors are affecting ecological processes is crucial to our ability to detect the signal of these 

factors, and so to our ability to understand ecological responses to global change, as its drivers - 

climate change, human land use, invasive species - are acting at vastly different scales (Carl et al., 

2016; Newbold, 2018; Powell et al., 2013). I seek to assess and compare the relative explanatory 

power of ecological factors to ecological patterns across scales, in order to provide evidence for 

the importance of those factors (i.e. human land use) and also to better understand ecological 

patterns as we see them. 

1.3 Species’ intrinsic traits  

Globally, the aggregate effect of recent human pressure on ecological systems is negative (Díaz et 

al., 2019; Foley et al., 2007). However, not all species, nor all metrics of ecological health are in 

decline (Dornelas et al., 2014; Leung et al., 2020; McGill et al., 2015), as species differ in their 

responses to ecological forces, including human pressure (Newbold et al., 2018). These differing 

responses are mediated by species intrinsic characteristics – species traits (Funk et al., 2017; 

Lavorel et al., 2002; Violle et al., 2007). 

 

In order to investigate patterns in ecology, in particular species responses to global change, it is 

useful to group species by their intrinsic traits (Díaz et al., 2013, 2016; Fisher et al., 2017; Garnier 

et al., 2007, 2018; Litchman et al., 2013; Mouquet et al., 2015). Characterizing species by their 

intrinsic traits provides a middle ground between low resolution information, i.e. biodiversity is in 

decline, and high resolution information that is resource intensive to gather, i.e. information on 

the individual responses of each genotype within each species. Grouping species in some 

biologically meaningful way allows us to investigate patterns across types of species, i.e. larger, 

slower lived species are less well equipped to cope with increasing anthropogenic presence 

(Fricke et al., 2022; Pires et al., 2015; Sales et al., 2022) and pressure (Carmona et al., 2021; Leung 

et al., 2020; Yackulic et al., 2011), while more generalist (Mabry & Fraterrigo, 2009) and 



 

 
 

5  

opportunistic species (Pecuchet et al., 2017) are better equipped to cope with increased human 

pressure.  

 

Characterisations of species’ intrinsic traits can be considered another dimension of scale (König 

et al., 2019), i.e. resolution (level of detail captured by a classification system) or extent (the 

amount of available trait space covered by species in a study). Further, these characterisations 

themselves exist on a spectrum from high resolution information to high data availability. Higher 

resolution characterisations can provide detailed ecological information, i.e. demographic and life 

history data (Doak & Morris, 2010; Healy et al., 2019; Ramula et al., 2008), but are often hard to 

obtain at broad spatial, temporal or taxonomic extents (Salguero-Gómez et al., 2014). For data 

rich characterisations more information may be available (Kattge & Knöll, 2020; Maitner et al., 

2018; Weigelt et al., 2019) but these traits may provide only general ecological insights i.e. plant 

life form (Smith, 1909), or their interpretation may depend on the ecological context, i.e. 

functional traits (Kelly et al., 2021). While open source data is available at unprecedented 

taxonomic and geographic scales (König et al., 2019), this information varies in resolutions and 

coverage. Trade-offs between data availability and ecological realism must therefore be 

considered when characterising species by their intrinsic traits. 

1.4 Thesis outline 

There are three broad motivations behind this thesis: 

1. to explicitly include human influence in investigations of ecological patterns 

(Table 1) and compare it to other non-human factors affecting ecology;  

2. to investigate these relationships across scales (Table 1), with an explicit 

consideration of how the scale at which a pattern is studied affects the signal 

of its relationship with ecological factors;  

3. where possible, to consider how species’ intrinsic traits (Table 1) interact 

with human pressure to produce divergent outcomes in species in the world 

today.  

Through these approaches I hope to contribute to a more realistic understanding of real world 

patterns in living systems and provide evidence for the unignorable role of human influence as a 

force in ecology. 
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Table 1.1. Overview of the systems, patterns, scales, types of human pressure and intrinsic 
traits studied in this thesis. 

Chapter Study system Pattern Scale Human pressure Intrinsic traits 
2 Terrestrial 

plant species 
Occurrence and 
abundance 

Extent: Global 
Resolution: < 1km2 

Human land use Raunkiaer’s 
plant life form 

3 Terrestrial 
endemic plant 
species 

Metrics of range 
size and 
structure 

Extent: Europe 
Resolution:  
approx. 50 x 50 km 

Human footprint  

4 Marine fish 
communities 

Community 
weighted mean 
traits 

Extent: Celtic-
Biscay Shelf, 
Resolution: 5 x 5km 
up to 250 x 250km 

Fishing pressure Life history 
traits 

5 Terrestrial 
plant 
community 

Biomass and 
biodiversity 
metrics 
 

Extent: approx. 80 x 
22 m 
Resolution: 1 m2  

Nutrient addition 
and traditional 
grazing by large 
herbivores 

 

 

In chapter 2, I explore how Raunkiaer’s plant life form produces divergent responses to human 

land use, and how the relationship between life form occurrence and land use compares to the 

relationship between life form occurrence climate.  

 

In chapter 3, I investigate whether including human pressure along with phylogeny, and past and 

contemporary climate helps to explain variation in spatial patterns of endemic European plant 

species. I compare the effects of human pressure to other variables in the models and explore 

how the scale at which these spatial patterns are studied affects the strength of the signal of 

human pressure.  

 

In chapter 4, I assess whether human pressure along with depth and temperature affect the 

community composition of life history traits in Marine fish. I compare the magnitudes of these 

effects across a series of spatial scales to assess how the signal of human pressure depends on the 

scale at which community is defined.  

 

In chapter 5, I use a small-scale case study to investigate in detail how two human management 

actions interact to affect productivity and diversity in grassland plant communities.  

 

Finally, in chapter 6, I summarise and discuss the findings on the relative importance of human 

pressure as an explanatory variable in ecology, how this relative importance is scale dependant, 

and how understanding this can help us consider the appropriate extrinsic factors at the 

appropriate ecological scales needed to understand how global change is producing divergent 

responses across species’ intrinsic traits. 
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Chapter 2 Human land use is comparable to climate as a driver of global plant occurrence 

and abundance across life forms.  

 
Running title: Human land use drives global biogeography  
 

“Human influences are reshaping plant communities around the world through both extinctions 

and species gains. New work relating biodiversity shifts to rapid changes in climate and land use 

highlights the need for new biogeographic frameworks to understand evolutionary change in the 

Anthropocene.” (Ellis, 2019) 

 

Authors: Caroline M McKeon, Ruth Kelly, Luca Börger, Adriana De Palma, Yvonne M. Buckley 

Author contribution: Research was conceived and designed by CMM, RK, YMB and LB. CMM 

conducted the data analysis and wrote the first draft. RK and YMB provided advice on analyses. 

Data were contributed through TRY, BIEN and Worldclim, and through PREDICTS by LB and AP. 

Results were initially interpreted by CMM with advice from YMB and RK. All authors provided 

intellectual input and edited the MS. 

Status: This manuscript was resubmitted to Ecology Letters in September 2022, and is currently 

under review. 

2.1 Abstract   

Historically, climate has been a dominant driver of global vegetation patterns. Recently, ecological 

understanding has been updated to acknowledge the influence of human land use (the dominant 

driver of biodiversity change) in shaping global vegetation patterns. We combined data from the 

biodiversity and land use database PREDICTS, and plant trait databases TRY and BIEN to test 

whether Raunkiær’s life form, a plant classification system designed to reflect climatic drivers, 

affects how over 4800 species at over 300 sites globally, respond to both land use and climate. 

We provide evidence that human land use is comparable to climate in influencing life form 

occurrence, and that land use produces divergent outcomes across life forms. Combined with 

climatic suitability, land use acts as a filter contracting the niche of trees and expanding the niche 

of disturbance tolerant species. Our results highlight the fundamental role of human activity in 

shaping species’ distribution. 
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2.2 Introduction 

2.2.1 Species’ differing responses 

Globally, biodiversity is in decline (Almond et al., 2020; Díaz et al., 2019). While the global trend is 

clear, not all species respond to anthropogenic pressures in the same way. Extinction risk differs 

across functional traits (Carmona et al., 2021) and land use drives changes in community 

composition (Allan et al., 2015; Maseyk et al., 2017), indicating non-uniform responses of species. 

Conflict in the literature (Eriksson & Hillebrand, 2019; Gonzalez et al., 2016) surrounding the rates 

(Grooten et al., 2018; Le Roux et al., 2019; Leung et al., 2020) and directions (Mentges et al., 

2020) of trends in biodiversity, as well as the scales (Dornelas et al., 2014; Hautier et al., 2018; 

Suggitt et al., 2019) and metrics (Hillebrand et al., 2018; McGill et al., 2015) relevant to their 

measurement, supports differential species’ response. What is it about species that enables some 

to thrive in anthropogenic environments and others to decline? 

 

2.2.2 Drivers of global vegetation patterns 

The leading cause of biodiversity loss and ecosystem change is human land use (Brondizio et al., 

2019; Díaz et al., 2019). Human activities have influenced terrestrial biodiversity for at least 

12,000 years (Ellis et al., 2021). This influence has increased in the last 300 years (Ellis et al., 

2010), and further in the last century (Steffen et al., 2015). Currently, 75% of the earth’s surface is 

subject to anthropogenic land use (Ellis et al., 2010; Ellis & Ramankutty, 2008; Venter et al., 

2016a). Excluding Antarctica, only 5% of land shows no evidence of modification by human 

activity (Kennedy et al., 2019). In addition, the rate of land-use change is accelerating most rapidly 

in areas with highest biodiversity (Venter et al., 2016b). 

 

While the main driver of global vegetation patterns has historically been regarded as climate 

(Whittaker, 1970), how species respond to land use is a determinant of contemporary species 

distributions and their fate in the Anthropocene. Human use of the earth’s terrestrial surface is so 

pervasive that which biological communities occur is a result not only of climate, biotic interaction 

and biogeographic legacy but also to what extent humans use the landscape. We therefore 

consider all types of land use to be human land use, including “primary” vegetation which are 

classed within PREDICTS as ‘forest’ or ‘non-forest’. We use Raunkiær’s Life form, a species trait 

classification established to describe the influence of climate on species distributions, to 

investigate species’ differential responses to land use, and to compare the effects of land use to 

climate in influencing global patterns of vegetation. 
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2.2.3 Life forms  

"The plant itself must be the recorder of the biological value of any climate" – Raunkiær, (Smith, 

1909). 

In the early 20th century Raunkiær devised a plant classification system to capture the correlation 

between climate and vegetation (Smith, 1909). He proposed that the biological value 

(productivity) of a climate could not be accurately measured with physical climate parameters, as 

(a) different parameter values could produce the same vegetation assemblages or (b) parameter 

values could have different outcomes depending on other parameters. Instead he proposed 

biogeographers measure “biological spectra”; the relative abundance of “life forms” (Fig 1) as 

manifestations of the biological value/productivity of climate through statistical analysis of 

biological spectra. 

 
Figure 2.1. Raunkiær’s Life forms.  
Raunkiær classified plant “life forms” based on the location of the plant’s points of regrowth, 
following local climatic bottlenecks. Plants regrow from apical meristems, i.e. buds, bulbs, seeds, 
following climatic bottlenecks least suitable for growth, i.e. the coldest/hottest/driest/flooded 
period. Life forms describe the vertical position of apical meristems (degree of meristem exposure) 
as adaptations to increasingly harsh local climatic bottle-neck conditions. Life forms can be 
subdivided to describe local climate at higher resolutions, but broadly they are characterised as 
phanerophytes (A), chameophytes (B), hemicryptophytes (C), cryptophytes (D) and therophytes (E). 
Phanerophytes (typically trees) have the highest degree of meristem exposure, regrowing from 
aerial buds suspended well above the soil surface. They are adapted to compete for space and light 
in warm, wet climates, but less well positioned to cope with extremes of cold and dry. 
Chameophytes (typically shrubs) afford more protection to their buds, regrowing from just above 
the soil surface. Hemicryptophytes (typically herbs) regrow from roots at or near the soil surface, 
cryptophytes from bulbs below the soil surface, and therophytes solely from seeds, allowing them 
to survive in climates with extremely harsh bottlenecks. Species can exhibit more than one life form. 
 

(Raunkiaer, 1934)

A                         B C D E
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Raunkiær’s analysis showed the relative abundance of life forms could be used to describe 

vegetation assemblage, or “phyto-climates”. Phanerophytes and therophytes declined with 

decreasing temperature, hemicryptophytes showed peak relative abundance in temperate zones, 

and chamaephyte relative abundance increased with falling temperature. Climate had 

precedence over edaphic factors in driving life form relative abundance. However, comparisons 

between a one and eight year old grassland showed that successional stage affected the 

proportions of life forms, highlighting disturbance as the only factor in Raunkiær’s analysis to 

compete with climate as a driver of the biological spectra (Smith, 1909). Life-form is the most 

widely available trait-based classification of plant species, enabling differential species responses 

to climate and land-use to be analysed at a global scale.  

 

2.2.4  Ecological paradigms 

The framework established with Raunkiær’s phyto-climates and biological spectra based on the 

relative abundance of life forms has been developed into terrestrial biomes (i.e. Whittaker, 

(1970)) and further, ecoregions (Olson et al., 2001). However, in light of the obvious and 

increasing human modification of the biosphere (Grooten et al., 2018; Millennium Ecosystem 

Assessment, 2005; Ellis et al., 2010; Le Roux et al., 2019), biodiversity patterns can no longer be 

studied independently of anthropogenic influence (Ellis et al., 2021; Sullivan et al., 2017). 

Recognising land use as an inescapable driver of ecological patterns and processes in the 

Anthropocene, biomes have now been described in terms of the dual filters of climate and human 

land use combined (Ellis & Ramankutty, 2008), though there is still a focus on the role of current 

and future climate (Elsen et al., 2021). We use plant life form to test the differential responses of 

species to drivers of contemporary biogeography: climate and land use. While climate shapes 

where species can occur (species’ fundamental niche), we show how land use is a dominant factor 

in determining where they ultimately do occur (i.e., species’ realised niche). This realised niche 

will also be influenced by other factors including biotic interactions, historic climates and 

dispersal, which are beyond the scope of this analysis. 

 

2.2.5 Aims 

We determine: (a) whether species differ by life form in their response to land use and climate, 

and (b) how land use and climate compare as correlates of life form occurrence and abundance 

(Fig 2). We combine open source databases of plant traits TRY and BIEN (Kattge et al., 2011; 

Maitner et al., 2018), WorldClim climate data (Fick & Hijmans, 2017), and plant population data 

from the PREDICTS global dataset of local biodiversity responses to land-use (Hudson et al., 

2016a) for 4804 species at 323 sites worldwide (Fig A.1). We use frequentist mixed effects models 
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with weighted effects coding to test whether plant species occurrence and abundance differ from 

the data average as a function of the interaction of life form with land use and climate. We then 

compare model effect sizes of climate to climatic differences between biomes and ecoregions to 

assess whether the modelled effects of land use on species occurrence and abundance are 

comparable to observed effects of climate in relation to biogeographic patterns. Given the 

climatic basis of the Raunkiaer life form definition we expect that occurrence of life-forms will be 

influenced strongly by climate, i.e. a strong life form:climate interaction. Given the dramatic 

effect of land use on vegetation we also expect life form to interact with land use to affect 

species’ occurrence and abundance. We hypothesise that life form will affect species’ responses 

to land use and climate, with life forms adapted to be more competitive in productive 

environments (phanerophytes – mostly trees) (Irl et al., 2020) more likely to occur in less 

disturbed land uses (i.e. Primary vegetation or Mature Forest), and life forms adapted to cope 

with patchiness of resources (hemicryptophytes, cryptophytes and, in particular, therophytes 

(annuals)) may be more likely to occur in disturbed land uses (Meers et al., 2008) (i.e. Cropland or 

Urban land uses). We provide quantitative evidence at an unprecedented scale for the 

relationship between life form occurrence and abundance, land use and climate, highlighting how 

these relationships compare to existing climate-based frameworks characterising global patterns 

of potential vegetation. With this work we contribute to a better understanding of the ecological 

impacts of a key component of global change, building on the work of others incorporating 

human activity as a pervasive force integral to our understanding ecological patterns in today’s 

world.  
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Figure 2.2 Hypothesis diagram.  
Raunkiærian life form classifies plant growth strategies in relation to climate. When the 
classification system was devised, the relative abundance of life forms mainly described local 
climate (B). Since then, our understanding of what drives global vegetation assemblages has been 
updated to include human land use (B). Ecology has strong evidence for how life form is structured 
by climate, but not by land use (D), or how the effects of climate and land use on life form compare 
(C). We test whether land use, currently the leading driver of biodiversity change, affects life form 
occurrence and abundance. Additionally, we assess how the relationships between life form and 
land use and life form and climate compare. (D1) null hypothesis = land use and life form do not 
affect species occurrence/abundance; (D2) land use affects species’ occurrence/abundance and 
(D3) the response of species occurrence/abundance to land use differs by life form. (C1) Null 
hypothesis, there is no effect of climate or land use on life form, (C2) the effects of land use and 
climate on life form are comparable in magnitude, (C3) life form occurrence/abundance is more 
divergent in response to land use than to climate. 

2.3 Materials and Methods 

2.3.1 Overview  

We used PREDICTS (Hudson et al., 2016b), a global database of local biodiversity, to assess 

whether plant species’ life form, land use in a study site, and local climate interact to affect local 

plant species’ occurrence and abundance. Data were collected, cleaned and merged from 

different sources and analysed using Generalised linear mixed effects models with weighted 

effects coding in RStudio version 3.6.3 (R Core Team, 2019).  
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2.3.2 Data collection 

Data on plant occurrence and abundance across land uses and site-level species richness were 

extracted from PREDICTS; Raunkiær life form was extracted from TRY and BIEN; and climate data 

was extracted from WorldClim.  

 

The PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) 

database (https://www.nhm.ac.uk/our-science/our-work/biodiversity/predicts.html) gathers 

information from papers with occurrence/abundance records for individual species associated 

with land use, as well as site-level total species diversity. Land uses used in this study were: 

Primary forest, unknown Secondary vegetation, Mature secondary vegetation, Intermediate 

secondary vegetation, Young secondary vegetation, Plantation forest, Primary non-forest, 

Pasture, Cropland, and Urban. PREDICTS assumes space-for-time substitution in order to compare 

species responses across land uses (Hudson et al., 2016b). Importantly, all studies contributing 

data have: (a) spatial comparisons of species occurrence/abundance, (b) standardised 

methodology (meaning sites and species can be compared within study), and (c) motivation for 

recording occurrence/abundance of species at each site, i.e. absence data can be considered as 

“real” zeroes. “Abundance” data analysed in this study comprised non-zero percent cover data. As 

such, these data are a reflection of local dominance when a species is present. Scales at which the 

percent cover data were collected differ between studies, but are comparable within studies. For 

over 94% of our data, source papers’ sampling target was “entire community”, and sampling 

method and effort were comparable within studies. See SI1 for details and Dataset S1 for full list 

of studies. 

 

TRY (Kattge et al., 2011) and BIEN (Botanical Information and Ecology Network) 

(https://bien.nceas.ucsb.edu/bien/) (Maitner et al., 2018) are open access databases containing 

plant trait measurements from which we obtained life form data. WorldClim version 1.4 

(https://www.worldclim.org/data/v1.4/formats.html) is a global climate dataset, from which we 

obtained statistical summaries of climatic variables as static spatial bioclimatic variables at five 

minute resolution, calculated using monthly records for temperature and rainfall from 1970-2000 

(Fick & Hijmans, 2017).  

 

2.3.3 Data handling 

Our final dataset included 4804 species, in 3830 plots at 323 sites, from 73 studies in 41 countries 

across the world. See Appendix Figure A.1 for site locations and Table A.10 for sample sizes for 
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each land use - life form combination. These studies were conducted between 1990 and 2013. For 

details of the data cleaning and amalgamation processes see (see  

https://doi.org/10.5281/zenodo.6376554). Continuous predictor variables were scaled by 

subtracting the mean and dividing by one standard deviation. We calculated average climate 

variable averages for each of 12 Biomes (based on data from Ramankutty and Foley (1999) used 

in Ellis et al., (2010)) and 809 Ecoregions (based on data from (Olson et al., 2001)). We calculated 

the average difference between these values for each climate variable for biomes and ecoregions 

respectively. See  https://doi.org/10.5281/zenodo.6376554 for details. See Appendix Figures A.3 

& A.4 and Tables A.7 & A.8 for biome and ecoregion climate value summaries. 

 

2.3.4 Statistical analysis  

Generalised Linear Mixed Models (GLMMs) were used to assess the effect of life form on species 

response to land use. Terms included in the models can be divided into three groups; (a) 

categorical main effects (land use and life form), (b) continuous main effects (climate) and (c) 

random effects, included to account for the nested structure of the data, i.e. within and between 

group variation in taxonomy, sampling blocks, sites and species. Fixed terms included in the final 

model dataset were; land use, life form, site level species richness and four climate variables; 

mean annual temperature, temperature seasonality (SD), mean annual precipitation, and mean 

annual precipitation seasonality (coefficient of variation). Random terms included in the final 

dataset related to taxonomy (Class, Order, Family, Genus, Species), and data provenance (Source, 

Study, Site, and Block). Occurrence and abundance were modelled independently due to the 

different error structures of the response data. Abundance, based on non-zero percent cover 

data, was logit transformed and scaled, then modelled using a gaussian error distribution using 

the lme4 R package (Bates et al., 2015). The occurrence model (based on presence/absence from 

the full dataset) was modelled using a zero-inflated binomial error distribution from the 

“template model builder” (GlmmTMB) R package (Brooks et al., 2017). 

 

For both occurrence and abundance, random effects structure was established using null models 

containing no fixed effects. All random effects were initially included (Barr et al., 2013), and 

random effects with low attributed variance were removed to prevent issues with model 

convergence. Once the random effect structure had been established, maximal GLMMs were 

fitted including all main effects. Model fixed effects terms were: land use, life form and their 

interaction, climate variables and their interaction with life form, and species richness and its 

interaction with life form. Species richness was included to account for differences in overall 

probabilities of occurrence. When accounting for species richness, we therefore compared, for 

example, primary forest and urban land uses from locations of similar biodiversity, to assess the 
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effects of land use on specific life forms directly. We ran models both with and without species 

richness. Results of models without species richness (see Fig A.6 & Table A.9a and b) show very 

similar patterns to those with species richness, with effect sizes of smaller magnitude, i.e. by 

accounting for species richness, we can see the effects of land use and life form more clearly.  

 

We based the contrasts in our models on weighted effects coding using the “wec” package (te 

Grotenhuis et al., 2017a), which is more appropriate than treatment coding in this case as the 

latter requires a meaningful ‘reference’ factor level (te Grotenhuis et al., 2017b) (while a 

‘reference’ level for land use could be chosen, it is more ambiguous for plant life form). Weighted 

effects coding assesses the difference between factor level means (e.g. land-use classes) and the 

“grand” mean (i.e., the mean of the means of all factor levels), weighted to account for 

differences in sample sizes between factor levels. The grand mean is therefore equivalent to the 

mean of the entire dataset. For weighted effects coding, the interpretation of estimates from 

continuous variables remains the same as in treatment coding i.e. estimates for continuous 

variables describe the estimated change in response variable for every 1 unit change in the 

continuous variable (here 1 SD change, due to scaling of variables). For more details on how we 

applied this method see  https://doi.org/10.5281/zenodo.6376554. DHARMa (Hartig, 2018) was 

used for model diagnostics and ggplot2 (Wickham, 2016) for visualising model outputs. All 

reported models converged, and were deemed of sufficient fit using model diagnostics. All code 

used in this analysis is available from  https://doi.org/10.5281/zenodo.6376554. 

2.4 Results  

Land use, life form and the interaction between them had significant effects on plant species 

occurrence globally (Fig 3A & Tables A.3). Climate also interacted with life form to affect 

occurrence, with temperature variation (MAT variation) having the strongest effect (Fig 3B & 

Tables A.3). With the exception of mean annual temperature variation, the magnitude of effects 

on species’ probability of occurrence associated with land use were comparable with those 

associated with a 1 standard deviation change in climate variables, (Fig 4A & Tables A.5a & b). 

Land use and climate also interact with life form to affect species abundance (Fig 3C & 2D & 

Appendix Table A.4). As with occurrence, the largest effects of land use on abundance are 

comparable to, or larger than, the effects of a 1 standard deviation change in climate (Fig A.3A & 

Appendix Tables A.6a & b). In our dataset, a 1 SD change in most climate variables was 

comparable to the average difference in climate variables between biomes or ecoregions (Fig 5 

and Appendix Tables A.7 & A.8). 
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Figure 2.3. Species occurrence and abundance by land use and life form.  
A) Effects of land use and life form on occurrence. B) Effects of climate and life form on occurrence. 
C) Effects of land use and life form on abundance. D) Effects of climate and life form on abundance. 
In A) and B) Y axis represents log-odds ratio (probability of occurrence) (y axis in panel A represents 
the log odds minus the grand mean). In A) continuous horizontal line shows the centred weighted 
mean log-odds ratio, i.e. average probability of occurrence when at mean values of continuous 
variables, in B) the continuous horizontal line represents zero (no relationship between continuous 
variable and response). In C) and D) Abundance data describes species’ local dominance when 
present. Y axis represents scaled and logit transformed non-zero %cover data. In C) Horizontal line 
shows the weighted mean %cover, i.e. average transformed %cover when continuous variables are 
zero, in D) the horizontal line represents zero (no relationship between continuous variable and 
response). In A) and C) Horizontal line segments show land use means (across all life forms). Circular 
(coloured) points show “population” means, as estimated by the model, of the response variable 
within land uses for each life form. Points lower/higher than the horizontal line indicate that the 
mean probability of occurrence or abundance estimate of that particular land use*life form 
combination is lower/higher than the data average. In B and D) Circular (coloured) points represent 
the slope of relationship (change in log-odds ratio or abundance estimate), associated with 1 SD 
change in climate for each life form. In A-D) vertical lines represent 95% Confidence interval. CIs 
overlapping horizontal lines indicate that the probability of occurrence or abundance estimate is 
not significantly different from average. Total number of observations in occurrence model = 
624,696 for 4804 species, and abundance model = 19,384 for 883 species. Note, abundance data 
for mature secondary forest were not available. 
 
The divergent effects of land use on probability of occurrence within individual life forms (Fig 4D), 

are comparable to the magnitude of the effects of individual climate variables (Fig 4E & 3C, & 

Appendix Tables A.5c & b). For individual model estimates, p-values, biome climate averages and 

climate variable summary statistics, see Appendix Tables A.5 to A.9.  
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Figure 2.4. Comparison of Climate and Land use Occurrence effects.  
In histograms A and D orange bars represent magnitude of land use effects, purple bars represent 
magnitude of climate effects. Panels B, C and E show illustrative effect sizes of land use (primary 
forest, unknown secondary vegetation, mature secondary vegetation, urban), and climate (MAP, 
MAT , MAT var) to enable interpretation of A and D. A -  the distribution of effect sizes for life form 
by land use (dashed orange lines in B), compared to effect of 1 SD change in climate variables 
(dashed purple lines in C). D - the distribution of effect size range within life form across land uses 
(solid orange line in E), compared to effect on life form occurrence of a 1 SD change in climate 
variables (dashed purple lines in C). For a similar figure comparing climate and land use on 
abundance see Fig 2.S5. The largest climate effect sizes were due to Mean Annual Temperature 
Variation (MAT var) shown in panels A & D. 
                                                              

2.4.1 Land use  

Species’ probability of occurrence differs by life form across land uses. Phanerophytes had higher 

probabilities of presence in less disturbed land uses i.e. primary forest, mature, intermediate and 

secondary vegetation, compared to mean probability of occurrence at mean climate and species’ 

richness values (Fig 3A & Appendix Table A.3). Though higher than average, phanerophyte 

probability of occurrence decreases in young secondary vegetation relative to less disturbed land 

uses (Fig 3A, 95% CIs do not overlap with estimates in other non-plantation forest land uses). 

Phanerophytes had lower than average probability of occurrence in more frequently disturbed 

land uses (pasture and cropland) and less productive environments (primary non-forest) (95% CIs 

do not overlap with overall mean). Phanerophyte likelihood of occurrence was not different from 

the overall mean occurrence of species in urban environments (95% CIs overlap with overall 

Difference from average life form occurrence
Divergence of effect within life form across land use

Land use Climate

Land use         Climate

MAT var

MAT var

A B C

D E
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mean). The probability of occurrence of therophytes was higher in more disturbed land uses (Fig 

3A & Table A.3). Therophyte probability of occurrence was lowest in primary forest and highest in 

urban land uses (with 95% CIs far from the overall and land use specific mean occurrences).  

 

The abundance results show some similarities to the occurrence results. Phanerophyte 

abundance when present was higher than the data average in the least disturbed environments 

(Primary forest, Primary non-forest and Intermediate secondary vegetation), and lower in urban 

environments (Fig 3C & Appendix Table A.4). The differences between land uses were more 

pronounced than the differences within land uses for abundance data. Abundance was lower than 

the overall data average for all life forms in Plantation forest, and lower for all life forms except 

therophytes in secondary vegetation of unknown age. Abundance was higher than the data 

average in less disturbed land uses (Primary forest, Primary non-forest and Intermediate 

secondary vegetation).  

 

2.4.2 Climate  

As expected, life forms differed in their responses to climate variables (Fig 3B & 3D & Appendix 

Table A.3-A.4). The effect (slope) of a climate variable is the change in occurrence or abundance 

associated with a change of one standard deviation in that variable. In the occurrence data, there 

was a consistent pattern in the response of life form to increasing precipitation, temperature and 

temperature variation (Fig 3B). Broadly, mean annual precipitation (MAP) and mean annual 

temperature (MAT) have negative or non-significant effects on probability of occurrence (with the 

exception of a small positive effect of temperature on phanerophytes) (Fig 3B). Mean annual 

temperature variation has the largest, negative effect on probability of occurrence across all life 

forms. Mean annual precipitation variation has a small negative effect on phanerophyte 

occurrence, has no effect on chamaephytes and small positive effects on hemi-, crypto- and 

therophyte occurrence. For abundance data, responses to climate are more similar across life 

forms, with some exceptions, mainly for therophytes (Fig 3D & Appendix Table A.4).  

 

2.4.3 Climate - land use comparisons 

Differences from average life form occurrence 

The largest differences from average life form probability of occurrence were associated with 

mean annual temperature variation (Fig 3B & Appendix Tables A.5a-b). For other climate 

variables the effects of particular land uses on life form occurrence and abundance are similar to 

or greater than a 1 SD changes in climate (Fig 4A, Appendix Fig A.5 & Tables A.5a-b & A.6 a-b). 

For example the negative effect of Plantation forest on cryptophyte occurrence (-0.732 Log Odds) 
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is slightly greater than the effect of mean annual temperature (-0.596 Log Odds) on cryptophyte 

occurrence, meaning the difference between average cryptophyte occurrence and cryptophyte 

occurrence in Plantation forest is similar to the effect of a mean temperature difference of 8.14 

degrees C (1 SD MAT), or in terms of biomes between Open Shrubland and Tropical Evergreen 

Woodland biomes (delta 7.93 degrees C) (see Fig 5 & Appendix Tables A.5a-b, A.7 & A.8 for 

comparisons in terms of biomes). 

Range in occurrence within life form across land use 

The differences in probability of occurrence within life forms across land uses are similar to the 

differences in probability of occurrence associated with a one SD change in mean annual 

temperature variation (Fig 4D). For cryptophytes, the difference between the land uses with 

highest and lowest probability of occurrence (D1.01 Log Odds) is comparable to the effect of a 1 

SD change in mean annual temperature variation (D1.04 Log Odds) (Fig 4D & Appendix Tables 

A.5b-c, A.7 & A.8). For phanerophytes, the decrease in probability of occurrence between Mature 

secondary vegetation and Cropland (D0.82 Log Odds) is slightly greater than the negative effect of 

mean annual temperature variation (D0.69 Log Odds) (1 SD MAT_var = 23.84 degrees C), i.e. 

difference in phanerophyte occurrence between Mature secondary vegetation and Cropland is 

slightly greater than the difference in occurrence associated with the change in temperature 

variation between Open Shrubland and Savanna biomes (delta 25.8 degrees C) (Fig 4D & 

Appendix Tables A.5c, A.7 & A.8). 

 
Figure 2.5. Climate variable effect size in real world terms.  

A Climate data used in model

B Differences between biome averages

C Differences between ecoregion averages

MAP MAT MAP  var MAT  var
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Comparison of standard deviations of climate variables used in our models to differences between 
real world classifications of climate-based vegetation assemblages. Grey histograms represent A) 
climate variable data used in occurrence models, and differences between climate variable 
averages in B) biomes, and C) ecoregions. Purple lines represent A) +/- one standard deviation of a 
particular climate variable in the model data, or B) and C) magnitude of sd in model data. Solid black 
lines represent the mean value of each histogram (i.e. mean difference between average 
temperature in biomes), dashed black lines represent median value of each histogram (i.e. median 
difference between average rainfall in ecoregions). Biomes based on Ramankutty & Foley (1999) 
from Ellis et al. (2010), ecoregions based on Olson et al. (2001). 

2.5 Discussion 

Here we show for the first time at a global scale, life form occurrence and abundance between 

and within land uses is comparable to, and sometimes greater than, differences between biomes 

or ecoregions. Land use has a divergent effect on life form occurrence comparable to the effect of 

climate, with particular life forms more strongly affected than others by land use. The productivity 

of environments is driven mainly by climate, but which species succeed in them is also a result of 

land use. This means that humans are in direct competition with plant species for highly 

productive environments, and we find that species that have historically dominated these 

climates are the least able to cope with human disturbance, i.e. human pressure in highly 

productive climates leads to deforestation driving a lack of phanerophytes in these areas. Human 

land use is acting as a filter, expanding the realised niche of disturbance tolerant life forms and 

contracting the realised niche of others. Land use change is comparable in strength to a 1 SD 

change in temperature, rainfall and rainfall variation as a driver of plant life form occurrence and 

abundance. Life forms adapted to competition for resources in highly productive environments 

(i.e. phanerophytes, mostly trees) are more likely to occur, and to be locally abundant, in less 

disturbed, more productive land uses. Conversely, more disturbance adapted life forms (i.e. 

therophytes, typically annuals) are more likely to occur in more disturbed and intensive land uses. 

 

Individually, both land use and climate are expected to have a strong influence on species 

occurrence and abundance (Huang et al., 2021; Allan et al., 2015; de Chazal & Rounsevell, 2009; 

Thuiller et al., 2006; Smith, 1909). In our models, the effect size of land uses were typically similar 

to, or greater than, the effect sizes of climate (the exception being the effects of temperature 

variation, the strongest environmental driver of global vegetation patterns (Huang et al., 2021)). A 

one standard deviation difference in climate variables is broadly equivalent to the average 

differences in climate between ecoregions (Fig 5 & S.3) or Biomes (Appendix Fig A.4 & A.5 & 

Table A.8). We show that land use is, at least, comparable to climate in driving distribution 

patterns in plant life form. The divergent effect of land use on life forms (i.e. the difference in 

probability of occurrence between trees in Primary forest and Cropland) is comparable to the 



 

 
 

21  

probability of occurrence associated with a 1 SD change in climate. Land use therefore acts as an 

additional filter, determining successful and unsuccessful types of species in the Anthropocene. 

 

Intensification of human land use is not uniform across different biomes. Human pressure is 

tightly correlated with biologically productive environments, e.g. “93.8% of the variation in 

average footprint values is explained by agricultural suitability [based on climate and soil factors] 

alone (linear model, t-value= 38.77, P<0.001)”(Venter et al., 2016a). Forest biomes (temperate 

broadleaf and mixed forests, tropical and sub-tropical dry broadleaf forests, Mediterranean 

forests, woodlands, and scrub, and mangroves) are the most highly impacted by human 

modification, while less productive biomes (tundra, boreal forest and taiga and desert and xeric 

shrubland) have the lowest levels of modification (Kennedy et al., 2019; Venter et al., 2016a). 

Human land use is increasing in intensity in productive climates (Kennedy et al., 2019; Venter et 

al., 2016a) such that “wild” habitats are now mainly in the coldest and driest, least productive, of 

earth’s biomes (Ellis et al., 2010). Concerningly, productive environments, in particular primary 

forest, support a disproportionate amount of the world’s existing biodiversity (Mannion et al., 

2013; Willig et al., 2003; Barlow et al., 2007; Newbold et al., 2015; Shvidenko et al., 2005), with 

less than 3% of the biodiversity hotspots showing no human pressure (Venter et al., 2016).  

 

From phyto-climates through biomes to ecoregions, ecologists have developed an understanding 

of how climate interacts with species intrinsic characteristics to produce vegetation assemblages. 

This understanding has been updated to consider how human land use changes climate based 

models. We contribute a more explicit understanding of which types of species are increasing and 

which are declining in today’s climate and land use driven assemblages. Trees, and to a lesser 

extent shrubs, are constrained by climate and land use. Hemicryptophytes and cryptophytes, 

neither very competitive in productive environments nor consistently successful in disturbed 

environments, are also less likely to occur in regions with high temperature variation. 

Therophytes, adapted for the necessary opportunism of less productive climates may experience 

competitive release for light under human disturbance which eliminates taller species.  

 

Phanerophytes were expected to have the highest relative abundance in climates with mild 

climatic bottle-necks (Raunkiaer, 1934; Smith, 1909), where there is a weaker trade-off between 

competing for light and shielding buds from periods of harsh climate. In productive habitats, 

phanerophyte occurrence is high, but decreases with increasing disturbance. Human disturbance 

makes phanerophytes less likely to occur, i.e. land use is contracting phanerophytes’ realised 

niche. Therophytes, (and to a lesser extent hemicryptophytes and cryptophytes), are adapted to 

patchiness of resources (conditions suitable for growth and reproduction). These life forms 
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historically had their highest relative abundances in climates unsuited to phanerophytes and 

species with strategies adapted to resource patchiness are able to take advantage of human 

disturbance. Therophytes had the largest range in probability of occurrence, indicating that 

human disturbance expands habitat suitable for therophytes. 

 

Life forms differ in their occurrence depending on climate. Unsurprisingly, precipitation variation 

is positively associated with more disturbance tolerant life forms, hemi-, crypto- and thero- 

phytes, and negatively associated with phanerophytes. For precipitation, temperature and 

temperature variation, the pattern across life forms indicates that hemicryptophytes and 

cryptophytes have the strongest negative relationships with those climate variables. Higher 

precipitation and temperature occur in productive climates, where disturbance adapted life forms 

are not as competitive. The stronger negative effect of temperature variation on these life forms 

may reflect the length of hemi- and cryptophyte life cycles. Phanerophytes and chamaephytes, 

typically trees and shrubs, can live for multiple years, and may be adapted to cope with annual 

variation, while therophyte life cycles avoid unfavourable periods of annual temperature and 

moisture availability. Perennial herbs and grasses, falling in the middle of this spectrum, may be 

more vulnerable to intra-annual variation given their relatively short life cycle. A disproportionate 

increase in intra-annual climate variability is projected in more productive habitats (i.e. the 

Amazon) (Bathiany et al., 2018). With phanerophytes unsuited to disturbance and hemi- and 

cryptophytes unsuited to increased variability, therophytes may be best positioned to cope with 

the dual filters of land use and climate.  

 

We show that life form affects species response to land use and provide strong evidence for land 

use as comparable to climate in moulding species’ realised niche and creating the vegetation 

assemblages that contribute to the broad patterns of terrestrial life on Earth. However, explicitly 

testing the interaction between climate and land use, i.e. the effects of life form within land use 

and climatic contexts in a three-way interaction, was outside the scope of the data available for 

this study, as five life forms interacting with ten land uses and four climate variables would have 

resulted in 200 additional model terms. If data from primary forests comes mainly from the 

tropics, and mature secondary vegetation from temperate zones for example, or if higher 

temperature data comes from the tropics (rather than savanna/desert), this influences the life 

form occurrence within those land uses. Further research with an expanded dataset is needed on 

how life form is affected by land use compared to, and within climate. Land use intensity was not 

included in this study. We account for spatial autocorrelation through our random effects, i.e. 

accounting for variance associated with data within individual studies. Locations of biodiversity 

samples within studies were all within the same region, and in all except three studies, within the 
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same biome. The median maximum distance between sites within a study was 24km and the 

mean was 80km. For further information on distances between sites within studies see Appendix 

Figures A.8-11. 

 

The effects of temperature in our occurrence model are associated with a change of over eight 

degrees Celsius, a magnitude which exceeds maximum global temperature changes projected in 

IPCC scenarios for the rest of the twenty first century (Masson- Delmotte et al., 2021). However, it 

is not meaningful to extrapolate species responses to future climate conditions based on patterns 

observed here. Effects associated with temperature in our models describe changes in probability 

of occurrence in comparison to the mean temperature, so our results describe increases in tree 

occurrence observed when moving (for example) from temperate to tropical climates, i.e. the 

current relationship between temperature and occurrence. An increase of temperature in 

temperate zones to that of temperature in a rainforest is not likely to produce an equivalent 

increase in tree species occurrence, as vegetation in both areas are also a product of current and 

historic land use, along with other historic and evolutionary factors.  

 

This study used some of the largest available datasets of species occurrence/abundance, traits 

(life form) and human land use, and yet coverage remains patchy, and highly correlated with 

areas of intensive, historical human activity. These biases are present across data collections, both 

ecological (Boakes et al., 2010; Dennis & Thomas, 2000; Pyšek et al., 2008) and otherwise (Arora, 

2016), but must be addressed. In this study alone a broader range of site locations, particularly 

towards the colder climates may have enabled us to detect clearer patterns in chamaephyte 

occurrence and abundance. Abundance data reflected local dominance when present (see 

methods), rather than the habitat or landscape level relative abundance (i.e. commonness). 

Future work should use relative abundance data at a broader scale, capable of reflecting the 

vegetation composition of sampling sites or ecoregions rather than smaller scale transects and 

quadrats. 

 

While Raunkiærian life form data are readily available, ecologically informative multi-dimensional 

trait data (Bohn et al., 2014; Funk et al., 2017; Herron et al., 2007; Lavorel et al., 2002) and 

demographic data (Hemrová et al., 2017; Ramula et al., 2008; Salguero-Gomez et al., 2016) are 

sparser (Kelly et al., 2021; Kattge & Knöll, 2020; Coutts et al., 2016; Salguero-Gómez et al., 2014). 

A unique advantage of life form is its relationship with climate, enabling a strong test of 

differences between land use and climate as drivers of biodiversity patterns. We show that life 

form is a useful lens through which to view biodiversity changes due to both climate and land use, 
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including in future scenarios generated with dynamic vegetation model; however, expanded 

multi-dimensional trait datasets will undoubtedly prove useful in future analyses. 

 

The most productive terrestrial habitats were historically characterised by high relative 

abundance of phanerophytes; life forms adapted to compete for light and space in climatically 

mild, undisturbed environments. Species that compete best in productive environments are now 

most adversely affected by human disturbance, while species that are adapted to less productive 

habitats are increasing. As human activity rapidly expands into productive environments, we 

constrain the area of suitable niche space for phanerophytes (trees), while expanding the area of 

suitable niche space for more disturbance tolerant species (annuals). Ecological understanding of 

the drivers of vegetation patterns has developed immensely since Raunkiær’s life forms were first 

described. “Phyto-climates” have been refined into biomes, and ecoregions, and these climate-

based frameworks have been updated to include the influence of human land use. Our work 

contributes to an emerging understanding of species divergent responses to the forces currently 

shaping their realised niches. 

 

We provide for the first time and at a global scale, evidence for the effect of ten dominant 

categories of land use on all major plant life forms. This work formalises our understanding of 

which species are most vulnerable to the dominant force of global change. Land use changes 

towards more intensive use (i.e. away from primary or mature vegetation) in productive 

environments disproportionately affecting large, relatively long lived species (e.g. 

phanerophytes). Further, we show how human land use is associated with more divergent 

outcomes in species occurrence across life forms than climate, highlighting the disproportionately 

negative potential outcomes on species vulnerable to land use change. Climate change and its 

impact on species rightly receives huge research interest and investment. By providing 

quantitative evidence for both the obvious and surprising impacts of land use on occurrence of 

different life forms, and by showing how this impact can be considered comparable to the 

impacts of current climate, this work highlights land use as a key driver of species biogeographic 

distributions. 
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Chapter 3 Human footprint in addition to climate drives spatial patterns in European 

plants 

 

Authors: Caroline M. McKeon, Anna M. Csergő, Ruth Kelly, Yvonne M Buckley 

Author contribution: Research was conceived and designed by CMM, AMC and YMB. AMC 

provided data on species’ spatial patterns. CMM obtained further data, conducted the data 

analysis and wrote the first draft. RK and YMB provided advice on analyses. Results were initially 

interpreted by CMM with advice from YMB, AMC and RK. All authors provided intellectual input 

and edited the MS. 

3.1 Abstract 

At broad spatial scales, species’ occurrence through space has been shown to be driven by past 

and contemporary climate. However, global vegetation patterns reflect not only climate, but 

anthropogenic influence. We test how climate and human footprint influence six different metrics 

of spatial range patterning in 650 endemic European plant species. We find that climate and 

human footprint both correlate with measures of range size and range division, and that including 

human footprint in addition to climate improves our understanding of some dimensions of 

species’ spatial patterns. The velocity of past climate change, mean annual temperature and 

mean human footprint had the strongest relationships with range size respectively. The relative 

importance of these variables was different for metrics of range division. Despite a weak positive 

correlation between them, mean annual temperature variation and human footprint had 

opposing relationships with range size, implying that climate and anthropogenic influence may 

influence species’ spatial patterns through different mechanisms. We suggest the relatively low 

importance of human influence on species spatial pattern relates to the spatial resolution of data 

underpinning our spatial pattern metrics. Our results support the growing evidence that we 

cannot understand ecological patterns and the mechanisms behind them without acknowledging 

the influence of terrestrial anthropogenic activity.   

3.2 Introduction 

Fundamental research questions in ecology centre on the question of the relative influence of 

climatic (contemporary or past) over phylogenetic legacy, dispersal, biotic interaction and land 

area in driving species range distributions (Brown, 1984; Gaston, 2003; Morueta-Holme et al., 

2013; Sheth et al., 2020). Given the acknowledged role that past and present climate plays in 
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species distributions, and facing evidence that human activity is comparable to climate in 

affecting patterns of global vegetation (Ellis & Ramankutty, 2008), anthropogenic influence should 

be considered in analyses of how species’ ranges are distributed in space. Indeed, both climate 

and anthropogenic influence have been jointly considered in relation to; the size of individuals 

(Fan et al., 2020), spatial patterning and extinction risk in mammals (Yackulic et al., 2011), the 

contemporary and projected range of invasive aquatic plants (Kelly, Leach, et al., 2014), the 

expansion of invasive range edges (Lembrechts et al., 2016), forest composition (Danneyrolles et 

al., 2019) or, more generally; in birds (Stevens & Conway, 2020) or at small spatial scales 

(Machado & Oliveira-Filho, 2010). However, to our knowledge, climate and anthropogenic 

influence have not been directly assessed together as correlates of plant species spatial 

distribution across their ranges. Given the influence of human terrestrial activity in shaping 

contemporary ecosystems  

(Brondizio et al., 2019; Díaz et al., 2019; Morris et al., 2020), we argue that species broad scale 

spatial patterns cannot be understood through the extrinsic lens of climate and phylogeny alone. 

We test whether explicitly including anthropogenic influence improves our understanding of 

species’ patterning through space.  

 

The scale at which spatial pattern is studied is relevant to which ecological patterns or processes 

are under investigation (Carl et al., 2016; Chase, 2014; Levin, 1992; Sandel & Smith, 2009; 

Sporbert et al., 2021; Whittaker et al., 2001), so various metrics exist describing species’ patterns 

in space at different scales. At broad scale i.e. scales encompassing all instances of species 

occurrences, a commonly used metric of spatial pattern is species range size (Estrada et al., 2015; 

Gaston, 2003; Gaston & Fuller, 2009; Sheth et al., 2020). Range size can be defined as the 

minimum convex polygon around occupied habitat grid cells (Extent of Occurrence) or the sum of 

the area of all occupied habitat patches (area of occupancy) (Gaston & Fuller, 2009; Csergő et al., 

2020). Species’ range size has been linked to trends over large spatial and temporal scales 

(Svenning & Skov, 2004). Range size has been linked to extrinsic and intrinsic factors (Estrada et 

al., 2015; Sheth et al., 2020; Svenning & Skov, 2004), and describes an important dimension of 

species’ vulnerability to change (Mace et al., 2008). Through species’ intrinsic traits, range size has 

been linked to species’ ability to track climate change (Estrada et al., 2015, 2016, 2018), and in an 

absolute sense, the smaller a species range, the more vulnerable it is to stochastic extinction 

(Gaston, 2003; Staude et al., 2020). However, range size may be largely decoupled from other 

metrics of range structure (Csergő et al., 2020) and does not necessarily relate to rarity 

(Rabinowitz, 1981) or fragmentation (Hanski et al., 2013) within the range. A lack of knowledge on 

drivers of range structure limits our understanding of how processes affecting spatial patterns 

operate on species at smaller scales, i.e. human land use (Carl et al., 2016; Newbold, 2018). When 
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assessing how anthropogenic influence might improve our understanding of species patterns in 

space, it is therefore important to consider not only range size, but also range structure.  

 

3.2.1 Realised niche as spatial pattern 

Species’ realised niches manifest as patterns of occurrence and abundance through space (Colwell 

& Rangel, 2009). Species’ niches, and therefore species’ spatial patterns, are shaped by 

combinations of intrinsic and extrinsic factors (Gaston, 2003; Kelly, Leach, et al., 2014; Urban et 

al., 2020; Wisz et al., 2013). Spatial pattern describes anything from occurrence on continents to 

regional abundance to local density within a quadrat, and the relative importance of various 

intrinsic and extrinsic factors may differ across these spatial scales (Sporbert et al., 2021; Pulliam, 

2000; Thomas & Kunin, 1999; Riibak et al., 2020; Carl et al., 2016; Levin, 1992). For example, at 

small spatial scales, mutualisms or competition might be the main drivers of plant local 

abundance (Gurevitch et al., 2016). At slightly larger scales, reproductive strategy might be more 

relevant to species’ ability to colonise new areas or recolonise patches within their range (Baker, 

1955; Laenen et al., 2015). At continental or global scales, niche breadth (range of external 

conditions a species can tolerate), and intrinsic ability to disperse and establish, (Estrada et al., 

2015; Sheth et al., 2020), biogeographic barriers, past climate change velocity and present climate 

have been shown as key factors in shaping spatial patterns (Huang et al., 2021; Morueta-Holme et 

al., 2013; Sandel et al., 2011; Svenning & Skov, 2004). Differences in these patterns and the 

drivers behind them are of interest both theoretically, and from a management and conservation 

perspective (Gaston, 2003; Gaston & Fuller, 2009; Sheth et al., 2020); ecologists are interested in 

understanding the evolutionary and ecological processes behind spatial patterns (Sandel et al., 

2011; Svenning & Skov, 2007; Urban et al., 2020), and in using spatial patterns to determine 

species vulnerability to anthropogenic pressure (Foden et al., 2013, 2019; Thomas et al., 2004).  

 

3.2.2 Extrinsic drivers of large scale spatial scales 

One of the most important drivers of species’ large scale spatial patterns is climate (Huang et al., 

2021; Lee-Yaw et al., 2016; Li et al., 2016; Liang et al., 2021; Morueta-Holme et al., 2013; Thomas, 

2010; Yu et al., 2017). We distinguish between contemporary climate - stable conditions which 

determine contemporary persistence, and past climate - the temporal development of climate 

which has shaped the longer term range-wide dynamics. Climate in Europe has been relatively 

stable for the past 1000 years (Osman et al., 2021), following warming since the Last Glacial 

Maximum (LGM) approximately 19000 years ago (Clark et al., 2009; Gowan et al., 2021). Here, we 

consider “past” climate as referring to conditions between the LGM and the mid 20th century, and 
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“contemporary” climate to describe the period between 1970 and 2000; the temporal range used 

to calculate Worldclim’s bioclimatic variables (Fick & Hijmans, 2017).  

 

Range size has been shown to be determined primarily by the legacy of past climate (specifically 

past climate change velocity) and contemporary climate (climate variability) in approx. 85 000 

New World plants (Morueta-Holme et al., 2013). In analyses of whether range filling was driven 

by contemporary or past climate, Svenning and Skov (2004) found that the legacy of the LGM 

accounts at least in part for the spatial patterning of European tree species, and that post-glacial 

dispersal limitation in large part drives patterns of tree diversity in Europe (Svenning & Skov, 

2007). Further, freezing resistance (ability to tolerate temperature minima) is shown to be related 

to range size in north Mexican trees and shrubs (Pither, 2003).  

 

In light of worsening global climate change, in particular, forecasts of increasing temperature 

variability (Masson- Delmotte et al., 2021), there is naturally huge interest in species’ responses 

to ongoing and imminent changes in global climate (Corlett & Westcott, 2013; Elsen et al., 2021; 

Huntley et al., 2021; Malhi et al., 2020; Weiskopf et al., 2020). Specifically, many studies have 

looked at how changes in climate will affect species through space (Beyer & Manica, 2020; Chen 

et al., 2011; S. Dullinger et al., 2012; Early & Sax, 2011; Estrada et al., 2018; Foden et al., 2013; 

Lenoir & Svenning, 2015; Lynn et al., 2021; MacLean & Beissinger, 2017; Mason et al., 2015; 

McCarty, 2001; Thomas et al., 2004; Warren et al., 2013; Weiskopf et al., 2020). However, climate 

change is not the only, or even currently the most pressing, driver of biodiversity loss (Almond et 

al., 2020; Díaz et al., 2019; Kennedy et al., 2019; Newbold, 2018).  

 

Evidence is now consolidating for how anthropogenic influence rivals climate as a driver of 

species patterns, both globally (Ellis, 2019; Ellis & Ramankutty, 2008; Newbold, 2018, Chapter 2) 

and at smaller spatial scales. Anthropogenic influence has been shown to be of similar magnitude 

to biotic and climate factors in influencing global plant population dynamics (Morris et al., 2020), 

and global patterns in occurrence of life forms (Chapter 2), and direct anthropogenic influence 

has been shown to be more important than climate to long term compositional changes in 

northern forests (Danneyrolles et al., 2019). Species occurrence through space is expected to be 

related to human presence in Europe, with this relationship moderated by endemism and species’ 

range size (Araújo, 2003). Land use and climate are expected to interact in their effects on species 

dynamics (Lembrechts et al., 2016; Platts et al., 2019; Williams et al., 2021; Williams & Newbold, 

2021), and it is further evident that past human activity has been shaping biomes for thousands of 

years (Ellis et al., 2021).  
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Europe has been and continues to be subject to extensive human land use (Thompson, 1994), 

with up to 80% of its terrestrial surface currently human dominated (Kennedy et al., 2019; Venter 

et al., 2016). We hypothesised that rather than viewing spatial pattern purely through the lens of 

non-human factors, explicitly including anthropogenic activity as an extrinsic ecological factor will 

improve our understanding of biogeographic range patterns in endemic European plants. 

 

3.2.3 Different dimensions of spatial patterns 

Focusing on descriptors of broad scale patterns of occurrence (approx. 50 x 50km resolution), we 

look at six metrics of species spatial patterns describing the size, division and patch irregularity of 

species’ ranges in Europe (Figure 3.1.)  

 
Figure 3.1. Range metrics used in this study.  
We use two metrics related to range size – occupied area and geographic range size, and four 
related to range structure. Range structure metrics either relate to measures of range division 
(patch size distribution and geographic range filling), or to measures of patch irregularity (patch 
shape complexity and geographic range fractality). Range metrics were calculated based on Atlas 
of Florae Europaeae species’ occurrences at approx.. 50 x 50 km grid cell resolution. Further 
descriptions of how each metric was calculated can be found in Csergő et al. (2020) Supplementary 
material. 
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3.2.4 Aims  

There is evidence of a relationship between climate and range size. Does including anthropogenic 

influence as an extrinsic factor affecting species’ niche improve our understanding of species’ 

spatial patterns? 

 

Within our data, we test whether: 

- Including human footprint along with climate and phylogeny improves our understanding 

of drivers of range size, division and patch irregularity 

- Climate and human footprint effects vary across different dimensions of species spatial 

patterning, i.e. range size, division and patch irregularity. 

We assessed these questions using; a) comparison of the explanatory power of models through 

DIC and Bayesian R2, and b) comparison of effect sizes of model terms. 

 

It is expected that contemporary and past climate change relate to species range size and 

occupied area in Europe (Estrada et al., 2015; Csergő et al., 2020; Svenning & Skov, 2004), and 

that explicitly including human footprint improves understanding of ecological patterns (Seiferling 

et al., 2014). Given the levels of past and present human activity in Europe (Ellis et al., 2010, 2021; 

Ellis & Ramankutty, 2008; Kennedy et al., 2019; Tallavaara et al., 2015; Venter et al., 2016), and 

the link between anthropogenic influence and changes in the biotic environment (Araújo, 2003; 

Díaz et al., 2019; IPBES, 2019; Newbold et al., 2015), in particular to species ranges (Sales et al., 

2022), we expect that including human influence will improve climate-and-phylogeny-based 

models of species’ spatial patterns. As anthropogenic pressure acts at finer spatial resolutions 

than climate (Carl et al., 2016), we expect that human footprint will be more relevant to spatial 

patterning within the range (metrics of range structure) compared to range size.  

3.3 Methods 

We modelled two measures of each of range size, range division and patch irregularity (Figure 

3.1.) as a function of human footprint, climate and their interaction for endemic European plant 

species. Range size and structure data was available for 691 European endemic species from 

Csergo et al. (2020). Contemporary climate data was obtained from bioclim (Fick & Hijmans, 2017) 

and data from Sandel et al. (2011) was used to describe past climate change velocity. Human 

footprint data was collected from SEDAC (Venter et al., 2018) and phylogenetic data was obtained 

from Smith et al. (2018). Data were cleaned and merged prior to analysis (see 

https://github.com/cmmckeon/STR_tr8). Data cleaning involved matching species names 

between range metric dataset and phylogeny, creating raster of occurrences for each species, and 
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obtaining average covariate values where each species occurred. Analysis was then carried out on 

a subset of species for which phylogenetic data was available, using Bayesian linear models in R 

version 3.6.3 (R Core Team, 2020). 

 

3.3.1 Climate data 

To describe contemporary climate, we used four variables; mean annual temperature, mean 

annual temperature variation (SD*100), mean annual precipitation and mean annual precipitation 

variation (coefficient of variation). These data came from global climate dataset WorldClim 

version 2.1 (https://www.worldclim.org/data/v1.4/formats.html) from which we obtained 

statistical summaries of climatic variables as static spatial bioclimatic variables at 30 second 

resolution (approx. 1km2), calculated using monthly records for temperature and rainfall from 

1970-2000 (Fick & Hijmans, 2017). To describe past climate we used climate change velocity data 

from (Sandel et al., 2011), which describes “the local average displacement rate of mean annual 

temperature since the Last Glacial Maximum”, available at 24.122 km resolution.  

 

3.3.2 Human footprint 

SEDAC (Socioeconomic Data and Applications Center) (https://sedac.ciesin.columbia.edu) aims to 

facilitate interdisciplinary work between earth and social sciences by creating data products 

centring around human interaction with the environment. SEDAC’s data products include “human 

footprint value”, a metric comprised of the sum of eight variables weighted by relative levels of 

human pressure (Sanderson et al., 2002): extent of built environments, crop land, pasture land, 

human population density, night-time lights, railways, roads; and navigable waterways (Venter 

2016). This metric describes “cumulative human pressure on the environment” (Venter 2018).  

 

3.3.3 Phylogeny 

Of the 827 species in the Csergő et al. (2020) data set, 304 were identified to subspecies; this level 

of detail was not available in our phylogenetic data. Retaining only the binomial species 

identification reduced the dataset to 691 species. We created a phylogenetic tree for 570 of these 

species using the phylogeny from Smith et al. (2018). A further 80 species from our dataset were 

added into this phylogeny at random points on branches of matching genera using r package 

phytools (Revell, 2012), creating a tree with a maximum of 650 species (for further details see 

https://github.com/cmmckeon/STR_tr8).  

3.3.4 Collinearity  

Environmental variables, in particular climate variables, are often colinear, which is sometimes 

considered a problem in ecology (Dormann et al., 2013), therefore colinear terms are sometimes 
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excluded from analysis (e.g. (Pecuchet et al., 2017)). Issues arise from collinearity when 

collinearity is extreme, when the focus of the modelling effort is prediction into other datasets 

with different collinearity structures (Dormann et al., 2013), or when sample size is small, as 

collinearity reduces the amount of information available to the model (Morrissey & Ruxton, 

2018). Multiple regression provides informative estimates of the direct relationship between each 

co-variate and the response. i.e. what change in response can be expected with a one standard 

deviation change in a particular variable when all other variables are held constant at their mean 

(Morrissey & Ruxton, 2018). Retaining relevant variables in analyses which are not intended for 

prediction, with large sample size and collinearity of less than 70% is therefore preferable to 

excluding co-linear covariates (Morrissey & Ruxton, 2018). As the above issues do not apply to our 

analysis, we do not exclude any covariates on the basis of collinearity. 

 

3.3.5 Data handling 

For all 50 x 50 km grid cells occupied by each species, we calculated the mean value for human 

footprint, and each of our five climate variables. After data were cleaned and compiled, all 

variables were a) log transformed to address kurtosis where appropriate, and b) scaled (mean 

centred and divided by one standard deviation). Scaling ensures that the slopes of relationships 

directly represent correlation between continuous variables. 

 

3.3.6 Statistical analysis    

We used phylogenetically corrected Bayesian linear mixed models (Hadfield, 2010; Guillerme & 

Healy, 2014) to investigate the relationship between human footprint, climate and species’ range 

metrics. We ran six sets of six models of varying complexity (Table 3.1) , investigating the 

relationship between each range metric and; 

 

1) An intercept of 1 (null model) 

2) All contemporary climate variables in interaction (two, three and four way interactions) 

3) Human footprint value 

4) All contemporary climate variables, human footprint value and all interactions (up to five 

way interaction) 

5) All contemporary climate variables and past climate change velocity and all interactions 

(up to five way interaction) 

6) All climate variables (contemporary and past climate change velocity), human footprint 

value and all interactions (up to six way interaction) 

 



 

 
 

33  

 
Table 3.1. Descriptions of sets of models.  
Each of the six range metrics was used as a response variable in a set of the six models described 
below. Response = one of the six range metrics: occupied area, geographic range size, patch size 
distribution, geographic range filling, patch shape complexity or geographic range fractality. Hf = 
human footprint, map(_var) = mean annual precipitation (variation), mat(_var) = mean annual 
precipitation (variation), vel = past climate change velocity. All models include phylogeny as a 
random effect. 
Type of model Model formula Description of model terms 
Null model response ~ 1 An intercept of 1 (null model) 
Human footprint 
model 

response ~ hf  Human footprint value 

 
Contemporary 
climate model 

response ~ map * 
mat * map_var * 
mat_var 

All contemporary climate variables in interaction 
(two, three and four way interactions) 

Contemporary 
climate and human 
footprint model 

response ~ hf * map 
* mat * map_var * 
mat_var 

All contemporary climate variables, human 
footprint value and all interactions (up to five 
way interaction) 

All climate model response ~ vel * map 
* mat * map_var * 
mat_var 

All contemporary climate variables and past 
climate change velocity and all interactions (up to 
five way interaction) 

Maximal model response ~ vel * hf * 
map * mat * 
map_var * mat_var 

All climate variables (contemporary and past 
climate change velocity), human footprint value 
and all interactions (up to six way interaction) 

 

Five sets of models converged and were deemed of sufficient fit based on model diagnostics using 

CODA (Plummer et al., 2006), models with geographic range fractality as a response did not have 

satisfactory diagnostics (this model had a smaller sample size due to missing data). Diagnostic 

checks included visual inspection of trace plots, plotting autocorrelation within the chains, 

comparing duplicate models using the Gelman and Rubin Multiple Sequence Diagnostic to check 

for convergence, plotting scatter plot matrices to check that parameters where not confounded, 

calculating measures of the phylogenetic signal in the models, and plotting histograms to check 

for the amount of variance explained by the random effects. Parameter expanded priors were 

used to improve the estimation of phylogenetic signal (Hadfield, 2010). All code used in this 

project is available from https://github.com/cmmckeon/STR_tr8.  

 

Results were evaluated in two phases. Firstly, we used Deviance information criteria (DIC) to 

determine which of our models best explained the data. Comparisons with the null model allowed 

us to assess whether our models were explaining the data in any absolute sense. Fit for the best 

models was then further evaluated using Bayesian R2 (Nakagawa & Schielzeth, 2013; Mac Nally et 

al., 2018). Effect sizes were assessed in the best performing models to infer the direction and 

magnitude of the relationship between the joint effects of climate and human footprint on 

species range size, division and patch irregularity. 
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3.4 Results  

Human footprint and climate were both correlated with the spatial patterning of endemic 

European plant species. Including human footprint and climate, rather than evaluating either of 

these factors alone, improved models of range size and range division for the metrics: geographic 

range size, patch size distribution and geographic range filling (Figure 3.2). Climate and human 

footprint showed little relationship with metrics of patch irregularity. 

 

 
Figure 3.2 Model evaluation.  
Circles represent the mean Bayesian R2 values after Nakagawa et al (2017), vertical lines represent 
95% credibility intervals. Empty circles represent the conditional mean, i.e. variance explained by 
the full model (including the variance explained by phylogeny). Solid circles represent the marginal 
mean, i.e. variance explained by the fixed effects only (excluding variance explained by phylogeny). 
Null = intercept only models, hf = models with only human footprint, clim = models with four 
interacting contemporary climate variables (mean annual precipitation, mean annual precipitation 
variation, mean annual temperature and mean annual temperature variation), clim_hf = models 
with four contemporary climate variables and human footprint all interacting, vel_clim = models 
with four contemporary climate variables and past climate change velocity all interacting, 
vel_hf_clim = maximal models with all main effects interacting. All models include phylogeny as a 
random effect. The geographic range fractality model was not deemed reliable based on diagnostic 
tests. 
 

Metrics of range size were most strongly correlated with terms involving past climate change 

velocity, mean annual temperature, and mean annual temperature variation (Figure 3.3).  
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Figure 3.3 Effect sizes for main effects and two way interactions from maximal models showing 
the strength of the correlation between Climate and Human footprint, and Range Metrics.  
Solid circles represent the slope of relationship, i.e. change in range metric associated with 1 SD 
change in climate or human footprint value. Vertical lines represent 95% credibility interval. Hf = 
human footprint, map(_var) = mean annual precipitation (variation), mat(_var) = mean annual 
precipitation (variation), vel = past climate change velocity, ns = non-significant. The colour of points 
and vertical lines refers to the terms in the model. If a point and vertical line are the same colour, 
this represents a main effect. If point and vertical line are different colours, this represents the 
interaction between two main effects as per the legend. Non-significant model terms (pMCMC > 
0.05) are shown in grey. Light grey vertical bar highlights terms associated with human footprint. 
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Significant effects have been coloured for clarity. For graphic with colours corresponding to all 
effects regardless of significance see Appendix Figure B.1. The geographic range fractality model 
was not included as it was not deemed reliable based on diagnostic tests. 
 

The effects of climate and human footprint differed between metrics of range size and range 

division. For range size, human footprint had relatively small effect sizes as a main effect, and was 

not significant as a main effect for metrics of range division. Mean annual temperature and 

human footprint showed a weak positive correlation (Appendix Figure B.2a), but had opposite 

correlations with species’ range metrics, implying that climate and human footprint may be 

related to species’ spatial patterns through different mechanisms. Climate and human footprint 

exhibit different variability across spatial resolutions and extent (Figure 3.4). 

 

3.4.1 DIC 

The climate only model had the lowest DIC for the range size metric Occupied area. For one 

metric of range size (Geographic range size) and both metrics of range division, models including 

interactions between climate and human footprint terms had the lowest DIC, implying that effects 

of human activity depend on the climatic context. For metrics of patch irregularity, all DICs were 

either the same or greater than DICs for the null models (Table 3.2). 
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Table 3.2. Model comparisons. 
Delta DIC refers to the difference between best performing model and the null model. DIC values for the best 
performing models appear in bold. All models include phylogeny as a random effect. Contemporary climate = 
model with four interacting contemporary climate variables; mean annual precipitation, mean annual 
precipitation variation, mean annual temperature and mean annual temperature variation. Human footprint = 
model with only human footprint as a main effect. Contemporary climate and Human footprint = model with 
contemporary climate terms, human footprint and all interactions. All climate = model with contemporary 
climate terms, past climate change velocity and all interactions. Maximal model = model with contemporary 
climate terms, past climate change velocity, human footprint and all interactions. Null model = intercept only 
model. All models include all interactions of main effects, i.e. contemporary climate models have two, three 
and four way interactions of the four contemporary climate variables. Maximal model contains all interactions 
up to six way interaction between all main effects.  

Metrics 
Contemporary 

climate  
Human 

Footprint  

Contemporary 
climate and 

Human 
footprint 

All 
climate  

Maximal 
model  

Null 
model 

Delta 
DIC 

range size 

Occupied area 1899.3 2075.72 1779.02 1586.21 1593.44 2095.04 508.83 

Geographic 
range size 

1870.61 2071.84 1751.88 1560.47 1556.15 2091.3 535.15 

range division 

Patch size 
distribution 

2100.04 2139.85 2047.96 1989.18 1958.8 2142.22 183.42 

Geographic 
range filling 

2046.9 2135.7 2009.45 1992.56 1952.6 2144.28 191.68 

patch irregularity 

Patch shape 
complexity 

2175.6 2173.86 2192.8 2179.57 2201.2 2172.39 0 

 

3.4.2 Model explanatory power 

In all cases, models including both climate and human footprint had the highest R2 (Table 3.3). 

Comparison of the marginal and conditional R2s for null models show that phylogeny accounts for 

approximately 36-40% of the variance in metrics of range size, and 18-31% of the variance in 

metrics of range division (Figure 3.2).  
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Table 3.3. Model evaluation. 
Table of mean Bayesian R2 values after Nakagawa et al (2017). Mar and cond denote marginal and 
conditional R2s respectively. Marginal R2 refer to variance associated with the main effects only. 
Conditional R2 refer to variance associated with the main effect and the random effects (i.e. including 
phylogeny). Contemporary climate = model with four interacting contemporary climate variables; mean 
annual precipitation, mean annual precipitation variation, mean annual temperature and mean annual 
temperature variation. Human footprint = model with only human footprint as a main effect. 
Contemporary climate and Human footprint = model with contemporary climate terms, human footprint 
and all interactions. All climate = model with contemporary climate terms, past climate change velocity 
and all interactions. Maximal model = model with contemporary climate terms, past climate change 
velocity, human footprint and all interactions. Null model = intercept only model. All models include all 
interactions of main effects, i.e. contemporary climate models have two, three and four way interactions 
of the four contemporary climate variables. Maximal model contains all interactions up to six way 
interaction between all main effects.  

Metrics  Null 
model 

Human 
footprint 

Contemporary 
climate 

Contemporary 
climate and  

Human footprint 

All 
climate 

Maximal 
model 

range size 

Occupied 
area 

mar 0.000 0.024 0.209 0.352 0.473 0.501 

cond 0.364 0.339 0.479 0.530 0.630 0.652 

Geographic 
range size 

mar 0.000 0.023 0.216 0.353 0.469 0.498 

cond 0.419 0.393 0.530 0.568 0.659 0.684 

range division 

Patch size 
distribution  

mar 0.000 0.006 0.099 0.209 0.263 0.350 

cond 0.184 0.177 0.221 0.280 0.327 0.402 

Geographic 
range filling  

mar 0.000 0.013 0.138 0.222 0.226 0.316 

cond 0.315 0.296 0.380 0.375 0.421 0.479 

patch irregularity 

Patch shape 
complexity  

mar 0.000 0.002 0.051 0.085 0.099 0.170 

cond 0.030 0.031 0.077 0.112 0.128 0.195 

 

3.4.3 Effect sizes 

Species’ range spatial patterns had the strongest relationships with terms involving climate 

change velocity and mean annual temperature, (as well as mean annual precipitation variation for 

geographic range filling) (Figure 3.3); species with higher climate change velocity where they 

occurred occupied more area, had higher geographic range size and had larger average patch size. 

Species with lower mean temperature where they occurred occupied less area, had smaller 

geographic range size and had higher range filling. Mean annual temperature interacted with 

human footprint and past climate change velocity to affect patch size, and had the greatest 
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relative importance as a main effect size on range filling. Higher mean human footprint was 

correlated with higher total area occupied, larger ranges and lower range filling. As a main effect, 

human footprint was most strongly correlated with metrics of range size. Human footprint 

interacted with contemporary climate variables to negatively affect metrics of range size and to 

positively effect geographic range filling. Human footprint was correlated with decreased patch 

size at higher contemporary temperature, and increased patch size at more variable temperature. 

For full tables of posterior means and credibility intervals see Appendix Tables B.1.1 to B.1.5. 

3.5 Discussion 

For geographic range size, patch size distribution and geographic range filling, including human 

footprint together with phylogeny, past climate change velocity and contemporary climate 

improves explanatory models of species’ spatial pattern in endemic European plants. Occupied 

area was best explained by models with climate only. While species range size and range division 

were well explained by models of either climate or climate and human footprint, metrics of patch 

irregularity were not. Effect sizes of variables and their interactions differed between metrics of 

spatial pattern, supporting the idea that processes producing species’ patterns through space 

differ in importance across dimensions of spatial patterns (Carl et al., 2016; Sporbert et al., 2020). 

While the effect sizes of human footprint were modest, especially in comparison to climate 

change velocity, human footprint was consistently important across metrics of spatial pattern in 

interaction with other climate variables, indicating that the effects of human footprint on species 

spatial patterns depend on the climate context. We suggest that the relatively low importance of 

human footprint to species spatial patterns is a result of the spatial resolution of the occurrence 

data used to produce our spatial pattern metrics. Higher resolution data are needed in order to 

fully quantify the relationship between anthropogenic influence and spatial pattens of endemic 

European plants. Our results demonstrate that considering contemporary human footprint 

together with past climate change velocity and contemporary climate is relevant to our 

understanding of broad scale spatial patterns of endemic plant species in Europe. Human 

footprint should therefore be included with climate in considerations of which factors drive 

species’ spatial patterns and assessments of species spatial patterns regarding their vulnerability 

to global change. 

 

3.5.1 Climate  

High mean climate change velocity is associated with higher occupied area, geographic range size 

and patch distribution. This supports the idea that range size in Europe is at least partially 

explained by the ability to recolonise land following deglaciation (Estrada et al., 2015, 2018; 



 

 
 
40  

Svenning & Skov, 2004, 2007). Temperature variability, both past and present, is often associated 

with large range species (Mannion et al., 2013). Temperature variability, followed by climate 

change velocity were the most important predictors in explaining variation in mean range size in 

85000 New World plants (Morueta-Holme et al., 2013), and small range species are absent from 

areas with high “glacial- interglacial climate-change velocity” (Sandel et al., 2011). In opposition to 

this trend, our results find that contemporary temperature variability is not the most important 

climatic variable, and that it is associated with smaller range size. This can be explained by 

methodological differences between studies. Studies relating temperature variability to species 

distribution have linked climate values to instances of species’ occurrence (Huang et al., 2021) or 

evaluated the average range size of all species present per cell (Morueta-Holme et al., 2013), 

allowing an investigation of how certain dimensions of species’ spatial pattern relate to the full 

range of climate values associated with a species’ presence. In seeking to examine metrics of 

range size and range internal structure, our study collapses available climate information into one 

value per species (by obtaining mean climate and human footprint values across all occupied cells 

for each species). This is important to consider in interpreting the results. If a species occurs 

across a wide range of temperatures, the average temperature within its range will be neither 

very high nor very low. In our data, if a species occurs across a range of temperature variability 

(i.e. in some locations with constant temperature and others where mean annual temperature 

variability is high), the average value for temperature variability in this species range will be 

neither very high nor very low. Therefore, in our dataset, only species which occur primarily in 

areas with highly variable temperature will have high average temperature variability. This means 

that in our data, high average temperature variability is found in cold habitat specialists, 

restricted to cold, variable areas, where species that occur both in cold, variable habitats, but also 

in less variable habitats may be more generalist in their thermal niche and therefore have larger 

ranges  (Liang et al., 2021; Morueta-Holme et al., 2013; Pither, 2003; Pulliam, 2000). Schivereckia 

podolica an alpine steppe plant (Friesen et al., 2020) has low range size, low occupied area, high 

average temperature variability, as do Dianthus pseudoversicolor and Potentilla arcticai (see 

Appendix Figure B.3 for maps). Therefore, in both our study and in studies finding a positive 

relationship between range size and temperature variation, methodological differences mean 

that these superficially opposing relationships all support a likely link between large range size 

and broad thermal niche.  

 

Further, evidence for temperature variability as a driver of plant distribution patterns comes from 

studies conducted at a global scale (Huang et al., 2021 and citations therein). Huang et al (2021) 

show that climate variability is the most important driver of plant species broad-scale distribution 

at low latitudes, but that climate extremes are more important in northern latitudes. Europe as a 
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whole has high temperature variability compared to equatorial regions (Appendix Table B.2). It 

may therefore be that at a global scale, temperature variability relates to larger range size, but at 

a smaller (continental) scale, there is more nuance to the relationship. In light of these key 

differences between our methods and other studies, we do not find our result of higher average 

temperature variability across species’ occurrences to be in conflict with evidence showing small 

ranged species occur in invariable temperatures. Instead, we suspect that these findings - positive 

relationships between range size and temperature variability at a global scale, and smaller range 

size relating to higher average temperature variability within the range of European endemics - 

are again both likely driven by the breadth of species’ thermal niches. 

 

Our results show positive relationships between temperature and range filling. This finding may 

also relate to the negative relationship between range size and filling (-0.67, p <0.001) (see 

Appendix Figure B.2b). A positive relationship between high average temperature and smaller 

ranges, and with greater range filling could reflect species facing dispersal limitation from glacial 

refugia. For example, Silene mollissimais, Silene sieberi and Papaver purpureomarginatum, species 

with high average temperature, high range filling and low range size, are island endemics native 

to Baleares, Kriti, and the Aegean Islands respectively (see Appendix Figure B.3 for maps). 

 

3.5.2 Human footprint 

Though human footprint had a lower relative importance than was expected (Sales et al., 2022), it 

still showed significant relationships with species spatial patterns. In our data geographic range 

size and occupied area were correlated (Appendix B.2b), so we expect factors related to large 

occupied area to relate to large range size. Human footprint correlates positively with occupied 

area, and range size, and is negatively correlated with geographic range filling. There may be 

several reasons for this. Species’ potential for dispersal is expected to mediate spatial patterns 

within their range, i.e. range filling and local patterns of occurrence (Estrada et al., 2018; Riibak et 

al., 2017; Svenning & Skov, 2007). However, human activity reduces the importance of species’ 

dispersal ability (Riibak et al., 2017) through human mediated dispersal (Kelly, Lundy, et al., 2014; 

Smith et al., 2020). Human mediated dispersal may contribute to large range size, with human 

disturbance then limiting range filling. We expect that due to the prevalence of terrestrial 

anthropogenic influence in Europe , the only species that still retain large high occupied area are 

species able to cope with anthropogenic influence (Newbold et al., 2018). Additionally, species 

that may have had large European ranges driven by other factors (e.g. species that were the most 

competitive in the most wide spread climate conditions) but that were unable to persist with 

human land use may have been relegated to “marginal” areas with lower levels of anthropogenic 

influence. On the surface, the negative relationship between range filling and human footprint 
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may seem in contrast to Araújo (2003) who found a positive relationship between human 

population density and species richness in plants, mammals, amphibians and reptiles in Europe. 

However, as with Moretua-Holme (2013), and Huang (2021), Araújo investigated this relationship 

at the level of species richness, rather than through metrics of the spatial patterns of individual 

species. Finally, the negative relationship between human footprint and range filling could be 

partially driven by the negative relationship between range filling and range size, the metric best 

explained by our climate and human footprint variables.  

 

3.5.3 Metrics 

The main effects of climate variables and human footprint showed similar relationships across 

occupied area and geographic range size, but both the patterns in the effect sizes of the main 

effects and the two way interactions between these variables differ considerably for metrics of 

range division (patch size and geographic range filling). This implies that climate and human 

footprint have different importance to the processes affecting species’ occurrence across the 

different dimensions of spatial pattern. For example, climate change velocity as a main effect has 

the largest effect size of any model term for metrics of range size, whereas it is the second 

smallest significant effect for range filling. Large range shifts happen over a longer time scale 

(Svenning & Skov, 2004) whereas spatial patterning within a species’ range is responding to 

processes acting on a shorter timescale (Buckley & Puy, 2022; Gurevitch et al., 2016), possibly 

resulting in increased relative importance of contemporary climate to range filling. It may be that 

the effects of past climate change i.e. the relationship between range boundaries and dispersal 

limitation is most evident at the broadest spatial scales, while the processes driving spatial 

pattern within the range i.e. factors resulting in fragmentation are more evident at shorter 

temporal scales. Species’ in fragmented ranges with larger patches are expected to be less 

negatively affected by the fragmentation (Hanski et al., 2013; MacArthur, 1967), and higher range 

filling relates directly to less fragmentation within the range. The decoupling of the pattern in 

effect sizes between patch size distribution and range filling is of particular interest, as these 

metrics capture different dimensions of fragmentation within the range. The opposing direction 

of relationships between these metrics and the climate and human footprint variables is 

unexpected, and suggest that these relationships are driven at least in part by the relationships 

between metrics of range division and metrics of range size.  

  

3.5.4 Scale 

The signal of the relationship between environmental variables and ecological patterns are 

dependent on the scale at which the patterns is measured (Levin, 1992; Sandel & Smith, 2009). As 
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such, crucial to the interpretation of our results are the differing spatial scales over which our 

covariates vary, the resolution of our response variable and the temporal scale at which our 

covariate shape species spatial patterns. Because species occurrence is recorded at 50 x 50km, 

there is a mismatch between the scales at which human footprint varies (sub 50 x 50km 

resolution) and the information we have about species’ occurrence. Human footprint varies a lot 

within a 50 x 50km cell (Figure 3.4.), and so average human footprint values between two distant 

50 x 50km cells are likely to be quite similar. On the other hand, past climate change velocity 

varies little over small spatial scales, but a lot over large spatial scales (Figure 3.4.) i.e. values from 

two 50 x 50km cells at either end of a species range are likely to be quite different . Given the 

evidence that human footprint acts on ecology at smaller spatial scales that climate (Carl et al., 

2016; Newbold, 2018), we suggest that if these patterns were investigated with higher resolution 

occurrence data, human footprint would show a greater relative importance to species’ spatial 

patterns. Interestingly, the covariate describing variability at the greatest temporal scale – past 

climate change velocity – had the greatest relative importance to these low resolution spatial 

patterns. Spatial scale at which we are measuring our response means the signal that is clearest 

to us is of a variables acting at large temporal scales (past climate change velocity acts over 

approx. 24000 years) (Sandel et al., 2011). The large amount of variance accounted for by 

phylogeny alone also indicates that the forces of high relative importance to the spatial patterns 

at these large scales are acting at large temporal scales.  
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Figure 3.4. Illustration of how model covariates vary over small and large spatial scales in 
comparison to resolution of response data.  
Row one shows species occurrence data on which response variables (metrics of spatial pattern) 
are based, and an illustration of cell sizes from data at resolutions of 50 x 50 km (largest square), 
24 x 24 km (mid-sized empty squares) and 1 km2 (grid of smallest squares within top right hand 
corner).  Rows two to four show covariates past climate change velocity, climate (here mean annual 
temperature) and human footprint respectively. (A) Column showing covariates at the highest 
available resolution. (B) Column shows Ireland as an example of how covariates vary at their highest 
resolutions. (C) Column showing covariate variation through space once data has been aggregated 
to the resolution of the response data (50 x 50 km). Quartered square image in columns (B) and (C) 
illustrate relative cell size for data at resolutions 50 x 50 km, 24 x 24 km and 1km2.  
 
3.5.5 Limitations 

For mean annual temperature variation in particular, using the range of the covariates in the 

analysis would have been informative (i.e. range of temperature variability rather than average 

temperature variability experience by each species). However, we chose to use covariate means 

rather than ranges as while means were informative (with some interpretation) for all variables, 

range would have been completely uninformative for some variables i.e. human footprint, due to 

the spatial scale over which it varies. 
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Both climate and human footprint are likely to be highly relevant to the spread of non-native 

species (Kelly, Leach, et al., 2014; Lembrechts et al., 2016), with invasive species a key threat to 

biodiversity (IPBES, 2019). However, we consider only with European endemics, as such, our 

results do not reflect the potential relationships between contemporary climate, human footprint 

and spatial patterns of non-native species. 

 

There are relationships between range metrics and between explanatory variables. Total area and 

range size are expected to be correlated, as they represent related but distinct dimensions of 

species spatial pattern (Gaston & Fuller, 2009). It may be that some of the relationships between 

range metrics are correlations and some are causal. Patch size distribution may drive higher 

occupied area through species-fragmented area population dynamics or stochastic extension 

(Hanski et al., 2013), but the processes enabling large patch size may not contribute to 

dispersal/niche breadth that may be more relevant to geographic range size, meaning the 

relationship between range size and patch size may be an artifact of the correlation that range 

size and patch size both have with occupied area. The complex and incomplete correlations 

between these range metrics indicate that different factors may be of different relative 

importance to these dimensions of spatial structure.  

 

Our results provide evidence for the correlations between climate, human footprint and metrics 

of spatial patterns for European plant species. However they do not provide insight into the 

ecological mechanisms behind these relationships. Explicit investigation into the relationships 

between these spatial patterns and species’ functional or life history traits is needed to 

understand why these variables - in particular human footprint - relate to spatial patterns. Our 

study investigates whether including modern human footprint along with past climate change 

velocity and contemporary climate improves our understanding of species spatial patterning; we 

do not account for past human land use. Further study investigating the interaction between past 

climate change velocity and contemporary human influences would give a fuller picture of the 

relative importance of forces driving broad scale spatial patterns. 

3.6 Conclusion 

Explicitly considering contemporary human footprint along with phylogeny, contemporary climate 

and past climate change velocity improves our understanding of some dimensions of species’ 

spatial patterning in endemic European plant species. Range size was well explained by models of 

phylogeny, past climate change velocity, contemporary climate and human footprint. Range 
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division was less well explained, and patch shape were not explained by our models. As a main 

effect, past climate change velocity was the most important variable for two metrics of range size 

and one of range division. Though adding human footprint improved most models, the signal was 

not as strong as expected. We suggest that the relatively low strength of the human footprint 

signal relates to the resolution at which species occurrence data was obtained, and the spatial 

extent over which past climate change, contemporary climate and human footprint vary. We 

conclude that higher resolution occurrence data is needed in order to quantify the relative 

influence of human footprint compared to climate variables. Species’ spatial patterns are a 

physical manifestation of their realised niche. If human footprint is affecting broad scale spatial 

patterns in addition to climate, then this adds a further factor constraining or expanding available 

niche space. In trying to untangle the multifaceted drivers of ecological patterns, terrestrial 

human activities should be considered as a force acting on species’ ecology. As the primary driver 

of global biodiversity loss, human footprint should be considered in addition to both 

contemporary climate and future climate change in assessing species’ vulnerability to global 

change. 
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Chapter 4 Relationship between fishing pressure and community life history traits is scale 

dependant  

 
Authors: Caroline M. McKeon, Yvonne M. Buckley, Ruth Kelly 

Author contribution: Research was conceived and designed by CMM and RK. Data was obtained 

from DATRAS and cleaned by CMM and RK. CMM obtained further data and conducted the 

analysis with input from RK and YB. 

4.1 Abstract 

Human influence in the oceans is pervasive and is affecting marine life. Understanding species’ 

differing responses to human influence, and how human influence compares to other 

environmental variables in reshaping marine communities is needed to facilitate the sustainable 

management of the seas. Despite previous evidence that fishing pressure affects marine life 

history strategies, several recent large scale studies have not shown strong relationships between 

fishing pressure and community composition. We test the hypothesis that the signal of the effect 

of fishing pressure on community weighted mean life history strategy depends on the scale at 

which community is defined. Using high resolution annual fishing pressure data, we show that fish 

community life history strategy is correlated with fishing pressure in the North East Atlantic, and 

that the relative importance of fishing pressure compared to sea surface temperature and depth 

increases with the scale at which a community is defined. We suggest that this scale dependence 

is a result of the spatial extent over which covariates vary, and how fish movement moderates 

communities’ experience of this variability. We suggest that the most ecologically meaningful 

scale at which to define fish communities in the North East Atlantic may therefore be related to 

some measure of community weighted mean movement. Our findings highlight the importance of 

explicit consideration of scale in ecological research, supporting the idea that studying systems at 

ecologically relevant scales is necessary to detect and interpret the effects of global change.  

4.2 Introduction 

4.2.1 Anthropogenic influence 

As in terrestrial biomes, human influence is pervasive throughout the marine environment 

(Halpern et al., 2008; Jones et al., 2018; Kroodsma et al., 2018; Sala & Knowlton, 2006). In the last 

century, human activities - overfishing foremost amongst them - have increasingly impacted 

marine life, precipitating acute declines in biomass and diversity (Díaz et al., 2019; Cardinale et al., 

2012; Di Minin et al., 2019; Jackson et al., 2001). In addition to increased pressure from 
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overfishing and habitat loss, the marine environment is experiencing the ongoing effects of 

anthropogenic climate change (Simpson et al., 2011), from which marine ecosystems and the 

services they provide are increasingly under threat (Asch et al., 2018; Rocha et al., 2015).   

 

Recognition of the importance of biodiversity to human society (Díaz et al., 2006; Folke et al., 

2021), and the ability of marine ecosystems to provide protein for human consumption (Béné et 

al., 2015; Costello et al., 2020; Weindl et al., 2020), has led to an increased interest in sustainable 

harvesting of marine life (Bentley et al., 2019; Howell et al., 2021; Kroodsma et al., 2018; Ward et 

al., 2022), and the protection of marine ecosystems through the establishment of marine 

protected areas (Halpern et al., 2015; Probst et al., 2021). However, the response of fish stocks to 

these efforts is uncertain (Britten et al., 2021), and detailed knowledge of species’ differential 

responses to and recovery from changes in environmental and anthropogenic pressures is still 

needed to facilitate the sustainable management of the seas (Greenstreet et al., 2011; Thompson 

et al., 2020). In terrestrial systems, human influence is being shown as comparable to other 

environmental factors driving ecological patterns (Ellis et al, 2008; McKeon et al, in prep.). We are 

still developing an understanding of the relative importance of human vs non-human 

environmental factors on marine biodiversity (Fu et al., 2012), how species differ in their 

responses to these factors (Beukhof et al., 2019) and the spatial scales at which the effects of 

these factors are most relevant (de Castro et al., 2015).   

 

4.2.2 Traits, community and ecological scales 

To understand species’ differential responses to human influence, it is helpful to characterise 

them by their intrinsic traits. Intrinsic traits, such as functional traits (Thuiller et al. 2006; Garnier 

et al. 2018), life history strategy (Doak & Morris, 2010; Harrison et al., 2018; Ramula et al., 2008; 

Shryock et al., 2014; Stearns, 1992) and life form (Smith 1909; Broennimann et al. 2011), mediate 

species’ responses to their environment. Characterising species by their intrinsic traits can help 

reduce the complexity of ecological systems (König et al., 2019; Lavorel et al., 2002; Mouquet et 

al., 2015), allowing the study of how suites of species differ in their ecological patterns and 

responses to global change (Carmona et al., 2021; Leung et al., 2020; Newbold et al., 2018). In 

particular, viewing species through their intrinsic traits can help us understand how human 

influence produces shifts in community composition (Murgier et al., 2021; Allan et al., 2015; 

Comte et al., 2021; Danneyrolles et al., 2019; Eriksson & Hillebrand, 2019; Frelat et al., 2022; 

Garnier et al., 2007, 2018; Hillebrand et al., 2018). 

 

One characterisation of species intrinsic traits is life history strategy. As a characterisation of 

ecological complexity, life history strategy (LHS) represents how species deal with the 
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fundamental challenges of evolution – survival, growth, and reproduction (Stearns, 1992). Life 

history can be broadly described by the shape and pace of life with regards to aging (Baudisch, 

2011; Healy et al., 2019), and fertility (Baudisch & Stott, 2019; Healy et al., 2019). Life history 

strategy can be further simplified by models relating trade-offs in species’ life history to their 

environments. These trade-offs have been described by complimentary frameworks such as r-K 

selection (Pianka, 1970), and the fast-slow continuum (Franco & Silvertown, 1996), which has 

been used to describe how life history covaries with temperature in marine communities 

(Beukhof et al., 2019). In terrestrial environments, trade-offs between strategies dealing with 

competition, disturbance and physiological extremes have been described for plants by the 

Grime’s triangle (Grime, 1997, 1974), where the relative abundance of those strategies in 

communities reflects heterogeneity in the productivity, stability and tolerability of the 

environment. In the marine realm, the equilibrium–periodic–opportunistic (EPO) triangle put 

forward by Winemiller and Rose (1992) describes fish life history strategy in relation to the 

stability and predictability of the environment, and has been found to align with life history 

strategy variation in marine communities (Pecuchet et al., 2017). Equilibrium strategy is 

characterised by species with high juvenile survivorship and slow pace of life (i.e. long generation 

time) and is expected to be best suited to more stable, less variable environments. Periodic 

species are expected to be suited to predictably variable environments (i.e. environments with 

strong seasonality) and are characterised by high fecundity. Opportunistic species are 

characterised by short generation time and fast growth rates (i.e. fast pace of life), strategies 

suited to take advantage of suitable conditions in unpredictable, variable environments 

(Winemiller & Rose, 1992).  

 

Life history strategies in fish communities co-vary with the environment. Equilibrium strategy is 

expected to increase in deeper, colder waters with less variable temperature (Pecuchet et al., 

2017), whereas opportunistic strategies are expected to increase in warmer, more variable waters 

(Pecuchet et al., 2017), i.e. deep, cold, invariable waters favour slow-lived species, warm, shallow 

waters with high temperature variation favour fast lived species (Beukhof et al., 2019). Human 

influence is expected to result in changes in life history strategies in marine communities. Fishing 

effort is expected to cause a shift in community life history strategy, away from equilibrium 

strategies (Pecuchet et al., 2017) towards faster lived, more productive, species (de Juan et al., 

2007; Jennings et al., 1999; Sguotti et al., 2016). High resolution, long term data on fish 

abundance and distribution (ICES, 2022) and life history data (Froese & Pauly, 2022) are available 

for investigating how community life history strategy is structured by the constraints of the 

environment, and how the relative effects of environmental factors compare. However, recent 

work using DATRAS has found mixed evidence for the relative importance of fishing pressure in 
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structuring fish community life history strategy: fishing pressure was found to be a weak predictor 

of fish abundance (Rutterford et al., 2015) and community structure (Beukhof et al., 2019) and 

important only to one (equilibrium) life history strategy (Pecuchet et al., 2017). Here, we 

investigate the hypothesis that these discrepancies between theoretical expectations and 

empirical findings arise from the spatial resolution at which community is defined. 

 

Multiple forces affect marine biodiversity, including climate, trophic interactions and human 

activities (Fu et al., 2012), but the strength of the signal between variables and ecological patterns 

is scale dependant (Beukhof et al., 2019; Carl et al., 2016; Chase, 2014; Levin, 1992; Sandel & 

Smith, 2009). Knowledge of the scale at which ecological units – be that individuals, species, 

communities or ecosystems - experience variation in the factors that affect them is relevant to 

how they are studied and how they are managed. In the marine environment, the degree of 

environmental variability experienced by species is moderated by species’ movement (Green et 

al., 2015; Kramer & Chapman, 1999; Weeks et al., 2017). Therefore fish movement across space 

and time, and the scale at which to consider marine communities is a key area of marine research 

(de Castro et al., 2015; Neat et al., 2014; Probst et al., 2021), as fish movement is expected to be 

relevant to how populations are effected by human pressure (Claudet et al., 2008; Kramer & 

Chapman, 1999; Shephard et al., 2011). For example in the Celtic Sea, Shepard et al (2011) found 

a strong relationship between fishing pressure and fish community size structure using Large Fish 

Index (LFI) at a resolution of approx. 70 x 70 km, a weak relationship at resolutions of approx. 35 x 

35 km, and no relationship at resolutions of approx. 17 x 17 km. Similarly, De Castro et al. (2015) 

find that resolutions of approx. 62 x 62 km best explain the signal of fishing pressure on 

community size structure in 18 abundant ground fish. We investigate a potential explanation for 

limited evidence supporting the effects of fishing pressure in structuring fish community life 

history in recent large scale studies is the scale of investigation.   

 

4.2.3 Aims 

Using 12 years of high resolution scientific survey data we compare the influence of non-human 

environmental factors (temperature, temperature variation and depth) and fishing pressure on 

the community composition of fish life history strategy in the North East Atlantic ocean. We test 

the hypothesis that current weak evidence for the impact of fishing pressure on fish community 

composition in this dataset is a result of a mismatch between the spatial scales at which 

community is defined and the scales at which communities are experiencing environmental 

variability.  
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Our study had two aims:  

1) To test how extrinsic factors sea surface temperature, depth and fishing pressure relate 

to community weighted means of three dimensions of fish life history strategy; 

2) To assess how the effects of these extrinsic factors depend on the spatial resolution at 

which communities are defined 

 

Our data comes from the Celtic-Biscay Shelf Large Marine Ecosystems, which is currently and 

historically some of the among the most heavily exploited in the world (Halpern et al., 2008). We 

therefore expect that fishing pressure will effect fish community life history. We expect fishing 

pressure to correlate with higher mean community fecundity, faster pace of life, and lower tropic 

level (Jennings & Blanchard, 2004). Based on the EPO model, this would mean increases in 

opportunistic and periodic, rather than episodic species, i.e. species adapted to unstable and 

predictable, or unstable and unpredictable environments. We expect temperature and 

temperature variation to correlate positively with faster lived species (Beukhof et al., 2019), and 

depth to correlate with slower lived, lower fecundity species with higher trophic level (Pecuchet 

et al., 2017). We hypothesise that our ability to detect these relationships, in particular 

relationships between community composition and fishing pressure, will depend on the spatial 

scale at which ecological communities are defined. 

4.3 Methods 

We modelled how community weighted means of fish life history traits responded to the 

environmental covariates: sea surface temperature (SST); depth; and fishing pressure. We 

obtained life history trait data from Beukhof et al. (2019), species identity and abundance data 

from DATRAS (https://www.ices.dk/data/data-portals/Pages/DATRAS.aspx, date downloaded: 

04/21/2022), and SST, depth and fishing pressure data from MODIS-Aqua (NASA/JPL, 2020), 

NOAA (Amante, 2009) and OSPAR (ICES, 2021) respectively. Data were cleaned and merged prior 

to analysis (see https://github.com/cmmckeon/fishies). Analyses were carried out on a subset of 

208 fish species (including all Chordata but excluding tunicates and sea birds) for which trait data 

were available, using frequentist general linear mixed models in R version 3.6.3 (R Core Team, 

2020). 

 

4.3.1 Biodiversity data 

We obtained fish identity and abundance data from co-ordinated international scientific survey 

effort DATRAS (ICES, 2022). Two steps of quality control and standardisation were required: 

cleaning “haul” data – (data relating to the sampling efforts themselves), and cleaning biodiversity 
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data collected by the hauls. Moriarty et al., (Greenstreet & Moriarty, 2017a, 2017b; Moriarty et 

al., 2017, 2019) created reproducible scripts to clean and standardise the haul and biodiversity 

data from 1996 to 2016. Sampling protocol could differ by country, ship and gear type, and so, 

once cleaned, the haul data were standardised to produce a final product with comparable fishing 

effort and catch data. We downloaded data from DATRAS in March 2022 and updated this 

workflow to clean and standardise data up to 2021. From all available DATRAS data, we 

downloaded surveys targeting the whole fish community, with more than 10 years of data 

available. We excluded surveys that were of the deep sea, short time frame, had known issues 

with data quality or were not contiguous with other data. Cleaning and standardisation for haul 

data included merging data from different surveys, checking for and correcting outliers, 

imputing/filling in missing values, i.e. depth data obtained from NOAA (Amante, 2009) at a 1 

minute resolution was used to validate the recorded depths from the haul data, and to fill in 

missing values. Cleaning for biodiversity data involved obtaining a phylogeny from WoRMS 

(WoRMS Editorial Board, 2022) and checking for outliers in max length, abundance and catch 

weight. We constrained our study to the North East Atlantic Celtic-Biscay Shelf (Figure 4.1.) and 

so DATRAS surveys ultimately included in this study were EVHOE, FR-CGFS, IE-IGFS, NIGFS,  

ROCKALL, SCOROC, SCOWCGFS,  SWC-IBTS. Our cleaned dataset contained 250 unique species. 

For more details of data cleaning workflow see https://github.com/cmmckeon/fishies. 

 

4.3.2 Covariates 

Sea surface temperature was obtained from MODIS-Aqua (NASA/JPL, 2020) 

(https://oceancolor.gsfc.nasa.gov/l3/order/) as seasonal (three month) daytime averages at a 5 

minute resolution (approx. 5 x 5 km at European latitudes) for 2009 – 2021 inclusive (Figure 4.1.). 

SST for spring and for winter, as well as annual SST variability (difference between summer and 

winter averages) were included in our models. Fishing pressure was obtained from OSPAR (ICES, 

2021) (https://ices-

library.figshare.com/articles/dataset/Data_for_OSPAR_request_on_the_production_of_spatial_d

ata_layers_of_fishing_intensity_pressure/18601508) as total annual kilowatt fishing hours in 3 

minute grid cells for 2009 – 2020 inclusive (Figure 4.1.). Covariate data were extracted seasonally 

(SST), annually (fishing pressure) or as a fixed value (depth) for the location of each haul.  

 

4.3.3 Trait data 

We obtained Celtic-Biscay Shelf ecosystem specific values for seven continuous fish life history 

traits for each species from Beukhof et al. (2019): trophic level, offspring size, age at maturity, 

fecundity (total offspring produced per female per year), von Bertalanffy growth coefficient 
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(estimating individual growth rate per year) maximum length, and maximum age. Trait data were 

available for 208 species, meaning that over 83% of species in the community from our cleaned 

dataset were included in our analysis. Trait data and covariates were log transformed and scaled 

to a mean of zero and a standard deviation of one. 

 

4.3.4 Principal Component Analysis 

We compiled a dataset of unique transformed trait values, i.e. one trait value per species. We 

reduced the dimensionality of this life history trait data using Principle Component Analysis, 

resulting in three principle components (PC’s) that best explained life history variation in our 

species. For each haul, we then obtained community weighted means for PC1, PC2 and PC3 based 

on raw abundance data using the vegan package (Oksanen et al., 2020). PC1, PC2 and PC3 were 

then scaled and added to our modelling dataset. 

 

4.3.5 Analysis 

To test how environmental factors affected community weighted life history strategy, we ran null 

models to establish appropriate random effect structures (see Chapter 1). We then ran three 

models testing whether SST, depth and fishing pressure related to the community weighted mean 

of the three principle components which we interpret as broadly representing the pace of life 

axis, the reproductive axis and trophic level. We used mixed effects models (Brooks et al., 2017) 

with Gaussian error structures to test the community weighted mean of each principal 

component against spring SST, winter SST, SST variation, depth and fishing pressure, and all two 

way interactions between these terms. The season in which the sample had been collected 

(spring or winter) and the year of collection were included in the models as main effects (not in 

interaction with other terms). Fishing gear, ship and haul location were included as nested 

random effects to account for non-independence in the data. We evaluated all models for 

goodness of fit using QQnorm and residual vs predicted plots using the DHARMa model 

diagnostics package (Hartig, 2018), and used model AICs to determine whether our main models 

accounted for more of the variance and were more parsimonious than our null models. All models 

converged and produced satisfactory residuals, and all main models improved on respective null 

model AICs. 

 

To investigate how the spatial extent at which a community is defined affected these 

relationships, we then applied the same modelling workflow to datasets where community was 

defined at a series of decreasing spatial resolutions. We achieved this by aggregating 5 minute SST 

rasters by a factor of 5, 10, 20 and 50, ultimately producing 250 x 250 minute (or approx. 250 x 
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250 km in Europe) grid cells, i.e. at minimum resolution, community was defined by all hauls in 

grid cells about 4.17 degrees wide (Figure 4.1). Using our existing principle components, we then 

recalculated community weighted mean abundance for communities at each resolution.  

 

4.3.6 Scale at which community experiences the environment 

To inform our discussion of fish movement and ecologically meaningful community scale, we 

obtained data on consistent core areas for 48 demersal species in our dataset (Appendix Table 

C.2) from Probst et al. (2021), who studied population distributions of mobile fish species in the 

North Sea over a 21 year period, assessing whether their use of space overlapped with marine 

protected areas. Probst et al. define core areas as “grid cells containing 50% of cumulative 

population biomass in any given year and season”, with grid cells containing at least 50% of all 

core areas for the whole study duration considered consistent core areas. 
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Figure 4.1. Covariate variability, and community resolutions.  
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(A) Schematic showing data on which model covariates are based at the highest resolution (1, 3, 5) 
(approx. 5 minutes or 5 x 5 km grid cells) and the lowest resolution used in our models (2, 4, 6) 
(approx. 4.16 minutes or 250 x 250 km grid cells). (B) Maps of study area showing (a) locations of 
hauls (highest resolution definition of community); (b) illustration of communities at the lowest 
resolution used in our models (all hauls in a 4.16 minute grid cell) and (c) illustration of our lowest 
resolution community size (top black box) compared to communities at the level of haul (dot inside 
top black box) and size of average winter consistent core areas for 48 species in our dataset after 
Probst et al (2021) (bottom red box, size = approx. 150 x 150 km) and sizes of consistent core areas 
for five most abundant species in our dataset (from top orange box to bottom): Merlangius 
merlangus = 218 x 218 km; Trisopterus esmarkii = 197 x 197 km; Melanogrammus aeglefinus = 183 
x 183 km; Pleuronectes platessa = 210 x 210 km; Scyliorhinus canicular = 138 x 138 km. Average and 
example consistent core areas are shown to illustrate size in comparison to finest and coarsest 
resolutions at which we define communities – consistent core areas data comes from North Sea 
populations and so are not depicted here in the correct spatial locations. 

4.4 Results 

4.4.1 Principal Component Analysis 

Three principle components explained a cumulative 84% of variance across the traits (Figure 4.1., 

Table 4.1.) - PC1 (51.52%), PC2 (20.94 %) and PC3 (11.97%). PC1 had a positive correlation with 

age at maturity (0.44), maximum length (0.44), maximum age (0.43) and offspring size (0.40) and 

a negative relationship with growth coefficient (-0.42). PC1 can be considered to represent a pace 

of life Life history axis (Baudisch, 2011; Healy et al., 2019). PC2 had a strong positive relationship 

with fecundity (0.76) and a negative relationship with offspring size (-0.50), representing the 

reproductive life history axis (Healy et al., 2014). PC3 represented trophic level, with a strong 

negative correlation of -0.89.  

 

Table 4.1. Principle component analysis of life history trait variation. 
Values in black highlight correlations of over 30%. 

 
 

Life history trait PC1 PC2 PC3 
Trophic level 0.2620178 0.18684176 -0.8915949 
Offspring size 0.3950247 -0.5023745 -0.0977324 
Age at maturity 0.4398705 0.02730555 0.26597648 
Fecundity -0.1661993 0.76322546 0.02685936 
Growth coefficient -0.41951 -0.1957586 -0.2296948 
Max length 0.4376938 0.17022719 -0.0997469 
Max age 0.4320063 0.24930423 0.24765496 
Importance of components 
Standard deviation 1.899 1.2107 0.9154 
Proportion of variance 0.5152 0.2094 0.1197 
Cumulative 0.5152 0.7246 0.8443 
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Figure 4.2. Principle component analysis of life history trait variation.  
(A) Plot of PC1 (pace of life axis) against PC2 (reproductive investment axis), showing the loadings 
of the seven life history traits. X and Y axes display the variance explained by each principle 
component. Points in red highlight example species in our data to show how our PC axes align 
closely with the equilibrium-periodic-opportunistic (EPO) model of life history trade-offs. Lamna 
nasus (porbeagle) has a high value on PC1 and represents equilibrium LHS, with high offspring size, 
max age, max length and age at maturity. Gadus morhua (cod) has a high PC2 value and represents 
periodic LHS with high fecundity, and Spinachia spinachia (sea stickleback) has a low PC3 value, 
representing opportunistic LHS with high growth coefficient. (B) Plot of PC1 against PC3 (trophic 
level). (C) Schematic of the EPO triangle linking trade-offs in LHS to stability and predictability of the 
environment (see introduction).  
 

4.4.2 Covariates 

Sea surface temperature, depth, fishing pressure and interactions between these variables were 

significantly correlated with community weighted means of fish life history traits described by 

principle components relating to pace of life, reproductive investment and trophic level. The 

effects of the covariates differed across the community weighted means of the three principle 

components, and these relationships differed depending on the spatial extent at which 

communities were defined. When communities were defined at the level of an individual haul, 

terms involving depth and sea surface temperature had larger effects than terms involving fishing 

pressure. When community was defined by all hauls in approx. 25 x 25km, 50 x 50km, 100 x 

100km and 250 x 250 km, the strength and direction of the effects differed from effects on 

communities based on individual hauls, with the interaction of fishing pressure increasing in 

importance in communities defined at the coarsest spatial resolution. 
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4.4.3 Communities at the level of haul 

Here we highlight examples of the strongest correlations for each community weighted mean 

principle component (Figure 4.3). For full model summaries including p-values see Appendix 

Tables C.1.1, C.2.1 and C.3.1. SST variation has a negative effect on community weighted mean of 

PC1 (Figure 4.3). This means that with increased SST variation, there are lower community 

weighted mean values for pace of life, i.e. lower maximum age and length, lower age at maturity, 

and smaller offspring size. The effect of SST variation on pace of life gets more negative with 

higher spring SST and fishing pressure (Figure 4.3), i.e. the higher the spring SST and the more 

fishing pressure, the greater the correlation between SST variation and more faster living species 

in communities. Depth interacting with spring SST and winter SST correlates with slower 

community weighted mean pace of life (Figure 4.3). Winter SST interacts with SST variation to 

increase the community weighted mean of PC1, i.e. warmer winter SST where SST is more 

variable leads to slower mean pace of life in a community. 
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Figure 4.3. Community weighted means of life history principle components at the level of haul.  
(A) Effects of SST, depth and fishing pressure on community weighted mean of PC1 (representing 
pace of life Life history axis). (B) Effects of SST, depth and fishing pressure on community weighted 
mean of PC2 (representing reproductive investment life history axis). (C) Effects of SST, depth and 
fishing pressure on community weighted mean of PC3 (representing trophic level). In all panels, the 
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x axis represents change in community weighted mean value of PC associated with a one standard 
deviation change in each model term. Depth = depth, SNSP = spring sea surface temperature, SNSW 
= winter sea surface temperature, sst_var = sea surface temperature variation, fp = fishing pressure, 
Year = year that sample was obtained, Quarter = difference in community composition in hauls 
caught in spring (reference level is hauls caught in winter). The colour of points and vertical lines 
refers to the terms in the model. If a point and vertical line are the same colour, this represents a 
main effect. If point and vertical line are different colours, this represents the interaction between 
two main effects as per the legend. Non-significant model terms (p-value > 0.05) are shown in grey. 
Light grey vertical bar highlight terms associated with fishing pressure. Vertical lines represent 95% 
Confidence interval. CIs overlapping continuous horizontal lines indicate that the slope of the 
relationship is not significantly different from zero (no effect). Significant effects have been 
coloured for clarity. For graphic with colours corresponding to all effects regardless of significance 
see Appendix Figure C.1. Total number of observations (communities) in the models = 8160. 
 

For PC2, greater depth leads to lower community weighted mean, i.e. lower mean fecundity and 

larger offspring values in the community (Figure 4.3). Higher winter SST correlates with higher 

fecundity, but this relationship gets less positive as depth increases. Fishing pressure has a 

positive effect on community weighted mean PC2 – higher fishing pressure correlates with higher 

community weighted mean fecundity (Figure 4.3). Higher spring SST at greater depths correlates 

with increased community weighted mean fecundity. Greater depth and warmer winter SST 

correlate with lower community weighted mean PC3 (Figure 4.3), i.e. higher mean trophic level. 

Warmer spring SST and higher fishing pressure correlate with lower trophic level (higher PC3).  

 

Quarter has a negative relationship with PC1, but correlates positively with PC3 (Figure 4.3), i.e. 

hauls caught in spring have faster community weighted mean pace of life, and lower mean trophic 

level. Year is correlated with positively with PC1 and PC2, i.e. over time at average values of SST, 

depth and fishing pressure, communities are trending towards slower community weighted mean 

pace of life and higher fecundity. 

 

4.4.4 Communities at larger spatial extents 

How community was defined affected the strength and direction of relationship between the 

variables and the community weighted mean PC values (Figure 4.4). Fishing pressure in 

interaction with other variables gained in importance as community was defined at coarser 

resolutions. Here we contrast the above findings with results from models where community was 

defined at the largest spatial extent. We focus on results from this resolution by way of 

illustration as it is not yet clear which resolution is the most ecologically meaningful. For tables of 

all model summaries see Appendix Tables C.1, C.2 and C.3. 

 

For communities defined at 250 x 250km extent, community weighted mean of PC1 was positively 

correlated with winter SST, SST variation and the interaction of spring SST with depth. Community 
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weighted mean of PC1 was negatively correlated with the interaction of winter SST with fishing 

pressure (Figure 4.4) – warmer winter SST with more fishing pressure relates to faster lived 

communities, as does the interaction between warmer winter SST and spring SST. PC2 had similar 

direction and significance of relationships to PC1 in communities defined at the largest (coarsest) 

spatial resolution (Figure 4.4). The main difference was depth had a positive relationship with 

community weighted mean fecundity, and a negative effect in interaction with SST variation, and 

warmer spring SST in areas of higher fishing pressure relating to higher community fecundity 

(Figure 4.4). 

 

At the largest spatial resolution, fishing pressure interacts with higher winter SST to correlate with 

faster lived communities with lower fecundity (Figure 4.4) – i.e. communities with greater 

proportions of opportunistic life history strategies. At this resolution, warmer spring SST at 

greater depths correlates with slower lived species with higher fecundity – more of the 

community having periodic and equilibrium strategies.    

 

The strongest effects on PC3 in 250 x 250km communities were depth as a main effect and the 

interaction of fishing pressure with spring and winter SST and depth (Figure 4.4). More fishing 

pressure at greater depth or at higher spring SST correlates with higher community weighted 

mean trophic level, whereas more fishing pressure at higher winter SST correlates with lower 

community weighted mean trophic level. At the largest spatial scales, the effects of quarter and 

year are small or non-significant (Figure 4.4). 
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Figure 4.4. Comparison of relative importance of covariates across community resolutions.  
A) Effects of SST, depth and fishing pressure and their two-way interactions on community 
weighted mean of PC1 (representing pace of life Life history axis) at each community resolution. B) 
Effects of SST, depth and fishing pressure on community weighted mean of PC2 (representing 
reproductive investment life history axis) at each community resolution. C) Effects of SST, depth 
and fishing pressure on community weighted mean of PC3 (representing trophic level) at each 
community resolution. Depth = depth, SNSP = spring sea surface temperature, SNSW = winter sea 
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surface temperature, sst_var = sea surface temperature variation, fp = fishing pressure. All 
continuous covariates are average values at resolution of community. Year = year that sample was 
obtained, Quarter = difference in community composition in hauls caught in spring (reference level 
is hauls caught in winter). Communities were defined at the level of haul (1), or all hauls in grid cells 
aggregated by factors of 5, 10, 20 or 50 (see methods). Number of observations (communities) per 
model: res1 = 8160, res5 = 6030, res10 = 3945, res20 = 1963, res50 = 564. In all panels, x axis 
represents change in community weighted mean value of PC associated with a one standard 
deviation change in each model term. Vertical lines represent 95% Confidence interval. CIs 
overlapping continuous horizontal lines indicate that the slope of the relationship is not significantly 
different from zero (no effect). The colour of points and vertical lines refers to the terms in the 
model. If a point and vertical line are the same colour, this represents a main effect. If point and 
vertical line are different colours, this represents the interaction between two main effects as per 
the legend. Significant effects have been coloured for clarity. For graphic with colours 
corresponding to all effects regardless of significance see Appendix Figure C.2. The size of points 
refers to community resolution of the model as per the legend. Light grey vertical bar highlight 
terms associated with fishing pressure.  

4.5 Discussion 

Fishing pressure, the main driver of change in marine systems in recent human history (Sala & 

Knowlton, 2006), is expected to interact with species’ inherent characteristics to affect 

community composition. Recent work using European datasets of large spatial and temporal 

extent has found fishing pressure to be of low relative importance to fish relative abundance and 

distribution (Rutterford et al., 2015), and community life history strategy (Beukhof et al., 2019; 

Pecuchet et al., 2017). We provide evidence for the correlation between fishing pressure and 

community life history strategy, highlight that our ability to detect this signal is dependent on the 

scale at which a community is defined, and show that the relative importance of fishing pressure 

increases as communities are defined at larger scales. We suggest this scale dependency arises 

from the relationship between fish movement and the environmental variability that 

communities experience.  

 

4.5.1 Life history variation 

The three principle components describing life history variation for the fish in our dataset closely 

aligned with the findings of other works describing marine life history variance (Beukhof et al., 

2019; Pecuchet et al., 2017). Our first two PC’s describe pace of life and reproductive investment 

– well established life history axes in other systems (Healy et al., 2019). Interestingly, our third PC 

described trophic level, a dimension of variation not applicable to plants and not traditionally 

included in terrestrial life history frameworks (Healy et al., 2019). This third principle component 

was where our characterisation of life history variation differed most from related studies. 

Trophic level was not found to covary with environmental variables by Beukhof et al. (2019) 

(whose life history trait dataset we use), whereas in our data the strongest correlations between 
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environmental variables and community weighted means were with PC3 (trophic level) across all 

scales. Visually, the plot representing our first and second principle components aligns very 

closely with Pecuchet et al.’s PC plot, and our axes of pace of life and reproductive investment 

map onto their archetypal analysis of opportunistic (fast growing, low fecundity), periodic (high 

fecundity, low juvenile survival) and episodic (long generation time, high juvenile survival) life 

histories. Again, our main deviation from this characterisation of life history strategies is our third, 

orthogonal trophic level axis.  

 

Of the 16 commercial species studied by de Castro et al. (2015) present on our dataset, 12 had 

higher than average trophic level. It may be that the surprising positive relationship between 

community mean weighted tropic level and fishing pressure at greater depths and warmer 

summer SST arises from fishing vessels seeking areas with high stocks of these fish, rather than 

the fishing pressure driving high community trophic level.  

 

4.5.2 Scale at which community is defined  

Factors contributing to community composition include all conditions that community members 

have experienced. When community is defined at the level of haul, we are associating community 

structure with fishing pressure in the 5 minute grid cell where the haul occurred (approx. 5 x 5 

km). However, much of the community will move in an area greater than 5 minutes (Probst et al., 

2021; Neat et al., 2014; de Castro et al., 2015; Shephard et al., 2011), and so community mean 

values will have been affected by environmental values outside of that cell. Defining community 

at the level of haul asks the model whether there is an association between community weighted 

mean traits in that haul, and fishing pressure in that 5 minute grid cell. Defining community at 

lower spatial resolutions allows us to ask whether there is an association between community 

composition and average fishing pressure at a larger spatial extent – and so is likely to capture a 

more realistic value of the fishing pressure experienced by much of the community.  

 

Terms involving fishing pressure have some of the lowest relative importance in models at the 

smallest spatial scale. We suggest that increased relative importance of fishing pressure at greater 

spatial scales relates to the amount of variability in environmental variables experienced by the 

community. SST and depth exhibit low variability at small spatial extents, SST especially showing a 

gradient of values. This means SST values associated with a community in one area are likely to be 

similar to SST nearby, i.e. average temperature over a small area will be similar to average 

temperature over the larger surrounding area, and so even at fine scale community resolutions, 

temperature gives a good amount of information about the full range temperature experienced 

by the community in the broader area. This is not true of fishing pressure. Because fishing 



 

 
 

65  

pressure has high variability over smaller spatial extents, fishing pressure values aggregated to 

larger spatial resolutions will be dissimilar to fine scale values. We suggest that this is why the 

relative importance of fishing pressure increases with scale in comparison to the other 

environmental variables.  

 

Stronger signal between fishing pressure and community life history strategy at lower resolution 

may additionally relate to the movement of fish. How fish use space is a key consideration of 

human impacts on marine communities (Claudet et al., 2008; Kramer & Chapman, 1999). 

Considering the high relative importance of SST and depth at high resolutions, there may be a 

closer match between these variables values at the location of a haul and the rest of the values 

experienced by a community, as fish can actively respond to gradients of temperature and depth 

in a way that they cannot respond to fishing pressure. 

 

It is not the case that the composition of communities defined at a high resolution is unaffected 

by fishing pressure, it is rather that the model is unlikely to associate high resolution fishing 

pressure with the observed community composition. This is evident in the methods of earlier 

studies finding relationships between fishing pressure and community life history. Jennings et al. 

(1999) found that fishing pressure corresponded to a decrease in the abundance of slower life 

history species. The community unit in this study was defined at approx. 300 x 300km resolution. 

Sguotti et al. (2016) linked fishing pressure to a shift towards faster lived, more productive 

species, measuring shark and ray occurrence per haul (high resolution definition of community). 

However, they did not explicitly include location specific fishing pressure in their model but 

instead compared the change in occurrence over a 112 year time period, where time represented 

an increase in fishing pressure. This corroborates the idea that rather than shifts in life history 

strategy not being evident in communities defined at a small scale, models can fail to correlate 

those shifts with fine scale data on fishing pressure. De Juan et al, (2007) also found fishing 

pressure to relate to shifts in community life history strategy. Again, the resolution of their study 

unit was less than 5 minutes, but they studied infaunal and epifaunal benthic communities where 

only four out of 38 species were fish (Citharus linguatula, Lepidotrigla cavillone, Arnoglossus 

laterna, and Lesuerogobius suerii) – i.e. communities whose constituents have small home ranges 

matching the resolution at which fishing pressure was included in the model. This supports the 

idea that the average home range of constituent species is an ecologically meaningful spatial scale 

at which to define a community. 

 

Probst et al (2021) assessed fish population use of space to determine whether MPAs provide 

relief from human pressure. For 48 species from Probst et al. (2021), the average width of a 
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consistent core area was 150km, i.e. on average 50% of populations of species in our dataset 

could were found in areas of approx. 150 x 150km. Their data come from populations in the North 

Sea, and populations in the North East Atlantic can differ in ranging and spatial patterning (de 

Castro et al., 2015; Neat et al., 2014). However, the size of these consistent core areas imply that 

grid cells of around 150 x 150km may be an ecologically meaningful resolution at which to define 

community. Additionally de Castro et al find approx. 60 x 60 km to be the scale that best explains 

the effects of fishing pressure on fish length, and Neat et al (2014) find the home range of Atlantic 

cod (Gadus morhua) is similar to our lowest resolution definition of community (all hauls in 

approx. 250 x 250km). These studies suggest fish movement for species with high abundance in 

our dataset to be closer to our maximum sizes (250  250km) than our minimum (5 x 5km) 

community resolution. However, the home range of one of our less abundant species shorthorn 

sculpin (Myoxocephalus scorpius) is estimated to be less than our highest resolution definition of 

community (approx. 5 x 5 km) (Ivanova et al., 2018). We therefore suggest the use of community 

weighted mean home range for further study – average (or median) annual or ecosystem specific 

seasonal range of all species in a study (i.e. all DATRAS species, or all species in a LME) weighted 

by abundance, as a potential metric for deciding the resolution at which to define a community.  

 

Our study is similar to, and in many ways corroborates findings from both Beukhof et al. (2019) 

and Pecuchet et al. (2017). However, there are important methodological differences, in part due 

to the greater availability of data, which allow us to build on and expand findings from both 

works. Considering communities at a lower resolutions, and including annual fishing pressure data 

allowed us to find support for the high relative importance of fishing pressure in explaining 

community life history. This evidence of scale dependency in the observed relationships between 

environmental variables and life history community composition is extremely important, in 

particular, the increased signal of anthropogenic effects at larger scales. Our findings may explain 

why studies carried out at small spatial extents, or studies at large extents defining community at 

a high resolution may find weak evidence for the relationship between fishing pressure and life 

history strategies in fish communities. Studying systems at ecologically meaningful scales best 

enables us to detect signals of the variables affecting those systems. This is crucial for our ability 

to make informed decisions about sustainable management in light of global change.   

 

4.5.3 Limitations 

We defined communities as all hauls in grid cells aggregated by a factors of 5, 10, 20 and 50, 

showing the relationships between our covariates and community life history to change with 

scale. However, these communities are not necessarily spatially co-located with actual ecosystem 

boundaries. Additionally, the average width of consistent core area grid cells for 48 species after 
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Probst et al (2021) falls between the width of our second lowest and lowest resolution 

communities. Though our traits values are ecosystem specific (Beukhof et al., 2019), we are still 

limited to one value per species. Other studies investigating the scale dependence of fishing 

pressure impacts on fish communities  (de Castro et al., 2015; Shephard et al., 2011) have used 

the LFI, an OSPAR metric for good ecosystem health. LFI does not capture the breadth of 

information present in life history data, but by assuming one value for each life history trait per 

species, we are relating fishing pressure to changes in relative abundance of species with certain 

life history trait values, but we are not capturing whether fishing pressure is associated with any 

change in life history trait values within species. Further work should aim to incorporate both of 

these elements; how abundance of species with certain life history strategies changes with the 

environment, but also whether species show changes in life history in response to the 

environment – particularly fishing pressure, as has been shown in cod (Gadus morhua) (Andersen 

et al., 2007; Jørgensen et al., 2009) and other commercial species (Sharpe & Hendry, 2009).  

 

Though DATRAS marine survey data exists for most European waters from 1985 onwards, the 

temporal extent of available fishing pressure data constrained our study to the last 12 years. 

Given the potential effects of the North Atlantic Oscillation (NAO) (Báez et al., 2021; de Eyto et al., 

2016; Stige et al., 2006), and the potential temporal mismatch between the action of 

environmental variables i.e., temperature anomalies and community life history structure, a 

longer time series would be ideal for disentangling fish community responses to environmental 

conditions. Due to available computing resources, we constrained the spatial extent of this study 

to the Celtic-Biscay Shelf ecosystem. Including a larger subset of the DATRAS data in our study 

(especially data from the well-studied North sea), would be useful as a follow up to other works, 

in particular the works of Beukhof et al (2019) and Pecuchet et al. (2017) which we have built on, 

in order to see how results from our updated methods compare to findings in the same areas. 

Larger standard errors in the coarsest resolution models is likely due to the smaller sample size of 

the model datasets – larger sample sizes would increase the power of these models. We did not 

include information on salinity, chlorophyll concentration or sea bottom temperature in our 

analyses. These variables are expected to be relevant to fish occurrence and abundance, though 

findings of their importance have been inconsistent in recent studies (Beukhof et al., 2019; 

Pecuchet et al., 2017; Rutterford et al., 2015). As we used GLMMs in our analysis, we do not 

explicitly account for spatial autocorrelation in the data. We find that community life history traits 

are related to fishing pressure, and that the signal of this relationship varies with scale. We 

suggest that some measure of the average movement of fish in a community could be a good way 

to decide the most ecologically meaningful scale to investigate this relationship, but we do not 

have the data to explicitly test that in this study. 
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4.6 Conclusion 

Fishing pressure correlates with community weighted mean life history strategies in marine 

communities. How community composition correlates with fishing pressure depends on the scale 

at which community is defined and the movement of species within the community. In order to 

understand the drivers of ecological patterns, and the divergent responses of species to global 

change, we must consider the spatial extent at which organisms and communities are 

experiencing the environment.  
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Chapter 5 Twin pressures of intensification and abandonment negatively impact grassland 

biodiversity in the Burren.  

 

Authors: Caroline M. McKeon, Alain Finn, Maria P. Long, Ian Donohue, Yvonne M. Buckley 
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authors provided feedback on the manuscript.   

Status: A version of this manuscript was accepted at Biology and Environment: Proceedings of 

the Royal Irish Academy in July 2022 and is currently in press (McKeon et al., 2022). 

5.1 Abstract  

A major component of Earth’s dry surface is human-managed grassland, making the relationships 

among management actions, grassland biodiversity and ecosystem services of great ecological 

interest. Common management practises—fertiliser addition and large herbivore grazing—

influence grassland diversity and productivity. The Nutrient Network, a distributed research 

effort, investigates these relationships across grasslands at a global scale. The Burren contains 

internationally important grasslands with high biodiversity maintained by traditional farming 

practices. Using six years of data from the Slieve Carran Nutrient Network site, we examine the 

effects of fertilisation and large mammal herbivory on plant diversity and biomass in a unique 

Irish context. We find 1) fertiliser addition and herbivore exclusion both decrease diversity and 

increase biomass, and 2) independent of our experimental treatments, biomass increased 

throughout the study. Our findings on treatment effects align with results from the wider Nutrient 

Network experiment. Additionally, the increase in biomass during the study is consistent with an 

abandonment effect. This research shows twin pressures of agricultural intensification and 

abandonment of traditional management practises detrimentally impact Burren grassland 

biodiversity. This is relevant to future management decisions, as biodiversity provides key 

ecosystem services in the Burren, including supporting tourism contributing to local communities. 

5.2 Introduction  

Grasslands are the primary terrestrial land use globally, encompassing over 20% of the world's dry 

surface (Ramankutty et al., 2008). They cover a wide range of habitats and vary greatly in terms of 

management, productivity, cultural value, and conservation status, providing multiple benefits to 
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people (Binder et al., 2018; Millennium Ecosystem Assessment, 2005). Productive grasslands 

support livestock and, at the same time, diverse grasslands provide a myriad of regulating, 

cultural and provisioning ecosystem services (Haughey et al., 2018; Allan et al., 2015; Balvanera et 

al., 2013). Historically, and through ongoing agricultural changes in the last century, human 

management affects grassland ecology. Through land use changes, such as intensification or 

abandonment, fertilisation and grazing regimes influence the productivity and diversity of 

grasslands. It is, therefore, important to have both general and site-specific understanding of how 

management affects the ecological processes that maintain biodiversity, productivity and species 

composition within grasslands. 

 

5.2.1 Drivers of grassland productivity and diversity 

Two key human influences on grassland ecosystems are nutrient addition and large mammal 

herbivory. Human activities have greatly increased the availability of nutrients in terrestrial 

systems (Foley et al., 2007), raising primary productivity and reducing species diversity (Crawley 

et al., 2005; Harpole & Tilman, 2007). Human alteration of grazing regimes also influences both 

productivity and biodiversity (Millennium Ecosystem Assessment, 2005; Foley et al., 2011). Plant 

species face a trade-off between coping with low nutrient environments and competing for light 

(Dybzinski & Tilman, 2007). When nutrient availability in grassland systems is increased, nutrient-

limited species can outcompete their low nutrient-competent neighbours (Hautier et al., 2009). At 

the same time, a trade-off also exists between competing for light and investing in herbivore 

defences (Lind et al., 2013; Grime & Pierce, 2012). As a result, even in high nutrient systems, 

herbivores are expected to “rescue” (maintain) species diversity by a) creating light availability 

through disturbance and biomass removal and b) selectively grazing on species with lower 

herbivory defence (Borer, Seabloom, et al., 2014). Though there is clear evidence of the 

relationship between nutrient addition and diversity loss, the underlying mechanism behind this 

relationship is not always clear (Adler et al., 2011; Grace et al., 2014). Soil, climate, grazing regime 

and species identity all influence these relationships (Bakker et al., 2006; Dwyer & Laughlin, 2017; 

Faucon et al., 2017). While some general ecological patterns have been found in grassland 

systems, some relationships can be context-specific.  

 

5.2.2 The Nutrient Network 

The Nutrient Network (NutNet) is a globally-distributed collaborative research network 

established to investigate how nutrient addition and herbivory affect grassland productivity, 

diversity and composition at the global scale (Borer, Harpole, et al., 2014). NutNet uses consistent 

methodology across environmental gradients with realistic levels of complexity to directly 
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compare the relationship between, and the mechanisms underpinning, productivity and diversity 

across the globe. When investigating the effects of nutrient addition and herbivory on 

productivity and diversity, a multi-site study by Borer and Seabloom et al. (2014) showed rescue 

effects of herbivory on grassland diversity in nutrient enhanced systems. In 2015, we established 

a NutNet site at Slieve Carran to test whether the relationships established in Borer and Seabloom 

et al. (2014) are borne out in the unique context of a highly diverse calcareous Irish grassland. 

Though the NutNet study sites were designed to be analysed in the context of a globally-

distributed experiment, it is nonetheless informative to report the striking evidence of how 

human management alters the grassland ecology in the context of the Burren.  

 

5.2.3 Unique Irish context  

The Burren is one of the most unique ecological systems in Europe due to the co-occurrence of 

artic-alpine and Mediterranean flora which are otherwise geographically and climatically distinct 

(Webb & Scannell, 1983). Covering an area of approximately 350 km2, it is characterised by its 

landscape of exposed limestone rock and deposited boulder clay, containing low intensity 

livestock farmland and semi natural grasslands supporting high floral diversity. Some 70% of 

Ireland’s native plant species are found in a land area equating to approximately 1% of the total 

land area of the island of Ireland (Webb & Scannell, 1983). 

 

The Burren’s unique hydrology (Drew, 1990; Osborne et al., 2003), geology (Jeffrey, 2003) and 

cultivation (Dunford & Feehan, 2001) history all contribute to its highly diverse flora. Historically, 

the Burren comprised a rich soil supporting extensive pine woodlands, which were cleared for 

cultivation by early farmers, resulting in soil erosion (Feeser & O’Connell, 2010, 2009). By the 17th 

century, most of the remaining hazel woodlands were cleared, converting the landscape into a 

mostly open farmed landscape (Feeser & O’Connell, 2009). Permeable limestone rock and shallow 

soil lead to low water availability during summer months (Drew, 1990). Combined with warming 

characteristics of the exposed rock, relativity high soil temperature is maintained well into the 

winter months, extending the growing season. These features lead to the locally adapted practice 

of transhumance or ‘winterage’, where livestock forage in the lowlands in summer before being 

moved to the uplands in winter (Dunford & Feehan, 2001). Winter grazing prevents dominant 

plants from monopolising resources, reducing competition for nutrients, light and space (Borer, 

Seabloom, et al., 2014; Parr et al., 2009). The absence of summer grazers allows flowering plants 

to thrive, flower and reproduce while physical disturbance and biomass removal through grazing 

during winter foraging allows for an increase in potential seedling establishment (Jutila & Grace, 

2002). 
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In light of agricultural intensification and reduction in traditional land management across Europe 

(Quintas-Soriano et al., 2016; Zabel et al., 2019), a mechanistic and context-specific understanding 

of the drivers of grassland diversity is relevant to navigating environmental and agricultural 

sustainability issues. Here, we describe the effects of globally important agricultural 

managements—nutrient addition and large herbivore grazing—on biodiversity and productivity in 

a species diverse grassland in the Burren. 

 

5.2.4 Other Burren studies 

Large herbivore exclosures have been used previously to investigate the relationship between 

traditional management (grazing) and diversity and productivity in the Burren. Moles et al. (2005) 

found a steep decline in overall plant diversity in a fenced exclosure, with grass species increasing 

in abundance, concluding that the disturbance provided by grazing animals is integral to the 

conservation of Burren grassland biodiversity. Deenihan et al. (2009),in a follow-up study at the 

same exclosure, found increased heather and scrub cover and decreased grassland and pavement 

cover during the 15-year exclosure experiment, also concluding that there was a loss of diversity 

as a result. Notably, a similar (though smaller in scale) shift towards heather and scrub was 

observed in unfenced plots, suggesting that the traditional management regime within the 

National Park may not be effective in prevent scrub encroachment. Additionally, over a three-year 

exclosure experiment, Long (2011) found significant decreases in both plant species richness and 

Simpson’s Diversity Index across four grassland exclosure sites. Long (2011) noted the complete 

loss of certain species such as Euphrasia agg, Linum catharticum, Odontites vernus and 

Rhinanthus minor from some or all fenced plots, as well as decreases in Prunella vulgaris and both 

Trifolium pratense and T. repens. In contrast, a minority of species were found to increase in cover 

in response to the fencing, including Potentilla erecta and Pteridium aquilinum, though the most 

consistent increases were in grass species cover (all species combined). Long (2011) also found 

significant increases in litter in fenced and, to a lesser extent, unfenced (control) plots. 

 

5.2.5 Aims 

Here, we examine the effects of nutrient addition and exclusion of large herbivores on the 

productivity and biodiversity in traditionally managed high nature value grassland in the Burren 

National Park, Co Clare. We quantified changes in grassland productivity (biomass) and diversity 

(species richness, Shannon diversity, inverse Simpsons index and species evenness) across 

treatments over six years to assess the individual and combined effects of fertilisation and 

grazing. We aim to provide quantitative evidence for the interacting effects of these management 

actions, and to assess whether general relationships between biodiversity and management 
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actions found in other grassland systems are borne out in the floristically unique grasslands of the 

Burren.   

5.3 Methods  

5.3.1 Study site 

The experiment was conducted on calcareous grassland at Slieve Carran (N53.07202, W-

8.992624) in the Burren National Park, Co. Clare. The site has been traditionally managed with 

annual winter cattle grazing, which has been reduced in recent years. The site at the top of a 

small hillock at an elevation of 112 m above sea level, with a mean annual temperature of 9.8 

degrees Celsius and 1320 mm of mean annual precipitation. We found 85 vascular plant species 

during the experiment (Appendix Table D.3.), putting Slieve Carran in the 81st percentile for 

species richness out of 128 NutNet sites globally. There are two forms of human activity at the 

study site. “Management” refers to the National Parks and Wildlife Service (NPWS) traditional 

winter grazing, and “treatment” refers to the experimental manipulations (that is, fencing and 

nutrient addition) carried out within the context of this grassland study. In addition to the 

intended experimental treatments, there were unanticipated changes in the management at the 

site with a reduction in grazing over the course of the experiment. 

 

5.3.2 Experimental treatments 

The experiment was arranged in three blocks, each containing ten 5 x 5 m plots. Within each 

block there is one unfenced control plot, and seven plots each receiving annual addition of a fully-

factorial fertilizer treatment of Nitrogen (N), Phosphorus (P) and Potassium (K) in single, double 

and three-way combinations. Each block also has a herbivore exclosure (fenced plot) with NPK 

addition, and a fenced plot with no added nutrients. Fenced plots were constructed with aviary 

wire mesh extending 2 m in height. Fertiliser was added annually in April as described in Appendix 

Table D.1. Permanent plots were established during year one when initial measurements and soil 

cores (Table D.2.) were taken prior to treatments being established. Field data were collected in 

late July and early August and dry weight of biomass obtained. For full details of treatment and 

data collection, see https://nutnet.org/exp_protocol and https://nutnet.org/nutrients. 

 

5.3.3 Data collection and analyses 

Data were collected for one pre-treatment year (2015), and for five subsequent years of 

experimental manipulation (2016-2020). Every year in each plot, we conducted relevés, 

determining species identity and percent cover in 1 x 1m permanent quadrats, and collected 10 

cm x 2 m biomass strips from successive positions from which we obtained dry weight. We used 
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General Linear Mixed Models (GLMMs) (Bates et al., 2015) to determine whether four key 

treatments—control (that is, unfenced plots with no nutrient addition), fencing, NPK and NKP + 

fencing—were associated with changes in biomass, species richness, Shannon diversity, inverse 

Simpsons index and species evenness over the course of the experiment. We addressed non-

independence in the data arising from repeated sampling by including the experimental blocks as 

random effects in our models, and assessing models with multiple optimizers to account for the 

low number of replicates (three) of the blocks. We also used the “vegan” community ecology 

package (Oksanen et al., 2020) to apply Permutational Multivariate Analysis of Variance to a 

Jaccard dissimilarity matrix (Jaccard, 1912) to assess whether the treatments and management 

actions at the site were driving changes in species identity among plots. We concentrate our 

formal analysis here on the NPK and fence treatments and do not analyse the one-way and two-

way nutrient addition treatments here due to lack of power in the site-level experimental design 

to detect relatively small changes in biomass and diversity. Analyses were done in R Studio 

version 3.6.3 (R Core Team, 2020). All code used in this study is available at DOI: 

10.5281/zenodo.6967631. 

5.4 Results  

We found that both productivity and diversity changed at our experimental grassland site over 

the course of the experiment, with biomass generally increasing and measures of diversity 

generally decreasing over time (Figure 5.1). On control plots with no added nutrients, plant 

biomass increased, species richness showed no significant change, and Shannon diversity and the 

inverse Simpsons index decreased (Figure 5.2). In unfenced NPK+ and fenced NPK+, species 

richness and Shannon diversity decreased significantly over the course of the experiment (Figure 

5.2). For the fenced control with no added nutrients, species richness decreased significantly, 

while neither biomass, Shannon diversity nor inverse Simpsons index showed significant change 

(Figure 5.2). Permutational MANOVA (Figure 5.3) indicates that fencing and nutrient addition 

treatments (Pseudo-F = 6.3036, R2 = 0.218, p < 0.001), year (Pseudo-F = 7.4012, R2 = 0. 096, p < 

0.001), and the interaction between them (treatment*year: Pseudo-F = 2.5599, R2 = 0. 074, p < 

0.001) account for over 36% of the variance in species identity among plots (see Figure 5.4 for 

snapshot of changes in species identity). 
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Figure 5.1. Grassland biodiversity in experimental plots belonging to the various experimental treatments.  
Plots based on values for each treatment over three blocks. Boxes show interquartile range. Central line 
shows median. Whiskers show 1.5 times the interquartile range. Colours correspond to treatments as 
described in legend.  
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Figure 5.2. Effects of treatments on biomass and diversity.  
Model estimates of the changes in A. biomass, B. species richness, C. Shannon diversity, D. inverse 
Simpsons index and E. species evenness in plots with no added nutrients, fenced, NPK and NPK + 
fenced plots over the course of the experiment. Coloured lines show model estimates for the mean. 
Coloured bands show 95% confidence intervals. Colours correspond to treatments as described in 
legend. Adjacent tables show model outputs. Model terms with statistically significant increases 
are highlighted in blue, and model terms with statistically significant decreases are highlighted in 
red. 
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Figure 5.3. Nonmetric Multidimensional Scaling of compositional dissimilarity by A) treatment 
and B) year.  
Two dimensional ordination of Jaccard’s dissimilarity in species’ identity among plots. Each point 
corresponds to an individual experimental plot in a single year. The shapes and colours of points 
correspond to unfenced and fenced plots with no added nutrients, unfenced NPK+ and fenced 
NPK+, and years 2015-2020.  
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Figure 5.4. Species occurrence in final year of treatment (2020).  
Occurrence of the 44 species recorded in the final year of the experiment across the four main treatments. 
Dots are coloured by whether a species occurred in 1/3 plots (yellow), 2/3 plots (orange) or 3/3 plots (red). 
White/blank spaces represent no occurrence of a species in any plots of a particular treatment in 2020.  
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5.5 Discussion  

There was a clear effect of fertiliser addition and herbivore exclusion on both productivity and 

biodiversity at Slieve Carran, with the effects of the treatments increasing over time. Metrics of 

productivity and diversity responded differently to the treatments, but the combination of 

fencing and nutrient addition was consistently important, decreasing diversity and increasing 

biomass production. As evidenced by significant increases in unfenced control plot biomass, 

changes in the site management regime appear to have been affecting the plant community since 

the beginning of the experiment, highlighting the importance of continued management in 

maintaining this unique and diverse ecosystem. 

 

Theory predicts that, in grassland ecosystems, nutrient addition will increase productivity by 

shifting the balance to favour species that have invested in light competition over nutrient 

capture, leading to decreased diversity (Hautier et al., 2009). Theory also predicts that large 

herbivores will maintain diversity by increasing light availability (Borer, Seabloom, et al., 2014). 

Both these predictions are borne out at Slieve Carran, as highlighted by the differences in 

response to the treatments. The combined fertiliser and fencing treatment had the most 

immediate, the largest, and the most consistent influence across diversity and productivity 

metrics. In the final year of experimental manipulation (Year 6), unfenced plots with no added 

nutrients had a median of 30 species, while fenced NPK+ plots had a median of just five species. 

The fenced and fertilised treatment prevents herbivory, and the consequent build-up of biomass 

reduces light availability under the canopy, while simultaneously increasing soil nutrient 

availability. These results are consistent with findings from grasslands around the globe (Borer, 

Seabloom, et al., 2014) but are particularly notable because of the high biodiversity previously 

maintained at this site by the traditional winter grazing. The findings are also consistent with 

other exclosure studies from the Burren (e.g. (Long, 2011; Deenihan et al., 2009; Moles et al., 

2005), which, though limited to grazing exclusion (that is, the study did not examine the effects of 

nutrient addition), demonstrated both significant decreases in plant richness and diversity and 

shifts in species composition. It is as yet unclear whether these effects plateau, or whether 

continued treatment would continue to increase biomass and decrease diversity. Recent work 

suggests, however, that low intensity herbivory is unlikely to be able keep pace with increasing 

biomass arising from sustained nutrient addition, particularly in low nutrient systems (Borer et al., 

2020). 
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5.5.1 Biomass 

Though biomass increased across all treatments, with the largest increases in fenced NPK+ 

treatments, this increase was not significantly different to the increase across unfenced plots with 

no added nutrients. The increase in biomass across control plots indicates an abandonment 

effect, consistent with, albeit not as extreme as, the complete experimental exclusion of large 

herbivores. Traditional winter grazing has been responsible for maintaining high diversity by 

increasing light availability through physical disturbance and removal of biomass (i.e. Figure 5.4). 

Anecdotal evidence of reduction in this management is consistent with the significant increase in 

biomass across all plots, including unfenced control plots, throughout the experiment. This 

experiment has not been running sufficiently long to show succession from grassland to woodland 

in the non-grazed plots. However, hazel saplings and brambles are emerging across the site, 

suggesting the potential for the transition to hazel woodland with the long-term decrease in 

traditional management. As the conservation objective for this site includes restoring “favourable 

conservation condition of semi-natural dry grasslands” (NPWS, 2022), increased intensity of 

conservation grazing may be needed. If monitoring of the site is maintained as conservation 

grazing is intensified, it may be possible to investigate whether grazing can provide “rescue” from 

the effects of fertilisation on diversity. 

 

5.5.2 Diversity 

Overall, diversity decreased in response to fertiliser addition and herbivore exclusion. Different 

diversity metrics—species richness, Shannon diversity, inverse Simpson’s index and species 

evenness—describe diversity in different ways, and so responded differently to the treatments.  

Inverse Simpsons index decreased through time, possibly in response to the reduction in 

traditional management, but did not show additional decreases in fertilised plots in comparison 

to the unfenced controls. While species richness did not decrease in response to the reduction in 

traditional management (that is, unfenced control plots did not change significantly), richness and 

Shannon’s diversity decreased in response to the fertiliser treatments. These differences reflect 

the ability of the metrics to describe different dimensions of diversity (Jost, 2006). Richness—

purely the sum of number of species—most readily detects the loss of species from a plot, 

Shannon diversity measures proportional change in relative abundance, while inverse Simpsons 

index gives even more weight to changes in abundance, and so is less affected by the loss of rare 

species. These differences indicate that the reduction in winter grazing caused shifts in relative 

abundance, while the most immediate effect of nutrient addition was the loss of rare species, 

followed to a lesser extent by changes in ratios of abundance. This may imply that while nutrient 

addition and herbivory may appear to counterbalance one another, they work through different 

mechanisms and so affect aspects of grassland diversity in different ways. 
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Analysis of Jaccard dissimilarity indicates that treatment, management and their interaction 

account for over 36% of differences in species identity between plots, implying these actions are 

contributing to species turnover. Given the link between species identity, function and service 

(Luck et al. 2009; Byrnes et al. 2014), particularly in the context of agricultural land managed for 

its biodiversity and cultural benefits (Binder et al. 2018), this provides further evidence for the 

negative effects of both intensification and abandonment on grasslands in the Burren. 

 

5.5.3 Limitations 

The three-replicate design of the experiment is not ideally suited to answering questions about an 

individual study site. Our models had relatively low statistical power as a consequence. While this 

did not constrain our ability to detect large changes, it could have hampered our ability to detect 

smaller effects. For example, stochastic differences in initial plot biomass would be expected to 

average out over high numbers of replicate blocks. Initially low Shannon diversity and inverse 

Simpsons index values in fenced control plots may have obscured the effects of complete 

herbivore exclusion without the influence of fertiliser. Visually, Shannon diversity in fenced 

control plots showed a downward trend, but our models did not have sufficient power to detect 

statistical significance. We use statistical analysis to provide evidence of a correlation between 

variables measured in our experiment - response variables (biomass and diversity), and nutrient 

addition and year. We consider available information about the system (unquantified reduction in 

winter grazing) to inform our interpretation of these results. However, the reduction in winter 

grazing was not part of the original experimental design and this leads to limitations. Including 

experimental Burren sites from more than one location may have shown differences in 

management, providing a contrast to the effects of relaxation of traditional management at the 

Slieve Carran site. While nutrient addition appears to have had a larger impact on diversity than 

fencing, we cannot compare the effects of fencing to a true control due to the reduction in winter 

grazing. Including other sites at which grazing was not reduced would allow us to explicitly test 

the effects of grazing reduction in addition to the effects of nutrient addition and grazing 

exclusion tested at our site. However, despite these limitations, our experiment demonstrates 

clearly the detrimental combined effects of nutrient addition and herbivore exclusion to this 

highly biodiverse grassland system. 

5.6 Conclusion 

We provide quantitative evidence that nutrient addition and herbivore exclusion together 

decreased biodiversity and increased productivity (plant biomass) at Slieve Carran. Loss of rare 
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species is the most immediate response to nutrient addition, while change in relative abundance 

is the more immediate result of the reduction in grazing. Our results are consistent with findings 

from a global network of manipulative grassland experiments, as well as a suite of smaller-scale 

local exclusion studies, showing that nutrient addition and large mammal herbivory can 

respectively decrease and rescue grassland diversity. Our findings strengthen the case for  the 

maintenance of winter grazing and no nutrient addition as strategies for managers seeking to 

promote high grassland biodiversity. Additionally, our findings support winter grazing as a 

management strategy to help reduce the loss of biodiversity in systems under low levels of 

nutrient addition. 
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Chapter 6 General discussion 

6.1 Human influence is an ecological force 

There is a tendency to investigate ecological patterns outside of human influence; what would 

have happened, or what would be happening, if human activity was not a dominant physical 

pressure on the surface of the earth. If we are interested in sustaining and evening enhancing life 

on earth, then we must understand ecological dynamics, patterns, and processes in light of 

human pressure (Ellis, 2015, 2019; Liu et al., 2007). If we are interested in knowledge for 

knowledge’s sake, then it remains the case that species are reacting in their complex, intrinsic and 

emergent ways to the fact of human influence as though it was (and it is) just another external 

force affecting ecology and evolution. Though we may try to be impartial and objective scientists 

studying ecology and evolution, we are ultimately social mammals, acting as scientists, steeped in 

cultural context and subject to those very forces which we are trying to study. Whether it’s the 

legacy of a belief in dominion over the creatures of the earth (Holland, 2019; Stafford, 2002) or 

denial over the extent to which our lives, disproportionally the lives of those in the global north 

(Steffen et al., 2015), are affecting all other lives on the planet, we are too often blind to our own 

presence as a unignorable part of the “natural” world (Mace, 2014). If we include our own 

influence in our investigations of life on earth, we will better understand and protect it. 

 

Considering human influence as an ecological force allows for more holistic ecological 

investigations. Human impacts are currently pervasive throughout the biologically suitable 

terrestrial surface of the earth (Ellis et al., 2010; Ellis & Ramankutty, 2008) and the most 

productive marine habitats (Jones et al., 2018). Our influence has increased dramatically in the 

last century (Almond et al., 2020; Ellis, 2019; Sguotti et al., 2016; Steffen et al., 2015) and this 

increase is most pronounced in some of the most biologically suitable areas (Kennedy et al., 2019; 

Venter et al., 2016). In spite of this, and the evidence that human pressure is the main driver of 

biodiversity loss and ecosystem change (Díaz et al., 2019; Newbold et al., 2015), human influence 

is not always considered as an ecological variable (Ellis, 2015, 2019). In chapter two I investigate 

species’ divergent responses to human pressure, building on work updating classic climate-based 

biogeographic paradigms of global vegetation patterns to include human impact (Ellis & 

Ramankutty, 2008; Olson et al., 2001). I find global vegetation patterns are shaped by both 

climate and human land use, and that human land use is comparable to some dimensions of 

climate in affecting plant occurrence across life forms. This adds to a better understanding of 

which forces are shaping contemporary global ecological patterns. I find that including human 

pressure as a model component improves our understanding of species spatial patterns (Chapter 
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3) and patterns of life history strategy in marine communities (Chapter 4), and that contemporary 

and traditional human land management practises interact to affect biodiversity (Chapter 5). In 

summary, this thesis shows how human activity is relevant to our fundamental ecological 

understanding, and our ability to assess and mitigate the ecological impacts of global change.  

 

Human’s ecological impacts, e.g. lower probability of occurrence for trees in a grassland (Chapter 

2) are in some cases intuitive. There is abundant evidence for the negative ecological impacts of 

human pressure (Almond et al., 2020; Brondizio et al., 2019; Díaz et al., 2019; Foley et al., 2005; 

Grooten, Almond, & (Eds), 2018), and increasingly detailed maps of how humans use the land 

(Ellis & Ramankutty, 2008; Kennedy et al., 2019; Ramankutty et al., 2008; Ramankutty & Foley, 

1999; Venter et al., 2018; Venter & Sydenham, 2021) and sea (ICES, 2021; Kroodsma et al., 2018). 

In spite of this, chapter two provides novel empirical evidence for how human land use and 

climate drive life form occurrence at a global scale, highlighting how there can be a disconnect 

between the study of ecology and reality of human activity.  

6.2 Scale matters   

In the ecological literature, discrepancies in our findings about the natural world arise from the 

metrics used to describe patterns, but also from the scale at which those patterns are measured 

(Chase & Knight, 2013; Eriksson & Hillebrand, 2019b; Gonzalez et al., 2016b; Hautier et al., 2018; 

Suggitt et al., 2019). Spatial scale is often explicitly considered in the meta-community and 

community ecology literature (Chase et al., 2019; Sandel & Smith, 2009), where species-area 

relationships may be relevant to responses (i.e. species richness), but are sometimes considered 

only implicitly in the study of other patterns – e.g. in observational studies or studies of individual 

species or suites of species (Estes et al., 2018; Teng et al., 2020). Matching the scale at which a 

pattern is studied to the scale at which a factor is affecting the pattern is key to our ability to 

understand the relationship between the two (Chase, 2014; Craven et al., 2020; Sandel & Smith, 

2009; Windsor et al., 2022) and therefore integral to our ability to understand the drivers and 

consequences of global change (Chase et al., 2019; de Castro et al., 2015; Estes et al., 2018; Levin, 

1992; Santini et al., 2021; Shephard et al., 2011; Teng et al., 2020).  

 

The impacts of scale on ecological patterns is mediated by the variance in environmental factors 

experienced by the ecological unit under study, and how the ecological unit experiences variance 

is in turn mediated by the extent and resolution at which the pattern is investigated (chapters 3 

and 4), and the ecological behaviour of organisms (chapter 4) (movement, dormancy, dispersal) 

(Levin, 1992; Sandel & Smith, 2009). In terrestrial plant systems studied at short temporal time 
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scales, experienced variability is mediated by scale of investigation. The impacts of human 

pressure were most clearly comparable to the impacts of non-human environmental factors 

(climate) in chapter two. Though this was the study with the largest spatial extent, the resolution 

of the response data was quite high – occurrence and abundance of species in quadrats/transects 

< 1km2. This chapter may therefore have constituted the most ecologically realistic scale of 

investigation, as the large spatial extent allowed for high variability in the climate data, but at the 

same time, the high resolution response data could capture the signal of human land use, 

expected to relate to ecological patterns at a finer scale than climate (Bruelheide et al., 2018; Carl 

et al., 2016). In chapter 3, our low resolution occurrence data prevented us from adequately 

interrogating the effect of human footprint on species’ patterns, as species experience variability 

in human footprint at resolutions finer than 50 x 50km (Carl et al., 2016). Interestingly, the 

variables acting over the largest temporal scales (phylogeny and past climate change velocity) had 

the strongest signals, indicating a potential match between the scale of patterns and processes in 

space and time.  

 

In marine systems, when considering ecological communities comprised of mobile fish species, 

experienced variability is mediated by scale of the investigation and by fish movement. This is 

important for how fish communities relate to fishing pressure vs other non-human environmental 

variables. Through movement, fish control how they experience variability in temperature and 

depth, but not how they experience fishing pressure, again positioning human pressure as an 

additional force acting to shape species’ realised niche. Finally, the high spatial resolution and low 

extent in Chapter 5 illustrates the importance of scale by contrast to the other chapters. The 

extent is so small that the influences of climate and human influence cannot be compared, due to 

the invariability of climate at the spatial and temporal scale of the study.  

6.3 Future research  

In this thesis, while studying relationships between ecological patterns and their potential drivers, 

I have tried to integrate human influence, multiple scales of study and a consideration of species 

intrinsic traits. In future work, I would like to incorporate more variation in, and comparison 

between, traits and scales within studies, and focus on ecologically meaningful scales. 

 

6.3.1 Ecologically meaningful scales  

One of the draw backs of observational/macroecological studies is that they can be constrained 

by available data. In Chapter 2, our response variables are occurrence and abundance (local 

abundance when present), though more ideally I would investigate landscape scale abundance 



 

 
 
86  

i.e. commonness, in line with Raunkiaer’s original analyses (Smith, 1909). Additionally, an 

extension of Chapter 3 would be to compare the effect sizes of human footprint and past and 

contemporary climate variables over multiple resolutions of response data (based on species 

occurrence), similar to Carl et al. (2016) who compare the signal of contemporary climate and 

land cover on spring vegetation greening in central Europe over a range of spatial grains. 

Empirical data on endemic European species (Atlas Flora Europea) is not available at resolutions 

higher than 50 x 50 km, but a potential alternative would be using GBIF (GBIF, 2022) data with a 

some correction of recorder bias (i.e. (Baudraz, 2022, Chapter 4)). Fundamentally the finding from 

chapter 4 is that human pressure – community trait relationships vary with scale. Though I make 

an argument for what scale may best capture how communities experience fishing pressure, I do 

not have the data needed to support this. Obtaining data to calculate a community weighted 

mean home range/core area would give us more confidence interpreting the direction and 

relative importance of effects on community life history traits, allowing us to ask how species are 

differentially affected by their current environment.  

 

6.3.2 Response to human influence is mediated by species intrinsic traits 

Intrinsic traits have been shown to relate to range size (Estrada et al., 2015; Sporbert et al., 2021) 

and range filling (Estrada et al., 2018), and I originally intended to study how intrinsic traits 

related to metrics of spatial pattern, with a particular interest in how traits related to different 

processes (e.g. dispersal vs persistence/disturbance tolerance) might be expected to relate to 

range size compared to range structure (Sporbert et al., 2021), but was limited by data 

availability. This could potentially be studied with more open source trait data, and higher 

resolution plant occurrence. Further, comparing relationships between high and low resolution 

traits i.e. functional trait data (seed mass, SLA, plant height, dispersal vector) and life form, and 

high and low resolution occurrence data across metrics of spatial pattern could be an avenue for 

disentangling the mechanisms feeding into spatial pattern e.g. dispersal vs disturbance tolerance 

vs thermal niche.  

 

A further expansion on this work would be to compare or integrate information from intrinsic 

trait data for different resolutions. Low resolution traits (Life Form) were most available, and 

showed findings (Chapter 2) in line with other work – slow lived large species respond most 

negatively to human pressure (Beukhof et al., 2019; Carmona et al., 2021; Jennings & Blanchard, 

2004; Leung et al., 2020; Pecuchet et al., 2017), while fast lived, generalist disturbance tolerant 

species show the most positive response to human pressure. I am hesitant to interpret specific 

findings from our investigation of how fish life history traits relate to fishing pressure, due to 

uncertainty around the most meaningful ecological scale. However, it is clear that community 
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weighted mean life history traits show differing relationships with fishing pressure. The direction 

of the relationships between trophic level and fishing pressure is particularly interesting, as 

fishing is expected to negatively affect trophic level, but is not independent from fish community 

attributes, i.e. fishing is deliberately carried out where communities have high desirability, which 

can relate to size or trophic level (Essington et al., 2006; Pauly et al., 1998). In Chapter 5, different 

diversity metrics are sensitive to different dimensions of community change. Similarly, it may be 

that intrinsic traits of different resolutions are suited to capturing patterns at different scales. For 

example, how does fishing pressure relate to Large Fish Index (LFI) vs community life history 

traits? Do these different measures of community traits show the signal of human footprint at 

different scales? It may that be that shifts in size distribution are detected at smaller scales (de 

Castro et al., 2015; Shephard et al., 2011), whereas shifts in community weighted life history 

strategies is evident at larger scales, i.e. local scale changes in attributes of individuals occurs 

before the extirpation of local populations (Csergő et al., 2017). 

 

Though chapter 5 touches on biotic interactions, missing from this thesis is a study of how biotic 

interactions compare to climate, human influence, phylogenetic legacy as determinants of 

ecological patterns. Chapter five again provides the only manipulation experiment – all other 

chapters rely on correlations between observations. The use of natural experiments could provide 

an avenue to combine the benefits of broad scale observational data with the opportunity to 

investigate processes behind the patterns. 

6.4 Conclusion 

In investigating human land use and plant life form, human footprint and species spatial pattern, 

and fishing pressure and community traits, I find that including human pressure along with non-

human ecological variables explains variation in ecological patterns, and that how species 

response to human pressures is mediated by their intrinsic traits. The relationship between 

human pressure and ecological patterns depends on the scale at which the pattern is studied - at 

some scales, the effects of human pressure on ecological patterns are comparable in magnitude 

to the effects of non-human environmental variables like climate or depth. Both the study of 

ecology and creating a sustainable future for living things on the planet require a realistic 

understanding of how species are affected by their environment. This necessitates considering all 

elements of the environment that species are experiencing in ecological studies – including 

human pressure (Ellis, 2015, 2019; Liu et al., 2007). Human activity is currently the most pressing 

cause of ecological change, and has been a force affecting ecological systems for thousands of 

years. Ignoring human influence in ecological investigations hampers our ability to understand 
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and protect life on earth (Folke et al., 2021). To understand the impacts of human pressure on 

natural systems, and how its impacts compare in importance to environmental variables (e.g. 

climate and climate change), it is essential to consider the scales at which these forces are acting 

(Chase et al., 2019; Estes et al., 2018; Levin, 1992; Santini et al., 2021; Teng et al., 2020). To make 

sense of the varied or divergent responses to ecological factors across the complexity of life, it is 

helpful to view species by the characteristics mediating their response to the environment – their 

intrinsic traits (Funk et al., 2017; Lavorel et al., 2002).  
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Appendix A | Supplementary information for Chapter 2 

 
Table A.1. Data sources. 

Data source Variable role Variable type Variable  
PREDICTS 
(Hudson et al., 2016b) 
 

Response 
variables  

Occurrence, 
Abundance 

Presence/absence, 
Percent cover 

 
 
 
 
 
Explanatory 
variables 

Land use Ten land use types:  
Primary forest,  
unknown Secondary vegetation,  
Mature secondary vegetation, 
Intermediate secondary 
vegetation, Young secondary 
vegetation, Plantation forest, 
Primary non-forest, Pasture, 
Cropland, Urban 

Site level total 
species richness 

Species richness 

Random effects 
 

Class, Order, Family, Genus, 
Species,  
Source, Study, Site, Block 

BIOCLIM 
(Fick & Hijmans, 2017) 

Climate Mean annual temperature (MAT),  
Temperature seasonality (SD) 
(MAT_var),  
Mean annual precipitation (MAP),  
Mean annual precipitation 
seasonality (coefficient of 
variation) (MAP_var) 

TRY & BIEN 
(Kattge et al., 2011) & 
(Maitner et al., 2018) 

Life form  Raunkiærian life form: 
Phanerophytes, Chamaephytes, 
Hemicryptophytes, Cryptophytes, 
Therophytes 

 
 
 
 



 

 
 
122  

 
Figure A.1. Map of data origins. Site locations are shown with green empty circles. Colours refer 
to biomes after Ramankutty & Foley (1999) from Ellis et al. (2010). 
 

Figure A.2. Relative proportions of model data. White bars represent occurrence data, solid grey 
bars represent abundance data. Panels. A-D represent relative proportions of occurrence data in 
land use categories, occurrence data in life form categories, abundance data in land use 
categories and abundance data in life form categories respectively.  
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Supplementary information A.1. Data validation extended methods. 
Data from 73 studies were included our analysis. All papers where checked for sampling target - 
whether authors surveyed the “entire community” (or else all vascular plants), and for whether 
sampling method and sampling effort respectively were uniform within studies. Sampling target, 
method and effort were deemed suitable for 52 studies based on information available within the 
PREDICTS database. Source papers were read to validated the sampling target (20 studies) and 
sampling effort (one study) of remaining studies. After validation, six studies remained 
outstanding (Table A.2.), five whose target was not “entire community” and one with inconsistent 
sampling effort. Of studies which did not survey “entire community”, two surveyed only 
herbaceous species, two only woody species, and one only palms, all in forest habitats. The 
details of the vegetation sampling for the study with inconsistent sampling effort could not be 
verified. These studies represent less than 6% of the data used in our models. 
 
Table A.2. Studies not targeting “entire community” or with non-uniform sampling effort. 

Source_ID (paper) Study_name SS (Study) Issue  
DL1_2009__Barquero Small Palms DL1_2009__Barquero 1 Sampling target 

not “entire 
community” 

DL1_2009__Barquero Medium Palms DL1_2009__Barquero 2 
DL1_2009__Barquero Large Palms DL1_2009__Barquero 3 
DL1_2012__Hernandez Large Plants DL1_2012__Hernandez 1 
SC1_2004__Kolb Herbaceous plants 

Germany 
SC1_2004__Kolb 1 

SC1_2010__Baeten Ancient and post 
agricultural 
forests_Belgium 

SC1_2010__Baeten 1 

SC1_2012__ 
GendreauBerthiaume 

Boreal mixedwoods SC1_2012__ 
GendreauBerthiaume 1 

SC2_2011__LucasBorja Vegetation Sampling SC2_2011__LucasBorja 1 

Sampling effort 
not uniform 
within study 

 
 
 

 
Figure A.3. Biome averages for climatic variables. MAT = Mean annual temperature, MAT_var = 
Mean annual temperature variation, MAP = Mean annual precipitation. 
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Figure A.4. Ecoregion averages for climatic variables. MAT = Mean annual temperature, MAT_var 
= Mean annual temperature variation, MAP = Mean annual precipitation. 
 
 

 
Figure A.5. Comparison of Climate and Land use Abundance effects. In histograms A and D orange 
bars represent magnitude of land use effects, purple bars represent magnitude of climate effects. 
Panels B, E and C show illustrative effect sizes of land use (for primary forest, pasture and cropland 
and urban land uses), and climate (for MAP var, MAT and MAT var) to enable interpretation of A 
and D. A -  the distribution of effect sizes for life form by land use (dashed orange lines in B), 
compared to effect of 1 SD change in climate variables (dashed purple lines in C). D - the distribution 
of effect size range within life form across land uses (solid orange line in E), compared to effect on 
life form abundance of a 1 SD change in climate variables (dashed purple lines in C). 

Land use Climate

Land use         Climate

A B C

D E

Difference from average life form occurrence
Divergence of effect within life form across land use
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Figure A.6. Species occurrence and abundance by land use and life form for models with no 
species richness. A) Effects of land use and life form on occurrence. B) Effects of climate and life 
form on occurrence. C) Effects of land use and life form on abundance. D) Effects of climate and life 
form on abundance. In A) and B) Y axis represents log-odds ratio (probability of occurrence) ( y axis 
in panel A represents the log odds minus the grand mean). In A) continuous horizontal line shows 
the centred weighted mean log-odds ratio, i.e. average probability of occurrence when at mean 
values of continuous variables, in B) the horizontal line represents zero (no relationship between 
continuous variable and response). In C) and D) Abundance data describes species’ local dominance 
when present. Y axis represents scaled and logit transformed non-zero %cover data. In C) Horizontal 
line shows the weighted mean of this response, i.e. average (transformed) %cover when continuous 
variables are zero, in D) the horizontal line represents zero (no relationship between continuous 
variable and response). In A) and C) Horizontal line segments show land use means (across all life 
forms). Circular (coloured) points show “population” means, as estimated by the model, of the 
response variable within land uses for each life form. Points lower/higher than the horizontal line 
indicate that the mean probability of occurrence or abundance estimate of that particular land 
use*life form combination is lower/higher than the data average. In B and D) Circular (coloured) 
points represent the slope of relationship (change in log-odds ratio or abundance estimate), 
associated with 1 SD change in climate for each life form. In A-D) vertical lines represent 95% 
Confidence interval. CIs overlapping horizontal lines indicate that the probability of occurrence or 
abundance estimate is not significantly different from average. Total number of observations in 
occurrence model = 624,696 for 4804 species, and abundance model = 19,384 for 883 species. 
Note, abundance data for mature secondary forest were not available. 
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Figure A.7. Plot of climate values by land use type. Map(_var) = mean annual precipitation 
(variation), mat(_var) = mean annual temperature (variation). Plot based on sites included in 
occurrence models. 
 

 
Figure A.8. Maximum and mean distances between sites within studies which contributed data 
to this work. Red line represents mean values (i.e. average maximum study extent (left hand 
panel), and average distance between sites within a study (right hand panel)). 
 



 

 
 

127  

 
Figure A.9. Map of sites within the study with the largest extent. The maximum distance 
between sites within this study was 733km.  
 

 
Figure A.10. Map of sites within the study with the second largest extent. The second largest 
distance between sites within a study was 664km. 
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Figure A.11. Map of sites within the study with the median maximum extent (24km). 
 

 
 

 
Figure A.12. Histogram of data per region. (A) Number of Studies per region, (B) number of sites 
per region. 
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Table A.3. Occurrence model output. Estimate refers to the Log Odds of occurrence. Colon indicates 
interaction between main effects. Terms highlighted in blue have significant positive effects, terms highlighted 
in red have significant negative effects. Reference level is the weighted grand mean of the data (average log 
odds of occurrence across all land uses and life forms when continuous variables are zero). Model outputs 
have been rounded to three decimal place, and averages of values that differed at the third decimal place 
where obtained in order to recombine weighted effects coding outputs. 

Model terms Estimate Std.Error z value Pr(>|z|) 

Primary forest : therophyte -0.4820000 0.041 -11.8310000 0.0000 

Primary non-forest : therophyte -0.0720000 0.040 -1.7965000 0.0720 

Young secondary : therophyte 0.0860000 0.079 1.0885000 0.2760 

Intermediate secondary : therophyte -0.1910000 0.062 -3.0700000 0.0020 

Mature secondary : therophyte 0.0450000 0.080 0.5570000 0.5770 

unknown Secondary : therophyte -0.0730000 0.045 -1.6480000 0.0990 

Plantation forest : therophyte 0.3250000 0.074 4.4220000 0.0000 

Cropland : therophyte 0.3700000 0.028 13.0705000 0.0000 

Urban : therophyte 0.4030000 0.092 4.3580000 0.0000 

therophyte -0.1910000 0.032 -5.9030000 0.0000 

therophyte : species richness 0.1530000 0.026 5.9360000 0.0000 

therophyte : map 0.0690000 0.063 1.0870000 0.2770 

therophyte : map_var 0.1360000 0.044 3.0875000 0.0020 

therophyte : mat -0.0450000 0.043 -1.0630000 0.2880 

therophyte : mat_var 0.0920000 0.044 2.0970000 0.0360 

Primary forest : hemicryptophyte -0.3320000 0.030 -11.1500000 0.0000 

Primary non-forest : hemicryptophyte 0.2230000 0.026 8.5990000 0.0000 

Young secondary : hemicryptophyte 0.2480000 0.052 4.7495000 0.0000 

Intermediate secondary : hemicryptophyte -0.0720000 0.022 -3.3215000 0.0010 

Mature secondary : hemicryptophyte -0.0540000 0.020 -2.7310000 0.0060 

unknown Secondary : hemicryptophyte 0.0030000 0.030 0.1140000 0.9095 

Plantation forest : hemicryptophyte -0.1145000 0.041 -2.8220000 0.0050 

Cropland : hemicryptophyte -0.1070000 0.038 -2.8170000 0.0050 

Urban : hemicryptophyte 0.0650000 0.043 1.5085000 0.1310 
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Table A.3. Occurrence model output. Estimate refers to the Log Odds of occurrence. Colon indicates 
interaction between main effects. Terms highlighted in blue have significant positive effects, terms highlighted 
in red have significant negative effects. Reference level is the weighted grand mean of the data (average log 
odds of occurrence across all land uses and life forms when continuous variables are zero). Model outputs 
have been rounded to three decimal place, and averages of values that differed at the third decimal place 
where obtained in order to recombine weighted effects coding outputs. 

Model terms Estimate Std.Error z value Pr(>|z|) 

hemicryptophyte -0.1500000 0.022 -6.8975000 0.0000 

hemicryptophyte : species richness 0.2740000 0.015 18.3500000 0.0000 

hemicryptophyte : map -0.1090000 0.060 -1.8130000 0.0700 

hemicryptophyte : map_var 0.1200000 0.034 3.5045000 0.0000 

hemicryptophyte : mat -0.2020000 0.027 -7.4340000 0.0000 

hemicryptophyte : mat_var -0.1070000 0.028 -3.8455000 0.0000 

Primary forest : chamaephyte -0.2420000 0.052 -4.6845000 0.0000 

Primary non-forest : chamaephyte -0.2750000 0.079 -3.4770000 0.0010 

Young secondary : chamaephyte -0.1060000 0.118 -0.9025000 0.3670 

Intermediate secondary : chamaephyte -0.0300000 0.054 -0.5535000 0.5800 

Mature secondary : chamaephyte 0.0190000 0.061 0.3080000 0.7580 

unknown Secondary : chamaephyte 0.1950000 0.053 3.6530000 0.0000 

Plantation forest : chamaephyte 0.1000000 0.072 1.3810000 0.1670 

Cropland : chamaephyte -0.1330000 0.075 -1.7670000 0.0770 

Urban : chamaephyte 0.1080000 0.107 1.0080000 0.3130 

chamaephyte -0.1320000 0.031 -4.2185000 0.0000 

chamaephyte : species richness 0.1500000 0.027 5.6330000 0.0000 

chamaephyte : map 0.0186667 0.087 0.2133333 0.8310 

chamaephyte : map_var 0.0630000 0.062 1.0240000 0.3060 

chamaephyte : mat 0.1190000 0.066 1.7945000 0.0730 

chamaephyte : mat_var 0.1390000 0.051 2.7350000 0.0060 

Primary forest : phanerophyte 0.1130000 0.007 16.8270000 0.0000 

Primary non-forest : phanerophyte -0.1580000 0.028 -5.6755000 0.0000 

Young secondary : phanerophyte -0.0950000 0.021 -4.6420000 0.0000 



 

 
 

131  

Table A.3. Occurrence model output. Estimate refers to the Log Odds of occurrence. Colon indicates 
interaction between main effects. Terms highlighted in blue have significant positive effects, terms highlighted 
in red have significant negative effects. Reference level is the weighted grand mean of the data (average log 
odds of occurrence across all land uses and life forms when continuous variables are zero). Model outputs 
have been rounded to three decimal place, and averages of values that differed at the third decimal place 
where obtained in order to recombine weighted effects coding outputs. 

Model terms Estimate Std.Error z value Pr(>|z|) 

Intermediate secondary : phanerophyte 0.1160000 0.018 6.4320000 0.0000 

Mature secondary : phanerophyte 0.3080000 0.054 5.7255000 0.0000 

unknown Secondary : phanerophyte -0.0150000 0.017 -0.8600000 0.3900 

Plantation forest : phanerophyte 0.0330000 0.015 2.2100000 0.0270 

Cropland : phanerophyte -0.2090000 0.022 -9.6050000 0.0000 

Urban : phanerophyte -0.3450000 0.092 -3.7290000 0.0000 

phanerophyte 0.1460000 0.017 8.6845000 0.0000 

phanerophyte : species richness -0.0950000 0.005 -20.7295000 0.0000 

phanerophyte : map 0.0050000 0.006 0.9540000 0.3400 

phanerophyte : map_var -0.0540000 0.011 -4.7300000 0.0000 

phanerophyte : mat 0.2200000 0.026 8.4580000 0.0000 

phanerophyte : mat_var 0.0440000 0.020 2.1740000 0.0300 

Primary forest 0.0200000 0.012 1.5860000 0.1130 

Primary non-forest -0.1793333 0.023 -7.6456667 0.0000 

Young secondary 0.0870000 0.034 2.5430000 0.0110 

Intermediate secondary 0.0440000 0.018 2.4820000 0.0130 

Mature secondary 0.0630000 0.032 1.9620000 0.0500 

unknown Secondary 0.2830000 0.025 11.3060000 0.0000 

Plantation forest -0.1480000 0.028 -5.3525000 0.0000 

Cropland -0.2350000 0.023 -10.3420000 0.0000 

Urban 0.1850000 0.060 3.0835000 0.0020 

Grand Mean -1.5790000 0.216 -7.3085000 0.0000 

species richness 0.8350000 0.012 68.2205000 0.0000 

map -0.1240000 0.022 -5.7075000 0.0000 
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Table A.3. Occurrence model output. Estimate refers to the Log Odds of occurrence. Colon indicates 
interaction between main effects. Terms highlighted in blue have significant positive effects, terms highlighted 
in red have significant negative effects. Reference level is the weighted grand mean of the data (average log 
odds of occurrence across all land uses and life forms when continuous variables are zero). Model outputs 
have been rounded to three decimal place, and averages of values that differed at the third decimal place 
where obtained in order to recombine weighted effects coding outputs. 

Model terms Estimate Std.Error z value Pr(>|z|) 

map_var -0.0710000 0.039 -1.8100000 0.0700 

mat -0.1490000 0.043 -3.4570000 0.0010 

mat_var -0.7370000 0.074 -9.9550000 0.0000 

Pasture : therophyte 0.0560000 0.037 1.5160000 0.1300 

Primary non-forest : cryptophyte 0.0830000 0.074 1.1310000 0.2580 

Young secondary : cryptophyte 0.3640000 0.086 4.2560000 0.0000 

Intermediate secondary : cryptophyte -0.2050000 0.046 -4.4910000 0.0000 

Mature secondary : cryptophyte -0.1180000 0.040 -2.9250000 0.0030 

unknown Secondary : cryptophyte 0.0490000 0.058 0.8470000 0.3970 

Plantation forest : cryptophyte -0.4150000 0.069 -6.0090000 0.0000 

Pasture : cryptophyte 0.0530000 0.048 1.0995000 0.2715 

Cropland : cryptophyte 0.4770000 0.076 6.2780000 0.0000 

Urban : cryptophyte -0.2740000 0.114 -2.4050000 0.0160 

cryptophyte -0.1690000 0.036 -4.7375000 0.0000 

cryptophyte : species richness 0.2670000 0.027 9.9670000 0.0000 

cryptophyte : map -0.3400000 0.135 -2.5210000 0.0120 

cryptophyte : map_var 0.1750000 0.063 2.7910000 0.0050 

cryptophyte : mat -0.4470000 0.076 -5.8960000 0.0000 

cryptophyte : mat_var -0.3000000 0.059 -5.0645000 0.0000 

Pasture : hemicryptophyte 0.1300000 0.015 8.8045000 0.0000 

Pasture : chamaephyte 0.2550000 0.040 6.3785000 0.0000 

Pasture -0.0130000 0.019 -0.6955000 0.4870 

Primary forest : cryptophyte 0.0520000 0.059 0.8750000 0.3810 

Pasture : phanerophyte -0.3010000 0.025 -12.0210000 0.0000 
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Table A.4. Abundance model output. Estimate refers to the scaled and logit transformed non-zero percent 
cover data. Colon indicates interaction between main effects. Terms highlighted in blue have significant 
positive effects, terms highlighted in red have significant negative effects. Reference level is the weighted 
grand mean of the data (average (transformed) percent cover when continuous variables are zero). Model 
outputs have been rounded to three decimal place, and averages of values that differed at the third decimal 
place where obtained in order to recombine weighted effects coding outputs. 

Model terms Estimate Std.Error t value 

Cropland : therophyte -0.0410 0.089 -0.4650 

Intermediate secondary : therophyte -0.1820 0.051 -3.5480 

Mature secondary : therophyte : species richness 0.0090 0.040 0.2300 

Pasture : therophyte 0.0020 0.029 0.0670 

Plantation forest : therophyte 0.0690 0.065 1.0660 

Primary forest : therophyte 0.0100 0.101 0.0950 

Primary non-forest : therophyte -0.0360 0.107 -0.3370 

unknown Secondary : therophyte 0.6520 0.174 3.7540 

Urban : therophyte -0.0070 0.102 -0.0730 

Young secondary : therophyte 0.0760 0.041 1.8510 

therophyte -0.0730 0.027 -2.7380 

therophyte : map -0.2610 0.151 -1.7280 

therophyte : map_var 0.2710 0.073 3.7080 

therophyte : mat -0.3610 0.080 -4.4840 

therophyte : mat_var 0.1290 0.055 2.3620 

Cropland : cryptophyte -0.1090 0.104 -1.0460 

Intermediate secondary : cryptophyte 0.0100 0.041 0.2480 

Mature secondary : cryptophyte : species richness 0.0580 0.035 1.6640 

Pasture : cryptophyte 0.0100 0.024 0.4000 

Plantation forest : cryptophyte 0.0070 0.061 0.1170 

Primary forest : cryptophyte -0.0470 0.060 -0.7830 

Primary non-forest : cryptophyte 0.0730 0.099 0.7320 

unknown Secondary : cryptophyte -0.5300 0.237 -2.2330 

Urban : cryptophyte 0.1680 0.091 1.8440 
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Table A.4. Abundance model output. Estimate refers to the scaled and logit transformed non-zero percent 
cover data. Colon indicates interaction between main effects. Terms highlighted in blue have significant 
positive effects, terms highlighted in red have significant negative effects. Reference level is the weighted 
grand mean of the data (average (transformed) percent cover when continuous variables are zero). Model 
outputs have been rounded to three decimal place, and averages of values that differed at the third decimal 
place where obtained in order to recombine weighted effects coding outputs. 

Model terms Estimate Std.Error t value 

Young secondary : cryptophyte -0.0030 0.075 -0.0390 

cryptophyte -0.0080 0.022 -0.3460 

cryptophyte : map -0.2410 0.188 -1.2840 

cryptophyte : map_var -0.1590 0.073 -2.1870 

cryptophyte : mat 0.0780 0.090 0.8650 

cryptophyte : mat_var 0.0170 0.049 0.3510 

Cropland : hemicryptophyte 0.0680 0.055 1.2220 

Intermediate secondary : hemicryptophyte 0.0280 0.011 2.6120 

Mature secondary : hemicryptophyte : species richness -0.0290 0.012 -2.3920 

Pasture : hemicryptophyte 0.0060 0.006 0.9910 

Plantation forest : hemicryptophyte -0.0320 0.022 -1.4680 

Primary forest : hemicryptophyte -0.1430 0.026 -5.4170 

Primary non-forest : hemicryptophyte -0.0270 0.038 -0.7150 

unknown Secondary : hemicryptophyte 0.0550 0.132 0.4120 

Urban : hemicryptophyte 0.0190 0.027 0.7230 

Young secondary : hemicryptophyte 0.0180 0.021 0.8360 

hemicryptophyte -0.0040 0.008 -0.5950 

hemicryptophyte : map 0.3410 0.060 5.7090 

hemicryptophyte : map_var -0.0450 0.031 -1.4610 

hemicryptophyte : mat 0.0100 0.036 0.2610 

hemicryptophyte : mat_var -0.0360 0.019 -1.9130 

Cropland : chamaephyte 0.1770 0.127 1.3930 

Intermediate secondary : chamaephyte -0.0580 0.034 -1.7120 

Mature secondary : chamaephyte : species richness 0.0600 0.034 1.7840 
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Table A.4. Abundance model output. Estimate refers to the scaled and logit transformed non-zero percent 
cover data. Colon indicates interaction between main effects. Terms highlighted in blue have significant 
positive effects, terms highlighted in red have significant negative effects. Reference level is the weighted 
grand mean of the data (average (transformed) percent cover when continuous variables are zero). Model 
outputs have been rounded to three decimal place, and averages of values that differed at the third decimal 
place where obtained in order to recombine weighted effects coding outputs. 

Model terms Estimate Std.Error t value 

Pasture : chamaephyte 0.0050 0.019 0.2430 

Plantation forest : chamaephyte 0.1050 0.052 2.0180 

Primary forest : chamaephyte 0.0410 0.049 0.8390 

Primary non-forest : chamaephyte 0.0550 0.138 0.4000 

unknown Secondary : chamaephyte 0.0470 0.150 0.3140 

Urban : chamaephyte -0.0170 0.070 -0.2460 

Young secondary : chamaephyte -0.2240 0.078 -2.8570 

chamaephyte 0.0150 0.020 0.7360 

chamaephyte : map -0.3860 0.126 -3.0700 

chamaephyte : map_var -0.0840 0.074 -1.1370 

chamaephyte : mat 0.0570 0.072 0.7910 

chamaephyte : mat_var -0.0440 0.045 -0.9860 

Cropland : phanerophyte -0.0500 0.111 -0.4540 

Intermediate secondary : phanerophyte 0.0380 0.064 0.5970 

Mature secondary : phanerophyte : species richness 0.0070 0.037 0.2010 

Pasture : phanerophyte -0.0580 0.029 -2.0140 

Plantation forest : phanerophyte -0.0180 0.042 -0.4290 

Primary forest : phanerophyte 0.1040 0.021 4.8350 

Primary non-forest : phanerophyte 0.0220 0.075 0.2910 

unknown Secondary : phanerophyte -0.1870 0.090 -2.0820 

Urban : phanerophyte -0.3180 0.107 -2.9610 

Young secondary : phanerophyte -0.1240 0.067 -1.8600 

phanerophyte 0.0590 0.026 2.3025 

phanerophyte : map -0.2280 0.115 -1.9835 
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Table A.4. Abundance model output. Estimate refers to the scaled and logit transformed non-zero percent 
cover data. Colon indicates interaction between main effects. Terms highlighted in blue have significant 
positive effects, terms highlighted in red have significant negative effects. Reference level is the weighted 
grand mean of the data (average (transformed) percent cover when continuous variables are zero). Model 
outputs have been rounded to three decimal place, and averages of values that differed at the third decimal 
place where obtained in order to recombine weighted effects coding outputs. 

Model terms Estimate Std.Error t value 

phanerophyte : map_var -0.0450 0.066 -0.6860 

phanerophyte : mat 0.2720 0.059 4.6120 

phanerophyte : mat_var 0.0080 0.046 0.1730 

Cropland -0.0340 0.168 -0.2020 

Intermediate secondary 0.0870 0.022 3.8710 

Mature secondary : species richness -0.1050 0.017 -6.0290 

Pasture 0.1420 0.015 9.2880 

Plantation forest -0.8280 0.099 -8.3850 

Primary forest 0.0200 0.032 0.6255 

Primary non-forest 0.1070 0.040 2.6440 

unknown Secondary -0.6920 0.087 -7.9670 

Urban 0.0700 0.045 1.5505 

Young secondary -0.0310 0.047 -0.6530 

Grand Mean -0.0135 0.238 -0.0570 

map 0.0470 0.114 0.4160 

map_var 0.0810 0.103 0.7860 

mat -0.0790 0.087 -0.9120 

mat_var -0.1560 0.124 -1.2585 

 

Table A.5a. Effect size for Life form Occurrence by Land use. Effect size refers to the difference in Log Odds 
between the weighted grand mean of the data (average log odds of occurrence across all land uses and life forms 
when continuous variables are zero), and the estimate for particular life form in a particular land use. 

Land use Life form Effect size 

Plantation forest cryptophyte -0.732 

Primary forest therophyte -0.654 

Primary non-forest chamaephyte -0.586 
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Table A.5a. Effect size for Life form Occurrence by Land use. Effect size refers to the difference in Log Odds 
between the weighted grand mean of the data (average log odds of occurrence across all land uses and life forms 
when continuous variables are zero), and the estimate for particular life form in a particular land use. 

Land use Life form Effect size 

Cropland chamaephyte -0.500 

Cropland hemicryptophyte -0.492 

Primary forest hemicryptophyte -0.462 

Primary non-forest therophyte -0.443 

Plantation forest hemicryptophyte -0.412 

Primary forest chamaephyte -0.355 

Intermediate secondary therophyte -0.339 

Intermediate secondary cryptophyte -0.329 

Cropland phanerophyte -0.299 

Primary non-forest cryptophyte -0.265 

Urban cryptophyte -0.258 

Mature secondary cryptophyte -0.224 

Primary non-forest phanerophyte -0.192 

Plantation forest chamaephyte -0.180 

Intermediate secondary hemicryptophyte -0.177 

Pasture phanerophyte -0.169 

Young secondary chamaephyte -0.152 

Pasture therophyte -0.149 

Mature secondary hemicryptophyte -0.140 

Pasture cryptophyte -0.129 

Intermediate secondary chamaephyte -0.118 

Primary non-forest hemicryptophyte -0.106 

Primary forest cryptophyte -0.098 

Mature secondary therophyte -0.083 

Cropland therophyte -0.057 

Mature secondary chamaephyte -0.050 
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Table A.5a. Effect size for Life form Occurrence by Land use. Effect size refers to the difference in Log Odds 
between the weighted grand mean of the data (average log odds of occurrence across all land uses and life forms 
when continuous variables are zero), and the estimate for particular life form in a particular land use. 

Land use Life form Effect size 

Pasture hemicryptophyte -0.033 

Young secondary therophyte -0.019 

Plantation forest therophyte -0.014 

Urban phanerophyte -0.014 

unknown Secondary therophyte 0.018 

Plantation forest phanerophyte 0.031 

Cropland cryptophyte 0.072 

Urban hemicryptophyte 0.099 

Pasture chamaephyte 0.109 

unknown Secondary hemicryptophyte 0.137 

Young secondary phanerophyte 0.137 

Urban chamaephyte 0.160 

unknown Secondary cryptophyte 0.163 

Young secondary hemicryptophyte 0.185 

Primary forest phanerophyte 0.278 

Young secondary cryptophyte 0.282 

Intermediate secondary phanerophyte 0.306 

unknown Secondary chamaephyte 0.346 

Urban therophyte 0.396 

unknown Secondary phanerophyte 0.414 

Mature secondary phanerophyte 0.517 

 

Table A.5b. Effect size for Life form Occurrence by Climate. Effect size refers to the change in Log Odds 
associated with a 1 SD change in a particular climate variable. See table 5 for climate variable summary 
statistics. 

Life form Climate Effect size 

cryptophyte mat_var -1.037 
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Table A.5b. Effect size for Life form Occurrence by Climate. Effect size refers to the change in Log Odds 
associated with a 1 SD change in a particular climate variable. See table 5 for climate variable summary 
statistics. 

Life form Climate Effect size 

hemicryptophyte mat_var -0.844 

phanerophyte mat_var -0.693 

therophyte mat_var -0.645 

chamaephyte mat_var -0.598 

cryptophyte mat -0.596 

cryptophyte map -0.463 

hemicryptophyte mat -0.351 

hemicryptophyte map -0.233 

therophyte mat -0.195 

phanerophyte map_var -0.125 

phanerophyte map -0.118 

chamaephyte map -0.105 

therophyte map -0.055 

chamaephyte mat -0.030 

chamaephyte map_var -0.008 

hemicryptophyte map_var 0.049 

therophyte map_var 0.065 

phanerophyte mat 0.070 

cryptophyte map_var 0.104 

 

Table A.5c. Range in Effect sizes for Life form Occurrence across Land use. Range across land uses refers to the 
maximum difference in Log Odds of occurrence within a particular life form across all  land uses. 

Life form Range across land uses 

hemicryptophyte 0.677 

phanerophyte 0.816 

chamaephyte 0.932 

cryptophyte 1.014 
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Table A.5c. Range in Effect sizes for Life form Occurrence across Land use. Range across land uses refers to the 
maximum difference in Log Odds of occurrence within a particular life form across all  land uses. 

Life form Range across land uses 

therophyte 1.050 

 
Abundance effect sizes 

Table A.6a. Effect size for Life form Abundance by Land use. Effect size refers to the difference in 
between the weighted grand mean of the data (average (transformed) percent cover when continuous 
variables are zero), and the estimate for particular life form in a particular land use. 

Land use Life form Effect size 

unknown Secondary cryptophyte -1.2295 

Plantation forest hemicryptophyte -0.8645 

Plantation forest therophyte -0.8325 

Plantation forest cryptophyte -0.8285 

unknown Secondary phanerophyte -0.8205 

Plantation forest phanerophyte -0.7865 

Plantation forest chamaephyte -0.7075 

unknown Secondary hemicryptophyte -0.6415 

unknown Secondary chamaephyte -0.6305 

Young secondary chamaephyte -0.2400 

Urban phanerophyte -0.1895 

Intermediate secondary therophyte -0.1695 

Cropland cryptophyte -0.1505 

Cropland therophyte -0.1485 

Primary forest hemicryptophyte -0.1275 

Mature secondary hemicryptophyte -0.1205 

unknown Secondary therophyte -0.1135 

Young secondary phanerophyte -0.0955 

Mature secondary phanerophyte -0.0845 

Mature secondary therophyte -0.0825 

Primary forest therophyte -0.0435 
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Table A.6a. Effect size for Life form Abundance by Land use. Effect size refers to the difference in 
between the weighted grand mean of the data (average (transformed) percent cover when continuous 
variables are zero), and the estimate for particular life form in a particular land use. 

Land use Life form Effect size 

Young secondary cryptophyte -0.0415 

Primary forest cryptophyte -0.0345 

Mature secondary cryptophyte -0.0335 

Mature secondary chamaephyte -0.0315 

Young secondary therophyte -0.0275 

Cropland phanerophyte -0.0245 

Young secondary hemicryptophyte -0.0175 

Urban therophyte -0.0115 

Primary non-forest therophyte -0.0025 

Cropland hemicryptophyte 0.0295 

Intermediate secondary chamaephyte 0.0425 

Urban chamaephyte 0.0665 

Pasture therophyte 0.0705 

Primary non-forest hemicryptophyte 0.0755 

Primary forest chamaephyte 0.0765 

Urban hemicryptophyte 0.0845 

Intermediate secondary cryptophyte 0.0895 

Intermediate secondary hemicryptophyte 0.1105 

Pasture phanerophyte 0.1435 

Pasture cryptophyte 0.1445 

Pasture hemicryptophyte 0.1445 

Cropland chamaephyte 0.1585 

Pasture chamaephyte 0.1615 

Primary non-forest cryptophyte 0.1725 

Primary non-forest chamaephyte 0.1775 

Primary forest phanerophyte 0.1835 
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Table A.6a. Effect size for Life form Abundance by Land use. Effect size refers to the difference in 
between the weighted grand mean of the data (average (transformed) percent cover when continuous 
variables are zero), and the estimate for particular life form in a particular land use. 

Land use Life form Effect size 

Intermediate secondary phanerophyte 0.1845 

Primary non-forest phanerophyte 0.1885 

Urban cryptophyte 0.2295 

 

Table A.6b. Effect size for Life form Abundance by Climate. Effect size refers to the change in 
Abundance associated with a 1 SD change in a particular climate variable. See table 5 for climate 
variable summary statistics. 

raunk_lf clim Magnitude 

therophyte mat -0.440 

chamaephyte map -0.338 

therophyte map -0.214 

chamaephyte mat_var -0.200 

cryptophyte map -0.194 

hemicryptophyte mat_var -0.192 

phanerophyte map -0.181 

phanerophyte mat_var -0.148 

cryptophyte mat_var -0.139 

cryptophyte map_var -0.078 

hemicryptophyte mat -0.070 

therophyte mat_var -0.027 

chamaephyte mat -0.022 

chamaephyte map_var -0.003 

cryptophyte mat -0.001 

hemicryptophyte map_var 0.036 

phanerophyte map_var 0.036 

phanerophyte mat 0.193 

therophyte map_var 0.352 
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Table A.6b. Effect size for Life form Abundance by Climate. Effect size refers to the change in 
Abundance associated with a 1 SD change in a particular climate variable. See table 5 for climate 
variable summary statistics. 

raunk_lf clim Magnitude 

hemicryptophyte map 0.389 

 

Table A.6c. Range in Effect sizes for Life form Abundance across Land use. Range across land uses refers 
to the maximum difference in Abundance within a particular life form across all  land uses. 

Life form Range across land uses 

chamaephyte 0.885 

therophyte 0.903 

hemicryptophyte 1.009 

phanerophyte 1.009 

cryptophyte 1.459 

 
 
Climate summary statistics 

Table A.7. Summary statistics for climatic variables. Climate variable effect size in real world terms. 
Summary statistics for a) site level climate data used in model, and differences between climate 
variable averages for b) biomes (source: (Ellis et al., 2010) and c) ecoregions (after (Oslon et al., 2001). 
Climate variable averages were calculated using bioClim values for all cells of a particular biome or 
ecoregion (see https://doi.org/10.5281/zenodo.6376554 for details). SD = Standard Deviation. MAP = 
Mean annual precipitation, MAT = Mean annual temperature, MAP_var = Mean annual precipitation 
variation, MAT_var = Mean annual temperature variation. 

Statistic map mat map_var mat_var 

Model data 

SD 1218.41 8.14 36.58 23.84 

mean 1557.93 18.39 46.87 31.15 

median 929.00 20.80 34.00 25.32 

Biome 

SD 500.35 9.13 14.02 31.01 

mean 577.00 12.96 21.95 45.52 

median 383.78 11.45 19.36 45.05 

Ecoregion 

SD 766.94 9.42 25.68 36.84 
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Table A.7. Summary statistics for climatic variables. Climate variable effect size in real world terms. 
Summary statistics for a) site level climate data used in model, and differences between climate 
variable averages for b) biomes (source: (Ellis et al., 2010) and c) ecoregions (after (Oslon et al., 2001). 
Climate variable averages were calculated using bioClim values for all cells of a particular biome or 
ecoregion (see https://doi.org/10.5281/zenodo.6376554 for details). SD = Standard Deviation. MAP = 
Mean annual precipitation, MAT = Mean annual temperature, MAP_var = Mean annual precipitation 
variation, MAT_var = Mean annual temperature variation. 

Statistic map mat map_var mat_var 

mean 965.81 11.39 34.55 44.93 

median 786.91 9.08 29.55 35.99 

 
 
Biome averages 

Table A.8. Biome averages for climatic variables. MAP = Mean annual precipitation, MAT = Mean annual 
temperature, MAP_var = Mean annual precipitation variation, MAT_var = Mean annual temperature 
variation. 

Biome map mat map_var mat_var 

Tropical Evergreen Woodland 2139.86 24.75 52.26 9.81 

Tropical Deciduous Woodland 1206.47 23.25 92.52 27.54 

Dense Shrubland 582.31 20.11 70.78 43.79 

Savanna 914.99 18.87 77.17 46.80 

Open Shrubland 264.68 16.82 75.40 72.60 

Deserts and Barren 114.81 14.74 82.77 77.11 

Temperate Evergreen Woodland 949.08 9.76 40.03 78.04 

Temperate Deciduous Woodland 882.38 9.76 32.80 78.60 

Grassland and Steppe 488.12 9.28 61.49 88.73 

Mixed Woodland 583.80 -2.78 51.52 128.83 

Boreal Woodland 583.56 -2.81 44.71 128.35 

Tundra 335.45 -10.38 56.75 123.65 

 
No species richness model outputs 



 

 
 

145  

Table A.9a. Occurrence no species richness  model output. Estimate refers to the Log 
Odds of occurrence. Colon indicates interaction between main effects. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have 
significant negative effects. Reference level is the weighted grand mean of the data 
(average log odds of occurrence across all land uses and life forms when continuous 
variables are zero). Model outputs have been rounded to three decimal place, and 
averages of values that differed at the third decimal place where obtained in order to 
recombine weighted effects coding outputs. 

Model terms Estimate Std.Error z value Pr(>|z|) 

Primary forest : cryptophyte 0.0280 0.057 0.4860000 0.6270000 

Primary non-forest : cryptophyte 0.2230 0.070 3.1960000 0.0010000 

Young secondary : cryptophyte 0.4220 0.081 5.2105000 0.0000000 

Intermediate secondary : cryptophyte -0.2940 0.043 -6.7995000 0.0000000 

Mature secondary : cryptophyte -0.0870 0.038 -2.2980000 0.0220000 

unknown Secondary : cryptophyte 0.1560 0.050 3.1285000 0.0020000 

Plantation forest : cryptophyte -0.3670 0.066 -5.5330000 0.0000000 

Pasture : cryptophyte -0.0020 0.046 -0.0505000 0.9595000 

Cropland : cryptophyte 0.3030 0.072 4.2275000 0.0000000 

cryptophyte -0.1460 0.034 -4.2405000 0.0000000 

cryptophyte : map -0.0180 0.119 -0.1530000 0.8785000 

cryptophyte : map_var 0.1110 0.060 1.8445000 0.0650000 

cryptophyte : mat -0.3480 0.073 -4.7535000 0.0000000 

cryptophyte : mat_var -0.1560 0.056 -2.7975000 0.0050000 

Primary forest : hemicryptophyte -0.3810 0.029 -13.2915000 0.0000000 

Primary non-forest : hemicryptophyte 0.2150 0.025 8.5800000 0.0000000 

Young secondary : hemicryptophyte 0.3000 0.050 6.0035000 0.0000000 

Intermediate secondary : 
hemicryptophyte 

-0.1170 0.021 -5.6980000 0.0000000 

Mature secondary : hemicryptophyte -0.0070 0.018 -0.3846667 0.7003333 

unknown Secondary : hemicryptophyte 0.1750 0.027 6.4765000 0.0000000 

Plantation forest : hemicryptophyte -0.1050 0.039 -2.7080000 0.0070000 

Pasture : hemicryptophyte 0.1110 0.014 7.8580000 0.0000000 

Cropland : hemicryptophyte -0.1850 0.036 -5.1115000 0.0000000 
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Table A.9a. Occurrence no species richness  model output. Estimate refers to the Log 
Odds of occurrence. Colon indicates interaction between main effects. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have 
significant negative effects. Reference level is the weighted grand mean of the data 
(average log odds of occurrence across all land uses and life forms when continuous 
variables are zero). Model outputs have been rounded to three decimal place, and 
averages of values that differed at the third decimal place where obtained in order to 
recombine weighted effects coding outputs. 

Model terms Estimate Std.Error z value Pr(>|z|) 

hemicryptophyte -0.1140 0.021 -5.4160000 0.0000000 

hemicryptophyte : map 0.0355 0.055 0.6450000 0.5190000 

hemicryptophyte : map_var 0.0760 0.033 2.2885000 0.0220000 

hemicryptophyte : mat -0.1350 0.026 -5.1355000 0.0000000 

hemicryptophyte : mat_var -0.0450 0.026 -1.7015000 0.0890000 

Primary forest : chamaephyte -0.2880 0.050 -5.7660000 0.0000000 

Primary non-forest : chamaephyte -0.3000 0.077 -3.9165000 0.0000000 

Young secondary : chamaephyte 0.0240 0.113 0.2090000 0.8350000 

Intermediate secondary : chamaephyte -0.0240 0.051 -0.4590000 0.6460000 

Mature secondary : chamaephyte 0.0490 0.058 0.8353333 0.4033333 

unknown Secondary : chamaephyte 0.2410 0.046 5.2200000 0.0000000 

Plantation forest : chamaephyte 0.1240 0.069 1.7855000 0.0740000 

Pasture : chamaephyte 0.2390 0.038 6.2825000 0.0000000 

Cropland : chamaephyte -0.1380 0.072 13.8165000 0.0540000 

chamaephyte -0.1040 0.030 -3.4360000 0.0010000 

chamaephyte : map 0.0440 0.081 0.5425000 0.5875000 

chamaephyte : map_var 0.0020 0.060 0.0410000 0.9670000 

chamaephyte : mat 0.1700 0.064 2.6416667 0.0080000 

chamaephyte : mat_var 0.1280 0.048 2.6765000 0.0070000 

Primary forest : phanerophyte 0.1300 0.006 20.3145000 0.0000000 

Primary non-forest : phanerophyte -0.1650 0.027 -6.1105000 0.0000000 

Young secondary : phanerophyte -0.1350 0.020 -6.8295000 0.0000000 

Intermediate secondary : phanerophyte 0.1760 0.017 10.2510000 0.0000000 
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Table A.9a. Occurrence no species richness  model output. Estimate refers to the Log 
Odds of occurrence. Colon indicates interaction between main effects. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have 
significant negative effects. Reference level is the weighted grand mean of the data 
(average log odds of occurrence across all land uses and life forms when continuous 
variables are zero). Model outputs have been rounded to three decimal place, and 
averages of values that differed at the third decimal place where obtained in order to 
recombine weighted effects coding outputs. 

Model terms Estimate Std.Error z value Pr(>|z|) 

Mature secondary : phanerophyte 0.0880 0.051 1.7295000 0.0840000 

unknown Secondary : phanerophyte -0.1150 0.016 -7.2380000 0.0000000 

Plantation forest : phanerophyte 0.0210 0.014 1.4825000 0.1380000 

Pasture : phanerophyte -0.2670 0.024 -11.1080000 0.0000000 

Cropland : phanerophyte -0.1590 0.021 -7.5545000 0.0000000 

phanerophyte 0.1140 0.016 7.0130000 0.0000000 

phanerophyte : map -0.0070 0.005 -1.2965000 0.1950000 

phanerophyte : map_var -0.0320 0.011 -2.9170000 0.0040000 

phanerophyte : mat 0.1180 0.025 4.6570000 0.0000000 

phanerophyte : mat_var -0.0040 0.019 -0.2110000 0.8330000 

Primary forest 0.1440 0.012 12.1435000 0.0000000 

Primary non-forest -0.0990 0.022 -4.4470000 0.0000000 

Young secondary -0.1850 0.032 -5.7200000 0.0000000 

Intermediate secondary -0.0340 0.017 -1.9660000 0.0490000 

Mature secondary 0.3150 0.031 10.3223333 0.0000000 

unknown Secondary 0.3370 0.025 13.5460000 0.0000000 

Plantation forest -0.3020 0.026 -11.5190000 0.0000000 

Pasture -0.0590 0.018 -3.2000000 0.0010000 

Cropland -0.3130 0.022 -14.4470000 0.0000000 

Grand Mean -1.5975 0.205 -7.8115000 0.0000000 

map 0.0200 0.021 0.9405000 0.3470000 

map_var 0.0560 0.039 1.4523333 0.1463333 

mat 0.0710 0.042 1.6710000 0.0950000 
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Table A.9a. Occurrence no species richness  model output. Estimate refers to the Log 
Odds of occurrence. Colon indicates interaction between main effects. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have 
significant negative effects. Reference level is the weighted grand mean of the data 
(average log odds of occurrence across all land uses and life forms when continuous 
variables are zero). Model outputs have been rounded to three decimal place, and 
averages of values that differed at the third decimal place where obtained in order to 
recombine weighted effects coding outputs. 

Model terms Estimate Std.Error z value Pr(>|z|) 

mat_var -0.4540 0.071 -6.3760000 0.0000000 

Primary non-forest : therophyte -0.1070 0.039 -2.7370000 0.0060000 

Young secondary : therophyte 0.2520 0.076 3.3345000 0.0010000 

Intermediate secondary : therophyte -0.2920 0.060 -4.8420000 0.0000000 

Mature secondary : therophyte 0.0520 0.075 0.6950000 0.4870000 

unknown Secondary : therophyte 0.0180 0.041 0.4290000 0.6680000 

Plantation forest : therophyte 0.3810 0.070 5.4030000 0.0000000 

Pasture : therophyte 0.0800 0.035 2.2590000 0.0240000 

Cropland : therophyte 0.3740 0.027 13.8165000 0.0000000 

Urban : therophyte 0.3920 0.089 4.4010000 0.0000000 

therophyte -0.1500 0.031 -4.7875000 0.0000000 

therophyte : map 0.0960 0.060 1.6040000 0.1090000 

therophyte : map_var 0.0870 0.043 2.0315000 0.0420000 

therophyte : mat 0.0130 0.041 0.3050000 0.7610000 

therophyte : mat_var 0.1130 0.042 2.6840000 0.0070000 

Urban : cryptophyte -0.3210 0.110 -2.9230000 0.0030000 

Urban : hemicryptophyte 0.0360 0.041 0.8835000 0.3770000 

Urban : chamaephyte 0.1250 0.102 1.2305000 0.2185000 

Urban -0.3460 0.057 -6.1050000 0.0000000 

Primary forest : therophyte -0.5470 0.039 -13.8740000 0.0000000 

Urban : phanerophyte -0.2510 0.090 -2.7860000 0.0050000 
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Table A.9b. Abundance no species richness model output. Estimate refers to the scaled and logit 
transformed non-zero percent cover data. Colon indicates interaction between main effects. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative 
effects. Reference level is the weighted grand mean of the data (average (transformed) percent cover 
when continuous variables are zero). Model outputs have been rounded to three decimal place, and 
averages of values that differed at the third decimal place where obtained in order to recombine 
weighted effects coding outputs. 

Model terms Estimate Std.Error t value 

Cropland : therophyte -0.0280 0.088 -0.3130 

Intermediate secondary : therophyte -0.1680 0.051 -3.3200 

Pasture : therophyte -0.0020 0.028 -0.0700 

Plantation forest : therophyte 0.0720 0.065 1.1180 

Primary forest : therophyte 0.0010 0.101 0.0060 

Primary non-forest : therophyte -0.0360 0.107 -0.3410 

unknown Secondary : therophyte 0.6410 0.172 3.7230 

Urban : therophyte -0.0030 0.102 -0.0260 

Young secondary : therophyte 0.0660 0.041 1.6160 

therophyte -0.0740 0.027 -2.7500 

therophyte : map -0.2540 0.149 -1.7000 

therophyte : map_var 0.2770 0.070 3.9750 

therophyte : mat -0.3610 0.080 -4.4855 

therophyte : mat_var 0.1240 0.052 2.3850 

Cropland : cryptophyte -0.1380 0.104 -1.3320 

Intermediate secondary : cryptophyte 0.0010 0.041 0.0300 

Pasture : cryptophyte 0.0200 0.023 0.8610 

Plantation forest : cryptophyte 0.0030 0.061 0.0510 

Primary forest : cryptophyte -0.0430 0.060 -0.7120 

Primary non-forest : cryptophyte 0.0890 0.099 0.8960 

unknown Secondary : cryptophyte -0.5920 0.232 -2.5490 

Urban : cryptophyte 0.1750 0.091 1.9230 
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Table A.9b. Abundance no species richness model output. Estimate refers to the scaled and logit 
transformed non-zero percent cover data. Colon indicates interaction between main effects. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative 
effects. Reference level is the weighted grand mean of the data (average (transformed) percent cover 
when continuous variables are zero). Model outputs have been rounded to three decimal place, and 
averages of values that differed at the third decimal place where obtained in order to recombine 
weighted effects coding outputs. 

Model terms Estimate Std.Error t value 

Young secondary : cryptophyte -0.0310 0.073 -0.4310 

cryptophyte -0.0090 0.022 -0.4205 

cryptophyte : map -0.1470 0.178 -0.8260 

cryptophyte : map_var -0.1380 0.071 -1.9420 

cryptophyte : mat 0.0810 0.090 0.8950 

cryptophyte : mat_var 0.0370 0.048 0.7810 

Cropland : hemicryptophyte 0.0800 0.055 1.4680 

Intermediate secondary : hemicryptophyte 0.0310 0.011 2.8510 

Pasture : hemicryptophyte 0.0030 0.006 0.5450 

Plantation forest : hemicryptophyte -0.0310 0.022 -1.4135 

Primary forest : hemicryptophyte -0.1470 0.026 -5.5970 

Primary non-forest : hemicryptophyte -0.0370 0.038 -0.9950 

unknown Secondary : hemicryptophyte 0.1130 0.131 0.8640 

Urban : hemicryptophyte 0.0160 0.027 0.5850 

Young secondary : hemicryptophyte 0.0330 0.021 1.5870 

hemicryptophyte -0.0040 0.008 -0.5880 

hemicryptophyte : map 0.3060 0.058 5.2930 

hemicryptophyte : map_var -0.0570 0.030 -1.8990 

hemicryptophyte : mat 0.0030 0.036 0.0770 

hemicryptophyte : mat_var -0.0460 0.018 -2.6330 

Cropland : chamaephyte 0.1220 0.125 0.9820 

Intermediate secondary : chamaephyte -0.0690 0.034 -2.0600 

Pasture : chamaephyte 0.0150 0.018 0.8450 

Plantation forest : chamaephyte 0.0960 0.052 1.8460 
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Table A.9b. Abundance no species richness model output. Estimate refers to the scaled and logit 
transformed non-zero percent cover data. Colon indicates interaction between main effects. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative 
effects. Reference level is the weighted grand mean of the data (average (transformed) percent cover 
when continuous variables are zero). Model outputs have been rounded to three decimal place, and 
averages of values that differed at the third decimal place where obtained in order to recombine 
weighted effects coding outputs. 

Model terms Estimate Std.Error t value 

Primary forest : chamaephyte 0.0440 0.049 0.8980 

Primary non-forest : chamaephyte 0.0740 0.138 0.5340 

unknown Secondary : chamaephyte 0.0070 0.148 0.0470 

Urban : chamaephyte -0.0120 0.070 -0.1690 

Young secondary : chamaephyte -0.2510 0.077 -3.2410 

chamaephyte 0.0140 0.020 0.6940 

chamaephyte : map -0.3140 0.119 -2.6380 

chamaephyte : map_var -0.0760 0.074 -1.0270 

chamaephyte : mat 0.0550 0.072 0.7610 

chamaephyte : mat_var -0.0120 0.041 -0.2850 

Cropland : phanerophyte -0.0530 0.108 -0.4890 

Intermediate secondary : phanerophyte 0.0420 0.064 0.6540 

Pasture : phanerophyte -0.0620 0.028 -2.2340 

Plantation forest : phanerophyte -0.0150 0.041 -0.3540 

Primary forest : phanerophyte 0.1060 0.021 4.9710 

Primary non-forest : phanerophyte 0.0320 0.075 0.4270 

unknown Secondary : phanerophyte -0.1850 0.089 -2.0720 

Urban : phanerophyte -0.3180 0.107 -2.9650 

Young secondary : phanerophyte -0.1330 0.065 -2.0550 

phanerophyte 0.0610 0.026 2.3780 

phanerophyte : map -0.2380 0.113 -2.0990 

phanerophyte : map_var -0.0430 0.065 -0.6620 

phanerophyte : mat 0.2850 0.059 4.8270 

phanerophyte : mat_var 0.0100 0.042 0.2380 
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Table A.9b. Abundance no species richness model output. Estimate refers to the scaled and logit 
transformed non-zero percent cover data. Colon indicates interaction between main effects. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative 
effects. Reference level is the weighted grand mean of the data (average (transformed) percent cover 
when continuous variables are zero). Model outputs have been rounded to three decimal place, and 
averages of values that differed at the third decimal place where obtained in order to recombine 
weighted effects coding outputs. 

Model terms Estimate Std.Error t value 

Cropland 0.0910 0.167 0.5470 

Intermediate secondary 0.0750 0.022 3.3435 

Pasture 0.1350 0.015 8.8520 

Plantation forest -0.8340 0.099 -8.4520 

Primary forest 0.0180 0.032 0.5490 

Primary non-forest 0.0880 0.040 2.1880 

unknown Secondary -0.7020 0.087 -8.0860 

Urban 0.1130 0.044 2.5510 

Young secondary -0.0340 0.047 -0.7130 

Grand Mean -0.0015 0.241 -0.0060 

map 0.0290 0.114 0.2570 

map_var 0.0980 0.103 0.9425 

mat -0.1030 0.087 -1.1840 

mat_var -0.1995 0.125 -1.5980 

 

Table A.10. Model sample sizes.  Table showing number of occurrence and abundance observations for 
each land use and life form combination. 

Land use Life form Occurrence sample size Abundance sample size 

Primary forest phanerophyte 119310 919 

Primary forest chamaephyte 5709 276 

Primary forest hemicryptophyte 18611 680 

Primary forest cryptophyte 5014 216 

Primary forest therophyte 12734 61 

unknown Secondary phanerophyte 40421 57 

unknown Secondary chamaephyte 4527 25 
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Table A.10. Model sample sizes.  Table showing number of occurrence and abundance observations for 
each land use and life form combination. 

Land use Life form Occurrence sample size Abundance sample size 

unknown Secondary hemicryptophyte 16046 30 

unknown Secondary cryptophyte 4063 11 

unknown Secondary therophyte 7462 21 

Mature secondary phanerophyte 4048 0 

Mature secondary chamaephyte 2276 0 

Mature secondary hemicryptophyte 13710 0 

Mature secondary cryptophyte 5384 0 

Mature secondary therophyte 1899 0 

Intermediate secondary phanerophyte 32584 167 

Intermediate secondary chamaephyte 3992 477 

Intermediate secondary hemicryptophyte 22016 2043 

Intermediate secondary cryptophyte 5949 342 

Intermediate secondary therophyte 4557 218 

Young secondary phanerophyte 23884 133 

Young secondary chamaephyte 754 93 

Young secondary hemicryptophyte 5949 703 

Young secondary cryptophyte 1796 125 

Young secondary therophyte 2681 328 

Plantation forest phanerophyte 33439 381 

Plantation forest chamaephyte 2153 204 

Plantation forest hemicryptophyte 8514 834 

Plantation forest cryptophyte 2805 222 

Plantation forest therophyte 2469 157 

Primary non-forest phanerophyte 19282 93 

Primary non-forest chamaephyte 3205 29 

Primary non-forest hemicryptophyte 18723 248 
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Table A.10. Model sample sizes.  Table showing number of occurrence and abundance observations for 
each land use and life form combination. 

Land use Life form Occurrence sample size Abundance sample size 

Primary non-forest cryptophyte 4946 72 

Primary non-forest therophyte 9273 60 

Pasture phanerophyte 24611 806 

Pasture chamaephyte 6655 1107 

Pasture hemicryptophyte 36782 5189 

Pasture cryptophyte 5418 856 

Pasture therophyte 11474 730 

Cropland phanerophyte 27479 154 

Cropland chamaephyte 3417 55 

Cropland hemicryptophyte 11692 297 

Cropland cryptophyte 3067 117 

Cropland therophyte 16230 225 

Urban phanerophyte 1471 48 

Urban chamaephyte 736 103 

Urban hemicryptophyte 3391 355 

Urban cryptophyte 933 63 

Urban therophyte 1155 54 

 
Table A.11. Number of Studies and Sites per Region. 
Region Number of studies Number of sites 
Africa 11 909 
Asia 14 564 
Australia 2 362 
Caribbean 1 4 
Central America 3 197 
Europe 25 949 
North America 3 34 
Oceania 1 32 
Pacific 1 46 
South America 12 733 
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Appendix B | Supplementary information for Chapter 3 

Table B.1.1. Occupied area maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects.  

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept) 0.3525184 -0.1589850 0.8961730 10389.153 0.1720 

vel 0.5471102 0.3896560 0.7036136 10384.508 0.0001 

hf 0.1803147 0.0418002 0.3196968 10000.000 0.0110 

map -0.0768148 -0.2427020 0.0960782 10000.000 0.3778 

mat -0.2486392 -0.4532904 -0.0593505 10000.000 0.0174 

map_var 0.0926135 -0.0794699 0.2626542 10000.000 0.2958 

mat_var -0.2056737 -0.3798087 -0.0252105 10000.000 0.0230 

vel:hf 0.0980821 -0.0402933 0.2400697 10000.000 0.1760 

vel:map 0.0399130 -0.1634899 0.2420306 10000.000 0.7048 

hf:map -0.0810062 -0.2257266 0.0649022 10000.000 0.2770 

vel:mat -0.0122441 -0.1907142 0.1667061 9018.999 0.8896 

hf:mat -0.1704144 -0.3028721 -0.0304626 9677.081 0.0130 

map:mat 0.0889257 -0.0632624 0.2304928 10422.859 0.2352 

vel:map_var 0.0193702 -0.1825099 0.2047271 10000.000 0.8416 

hf:map_var 0.0244392 -0.1759471 0.2234192 10000.000 0.8072 

map:map_var 0.0623827 -0.1699377 0.2842470 10000.000 0.5966 

mat:map_var 0.1645389 -0.0642650 0.3863844 10582.186 0.1438 

vel:mat_var -0.0253848 -0.2209006 0.1701239 10000.000 0.8062 

hf:mat_var -0.0325488 -0.2418866 0.1640134 10000.000 0.7550 

map:mat_var 0.1306496 -0.0088776 0.2766090 10309.353 0.0732 

mat:mat_var 0.2923933 0.0561212 0.5315782 9378.320 0.0142 

map_var:mat_var -0.0479277 -0.2807248 0.1813599 10650.777 0.6870 

vel:hf:map 0.2066745 0.0282993 0.3870106 10000.000 0.0236 
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Table B.1.1. Occupied area maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects.  

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

vel:hf:mat 0.1038116 -0.0478334 0.2604317 10000.000 0.1802 

vel:map:mat -0.0885295 -0.2741108 0.0853527 10000.000 0.3378 

hf:map:mat 0.2145321 0.0810966 0.3543442 10000.000 0.0024 

vel:hf:map_var -0.1017372 -0.2790676 0.0761866 9660.728 0.2576 

vel:map:map_var 0.0396536 -0.2351761 0.2918803 10000.000 0.7724 

hf:map:map_var -0.2110873 -0.4448830 0.0206560 10000.000 0.0750 

vel:mat:map_var 0.1553800 -0.0369571 0.3632027 10000.000 0.1224 

hf:mat:map_var -0.0252821 -0.1855587 0.1358588 10000.000 0.7532 

map:mat:map_var 0.1387748 -0.0249432 0.2975887 10000.000 0.0936 

vel:hf:mat_var 0.1578596 0.0085421 0.3220434 10295.984 0.0484 

vel:map:mat_var 0.0468097 -0.0571092 0.1584235 9068.130 0.3964 

hf:map:mat_var -0.0201390 -0.1629589 0.1116972 10000.000 0.7738 

vel:mat:mat_var -0.3418258 -0.5375509 -0.1520983 10000.000 0.0006 

hf:mat:mat_var 0.1728976 0.0137222 0.3398590 10000.000 0.0398 

map:mat:mat_var 0.1084418 -0.0773959 0.3078900 10000.000 0.2714 

vel:map_var:mat_var 0.0415843 -0.2096884 0.2891480 10000.000 0.7444 

hf:map_var:mat_var -0.0286480 -0.2915841 0.2198831 10000.000 0.8304 

map:map_var:mat_var -0.1150039 -0.3229816 0.0849375 10000.000 0.2662 

mat:map_var:mat_var -0.0393292 -0.2158013 0.1429643 10000.000 0.6704 

vel:hf:map:mat -0.0599872 -0.2070709 0.0868088 10000.000 0.4100 

vel:hf:map:map_var 0.0271785 -0.2056146 0.2705271 10896.808 0.8300 

vel:hf:mat:map_var -0.0818040 -0.2341568 0.0732927 10428.214 0.2978 

vel:map:mat:map_var 0.1761566 -0.0160840 0.3722443 10000.000 0.0770 

hf:map:mat:map_var -0.0593667 -0.1846089 0.0648306 10000.000 0.3462 



 

 
 

167  

Table B.1.1. Occupied area maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects.  

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

vel:hf:map:mat_var 0.0899048 -0.0307210 0.2125959 9709.451 0.1426 

vel:hf:mat:mat_var -0.0151971 -0.1298820 0.1003980 10000.000 0.7964 

vel:map:mat:mat_var -0.0605072 -0.1913756 0.0695751 10777.165 0.3682 

hf:map:mat:mat_var -0.0083896 -0.1242126 0.1071072 10000.000 0.8804 

vel:hf:map_var:mat_var 0.0429776 -0.1321171 0.2204701 10000.000 0.6400 

vel:map:map_var:mat_var 0.1053063 -0.0142276 0.2389030 10000.000 0.1028 

hf:map:map_var:mat_var -0.1252940 -0.3382669 0.0878317 9470.022 0.2430 

vel:mat:map_var:mat_var 0.0151426 -0.1413198 0.1797760 10000.000 0.8432 

hf:mat:map_var:mat_var 0.0048935 -0.1554628 0.1687000 10000.000 0.9492 

map:mat:map_var:mat_var 0.0477999 -0.1011878 0.2009457 10000.000 0.5268 

vel:hf:map:mat:map_var -0.1370792 -0.2872394 0.0224197 10000.000 0.0848 

vel:hf:map:mat:mat_var 0.0949489 0.0026198 0.1903267 10000.000 0.0486 

vel:hf:map:map_var:mat_var -0.0235750 -0.1392018 0.0934979 9430.434 0.6966 

vel:hf:mat:map_var:mat_var -0.0529037 -0.2001376 0.0916765 10000.000 0.4750 

vel:map:mat:map_var:mat_var -0.0283953 -0.1507714 0.0898696 10000.000 0.6528 

hf:map:mat:map_var:mat_var 0.0442339 -0.0848265 0.1717600 9377.888 0.5000 

vel:hf:map:mat:map_var:mat_var -0.1149272 -0.2173125 -0.0096272 10310.912 0.0318 

 

Table B.1.2. Geographic range size maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept) 0.4329387 -0.1498795 1.0262619 10000.000 0.1492 

vel 0.5466848 0.3894562 0.6935953 10000.000 0.0001 



 

 
 
168  

Table B.1.2. Geographic range size maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

hf 0.1939563 0.0656023 0.3359243 10000.000 0.0062 

map -0.1014342 -0.2552334 0.0691132 10000.000 0.2280 

mat -0.3195503 -0.5087902 -0.1262531 10393.078 0.0006 

map_var 0.1840736 0.0084468 0.3468573 10000.000 0.0324 

mat_var -0.2248886 -0.4011946 -0.0575941 10000.000 0.0124 

vel:hf 0.0717744 -0.0633633 0.2123045 9911.390 0.3084 

vel:map 0.1585037 -0.0296592 0.3671383 10000.000 0.1136 

hf:map -0.1424428 -0.2784748 -0.0013388 10000.000 0.0458 

vel:mat 0.1749418 0.0042016 0.3535877 9632.622 0.0486 

hf:mat -0.1533010 -0.2845438 -0.0212703 10773.410 0.0226 

map:mat 0.0826793 -0.0564378 0.2334351 10000.000 0.2664 

vel:map_var 0.0573761 -0.1254143 0.2518226 10000.000 0.5512 

hf:map_var 0.0139492 -0.1730852 0.2124104 10000.000 0.8810 

map:map_var 0.1171052 -0.1016727 0.3370266 10000.000 0.2980 

mat:map_var 0.3247644 0.1041341 0.5429430 10410.155 0.0044 

vel:mat_var 0.1306712 -0.0620116 0.3205961 10000.000 0.1856 

hf:mat_var -0.1978158 -0.3952840 -0.0002299 10000.000 0.0472 

map:mat_var 0.1440000 -0.0036704 0.2779207 10000.000 0.0452 

mat:mat_var 0.4165580 0.1895174 0.6590787 10596.993 0.0006 

map_var:mat_var 0.0394535 -0.1889445 0.2644462 10288.819 0.7430 

vel:hf:map 0.2410451 0.0718217 0.4220621 10000.000 0.0092 

vel:hf:mat 0.0409531 -0.1098089 0.1926201 9872.861 0.5974 

vel:map:mat -0.2730331 -0.4429992 -0.0892651 10000.000 0.0026 

hf:map:mat 0.2572038 0.1213826 0.3869782 10000.000 0.0001 
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Table B.1.2. Geographic range size maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

vel:hf:map_var 0.0085820 -0.1620693 0.1878115 10708.037 0.9194 

vel:map:map_var 0.2405482 -0.0340168 0.4858988 9444.300 0.0752 

hf:map:map_var -0.2569668 -0.4846623 -0.0365089 10000.000 0.0262 

vel:mat:map_var 0.3116784 0.1276556 0.5160133 10000.000 0.0022 

hf:mat:map_var -0.0304789 -0.1857645 0.1272349 10000.000 0.6954 

map:mat:map_var 0.1736751 0.0205794 0.3351416 10000.000 0.0328 

vel:hf:mat_var 0.1350556 -0.0178549 0.2888039 10000.000 0.0842 

vel:map:mat_var -0.0252955 -0.1278789 0.0791467 10322.421 0.6366 

hf:map:mat_var 0.0601434 -0.0803150 0.1865669 10000.000 0.3738 

vel:mat:mat_var -0.3378325 -0.5335318 -0.1625424 10000.000 0.0006 

hf:mat:mat_var 0.2213873 0.0606843 0.3755849 10000.000 0.0068 

map:mat:mat_var 0.0800832 -0.1101032 0.2667676 9174.698 0.4068 

vel:map_var:mat_var 0.1566966 -0.0964465 0.3960212 10000.000 0.2134 

hf:map_var:mat_var -0.0744326 -0.3270056 0.1733270 10000.000 0.5648 

map:map_var:mat_var -0.1999633 -0.4023592 -0.0010998 10380.218 0.0494 

mat:map_var:mat_var 0.0255952 -0.1604694 0.1904979 10000.000 0.7750 

vel:hf:map:mat -0.1341713 -0.2730128 0.0019861 10000.000 0.0564 

vel:hf:map:map_var 0.1216219 -0.1024210 0.3534039 10000.000 0.3070 

vel:hf:mat:map_var -0.0830425 -0.2346443 0.0650972 10000.000 0.2858 

vel:map:mat:map_var 0.2079538 0.0170349 0.3938101 9540.498 0.0316 

hf:map:mat:map_var -0.0594448 -0.1741069 0.0692420 10000.000 0.3352 

vel:hf:map:mat_var 0.0457354 -0.0699902 0.1660061 10000.000 0.4560 

vel:hf:mat:mat_var -0.0128419 -0.1262404 0.0949646 10000.000 0.8172 

vel:map:mat:mat_var -0.0055576 -0.1364815 0.1219959 9222.781 0.9462 
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Table B.1.2. Geographic range size maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

hf:map:mat:mat_var -0.0368312 -0.1504908 0.0743949 10342.161 0.5190 

vel:hf:map_var:mat_var 0.0346653 -0.1368620 0.2133818 10000.000 0.7034 

vel:map:map_var:mat_var 0.1014319 -0.0211330 0.2265967 10525.756 0.1090 

hf:map:map_var:mat_var -0.2079311 -0.4099678 0.0045365 10342.349 0.0516 

vel:mat:map_var:mat_var 0.0878782 -0.0747136 0.2383161 9461.301 0.2752 

hf:mat:map_var:mat_var -0.0009347 -0.1621089 0.1532168 8908.911 0.9900 

map:mat:map_var:mat_var 0.0993295 -0.0467580 0.2449857 11242.593 0.1822 

vel:hf:map:mat:map_var -0.1651817 -0.3230942 -0.0160912 10000.000 0.0362 

vel:hf:map:mat:mat_var 0.1417388 0.0491907 0.2313315 10000.000 0.0022 

vel:hf:map:map_var:mat_var -0.0017654 -0.1149706 0.1159799 10000.000 0.9776 

vel:hf:mat:map_var:mat_var -0.0666520 -0.2190388 0.0732591 10000.000 0.3666 

vel:map:mat:map_var:mat_var -0.0349101 -0.1513557 0.0840044 9639.709 0.5704 

hf:map:mat:map_var:mat_var 0.0592299 -0.0702156 0.1792535 10034.795 0.3476 

vel:hf:map:mat:map_var:mat_var -0.1446632 -0.2484102 -0.0479472 10000.000 0.0058 

 
 

Table B.1.3. Patch size distribution maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept) -0.0217130 -0.3693351 0.3604670 10000.000 0.8302 

vel 0.4297204 0.2245554 0.6181854 10000.000 0.0002 

hf 0.0122223 -0.1645068 0.1885320 10000.000 0.8982 

map 0.0836335 -0.1248808 0.3046448 9224.645 0.4434 

mat 0.0592360 -0.1937802 0.3087066 9348.560 0.6394 
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Table B.1.3. Patch size distribution maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

map_var -0.1019370 -0.3121409 0.1169288 10000.000 0.3732 

mat_var -0.1354662 -0.3582922 0.0888879 10000.000 0.2382 

vel:hf 0.1828747 0.0084969 0.3584135 10000.000 0.0398 

vel:map -0.1719327 -0.4121471 0.1000228 10067.886 0.1830 

hf:map 0.1457892 -0.0432008 0.3192420 10000.000 0.1152 

vel:mat -0.3733268 -0.6043909 -0.1476338 10000.000 0.0010 

hf:mat -0.1729495 -0.3350056 -0.0042820 10000.000 0.0434 

map:mat -0.0367010 -0.2265293 0.1550181 10000.000 0.6988 

vel:map_var 0.0701135 -0.1812643 0.3065292 10000.000 0.5812 

hf:map_var -0.0512146 -0.2976391 0.2035054 10000.000 0.7004 

map:map_var -0.0454786 -0.3390402 0.2319565 10000.000 0.7570 

mat:map_var -0.2581470 -0.5431766 0.0263873 10000.000 0.0806 

vel:mat_var -0.2268010 -0.4847587 0.0068450 10000.000 0.0710 

hf:mat_var 0.2765567 0.0221435 0.5330392 10000.000 0.0336 

map:mat_var 0.0787300 -0.0978301 0.2682502 10000.000 0.3998 

mat:mat_var 0.0060431 -0.3088458 0.2980993 10000.000 0.9654 

map_var:mat_var -0.2776844 -0.5740782 0.0269808 9654.647 0.0720 

vel:hf:map 0.1625859 -0.0529910 0.3921248 10000.000 0.1532 

vel:hf:mat 0.2309261 0.0402532 0.4239364 10000.000 0.0200 

vel:map:mat 0.2647275 0.0396886 0.4973270 10000.000 0.0244 

hf:map:mat 0.0341343 -0.1409875 0.2020599 10000.000 0.6928 

vel:hf:map_var -0.3541499 -0.5769613 -0.1377582 10795.978 0.0016 

vel:map:map_var -0.4473434 -0.7833274 -0.1054273 9627.816 0.0110 

hf:map:map_var 0.0529035 -0.2483309 0.3376330 10000.000 0.7256 
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Table B.1.3. Patch size distribution maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

vel:mat:map_var -0.3279835 -0.5897995 -0.0832236 10000.000 0.0130 

hf:mat:map_var 0.0172139 -0.1915879 0.2172617 10000.000 0.8732 

map:mat:map_var 0.0094853 -0.1961921 0.2164534 10000.000 0.9202 

vel:hf:mat_var 0.2546104 0.0538247 0.4524093 10000.000 0.0122 

vel:map:mat_var 0.2081629 0.0747912 0.3438407 10000.000 0.0026 

hf:map:mat_var -0.1573249 -0.3327787 0.0112439 10000.000 0.0726 

vel:mat:mat_var -0.3216405 -0.5592428 -0.0776007 10000.000 0.0070 

hf:mat:mat_var 0.0453657 -0.1571789 0.2587241 10000.000 0.6636 

map:mat:mat_var 0.1655087 -0.0889417 0.4082561 9612.414 0.1872 

vel:map_var:mat_var -0.1499563 -0.4525277 0.1804247 10000.000 0.3496 

hf:map_var:mat_var 0.1129766 -0.2222662 0.4304830 10000.000 0.4972 

map:map_var:mat_var 0.1028887 -0.1558646 0.3621174 9518.536 0.4444 

mat:map_var:mat_var -0.1025125 -0.3360321 0.1193731 10000.000 0.3868 

vel:hf:map:mat 0.1604338 -0.0210691 0.3442093 9480.878 0.0844 

vel:hf:map:map_var -0.0941950 -0.3913286 0.1989348 10000.000 0.5352 

vel:hf:mat:map_var -0.0504412 -0.2514751 0.1399608 10000.000 0.6196 

vel:map:mat:map_var 0.0653954 -0.1824609 0.3142600 10000.000 0.6068 

hf:map:mat:map_var -0.0995143 -0.2535202 0.0582534 10000.000 0.2182 

vel:hf:map:mat_var 0.1268226 -0.0278496 0.2781558 9950.421 0.1090 

vel:hf:mat:mat_var -0.0280486 -0.1712934 0.1157690 10000.000 0.7048 

vel:map:mat:mat_var -0.1800948 -0.3433498 -0.0100437 8996.595 0.0360 

hf:map:mat:mat_var 0.0554214 -0.0904824 0.1984221 10000.000 0.4546 

vel:hf:map_var:mat_var 0.0667362 -0.1615271 0.2815089 10000.000 0.5598 

vel:map:map_var:mat_var 0.1209582 -0.0362590 0.2857338 9282.197 0.1370 
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Table B.1.3. Patch size distribution maximal model outputs. Hf = human footprint, map(_var) = mean annual 
precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change velocity. 
Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 95% 
credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates interaction 
between main effects. Terms in blue have significant positive effects, terms in red have significant negative 
effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

hf:map:map_var:mat_var 0.0716025 -0.1941217 0.3344718 10000.000 0.5994 

vel:mat:map_var:mat_var -0.1551791 -0.3565720 0.0501273 10000.000 0.1396 

hf:mat:map_var:mat_var -0.0546995 -0.2580629 0.1454834 10000.000 0.5968 

map:mat:map_var:mat_var -0.0843748 -0.2784400 0.0968091 10000.000 0.3732 

vel:hf:map:mat:map_var -0.0962743 -0.2909790 0.0918338 10000.000 0.3254 

vel:hf:map:mat:mat_var -0.0583938 -0.1820110 0.0542468 10000.000 0.3320 

vel:hf:map:map_var:mat_var -0.0592159 -0.2063181 0.0876743 10000.000 0.4402 

vel:hf:mat:map_var:mat_var -0.0553083 -0.2365901 0.1275289 10000.000 0.5508 

vel:map:mat:map_var:mat_var -0.0313700 -0.1892248 0.1186064 10165.279 0.6896 

hf:map:mat:map_var:mat_var -0.0113646 -0.1739214 0.1456082 10000.000 0.8936 

vel:hf:map:mat:map_var:mat_var -0.0068924 -0.1362950 0.1234249 10000.000 0.9176 

 
 

Table B.1.4. Geographic range filling maximal model outputs. Hf = human footprint, map(_var) = mean 
annual precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change 
velocity. Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 
95% credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates 
interaction between main effects. Terms in blue have significant positive effects, terms in red have significant 
negative effects. 

Model terms  post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept) -0.4798255 -1.0700790 0.1235414 10443.801 0.1014 

vel -0.2259723 -0.4303686 -0.0346323 10000.000 0.0268 

hf -0.1866199 -0.3650706 -0.0055667 10000.000 0.0390 

map 0.1949022 -0.0235233 0.4052944 10000.000 0.0756 

mat 0.4705232 0.2169297 0.7201417 9576.621 0.0006 

map_var -0.2918623 -0.5147233 -0.0796247 10627.762 0.0088 

mat_var 0.1743523 -0.0528516 0.4041416 10000.000 0.1368 

vel:hf 0.0939057 -0.0841393 0.2742958 10000.000 0.3010 
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Table B.1.4. Geographic range filling maximal model outputs. Hf = human footprint, map(_var) = mean 
annual precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change 
velocity. Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 
95% credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates 
interaction between main effects. Terms in blue have significant positive effects, terms in red have significant 
negative effects. 

Model terms  post.mean l-95% CI u-95% CI eff.samp pMCMC 

vel:map -0.2884777 -0.5374206 -0.0261771 10000.000 0.0284 

hf:map 0.2732771 0.0942600 0.4556747 10000.000 0.0030 

vel:mat -0.4739276 -0.6912000 -0.2443626 10000.000 0.0001 

hf:mat 0.0086981 -0.1589215 0.1855014 10000.000 0.9162 

map:mat -0.0893586 -0.2819853 0.0867018 10000.000 0.3582 

vel:map_var -0.0861629 -0.3380803 0.1530208 10000.000 0.5046 

hf:map_var 0.0345281 -0.2238674 0.2856261 10000.000 0.7962 

map:map_var -0.1296544 -0.4181045 0.1478431 10000.000 0.3802 

mat:map_var -0.4899319 -0.7816148 -0.2117552 10000.000 0.0010 

vel:mat_var -0.3373110 -0.5760775 -0.0787637 10000.000 0.0070 

hf:mat_var 0.4103663 0.1592600 0.6806067 10301.317 0.0022 

map:mat_var -0.0889733 -0.2662128 0.0970565 10000.000 0.3440 

mat:mat_var -0.5057754 -0.8187636 -0.2124829 10795.028 0.0004 

map_var:mat_var -0.0957696 -0.3933883 0.2000517 9965.628 0.5242 

vel:hf:map -0.1539703 -0.3778743 0.0684577 10383.216 0.1756 

vel:hf:mat 0.1554027 -0.0359282 0.3534966 10000.000 0.1200 

vel:map:mat 0.5699807 0.3373232 0.7887400 9673.387 0.0002 

hf:map:mat -0.2260061 -0.4024587 -0.0554553 10000.000 0.0114 

vel:hf:map_var -0.2786045 -0.4940981 -0.0585569 10000.000 0.0116 

vel:map:map_var -0.6416035 -0.9659101 -0.2958254 10000.000 0.0006 

hf:map:map_var 0.2944341 0.0031775 0.5846155 10000.000 0.0470 

vel:mat:map_var -0.4987220 -0.7386467 -0.2402094 10259.396 0.0001 

hf:mat:map_var 0.0061523 -0.2069108 0.2024949 10000.000 0.9580 

map:mat:map_var -0.1351531 -0.3415059 0.0705236 10289.847 0.1924 
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Table B.1.4. Geographic range filling maximal model outputs. Hf = human footprint, map(_var) = mean 
annual precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change 
velocity. Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 
95% credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates 
interaction between main effects. Terms in blue have significant positive effects, terms in red have significant 
negative effects. 

Model terms  post.mean l-95% CI u-95% CI eff.samp pMCMC 

vel:hf:mat_var 0.0394006 -0.1590490 0.2325143 10000.000 0.7030 

vel:map:mat_var 0.1715165 0.0327253 0.3042307 10000.000 0.0146 

hf:map:mat_var -0.1768838 -0.3553117 -0.0035904 10000.000 0.0484 

vel:mat:mat_var 0.1576201 -0.0774034 0.4074286 10000.000 0.2060 

hf:mat:mat_var -0.1906255 -0.4084861 0.0085016 10000.000 0.0722 

map:mat:mat_var 0.0200888 -0.2422258 0.2468529 9634.998 0.8730 

vel:map_var:mat_var -0.4020337 -0.7097524 -0.0845901 10000.000 0.0108 

hf:map_var:mat_var 0.1777314 -0.1525327 0.4935975 10000.000 0.2876 

map:map_var:mat_var 0.3247601 0.0593369 0.5835956 10000.000 0.0148 

mat:map_var:mat_var -0.1870573 -0.4256450 0.0316056 10000.000 0.1054 

vel:hf:map:mat 0.2797926 0.1023780 0.4685249 10000.000 0.0036 

vel:hf:map:map_var -0.2504022 -0.5446719 0.0584735 10000.000 0.1108 

vel:hf:mat:map_var 0.0179079 -0.1849102 0.2078183 10000.000 0.8610 

vel:map:mat:map_var -0.1174518 -0.3613418 0.1384413 10000.000 0.3540 

hf:map:mat:map_var -0.0151639 -0.1733057 0.1383056 10000.000 0.8520 

vel:hf:map:mat_var 0.0813372 -0.0742814 0.2335699 10000.000 0.3094 

vel:hf:mat:mat_var 0.0076361 -0.1484897 0.1443628 10000.000 0.9168 

vel:map:mat:mat_var -0.1241127 -0.2948116 0.0380907 10000.000 0.1496 

hf:map:mat:mat_var 0.1116581 -0.0355772 0.2562337 10000.000 0.1336 

vel:hf:map_var:mat_var -0.0159733 -0.2352596 0.2180242 10636.214 0.8880 

vel:map:map_var:mat_var -0.0318745 -0.1878258 0.1279493 8698.289 0.7050 

hf:map:map_var:mat_var 0.3244132 0.0566252 0.5828957 9679.013 0.0148 

vel:mat:map_var:mat_var -0.1399225 -0.3560761 0.0553465 9898.658 0.1798 

hf:mat:map_var:mat_var -0.0198222 -0.2177399 0.1864085 10000.000 0.8442 
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Table B.1.4. Geographic range filling maximal model outputs. Hf = human footprint, map(_var) = mean 
annual precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change 
velocity. Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 
95% credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates 
interaction between main effects. Terms in blue have significant positive effects, terms in red have significant 
negative effects. 

Model terms  post.mean l-95% CI u-95% CI eff.samp pMCMC 

map:mat:map_var:mat_var -0.1753262 -0.3672770 0.0106730 10000.000 0.0694 

vel:hf:map:mat:map_var 0.1202308 -0.0706761 0.3185796 10000.000 0.2238 

vel:hf:map:mat:mat_var -0.1848873 -0.2994213 -0.0649334 9814.229 0.0020 

vel:hf:map:map_var:mat_var -0.0570173 -0.2008310 0.0946677 10356.239 0.4642 

vel:hf:mat:map_var:mat_var 0.0698018 -0.1163529 0.2532963 10000.000 0.4582 

vel:map:mat:map_var:mat_var 0.0620893 -0.0937789 0.2127348 10000.000 0.4290 

hf:map:mat:map_var:mat_var -0.0872146 -0.2488393 0.0695066 10430.829 0.2884 

vel:hf:map:mat:map_var:mat_var 0.1609351 0.0317096 0.2924094 9113.234 0.0150 

 

Table B.1.5. Patch shape complexity maximal model outputs. Hf = human footprint, map(_var) = mean 
annual precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change 
velocity. Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 
95% credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates 
interaction between main effects. Terms in blue have significant positive effects, terms in red have significant 
negative effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept) 0.1689058 -0.1333509 0.5279487 10000.000 0.2556 

vel 0.1979006 -0.0362241 0.4181518 10000.000 0.0900 

hf -0.0391084 -0.2484761 0.1697609 9624.637 0.7194 

map 0.0972969 -0.1553030 0.3496721 10000.000 0.4460 

mat 0.2020282 -0.0980962 0.4928779 10000.000 0.1760 

map_var 0.0695984 -0.1810870 0.3330282 10000.000 0.5896 

mat_var 0.0288593 -0.2318690 0.2959389 10000.000 0.8262 

vel:hf -0.0208793 -0.2446424 0.1740631 10000.000 0.8488 

vel:map 0.0178303 -0.2712608 0.3202228 10000.000 0.9006 

hf:map 0.1343088 -0.0799977 0.3461840 10000.000 0.2138 

vel:mat -0.0767943 -0.3401220 0.1920123 10000.000 0.5778 
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Table B.1.5. Patch shape complexity maximal model outputs. Hf = human footprint, map(_var) = mean 
annual precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change 
velocity. Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 
95% credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates 
interaction between main effects. Terms in blue have significant positive effects, terms in red have significant 
negative effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

hf:mat -0.0554231 -0.2627053 0.1432990 10000.000 0.5954 

map:mat 0.0765343 -0.1444222 0.2970007 10000.000 0.5020 

vel:map_var 0.0729699 -0.2122471 0.3522989 10000.000 0.6148 

hf:map_var 0.0969789 -0.1917389 0.4030276 10000.000 0.5278 

map:map_var -0.1904174 -0.5121543 0.1556730 10000.000 0.2694 

mat:map_var -0.3101987 -0.6466594 0.0168997 10000.000 0.0652 

vel:mat_var -0.2751886 -0.5659525 0.0043516 10348.410 0.0568 

hf:mat_var 0.2750276 -0.0321484 0.5695420 10000.000 0.0734 

map:mat_var -0.0383459 -0.2480581 0.1749505 10000.000 0.7214 

mat:mat_var -0.0686043 -0.4068629 0.2936554 10000.000 0.7030 

map_var:mat_var -0.1525861 -0.5107887 0.1816024 10000.000 0.3834 

vel:hf:map 0.2593073 -0.0018637 0.5251131 10000.000 0.0528 

vel:hf:mat 0.1719600 -0.0553951 0.3955752 10351.739 0.1382 

vel:map:mat 0.1062339 -0.1540106 0.3678384 9578.487 0.4316 

hf:map:mat 0.0556207 -0.1491165 0.2600470 10396.801 0.5984 

vel:hf:map_var -0.2014290 -0.4754941 0.0457000 10000.000 0.1278 

vel:map:map_var -0.1370763 -0.5240680 0.2650240 10000.000 0.5014 

hf:map:map_var 0.2217069 -0.1134470 0.5669148 9604.014 0.2016 

vel:mat:map_var -0.1683196 -0.4597628 0.1197338 10000.000 0.2564 

hf:mat:map_var 0.0506347 -0.1842726 0.2960284 9096.814 0.6850 

map:mat:map_var -0.0042439 -0.2442150 0.2440845 9759.323 0.9682 

vel:hf:mat_var 0.1711353 -0.0567908 0.4154257 10000.000 0.1478 

vel:map:mat_var 0.0804620 -0.0732624 0.2432640 10000.000 0.3268 

hf:map:mat_var -0.0575564 -0.2607171 0.1414023 9439.077 0.5782 
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Table B.1.5. Patch shape complexity maximal model outputs. Hf = human footprint, map(_var) = mean 
annual precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change 
velocity. Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 
95% credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates 
interaction between main effects. Terms in blue have significant positive effects, terms in red have significant 
negative effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

vel:mat:mat_var -0.0646422 -0.3556234 0.2128958 10000.000 0.6662 

hf:mat:mat_var -0.0610388 -0.3002276 0.1847870 10000.000 0.6224 

map:mat:mat_var 0.3997057 0.1165800 0.6867931 10000.000 0.0070 

vel:map_var:mat_var -0.0400971 -0.4147435 0.3147516 10000.000 0.8376 

hf:map_var:mat_var 0.4412853 0.0667529 0.8210962 10000.000 0.0218 

map:map_var:mat_var -0.1509328 -0.4531645 0.1437499 10000.000 0.3240 

mat:map_var:mat_var 0.0660719 -0.1928809 0.3362446 9665.960 0.6234 

vel:hf:map:mat 0.0217731 -0.1955986 0.2336839 10828.735 0.8458 

vel:hf:map:map_var 0.3552775 0.0058253 0.7004962 10000.000 0.0446 

vel:hf:mat:map_var 0.1938193 -0.0322897 0.4266932 10000.000 0.1038 

vel:map:mat:map_var 0.0105926 -0.2902179 0.2873030 10000.000 0.9298 

hf:map:mat:map_var -0.1411884 -0.3259688 0.0384576 10000.000 0.1276 

vel:hf:map:mat_var -0.1400235 -0.3271282 0.0353409 10000.000 0.1360 

vel:hf:mat:mat_var 0.0781706 -0.0845278 0.2552973 10000.000 0.3676 

vel:map:mat:mat_var -0.1562076 -0.3573036 0.0376093 10000.000 0.1234 

hf:map:mat:mat_var 0.0479033 -0.1293718 0.2114754 12319.128 0.5668 

vel:hf:map_var:mat_var -0.0471079 -0.3251100 0.2095918 10000.000 0.7274 

vel:map:map_var:mat_var 0.1747484 -0.0180147 0.3555036 10000.000 0.0688 

hf:map:map_var:mat_var -0.1337646 -0.4574935 0.1637584 10000.000 0.3966 

vel:mat:map_var:mat_var 0.0356590 -0.2052847 0.2791346 9788.282 0.7636 

hf:mat:map_var:mat_var -0.2966082 -0.5301662 -0.0590095 9265.910 0.0160 

map:mat:map_var:mat_var 0.0353470 -0.1742153 0.2592193 10000.000 0.7460 

vel:hf:map:mat:map_var -0.1437938 -0.3771061 0.0758364 10000.000 0.2126 

vel:hf:map:mat:mat_var -0.0473634 -0.1856859 0.0917470 10000.000 0.4976 
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Table B.1.5. Patch shape complexity maximal model outputs. Hf = human footprint, map(_var) = mean 
annual precipitation (variation), mat(_var) = mean annual precipitation (variation), vel = past climate change 
velocity. Post.mean = posterior estimate mean, l-95% CI = lower 95% credibility interval, u-95% CI = upper 
95% credibility interval, eff.samp = effective sample size, pMCMC = Bayesian p-values. Colon indicates 
interaction between main effects. Terms in blue have significant positive effects, terms in red have significant 
negative effects. 

Model terms post.mean l-95% CI u-95% CI eff.samp pMCMC 

vel:hf:map:map_var:mat_var -0.0072096 -0.1872252 0.1641469 10000.000 0.9392 

vel:hf:mat:map_var:mat_var 0.0266046 -0.1765870 0.2545212 10000.000 0.8042 

vel:map:mat:map_var:mat_var 0.0112054 -0.1668555 0.1910464 10716.011 0.9038 

hf:map:mat:map_var:mat_var -0.0039979 -0.1845999 0.1938306 10399.666 0.9766 

vel:hf:map:mat:map_var:mat_var 0.0972256 -0.0557454 0.2444319 10000.000 0.2000 

 
 
 

Table B.2 Temperature variability. Summary statistics for mean annual temperature 
variation in degrees Celsius in Europe (extent: -33,67,30, 82 arc degrees) compared to 
Tropical latitudes (extent: -180,180,-30, 30 arc degrees). Calculated from 30 second 
resolution (179pprox.. 1km2) maps from WorldClim version 2.1 (Fick & Hijmans, 2017). 
Statistic Europe Tropics 
Mean 9.22 3.26 
Range 0 – 15.47 0 – 9.63 
Standard deviation 2.48 2.42 
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Figure B.1. Effect sizes for main effects and two way interactions from maximal models showing 
the strength of the correlation between Climate and Human footprint, and Range Metrics. Solid 
circles represent the slope of relationship, i.e. change in range metric associated with 1 SD change 
in climate or human footprint value. Vertical lines represent 95% credibility interval. Hf = human 
footprint, map(_var) = mean annual precipitation (variation), mat(_var) = mean annual 
precipitation (variation), vel = past climate change velocity. The colour of points and vertical lines 
refers to the terms in the model. If a point and vertical line are the same colour, this represents a 
main effect. If point and vertical line are different colours, this represents the interaction between 
two main effects as per the legend. Light grey vertical bar highlights terms associated with human 
footprint. The geographic range fractality model was not included as it was not deemed reliable 
based on diagnostic tests. 



 

 
 

181  

 

 
Figure B.2a. Correlations between explanatory variables. 
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Figure B.2b. Correlations between range metrics. 
 

Figure B.3. Maps of example species. (A) Occurrence of Schivereckia podolica, Dianthus 
pseudoversicolor and Potentilla arcticai in red, pink and orange respectively. (B) Occurrence of 
Silene mollissimais, Silene sieberi and Papaver purpureomarginatum in red, pink and orange 
respectively. Gradient from light to dark colour on land mass represents increasing elevation. 
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Appendix C | Supplementary information for Chapter 4 

Table C.1.1. PC1 model outputs for communities at the level of haul. Effects of SST, depth and fishing 
pressure and their two-way interactions on community weighted mean of PC1 (representing pace of life 
Life history axis). Estimate = model estimate, std.error = standard error, statistic = z value. Depth = depth, 
SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea surface 
temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = difference 
in community composition in hauls caught in spring (reference level is hauls caught in winter). Colon 
indicates interaction between main effects. All continuous covariates are average values at resolution of 
community. Terms highlighted in blue have significant positive effects, terms highlighted in red have 
significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0007324 0.0094492 0.0775052 0.9382216 

SNWI -0.0107423 0.0136006 -0.7898359 0.4296236 

sst_var -0.0425324 0.0096018 -4.4296280 0.0000094 

Depth 0.0095239 0.0083311 1.1431770 0.2529651 

fp -0.0060697 0.0048709 -1.2461291 0.2127170 

Year 0.0420576 0.0042265 9.9509659 0.0000000 

Quarter -0.0201404 0.0048378 -4.1631237 0.0000314 

SNSP:SNWI -0.0210114 0.0047969 -4.3801617 0.0000119 

SNSP:sst_var -0.0160950 0.0074910 -2.1485891 0.0316670 

SNSP:Depth 0.0297707 0.0094783 3.1409339 0.0016841 

SNSP:fp 0.0001087 0.0073920 0.0147021 0.9882699 

SNWI:sst_var 0.0371037 0.0094627 3.9210328 0.0000882 

SNWI:Depth 0.0262821 0.0091794 2.8631562 0.0041944 

SNWI:fp 0.0011311 0.0077543 0.1458626 0.8840298 

sst_var:Depth -0.0033670 0.0058465 -0.5758934 0.5646872 

sst_var:fp -0.0182651 0.0065988 -2.7679271 0.0056414 

Depth:fp -0.0192486 0.0060419 -3.1858406 0.0014433 
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Table C.1.2. PC1 model outputs for communities in grid cells aggregated by a factor of 5. Effects of SST, 
depth and fishing pressure and their two-way interactions on community weighted mean of PC1 
(representing pace of life Life history axis). Estimate = model estimate, std.error = standard error, statistic = 
z value. Depth = depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, 
sst_var = sea surface temperature variation, fp = fishing pressure, Year = year that sample was obtained, 
Quarter = difference in community composition in hauls caught in spring (reference level is hauls caught in 
winter). Colon indicates interaction between main effects. All continuous covariates are average values at 
resolution of community. Terms highlighted in blue have significant positive effects, terms highlighted in red 
have significant negative effects. 

term estimate std.error statistic p.value 

SNSP -0.0533713 0.0113090 -4.7193690 0.0000024 

SNWI 0.0667113 0.0154716 4.3118532 0.0000162 

sst_var -0.0005028 0.0103425 -0.0486143 0.9612267 

Depth 0.0237507 0.0085099 2.7909632 0.0052551 

fp -0.0280859 0.0051505 -5.4530106 0.0000000 

Year 0.0411676 0.0051946 7.9250499 0.0000000 

Quarter -0.0159428 0.0067601 -2.3583815 0.0183548 

SNSP:SNWI -0.0256168 0.0056062 -4.5693993 0.0000049 

SNSP:sst_var 0.0033227 0.0092518 0.3591360 0.7194933 

SNSP:Depth 0.0523198 0.0112566 4.6479150 0.0000034 

SNSP:fp 0.0009095 0.0095725 0.0950155 0.9243025 

SNWI:sst_var 0.0053211 0.0117096 0.4544185 0.6495277 

SNWI:Depth -0.0189191 0.0109038 -1.7350852 0.0827257 

SNWI:fp 0.0060738 0.0097342 0.6239626 0.5326521 

sst_var:Depth -0.0133695 0.0065347 -2.0459168 0.0407646 

sst_var:fp -0.0163752 0.0081397 -2.0117725 0.0442439 

Depth:fp -0.0290416 0.0071557 -4.0585104 0.0000494 
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Table C.1.3. PC1 model outputs for communities in grid cells aggregated by a factor of 10. Effects of SST, 
depth and fishing pressure and their two-way interactions on community weighted mean of PC1 
(representing pace of life Life history axis). Estimate = model estimate, std.error = standard error, statistic = 
z value. Depth = depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, 
sst_var = sea surface temperature variation, fp = fishing pressure, Year = year that sample was obtained, 
Quarter = difference in community composition in hauls caught in spring (reference level is hauls caught in 
winter). Colon indicates interaction between main effects. All continuous covariates are average values at 
resolution of community. Terms highlighted in blue have significant positive effects, terms highlighted in red 
have significant negative effects. 

term estimate std.error statistic p.value 

SNSP -0.0695746 0.0138317 -5.0300977 0.0000005 

SNWI 0.1255570 0.0161860 7.7571378 0.0000000 

sst_var 0.0418785 0.0115374 3.6298108 0.0002836 

Depth -0.0179588 0.0101582 -1.7679209 0.0770741 

fp -0.0235350 0.0067840 -3.4692108 0.0005220 

Year 0.0312068 0.0060148 5.1883812 0.0000002 

Quarter -0.0322285 0.0074998 -4.2972424 0.0000173 

SNSP:SNWI -0.0396525 0.0067795 -5.8488792 0.0000000 

SNSP:sst_var -0.0161051 0.0118872 -1.3548262 0.1754729 

SNSP:Depth 0.0635711 0.0148833 4.2713062 0.0000194 

SNSP:fp 0.0007040 0.0137875 0.0510593 0.9592783 

SNWI:sst_var 0.0044732 0.0152973 0.2924187 0.7699665 

SNWI:Depth -0.0008380 0.0142747 -0.0587027 0.9531889 

SNWI:fp -0.0036054 0.0139600 -0.2582674 0.7962006 

sst_var:Depth -0.0234171 0.0082640 -2.8336133 0.0046025 

sst_var:fp -0.0197432 0.0111656 -1.7682109 0.0770256 

Depth:fp -0.0387937 0.0100905 -3.8445902 0.0001208 
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Table C.1.4. PC1 model outputs for communities in grid cells aggregated by a factor of 20. Effects of SST, 
depth and fishing pressure and their two-way interactions on community weighted mean of PC1 
(representing pace of life Life history axis). Estimate = model estimate, std.error = standard error, statistic = 
z value. Depth = depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, 
sst_var = sea surface temperature variation, fp = fishing pressure, Year = year that sample was obtained, 
Quarter = difference in community composition in hauls caught in spring (reference level is hauls caught in 
winter). Colon indicates interaction between main effects. All continuous covariates are average values at 
resolution of community. Terms highlighted in blue have significant positive effects, terms highlighted in red 
have significant negative effects. 

term estimate std.error statistic p.value 

SNSP -0.0601258 0.0196879 -3.0539406 0.0022586 

SNWI 0.1274055 0.0228824 5.5678427 0.0000000 

sst_var 0.0286471 0.0167988 1.7053037 0.0881378 

Depth -0.0242884 0.0150421 -1.6147008 0.1063755 

fp -0.0270915 0.0108553 -2.4957004 0.0125709 

Year 0.0249878 0.0080118 3.1188727 0.0018154 

Quarter -0.0231069 0.0094353 -2.4489931 0.0143256 

SNSP:SNWI -0.0590012 0.0099241 -5.9452708 0.0000000 

SNSP:sst_var -0.0402375 0.0166231 -2.4205779 0.0154959 

SNSP:Depth 0.0246220 0.0206937 1.1898260 0.2341148 

SNSP:fp 0.0189352 0.0236724 0.7998839 0.4237780 

SNWI:sst_var 0.0386598 0.0222722 1.7357831 0.0826022 

SNWI:Depth 0.0539850 0.0212198 2.5440875 0.0109564 

SNWI:fp -0.0290353 0.0238377 -1.2180394 0.2232090 

sst_var:Depth -0.0254691 0.0110623 -2.3023420 0.0213159 

sst_var:fp -0.0292567 0.0185681 -1.5756421 0.1151083 

Depth:fp -0.0321438 0.0180928 -1.7766100 0.0756324 
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Table C.1.5. PC1 model outputs for communities in grid cells aggregated by a factor of 50. Effects of SST, depth 
and fishing pressure and their two-way interactions on community weighted mean of PC1 (representing pace of 
life Life history axis). Estimate = model estimate, std.error = standard error, statistic = z value. Depth = depth, 
SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea surface 
temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = difference in 
community composition in hauls caught in spring (reference level is hauls caught in winter). Colon indicates 
interaction between main effects. All continuous covariates are average values at resolution of community. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP -0.0243659 0.0368433 -0.6613398 0.5083944 

SNWI 0.1307355 0.0429559 3.0434843 0.0023386 

sst_var 0.0773175 0.0344125 2.2467853 0.0246537 

Depth -0.0126957 0.0338461 -0.3751014 0.7075851 

fp 0.0015894 0.0290795 0.0546575 0.9564114 

Year 0.0300321 0.0139657 2.1504241 0.0315217 

Quarter 0.0214776 0.0123874 1.7338257 0.0829490 

SNSP:SNWI -0.0830971 0.0189628 -4.3821027 0.0000118 

SNSP:sst_var 0.0140268 0.0361875 0.3876151 0.6983009 

SNSP:Depth 0.1631992 0.0497998 3.2771086 0.0010488 

SNSP:fp 0.0973217 0.0552021 1.7630091 0.0778990 

SNWI:sst_var -0.0446378 0.0499806 -0.8931024 0.3718023 

SNWI:Depth -0.0557731 0.0505107 -1.1041845 0.2695131 

SNWI:fp -0.1365717 0.0550877 -2.4791691 0.0131689 

sst_var:Depth -0.0352358 0.0232346 -1.5165232 0.1293871 

sst_var:fp 0.0164303 0.0491514 0.3342784 0.7381695 

Depth:fp 0.0635962 0.0523807 1.2141156 0.2247036 
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Table C.2.1. PC2 model outputs for communities at the level of haul. Effects of SST, depth and fishing pressure 
on community weighted mean of PC2 (representing reproductive investment life history axis) at each community 
resolution. Estimate = model estimate, std.error = standard error, statistic = z value. Depth = depth, SNSP = spring 
sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea surface temperature variation, 
fp = fishing pressure, Year = year that sample was obtained, Quarter = difference in community composition in 
hauls caught in spring (reference level is hauls caught in winter). Colon indicates interaction between main effects. 
All continuous covariates are average values at resolution of community. Terms highlighted in blue have 
significant positive effects, terms highlighted in red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0001373 0.0108551 0.0126468 0.9899096 

SNWI 0.0764011 0.0153892 4.9645871 0.0000007 

sst_var 0.0208444 0.0108799 1.9158612 0.0553828 

Depth -0.0265372 0.0096984 -2.7362503 0.0062144 

fp 0.0133763 0.0056348 2.3738684 0.0176028 

Year 0.0112438 0.0048413 2.3224926 0.0202064 

Quarter -0.0085537 0.0055359 -1.5451276 0.1223154 

SNSP:SNWI -0.0175973 0.0054774 -3.2127073 0.0013149 

SNSP:sst_var 0.0079565 0.0086250 0.9224856 0.3562754 

SNSP:Depth 0.0409424 0.0109252 3.7475187 0.0001786 

SNSP:fp 0.0080377 0.0085269 0.9426265 0.3458720 

SNWI:sst_var -0.0097128 0.0108858 -0.8922395 0.3722646 

SNWI:Depth -0.0288794 0.0105906 -2.7268895 0.0063934 

SNWI:fp -0.0029816 0.0089478 -0.3332261 0.7389636 

sst_var:Depth -0.0275306 0.0067382 -4.0857514 0.0000439 

sst_var:fp -0.0072594 0.0076064 -0.9543739 0.3398944 

Depth:fp -0.0141658 0.0069798 -2.0295430 0.0424030 
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Table C.2.2. PC2 model outputs for communities in grid cells aggregated by a factor of 5. Effects of SST, depth 
and fishing pressure on community weighted mean of PC2 (representing reproductive investment life history axis) 
at each community resolution. Estimate = model estimate, std.error = standard error, statistic = z value. Depth = 
depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea surface 
temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = difference in 
community composition in hauls caught in spring (reference level is hauls caught in winter). Colon indicates 
interaction between main effects. All continuous covariates are average values at resolution of community. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP -0.0055379 0.0124951 -0.4432031 0.6576188 

SNWI 0.0834603 0.0166906 5.0004278 0.0000006 

sst_var 0.0141789 0.0112014 1.2658235 0.2055763 

Depth -0.0098403 0.0094585 -1.0403722 0.2981670 

fp 0.0305479 0.0056988 5.3603712 0.0000001 

Year 0.0027022 0.0056641 0.4770733 0.6333099 

Quarter -0.0019417 0.0073241 -0.2651172 0.7909192 

SNSP:SNWI -0.0177018 0.0060891 -2.9071236 0.0036477 

SNSP:sst_var 0.0293638 0.0101959 2.8799543 0.0039773 

SNSP:Depth 0.0627299 0.0123904 5.0627924 0.0000004 

SNSP:fp -0.0006867 0.0105621 -0.0650141 0.9481628 

SNWI:sst_var -0.0227623 0.0128955 -1.7651371 0.0775407 

SNWI:Depth -0.0449526 0.0120338 -3.7355240 0.0001873 

SNWI:fp -0.0004013 0.0107408 -0.0373613 0.9701969 

sst_var:Depth -0.0205521 0.0072033 -2.8531346 0.0043290 

sst_var:fp -0.0151881 0.0089791 -1.6915000 0.0907414 

Depth:fp -0.0209898 0.0079019 -2.6562768 0.0079009 
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Table C.2.3. PC2 model outputs for communities in grid cells aggregated by a factor of 10. Effects of SST, depth 
and fishing pressure on community weighted mean of PC2 (representing reproductive investment life history axis) 
at each community resolution. Estimate = model estimate, std.error = standard error, statistic = z value. Depth = 
depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea surface 
temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = difference in 
community composition in hauls caught in spring (reference level is hauls caught in winter). Colon indicates 
interaction between main effects. All continuous covariates are average values at resolution of community. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0084019 0.0147478 0.5697041 0.5688784 

SNWI 0.0566111 0.0172467 3.2824271 0.0010292 

sst_var -0.0064653 0.0123073 -0.5253221 0.5993593 

Depth -0.0087860 0.0108480 -0.8099216 0.4179853 

fp 0.0365941 0.0072367 5.0567351 0.0000004 

Year 0.0013503 0.0064153 0.2104777 0.8332948 

Quarter -0.0089892 0.0078847 -1.1400841 0.2542513 

SNSP:SNWI -0.0228418 0.0072175 -3.1647806 0.0015520 

SNSP:sst_var 0.0139336 0.0126799 1.0988762 0.2718221 

SNSP:Depth 0.0616479 0.0158743 3.8835036 0.0001030 

SNSP:fp -0.0330013 0.0147079 -2.2437748 0.0248469 

SNWI:sst_var -0.0160215 0.0163171 -0.9818864 0.3261558 

SNWI:Depth -0.0338404 0.0152270 -2.2223881 0.0262571 

SNWI:fp 0.0360324 0.0148894 2.4200045 0.0155203 

sst_var:Depth -0.0088080 0.0088149 -0.9992129 0.3176916 

sst_var:fp -0.0121624 0.0119089 -1.0212869 0.3071185 

Depth:fp -0.0354012 0.0107633 -3.2890758 0.0010052 

 



 

 
 

191  

Table C.2.4. PC2 model outputs for communities in grid cells aggregated by a factor of 20. Effects of SST, depth 
and fishing pressure on community weighted mean of PC2 (representing reproductive investment life history axis) 
at each community resolution. Estimate = model estimate, std.error = standard error, statistic = z value. Depth = 
depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea surface 
temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = difference in 
community composition in hauls caught in spring (reference level is hauls caught in winter). Colon indicates 
interaction between main effects. All continuous covariates are average values at resolution of community. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0038246 0.0200752 0.1905157 0.8489050 

SNWI 0.0595917 0.0232853 2.5591969 0.0104914 

sst_var -0.0125478 0.0171393 -0.7321045 0.4641048 

Depth 0.0028466 0.0153946 0.1849068 0.8533021 

fp 0.0571214 0.0110786 5.1560062 0.0000003 

Year 0.0062909 0.0081760 0.7694307 0.4416377 

Quarter -0.0054144 0.0093863 -0.5768401 0.5640475 

SNSP:SNWI -0.0356180 0.0100722 -3.5362806 0.0004058 

SNSP:sst_var 0.0147647 0.0169659 0.8702583 0.3841593 

SNSP:Depth 0.0682834 0.0211193 3.2332240 0.0012240 

SNSP:fp -0.0462787 0.0241639 -1.9152042 0.0554665 

SNWI:sst_var -0.0140160 0.0227243 -0.6167839 0.5373773 

SNWI:Depth -0.0135312 0.0216582 -0.6247600 0.5321286 

SNWI:fp 0.0519799 0.0243300 2.1364516 0.0326426 

sst_var:Depth 0.0033536 0.0112974 0.2968456 0.7665844 

sst_var:fp 0.0011796 0.0189575 0.0622223 0.9503858 

Depth:fp -0.0402350 0.0184662 -2.1788451 0.0293432 
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Table C.2.5. PC2 model outputs for communities in grid cells aggregated by a factor of 50. Effects of SST, depth 
and fishing pressure on community weighted mean of PC2 (representing reproductive investment life history axis) 
at each community resolution. Estimate = model estimate, std.error = standard error, statistic = z value. Depth = 
depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea surface 
temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = difference in 
community composition in hauls caught in spring (reference level is hauls caught in winter). Colon indicates 
interaction between main effects. All continuous covariates are average values at resolution of community. Terms 
highlighted in blue have significant positive effects, terms highlighted in red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0219792 0.0382533 0.5745697 0.5655823 

SNWI 0.0486139 0.0445998 1.0900012 0.2757126 

sst_var 0.0730687 0.0357295 2.0450519 0.0408497 

Depth 0.0973040 0.0351414 2.7689248 0.0056242 

fp -0.0315789 0.0301924 -1.0459238 0.2955962 

Year 0.0101231 0.0145001 0.6981391 0.4850902 

Quarter -0.0403011 0.0128615 -3.1334792 0.0017275 

SNSP:SNWI -0.0373425 0.0196886 -1.8966600 0.0578728 

SNSP:sst_var 0.0051999 0.0375724 0.1383972 0.8899265 

SNSP:Depth 0.1214822 0.0517056 2.3494975 0.0187988 

SNSP:fp 0.1585762 0.0573147 2.7667633 0.0056616 

SNWI:sst_var 0.0121234 0.0518934 0.2336210 0.8152792 

SNWI:Depth -0.0533714 0.0524438 -1.0176884 0.3088261 

SNWI:fp -0.1407792 0.0571959 -2.4613490 0.0138416 

sst_var:Depth -0.0715721 0.0241238 -2.9668701 0.0030085 

sst_var:fp 0.0387425 0.0510325 0.7591741 0.4477484 

Depth:fp 0.0862545 0.0543853 1.5859876 0.1127421 

 
 



 

 
 

193  

Table C.3.1. PC3 model outputs for communities at the level of haul. Effects of SST, depth and fishing 
pressure on community weighted mean of PC3 (representing trophic level) at each community 
resolution. Estimate = model estimate, std.error = standard error, statistic = z value. Depth = depth, SNSP 
= spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea surface 
temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = difference 
in community composition in hauls caught in spring (reference level is hauls caught in winter). Colon 
indicates interaction between main effects. All continuous covariates are average values at resolution of 
community. Terms highlighted in blue have significant positive effects, terms highlighted in red have 
significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0467849 0.0118458 3.949480 0.0000783 

SNWI -0.0948616 0.0163983 -5.784833 0.0000000 

sst_var 0.0163580 0.0115754 1.413165 0.1576071 

Depth -0.1299941 0.0101033 -12.866503 0.0000000 

fp 0.0277045 0.0059464 4.659060 0.0000032 

Year -0.0108772 0.0053400 -2.036909 0.0416591 

Quarter 0.1036965 0.0061213 16.940337 0.0000000 

SNSP:SNWI 0.0446391 0.0058938 7.573909 0.0000000 

SNSP:sst_var 0.0291248 0.0093710 3.107973 0.0018838 

SNSP:Depth 0.0291926 0.0117860 2.476887 0.0132534 

SNSP:fp -0.0284485 0.0092587 -3.072614 0.0021219 

SNWI:sst_var -0.0248706 0.0117784 -2.111552 0.0347249 

SNWI:Depth -0.0491182 0.0113846 -4.314459 0.0000160 

SNWI:fp 0.0171788 0.0096976 1.771451 0.0764857 

sst_var:Depth -0.0283674 0.0072222 -3.927787 0.0000857 

sst_var:fp 0.0171448 0.0082536 2.077242 0.0377792 

Depth:fp -0.0280845 0.0074744 -3.757420 0.0001717 
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Table C.3.2. PC3 model outputs for communities in grid cells aggregated by a factor of 5. Effects of SST, 
depth and fishing pressure on community weighted mean of PC3 (representing trophic level) at each 
community resolution. Estimate = model estimate, std.error = standard error, statistic = z value. Depth = 
depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea 
surface temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = 
difference in community composition in hauls caught in spring (reference level is hauls caught in winter). 
Colon indicates interaction between main effects. All continuous covariates are average values at 
resolution of community. Terms highlighted in blue have significant positive effects, terms highlighted in 
red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0726765 0.0131778 5.5150485 0.0000000 

SNWI -0.1228534 0.0178627 -6.8776460 0.0000000 

sst_var 0.0072918 0.0119775 0.6087869 0.5426657 

Depth -0.1620081 0.0099364 -16.3045934 0.0000000 

fp 0.0315799 0.0060110 5.2536689 0.0000001 

Year 0.0069508 0.0061075 1.1380772 0.2550882 

Quarter 0.0934031 0.0079323 11.7750780 0.0000000 

SNSP:SNWI 0.0400123 0.0064979 6.1577569 0.0000000 

SNSP:sst_var 0.0066789 0.0107911 0.6189247 0.5359660 

SNSP:Depth 0.0235315 0.0131382 1.7910761 0.0732811 

SNSP:fp -0.0399727 0.0111711 -3.5782392 0.0003459 

SNWI:sst_var 0.0086291 0.0136602 0.6316985 0.5275839 

SNWI:Depth -0.0067171 0.0127229 -0.5279484 0.5975352 

SNWI:fp 0.0367186 0.0113598 3.2323194 0.0012279 

sst_var:Depth -0.0287531 0.0076271 -3.7698699 0.0001633 

sst_var:fp 0.0198830 0.0094981 2.0933794 0.0363153 

Depth:fp -0.0290881 0.0083515 -3.4829574 0.0004959 
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Table C.3.3. PC3 model outputs for communities in grid cells aggregated by a factor of 10. Effects 
of SST, depth and fishing pressure on community weighted mean of PC3 (representing trophic level) 
at each community resolution. Estimate = model estimate, std.error = standard error, statistic = z 
value. Depth = depth, SNSP = spring sea surface temperature, SNSW = winter sea surface 
temperature, sst_var = sea surface temperature variation, fp = fishing pressure, Year = year that 
sample was obtained, Quarter = difference in community composition in hauls caught in spring 
(reference level is hauls caught in winter). Colon indicates interaction between main effects. All 
continuous covariates are average values at resolution of community. Terms highlighted in blue have 
significant positive effects, terms highlighted in red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0719762 0.0157346 4.5744015 0.0000048 

SNWI -0.1009041 0.0184298 -5.4750452 0.0000000 

sst_var 0.0056667 0.0131335 0.4314682 0.6661280 

Depth -0.1543714 0.0115573 -13.3570918 0.0000000 

fp 0.0281857 0.0077189 3.6515199 0.0002607 

Year 0.0141750 0.0068432 2.0714090 0.0383206 

Quarter 0.0964068 0.0085438 11.2838919 0.0000000 

SNSP:SNWI 0.0445266 0.0077160 5.7706761 0.0000000 

SNSP:sst_var 0.0338687 0.0135253 2.5040910 0.0122766 

SNSP:Depth 0.0320098 0.0169336 1.8903129 0.0587161 

SNSP:fp -0.0324188 0.0156880 -2.0664710 0.0387840 

SNWI:sst_var 0.0021924 0.0174058 0.1259559 0.8997668 

SNWI:Depth -0.0264990 0.0162424 -1.6314705 0.1027911 

SNWI:fp 0.0310059 0.0158829 1.9521555 0.0509198 

sst_var:Depth -0.0352836 0.0094008 -3.7532386 0.0001746 

sst_var:fp 0.0304309 0.0127021 2.3957470 0.0165865 

Depth:fp -0.0252832 0.0114813 -2.2021241 0.0276565 
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Table C.3.4. PC3 model outputs for communities in grid cells aggregated by a factor of 20. Effects of 
SST, depth and fishing pressure on community weighted mean of PC3 (representing trophic level) at 
each community resolution. Estimate = model estimate, std.error = standard error, statistic = z value. 
Depth = depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var 
= sea surface temperature variation, fp = fishing pressure, Year = year that sample was obtained, 
Quarter = difference in community composition in hauls caught in spring (reference level is hauls 
caught in winter). Colon indicates interaction between main effects. All continuous covariates are 
average values at resolution of community. Terms highlighted in blue have significant positive effects, 
terms highlighted in red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0980061 0.0226940 4.3185912 0.0000157 

SNWI -0.1318297 0.0264121 -4.9912717 0.0000006 

sst_var 0.0016249 0.0193849 0.0838218 0.9331981 

Depth -0.1521471 0.0173431 -8.7727540 0.0000000 

fp 0.0278544 0.0125174 2.2252538 0.0260642 

Year 0.0112226 0.0092373 1.2149209 0.2243963 

Quarter 0.0819837 0.0108917 7.5271888 0.0000000 

SNSP:SNWI 0.0643015 0.0114416 5.6199607 0.0000000 

SNSP:sst_var 0.0460968 0.0191675 2.4049451 0.0161749 

SNSP:Depth 0.0595213 0.0238601 2.4945930 0.0126102 

SNSP:fp -0.0525040 0.0272965 -1.9234689 0.0544212 

SNWI:sst_var -0.0257890 0.0256838 -1.0040961 0.3153323 

SNWI:Depth -0.0648794 0.0244687 -2.6515290 0.0080128 

SNWI:fp 0.0696040 0.0274859 2.5323506 0.0113301 

sst_var:Depth -0.0340149 0.0127518 -2.6674539 0.0076428 

sst_var:fp 0.0353768 0.0214081 1.6524972 0.0984332 

Depth:fp -0.0643031 0.0208631 -3.0821413 0.0020552 
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Table C.3.5. PC3 model outputs for communities in grid cells aggregated by a factor of 50. Effects of 
SST, depth and fishing pressure on community weighted mean of PC3 (representing trophic level) at each 
community resolution. Estimate = model estimate, std.error = standard error, statistic = z value. Depth 
= depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, sst_var = sea 
surface temperature variation, fp = fishing pressure, Year = year that sample was obtained, Quarter = 
difference in community composition in hauls caught in spring (reference level is hauls caught in winter). 
Colon indicates interaction between main effects. All continuous covariates are average values at 
resolution of community. Terms highlighted in blue have significant positive effects, terms highlighted in 
red have significant negative effects. 

term estimate std.error statistic p.value 

SNSP 0.0426383 0.0425665 1.0016864 0.3164951 

SNWI -0.1607680 0.0496286 -3.2394195 0.0011977 

sst_var -0.0865337 0.0397581 -2.1765025 0.0295177 

Depth -0.2121269 0.0391038 -5.4247155 0.0000001 

fp 0.0009719 0.0335967 0.0289296 0.9769207 

Year 0.0036384 0.0161351 0.2254951 0.8215942 

Quarter 0.0341347 0.0143116 2.3850991 0.0170745 

SNSP:SNWI 0.0893014 0.0219085 4.0761033 0.0000458 

SNSP:sst_var 0.0097947 0.0418088 0.2342747 0.8147717 

SNSP:Depth -0.0922172 0.0575356 -1.6027847 0.1089822 

SNSP:fp -0.2153765 0.0637771 -3.3770170 0.0007328 

SNWI:sst_var 0.0708564 0.0577446 1.2270662 0.2197977 

SNWI:Depth 0.0954972 0.0583570 1.6364303 0.1017496 

SNWI:fp 0.1825344 0.0636450 2.8680089 0.0041306 

sst_var:Depth -0.0204090 0.0268438 -0.7602859 0.4470837 

sst_var:fp -0.0406893 0.0567866 -0.7165296 0.4736644 

Depth:fp -0.1634896 0.0605175 -2.7015250 0.0069022 
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Figure C.1. Community weighted means of life history principle components at the level of haul. (A) 
Effects of SST, depth and fishing pressure on community weighted mean of PC1 (representing pace of life 
Life history axis). (B) Effects of SST, depth and fishing pressure on community weighted mean of PC2 
(representing reproductive investment life history axis). (C) Effects of SST, depth and fishing pressure on 
community weighted mean of PC3 (representing trophic level). In all panels, the x axis represents change in 
community weighted mean value of PC associated with a one standard deviation change in each model 
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term. Depth = depth, SNSP = spring sea surface temperature, SNSW = winter sea surface temperature, 
sst_var = sea surface temperature variation, fp = fishing pressure, Year = year that sample was obtained, 
Quarter = difference in community composition in hauls caught in spring (reference level is hauls caught in 
winter). The colour of points and vertical lines refers to the terms in the model. If a point and vertical line 
are the same colour, this represents a main effect. If point and vertical line are different colours, this 
represents the interaction between two main effects as per the legend. Light grey vertical bar highlight 
terms associated with fishing pressure. Vertical lines represent 95% Confidence interval. CIs overlapping 
continuous horizontal lines indicate that the slope of the relationship is not significantly different from zero 
(no effect). Total number of observations (communities) in the models = 8160. 
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Figure C.2. Comparison of relative importance of covariates across community resolutions.  
A) Effects of SST, depth and fishing pressure and their two-way interactions on community 
weighted mean of PC1 (representing pace of life Life history axis) at each community resolution. B) 
Effects of SST, depth and fishing pressure on community weighted mean of PC2 (representing 
reproductive investment life history axis) at each community resolution. C) Effects of SST, depth 
and fishing pressure on community weighted mean of PC3 (representing trophic level) at each 
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community resolution. Depth = depth, SNSP = spring sea surface temperature, SNSW = winter sea 
surface temperature, sst_var = sea surface temperature variation, fp = fishing pressure. All 
continuous covariates are average values at resolution of community. Year = year that sample was 
obtained, Quarter = difference in community composition in hauls caught in spring (reference level 
is hauls caught in winter). Communities were defined at the level of haul (1), or all hauls in grid cells 
aggregated by factors of 5, 10, 20 or 50 (see methods). Number of observations (communities) per 
model: res1 = 8160, res5 = 6030, res10 = 3945, res20 = 1963, res50 = 564. In all panels, x axis 
represents change in community weighted mean value of PC associated with a one standard 
deviation change in each model term. Vertical lines represent 95% Confidence interval. CIs 
overlapping continuous horizontal lines indicate that the slope of the relationship is not significantly 
different from zero (no effect). The colour of points and vertical lines refers to the terms in the 
model. If a point and vertical line are the same colour, this represents a main effect. If point and 
vertical line are different colours, this represents the interaction between two main effects as per 
the legend. The size of points refers to community resolution of the model as per the legend. Light 
grey vertical bar highlight terms associated with fishing pressure.  
 

Table C.2. Consistent core areas. Values represent width in kilometers of a square containing the 
core areas of 48 species in our data set after Probst et al., (2021). Probst define consistent core 
areas as “grid cells containing 50% of cumulative population biomass in any given year and season”, 
with grid cells containing at least 50% of all core areas for the whole study duration considered 
consistent core areas. Winter = consistent core areas during winter, Summer = consistent core areas 
during summer, Annual = consistent core areas for both winter and summer. 

Species Winter  Summer Annual 

Merlangius merlangus 218 225 166 

Trisopterus esmarkii 197 174 111 

Melanogrammus aeglefinus 183 201 167 

Pleuronectes platessa 210 238 155 

Scyliorhinus canicula 138 120 76 

Limanda limanda 244 229 148 

Trisopterus minutus 143 165 114 

Eutrigla gurnardus 188 176 47 

Callionymus lyra 229 247 116 

Hippoglossoides platessoides 244 246 173 

Raja montagui 118 77 59 

Squalus acanthias 227 183 78 

Microstomus kitt 245 235 179 

Platichthys flesus 61 110 61 
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Table C.2. Consistent core areas. Values represent width in kilometers of a square containing the 
core areas of 48 species in our data set after Probst et al., (2021). Probst define consistent core 
areas as “grid cells containing 50% of cumulative population biomass in any given year and season”, 
with grid cells containing at least 50% of all core areas for the whole study duration considered 
consistent core areas. Winter = consistent core areas during winter, Summer = consistent core areas 
during summer, Annual = consistent core areas for both winter and summer. 

Species Winter  Summer Annual 

Gadus morhua 242 216 148 

Raja clavata 128 58 58 

Callionymus maculatus 115 192 115 

Trisopterus luscus 81 76 46 

Merluccius merluccius 158 178 146 

Agonus cataphractus 94 141 54 

Zeus faber 182 122 93 

Echiichthys vipera 108 103 41 

Enchelyopus cimbrius 163 138 99 

Raja brachyura 115 86 33 

Gaidropsarus vulgaris 166 115 55 

Glyptocephalus cynoglossus 170 212 141 

Lophius piscatorius 176 207 160 

Lepidorhombus whiffiagonis 102 90 74 

Helicolenus dactylopterus 108 112 80 

Taurulus bubalis 57 NA NA 

Pholis gunnellus 132 86 81 

Leucoraja naevus 157 140 110 

Scophthalmus rhombus 107 144 104 

Ciliata mustela 98 NA NA 

Lophius budegassa 167 201 115 

Galeorhinus galeus 145 102 0 

Pollachius virens 135 158 119 
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Table C.2. Consistent core areas. Values represent width in kilometers of a square containing the 
core areas of 48 species in our data set after Probst et al., (2021). Probst define consistent core 
areas as “grid cells containing 50% of cumulative population biomass in any given year and season”, 
with grid cells containing at least 50% of all core areas for the whole study duration considered 
consistent core areas. Winter = consistent core areas during winter, Summer = consistent core areas 
during summer, Annual = consistent core areas for both winter and summer. 

Species Winter  Summer Annual 

Phycis blennoides 141 123 81 

Pollachius pollachius 142 110 90 

Molva molva 121 109 99 

Scophthalmus maximus 260 240 143 

Zeugopterus punctatus 160 167 0 

Myoxocephalus scorpius 163 158 97 

Cyclopterus lumpus 153 132 77 

Sebastes viviparus 117 134 53 

Brosme brosme 124 97 89 

Triglops murrayi 118 83 53 

Hippoglossus hippoglossus 209 212 130 
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Appendix D | Supplementary information for Chapter 5 

 
Table D.1. Nutrient application rates. Nutrients were applied at a rate of 10 g m-2 y-1 by elemental 
mass. Plots = 25 m2, 15 plots per nutrient treatment (5 treatments x 3 replicates). *Micronutrients 
(mixture of Ca, Mg, S, B, Cu, Fe, Mn, Mo, Zn) were only applied in the 1st treatment year.  

Fertilizer g plot-1 year-1 kg experiment-1 year-1 

Slow-release Urea (43% N) 
Triple Super Phosphate 
Potassium Sulphate 
Micronutrients* 

581 
1272 
558 
2500 

8.7 
19.1 
8.4 
37.5 

 
 
Table D.2. Soil assay data. Assay of Slieve Carran soil samples collected in the pre-experiment year (2015). C, 
N, P and K refer to Carbon, Nitrogen, Phosphorus and Potassium respectively. 

Block plot %C %N P (ppm) K (ppm) pH 

1 

1 8.258 0.643 7 185 5.5 
2 9.613 0.786 13 237 5.6 
3 7.715 0.62 8 184 5.5 
4 7.075 0.544 5 215 5.4 
5 6.556 0.525 6 146 5.4 
6 6.192 0.492 9 167 5.3 
7 6.113 0.48 5 162 5.4 
8 7.627 0.582 4 222 6.4 
9 7.354 0.572 4 205 5.5 

10 8.49 0.745 10 262 5.6 

2 

11 7.718 0.633 7 172 5.4 
12 7.102 0.554 5 163 5.2 
13 8.083 0.66 5 136 5.6 
14 7.517 0.546 4 147 5.3 
15 7.242 0.552 4 137 5.4 
16 9.411 0.711 7 176 5.9 
17 6.916 0.549 5 191 5.3 
18 9.24 0.792 6 238 5.7 
19 6.418 0.493 3 152 5.3 
20 8.439 0.612 4 176 5.3 

3  

21 8.146 0.577 7 182 5.6 
22 12.307 0.892 9 134 6 
23 7.111 0.502 3 168 5.5 
24 9.111 0.697 6 151 5.4 
25 8.945 0.649 5 155 5.3 
26 5.999 0.482 3 131 5.4 
27 9.011 0.625 4 152 6.3 
28 9.223 0.654 6 164 5.4 
29 7.956 0.612 5 127 5.4 
30 6.915 0.512 5 127 5.1 

Site mean 7.927 0.610 5.800 172.133 5.513 
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Table D.3. Species list 

1. Achillea millefolium 

2. Agrostis capillaris 

3. Agrostis stolonifera 

4. Ajuga reptans 

5. Anemone nemorosa 

6. Anthoxanthum odoratum 

7. Briza media 

8. Bryophyte 

9. Calluna vulgaris 

10. Campanula rotundifolia 

11. Carex caryophyllea 

12. Carex flacca 

13. Carex panicea 

14. Carex pulicaris 

15. Centaurea nigra 

16. Cerastium fontanum 

17. Conopodium majus 

18. Corylus avellana 

19. Cynodon sp. 

20. Cynosurus cristatus 

21. Dactylis glomerata 

22. Dactylorhiza fuchsii 

23. Dactylorhiza maculata 

24. Dactylorhiza sp. 

25. Danthonia decumbens 

26. Euphrasia sp. 
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Table D.3. Species list 

27. Festuca ovina 

28. Festuca rubra 

29. Galium saxatile 

30. Galium verum 

31. Gymnadenia conopsea 

32. Helictotrichon pubescens 

33. Holcus lanatus 

34. Hypericum pulchrum 

35. Hypochaeris radicata 

36. Koeleria macrantha 

37. Lathyrus linifolius 

38. Lathyrus pratensis 

39. Leontodon autumnalis 

40. Leontodon hispidus 

41. Linum catharticum 

42. Lotus corniculatus 

43. Luzula campestris 

44. Luzula multiflora 

45. Mentha arvensis 

46. Molinia caerulea 

47. Neottia ovata 

48. Odontites vernus 

49. Orchis mascula 

50. Parnassia palustris 

51. Pedicularis palustris 

52. Pedicularis sylvatica 
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Table D.3. Species list 

53. Pilosella officinarum 

54. Pimpinella saxifraga 

55. Plantago lanceolata 

56. Plantago maritima 

57. Platanthera sp. 

58. Poa pratensis 

59. Poa trivialis 

60. Potentilla erecta 

61. Potentilla sterilis 

62. Prunella vulgaris 

63. Pteridium aquilinum 

64. Ranunculus acris 

65. Ranunculus repens 

66. Rhinanthus minor 

67. Rosa spinosissima 

68. Rosa xanthina 

69. Rubus vestitus 

70. Rumex acetosa 

71. Scorzoneroides autumnalis 

72. Sesleria caerulea 

73. Sonchus asper 

74. Succisa pratensis 

75. Taraxacum campylodes 

76. Thymus polytrichus 

77. Thymus praecox ssp. Polytrichus 

78. Trifolium medium 
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Table D.3. Species list 

79. Trifolium pratense 

80. Trifolium repens 

81. Trisetum flavescens 

82. Unknown orchidaceae sp. 

83. Veronica chamaedrys 

84. Vicia cracca 

85. Viola riviniana 

 
 
 


