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Coulomb Calligraphy
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The equilibrium configurations ofN Coulomb charges confined by a harmonic potential in two dimensions
are found to exhibit a wide variety of patterns that are pleasing to the eye, when adjacent points are joined up.
We present a selection of these forN = 50. The patterns are reminiscent of early examples of algorithmic
or computer-generated art, and might be of use for psycho-physical studies of the perception of structure and
randomness. They could also find applications in the generation ofrecognisable symbols in an alphabet of
infinite extent, easily generated and varied using the software that is provided here.
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1. Introduction
The first exhibitions of computer generated graphics in

art galleries date back to 1965 [1, 2]. The protagonists, such
as Michael Noll, Georg Nees and Frieder Nake, had back-
grounds in computer engineering, mathematics and physics.
The algorithms that they designed made use of pseudo-
random numbers to produce output that could be displayed
using the very basic graphics plotters that were available
at the time. Noll’s ‘Computer Composition with Lines’, for
example, consists of randomly placed short vertical and hor-
izontal lines, reminiscent of some of Piet Mondrian’s paint-
ings, such as ‘Composition with Lines’ from 1917. Georg
Nees’ work ‘Locken’ displays contours of randomly placed
circles. In her series ‘Interruptions’ (1968–69) Vera Molnár,
who has a classical fine art training, wrote computer code
to randomly rotate and erase lines in an initially ordered
grid [3].

Not surprisingly, the applications of computers in art has
grown rapidly ever since. The results are variously called
computer art, digital art, algorithmic art, generative art etc.
[2, 4]. The expression “K̈unstliche Kunst” (artificial art) is
also being used by some of the artists [5, 6]. As algorithms
increasingly interfere in any aspects of life, it is argued
that computer art is perfectly suited to engage with this
development [7].

In the course of research on equilibrium states of ions in
two dimensions we have come across patterns that appear
to resonate with those early works of computer-generated
art. We found distributions of points, obtained from an
algorithm for the solution of a physical problem, which can
be connected by lines following basic principles of human
perception. Thousands of examples may be computed in
a few minutes [8] for systems with about 10 ions (while
a similar number of examples for systems containing 50
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ions can be computed over the course of a few hours). All
conform to and are generated by the same simple basic
rule, a principle of physics. Each is defined by just a few
parameters, and these can take many values.

An example is shown in Fig. 1a: it is a compact array of
points, in which we can readily recognise lines, junctions
and isolated points, a clear manifestation of what are called
the grouping principles of proximity and good continuation
in Gestalt psychology [9, 10]. We have chosen to process
this primitive pattern by recognising the lines of points and
joining them up smoothly, as in Fig. 1b–f, with a rule that
draws the lines which is somewhat arbitrary. (All of the ex-
amples that are shown in later sections have been processed
using the same rule, as defined below.)

Such modifications or interventions to an algorithmic
outcome have been commonly employed in algorithmic art;
they could take the form of Georg Nees simply turning off
the plotter once he was satisfied with the produced image
[1] or Manfred Mohr removing individual edges from his
computer generated images of cubes, to disturb symmetries
and create visual tension [2].

2. The Governing Rules
Each of the patterns described here begins as an equi-

librium configuration of points in a plane, or equiva-
lently charges, interacting with the repulsive Coulomb force
(1/r2) and confined by a harmonic potential. The scientific
interest in such systems, which (to some extent) can be re-
alised experimentally [11], is driven by their relevance to
quantum computing [12].

The total energyẼ of a cluster ofN chargesQ, confined
by a 2D isotropic harmonic potential, is given by
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(a) (b) d = 0.70 (c) d = 0.80

(c) d = 0.90 (e) d = 1.0 (f) d = 1.25

Fig. 1. (a) An example of the computed point pattern for N = 50 (energy E = 651.545, Eqn. (2)). The pattern can be modified by connecting points
via (curved) lines, if they are less than a maximum (dimensionless) distance d apart from each other. The first image also shows a scale bar indicating
a distance of 1. Figures (b–f) show the results of this procedure for several choices of d.

where Xi and Yi are the Cartesian coordinates of the i th
charge, while k is the force constant for the harmonic con-
fining potential. For convenience, we use a = Q2

4πε0
(ε0 is

the permittivity of free space) in what follows and consider
the dimensionless energy E , defined as E = Ẽ/(a2/3k1/3).
It is given by

E = 1
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Here xi = Xi/ l0 and yi = Yi/ l0 are dimensionless coordi-
nates, with the length scale l0 = (a/k)1/3. Eqn. (2) is the
equation whose equilibrium solutions for the N coordinates
(xi , yi ) we seek, with examples displayed in Figs. 1 and 2.

In previous work [8] we have also explored the effects of
an anisotropic potential, i.e. the case where the force con-
stant k in Eqn. (1) is replaced by constants kx and ky , acting
in x and y directions, respectively. This allows the aspect
ratio of the resulting pattern of ions to be varied, further
adding to the richness of the results that could be generated.
In the following, however, we will restrict ourselves to the
isotropic case of Eqns. (1) and (2).

The algorithm that we use to find equilibrium solutions of
Eq. (2) starts from a random initial arrangement of points in
the x − y plane (see [8] for details). We seek by iteration
a configuration for which E is stationary, i.e. in terms
of physics a solution for which the sum of forces on any
given charge is zero. Most of these configurations produced
are unstable equilibrium solutions, typically consisting of a
compact set of points arranged in a fashion that is suggestive
of lines, junctions and isolated points, as in Fig. 1a.

In the case of an unstable equilibrium solution even a
slight perturbation may lead to the collapse of the configu-
ration to a stable arrangement. Unstable solutions are to be
contrasted with stable solutions, of the type reported by oth-
ers (see for example [13]), which are (typically) crystalline
in nature. Although both (stable and unstable solutions) can
be found by numerical minimisation techniques, in the case
of large systems (such as N = 50) the number of unstable
solutions vastly outnumbers the stable solutions.

Having identified unstable configurations of charges, we
proceed to introduce lines to some of the points as follows.
In the first stage any points within a chosen dimensionless
cut-off distance d of each other are considered to be con-
nected. In the second stage, such ions or points are fitted by
cubic basis splines (B-splines), resulting in smoothly bend-
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(a) E = 646.620 (b) E = 656.876 (c) E = 661.416 (c) E = 663.096

(e) E = 665.292 (f) E = 666.705 (g) E = 668.023 (h) E = 669.521

(i) E = 671.227 (j) E = 675.635 (k) E = 682.25 (l) E = 692.194

(m) E = 696.225 (n) E = 706.569 (o) E = 730.041 (p) E = 741.795

Fig. 2. Gallery of patterns for N = 50, showing a very small fraction of the total number of computed arrangements. Others may be sampled using the
software specified in Appendix A. All patterns represent equilibrium solutions of Eqn. (2), with d = 0.9 for the maximum distance which determines
which nearby points will be connected by a line.

ing curves that fit the sequence of points. Such splines are
constrained to pass through the first and last point in the
sequence, but not necessarily constrained to pass precisely
through the intermediate points [14, 15].

Fig. 1b–f show some of the possibilities that can arise as
this cut-off distance is varied. For the rest of the images
shown below we chose a value of d = 0.9 on purely sub-
jective aesthetic grounds (for comparison Fig. 1a shows a
scale bar indicating a distance of 1).

3. Representative Patterns for N = 50
For the purposes of this presentation, we will confine our

attention to the case N = 50, for which we have computed
around six hundred patterns (by no means an exhaustive
catalogue), of which a sample is shown in Fig. 2. We have
placed a complete catalogue of our results, online at [16],
together with the Mathematica script that generates them.
See Appendix A for details.

Each such pattern may be uniquely identified in terms of
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its energy E (Eqn. (2)). In practice, we never find any two
equilibrium configurations with values of E close enough
to make this designation ambiguous (at least this is the
case for the approximately six-hundred arrangements that
we have catalogued - see [16], for each of which the energy
is stated to three-decimal places). Note however that each
configuration may be reflected and rotated to create others
of the same energy.

The sequence of patterns shown in Fig. 2 is arranged in
order of increasing energy. A crude interpretation of the
general nature of the patterns is as follows. Configurations
with low energies (Fig. 2a) tend to be comprised of points
arranged in compact clusters centred about the origin. Con-
figurations with higher energies are more frequently com-
prised of one or two long lines, with isolated points (and
shorter lines) scattered throughout (Fig. 2p).

Viewed imaginatively these patterns may conjure up im-
ages of human settlements, archaeological sites, battle-
fields, or Eastern forms of calligraphy, in extraordinary vari-
ety. The mind will search for the underlying principle—we
have already stated it, in all its simplicity. Truly countless
possibilities (defined by N and E) are available for explo-
ration.

4. Point Patterns
While we chose to turn the point patterns into

calligraphy-like symbols by replacing nearby points with
lines, it might be instructive to analyse the point patterns
themselves in terms of existing symmetries. This could be
achieved for example via the computation of (2d) bond or-
der parameters, which are used to characterize the structures
of glasses or jammed materials [17].

Random point patterns are commonly used in psycho-
physical studies of human perception [18, 19, 20]. While
too much order might be perceived as boring, too much
randomness may lead to confusion of the viewer. An ex-
ploration of the tension between these two sensations and
the successful identification of a “midpoint” between them
characterises many works of art [21].

5. Conclusion and Outlook
We have presented samples of an extensive catalogue

of 2d patterns made up of points and lines. While the
position of the points is determined from numerically ob-
tained equilibrium solutions to an equation from electro-
statics (Eqn. (2)), the introduction of lines is based on ele-
mentary principles of Gestalt psychology (proximity, good
continuation), again implemented numerically.

While the patterns may be appreciated solely for their
aesthetic value, or may have merit for the study of symme-
try and human perception, they could also lead to practical
applications, as follows.

Throughout our initial experimentation with the (line)
patterns we were intrigued how readily the brain seeks to
interpret them as calligraphic symbols of some imaginary
language. It might be possible to exploit this for the creation
of a visual code, similar to the QR code. The code is
readily produced computationally, and via the vast numbers
of patterns (noting that here we only explored N = 50 in
an isotropic potential) could result in an “ infinite alphabet”

of symbols. Its advantage lies in the fact that, unlike a QR
code, the patterns suggest some sort of subjective content
or meaning, much like the images used in a Rorschach test.
They are therefore easily committed to memory.

While we have only employed crude methods to join
together the points into patterns, it is clear that much more
sophisticated methods could be used. One possibility would
be to ask test participants to join together the dots in a
manner that appeals to them. The resulting data set could be
used to train a neural network which could in turn produce
further images, which would reflect the artistic instincts of
the humans used to train it.
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Appendix A. Catalogue and Code
The original images representing positions of the

Coulomb charges in equilibrium, along with the processed
images (using a cut-off of d = 0.9 to join the points) can
be found here [16]. Each pair of images is identified by a
unique id number and by its energy E .

We also provide the algorithm used to generate the
equilibrium configurations. This is in the form of a Math-
ematica notebook (https://www.dropbox.com/s/
6y4und9mgelmifl/generate equilibrium
configurations published 23 01 30.nb?dl=0
[Accessed 10th February 2023]) which requires the use of
Mathematica [22] to run (tested on version 13). We also
provide a PDF print out of this file for users without access
to Mathematica (https://www.dropbox.com/s/
rj11s9529m94oxo/generate equilibrium
configurations published 23 01 30.pdf?
dl=0 [Accessed 20th March 2023]).

The output of the Mathematica notebook is in the form of
a text file. Each equilibrium configuration, generated by the
algorithm for a system of N ions, is given on a single line
of the text file. The first number on each line is the energy
of the configuration, this is followed by N numbers which
are the x-coordinates of the ions, followed by a further N
numbers which are the corresponding y-coordinates of the
ions.

Currently, the algorithm is set to run 1000 times. How-
ever the actual number of configurations listed may be less
than this. The algorithm only outputs equilibrium configu-
rations. A configuration is considered to be in equilibrium
if the value of the objective function (as defined in [8]) is
less than a small tolerance value (i.e. 1 × 10−10, as defined
in the Mathematica script) and only results fulfilling this
condition are written to the file (as a result for systems with
N = 50 it may take some minutes before valid results are
written to the file).
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