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A B S T R A C T   

There is still much philosophical debate about whether a frequentist or subjective view of 
probability should be adopted. Some uncertainties (typically aleatory uncertainties) are naturally 
modelled using a frequentist approach, while others (epistemic uncertainties) are clearly sub
jective in nature. In light of this it has been argued, for example by the German philosopher 
Rudolf Carnap, that both potential descriptions of uncertainty should be maintained and treated 
separately. However, in current engineering practice it is common to make no distinction between 
these two types of uncertainty. Generally, uncertainty is represented by a single figure or dis
tribution, for example a probability of failure, which incorporates both aleatory and epistemic 
uncertainties. This paper explores the idea of treating aleatory and epistemic uncertainties 
separately and proposes alternative metrics –based on the epistemic probability of an aleatory 
probability - which can potentially provide greater insight for the designer in engineering 
problems. The metrics are illustrated using two example engineering dynamics problems; the 
prediction of wind induced accelerations in a tall building and optimizing the design of sound
proofing in a car. It is shown that as well as providing further insight on the underlying 
contributing causes of uncertainty, treating aleatory and epistemic uncertainties as separate 
quantities, as opposed to in the traditional combined manner, can potentially lead to different 
design outcomes.   

1. Introduction 

There is still philosophical debate about the correct interpretation of probability [1]. Two broad interpretations, often termed the 
frequentist and subjective approaches, are generally presented. The frequentist view defines probability of some event in terms of the 
relative frequency with which the event tends to occur, while the subjective view defines probability as a measure of the strength of 
belief regarding the true situation. Various authors have argued that one approach is superior to the other. This debate exists in both 
classic texts (with ‘frequentist’ works like those by von Mises or Feller and ‘subjectivist’ or ‘Bayesian’ ones such as those by Ramsey or 
Jaynes) and contemporary literature [2,3]. In his work Logical Foundations of Probability [4] the German philosopher Rudolf Carnap 
argues that both descriptions of probability should be maintained as the frequentist and subjectivist approaches are fundamentally 
different, or ‘there are two fundamentally different concepts for which the term ‘probability’ is in general use’. Rather than promoting one 
view over the other, he argues that ‘both concepts are important for science’ and defines two separate types of probability, which he refers 
to as Probability1 and Probability2: 
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(i) Probability1 is the degree of confirmation of a hypothesis h with respect to an evidence statement e, e.g., an observational 
report.  

(ii) Probability2 is the relative frequency (in the long run) of one property of events or things with respect to another. 

Both Probability1 and Probability2 are probabilities in the sense that they have a value between 0 and 1 and can be represented by a 
cumulative distribution function (CDF) or the corresponding probability density function (PDF). The two definitions correspond to the 
subjective and frequentist views of probability theory respectively. They can also be viewed as the probabilities arising from epistemic 
uncertainty and aleatory variability. Epistemic uncertainty results from the lack of knowledge about the system of interest. Since it 
stems from the lack of knowledge, it can be reduced by obtaining additional information. Aleatory variability is the natural variation of 
inputs that impact outputs of interest. This uncertainty is irreducible. 

While on one level this may appear academic or semantic, the destination between the two types of probability is relevant for 
engineering design. The interpretation of the output of a probabilistic analysis is dependent on the nature of the uncertainties under 
examination. The result can only be expected to agree with experimental observations if the output is frequentist, or Probability2. 
Therefore, in principle, identifying the relative contribution of lack of knowledge (i.e., epistemic) uncertainty and inherent (i.e., 
aleatory) variability on the final results is relevant, especially from a risk management perspective. As epistemic uncertainty can 
generally be reduced with the additional expenditure of resources, decisions can readily be made with respect to the cost/benefit of 
such activities [5]. 

These statements are obvious to a large degree, but nonetheless in practice it is common to combine both types of probability in 
analysis and interpret the output in a frequentist sense. To pick just one example, in earthquake engineering the FEMA P-58 guide for 
building performance assessment [6] recommends using a square root sum of squares approach to combine two values for standard 
deviation representing epistemic uncertainty in structural modelling and aleatory variability in ground motion into a single overall 
standard deviation value. This combined value is then used to define a distribution representing probable building performance. 

However, while it may not be overly common in engineering practice, the separation of aleatory and epistemic uncertainty sources 
has been examined in many academic studies. Examples of studies where this has been done include [7–10] and many more. Studies of 
this type are often motivated by the desire to use alternative mathematical representations of aleatory and epistemic uncertainty. 
While it is widely accepted that aleatory uncertainty is best represented using probability theory, there is more debate about how best 
to represent epistemic uncertainty (for example [11]). Several alternative mathematical structures are available for this purpose, 
including interval theory, Dempster-Shafer theory of evidence, fuzzy set theory and possibility theory (see [12] for detailed discus
sion). Treating epistemic and aleatory uncertainty as separate quantities allows for the development of a family of distributions, each 
with an uncertainty structure deriving from the particular uncertainty structure used to represent epistemic uncertainty. Plotted 
together this family, or ensemble, of distributions is sometimes referred to as a ‘horsetail’ plot [13] where each individual distribution 
can be referred to as a ‘hair’. 

There is a more limited body of work where, in line with Carnap’s ideas, probability theory is used to represent both epistemic and 
aleatory uncertainty, but the two probabilities are propagated through the analysis as separate quantities. One notable example where 
this concept has been applied in an engineering context is the series of works related to the proposed design of the high level 
radioactive waste repository at Yucca Mountain in Nevada [14–18], which was ultimately never constructed. A key element of the 
design was determining the expected radiation dose experienced by a ‘reasonably maximally exposed individual’. This approach 
adopted for this calculation employed probability theory to quantify both aleatory and epistemic uncertainties, but treated these two 
probabilities as separate quantities. The motivation for this was the stipulation by regulators that the designers estimate the radiation 
dose via a framework that accounted for both and “probability of occurrence” of future radiation events (an aleatory uncertainty) and 
“uncertainty” related to the modelling of these events (epistemic uncertainty). A number of metrics defined by integrals involving a 
probability space for aleatory uncertainty and a probability space for epistemic uncertainty were proposed, including the epistemic 
expectation of an aleatory expectation and the epistemic probability of an aleatory probability, which may be represented as 
Probability1{Probability2} in Carnap’s notation. The later representation is sometimes termed a second order probability, which may be 
understood as the probability that the true probability of something has a certain value [19]. However, to the best of the authors’ 
knowledge, this idea has not gained any traction or been implemented in engineering dynamics. 

The overarching aim of this work is to demonstrate that separate treatment of the aleatory and epistemic uncertainties, or Prob
ability1 and Proability2, can lead to further insight. This concept is illustrated using two example metrics –based on the epistemic 
probability of an aleatory probability - which can potentially provide greater insight for the designer in engineering problems. Use of 
the metrics is demonstrated for two example engineering dynamics problems; the prediction of wind induced accelerations in a tall 
building and optimizing the design of soundproofing in a car. There is a specific focus on dynamics in this study, but the concepts are 
potentially applicable to a range of problems across engineering. The potential benefits of separating uncertainties are illustrated via 
comparison with the alternative approach, where no distinction is made between aleatory and epistemic uncertainties. 

Separation of aleatory and epistemic uncertainties, even if they are both treated probabilistically, is especially relevant for Digital 
Twins compared to ‘traditional’ design. In ‘traditional’ design the design phase is often a separate process from the operational life or 
asset management phase. This means that in many cases the true values for variables considered epistemically uncertain in design are 
not evaluated. Hence, there is arguably limited benefit in separating uncertainly types in design, as the benefits of this can only be fully 
exploited if the reducible uncertainty is actually reduced. However, in contrast, one of the primary purposes of a Digital Twin in 
engineering dynamics is to quantify and reduce epistemic uncertainties [20] through monitoring of the constructed ‘physical twin’ and 
updating of the ‘digital twin’. Therefore, given that a goal of a digital twin is to reduce epistemic uncertainty, understanding, prior to 
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monitoring, to what extent uncertainty may be reduced becomes increasingly beneficial as design decisions, or even the decision as to 
whether or not to employ a digital twin, may depend on the balance between reducible and irreducible uncertainty. 

2. Theory 

2.1. Second order failure Probability:P1[P2(fail) ]

Fig. 1 presents a typical engineering problem with associated uncertainty. There is a calculation model with some inputs, x, that are 
p1, uncertain (subjective or epistemic) and others, y, that are p2, uncertain (frequentist or aleatory). It is assumed in this study that 
these uncertain inputs can be represented by probability density functions p1(x) and p2(y) respectively, in line with Carnap’s defi
nitions of Probability1 and Probability2. The output of the calculation model is labelled z and has an associated failure level, zf . 

Conventionally, where no distinction is made between probability types, the failure probability in such a scenario is calculated as: 

P0
(
z > zf |x, y

)
=

∫∫

R(z>zf )

p1,2(x, y)dxdy (1) 

R(z > zf ), which is the region in x, y space where the output, z, exceeds the allowable level, zf and p1,2(x, y) is the joint PDF of the 
input variables. As per standard convention, in this study a lowercase p refers to a probability density function (PDF) while an up
percase P refers to a probability value or cumulative distribution function (CDF). 

The calculation described by Eq. (1) makes no distinction between uncertainty types. For the purpose of this paper, this type of 
combined failure probability is termed P0, in order to distinguish it from an epistemic, or Probability1, type probability, P1, or a 
aleatory, or Probability2, type probability, P2. An example application of Eq. (1), which may provide further clarity, is presented in 
Section 3 of this paper and illustrated in Fig. 5. 

An alternative to this combined P0 failure probability can be obtained by treating epistemic and aleatory uncertainties as separate 
quantities. A metric for this purpose is proposed in Eqs. (2) and (3). This a two-step calculation process, where aleatory failure 
probability conditional on the epistemic variables is calculated first, before the epistemic probability of this being the case is evaluated. 
The first step involves obtaining the conditional probability of failure given a value of x, which can be done as follows: 

P2
(
z > zf |x

)
=

∫

R1(z>zf |x)

p2(y)dy (2)  

where R1 is the region of y values where the output, z, exceeds the allowable level, zf for a given x. This calculation can be repeated for 
all possible values of x, allowing a conditional distribution to be developed. The second step involves establishing an acceptable P2 

failure probability, denoted P̂2, for example P̂2 = 10%, and calculating the P1 probability of the system being such that this is 
exceeded: 

P1
[
P2

(
z > zf |x

)〉
P̂2

]
=

∫

R2(P2(z>zf |x)〉P̂2 )

p1(x)dx (3)  

where R2 is the region of x values where the P2 failure probability, P2(z > zf
⃒
⃒x), exceeds the acceptable level, P̂2. This means that 

instead of a single figure for P0 failure probability, uncertainty is represented by a second order probability P1[P2], which can be used to 
provide the designer with further insight on the relative contribution of reducible and irreducible uncertainty. An example application 
of Eqs. (2) and (3), which may provide further clarity, is presented in Figs. 6–8. 

This metric, and related measures of median and average values, have previously been proposed by [14]. However, to the best of 

Fig. 1. Typical engineering problem with input parameters with P1 and P2 uncertainties.  
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the author’s knowledge, the metric appears to have gained little traction in literature outside of work in the field of nuclear engineering 
but has importance for use in dynamics, particularly in the context of digital twin accompanied design and asset management. 

2.2. Minimization of a cost function 

Fig. 2 presents a second typical engineering design problem, this time where a design parameter, η, is selected to minimize some 
cost function, C, which is a function of the conditional P2 failure probability for a given η and x, i.e. C

(
P2

(
z > zf |η, x

) )
. The aim of the 

calculation described in this section is to choose an optimal design parameter, η. 
There are two ways the optimum design parameter can be selected. Firstly, the expected value, or ensemble average of the cost 

function, C, can be minimised, as in conventional optimization: 

∂E[C|η]
∂η = 0 (4)  

where the expected value of the cost for a given η across the range of possible values of x is obtained by: 

E[C|η] =
∫ ∞

− ∞
C
(
P2

(
z > zf |η, x

) )
p1(x)dx (5) 

It can be appreciated that the result of Eq. (5) is a function of both probability types and therefore the minimization in Eq. (4) makes 
no distinction between Probability1 and Probability2. An example application of Eqs. (4) and (5) is presented later in this paper in 
Section 4 and illustrated in Fig. 16. 

Instead of choosing η to minimise E[C], it is possible to define a maximum acceptable cost, ĉ, and search for the design parameter 
value, η, that minimises the P1 probability of exceeding this cost, P1

[
C
(
P2

(
z > zf |η, x

) )〉
ĉ
]
. 

The probability of exceeding a maximum acceptable cost, P1[C > ĉ], is given by: 

P1
[
C
(
P2

(
z > zf |η, x

) )〉
ĉ
]
=

∫

R3(C> ĉ)

p1(x)dx (6)  

where R3 is the region in the epistemic probability space, or set of values of x, where the cost exceeds the limiting value. The optimum 
design parameter to minimise this probability can be obtained by conventional minimisation: 

∂P1
[
C
(
P2
(
z > zf |η, x

) )〉
ĉ
]

∂η = 0 (7) 

An example application of Eqs. (6) and (7) is illustrated schematically in Fig. 15. Unlike Eq. (5), this is a two-step process where the 
P2 and P1 uncertainties are propagated separately. The optimum η value returned by Eq. (7) can be viewed as an alternative to the value 
returned via Eq. (5). It can also be seen that Eqs. (6) and (7) are based on a cost function. Therefore any computational method whose 
outputs can be used to define some cost function (for example the Finite Element Method, Stochastic Finite Element Method or Sta
tistical Energy Analysis) can be employed within this framework. 

3. Metric 1: Epistemic probability of an aleatory Probability: P1[P2]

3.1. Illustrative example – Wind induced acceleration of a tall building 

In order to illustrate the use of the second order probability metric defined in Eq. (3), the problem of predicting the peak floor 
acceleration, z̈, of a tall building under wind gusting is considered. This is an applicable example problem as there is clear aleatory 
uncertainty associated with the wind excitation, while epistemic uncertainty is generally present in the level of damping, which in real- 

Fig. 2. Typical minimization problem with parameters with P1 uncertain input and P2 uncertain failure probability.  
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world scenarios is often unknown until it is measured after the building is completed. This kind of epistemic uncertainty, where 
damping is only known after construction, is relatively common in one-off civil engineering structures like tall buildings or pedestrian 
footbridges [21,22]. Furthermore, there is a clearly defined maximum allowable floor acceleration, z̈f , specified by ISO 10137:2007 
[23]. Accurate calculation of peak floor acceleration of a tall building is difficult, and in reality typically involves wind tunnel testing, 
but for the purpose of this illustrative example it is assumed that the prediction method proposed in Annex C of the Eurocode 1991-1-4 
[24] is adequate for calculating peak along-wind acceleration. Details of this computational model can be found in [25]. Fig. 3 il
lustrates how this example problem fits neatly in the general calculation framework given in Fig. 1. 

The input PDFs for the example case considered are shown in Fig. 4. A normal distribution is employed to represent the subjective 
uncertainty associated with the level of damping and a Gumbell distribution is used to represent the p2 probability of the mean 10- 
minute wind speed. It is important to state that the distribution employed to represent damping is purely illustrative and is not 
necessarily the optimal way to represent this uncertainty in reality. Any probability distribution, for example a uniform distribution or 
a lognormal distribution, may be employed within the framework. Appendix A examines the impact of employing a uniform distri
bution, as opposed to normal distribution, to represent uncertainty in the value for damping in this example problem. However, due to 
the many different forms of probability distributions that could potentially be employed, and the fact that different example problems 
will have different sensitivities to the epistemically uncertain parameter, it important to emphasise that it is not possible to make 
universally applicable statements about the impact of the choice of distribution on the outcome. The joint PDF of these two probability 
distributions (which assumes that they are not fundamentally different and it is permissible to combine them) is also shown in Fig. 4. 

The example building under assessment is assumed to have a natural frequency of 0.3 Hz, which approximately corresponds to a 
130 m tall structure. The Eurocode computational model is used to develop a response surface, as illustrated in Fig. 5. In this example, 
this is done by evaluating the peak acceleration across the entire range of feasible wind speed and damping values, however in 
(realistic) cases where the computational model is more expensive adopting a more sophisticated sampling approach may be neces
sary. This is discussed in more detail by [15]. From this response surface, the region where peak acceleration exceeds the allowable 
limit, R1, can easily by established, as illustrated in Fig. 5. The P0 failure probability can then be calculated by numerical integration of 
the joint PDF of the two input variables over this region, in line with Eq. (1). For this example case, it can be seen that there is a failure 
probability of 46%. It should be pointed out here that such a high failure probability is realistic as excessive wind induced acceleration 
is a serviceability failure, where some occupants may feel uncomfortable, as opposed to a critical or ultimate limit state failure leading 
to building collapse. 

The approach described by Eqs. (2) and (3), where Probability1 and Probability2 are treated separately, is then considered. Firstly, 
the conditional failure P2 failure probability is calculated via Eq. (2), as illustrated in Fig. 6. For a specified damping level, the wind 
speed where response exceeds the allowable value for peak acceleration, R1, is identified and the probability of wind speed being in 
that region is calculated through numerical integration of the p2 PDF over this region. 

Fig. 6 illustrates this calculation of for a damping value of ζ = 1.2%. It can be seen that for this example scenario, the conditional P2 
failure probability is 44%. The calculation can be repeated across a range of feasible levels of damping, to give a curve showing how the 

P2 failure probability changes with damping, P2

(

z̈ > z̈f |ζ
)

, as shown in Fig. 7. The value for ζ = 1.2%, obtained from the calculation 

shown in Fig. 6, is marked on the plot, illustrating that Fig. 7 is constructed from repeating this calculation for all feasible value of 
damping. 

This curve, which shows the conditional P2 probability of failure for a given damping, is the starting point for Eq. (3), where the P1 

probability of damping is considered. In Eq. (3) this is done using a target failure probability, P̂2. This concept is illustrated in Fig. 8 
using a target value of P̂2 = 50%. The range of damping values where the conditional P2 probability of failure is greater than this target 
value, termed R2 in Eq. (3), is easily identifiable. The probability of damping corresponding to the this region is then obtained by 
integrating the PDF of damping, p1(ζ), over this region. In the example case shown, there is a 29% P1 probability that the P2 failure 
probability is greater than 50%. Or, phrased slightly differently, there is a 29% P1 probability that the building will be such that chance 
of failure due to random excitation exceeds 50%. 

A further extension can be made to Eq. (3) at this point. Rather than focus on a single target failure probability, P̂2, Eq. (3) can be 

applied across all feasible values of P2(z̈ > z̈f

⃒
⃒
⃒
⃒ζ), i.e. from 0 to 1. This allows a complimentary CDF (C-CDF) of P1[P2(z̈ > z̈f )] to be 

Fig. 3. Application of the framework outlined in Fig. 1 for the wind induced acceleration of a tall building.  

J. Hickey and R. Langley                                                                                                                                                                                             



Mechanical Systems and Signal Processing 181 (2022) 109532

6

Fig. 4. Input p1 pdf for damping, p2 pdf for wind speed and joint pdf if uncertainties are treated together.  

Fig. 5. Illustration of the calculation described by Eq. (1): joint pdf of damping and wind speed; response of the probability space and identification 
of failure region; integration of the joint pdf of damping and wind speed over failure region to obtain the P0 failure probability. 

Fig. 6. Example calculation of conditional P2 failure probability as per Eq. (2) for ζ = 1.2%; Identification of failure region and calculation of 
P2(ẍ|ζ) failure probability. 
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constructed, as illustrated in Fig. 9. The value at P̂2 = 50% is marked with an orange dot, again demonstrating how the C-CDF is 
constructed by simply repeating the calculation performed in Fig. 8 across a range of P̂2 values. 

The P1[P2

(

z̈ > z̈f

)〉

P̂2] metric and the C-CDF shown in Fig. 9 are potentially useful tools that can provide further insight for the 

designer beyond the P0 failure probability shown in Fig. 5. For example, in the specific case of design of a tall building, if there is a 
chance of failure, the designer, broadly speaking, has two options. Firstly, they can fundamentally change the design to reduce the 
probability of failure, for example though altering the building shape or stiffness. Alternatively, they can decide to proceed with the 
initial design and accept there is a possibility of failure which may need to be addressed with some remedial action post construction, 
for example through the installation of a tuned mass damper. If a digital twin is employed, the true value of damping can be calculated 
using measurements from the physical twin. Understanding, prior to these measurements, the contributions of aleatory and epistemic 
uncertainty to the failure probability, and how likely the probability of failure is to change once the true damping value for finished 
building is obtained from the digital-physical twin pair, allows the risk of proceeding with a particular design to assessed from an 
informed position. 

Fig. 7. Conditional P2(fail|ζ) failure probability as per Eq. (2) across a range of damping values.  

Fig. 8. Illustration of the calculation described by Eq. (3) for P̂2 = 0.5: identification of the region where P2(fail|ζ) > P̂2 and calculation of second 
order failure probability..P1[P2(fail|ζ) > P̂2 ]
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Fig. 9. Complimentary CDF of..P1[P2(z̈ > z̈f)]

Fig. 10. Example of a C-CDF of P1[P2(fail)] for two different design scenarios; one (Design Scenario a) in a case of relatively large epistemic un
certainty and another (Design Scenario b) in a case of relatively small epistemic uncertainty. 
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3.2. Further discussion of complimentary CDF of P1[P2(fail) > P̂2 ]

There are a number of additional points worth making about this C-CDF. Firstly, the shape of the curve can inform the designer 
about the contribution of different uncertainties. This is illustrated in Fig. 10, which shows the CCDF for a two example design sce
narios with different levels of epistemic uncertainty associated with damping. It can be seen that for the case of small epistemic un
certainty (achievable if, for example, data is available from an existing similar structure), the C-CDF becomes steeper, or viewed 
slightly differently, the P2 failure probability becomes closer to having a fixed deterministic value. In terms of a digital twin, in the case 
labelled ‘Design Scenario (a)’, a wide range of failure probabilities (approximately 15% to 100%) appear possible, and learning the 
true value ζ from measurements on the physical twin will significantly enhance understanding of the structure’s future behaviour. In 
contrast for the scenario labelled ‘Design Scenario (b)’, the designer knows that the true failure probability is close to 50% and only a 
limited reduction in uncertainty is achievable from physical twin measurements. 

Fig. 11 presents a slightly different example, showing the evolution of the state of knowledge about a single building over time in a 
digital twin-physical twin pair. This shows the state of the state of knowledge prior to any measurements, and the knowledge after a 
series of measurements from the physical twin are used to update distribution representing ζ in the digital twin. Given the initial state 
of knowledge at the in the example shown, the cost/benefit of remedial action is difficult to assess. However, it can be appreciated that 
in a hypothetical case such as that illustrated, where measurements on the physical twin indicate that damping is lower and P2 failure 
probability is higher than initially anticipated, remedial action is likely to be to required to reduce the failure probability. 

In addition to this, it is also interesting to note that it can be shown that the area enclosed by the C-CDF is equal to the P0 probability 
of failure calculated via Eq. (1) and illustrated in Fig. 5. In other words, for the example problem above, the area under the C-CDF in 
Fig. 9 is equal to the P0 failure probability of 0.46 shown in Fig. 5. The proof of this presented in Appendix B. 

Fig. 11. Example of the evolution of the C-CDF of P1[P2(fail)] over time in a digital twin-physical twin pair.  
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4. Metric 2: Optimized design Parameter ηopt 

4.1. Illustrative example 

The example problem of selecting the optimum level of sound proofing in a car is chosen to demonstrate the application of the 
metric proposed in Eq. (7). There is both aleatory and epistemic uncertainty associated with the acoustic performance of a car. In terms 
of aleatory uncertainty, it has been shown that there can be a large differences in the interior noise levels in nominally identical 
vehicles arising from small variations introduced during the manufacturing process [26,27], for example due to spot weld stiffness 
which can be different for every vehicle [28]. There is also epistemic uncertainty in production associated with the properties of the 
production line. This can arise through jig misalignment for example, where the extent of the misalignment is constant but unknown. 

The presence of aleatory uncertainty means that for a given production line there is a realizable ensemble of random structures (i.e. 
cars) that may be produced and therefore the frequency response function of interior sound is P2 uncertain for each car from that 
production line. The epistemic uncertainty can be thought of as an unrealizable or imaginary ensemble of production lines, only one of 
which will exist in reality. As illustrated graphically in Fig. 12, this results in an ensemble of distributions describing the P2 probability 
of failure. Failure is deemed to occur when the spatial average of mean squared sound pressure within the cabin of a car under 
prescribed excitation (for example a shaker at a suspension mount), z, exceeds a limiting value, zf . The role of the designer is to 
optimize the level of sound proofing in the car to prevent this limiting value being exceeded whilst minimising the cost of this sound 
proofing. 

For the purpose of this example, calculation of interior noise is performed using a simplistic model to estimate interior sound 
pressure. Using Statistical Energy Analysis [29], the average z value across an ensemble of random systems (in this case cars), μz, can be 
shown to be inversely proportional to the loss factor of the interior, η such that: 

μz =
x
η (8) 

In terms of design, the engineer controls the level of sound proofing and thus controls η. In this simplified example, it is assumed 
that x is a variable with some associated epistemic uncertainty arising from a lack of knowledge about the production line, for example 
in jig alignment or material properties. Given that this is constant but unknown, all cars from a single production line have the same 
value of x. 

Furthermore, it has been shown that a Gaussian Orthogonal Ensemble (GOE) statistical model can be used to quantify natural 
frequencies across an ensemble of random structures (for example [30,31]). Using a GOE approach, variance, σ2

z , of the sound pressure 
can be written as [27]: 

σ2
z

μ2
z
=

1
πm

(9)  

where m is the modal overlap factor, given by: 

m = ωnη (10) 

Fig. 12. Illustration of the epistemic and aleatory uncertainties in the example problem of sound-proofing in a car.  

J. Hickey and R. Langley                                                                                                                                                                                             



Mechanical Systems and Signal Processing 181 (2022) 109532

11

where ω is the natural frequency of interest and n is the modal density. Using μz and σz a p2 lognormal distribution (which has been 
shown to be adequate for representing response of systems conforming to GOE [32]) for the mean square sound pressure, conditional 
on x and η p2(z|x, η), can be constructed. From this the P2 probability of exceeding a failure threshold zf , P2(z > zf

⃒
⃒x, η) can be 

calculated. 
For the example problem considered here, the modal density is assumed to equal 50 s and x is assumed to be normally distributed 

with a mean value of 3 × 10− 4 N2/m4 and a standard deviation of 1.5× 10− 4N2/m4. The goal of the design is to keep the spatially 
averaged interior mean squared sound pressure below 65 dB, i.e. 65 dB is the assumed failure threshold zf . 

As with the tall building example in the previous section, this calculation model is a gross simplification. In reality, a detailed 
Hybrid Finite Element SEA [33] model of the car would be employed to calculate interior sound pressure, however the simplistic 
approach described by Eqs. (8) and (9) is adequate to illustrate the optimization procedure. 

Fig. 13 shows how the framework shown in Fig. 2 can be applied to this problem. To implement the minimization defined by Eqs. 
(4) and (7), the cost of production is defined as: 

C ≡ αη+ βP2
(
z > zf |x, η

)
(11)  

where α is the unit cost of sound proofing and β is the cost of repairing a failure case. P2(z > zf
⃒
⃒x, η) is the frequentist, or P2 or aleatory, 

probability of failure for given x and η. Eq. (18) employs the law of large numbers, and therefore is suitable only for a scenario where a 
large number of units are produced, like a car production line, as opposed to a one-off structure like a tall building. 

Substituting Eq. (11) into Eq. (4), the optimum η value to minimise the expected cost, i.e. the optimum value with no separation of 
uncertainty types, is given by: 

∂
∂η

{∫ ∞

− ∞

[
αη + βP2

(
z > zf |x, η

) ]
p1(x)dx

}

= 0 (12) 

Fig. 14 illustrates this calculation for β = 150α. It can be observed that in this case the optimum value for η is 0.09. 
Alternatively, as outlined by Eqs. (6) and (7), η can be selected to minimise the P1 probability of exceeding a limiting cost, ̂c. Fig. 15 

illustrates the implementation of this process with the acceptable cost (arbitrarily) set to 60 and, as in Fig. 16, β = 150α. Firstly, the 
region where the cost function exceeds the maximum acceptable cost is identified, as shown in the plot on the left, before the P1 
probability of this value being exceeded for each η is calculated by numerically integrating p1(x) over this region. Doing this for each 
value of η allows a curve showing P1[C > ĉ] as a function of η to be developed, as shown by the plot on the right. From this, an optimum 
value, which in this example case is η = 0.07, can be identified. 

4.2. Difference in optimum value between approaches 

Through some relatively straight forward manipulation of Eq. (12), it can be shown that when E[C] is minimised, i.e. when no 
distinction is made between the uncertainty types, the optimum η value satisfies the equation: 

α
β
= −

∂
∂η

[ ∫ ∞

− ∞
P2
(
z > zf |η, x

)
p(x)dx

]

(13) 

Similarly, through a combination of Eq. (6), 7 and 11, it can be shown that when P1[C > ĉ] is minimised, i.e. when the uncertainty 
types are treated separately, the optimum design η value satisfies the equation: 

α
β
=

− 1
∫

R3
p(x)dx

∂
∂η

[ ∫

R3

P2
(
z > zf |η, x

)
p(x)dx

]

(14) 

Comparing of Eq. (13) and Eq. (14), it can be appreciated that the optimum design parameter from the two approaches is different, 
and will only be the same if the region R3 ranges from − ∞ to ∞, or in practical terms covers the entire range of feasible values of x. For 
practical implementation, it is not necessary to evaluate the derivatives in Eq. (13) or (14). These Equations are presented simply to 

Fig. 13. Application of the framework outlined in Fig. 2 for selection of the optimum level of sound proofing in a car.  
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Fig. 14. Illustration of the calculation described by Eq. (12) showing the cost function, p1(x) and..E[C(η)]

Fig. 15. Illustration of the calculation process described by Eqs. (6) and (7), showing the cost function, limiting cost and P1 probability of cost 
exceeding the limiting cost for given η values. 

Fig. 16. Change in Optimal η value with the ratio of repair cost to initial cost,.β/α  

J. Hickey and R. Langley                                                                                                                                                                                             



Mechanical Systems and Signal Processing 181 (2022) 109532

13

show that theoretically the optimum value of η is different if E[C] or P1[C > ĉ] is minimised. Instead, at least for the computationally 
cheap models considered in this paper, it is more practical to evaluate E[C] or P1[C > ĉ] for a range of x and η values and extract the 
minimum value. This avoids challenges associated with numerical differentiation and also means that the cost function is not required 
to be strictly differentiable. 

The difference between the two approaches is illustrated in Fig. 16, which shows the optimum η values obtained for a range of 
repair cost to initial cost, i.e. β/α in Eq. (11), ratios. From Fig. 16, it can be appreciated that the optimum η from the two methods is not 
the same, demonstrating numerically that employing the distinction between Probability1 and Probability2 can lead to different design 
decisions. 

5. Limitations 

The examples in the preceding sections are intended to be illustrative, and as has been already discussed, the computational models 
employed are excessively simple. In most realistic engineering dynamics problems more expensive computational models are required. 
Furthermore, this study only considers examples where the respective uncertainties derive from a single variable. In reality there are 
likely to be multiple parameters contributing to both forms of uncertainty, meaning that large multi-dimensional probability spaces 
need to be considered. Theoretically, there is no reason why the approach could not be expanded for this. However, as implemented 
here, doing so would require computationally expensive nested simulations. This computational expense may make some of the 
calculation procedures adopted here impractical and more sophisticated approaches, for example potentially using Latin Hypercube 
Sampling or surrogate modelling, are likely to be necessary to develop a response surface for real world, multi variable problems. 

In addition, the examples are predicated on the assumption that a probability distribution can be defined for all uncertain pa
rameters. In reality, the values that define the distribution will themselves be uncertain, adding an extra layer of complexity to the 
problem. However, it is possible to expand the framework outlined to deal with these uncertainties [16], although again it would likely 
require more sophisticated sampling in the development of conditional distributions. 

Finally, the work is limited to a probabilistic view of epistemic uncertainty. There is ongoing debate about this in literature; some 
authors argue that this is correct (for example [3]), while others argue that probability theory is insufficient to model ignorance and 
that some form of imprecise probability should be employed. It may be possible to develop the framework to incorporate imprecise 
probability theory by developing a credal set of possible probability distributions to represent epistemic uncertainty and, in the one 
dimensional case then propagating upper and lower bounds through the framework. This is likely to be more difficult for the realistic 
multi-dimensional case. 

6. Conclusion 

Carnap argued that both subjective and frequentist views of probability are necessary and should be maintained as separate 
quantities, which he termed Probability1 and Probability2. These two definitions of probability broadly correspond to epistemic and 
aleatory uncertainty. This paper explores the benefits performing probabilistic analysis in engineering dynamics where aleatory and 
epistemic uncertainties are treated as distinct quantiles, in line with Carnap’s ideas. Two metrics based on second order probability are 
examined to demonstrate the potential benefits of such an approach. It is argued that understanding the balance of reducible and 
irreducible uncertainties at the design stage allows design decisions to be made from a more informed position. Furthermore, un
derstanding this balance is especially relevant when a digital twin approach is adopted given that one of the aims of a digital twin is to 
reduce this uncertainty. It is also shown that treating the uncertainty types separately can lead to different solutions in the selection of 
optimum design parameters. Therefore, it is concluded that as well as being more philosophically consistent than the conventional 
combining uncertainties, employing the two descriptions of probability is potentially valuable approach in engineering dynamics. 

7. Data access 

Additional data related to this publication is available at the ‘Mendeley Data’ data repository at the following link: https://data. 
mendeley.com/datasets/pjtn2nhnm2/draft?a = e62a163a-3661–4062-bbcd-86224e5dda96. 
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Appendix A. Example sensitivity to choice of p1 distribution 

As discussed in Section 3 paper, the choice of a normal distribution to represent damping in the Tall Building example is illustrative, 
and is not necessarily be the best way to represent damping. This appendix examines the impact of changing this distribution from 
normal to uniform. The two distributions, and the associated P1[P2] C-CDFs are compared in Fig. A.1. Firstly, on a basic level, the fact 
the framework is applicable in both cases illustrates that the method can work for any probability distribution. Secondly, for this 
example case it can be appreciated that while there are some differences, namely a slightly higher P1 proability of encountering higher 
p2 failure probabilities if a uniform distribution is employed, the C-CDF is not overly sensitive to this change. However, it is important 
to stress that this outcome is only applicable to this particular example problem and it is not valid to conclude that the proposed metric 
is insensitive to the choice of p2 distribution in all cases or for all choices of distribution. 

Appendix B. Proof 

It can be shown that the area enclosed by the C-CDF of P1[P2(fail) > P̂2 ] is equal to the P0 probability of failure calculated via Eq. 
(1). This can be shown by rewriting Eq. (3) using the Heaviside step function, H: 

P1
[
P2

(
z > zf

)
> P̂2

]
=

∫∞

− ∞

H
[
P2
(
z > zf |x

)
− P̂2

]
p(x)dx (B1) 

and integrating across the range of possible P̂2 values (0 to 1) to find the area under the C-CDF: 

∫1

0

{
P1

[
P2
(
z > zf

)
> P̂2

] }
dP̂2 =

∫1

0

∫∞

− ∞

H
[
P2
(
z > zf |x

)
− P̂2

]
p(x)dxdP̂2 (B2) 

For a given P2(fail|x) the integral of the Heaviside step function is: 

∫1

0

H
[
P2

(
z > zf |x

)
− P̂2

]
dP̂2 = P2

(
z > zf |x

)
(B3) 

Hence, Eq. (B.2) can be rewritten as: 

∫1

0

{
P1

[
P2
(
z > zf

)
> P̂2

] }
dP̂2 =

∫∞

− ∞

P2
(
z > zf |x

)
p(x)dx (B4) 

Fig. A1. Comparison of C-CDF for the tall building example problem using an example normal distribution (mean 1.2%, standard deviation 0.2%) 
and uniform distribution (U[0.6%, 1.8%]) for damping. 
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Substituting Eq. (2) into Eq. (B.4) gives: 

∫1

0

{
P1
[
P2
(
z > zf

)
> P̂2

] }
dP̂2 =

∫∞

− ∞

∫

R1

p2(y)p1(x)dydx (B5) 

Which can be rewritten as a joint PDF of x and y, p1,2(x,y): 

∫1

0

{
P1

[
P2
(
z > zf

)
> P̂2

] }
dP̂2 =

∫∫

R(z>zf )

p1,2(x, y)dxdy (B6) 

which, by Eq. (1), is the P0 failure probability with no distinction between uncertainty types: 

∫1

0

{
P1

[
P2
(
z > zf

)
> P̂2

] }
dP̂2 = P0

(
z > zf |x, y

)
(B7)  
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