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ABSTRACT
Ions that are trapped in two dimensions and are subject to a harmonic confining
potential, have widely varying stationary states that exhibit various asymptotic
forms and bifurcations. We present a “birds-eye” view of these structures for N
ions, N = 1 to 5 and the full range of anisotropy. These results may be interrogated
in detail using the software provided here. Energy variations at bifurcation points
and limits are also identified; for N = 5 these include blue-sky (or saddle-node)
bifurcations. A limited attempt is also made to explore such features for a larger
system of ions, i.e. N = 10.

1. Introduction

There is an extensive, if fragmentary, literature on the structure of 2d ion crystals.
By this we mean systems of identical ions confined by transverse harmonic potentials
to two dimensions in two orthogonal directions and interacting with each other via a
Coulomb potential. In practice ion crystals can be realised by the use of a Penning trap
[1, 2, 3, 4, 5]. Interest in such systems has been driven by the proposal that trapped
ions can offer a practical system for quantum computing [6]. Similar structures can
also be obtained in systems of charges interacting via Yukawa (or screened) potentials
[7].

Ion crystals are found to have a wide variety of equilibrium states, depending on
the anisotropy of the confining potential [1, 2, 4, 8, 9]). Examples of calculations taken
from results presented in later sections are shown in Fig 1. The enumeration and
description of these states presents a challenge to computation which has previously
been taken up only to a limited extent [10]. Here we embark on an exploration of the
rich and complex scenario of the general problem.

Experimental work that dates back to at least 1992 [8] includes the case of a linear
chain (i.e. the limit of extreme anisotropy). This undergoes a zigzag instability (similar
to that seen in Fig 1a), as the confining potential in the transverse direction is relaxed.
In the opposite extreme Bedanov and Peeters [11] and Bolton and Rössler [12] investi-
gated lowest energy solutions for an isotropic confining potential, for large numbers of
ions. Rancova et. al. [13] explored and elucidated some structural transitions for small
numbers.
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(a)

(b)

Figure 1. (a) Example of a computed stable arrangement of fifty ions (shown as black dots) trapped in an

anisotropic harmonic potential of the form 1
2

(
kxx2 + kyy2

)
with ky >> kx. Here the anisotropy parameter

λ = 0.97 - see Section 2 for the definition. (b) An unstable equilibrium arrangement of fifty ions in an isotropic

harmonic potential (i.e. kx = ky or λ = 0). In both figures the contours are lines of increasing equipotential

(from indigo to red). For further details see Section 4 below.

More recently, interest in the use of trapped ions for quantum computing [14] has
stimulated further computations, mainly of the “kinks” which may be found in the
zigzag chain [10, 15]. Figure 1 of the paper by Landa et al. [10] gives an impression
of the complexity of this subject. It is a bifurcation diagram for 31 ions, including
various bifurcations relating to the generation of kinks, as the initially strong radial
confinement, resulting in a linear chain, is progressively relaxed. This is the most
comprehensive diagram which has so far been advanced. It is confined to a narrow
regime and is a schematic sketch (although some quantitative information is included).

Our main contribution in the present paper is to take a wider view of the subject.
For a small number N of ions all of the (stable and unstable) equilibrium solutions
are presented (up to N = 5) for the full range of anisotropy. We do so in terms of a
diagram whose two axes are scaled energy E(λ) and an anisotropy parameter λ which
varies from λ = 0 (the isotropic case) to λ = 1 (the anisotropic limit).

The large number and wide variety of equilibrium structures is a challenge to pre-
sentation, which we meet by the use of interactive notebooks which will enable the
reader to interrogate the results and explore particular structures. Some of the struc-
tures found in the myriad of possibilities are remarkably elegant and give the subject
an aesthetic as well as a scientific appeal. Fig. 1(b) presents an example, an unstable
equilibrium configuration for a system of fifty ions.

Our initial aim is to map out all of the stable and unstable equilibrium configurations
for N = 2, 3, 4 and 5 in terms of their values of energy and anisotropy. We present less
comprehensive results for N = 10.

We intend to do more than push back the frontiers of what is computationally
achievable: we hope to provide an extensive semi-analytic framework of understanding
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as well. In doing so we are not confined to the stable equilibrium states; we also map
out the unstable states. While unstable equilibrium states may not be readily accessible
in experiment, they are nevertheless important in constructing a bifurcation diagram
(representing the energy, position or any other parameter of equilibrium structures as
a function of the confining potential).

In the following sections we give basic definitions and first examine the trivial case
of N = 2. We have recourse to numerical methods for larger values of N . We also
examine and analyse various parts of the diagram, such as those involving bifurcation
points (including blue-sky bifurcations).

Given the wealth of detail, it should prove helpful that we have developed a com-
putational tool (based on Mathematica) with which the reader may interrogate the
results (see hyperlinks in the various bifurcation diagrams shown below). The note-
books for N = 2, 3 and 4 can be displayed and interrogated using the links provided
in the text. The case of N = 5 is too complex to be displayed in this way. Instead we
recommend that the user downloads a free copy of the Wolfram Player [16] to increase
the responsiveness of the notebooks.

2. Definition of the problem and scaling property

The total energy E of a cluster of N charges Q, confined by a 2D harmonic potential,
is given by

E =
1

2

N∑
i

(
kxX

2
i + kyY

2
i

)
+

Q2

4πε0

N∑
i<j

[(Xi −Xj)
2 + (Yi − Yj)2]−1/2, (1)

where Xi and Yi are the Cartesian coordinates of the ith charge, while kx and ky are
the force constants for the harmonic confining potential in the x and y directions,
respectively. Note that the limits kx → 0 or∞ (or similarly for ky) take us to confined
linear systems, while kx = ky defines an isotropic potential. For convenience, we use

a = Q2

4πε0
(ε0 is the permittivity of free space) in what follows.

The equilibrium values of E are dependent on kx, ky, and a, and are invariant under
kx ≶ ky. Hence E is a function of a, (kx+ky), kx/ky. The last represents the anisotropy
of the potential and has been used by others (e.g. [10, 17]), but we prefer to use

λ =
|kx − ky|
kx + ky

, (2)

which is a measure of the anisotropy of the potential, symmetric in kx and ky.
Since the parameter a has the dimension of energy × length, while kx and ky have

the dimensions of energy/length2 and λ is dimensionless, it follows that the energy
must take the form

E = (kx + ky)
1/3a2/3E∗, (3)

where E∗ is a function of λ only, specified below (Eqn (4)).
The dimensionless scaled energy E∗ is the quantity that we will compute and present

in the following sections. It may be rescaled in any particular case using the above

3
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relation.
The goal is to find equilibrium states (and their energy) as a function of λ, where

λ = 0 and λ = 1 represent the isotropic and extreme anisotropic cases, respectively.
(See also Fig 1 for contours of constant equipotential for two different values of λ.)

3. The elementary case of N = 2

The case of two charges in a harmonic potential is easily treated analytically and it
is instructive to examine it in detail, containing as it does, some key features of the
more complex diagrams for higher N .

The dimensionless energy E∗(λ) of Eqn(3) is readily evaluated as

E∗(λ) =
(1− λ)

4

N∑
i

x2
i +

(1 + λ)

4

N∑
i

y2
i +

N∑
i<j

[(xi − xj)2 + (yi − yj)2]−1/2, (4)

where the xi and yi are dimensionless quantities, with Xi = ( a
kx+ky

)1/3xi, Yi =

( a
kx+ky

)1/3yi. (Without loss of generality we have chosen ky > kx here, as was done in

our simulations.)
Let the first charge be located at,

(x1, y1) = δ(cos θ, sin θ), (5)

where δ is the distance from the centre of the system and θ is the polar angle. For
reasons of equilibrium and symmetry the second charge must be located at,

(x2, y2) = δ(cos(θ + π), sin(θ + π)) = −(x1, y1). (6)

From these coordinates and Eq 4 (expressed in polar coordinates δ and θ), we can
write down the (dimensionless) energy E∗ for a system of two charges. To obtain the
stationary states we apply the conditions dE∗

dθ = 0 (yielding the two solutions θ = 0

and θ = π/2) and dE∗

dδ = 0, resulting in

E∗ =

{
3

25/3 (1− λ)1/3, if θ = 0,
3

25/3 (1 + λ)1/3, if θ = π/2.
(7)

These values and their corresponding ion arrangements are shown in Fig 2, which plots
energy E(λ) of the solutions against the anisotropy parameter λ, ranging from zero
(the isotropic case) to unity (the limit of anisotropy). The images adjacent to Fig. 2
identify examples of structures for λ = 0 and λ→ 1.

For the isotropic state (λ = 0) Eq 7 yields,

E∗ = 3/25/3 ∼ 0.945 (8)

for both θ = 0 and θ = π/2. The solution consists of a pair of points, as shown in
Fig 2 (structure labelled I1), and is in fact degenerate with respect to any rotation.

4
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I1

A1

A2

λ

E∗

Figure 2. Bifurcation diagram, in terms of scaled energy E and anisotropy parameter λ, for N = 2. In the

isotropic limit λ = 0 there is only one solution I1 which is rotationally degenerate. For finite anisotropy (i.e.

0 < λ ≤ 1) there are two solutions, labelled A1 and A2. For an interactive version of this figure see [18]. Note, in
the bifurcation diagram, stable equilibrium solutions are indicated in blue, while unstable equilibrium solutions

are indicated in black. All images of structures are plotted using dimensionless coordinates (i.e. positions are

scaled by L0 = (a/(kx + ky))1/3). The configuration shown on the left is for λ = 0, while λ = 0.8 for the

configurations shown on the right.

It can be seen from Eq 7 that anisotropy (i.e. λ > 0) dictates that there are two
distinct solutions (these are also shown in Fig 2 and are labelled A1 and A2), with the
two charges orientated respectively parallel (θ = 0) and perpendicular (θ = π/2) to the
x-axis, the former stable, indicated in blue, and the latter unstable (recall kx ≤ ky),
indicated in black. In the anisotropic limit (λ = 1) we obtain

E∗ =

{
0, if θ = 0,

3/24/3 ∼ 1.191, if θ = π/2.
(9)

4. Computational Methods

For values N > 2 such direct calculations become impractical and we resort to nu-
merical methods. Equilibrium states may be found in various ways; we describe two
methods below. Calculations may be made for any chosen kx, ky and a and rescaled
to give E∗ and λ (see Section 2).

Stable equilibrium states may be obtained by direct minimisation of energy (Eq.
4). For small values of N (and any given value of λ) we generated 50 random initial
configurations and minimised their respective energies using a conjugate gradient rou-
tine. Systems with small N typically posses only a few stable minima and we found
50 random configurations to be sufficient to be confident that we had identified all of
the stable minima for a given value of λ.

For unstable equilibrium states we employed a different method, as follows. The

5
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I1

I2

A1

A2

A3

λ

E∗

Figure 3. N=3. In the isotropic limit λ = 0 there are two rotationally degenerate solutions I1 and I2. Close

to the anistropy limit (i.e. λ . 1) there are three solutions, labelled A1, A2 and A3. A bifurcation is shown in

close-up, in an inset. In the bifurcation diagram stable solutions are indicated in blue while unstable solutions
are in black. All images of structures are plotted using dimensionless coordinates (for details see caption of

Figure 2). For an interactive version of this figure see [19].

stationarity condition for Eq. 4 requires

∂E

∂xi
= 0, and

∂E

∂yi
= 0 for i = 1...N. (10)

Hence, to obtain a single objective function that satisfies this property we consider the
sum of the derivatives squared, i.e.

f =

N∑
i=1

((
∂E

∂xi

)2

+

(
∂E

∂yi

)2
)
. (11)

The task then is to minimise the objective f and search for cases in which it vanishes.
We start with a randomly generated initial configuration and then minimise f nu-

merically with respect to the coordinates. The equilibrium states are taken to be those
for which the objective f is less than some small tolerance (here we set the tolerance
to be 1 × 10−10). For a system of N charges the search is conducted for a range of
values of λ and for each value of λ we typically trial 500 initial random configurations.
For small N these result in a handful of distinct equilibrium configurations, contained
in the figures presented below.

5. Results

5.1. Case N=3

In the isotropic case λ = 0 there are two solutions, as shown in the inset in Fig 3,
both of which are degenerate with respect to rotation. Solution I1 is stable (coloured

6
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I1

I2

I3

A1

A2 A3

A4

A5

A6

λ

E∗

Figure 4. N=4. In the isotropic limit λ = 0 there are three rotationally degenerate solutions. Close to the
anistropy limit (i.e. λ . 1) there are six solutions. The solid black dots in the inset indicate bifurcation points.

Stable solutions are shown in blue while unstable solutions are in black. All images of structures are plotted

using dimensionless coordinates (for details see caption of Figure 2). For an interactive version of this figure
see [20]

blue) and consists of three charges at the vertices of an equilateral triangle. Solution
I2, consisting of three charges arranged in a straight line, is unstable (coloured black)
and has higher energy.

At an infinitesimal value of λ the I2 solution splits into two branches. I1 also splits,
but to second order in λ.

An additional feature is evident. As shown in the inset of Fig 3 at about λ = 0.4
the stable (blue) solution I1 → A1 meets the unstable solution I2 → A1 (shown
in black) at a bifurcation. Close to the limit λ = 1 the variation of E is given by

E ≈ C1(1 + λ)
1

3 + C2(1− λ)
1

3 where C1 and C2 are constants (where C1 = 0 close to
A1 and C2 = 0 close to A3), where this is the same scaling as analytically identified
for the two solutions in the N = 2 case, see Eq 7.

5.2. Case N=4

For N = 4 (see Fig. 4) we find three solutions in the isotropic limit (λ = 0), the I1
solution (in blue) is stable while I2 and I3 are unstable (black lines). In the limit
λ→ 1 there are six solutions with only the A1 case being stable. We have also shown
the detail of four bifurcation points (see insets). Close to the limit λ = 1 the variation

of E is again given by E ≈ C1(1 + λ)
1

3 + C2(1 − λ)
1

3 with C1 = 0 for A1 and C2 = 0
for A6.

The states of higher energy close to λ = 1 may be called cruciform since they consist
of two orthogonal straight lines in the x and y directions, respectively. Except for the
A1 solution, all of the cruciform states are unstable. This is also the case for N=5,

7
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discussed below.

5.3. Case N=5

The case of N = 5 (see Fig. 5) presents two further features. For low values of λ there
is more than one stable equilibrium state. In the isotropic case λ = 0 the two stable
solutions are I1 and I2, where I1 has a lower energy compared to I2. As shown in
the first inset of Fig. 5, with increasing λ the solution from I2 becomes unstable at
the bifurcation point where it meets the unstable solution from I3. Beyond λ = 0.054
there is thus only one stable arrangement.

A second feature which we observed in the case of N = 5 (and is expected to be
observed for all N > 5) is the presence of “blue-sky” (saddle-node) bifurcations. In
this type of bifurcation, two solutions emerge together [22], as λ is increased.

The first of these is shown in Fig. 6, a magnified version of a part of Fig. 5. A
new unstable solution labelled B1 (as illustrated in the inset of Fig. 6) appears at
λ ≈ 0.2. With increasing λ it splits into two separate unstable solutions, one of which
eventually leads to the structure A3 while the other branch leads to A7.

The second blue-sky bifurcation is shown in Fig. 7 and is labelled B2. Here we find
that with increasing λ two solutions meet and annihilate at λ = 0.432. Tracing these
two solutions back to the isotropic limit we find that they eventually lead to structures
I4 and I5.

For both blue-sky bifurcations the difference in energy between the two branches
scales as ∆E ∝ |λ−λ0|3/2, where λ0 is the value of λ at which the two solutions meet.

This scaling can be roughly explained by a simple argument, as follows. Consider a
simple one-dimensional system in which the energy has the following dependence

E(φ) = aφ+ bφ2 + cφ3,

where φ is a free parameter and a, b and c are constants. The above equation represents
a prototype of a blue-sky bifurcation, for which the number of stationary solutions (i.e.
dE/dφ = 0) depends on the parameter Λ = b2−3ac. There are no stationary solutions
when Λ < 0, one solution when Λ = 0 and two solutions when Λ > 0. The difference
in energy between the two solutions when Λ ≥ 0 can easily be shown to scale as
∆E ∝ Λ3/2.

An alternative means for presenting these blue-sky bifurcations is shown in the
insets of Fig. 6 and Fig. 7. Here we compute the second moment of the X and Y
positions of the ions, which we define as

Xsm =
1

N

N∑
i=1

(Xi −Xcom)2 and Ysm =
1

N

N∑
i=1

(Yi − Ycom)2, (12)

where N is the number of ions and (Xcom, Ycom) is the centre of mass of the ions.
In both insets a large red dot indicates the point at which the two branches of the
bifurcation meet in the (reduced) energy plot.

The case of N = 5 contains a sufficient number of ions to enable us to study
structures of a zigzag type arrangement, similar to those seen in larger system (such
as N = 50 as shown in Fig. 1a). Decreasing λ from 1, the lowest energy (stable)
structure corresponds to a linear chain of ions, until a bifurcation occurs at λ = 0.724,
where the stable lower-energy branch begins to develop a zigzag structure, as shown

8
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B1

A3

A7

A3A7

B1

λ

E∗

Figure 6. A close up of the section of Fig 5 showing a blue-sky bifurcation at λ ≈ 0.2 where two new solutions

emerge from a point where the structure is B1 (inset). These two solutions, if followed to the anisotropic limit

(λ = 1), eventually lead to the structures A3 and A7. The structure on the left is plotted using dimensionless
coordinates (for details see caption of Figure 2). For an interactive version of this figure see [23]. The blue inset

shows the variation of the (unscaled) Xsm and Ysm coordinates of the second moment for the bifurcation, from

Eq (12), the red dot indicates the point where the two branches meet.

B2
I4

I5

I5

I4

B2

λ

E∗

Figure 7. A close up of a part of Fig 5 showing a blue-sky bifurcation at λ ≈ 0.432 where the structure is
B2. These solutions, if followed to the isotropic limit (λ = 0), eventually lead to the structures I4 and I5. The

structure on the right is plotted using dimensionless coordinates (for details see caption of Figure 2). For an
interactive version of this figure see [23]. The blue inset shows the variation of the (unscaled) Xsm and Ysm
coordinates of the second moment for the blue sky bifurcation, the red dot indicates the point at which the

two branches annihilate with increasing λ.
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in the second inset of Fig. 5. A further decrease of λ leads to the gradual development
of the pentagonal structure I1 at λ = 0. The straight chain solution continues to exist
for λ < 0.724, but is unstable. It leads to structure I5 for λ = 0.

As for N = 4 we find what we have called ‘cruciform states’ near λ = 1. Only the
A1 linear chain, i.e. a row of N ions along the x-axis, is stable. The next cruciform
state (which has a higher energy) contains a pair of charges stacked in the orthogonal
direction while the remaining charges are arranged along the x-axis. The number
of arrangements (with distinct energies) consisting of two adjacent charges can then
be enumerated. Continuing in this way the total number of cruciform states can be
computed for a given value of N ; the sequence terminates with the case of a linear
chain in which all the ions are arranged along the y-axis (i.e. the arrangement with
the highest possible energy).

5.4. Case N=10

For larger values of N it remains possible to find and catalogue the stable equilibrium
solutions using conjugate gradient methods. For example, in the case of N = 10 we find
that for low values of λ less than 0.0273 there are two stable equilibrium solutions. At
λ = 0.0273 the stable solution with the higher energy becomes unstable at a bifurcation
point and only one stable solution remains; see Fig 8 . While such details can still be
glimpsed for N = 10, with increasing N the number of unstable equilibrium solutions
rapidly proliferates and the task of identifying solutions becomes nearly impossible.
To give some idea of the large number of states involved even for N = 10, we have
searched for all equilibrium solutions within a narrow range, as shown in Fig 9(a).
Amongst the vast number of crossing lines it is possible to identify features such as
out of the blue bifurcations (see Fig 9(b)), similar to that seen for N = 5.

6. Conclusion

We have shown that an extraordinary variety of interesting (stable and unstable)
equilibrium structures is found for the confined system of N ions. We have examined
these in various limits and diagrammed their evolution in terms of the reduced energy
and the anisotropy of the confining potential. Only for small N can the dense interior
of this diagram be readily explored computationally (see Figs 2, 3, 4 and 5). We have
tentatively explored some of the features of larger systems (see Fig 8 and 9) and intend
to confront this problem in greater depth in future work. Included in such remaining
challenges is the development of individual and multiple kinks in the zig-zag structure
of Fig 1(a).

All simulations presented here were for ions interacting via Coulomb forces. Based
on published experimental and numerical studies we expect qualitatively similar results
for ions interacting via a screened Coulomb (Yukawa) potential, although the details
of the energy bifurcation diagrams will differ [24].

We have previously analysed the properties of simpler but broadly analogous
systems, consisting of hard spheres (or disks), confined in a line by a transverse
harmonic potential and compressed between two hard walls (in two dimensions)
[25, 26, 27, 28, 29]. The insights gained from this, as regards bifurcation diagrams
and Peierls-Nabarro potentials [30], are valuable in the present context. In those pre-
vious studies the key property was the instability of linear arrangements with respect
to a lateral zigzag instability, when compressed, as is also found here.
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λ

E∗

Figure 8. N = 10. Stable equilibrium solutions are shown in blue. For low values of λ there are two stable

solutions, as shown in the inset. Also shown in the inset are some of the unstable equilibrium solutions (in

black), it can be seen that one of the stable solutions becomes unstable at a bifurcation point (indicated by
the large black dot).

While there are some similarities between the buckling of hard spheres and ions
there are also many subtle differences. For example, in the case of the hard spheres
unstable solutions were seen in the experiments, as they were stabilised by friction [29].
While unstable equilibrium states may not be readily accessible in the case of ions in
experiment, they are nevertheless valuable in understanding the reason why the linear
chain becomes unstable. This is clearly demonstrated in the case of N = 5 (see the
second inset in Fig 5): the linear chain becomes unstable with decreasing anisotropy
at a bifurcation point, beyond which the linear chain continues as an unstable solution
while the zigzag arrangement now becomes the only stable solution.

In further work we have computed hundreds of arrangements for the large number
of 50 ions [31]. The observed intricacy of the patterns makes them worth an object of
study in their own right, be it in the context of computer-generated art, or for use in
psycho-physical studies of the perception of randomness and order.
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λ

E∗

λ

E∗
(a) (b)

Figure 9. N=10. (a) A narrow region of the bifurcation diagram (i.e. Fig 8) for N = 10, showing all the

equilibrium solutions. (b) Close-up showing an out of the blue bifurcation.
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