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ABSTRACT

This dissertation is composed of three main chapters related to energy finance,

where the first two chapters each contain one essay and the third chapter contains

two essays.

In the first chapter (published in the Economic Modelling, co-authored with

Dr. Brian Lucey), study the relationship between the news tone, extracted using

dictionary-based textual analysis, and the monthly oil prices. We directly measure

the sentiment of Financial Times oil news articles from 1 June 2008 to 30 September

2020 using a oil-specific dictionary and the approach à la Loughran et al. (2019)

as well as a commonly employed Henry’s general financial dictionary. We find non-

linear (linear) Granger-causality between news tone computed using the oil-specific

(Henry’s financial) dictionary and the oil prices. Since the preliminary results show

predictive power of the news tone on oil prices, we perform out-of-samples forecasts

over short (1-), medium (2-), long (3-month) horizons, controlled by other popular

macroeconomic and sentiment variables. Unlike previous studies show that the

News ToneHenry is useful in oil price trend forecasting, our results indicate that

it has no ability to forecast the actual oil prices across all horizons. Instead, we

find that the News ToneOil exhibits strong (weak) forecasting power over short

(medium) terms, checked by robustness tests which further consider the Global

Real Economic Activity, oil production and supply. We further verify the economic

significance of the forecasting models by comparing the performance with those

of a naive buy & hold strategy. Our study documents the use of domain-specific

dictionary in relevant financial analysis.

In the second chapter (published in the Energy Economics, co-authored with

Dr. Brian Lucey), we examine the role of renewable energy stocks could play dur-

ing cryptocurrency market turmoils from 1 January 2018 to 17 September 2021.

Cryptocurrencies could be roughly classified as "dirty" and "clean" types based

on the estimated energy consumption, depending on what underlying algorithm

(e.g., Proof-of-Work (PoW), and non-PoW) is used. We first analyse the dynamic
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spillover patters among the renewable energy stocks, cryptocurrencies, S&P 500

(as a proxy for general stock market), and gold. We show that there is only weak

connectedness between the renewable energy and cryptocurrency markets, which

implies the possibility of renewable energy stocks to provide hedge and diversifi-

cation benefits in the future. We further perform statistical analysis to examine

the hedge and safe haven property of renewable energy stocks for cryptocurrencies’

extreme negative movements and uncertainties, and vice versa. We confirm that

renewable energy stocks have not yet become direct long-term hedge for either type

of cryptocurrencies. However, it could at least serve as a weak safe haven for both

types in extreme bearish markets. Moreover, renewable energy stocks are more

likely to be a safe haven for "dirty" than "clean" cryptocurrencies during heightened

market uncertainty. By contrast. cryptocurrencies are not general safe havens for

renewable energy stocks. This study provides significant implications for investors,

policy-makers, and founders of cryptocurrencies.

In the third chapter (co-authored with Dr. Brian Lucey), we research the herd

behaviour in emerging assets such as cryptocurrencies and renewable energy stocks.

In this chapter’s first essay (published in the Finance Research Letters), similar to

what we do in the previous chapter, we classify the cryptocurrencies into "dirty"

and "clean" types, where we find empirical evidence that herding generally exists

only in the dirty cryptocurrency market and is more significant in down than up

markets. Moreover, we find that clean cryptocurrencies do herd, but with dirty

cryptocurrencies, when the two markets are both in positive condition. The results

are robust across value- and equal-weighted portfolios and provide valuable insights

to cryptocurrency investors and policy makers. In the second essay which focuses

on the renewable energy market in China (published in the Energy Economics), we

find that the herds of renewable energy stocks significantly show up in the Chinese

exchanges, which on the one hand, contradicts previous literature that declares

that such market do not herd. On the other hand, our findings support literature

that Chinese stock market is significantly inefficient and immature. We further

investigate the asymmetric and time-varying characteristics of such behaviour in

the Chinese market. We find that herding asymmetry is more pronounced during

bullish markets and among smaller firms. When within-industry herding weakens,

large price movements in the overall stock market provide additional trading

signals for herding formation in this sector.
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1
DOES NEWS TONE HELP FORECAST OIL PRICES?

1.1 Introduction

Crude oil is regarded as one of the most important energy commodities, or even

the single most important energy commodity in finance, mainly because it is non-

renewable and is the primary source of energy production. Therefore, forecasting

oil prices has long been a challenge as well as a promising task in academia

and industry due to the heavy impact of oil price fluctuations on global economic

activities. However, the high sensitivity to global factors has made the oil price

forecasts difficult to be accurate [Adrangi et al. (2001), Moshiri and Foroutan (2006),

Hamilton (2009)].

A strand of the literature follows the earliest attempts whose forecasts solely

depend on the historical values. They seek to improve the forecasting results by

introducing more advanced models and better combination and treatment of the

past values [Moshiri and Foroutan (2006), Zhang et al. (2015), Guo (2019)]. Other

strands believe that oil prices could be affected by many other macroeconomic

factors. They have been managing to lower the forecasting errors using not only

the fundamental factors such as economic growth [Kilian and Hicks (2013), Ready

(2018)], supply and demand [Lippi and Nobili (2012), Kilian (2009)], exchange

rates [Basher et al. (2012), Sadorsky (2000)], interest rates [Frankel (2008), Akram

(2009)], precious metal prices [Narayan et al. (2010), Zhang and Wei (2010)] among

others, but also non-fundamental factors such as economic policy uncertainty (EPU)
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CHAPTER 1. DOES NEWS TONE HELP FORECAST OIL PRICES?

[Balcilar et al. (2017)], geopolitics [Phan et al. (2021)], and so on. More recently,

market sentiment, more specifically the investor sentiment, stemmed from the

theory of behavioural finance or broadly behavioural economics, has also found to

be useful in anticipating financial markets’ moves.

As defined in behavioural finance, financial participants, especially investors,

are not completely rational. Different levels of individual’s risk tolerance can

significantly influence one’s sensitivity to volatility or risks, which in turn governs

and triggers their trading decisions, thereby the market tendency. There are a

fruitful list of measures that are used as proxies for investor sentiment or attention,

such as the Implied Volatility Index (VIX), the Crude Oil Volatility Index (OVX),

EPU Index, the American Association of Individual Investors’ Sentiment Survey

(AAII), and the Google Search Volume Index (GSV) based on Google Trends, etc

[Reboredo and Uddin (2016), He et al. (2019), Yin and Feng (2019), Qadan and

Nama (2018), Balcilar et al. (2017)]. Apart from these, a newly developed concept,

news sentiment, has drawn considerable attention from researchers.

Newspapers are known widespread sources that provide both informative news

and relevant comments/analysis. As for oil market, business or financial newspa-

pers are the primary platforms that inform the public about supply and demand

states and shocks. While investors are sophisticated, most are sensitive and specula-

tive and may act on the signals conveyed by such news. Thus, it would be interesting

and useful if we could find the connection between the sentiment aroused from

news and the oil price changes.

Discovering the linkage between the changes in the tone of news and the oil

price is one of the purposes but not the primary purpose of our study. It serves

as a preliminary indicator for our further process. In fact, a few of studies have

attempted to extract the news sentiment regarding the oil market. Our study

follows one strand of the literature that uses dictionary-based approach to calculate

the tone of news articles, which is more straightforward than machine learning

approach as it does not involve human manipulations. However, our study differs to

most previous studies that we adopt a new oil-specific dictionary and the subsequent

approach presented by Loughran et al. (2019). We use Financial Times as our news

source which is not commonly considered, despite being a world-leading news

provider and mostly operates for business and financial sector. Moreover, unlike

many studies which only focus on the headlines, we use the full texts as we believe

that only full texts would tell a complete story of an event. For comparison, we
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consider the commonly used Henry’s general financial dictionary [Henry (2008)].

After we compute the monthly aggregate News Tone indices, we then perform

Granger-causality tests to investigate the interactions between the news tone

indices and the oil prices, where we adds to the closest literature by using a

nonlinear Granger-causality measure following the standard linear Granger (1969)

test. Our first results show that the news tone indices constructed using different

dictionaries interact with oil price changes differently. Specifically, we find that

the change in news tone constructed using the Henry’s dictionary (hereafter: News
ToneHenry) linearly Granger-causes the change in oil price, while the change in the

news tone constructed using the oil-specific dictionary (hereafter: News ToneOil)

nonlinearly Granger-causes the oil price. These suggest that both news tone indices

are possible predictive variables of the oil price.

Next, we are confident to perform the oil price forecasting incorporating the

News Tone indices. We test it over 1-, 2-, and 3-month horizons (corresponding to

short-, medium-, and long-term investing). Our empirical results show News ToneOil

helps in the out-of-sample oil price forecasting over a short horizon, while the News
ToneHenry does not help at all time horizons. These underscore the importance of

using domain-specific dictionary in financial analysis. We proceed to analyse the

economic significance of our forecasts by comparing the profits and Sharpe ratios

obtained by using long-short trading strategies based on the forecasting models

with that by a naive buy & hold strategy. We show that the strategy based on the

model incorporating the News ToneOil significantly outperforms all other strategies

(models).

The rest of this chapter is structured as follows. In Section 1.2, we review some

previous literature. In Section 1.3, we present the methodology, whereas in Section

1.4 we describe the data. In Section 1.5, we discuss the main empirical findings and

robustness checks. Finally, We conclude this chapter with Section 1.6.

1.2 Literature Review

Crude oil prices are hardly stable. A substantive part of the energy commodity liter-

ature has therefore investigated what economic changes can explain or contribute

to the behaviour of crude oil prices. While Hamilton (1983, 1996, 2003) among

others pointed out that oil price changes significantly affect the macroeconomy (e.g.,

the economic growth and recession) using the U.S. data, studies on the reverse such
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as Al-Yousef (2018) showed that global economic growth also causes change of the

crude oil prices. Their recent evidence has showed that the rise in the global GDP

growth stimulated the oil prices from 2003 to 2008 and the drop of the economic

growth contributed to the oil price decrease in 2014-2015, which is in line with the

arguments of Kilian and Hicks (2013). Just as other commodities, the variations of

crude oil price suffered from the demand and supply shocks. Kilian (2009) found

that the price of oil responds differently and with delays to the heterogeneous and

asymmetric supply and demand shocks, while Lippi and Nobili (2012) suggested

that the such price adjustments could be simultaneously. The turmoils in especially

in the oil producing countries, such as worker strikes, wars, terrorist attacks, etc,

may induce the supply risk and further affect the oil price [e.g., Hamilton (1985,

2003), Song et al. (2022)]. Phan et al. (2021) used measures of terrorism as in-

dicators in oil price return forecasting. Their findings suggest that the terrorist

attacks indirectly causes the turbulence in oil prices from both oil production and

investing aspects. There are also factors affecting the demand side such as the

inflation, currency exchange, etc, which may further influence the oil prices. For

example, Sadorsky (2000) showed that the the price of crude oil futures react to the

variations in exchange rates. Akram (2009) analysed the relationship between U.S.

real interest rate, exchange rate, and prices of several commodities. They found

that the interest rate can be viewed as a potential price indicator for commodities.

Moreover, Narayan et al. (2010) showed that the crude oil and the gold markets

are actually cointegrated, which implies that the the price of gold can be used as a

predictor of crude oil prices.

The futures products of oil have been exceptionally popular and liquid hedging

tools for the spot markets among investors. Investors’ trading logic and decisions,

which heavily depend on their emotions and the attitudes towards risks (e.g.,

volatilties and extreme movements, etc), undoubtedly have a huge impact on

current and expected prices of the oil products. Hence, the change in the oil price

cannot be solely explained by the fundamentals. Extensive studies have examined

the relationship between the investor/market sentiment and the oil markets. For

example, Sari et al. (2011) studied the long-term nexus among the price of previous

metals, the exchange rate, the VIX as a proxy for investors’ risk perception, and

the price of oil. They found significant influences from risk expectations to the

oil prices. Findings of Shaikh (2019) reveal a strong and asymmetric relationship

between oil prices and the OVX as a proxy for investors’ fear. Similarly, Li et al.
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(2022) discovered a nonlinear association between crude oil prices and OVX. They

also find that the multifractal strength between the oil prices and OVX is more

significant than that between the prices and the VIX. They believe that investors

can use the OVX as price indicators in forecasting. He et al. (2019) discovered a

nonlinear Granger-causality between the AAII sentiment survey index, a proxy

for the aggregate sentiment of the members from the American Association of

Individual Investors, and the oil returns. The time-varying association between

them implies that investor sentiment has an impact on the variations of the oil

price. Bekiros et al. (2015) used various VAR models and document the forecast-

ability of a news-based (by counting the number of newspapers addressing specific

keywords) EPU [Baker et al. (2016)]in oil returns. Balcilar et al. (2017) analysed the

quantile casuality running from the EPU and the Equity Market-related Economic

Uncertainty (EMEU) [Baker et al. (2016)] to the crude oil market. Evidence presents

the ability of the two news-based uncertainty measures to predict the oil returns.

Bonaparte (2019) created a textual Geopolitical Oil Price Risk Index (GOPRX) based

on Google Trends/GSV and factor analysis. The price of oil is found significantly

correlated with the GOPRX. Qadan and Nama (2018) compared nine types of

sentiment variables, including VIX, OVX, EPU, GSV, etc, to show that investor

sentiment drives the oil price changes.

In the meantime, as we introduced earlier, a newly developed behavioural

factor, textual sentiment, similar to other sentiment-type proxies such as uncer-

tainties, becomes increasing popular as a new explanatory variable in forecasting

the oil markets. Both machine learning (ML) and the state-of-art Dictionary-based

approaches have been widely adopted in the process of content analysis.

Here we introduce some machine learning applications first as we in this study

use the another. For instance, Li et al. (2019) employed a deep learning technique—a

convolutional neural network (CNN) algorithm—to extract the hidden information

in Investing.com news. They further normalised and smoothed the short-lived

variations by a Hodrick-Prescott (HP) filter (Hodrick and Prescott (1997)) and

proceeded with a linear Granger-causality test to examine the predictive power of

text features, particularly, the subjectivity and emotions in oil prices. Empirical

results indicate that most of the text features significantly Granger-cause the oil

prices and combining the text features with traditional financial data reduces the

forecasting errors. Wu et al. (2021) also used a CNN model to measure the sentiment

of news headlines. They showed that the quantified textual news information along
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with GSV data improves accuracy of oil price forecasts.

With respect to the dictionary-based approach, Henry’s financial dictionary

[Henry (2008)] is perhaps the first widely used dictionary in financial analysis,

which was invented by analysing the earnings press releases from firms in telecom-

munications and computer services industries and related equipment manufactur-

ers. Henry (2008) used it in the first instance to investigate the correlation between

the tone of these firms’ earning press releases and the corresponding returns of

their stocks. Subsequently, scholars in other fields of finance started adopting this

and other competing dictionaries in their studies. Regarding oil market-related

research, for example, Li et al. (2017) used the Henry’s dictionary [Henry (2008)]

to construct a tone series based on the Thomson Reuters’s oil market news and

then applied a normalisation and HP smoothing process on both the tone and

price series. They found that the news tone can Granger-cause the oil price change

and can help predict the oil price up-down movements. Zhao et al. (2019) consid-

ered a rule-based lexicon/dictionary—the VADER (Valence Aware Dictionary and

sEntiment Reasoner)—to quantify the sentiment of news from Reuters and United
Press International. After normalisating and performing forecasts, they found that

text sentiment helps forecast oil prices when the magnitude of the tone is strong

enough. The most recent field-specific invention is by Loughran et al. (2019) who

created a special dictionary of 130 keywords and 827 modifiers correlated to the oil

market to gauge the polarity of oil market-related news from Dow Jones company.

They discovered that more signals suggesting a oil price decrease, the higher the

exact oil price, after controlling the effect from the interest rate, U.S. dollar, gold

price, VIX, etc. The more signals suggesting a oil price increase, the lower the

actual oil price.

Compared to traditional lexicon/dictionary-based approach, machine learning

techniques seem to be more advanced and complex. However, machine learning

techniques "may not necessarily outperform" the state-of-art dictionary-based

approach in real world practice, argued by Loughran and McDonald (2016) and

Loughran et al. (2019) and partially evidenced by Guo et al. (2016) among others.

The success of using machine learning techniques heavily relies on a thorough

"training" process [Guo et al. (2016); Li (2020)]. Researchers must select their

parameters of a machine learning model and adjust them to improve the in-sample

results in the training process, from probably hundreds or even thousands of

combinations [Loughran and McDonald (2016); Loughran et al. (2019)]. Without
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being pre-trained on selected documents, models cannot be used for a general or

random news item. Moreover, results from analysis of target files may (signifi-

cantly) vary if the feed files are selected (completely) differently during model

training. If either of their choice of tuning such as parameters or the corpus used

for model training is not provided, researchers will find it hard or impossible to

replicate previous scholars’ results [Loughran and McDonald (2016); Loughran et al.

(2019)]. Although leading financial news/data providers such as Thomson Reuters
or Bloomberg provide reliable scoring or ratings through their comprehensive and

sophisticated algorithms, their data is behind paywalls, and their implementations

are confidential as intellectual property and commercial competitiveness. Using

dictionaries that are open to public is therefore considered more "transparent"

and "straightforward" in the calculation process than using machine learning for

financial textual analysis [Loughran and McDonald (2016); Loughran et al. (2019);

Guo et al. (2016)].

1.3 Methodology

1.3.1 Sentiment Analysis

We followed a common approach to calculate the tone of an article [Loughran et al.

(2019)], which is formulated as Eq. 1.1. We then created the monthly oil news tone

indices by aggregating the tone scores of all days in a month.

(1.1) News Tone i per article = (Pos.−Neg.)
(Tot.)

where the Pos., Neg., and Tot. refer to the number of positive, negative, total

words in an article, respectively. The i refers to the particular dictionary we used.

With respect to components in Eq. 1.1, we used a dictionary-based approach

following Loughran et al. (2019). We first updated the original Loughran-McDonald

(LM) Stopwords list1 that we deleted the word "up" as "up" is considered as a

modifier in the Loughran et al. (2019) approach. Moreover, we added 14 acronyms

specified in Loughran et al. (2019) to the 2018-version LM Master Dictionary2

Then, we excluded all meaningless words that are neither in the Stopwords list and
1Available at https://sraf.nd.edu/textual-analysis/resources/#StopWords.
2This is the most recent Master Dictionary when we conducted this analysis. It is available at

https://sraf.nd.edu/textual-analysis/resources/#Master%20Dictionary.
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the Master Dictionary. The total word count is equal to the number of words left.

To calculate the polarity of the article, we considered two comparable dictionaries,

a Oil-specific Dictionary [Loughran et al. (2019)] and the Henry’s Financial Dictio-

nary [Henry (2008)]. The Loughran et al. (2019) oil-specific dictionary identifies 59

positive, 19 negative, and 52 inconclusive words. The positive (negative) keywords

indicates an increase (decrease) in the expected oil price, while the inconclusive

keywords are not sign-defined before being assigned a modifiers which are also

provided as complements by Loughran et al. (2019). There are in total of 291 posi-

tive and 536 negative modifiers. We screened any modifiers around an inconclusive

keyword with a range of four. If we did not find a modifier, we ignored such key-

word. If we did find a modifier, such as a negative modifier "fall" appearing right

before an inconclusive keyword "production", we treated them as a positive phrase,

"production fall", which indicates a expected increase in the price. We only counted

the keywords once in the screening process. As a competitor, the Henry’s dictionary

only comprises of 105 positive and 85 negative keywords. A calculation example of

a sample news article which illustrates the difference of the two dictionaries is in

the Appendix A.

1.3.2 Linear Granger-Causality Test

We first used a linear Granger-causality test [Granger (1969)] to investigate the

linear causal relationship between the news tone indices and the oil price series

via a Vector Autoregressive (VAR) model:

Yt = c1 +
m∑

i=1
α11iYt−i +

n∑
j=1

α12 j X t− j +ε1t,

X t = c2 +
m∑

i=1
α21i X t−i +

n∑
j=1

α22 jYt− j +ε2t,
(1.2)

where Yt and X t for t = 1, . . . , T are the two time series being tested, εt is the error

term assumed to be mutually independent and identically distributed with a zero

mean and constant variance, and m and n are the maximum lag lengths.

Examining the null hypothesis H0 of the linear Granger-causality, for example,

that X t does not Granger-cause Yt, is equivalent to examining whether α12 j = 0

when j = 1, 2, . . . , n. The H0 that Yt does not Granger-cause X t is equivalent to

evaluating whether α2 j = 0 when j = 1, 2, . . . , m. F−test is used in this process.
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1.3.3 Nonlinear Granger-Causality Test

We further used a nonlinear Granger-causality test introduced by Diks and Panchenko

(2006) to explore the possibly nonlinear causal relationship between the news tone

indices and the oil price series.

The null hypothesis H0 that X t does not Granger-cause Yt is written as:

(1.3) Yt+1|(X lX
t ;Y lY

t )∼Yt+1|Y lY
t ,

where X lX
t and Y lY

t are the lagged values of X t and Yt. Assuming that the bi-

variate time series {(X t,Yt)} are strictly stationary, Equation (1.3) then represents

the invariant distribution of the (1+ lX + lY )-dimensional vector Wt = (X t,Yt,Zt),

where Zt =Yt+1. Under the H0, the conditional distribution of Z given (X ,Y ) = (x, y)

is identical to that of Z given Y = y only; thus joint probability density function

fX ,Y ,Z(x, y, z) and its marginals should meet the criteria:

(1.4)
fX ,Y ,Z(x, y, z)

fY (y)
= fX ,Y (x, y)

fY (y)
fY ,Z(y, z)

fY (y)
,

where X and Z are conditionally independent of Y = y. Hence, we treat the H0 as:

(1.5) q = E[ fX ,Y ,Z(X ,Y , Z) fY (Y )− fX ,Y (X ,Y ) fY ,Z(Y , Z)]= 0

If we define the local density estimators of a dW -variate random vector W as

f̂W (Wi) = (2εn)−dW

n−1
∑

j, j 6=i IW
i j , where IW

i j = I (∥Wi - Wj ∥ < ε). The estimation of the test

statistic Tn then can be calculated as:

(1.6) Tn(ε)= (n−1)
n(n−2)

∑
i( f̂X ,Y ,Z(X i,Yi, Zi) f̂Y (Yi)− f̂X ,Y (X i,Yi) f̂Y ,Z(Yi, Zi))

For a bandwidth εn = Cn−β, where C is positive and β is ranged from 1
4 to 1

3 ,

Tn(ε) satisfies:

(1.7)
p

n
Tn(εn)− q

Sn

d→ N(0,1),

where Sn is the robust estimation of the asymptotic variance of the test statistic

and d→ stands for distribution convergence. Empirical studies generally truncate

the bandwidth within the range of [0.5, 1.5], following Diks and Panchenko (2006).
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1.3.4 Oil Price Forecasting

1.3.4.1 Forecasting Models

The h-step ahead forecasts of oil price were simulated via a multivariate VAR

model:

(1.8)

Poil
t+h = c1+

n∑
i=1

α1iPoil
t−i+1 +

n∑
i=1

α2iNewsTone t−i+1 +
n∑

i=1
α3iEcont−i+1

n∑
i=i
α4iControl t−i+1 +εt

where n is the number of lags used, Poil
t is the futures price of oil, NewsTone t

is one of the news tone index series, Econt are economic variables, and Control t

stands for control variables. Details of data is described in the section 1.4.

1.3.4.2 Performance Evaluation

The expanding window procedure was used in our forecasting to ensure robustness.

We used the first 70% of observations in initial model estimation and increment the

estimation sample by one month. The performance of the out-of-sample forecasts

was measured by root mean square error (RMSE) and mean absolute percentage

error (MAPE) which are defined as follows:

(1.9) RMSE =
√√√√ 1

N

N∑
i=1

(yi − ŷi)2

(1.10) MAPE = 1
N

N∑
i=1

|yi − ŷi|
yi

∗100

where yi is the actual oil price, ŷi is the predicted price and N is the number of

forecasting observations.

1.4 Data

We considered LexisNexis electronic database as our source of business news articles.

We searched for articles published by the Financial Times that contain one of

following specific oil market-related keywords, including crude, brent, oil, OPEC,

WTI (West Texas Intermediate), appearing in both the headlines and body texts

at the same time. We ignored the case sensitivity. We also excluded firm-specific

articles as we focus on the market-level sentiment. We then narrowed our results
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by only selecting articles whose major terms fall within the "Crude Oil Market"
section of the publisher to avoid mismatch, and we only retained informative

articles that are defined as having more than 180 words. Moving forward, we

excluded high-similarity duplicates using the built-in function of LexisNexis. We

needed to be careful in this step as the similarity detection function only works

for the first 200 documents in a row. Hence, we had to restrict the number of the

results each time. At last, we had 3579 pieces of news articles available from 1

June 2008 to 30 September 2020 for our analysis. We then proceeded to apply the

sentiment analysis specified in Section 1.3.1 on these news documents to produce

our independent variables in the forecasting, the News Tone i. Specifically, News
ToneHenry was constructed using Henry’s Financial Dictionary [Henry (2008)], while

News ToneOil was constructed using the Oil-specific Dictionary by Loughran et al.

(2019).

Our dependent variables, the monthly prices of the WTI crude oil futures,

denominated in USD/Barrel, were sourced from the Energy Information Adminis-
tration (EIA) website3 for the same period. We plot the movements of the monthly

News Tone indices and the oil prices in Figure 1.1, where both exhibit significant

variations over the whole period.

Figure 1.1: Movements of Monthly Oil Price and News Tone Indices

To obtain a better picture of the potential co-movements, we smoothed the index

series using the Hodrick-Prescott filter. The outcomes are depicted in the Figure 1.2.

In this time, from the plot we see that News Tone indices co-move with the oil price.
3https://www.eia.gov/.
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One would say that co-movement between News ToneHenry and oil prices is more

obvious than that between the News ToneOil and oil price. News ToneHenry reaches

the peaks and troughs before the price series does so most of the time, while News
ToneOil depicts the same trend as oil price during the period from 2010 to 2015,

and generally reacts to the opposite at other time. Thus, it’s worth investigating

whether there are statistical causal relationships between the News Tone indices

and the oil price.

Figure 1.2: Movements of Smoothed Monthly Oil Price and News Tone indices

Finally, we retrieved the data of several oil price predictors. According to the

findings of Sadorsky (2000), Akram (2009), Qadan and Nama (2018) Narayan

et al. (2010) among others, we considered three economic variables as our basic

predictors: the spot gold price, a proxied USD exchange rate by the Trade-weighted

USD Index, and a proxied US interest rate by the 10 years Treasury constant

maturity rate. Following Loughran et al. (2019), Bonaparte (2019), Qadan and

Nama (2018), Balcilar et al. (2017), Narayan et al. (2010), Dutta (2017), we used

several sentiment-type measures as our control variables: the VIX, the OVX, the

EPU, the EMEU, and the GOPRX. The source of the control variables is the Federal
Reserve Economic Database (FRED)4 except the GOPRX which was downloaded

from the J.P. Morgan Center for Commodities5.

4https://fred.stlouisfed.org.
5Publicly available at https://business.ucdenver.edu/commodities/applied-research/

geopolitical-oil-price-risk-index-goprx.
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1.5 Results

1.5.1 Unit Root Tests

The stationarity of News Tone indices and WTI crude oil futures prices is examined

by Augmented Dicky-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

tests, shown in Table 1.1. The results of the ADF tests indicate that News Tone
indices are both stationary at the significance level of 1%, while the the price of the

WTI oil futures is only stationary at the significance level of 5%. The KPSS tests

reject the null of stationarity of oil price and News ToneHenry at the significance

level of 1% and 10%, respectively, while News ToneOil is stationary. After first-order

differencing, the oil prices and News Tone indices are all stationary at the same

significance level of 1%, so that they could be proceeded to identify a possible causal

relationship in the following step.

Table 1.1: Results of Unit Root Tests on Monthly News Tone Indices and Oil
Futures Prices

ADF KPSS
News ToneHenry -7.3298*** 0.3934*
News ToneOil -6.7855*** 0.2485
Oil Price -3.2519** 0.8660***
∆News ToneHenry -6.6265*** 0.1007
∆News ToneOil -6.1484*** 0.1240
∆Oil Price -6.6262*** 0.0754

Note: ***, ** and * denote the rejections of the null hypothesis at the significance level
of 1%, 5% and 10%, respectively.

1.5.2 Linear and Nonlinear Granger-Causality Tests

The results of linear Granger causality tests between the oil price and the News
ToneHenry is showin in Table 1.2, where we find that changes in News ToneHenry only

weakly linearly Granger-cause the changes in oil prices within the first two lags at

the 10% level, while the linear causality from oil price to News ToneHenry is only

found at the third lag at 5%. On the contrary, there is no linear Granger causality

found from News ToneOil to oil prices. Instead, such causality can be found from

the prices to news tone at all lags (Table 1.3).
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Table 1.2: Linear Granger Causality between Monthly News ToneHenry & Oil
Futures Prices

Lags ∆News ToneHenry does not
cause ∆Oil Price

∆Oil Price does not cause
∆News ToneHenry

F-Stats P-Value F-Stats P-Value
1 3.8154* 0.0527 0.3800 0.5386
2 2.9284* 0.0568 2.1560 0.1196
3 2.0672 0.1074 3.7601** 0.0124

Note: ** and * denote the rejections of the null hypothesis at the 5% and 10% significance
levels, respectively.

Table 1.3: Linear Granger Causality between Monthly News ToneOil & Oil Futures
Prices

Lags ∆News ToneOil does not
cause ∆Oil Price

∆Oil Price does not cause
∆News ToneOil

F-Stats P-Value F-Stats P-Value
1 1.8625 0.1745 3.1685* 0.0772
2 1.0107 0.3666 4.833** 0.0093
3 1.5327 0.2088 2.2866* 0.0815

Note: ** and * denote the rejections of the null hypothesis at the 5% and 10% significance
levels, respectively.

The results of nonlinear Granger causality tests between the oil price and the

News ToneHenry and between the oil price and News ToneOil are shown in Table 1.4

and Table 1.5, respectively. The bandwidths used in estimating DP test statistics

are set to 1, which is within the commonly used range of [0.5, 1.5]. We can conclude

from Table 1.4 that changes in News ToneHenry do not nonlinearly Granger-cause

oil price change, and oil prices only nonlinearly Granger-cause News ToneHenry

at the first lag at the level of 10%. However, News ToneOil tend to nonlinearly

Granger-cause the oil price at the first lag at 5%, and oil price also nonlinearly

Granger-causes the News ToneOil at the first 2 lags at 10%.

Overall, both news tone indices show predictive power of oil price over short

horizons. Specifically, the causality running from News ToneHenry to oil price is

found linear, while the causality from News ToneOil to oil price is likely to be

nonlinear.
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Table 1.4: Nonlinear Granger Causality between Monthly News ToneHenry & Oil
Futures Prices

Lags ∆News ToneHenry does not
cause ∆Oil Price

∆Oil Price does not cause
∆News ToneHenry

F-Stats P-Value F-Stats P-Value
1 0.250 0.401 1.552* 0.060
2 0.878 0.190 0.951 0.171
3 0.197 0.578 0.945 0.828

Note: * denotes the rejections of the null hypothesis at the 10% significance level.

Table 1.5: Nonlinear Granger Causality between Monthly News ToneOil & Oil
Futures Prices

Lags ∆News ToneOil does not
cause ∆Oil Price

∆Oil Price does not cause
∆News ToneOil

F-Stats P-Value F-Stats P-Value
1 1.961** 0.025 1.507* 0.066
2 0.797 0.213 1.44* 0.075
3 0.842 0.200 1.145 0.126

Note: ** and * denote the rejections of the null hypothesis at the 5% and 10% significance
levels, respectively.

1.5.3 Performance of Out-of-Sample Forecasts

To examine the forecasting power of additional predictive variables News ToneHenry

and News ToneOil, three groups of models are formulated for comparison, i.e., four

Benchmark models (labelled as 1, 2, 3 and 4), four models with News ToneHenry

added to the benchmarks (labelled as 1a, 2a, 3a and 4a), and another four with

News ToneOil added (labelled as 1b, 2b, 3b and 4b). Benchmark model 1 uses the

basic economic variables only as the control variables, including Pricegold, IR, and

EX. Benchmark model 2 adds the volatility sentiment measures VIX and OVX as

additional control variables. Benchmark model 3 further considers the economic

uncertainty measures, i.e., EPU and EMEU. Benchmark model 4 takes all above

control variables into account and additionally considers the geopolitical sentiment

measure GOPRX. All variables used for forecasts are of the same integration order

of 1 to account for unit root. Lag orders used in all the model estimations are based

on the Akaike Information Criteria (AIC).

Results of the forecasting performance for each model over short to long horizons
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Table 1.6: Forecasting performance

Models (labels) h = 1 h = 2 h = 3
RMSE MAPE RMSE MAPE RMSE MAPE

Benchmark 1 (1) 5.539 11.247 5.619 10.531 5.740 10.355
Benchmark 1 + News ToneHenry (1a) 5.633 11.001 5.687 10.424 5.786 10.310
Benchmark 1 + News ToneOil (1b) 5.501 11.386 5.603 10.542 5.710 10.308

Benchmark 2 (2) 5.213 8.861 5.723 10.702 5.702 9.915
Benchmark 2 + News ToneHenry (2a) 5.356 9.181 5.784 10.264 5.774 9.958
Benchmark 2 + News ToneOil (2b) 5.154 8.691 5.750 10.331 5.705 9.909

Benchmark 3 (3) 5.612 11.077 5.834 10.579 5.709 10.055
Benchmark 3 + News ToneHenry (3a) 5.766 11.577 5.865 10.521 5.788 10.125
Benchmark 3 + News ToneOil (3b) 5.485 10.291 5.828 10.562 5.735 10.128

Benchmark 4 (4) 5.635 10.859 5.828 10.610 5.684 10.015
Benchmark 4 + News ToneHenry (4a) 5.774 11.315 5.861 10.572 5.753 10.081
Benchmark 4 + News ToneOil (4b) 5.492 10.036 5.808 10.582 5.716 10.089

Notes: Benchmark model 1 only uses economic variables which are the gold spot price,
the USD exchange rate, and the US interest rate. Benchmark model 2 adds VIX and
OVX into Benchmark model 1. Benchmark model 3 further adds EPU and EMEU.
Benchmark model 4 uses all above and additionally GOPRX.

(1 to 3 months) are presented in Table 1.6. For easier inspection, we also visualise

the results of forecast errors generated by different models over 1-, 2-, 3-month

horizons as Figure B.1 and B.2 (see B).

For 1-month ahead (h = 1) forecasts, we found that Model 2b generated the

lowest RMSE and MAPE, which suggests that News ToneOil, with economic and

volatility measures complemented together, has the strongest forecasting power.

Moreover, News ToneOil helped to steadily reduce the forecasting errors in all other

its combinations stably, with only one exception being that Model 1b did not lower

the MAPE. On the contrary, News ToneHenry nearly showed no forecasting ability

as none of the model outperformed the benchmarks, excepting for Model 1a which

slightly lowered the MAPE but not the RMSE.

For 2-month ahead (h = 2) forecasts, results show that Model 1b generated

the lowest RMSE, but it did not reduce the MAPE. Model 3b and 4b slightly

outperformed the benchmarks with lower RMSE and MAPE. These indicate that

News ToneOil exhibits quite weak forecast-ability over the medium horizon. News
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ToneHenry, on the other hand, has nearly no forecasting power over medium horizon

since Model 1a, 2a, 3a, and 4a only reduce the MAPE but not the RMSE. Although

Model 2a has the lowest MAPE, but its RMSE is the highest among group 2.

For 3-month ahead (h = 2) forecasts, Benchmark model 2 performs the best.

Neither of the news tone indices has satisfying forecasting power as the forecast

errors were not reduced in all combinations, except Model 1b which slightly reduced

the MAPE and RMSE and Model 1a which slightly lowered the MAPE but not the

RMSE.

The focal point of this study is to verify whether news tones constructed by the

use of two competing state-of-art and user-friendly dictionaries help in forecasting

the oil prices. Our results show that the news tone captured using the Loughran

et al. (2019)’s oil dictionary (News ToneOil) does help forecast the oil prices out-of-

sample over short horizon. It shows much weaker forecasting power over medium

horizon and no forecasting power over long horizon. By contrast, News ToneHenry

constructed using the financial dictionary (Henry (2008)) does not help forecast

the oil prices out-of-sample at all. Till this point, we argue that the forecasting

power of news tone is data and method dependent as the different results of using

News ToneOil and News ToneHenry emphasise the use of domain-specific dictionary

in relevant financial analysis.

Lower statistical forecast errors do not necessarily guarantee higher economic

profits. Hence, we further evaluated the trading performance of the best performing

model (Model 2b) in the last section against the others in the same group. We

allowed the use of shorts and we neglected other trading constraints such as the

transaction costs, given that oil futures contracts are highly liquid and we only

trade once a month. Similar to He et al. (2021), our trading logic is simple: if

we predict the oil price in the next month is higher than the current price, we

will long the oil futures now and close out the position in the next month; If the

predicted price is lower than the current price, we will short the futures now and

buy back in next month. We simulated trades based on forecasts in the same

testing period from January 2017 to September 2020 and calculated the cumulative

returns continuously till the end. Additionally, we used a naïve Buy-Hold strategy

as our benchmark, in which we long the oil futures at the beginning of each sample

period, and hold the position until the period ends. This allows us to compare

whether the proposed strategies are economically viable in more recent periods. As

shown in Table 1.7, all of the long-short strategies based on previous forecasting
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models in Group 2 were able to outperform the naïve buy & hold strategy at

the end. Among all, the strategy based on Model 2b, again, was best performing,

generating the highest geometric return, cumulative return, and annualised Sharpe

ratio. It generated a geometric return of 3.95% which is 1.81% higher than that

of Benchmark model 2 and a cumulative return of 472.13% which is more than

doubling that of Benchmark model 2. Moreover, it generated a annualised Sharpe

ratio of 1.090 which is much higher than the other three. By contrast, neither the

naïve buy & hold strategy nor the strategy based on Model 2a generated a positive

geometric or cumulative return, or a satisfying Sharpe ratio. Overall, the superior

ability of the News ToneOil-incorporated model (Model 2b) in oil price forecasting

translated into higher profitability in the context of a long-short trading strategy.

Table 1.7: Economic Significance

Geo Ret Cum Ret Sharpe ratio
Buy & Hold -0.0063 -0.248 0.137
Benchmark 2 0.0214 1.596 0.692
Model 2a -0.0032 -0.135 0.312
Model 2b 0.0395 4.721 1.090

Notes: The Sharpe ratio is annualized.

1.5.4 Robustness Check

In main section, we only used the spot gold price, a proxied USD exchange rate,

and a proxied interest rate to represent economic variables. We further considered

the Kilian (2009) Index of Global Real Economic Activity (IGREA) as an additional

economic variable to test the robustness of previous results6.

The conditions of global supply and demand are likely to affect oil prices (Kilian

(2009)), while the IGREA composed by Kilian (2009) from global dry bulk shipping

freight rates is a good indicator of global supply and demand conditions, being a

proxy for the shipping volume of industrial commodities. We chose the corrected

version of this index with details clarified in Kilian (2019) from the FRED. The

forecasting results in Table 1.8 in this section are similar to those obtained in Table

1.6 in Section 1.5.3, with majority of the forecast errors being reduced. However, the

improvements with the help of News ToneOil over short to medium horizons have

6We also considered monthly oil inventory and oil production as additional economic variables
which were downloaded from the Energy Information Administration Website. We put the relevant
results in Appendix as they are not robust.
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been less significant. For instance, Model 2b no longer provided lower RMSE at h=2

and lower MAPE at h = 1 than Benchmark 2. Moreover, as Model 2b still provided

the lowest RMSE over h = 1, we tested it in regard to the economic significance.

Table 1.9 shows that model 2b could still generate the highest geometric returns,

cumulative returns, and annualised Sharpe ratio. However, these values are lower

than those in Section 1.5.3. IGREA seems to be a stronger predictor than sentiment-

type variables in oil price forecasting.

Overall, although the ability of News ToneOil in forecasting oil prices were

somewhat weakened after IGREA was fed in, our results remained robust and

similar conclusions could be drawn.

Table 1.8: Performance of Monthly Forecasts

Models (labels) h = 1 h = 2 h = 3
RMSE MAPE RMSE MAPE RMSE MAPE

Benchmark 1 (1) 5.517 11.108 5.607 10.386 5.712 10.239
Benchmark 1 + News ToneHenry (1a) 5.627 10.940 5.694 10.215 5.761 10.190
Benchmark 1 + News ToneOil (1b) 5.463 11.194 5.580 10.385 5.675 10.174

Benchmark 2 (2) 5.176 9.036 5.673 9.927 5.627 9.650
Benchmark 2 + News ToneHenry (2a) 5.344 9.374 5.731 9.869 5.704 9.710
Benchmark 2 + News ToneOil (2b) 5.126 9.051 5.693 9.955 5.630 9.646

Benchmark 3 (3) 5.583 10.565 5.826 10.328 5.636 9.811
Benchmark 3 + News ToneHenry (3a) 5.785 11.294 5.854 10.214 5.721 9.898
Benchmark 3 + News ToneOil (3b) 5.461 10.291 5.828 10.562 5.735 10.128

Benchmark 4 (4) 5.615 10.394 5.829 10.370 5.625 9.785
Benchmark 4 + News ToneHenry (4a) 5.800 11.067 5.858 10.283 5.699 9.862
Benchmark 4 + News ToneOil (4b) 5.480 9.739 5.794 10.288 5.659 9.859

Table 1.9: Economic Significance

Geo Ret Cum Ret Sharpe ratio
Buy & Hold -0.0063 -0.248 0.137
Benchmark 2 0.0216 1.619 0.696
Model 2a 0.0193 1.362 0.645
Model 2b 0.0228 1.756 0.722

Notes: The Sharpe ratio is annualised.
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1.6 Conclusion

It is universally argued that the oil price fluctuations have a huge impact on world

economic activities. Yet researchers appear to be somewhat hamstrung to accurately

predict the oil prices. Newspapers as major information providers carry important

information, comments and tone which can influence or drive investors’ behaviour.

Can news tone help forecast the oil price? We performed sentiment analysis on

3579 full texts of crude oil market news collected from the world leading business

news publisher Financial Times from 1 June 2008 to 30 September 2020. In this

process, the tone/sentiment of each document was measured using two dictionaries,

a widely used financial dictionary from Henry (2008) and a newly developed oil

dictionary from Loughran et al. (2019). We then aggregated the sentiment scores to

tabulate monthly News ToneHenry and News ToneOil indexes.

Subsequently, we adopted both linear and nonlinear Granger causality tests to

study the interactions between the news tone indices and the oil prices, where we

found that the causality running from News ToneHenry to oil prices is linear, while

the causality from News ToneOil to oil prices is nonlinear. Both news tone indices

exhibited predictive power over short horizon in preliminary causality tests. We

then performed 1-, 2-, 3-month ahead price forecasts with the two news tone indices

using VAR models, controlling for macroeconomic and other sentiment measure

variables. We found that News ToneOil does help forecast the 1-month ahead oil

prices. It shows weak forecasting power over medium horizon and no forecasting

power over long horizon. At the same time, although News ToneHenry was found

useful in forecasting oil price trends in other studies (i.e., Li et al. (2017)), it shows

nearly no ability to forecast the actual oil prices across all time horizons in our

case7.

We further examined the economic significance of best performing models in

previous statistical analysis under a long-short trading strategy. Our result is con-

sistent with previous analysis that the best performing News ToneOil-incorporated

model in previous statistical forecasting outperforms the others in the same group

and a naive buy-hold strategy.

Lastly, we included an extra economic variable IGREA in the forecasting models

to check the robustness of our previous analysis.

Overall, in line with the prior studies, we found that news tone is helpful in

7Note that we used different news source and frequency.
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forecasting oil price, which is beneficial for regulators and investors, especially for

traders who care about actual prices. However, we suggest that the forecasting

power of news tone is data and method dependent. News ToneOil constructed by oil

dictionary Loughran et al. (2019) seems to outperform News ToneHenry constructed

by the financial dictionary (Henry (2008)) in our forecasts, which highlights the

importance of using domain-specific dictionary in relevant financial analysis. The

findings also add to extending the methodological framework of sentiment construc-

tion in the context of oil price forecasting.
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AN EXAMPLE OF SENTIMENT CALCULATION

For parsed news stories used in this study, only keywords included in the revised

2018 LM Master Dictionary and not included in the LM revised Stopwords list

were considered in sentiment calculation. Below is a sample Financial Times oil

news on 13 September 2018 used in our study. The total word count of this article

is 247. Words in bold were detected by the oil dictionary (Loughran et al. (2019))

while underlined words were detected by the Henry (2008)’s dictionary.

Title - Oil heads towards 4-year high as hurricane heightens supply fears; Storm

to hit US east coast ; Crude price tops $80 ; Jitters rise as Iran sanctions loom

Body - Oil prices rose to more than $80 a barrel yesterday, nearing a four-year

high as traders braced themselves for a series of tropical storms barrelling towards

the US, which are coinciding with mounting concerns about a global supply short-
fall. Hurricane Florence spiralled towards the US eastern seaboard maintaining

category four winds at 130mph (210kph); its course shifted slightly to the south

but remained headed towards North and South Carolina. Fuel supplies were in

focus as motorists fill their tanks in anticipation of the eye of the storm making

landfall in the Carolinas tomorrow. Oil market watchers were also monitoring any

impact on supplies from the Colonial Pipeline, which runs through both states

and sends crude products to the north-east, as flooding or power outages could

hit pumping stations. President Donald Trump warned residents of the Carolinas
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APPENDIX A. AN EXAMPLE OF SENTIMENT CALCULATION

and Virginia to move away from the hurricane’s path; some were already heading

inland, as authorities warned that the powerful storm would be life-threatening.

"They say it’s about as big as they’ve seen coming to this country," Mr Trump said

in a video. "Get out of its way. Don’t play games with it." A second tropical storm,

Isaac, is also being watched as it may have a bigger impact on the oil sector if it

heads towards the Gulf of Mexico - a hub for production and refining operations.

"The hurricane story is transitory but the oil market is particularly sensitive to

such events as we have a pretty tight supply situation looming," said Helima

Croft, RBC Capital Markets’ global head of commodity strategy. The start of the

US storm season has coincided with other jolts to the oil market, including an

expected hit on exports from Iran as US sanctions come into effect in November,

which is likely to create a squeeze despite Mr Trump’s calling on other producers to

lift output. "The Iran story is the dominant factor for prices," said Ms Croft. Big

Asian consumers, such as India and China, have begun to reduce their purchases

of Iranian oil while South Korea has already dropped imports to zero on the

orders of the White House. Saudi Arabia and allies inside and outside Opec, such

as Russia, have pledged to raise output but the increase has been slower than

expected, helping propel prices. Though the storm’s hit to the energy sector is

likely to be modest, Jeff Byard of the Federal Emergency Management Agency

said it would be "a Mike Tyson punch to the Carolina coast". Insurance companies

were preparing for it to be the most expensive natural catastrophe so far this year.

According to RMS, a modelling company, nine big hurricanes have made landfall in

the Carolinas in the past 167 years, with the last being Hugo in 1989. However, it

has been a very damp year with already wet soil raising the flood risk.

1. Using Loughran et al. (2019)’s oil dictionary:

The list of 15 positive words found in the order of appearance: [’storms’, ’supply

shortfall’, ’Hurricane’, ’storm’, ’outages’, ’hurricane’, ’storm’, ’storm’, ’hurricane’,

’tight supply’, ’storm’, ’dropped imports’, ’output slower’, ’storm’, ’hurricanes’].

The list of 2 negative words found in the order of appearance: [’lift output’, ’raise

output’].

The news tone = (15-2)/287 = 0.0453

2. Using Henry (2008)’s financial dictionary:

The list of found positive words in the order of appearance: [’rose’, ’high’, ’in-
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crease’].

The list of found negative words in the order of appearance: [’dropped’, ’risk’].

The news tone = (3-2)/287 = 0.00348
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FORECASTING PERFORMANCE OVER 1-, 2-, AND

3-MONTH HORIZONS

Figure B.1: RMSE over short to long horizons
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APPENDIX B. FORECASTING PERFORMANCE OVER 1-, 2-, AND 3-MONTH
HORIZONS

Figure B.2: MAPE over short to long horizons
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OUT-OF-SAMPLE ANALYSIS WITH IGREA, OIL

INVENTORY AND OIL PRODUCTION

Table C.1: Performance of Monthly Forecasts

Models (labels) h = 1 h = 2 h = 3
RMSE MAPE RMSE MAPE RMSE MAPE

Benchmark 1 (1) 5.689 13.148 5.664 11.147 5.774 10.861
Benchmark 1 + News ToneHenry (1a) 5.769 12.777 5.753 10.967 5.810 10.771
Benchmark 1 + News ToneOil (1b) 5.615 13.196 5.637 11.198 5.734 10.804

Benchmark 2 (2) 5.327 9.511 5.751 10.410 5.621 9.928
Benchmark 2 + News ToneHenry (2a) 5.464 9.940 5.803 10.385 5.696 10.003
Benchmark 2 + News ToneOil (2b) 5.235 9.333 5.743 10.404 5.622 9.938

Benchmark 3 (3) 5.763 12.384 5.892 10.909 5.679 10.516
Benchmark 3 + News ToneHenry (3a) 5.972 13.545 5.905 10.766 5.769 10.660
Benchmark 3 + News ToneOil (3b) 5.636 11.575 5.865 10.877 5.695 10.536

Benchmark 4 (4) 5.804 12.320 5.899 11.098 5.662 10.531
Benchmark 4 + News ToneHenry (4a) 5.999 13.433 5.905 10.933 5.742 10.659
Benchmark 4 + News ToneOil (4b) 5.651 11.431 5.858 11.046 5.681 10.542

Notes: We use the natural logarithm of oil inventory and production data to avoid the
scale effect.
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APPENDIX C. OUT-OF-SAMPLE ANALYSIS WITH IGREA, OIL INVENTORY
AND OIL PRODUCTION

Table C.2: Economic Significance

Geo Ret Cum Ret Sharpe ratio
Buy & Hold -0.0063 -0.248 0.137
Benchmark 2 -0.0058 -0.232 0.269
Model 2a -0.0155 -0.505 0.061
Model 2b -0.0170 -0.538 -0.028

Notes: The Sharpe ratio is annualized.
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AN EXAMINATION OF THE RELATIONSHIP BETWEEN

RENEWABLE ENERGY STOCKS AND

CRYPTOCURRENCIES

2.1 Introduction

The cryptocurrency market is rapidly growing in size and is becoming more and

more sought-after by investors. Despite the high volatility, the high rate of returns

attracts an increasing number of institutional investors to pour their money into

this hype market, considering cryptos a valuable portfolio diversification asset 1, 2.

The value of one Bitcoin, the most recognizable and representative cryptocurrency

coin, peaked exceptionally high—around 67,000 U.S. dollar—in November 2021

and has still been the most valuable coin among the whole market 3. However, the

algorithm behind the Bitcoin and many other conventional coins, generally called

the ’Proof-of-Work’ (PoW) consensus, is computationally complex and expensive,

which requires massive electricity power to support the operations and leads to

substantial carbon footprints. Surprisingly, a single transaction of Bitcoin is es-

timated to consume approximately 1834.02 kWh electricity, which is equivalent

1https://www.prnewswire.com/news-releases/institutional-investors-continue-
warming-up-to-cryptocurrencies-301666266.html

2https://www.forbes.com/sites/lawrencewintermeyer/2021/08/12/institutional-
money-is-pouring-into-the-crypto-market-and-its-only-going-to-grow/

3https://coinmarketcap.com
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to the amount of power used by an American family for more than 62 days. The

estimated yearly energy usage of Bitcoin now has increased to 169.98 TWh, not

just comparable but even higher than the gross power consumption of Poland 4.

Moreover, according to a recent research of Mora et al. (2018), the authors projected

that the carbon emissions from the continuous adoption of Bitcoin might itself

lift global warming beyond two degrees Celsius within next thirty years, which is

because the power supporting the mining and validation of PoW cryptocurrencies

usually sources from fossil energy. Hence, the adoption of Bitcoin and the other

energy-intensive cryptos that use the same PoW mechanism (hereinafter referred

to as "dirty" cryptocurrencies) has been criticised for causing and accelerating pol-

lution and damage to the environment and has drawn significant public attention

and heightened concerns [Corbet and Yarovaya (2020)].

Academia and environmental groups have been calling for a reduction in cryp-

tocurrency mining activities and a switch to non PoW cryptocurrencies [Schinckus

(2021)]. Cryptocurrencies that use alternative protocols such as "Proof-of-Stake"

(PoS) and "Proof-of-Authority" (PoA) consensus, among others, require significantly

lower computing energy and hence are considered more sustainable [Platt et al.

(2021)]. For example, according to the report by TRG Houston Data Centre 5, IOTA,

a cryptocurrency that uses a "Fast Probabilistic" consensus, consumes 0.00011

KWh per transaction, compared to Bitcoin’s 707 KWh. In fact, in recent years, an

increasing number of eco-friendly cryptocurrencies (hereinafter, "clean" cryptocur-

rencies) have been launched to compete in the market. Some of the new players

have already become leading cryptocurrencies by market capitalisation such as

Cardano, Solana, etc, and some long-existing clean players such as XRP and XLM,

among others, remain top in the market. The development and adoption of such

cleaner altcoins seem to be more valued and appreciated in present context of

pursuing green economy.

The extant literature on the relationship between cryptocurrencies and other

assets has often considered traditional energy assets due to the tremendous energy

use involved in most cryptocurrency mining and transactions [see, as examples,

studies of Jiang et al. (2022), Rehman and Kang (2021), Corbet et al. (2021), Okorie

and Lin (2020), among others]. Relatively little literature has focused attention

on the linkage between cryptocurrency and green markets, even after the latter

4Retrieved from https://digiconomist.net/bitcoin-energy-consumption on Oct 5, 2021
5https://www.trgdatacenters.com/most-environment-friendly-cryptocurrencies/
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market has witnessed a major rise in recent years, especially for clean energy

actions which are sustainable alternatives to traditional carbon-intensive energy

such as electricity, oil, and coal. We have seen a strong growth track in clean

energy sectors. Revenue of clear energy companies is just under $700b, with an

annual growth rate of 6.8%6. There have been created a wide range of clean energy

industry stock indices to represent the performance of publicly listed clean energy

related companies, and much research has emerged showing their usefulness from

investment perspective such as assessing the benefits of clean energy stocks as

portfolio constituents against conventional stocks and treasury products [e.g., Rezec

and Scholtens (2017), Ahmad and Rais (2018), Kuang (2021)]

There are few studies which can be regarded as closely related to our research.

For instance, Naeem and Karim (2021) examined the tail dependence between

Bitcoin and green investments. They suggested that clean energy is a potential

diversification tool for Bitcoin as the hedge ratio and hedge effectiveness are better-

off with clean energy stocks. Pham et al. (2021) gave similar comment that green

investments offer diversification benefits to cryptocurrencies since connectedness

between Bitcoin & Ethereum and green assets is weak during non-crisis periods.

However, these papers actually opened up a question - is clean energy a direct hedge

or even a safe haven for Bitcoin or Ethereum, or more broadly, for cryptocurrencies?

If we find that particular types of clean energy stocks can act as safe havens or

hedges against particular types of cryptocurrency, or vice versa, it has implications

for investors. For example, it may be practical to protect against extreme downturns

in cryptocurrencies using clean energy stocks or vice versa. But the form of currency

matters. If we find that only dirty cryptocurrencies are a useful hedge or safe haven

against clean energy, that suggests that the economic incentive to invest in clean

energy will be counter to the ecological argument. Moreover, although there has

been quite a lot of work done on the interconnection of cryptocurrency with other

financial assets, the debate on whether Bitcoin or cryptocurrency market is isolated

from other assets (markets) has not come to an end 7.

To answer the above questions we first measured the spillovers across two dis-

tinct types of cryptocurrencies, based on their characteristics of eco-efficiency, clean

6https://www.businesswire.com/news/home/20210902005385/en/Global-Renewable-
Energy-Industry-Guide-2021-Value-and-Volume-2016-2020-and-Forecast-to-2025---
ResearchAndMarkets.com

7See Ji et al. (2018) and Corbet et al. (2020) as examples.
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energy stocks, S&P500 and gold markets 8 and vice versa, and then we tested the

potential role for clean energy as a hedge or safe have for different cryptocurrencies,

and vice versa. The spillover effects were measured using the Diebold and Yılmaz

(2012, 2014) (DY) connectedness approach, following previous studies in the area of

connectedness analysis. For instance, Ji et al. (2019a) employed this framework to

analyse the connectedness and inter-dependency among six large cryptocurrencies.

Similarly, Umar et al. (2021) studied the connectedness between cryptocurrency

and international technology companies. The hedge and safe haven properties were

examined using a dynamic conditional correlation Generalized Autoregressive Con-

ditional Heteroskedasticity (DCC-GARCH) model. The DCC-GARCH type models

have been extensively employed in safe haven analysis [Ratner and Chiu (2013),

Akhtaruzzaman et al. (2021), Urquhart and Zhang (2019), among others].

Our study contributes to the literature from at least four aspects. First, we

provide statistical evidence that clean energy is not a direct hedge for either dirty

or clean cryptocurrencies currently.

Second, our study is among the first to empirically examine the safe haven prop-

erty of a wide range of clean energy indices during dirty and clean cryptocurrency

market turmoils and its reverse. We find that, in general, clean energy stocks serve

as at least weak safe havens in times of extreme falling cryptocurrency markets. In

times of increased volatility, clean energy is more likely to serve as a safe haven for

dirty cryptocurrencies than for clean cryptocurrencies.

Third, we measured the dynamic connectedness between different clean energy

subsectors and cryptocurrencies, which has not been done in previous literature.

Findings reveal that none of the clean energy subsectors, nor general stock, or the

gold market is strongly associated with cryptocurrency markets, which extends

the understanding of the research on the interconnection of cryptocurrencies with

other markets.

Fourth, our findings also provide references and implications for regulators and

policy makers as well as cryptocurrency founders in designing the framework of

further financial integration and promoting greener industry, and ultimately the

society.

The remainder of this paper is organised as follows. Section 2.2 reviews some

past research. Section 2.4 describes the data, followed by Section 2.3 which details

8Corbet et al. (2021) suggested that cryptocurrencies have varying carbon footprints and power
usage levels, possibly affecting how they interact with energy and utility businesses.
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the methodology used in the analysis. Section 2.5 presents the empirical findings

and Section 2.6 checks the robustness of previous results. Lastly, Section 2.7

concludes and addresses the implications of this study.

2.2 Literature Review

The relationship between cryptocurrency and various financial markets has been

extensively studied in literature. This section classifies past studies on this rela-

tionship into two categories.

The first category consists of studies that focus on the link between the cryp-

tocurrency market and conventional stock and fossil energy markets. For example,

Jiang et al. (2022) analysed the role of Bitcoin, gold, equity, foreign exchange and

energy (crude oil / natural gas) have played in the global volatility connectedness

network. They found that external investor attention between different markets

possibly drives overall volatility transmission in the financial system. Moreover,

they found that Bitcoin, gold, foreign exchange, and natural gas are volatility trans-

mitters, while crude oil and the stock market are receivers. Ji et al. (2019b) tested

the information interdependence between leading cryptocurrencies and several

commodities and discover that cryptocurrencies are unexpectedly weakly connected

but still integrated with energy markets such as natural gas, unleaded gas, heating

oil, and crude oil. Zeng et al. (2020) showed that the financial linkage between

Bitcoin and traditional assets such as stock, oil, and gold is weak, but has been

increasing. Rehman and Kang (2021) documented the existence of lead-lag rela-

tionships between Bitcoin and crude oil and natural gas, while it is not the case

for coal, which is quite interesting as we know that China is the largest Bitcoin

miner where power generation relies extensively on coal. Akyildirim et al. (2021)

further investigated the dynamic correlation and extreme dependence between

Bitcoin and Chinese coal markets. They showed that dynamic correlations between

Bitcoin and coal indices increases when extreme mining events occur in China and

such incidents are likely to induce Bitcoin volatilities. Okorie (2021) and Corbet

et al. (2021) discovered significant correlation and volatility spillovers between

leading cryptocurrencies and electricity markets. Okorie and Lin (2020) found both

bi-directional and uni-directional volatility spillovers between the crude oil market

and cryptocurrencies. They further claimed that crude oil is a good hedge tool for

risks of holding various cryptocurrencies. While Umar et al. (2021) showed that
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cryptocurrency market is less connected with global technology sectors. Le et al.

(2021a) investigated whether the spillover patterns between financial technology

stocks and Bitcoin, gold, global stock, crude oil, and foreign exchange have changed

due to the Covid-19 outbreak. The results suggest that the pandemic has shaped

and strengthened the volatility spillovers across markets and only gold and the US

dollar remain as safe havens, while other assets such as Bitcoin, oil, and financial

technology stocks being large volatility spillover receivers are not. Maghyereh and

Abdoh (2020), Bouri et al. (2018), and Uzonwanne (2021) examined the direction

of spillovers between Bitcoin and other markets. Wang et al. (2021) measured the

time and frequency connectedness among Bitcoin and other assets including stock,

gold oil, etc, but from a hedge perspective.

The second category of studies looks at the relationship between cryptocurrency

and green markets, including green bonds and green equities. A better understand-

ing of such relationships could in turn promote the investment and development of

more sustainable financial instruments. For instance, Le et al. (2021b) considered

the time and frequency domain connectedness between cryptocurrencies, green

bond, and a variety of other assets such as USD, FinTech stocks, etc. Yousaf et al.

(2022) examined the safe haven property of several assets for stock market includ-

ing various green investments such as green bond, clean energy, etc. Symitsi and

Chalvatzis (2018) examined the spillovers among Bitcoin, fossil and clean energy,

and technology stock indices. They found significant return spillovers from energy

and technology markets to Bitcoin, while volatility spillovers are found from Bitcoin

to energy markets in the long run and from technology markets to Bitcoin in the

short run. Additionally, Corbet et al. (2021) studied the dynamic relationships

between volatilities of Bitcoin price along with its underlying characteristics and

those of utilities stocks and ETFs, clean energy ETFs, and carbon markets. Their

empirical results show that there was no significant linkage between the volatility

of Bitcoin price and largest green ETFs markets and carbon credits, suggesting

that the market movements of Bitcoin did not have sound impact on the green

equities, especially clean energy markets. From a different aspect, Naeem and

Karim (2021) used a time-varying optimal copula approach to investigate the tail

dependence between Bitcoin and green investments. They found similar evidence

that there was no tail dependence between clean energy stocks index and Bitcoin.

They further suggested that clean energy is a potential diversification tool for

Bitcoin as the hedge ratio and hedge effectiveness are with clean energy in the
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portfolio. Furthermore, Pham et al. (2021) also pointed out that green investments

could offer diversification benefits to cryptocurrency with the evidence of only weak

connectedness between cryptocurrencies such as Bitcoin and Ethereum and green

assets during non-crisis periods.

Methodologically, our study is related to the application of the safe haven

concept [Baur and Lucey (2010) and Baur and McDermott (2010)] and the DY

connectedness framework [Diebold and Yılmaz (2012), Diebold and Yılmaz (2014)]

which we will explain in detail later in Section 2.3.

The DCC-GARCH model has been widely used in the literature to analyse safe

havens. For instance, Ratner and Chiu (2013) followed the definition and applied

the standard DCC-GARCH model to examine the hedge and safe haven benefits of

credit default swaps for U.S. stock market sectors. Wang et al. (2020) utilised the

model to investigate the potential of gold-backed and USD-backed stablecoins as

hedge and safe haven tools for prominent cryptocurrencies. Peng (2020) explored

the safe haven ability of precious metals for various Chinese financial products.

Akhtaruzzaman et al. (2021) analysed the role of gold as a safe haven asset during

the first two waves of the COVID-19 crisis using the DCC-GARCH model. Urquhart

and Zhang (2019) studied the intra-day hedge and safe haven properties of Bitcoin

for major currencies using several asymmetric DCC-GARCH models. Additionally,

the application of the DCC-GARCH model in safe haven analysis can be found in

other studies, such as Bouri et al. (2017b), Bouri et al. (2017a), Wang et al. (2019),

Yousaf et al. (2022), etc.

The DY approach proposed by Diebold and Yılmaz (2012, 2014) is one of the

significant methods of measuring the spillover effects between multiple markets.

We used the same framework in line with some previously mentioned [e.g., Umar

et al. (2021), Zeng et al. (2020), etc], and many other papers in the area of connect-

edness/spillovers analysis. For instance, Yi et al. (2018) employed the DY approach

to investigate the volatility spillovers among three tiers of eight cryptocurrencies

and found that Bitcoin did not dominate as expected. Ji et al. (2019a) employed

the same framework to analyse the inter-connectedness and dependency among

six large cryptocurrencies. Aharon et al. (2021) used the DY method to measure

the spillover effects between Bitcoin, five major currencies, and the US yield curve

elements. Jalan et al. (2021) applied the DY in investigating the spillovers between

Bitcoin, gold, and gold-pegged stablecoins and demonstrated that the gold market

had a more pronounced impact on the volatility of these stablecoins than Bitcoin
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during the studied period.

2.3 Methodology

2.3.1 Spillover measures

We used the DY connectedness framework [Diebold and Yılmaz (2012), Diebold

and Yılmaz (2014)] to estimate the spillover effects between clean energy indices

and cryptocurrency indices. The DY model is basically a generalised vector autore-

gressive (VAR) model which can be used to trace the dynamic spillover relationship

between two time series in a rolling window basis.

We begin with a VAR model with an infinite order of P:

yt =
P∑

i=1
ϕi yt−i +εt,(2.1)

where yt is the vector of endogenous variables, ϕi is the matrix of parameters, and

εt represents the vector of i.i.d. residuals.

In addition, we write the moving average representation of the model defined

in Equation 2.1 as:

yt =
∞∑

i=0
A iεt−i,(2.2)

where the coefficient of the N × N matrix A i is recursively determined as A i =
ϕ1A i−1+ϕ2A i−2+ . . .+ϕk−1A i−k+1+ϕk A i−k, but noted that A i equals to zero if i is

a negative number. A0 is an identity matrix.

Under the framework of generalised VAR model, φi j(H), the H-step ahead

generalized forecast error variance will be first decomposed and then normalised

by its row sum as the following:

φi j(H)=
σ−1

j j
∑H−1

h=0
(
e′i AhΣe j

)2∑H−1
h=0

(
e′i AhΣA′

he i
) ,

φ̃i j(H)= φi j(H)∑N
j=1φi j(H)

(2.3)

where the σ j j denotes the estimated SD of the error term for variable j, Σ is the

variance matrix for the error-term vector ε, and e i is the selection vector with one

as the ith element and zero otherwise.
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Ultimately, the total spillover (TS), directional spillover received by asset i from

j (DSi← j), directional spillover transmitted to j by i (DSi→ j), and net spillover

(NS) indices were calculated as the following:

TS(H)=
∑N

i, j=1,i 6= j φ̃i j(H)∑N
i, j=1 φ̃i j(H)

×100=
∑N

i, j=1,i 6= j φ̃i j(H)

N
×100(2.4)

DSi← j(H)=
∑N

j=1, j 6=i φ̃i j(H)∑N
i, j=1 φ̃i j(H)

×100=
∑N

j=1, j 6=i φ̃i j(H)

N
×100(2.5)

DSi→ j(H)=
∑N

j=1, j 6=i φ̃ ji(N)∑N
i, j=1 φ̃ ji(H)

×100=
∑N

j=1, j 6=i φ̃ ji(H)

N
×100(2.6)

NSi(H)= DSi→ j(H)−DSi← j(H)(2.7)

2.3.2 Safe Haven Analysis

We adopted the estimation framework introduced by Baur and Lucey (2010) and

Baur and McDermott (2010) to examine the hedge and safe haven properties of

clean energy indices for dirty and clean cryptocurrencies. Similar to Akhtaruzzaman

et al. (2021), Peng (2020), Ratner and Chiu (2013), and some other papers mentioned

earlier, we started by using a DCC-GARCH model proposed by Engle (2002) to

estimate the correlation of underlying asset pairs.

The estimation comprises two steps. The first is to estimate a GARCH(1,1)

model. Let r t be the N ×1 vector of pairs of return series r1t and r2t, given the

information set I t−1:

r t =µt +εt,

ht =α0 +α1ε
2
t−1 +βht−1,

(2.8)

where ε is the vector of residuals.

Secondly, we estimate the DCC parameter. Let Ht be the conditional covariance

matrix of r t. We had assumed r t to be normally distributed with a zero mean, so

we wrote Ht as the following:

Ht = DtRtDt,

Dt = diag [h1/2
1t , h1/2

2t ],

Rt = diag[Qt]−1/2 Qt diag[Qt]−1/2,

(2.9)
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where Rt denotes the matrix of time-varying conditional correlations, Qt is the

positive definite matrix of q12,t, and ht is the conditional standard deviations (SDs).

Then we could get the estimated DCC model as:

Qt = (1−a−b)Q̄+aut−1uT
t−1 +bQt−1,(2.10)

where a and b are non-negative scalars satisfying a+b < 1, and Q̄ is the uncondi-

tional variance matrix of standardised residuals ut. We could thereby obtain the

dynamic conditional correlations series ρ12,t as:

ρ12,t = q12,t/
√

q11,t q22,t .(2.11)

With the dynamic conditional correlations between cryptocurrencies and clean

energy indices, we can proceed to examine the safe haven property of clean energy

against cryptocurrencies’ extreme negative movements. Following the studies of

Ratner and Chiu (2013) and Peng (2020) among others, the dynamic conditional

correlation DCCt were regressed on dummy variables representing the extreme

returns of assets as follows:

DCCi j,t = c0 + c1D(rcryptoi q10)+ c2D(rcryptoi q5)+ c3D(rcryptoi q1),(2.12)

where D(...) are dummy variables that capture extreme negative returns of a

cryptocurrency at the 10%, 5%, and 1% quantiles of the distribution. According

to the definition of safe haven in Baur and Lucey (2010), clean energy is a weak

hedge for an individual cryptocurrency if c0 is insignificantly different from zero, or

a strong hedge if c0 is negative. Clean energy serves as a weak (strong) safe haven

for an individual cryptocurrency under certain market condition if any of c1, c2 or

c3 are non-positive (significantly negative).

Alternatively, a similar approach to the Equation 2.12 is to regress DCCt on the

lagged extreme conditional volatility of dirty or clean cryptocurrency index which

is proxied for market uncertainty, motivated by Baur and McDermott (2010):

DCCi j,t = c0 + c1D(vcryptoq90,t−1)+ c2D(vcryptoq95,t−1)+ c3D(vcryptoq99,t−1),

(2.13)

where the dummy variables c1, c2 and c3 here are equal to one if the conditional

volatility at t−1 exceeds the 90%, 95% and 99% quantiles, respectively. This allowed

us to examine the safe haven property of clean energy against cryptocurrencies

during extreme market uncertainty.
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To investigate the other way around that whether cryptocurrencies are a safe

haven for clean energy stocks in times of extreme negative markets and uncertainty,

we simply replaced with clean energy data on the right hand side for Equation 2.12

and 2.13, respectively.

2.4 Data

We collected daily closing price data for five major dirty cryptocurrencies including

Bitcoin (BTC), Ethereum (ETH), Bitcoin Cash (BCH), Ethereum Classic (ETC) and

Litcoin (LTC), as well as five clean cryptocurrencies, Cardano (ADA), Ripple (XRP),

IOTA (MIOTA), Stellar (XLM), and Nano (NANO) from CoinMarketCap9, spanning

from 1 January 2018 to 17 September 2021 10.

As we introduced and explained earlier in Section 2.1, the dirty cryptocurrencies

are all built on PoW algorithms for consensus, which results in massive energy

consumption in activities such as mining and transactions, while clean cryptocur-

rencies are built on different classes of energy-efficient consensus, including but

not limited to PoS, PoA, Ripple Protocol, Stellar Protocol, etc.
9https://www.coinmarketcap.com.

10Our selection took into account the market capitalisation, data availability of closing price and
market capiptalisation, and recent online media attention. We chose BCH and ETC in addition
to BTC, ETH, and LTC as these two cryptos have been the largest PoW players following LTC
for years, both are listed in the top 6 by market cap. Although DOGE was the third largest PoW
crypto, we did not consider it as: 1. it was originally designed as a meme coin without other uses;
2. Its energy consumption is arbitrary due to its relatively complicated mining mechanism; 3.
It has been highly influenced/boosted by Musk’s social media comments. The selection of clean
cryptocurrencies was not as straightforward as choosing dirty cryptocurrencies. The first issue
was the data availability. The data of closing price and market cap should be available from
January 1, 2018, so some other top players such as Solana, Polkadot, Avalanche, etc, were not
considered as they came to the market much later. BNB was not considered as it shares a completely
different nature as a derivative of the Binance Exchange, historically built on Ethereum blockchain
technology, and began to support staking in 2020. MIOTA and NANO are chosen as they have
been the most frequently discussed and compared to the dirty cryptos and even other clean players
regarding energy consumption in more recent period (e.g., see https://www.trgdatacenters.com/
most-environment-friendly-cryptocurrencies/, https://www.leafscore.com/blog/the-9-
most-sustainable-cryptocurrencies-for-2021/ (retrieved in September of 2021), and https:
//www.thetimes.co.uk/money-mentor/article/eco-friendly-cryptocurrencies/). Although
they might have become smaller players (compared to other cryptos we used) in recent months,
historically, MIOTA ranked as 10th largest, and NANO ranked as the 20th among all as of January
7, 2018 (e.g., see the historical snapshot of CoinMarketCap data at https://coinmarketcap.com/
historical/20180107/). Additionally, NANO is, to the best of our knowledge, one of the very few
and earliest cryptos that explicitly address the “eco-friendly” characteristic, which can be seen from
its description on CoinMarketCap website and from their official website’s title Nano | Eco-friendly
& feeless digital currency, which makes it a ideal representative of clean cryptos to attract potential
environmentally conscious investors.
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We further created two value-weighted indices of the dirty and clean cryp-

tocurrencies, respectively named as DCRYPT and CCRYPT to track the overall

performance of the two distinct cryptocurrency groups. Next, clean energy indices

sourced from Bloomberg were used to represent the performance of the clean energy

industry. We not only used the S&P Global Clean Energy Index (SPGTCED) and

WilderHill Clean Energy Index (ECO) which tracks the overall performance of

global or U.S. clean energy sectors, but also selected several indices from NASDAQ

OMX Green Economy Index Family to track the performance of individual clean

energy generation subsectors, partly following the literature of Pham (2019)11.

Specifically, we used the NASDAQ OMX Bio/Clean Fuels Index (GRNBIO), Fuel

Cell Index (GRNFUEL), Renewable Energy Index (GRNREG), Geothermal Index

(GRNGEO), Solar Energy Index (GRNSOLAR), and Winde Energy Index (GRN-

WIND). The description of each clean energy index is provided in Table 2.1. To

account for the general stock market performance, we collected the data for the

S&P 500 Index (SP500) from Bloomberg. Finally, we collected the London P.M.

gold fixing price (GOLD) from Federal Reserve Economic Data.12 Note that all

data were sourced in U.S. dollars and transformed to their first-differenced natural

logarithms before use. Table 2.2 summaries the statistics for the log returns in

percentage 13. All return series are stationary and are not normal distributed based

on Augmented Dickey–Fuller (ADF) test and Jarque-Bera (JB) test, respectively.

11We focus on clean energy generation subsectors in this paper.
12https://fred.stlouisfed.org/series/GOLDPMGBD228NLBM.
13The number of observations used in spillover analysis is less than that in safe haven analysis

as we included gold in the spillover analysis which has slightly fewer trading days than the stock
markets.
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Table 2.1: Description of clean energy indices

Index name Description
S&P Global Clean Energy Index SPGTCED tracks the performance of world

top 100 companies in clean energy sectors
from both developed and emerging markets.

WilderHill Clean Energy Index ECO is the first index that tracks the perfor-
mance of top clean energy companies traded
on the NASDAQ.

NASDAQ OMX Bio/Clean Fuels In-
dex

GRNBIO tracks the performance of compa-
nies operating in plant-based fuel generation
sector.

NASDAQ OMX Renewable Energy
Index

GRNREG tracks the performance of compa-
nies operating in renewable energy genera-
tion sectors, such as solar, wind, geothermal,
and fuel cells.

NASDAQ OMX Geothermal Index GRNGEO tracks the performance of compa-
nies operating in geothermal power genera-
tion sector.

NASDAQ OMX Fuel Cell Index GRNFUEL tracks the performance of compa-
nies operating in fuel cell energy sector.

NASDAQ OMX Solar Index GRNSOLAR tracks the performance of com-
panies operating in solar energy generation
sector.

NASDAQ OMX Wind Index GRNWIND tracks the performance of com-
panies operating in wind energy generation
sector

2.5 Results

2.5.1 Spillover Effects

2.5.1.1 Return Spillovers

We used an optimal lag length of 1 selected by the Akaike Information Criterion

(AIC) for the VAR model to calculate the TS, DS, NS for the return series. Follow-

ing Saeed et al. (2021), Aharon et al. (2021), Zeng et al. (2020), Diebold and Yılmaz

(2012), and many other studies, we set a 200-day rolling window size and a 10-day

ahead forecast horizon.

As shown in Table 2.3, the average dynamic total return connectedness from
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Table 2.2: Descriptive statistics of returns (%)

Mean Min Max Std.Dev Skewness Kurtosis ADF JB
SPGTCED 0.089 -12.498 11.035 1.697 -0.888 10.900 -7.257*** 4949.7***
ECO 0.119 -16.239 13.399 2.415 -0.657 6.733 -7.230*** 1911.1***
GRNBIO 0.051 -18.193 13.394 2.272 -1.380 13.061 -6.645*** 7230.9***
GRNFUEL 0.177 -18.028 21.617 3.829 0.180 3.735 -20.283*** 572.7***
GRNREG 0.071 -15.256 8.930 1.319 -1.632 25.452 -7.535*** 26707***
GRNGEO 0.015 -13.390 18.255 2.186 0.686 11.250 -9.351*** 5212.6***
GRNSOLAR 0.106 -19.334 12.049 2.548 -0.704 6.551 -8.259*** 1823.7***
GRNWIND 0.074 -10.982 7.720 1.584 -0.276 4.651 -16.126*** 891.8***
BTC 0.128 -46.473 20.305 4.750 -1.156 11.468 -13.594*** 5554.2***
ETH 0.153 -55.071 35.365 6.258 -0.796 8.834 -20.648*** 3271.1***
ETC 0.052 -50.779 35.865 7.143 -0.441 7.293 -7.421*** 2191.5***
BCH -0.141 -56.140 42.082 7.447 -0.350 8.936 -20.230*** 3262.0***
LTC -0.025 -44.901 29.062 6.224 -0.668 7.122 -21.313*** 2132.5***
ADA 0.121 -50.371 32.209 7.238 0.002 4.197 -20.127*** 716.3***
XRP -0.083 -55.040 62.668 7.405 0.238 12.606 -30.085*** 6457.8***
XLM -0.042 -41.004 55.932 7.283 0.667 9.026 -22.001*** 3379.6***
MIOTA -0.085 -54.333 33.224 7.478 -0.528 6.744 -20.483*** 1892.5***
NANO -0.176 -61.455 54.654 9.113 0.028 8.112 -14.095*** 2672.2***
DCRYPT 0.136 -47.692 19.470 4.917 -1.266 11.057 -13.579*** 5222.2***
CCRYPT 0.027 -41.826 55.388 6.780 0.036 9.146 -14.665*** 3396.4***
SP500 0.053 -12.765 8.968 1.361 -1.117 18.298 -9.018*** 13248.0***
GOLD 0.031 -5.265 5.133 0.913 -0.453 5.478 -12.866*** 1203.9***

Note: *** indicates the significance level of 1%.

January 2018 to September 2021 is 63.25%, which is about medium-high level.

From Figure 2.1, we can observe that there was a notable increase in total con-

nectedness of around 25% in the April of 2020, which can be explained by the

increased correlations between assets at that time from DCCs plots (D). However,

if we dig into the total connectedness table, we can see that the the average total

spillovers between either of the cryptocurrency markets and clean energy markets

are relatively low during the period, despite the fact that SPGTCED and ECO

are the two largest spillover transmitters (101.96% and 101.86%). The FROM

connectedness between clean energy indices and cryptocurrency indices is much

lower than that between clean energy and general stock markets (SP&500), and

are at the same level of that between clean energy and gold. The TO connectedness

shows that cryptocurrency market transmits more information to gold than to

clean energy markets on average. Gold market is the most isolated as it is the

smallest spillover receiver (28.65%)/transmitter (14.14%), followed by the dirty

cryptocurrency (50.01%/37.9%) and clean cryptocurrency (48.64%/41.16%).
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Table 2.3: Average dynamic total return connectedness

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM
OTHERS

GOLD 71.35 2.73 3.14 2.67 3.25 1.63 1.49 3.78 2.39 3.08 3 1.49 28.65
SP500 1.14 25.51 10.41 13.21 8.32 5.15 5.06 11.53 12.25 3.83 1.96 1.66 74.49
SPGTCED 1.06 9.58 21.83 15.00 7.11 6.51 4.79 13.06 11.14 7.43 1.27 1.23 78.17
ECO 0.81 12.16 14.56 21.61 7.97 8.84 4.74 9.72 13.84 3.31 1.17 1.28 78.39
GRNBIO 1.62 10.53 10.34 11.7 33.97 4.96 4.03 7.17 8.63 3.29 2.06 1.7 66.03
GRNFUEL 0.88 7.92 10.44 14.52 5.51 37.41 2.47 7.32 7.58 3.55 1.18 1.23 62.59
GRNGEO 1.5 8.02 9.24 8.52 5.55 3.03 43.25 8.22 6.05 3.3 1.84 1.48 56.75
GRNREG 1.41 10.64 13.7 10.29 5.24 4.91 4.48 23.11 11.72 11.54 1.68 1.29 76.89
GRNSOLAR 1.01 12.51 12.29 15.34 6.7 4.98 4.02 12.65 24.26 3.27 1.58 1.4 75.74
GRNWIND 1.48 6.18 13.04 6.07 3.71 3.82 2.73 18.63 4.92 37.33 1.2 0.88 62.67
DCRYPT 2.03 2.93 2.49 1.98 2.78 1.5 1.66 3.27 2.39 1.44 49.99 27.53 50.01
CCRYPT 1.19 2.73 2.33 2.57 2.78 2.01 1.25 2.55 2.32 0.9 28.02 51.36 48.64
TO OTHERS 14.14 85.92 101.96 101.86 58.92 47.33 36.72 97.9 83.22 44.93 44.96 41.16 759.03
Inc. OWN 85.49 111.42 123.79 123.47 92.89 84.75 79.97 121.01 107.47 82.26 94.95 92.53 TOTAL
NET -14.51 11.42 23.79 23.47 -7.11 -15.25 -20.03 21.01 7.47 -17.74 -5.05 -7.47 63.25
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Figure 2.1: Dynamic total return connectedness

Figure 2.2 depicts the dynamic directional return spillovers received by one

market from other markets over time. Clearly, S&P500 and most of the clean

energy markets heavily are affected by other markets as they continue receiving the

highest spillover effects during the whole period. Clean energy markets are greater

spillover receivers than cryptocurrency markets, while gold is the smallest receiver

at both the beginning and the end. All market received much more spillovers from

other markets in 2020 than in other periods.

Figure 2.2: Dynamic directional return connectedness FROM others
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Figure 2.3 presents the dynamic directional return spillovers of one market

transmitted to other markets. General clean energy indices such as SPGTCED and

ECO have higher spillover effects to others than most of the other subsector indices.

S&P500 had relatively high spillover effects to others until the early 2021. Dirty

cryptocurrencies slightly higher spillover effects to others than clean cryptocurrency

and gold markets. Gold, similar to previous results, has the least spillover effect to

others at all time.

Figure 2.3: Dynamic directional return connectedness TO others

If look at the net spillovers (Figure 2.4), we can easily tell that both of the gold,

dirty and clean cryptocurrency markets have been spillover receivers during the

whole sample period. General market (S&P500) has received much more spillovers

from other markets since 2021. More interestingly, the role of clean energy indices

play in terms of spillovers varied from sectors to sectors. Half of the clean energy

indices are spillover transmitter in the whole period, including SPGTCED, ECO,

GRNREG, and GRNSOLAR, while GRNFUEL, GRNGEO, and GRNWIND are

spillover receivers. GRNBIO switched from receivers to transmitters in the April of

2020 and then switched back from 2021 onward.

Figure 2.5 and Figure 2.6 are the net pairwise directional return connectedness

for dirty and clean cryptocurrency indices, respectively. The net spillovers from dirty

cryptocurrency to clean cryptocurrency was negative at the beginning, and turned
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Figure 2.4: Total net return connectedness

positive from the mid of 2019, which means that dirty cryptocurrency has regained

the market dominance from clean cryptocurrency. Generally, both CCRYPT and

DCRYPT are spillover receivers of the general stock market and most of the clean

energy markets. Both DCRYPT and CCRYPT are transmitters for gold.

2.5.1.2 Volatility Spillovers

The volatility series were estimated using standard GARCH(1,1) model (E). We

chose an optimal lag order of 4 based on the AIC and same other settings to calculate

the TS, DS, and NS for the volatility series. As recorded in Table 2.4, the average

dynamic total connectedness of volatilities from January 2018 to September 2021

is 64.12%, which is slightly higher than that of returns. Figure 2.7 presents the

time-varing dynamic total volatility spillovers among different markets. It can

observed that there was a even sharper increase in total connectedness between

volatilities than returns in the April of 2020 when the correlations between markets

increased at the same time (D). If we zoom in total spillovers table, we can see that

the the average total spillovers between either of the cryptocurrency market and

clean energy markets are still relatively low during the period, but are higher than

the that observed in return connectedness. SPGTCED and ECO are the largest

transmitters, followed by GRNREG and S&P500. Half of the clean energy markets
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Figure 2.5: Net pairwise directional return connectedness for DCRYPT

are larger receivers than the general stock market. The cryptocurrency and the gold

market generally are involved the least in the volatility transmission. The level

of FROM and TO connectedness between clean energy indices and cryptocurrency

indices are slightly higher than that of return connectedness, but are still slightly

lower than that between clean energy and gold on average. Gold market remains

as the most isolated market as it is the smallest spillover receiver (43.02%) and

transmitter (26.09%) again.
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Figure 2.6: Net pairwise directional return connectedness for CCRYPT
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Table 2.4: Average dynamic total volatility connectedness

Gold SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM
OTHERS

GOLD 56.98 4.58 5.88 4.1 4.21 1.88 2.48 5.62 3.68 4.02 2.93 3.63 43.02
SP500 2.82 30.78 10.56 10.2 8.83 4.5 4.54 11.87 6.55 5 2.15 2.21 69.22
SPGTCED 2.5 9.36 23.9 12.67 8.49 4.24 7.12 12.75 8.34 5.85 2.63 2.16 76.1
ECO 2.94 12.51 15.23 21.57 9.53 5.24 5.56 10.13 8.2 4.68 2.36 2.05 78.43
GRNBIO 2.35 10.34 10.29 7.8 32.52 2.5 7.12 8.71 4.94 6.76 3.31 3.34 67.48
GRNFUEL 1.64 7.97 8.99 10.79 4.49 45.92 5.72 4.61 3.31 2.92 2.15 1.5 54.08
GRNGEO 3.94 6.52 10.55 7.21 7.41 2.33 39.23 6.85 5.86 4.3 2.85 2.95 60.77
GRNREG 2.11 11.81 14.14 8.41 6.94 4.82 4.71 24.6 9.5 8.06 2.68 2.22 75.4
GRNSOLAR 2.44 10.76 12.38 11.77 7.77 3.06 3.84 13.7 25.29 4.26 2.8 1.93 74.71
GRNWIND 2.05 4.09 11.15 5.94 5.07 4.38 6.38 14.63 5.4 34.64 3.62 2.64 65.36
DCRYPT 1.99 3.17 4.68 3.66 5.46 1.7 2.29 4.86 4.15 5.52 45.87 16.65 54.13
CCRYPT 1.31 3.05 4.99 4.13 4.89 3.31 2.85 5 3.03 2.84 15.35 49.26 50.74
TO others 26.09 84.17 108.84 86.69 73.09 37.97 52.62 98.72 62.97 54.2 42.8 41.28 769.43
Inc. own 83.07 114.96 132.73 108.25 105.62 83.88 91.85 123.33 88.26 88.85 88.67 90.54 TOTAL
NET -16.93 14.96 32.73 8.25 5.62 -16.12 -8.15 23.33 -11.74 -11.15 -11.33 -9.46 64.12
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Figure 2.7: Dynamic total volatility connectedness

Figure 2.8 depicts the dynamic directional volatility spillovers received by

one market from other markets over time. This time, the two major clean energy

indices SPGTCED and ECO are the largest receivers. Most of the other clean energy

subsectors share similar pattern, but not for the case in GRNFUEL which is more

volatile. Clean cryptocurrency received more spillovers than dirty cryptocurrency

before the mid of 2020, but has received much less afterwards. All market received

much more spillovers from other markets in 2020 than in other periods.

Figure 2.8: Dynamic directional volatility connectedness FROM others
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Figure 2.9 presents the dynamic directional volatility spillovers of one market

transmitted to other markets. S&P500 and some of the clean energy indices have

relatively higher spillover effects to others than from the others. Dirty cryptocur-

rency conveys slightly higher spillover effects to others than clean cryptocurrency

and gold on average. Gold, similar to previous result, has the least spillover effects

to others at all time. One important feature is that the clean cryptocurrency once

had a extremely large spillover effect to other markets near the end of year 2020.

Figure 2.9: Dynamic directional volatility connectedness TO others

The plots of net volatility spillovers show quite a different picture to those of

returns (Figure 2.10). Gold is no longer a all time receiver as it was a transmitter

before 2020 April. S&P500 and major clean energy indices such as SPGTCED and

ECO still can be considered as transmitters during the whole sample period. Other

clean energy subsectors vary from type to type. They have been switching between

receiver and transmitter at different time. Dirty cryptocurrency generally can be

classified as a receiver after 2020 April. Clean cryptocurrency is a receiver at most

of the time, but it transmitted very large spillovers once in December of 2020.

Figure 2.11 and Figure 2.12 are the net pairwise directional volatility connect-

edness for dirty and clean cryptocurrency indices, respectively. Surprisingly, the net

spillover from dirty to clean cryptocurrency was positive, but has become negative

following a extreme negative shock at the end of 2020. This tells us that when clean
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Figure 2.10: Total net volatility connectedness

cryptocurrency is experiencing high volatility, the dirty cryptocurrency market

get affected. In addition, the net volatility spillover from dirty cryptocurrency to

gold has become quite negative from 2020 April to December, which suggests that

investments have been somehow transferred from dirty cryptocurrency to gold

market when the former is experiencing high uncertainty. Another interesting

pattern is that clean cryptocurrency had a extreme volatility spillover effect to all

other market near the end of 2020, which has decayed rapidly. Similar to previous

findings, the net spillovers between cryptocurrencies and clean energy are different

and there is no unified pattern among them.

Overall, the return and volatility connectedness between clean energy and

general market or between clean energy subsectors are more pronounced than

that between clean energy and cryptocurrencies, which suggests that investor in

the market have not really linked the clean energy and cryptocurrencies together

regardless of whether the cryptocurrency is dirty or clean.
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Figure 2.11: Net pairwise directional volatility connectedness for DCRYPT

2.5.2 Safe Haven Analysis

2.5.2.1 Dynamic Conditional Correlations

Table 2.5 lists the average DCC coefficients between clean energy indices and the

two groups of cryptocurrencies. All mean DCC coefficients are universally positive.

The time-varing DCCs between clean energy indices and cryptocurrencies are in the

D. From D.1 to D.8, it can be observed that large variations in correlations appeared

around the April of 2020 for most pairs, except for GRNFUEL versus NANO and

GRNGEO versus ETC. The dynamic correlations between GRNFUEL and both

ETC and NANO and that between GRNGEO and both ETC and IMOTA are lower,

but more stable than the other pairs. Complemented by Table 2.5, we see that the

correlations between clean energy indices and cryptocurrencies are positive in most

of the time, regardless of cryptocurrency types, which implies that the clean energy

indices might not have direct hedge potentials for both types of cryptocurrency

during the periods under study and in the near future. Moreover, clean energy

stocks react heterogeneously to cryptocurrencies and there is no differentiated

patterns between clean energy stocks and the two cryptocurrency groups.
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Figure 2.12: Net pairwise directional volatility connectedness for CCRYPT

Table 2.5: DCCs between clean energy indices and cryptocurrencies

SPGTCED ECO GRNBIO GRNFUEL GRNREG GRNGEO GRNSOLAR GRNWIND
BTC 0.1572 0.1186 0.1370 0.0990 0.1491 0.0874 0.1088 0.1188
ETC 0.1301 0.1079 0.0852 0.0709 0.1260 0.0722 0.0956 0.0883
BCH 0.1338 0.1028 0.0908 0.0791 0.1250 0.0764 0.0799 0.0868
LTC 0.1464 0.1309 0.1206 0.0979 0.1561 0.0646 0.1115 0.1194
ETH 0.1493 0.1309 0.1244 0.1103 0.1425 0.0672 0.1007 0.1234
ADA 0.1605 0.1399 0.1354 0.1064 0.1588 0.1121 0.1331 0.0817
MIOTA 0.1530 0.1432 0.1456 0.1093 0.1557 0.1226 0.1396 0.0925
XRP 0.1348 0.1519 0.1195 0.1334 0.1271 0.0595 0.1043 0.0688
XLM 0.1743 0.1620 0.1607 0.1112 0.1713 0.0988 0.1385 0.0964
NANO 0.1601 0.1642 0.0998 0.1166 0.1526 0.0716 0.1353 0.0973

2.5.2.2 Return Analysis

Table 2.6 summarises the results of the hedge and safe haven properties of clean

energy indices in extreme bearish cryptocurrency market conditions. All the hedge

ratios (θ0) in Table 2.6 are significantly positive, which confirms that none of the

clean energy indices can be a direct hedge for either types of cryptocurrencies

during the studied period. The θ1 for most of the panels are negative and some of

which are significant, which indicates that clean energy indices can be weak or even

strong safe havens for cryptocurrencies in the 10% quantile during the period, with

very few exceptions.In terms of θ2 and θ3, the results are more spotty. It suggests
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that clean energy can also be a weak safe haven for cryptocurrency in 5% and 1%

quantiles, but it depends very much on which clean energy and cryptocurrency are

used.

Reversing the relationship in Table 2.7, we see that the results for θs are not

uniformed. Cryptocurrency, regardless of types, seems to be a weak safe haven

for GRNSOLAR in the 10% quantile as all θ1 for GRNSOLAR are insignificantly

negative in all panels. Most of the cryptocurrecies are weak havens for GRNGEO

at 10% except for BTC which is a strong safe haven, and XRP, MIOTA, and NANO

which are not safe havens for GRNGEO in the 10% quantile at all. For θ2 and θ3,

we can only see few of cryptocurrencies are safe havens for clean energy stocks,

such as ETC which acts as safe havens for most clean energy subsectors in various

quantiles. Clearly, the results are even more spotty than the reverse, and we can

not clearly say that cryptocurrencies are general safe havens for clean energy stocks

and we cannot distinguish the difference between types.

Overall, we found that clean energy can be generally viewed as a safe haven for

the extreme returns of either dirty or clean cryptocurrencies in the 10% quantiles;

clean energy can be a safe haven for them in the 5% and 1% quantiles as well, but

it really depends on the selection of underlying assets. Most of the cryptocurrencies

are not evident as general safe havens for clean energy stocks. Given the ecological

footprint of dirty cryptocurrencies that is perhaps a comforting finding. The portfolio

suggestion that arises from this is that investors with significant exposure to (in

particular, from an ecological perspective, dirty) cryptocurrencies can choose clean

energy stocks for safe haven benefits and environmental responsibility.
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Table 2.6: Results of hedge and safe haven analysis of clean energy indices for daily

cryptocurrency extreme returns

Hedge

(θ0)

10% quantile

(θ1)

5% quantile

(θ2)

1% quantile

(θ3)

Panel A :SPGTCED

BTC 0.1574*** -0.0052 0.0080 -0.0098
ETC 0.1299*** -0.0034 0.0065 0.0147

BCH 0.1339*** -0.0031 0.0040 0.0017

LTC 0.1461*** -0.0002 0.0053 0.0043

ETH 0.1495*** -0.0098 0.0119 0.0143

ADA 0.1610*** -0.0032 -0.0064 0.0080

MIOTA 0.1534*** -0.0486** 0.0184** 0.0105

XRP 0.1368*** -0.0163 -0.0052 -0.0047
XLM 0.1744*** 0.0002 -0.0027 0.0003

NANO 0.1604*** -0.0132** 0.0157** 0.0189

Panel B: ECO

BTC 0.1194*** -0.0164 0.0208 -0.0210
ETC 0.1076*** -0.0017 0.0043 0.0196

BCH 0.1035*** -0.0009 -0.0137 0.0031

LTC 0.1323*** 0.0007 -0.0067 -0.0055
ETH 0.1317*** -0.0055 -0.0066 0.0090

ADA 0.1408*** -0.0028 -0.0136 0.0027

MIOTA 0.1444*** -0.0196 0.0137 -0.0045
XRP 0.1529*** -0.0168 0.0097 0.0234

XLM 0.1625*** -0.0053 -0.0007 0.0081

NANO 0.1652*** -0.0155* 0.0086 0.0085

Panel C: GRNBIO

BTC 0.1372*** -0.0107 0.0205 -0.0114
ETC 0.0863*** -0.0183 0.0123 0.0042

BCH 0.0921*** -0.0155 -0.0042 0.0363

LTC 0.1203*** 0.0011 0.0012 0.0113

ETH 0.1250*** -0.0128 0.0064 0.0387

ADA 0.1357*** -0.0066 0.0009 0.0307

MIOTA 0.1471*** -0.0397*** 0.0475** 0.0017
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Table 2.6 continued from previous page
XRP 0.1205*** -0.0211 0.0127 0.0409

XLM 0.1605*** -0.0122 0.0361 -0.0354
NANO 0.1008*** -0.0265** 0.0282* 0.0229

Panel D: GRNFUEL

BTC 0.0991*** -0.0088 0.0056 0.0296

ETC 0.0727*** -0.0254** 0.0220 -0.0400
BCH 0.0788*** -0.0037 0.0099 0.0065

LTC 0.0972*** 0.0025 0.0108 -0.0090
ETH 0.1105*** -0.0027 -0.0010 0.0101

ADA 0.1073*** -0.0038 -0.0094 -0.0027
MIOTA 0.1096*** -0.0218** 0.0381*** 0.0011

XRP 0.1337*** -0.0055 0.0111 -0.0251
XLM 0.1121*** -0.0052 -0.0095 0.0105

NANO 0.1167*** -0.0020 0.0025 -0.0004

Panel E: GRNREG

BTC 0.1501*** -0.0220 0.0251 -0.0030
ETC 0.1266*** -0.0120 0.0049 0.0374

BCH 0.1272*** -0.0277 0.0074 0.0218

LTC 0.1570*** -0.0069 -0.0029 -0.0024
ETH 0.1445*** -0.0327* 0.0138 0.0569

ADA 0.1604*** -0.0118 -0.0109 0.0154

MIOTA 0.1570*** -0.0306** 0.0320 0.0090

XRP 0.1299*** -0.0265** -0.0024 -0.0004
XLM 0.1719*** -0.0067 -0.0041 0.0181

NANO 0.1543*** -0.0293*** 0.0182 0.0301

Panel F: GRNGEO

BTC 0.0875*** -0.0041 0.0040 0.0096

ETC 0.0722*** -0.0000 0.0000 0.0000

BCH 0.0764*** -0.0015 -0.0008 0.0180**

LTC 0.0644*** -0.0011 0.0060 0.0049

ETH 0.0673*** -0.0052 -0.0011 0.0466***

ADA 0.1119*** 0.0009 0.0032 0.0077

MIOTA 0.1225*** -0.0022 0.0050** 0.0044

XRP 0.0595*** -0.0015 0.0014 0.0092
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Table 2.6 continued from previous page
XLM 0.0983*** 0.0056 -0.0026 -0.0015
NANO 0.0720*** -0.0116*** 0.0138*** 0.0149*

Panel G: GRNSOLAR

BTC 0.1095*** -0.0114 0.0115 -0.0173
ETC 0.0981*** -0.0319*** 0.0143 -0.0052
BCH 0.0819*** -0.0161 -0.0146 0.0345

LTC 0.1119*** -0.0011 -0.0043 -0.0122
ETH 0.1017*** -0.0108 -0.0025 0.0217

ADA 0.1335*** 0.0006 -0.0118 0.0133

MIOTA 0.1409*** -0.0260*** 0.0239* 0.0007

XRP 0.1064*** -0.0326* 0.0160 0.0337

XLM 0.1385*** -0.0070 0.0129 0.0028

NANO 0.1369*** -0.0239** 0.0125 0.0134

Panel I: GRNWIND

BTC 0.1196*** -0.0139 0.0082 0.0206

ETC 0.0883*** -0.0009 -0.0088 0.0501**

BCH 0.0871*** -0.0042 0.0022 0.0027

LTC 0.1193*** -0.0030 0.0090 -0.0046
ETH 0.1236*** -0.0091* 0.0067 0.0315***

ADA 0.0828*** -0.0087 -0.0062 0.0126

MIOTA 0.0932*** -0.0183** 0.0216** 0.0028

XRP 0.0694*** -0.0063 0.0051 -0.0172
XLM 0.0971*** -0.0054 -0.0065 0.0162

NANO 0.0981*** -0.0147** 0.0119 0.0066

Notes:

1. Equation 2.12 is used. Table shows the relationship between each clean energy index

(each panel) as a safe haven and various cryptocurrencies;

2.. Clean energy is a weak hedge for an individual cryptocurrency if θ0 is insignificantly

different from zero, or a strong hedge if θ0 is negative. Clean energy serves as a weak

(strong) safe haven for an individual cryptocurrency under certain market condition if

any of θ1, θ2 or θ3 are non-positive (significantly negative);

3. ***, ** and * denote the rejections of the null hypothesis at the significance level of

1%, 5% and 10%, respectively.
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Table 2.7: Results of hedge and safe haven analysis of cryptocurrencies for daily

clean energy extreme returns

Hedge (θ0) 10% quantile

(θ1)

5% quantile

(θ2)

1% quantile

(θ3)

Panel A: BTC

SPGTCED 0.1532*** 0.0224** 0.0306*** 0.0142

ECO 0.1145*** 0.0234* 0.0175 0.0865**

GRNBIO 0.1327*** -0.0016 0.0649*** 0.1138***

GRNFUEL 0.0961*** 0.0190* 0.0046 0.0460*

GRNGEO 0.0872*** -0.0098* 0.0213* 0.0076

GRNREG 0.1414*** 0.0485*** 0.0406 0.0777*

GRNSOLAR 0.1062*** -0.0095 0.0053* 0.0778*

GRNWIND 0.1170*** -0.0013 0.0291** 0.0424*

Panel B: ETC

SPGTCED 0.1290*** 0.0090* -0.0003 0.0180

ECO 0.1082*** -0.0196** 0.0210* 0.0549***

GRNBIO 0.0807*** 0.0073 0.0345 0.1872***

GRNFUEL 0.0702*** 0.0137 -0.0093 -0.0237
GRNGEO 0.0722*** -0.0000 0.0000 0.0000

GRNREG 0.1245*** 0.0107 -0.0079 0.0798***

GRNSOLAR 0.0948*** -0.0098 0.0214 0.0653

GRNWIND 0.0873*** 0.00533 0.0089 -0.0045

Panel C: BCH

SPGTCED 0.1318*** 0.0112** 0.0173** 0.0070

ECO 0.0991*** 0.0236** 0.0134 0.0590*

GRNBIO 0.0853*** 0.0036 0.0695** 0.1533***

GRNFUEL 0.0762*** 0.0266** 0.0009 0.0188

GRNGEO 0.0725*** 0.0032 0.0161*** 0.0011

GRNREG 0.1186*** 0.0426** 0.0265 0.0796**

GRNSOLAR 0.0770*** 0.0000 0.0433* 0.0696*

GRNWIND 0.0861*** 0.0024 0.0070 0.0146

Panel D: LTC

SPGTCED 0.1454*** 0.0026 0.0073 0.0296***

ECO 0.1304*** 0.0061 0.0057 0.0584***
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Table 2.7 continued from previous page
GRNBIO 0.1171*** 0.0027 0.0299* 0.1666***

GRNFUEL 0.0974*** 0.0071 -0.0131 0.0421**

GRNGEO 0.0644*** -0.0032 0.0087 0.0125

GRNREG 0.1538*** 0.0114 0.0109 0.0625***

GRNSOLAR 0.1105*** -0.0088 0.0269** 0.0480**

GRNWIND 0.1185*** -0.0012 0.0145** 0.0146

Panel E: ETH

SPGTCED 0.1468*** 0.0092 0.0255** 0.0251

ECO 0.1282*** 0.0168*** -0.0007 0.1026***

GRNBIO 0.1205*** 0.0074 0.0385* 0.1194***

GRNFUEL 0.1091*** 0.0133* -0.0021 -0.0067
GRNGEO 0.0669*** -0.0077 0.0208*** 0.0019

GRNREG 0.1363*** 0.0307* 0.4150 0.1029**

GRNSOLAR 0.0984*** -0.0020 0.0319* 0.0879**

GRNWIND 0.1226*** 0.0003 0.0095* 0.0245***

Panel F: ADA

SPGTCED 0.1594*** -0.0012 0.0160* 0.0365**

ECO 0.1381*** 0.0106 -0.0020 0.0835***

GRNBIO 0.1322*** 0.0042 0.0255 0.1411***

GRNFUEL 0.1057*** 0.0140* -0.0154 0.0107

GRNGEO 0.1120*** -0.0081 0.0173** 0.0035

GRNREG 0.1561*** 0.0058 0.0275 0.0677***

GRNSOLAR 0.1320*** -0.0041 0.0176 0.0631***

GRNWIND 0.0798*** 0.0022 0.0227* 0.0506**

Panel G: MIOTA

SPGTCED 0.1510*** 0.0094 0.0179** 0.0146

ECO 0.1398*** 0.0243** 0.0046 0.0682**

GRNBIO 0.1412*** 0.0012 0.0572*** 0.1318***

GRNFUEL 0.1068*** 0.0232** 0.0010 0.0192

GRNGEO 0.1219*** 0.0022 0.0086*** -0.0001
GRNREG 0.1510*** 0.0291** 0.0242 0.0527*

GRNSOLAR 0.1386*** -0.0060 0.0226* 0.0443**

GRNWIND 0.0906*** 0.0046 0.0187* 0.0472***

Panel H: XRP
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Table 2.7 continued from previous page
SPGTCED 0.1325*** -0.0077 0.0508*** 0.0544*

ECO 0.1465*** 0.0303* 0.0219 0.1210***

GRNBIO 0.1155*** 0.0085 0.0342* 0.1330***

GRNFUEL 0.1313*** 0.0280* -0.0258 0.0665*

GRNGEO 0.0589*** 0.0022 0.0071 0.0021***

GRNREG 0.1235*** 0.0093 0.0354* 0.0870***

GRNSOLAR 0.1012*** -0.0034 0.0485* 0.0963**

GRNWIND 0.0678*** -0.0005 0.0160** 0.0225*

Panel I: XLM

SPGTCED 0.1728*** 0.0020 0.0207*** 0.0221**

ECO 0.1580*** 0.0144 0.0386** 0.0650**

GRNBIO 0.1559*** 0.0111 0.0375* 0.0172***

GRNFUEL 0.1085*** 0.0270*** -0.0007 0.0053

GRNGEO 0.0988*** -0.0044 0.0072 0.0065

GRNREG 0.1661*** 0.0292** 0.0307* 0.0697***

GRNSOLAR 0.1358*** -0.0024 0.0449*** 0.0678**

GRNWIND 0.0950*** 0.00723 0.0096 0.0260**

Panel J: NANO

SPGTCED 0.1588*** 0.0063 0.0076 0.0286**

ECO 0.1613*** 0.0152* 0.0176 0.0479**

GRNBIO 0.0973*** 0.0015 0.0191 0.1367***

GRNFUEL 0.1161*** 0.0040*** 0.0006 -0.0027
GRNGEO 0.0713*** 0.0005 0.0049 0.0009

GRNREG 0.1477*** 0.0135 0.0512*** 0.0907***

GRNSOLAR 0.1334*** -0.0038 0.0337** 0.0578**

GRNWIND 0.0960*** -0.0020 0.0293*** 0.0066

Notes:

1. Modified Equation 2.12 is used. Table shows the relationship between each

cryptocurrency index (each panel) as a safe haven and various clean energy in-

dices;

2. A cryptocurrency is a weak hedge for clean energy subsector index if θ0 is

insignificantly different from zero, or a strong hedge if θ0 is negative. A cryptocur-

rency serves as a weak (strong) safe haven for a clean energy subsector index

under certain market condition if any of θ1, θ2 or θ3 are non-positive (significantly

negative);

3. ***, ** and * denote the rejections of the null hypothesis at the significance

level of 1%, 5% and 10%, respectively.
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2.5.2.3 Uncertainty Analysis

Table 2.8 summarise the results of the hedge and safe haven properties of clean en-

ergy indices for cryptocurrencies in periods of increased crypto market uncertainty.

All hedge coefficients (θ0) in Table 2.8 are significantly positive, which confirms

that clean energy indices can not be a direct hedge for either types of cryptocurren-

cies during the times of increased market uncertainty. Although the results of θ1

coefficients are spotty, most of them are positive, which indicates that clean energy

indices are not safe havens for either types of cryptocurrency during high market

uncertainty (90% threshold). For θ2, most of them for dirty cryptocurrencies are

negative and some of which are significant, which suggests that most of the clean

energy indices are weak or strong safe havens for dirty cryptocurrencies on the

95% threshold of volatility. Exceptions are GRNFUEL which is not a safe haven for

BTC and ETH, GRNREG which is not a safe haven for LTC, GRNGEO which is not

a safe haven for ETC, and GRNWIND which is not a safe haven for ETH. Finally,

regarding θ3, we can see that coefficients for most of the panels are positive, except

for some of which in Panel E and F, which indicates that more than half of the clean

energy indices are not safe havens for either dirty or clean cryptocurrencies during

extreme uncertainty (99% threshold). Exceptions are GRNREG which is a weak

safe haven for NANO on the 99 99% threshold; and GRNGEO which is a weak safe

haven for clean cryptocurrencies on the 99% threshold.

Table 2.9 presents the results of the hedge and safe haven properties of dirty

and clean cryptocurrencies in periods of increased clean energy market uncertainty.

We find that none of the cryptocurrencies is a safe haven on the 90% threshold.

Interestingly, we notice that some of the cryptocurrencies are strong safe havens

for GRNFUEL on the 95% threshold of volatility, including ETC, BCH, ETH, ADA,

XLM. ETC is also a weak haven for ECO and GRNWIND. LTC is a a weak safe

haven for GRNGEO and NANO is for GRNWIND on the 99% threshold. BTC,

MIOTA, and XRP are not safe havens for clean energy at all. Similar to the

previous analysis on returns, these spotty and inconsistent results suggest that

cryptocurrencies in regardless types are not a appropriate safe haven choice for

clean energy stocks.

Overall, we conclude that clean energy is more likely to be a safe haven for dirty

cryptocurrencies than clean cryptocurrencies in the periods of increased market

uncertainty, depending on the choice of underlying assets while the reverse is not

the case, cryptocurrencies not showing consistent safe haven properties for clean
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energy stocks.

Table 2.8: Results of hedge and safe haven analysis of clean energy indices in

periods of extreme dirty and clean cryptocurrency volatility proxied for market

uncertainty

Hedge

(θ0)

90% threshold

(θ1)

95% threshold

(θ2)

99% threshold

(θ3)

Panel A: SPGTCED

BTC 0.1553*** 0.0191* -0.0184 0.0898***

ETC 0.1285*** 0.0197 -0.0286*** 0.0976***

BCH 0.1450*** 0.0097* -0.0138* 0.0775***

LTC 0.1477*** 0.0168*** -0.0233*** 0.0846***

ETH 0.1472*** 0.0136* -0.0134 0.1340***

ADA 0.1599*** -0.0050 0.0181** 0.0172

MIOTA 0.1508*** 0.0151** 0.0107 0.0139

XRP 0.1337*** -0.0109 0.0356* 0.0370

XLM 0.1734*** 0.0010 0.0137** 0.0138

NANO 0.1580*** -0.0001 0.0359*** 0.0214*

Panel B: ECO

BTC 0.1162*** 0.0147 -0.0242 0.2111***

ETC 0.1055*** 0.0277*** -0.0356*** 0.1386***

BCH 0.1019*** 0.0102 -0.0383** 0.1694***

LTC 0.1308*** 0.0065 -0.0136 0.1138***

ETH 0.1301*** -0.0000 -0.0260 0.2012***

ADA 0.1382*** -0.0033 0.0289** 0.0542**

MIOTA 0.1383*** 0.0260** 0.0312* 0.0630**

XRP 0.1457*** 0.0174 0.0664** 0.1112***

XLM 0.1576*** 0.0168 0.0399** 0.0731**

NANO 0.1607*** 0.0103 0.0357*** 0.0584***

Panel C: GRNBIO

BTC 0.1336*** 0.0251 -0.0262 0.2142***

ETC 0.0790*** 0.0435*** -0.0151 0.2459***

BCH 0.0875*** 0.0234 -0.0345 0.2558***

LTC 0.1158*** 0.0282** -0.0048 0.2173***

ETH 0.1209*** 0.0229 -0.0162 0.1997***
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Table 2.8 continued from previous page
ADA 0.1329 0.0056 0.0282* 0.0461*

MIOTA 0.1401*** 0.0350** 0.0273 0.0579*

XRP 0.1155*** 0.0074 0.0452** 0.0883***

XLM 0.1558*** 0.0074 0.0702*** 0.0646*

NANO 0.0962*** 0.0033 0.0517*** 0.0655**

Panel D:

GRNFUEL

BTC 0.0947*** 0.0111 0.0172 0.2087***

ETC 0.0701*** -0.0079 -0.0072 0.1828***

BCH 0.0768*** 0.0059 -0.0072 0.1959***

LTC 0.0965*** 0.0045 -0.0135 0.1549***

ETH 0.1087*** -0.0070 0.0050 0.1346***

ADA 0.1065*** -0.0191** 0.0265** 0.0471**

MIOTA 0.1041*** 0.0274*** 0.0284** 0.0967***

XRP 0.1272*** 0.0142 0.0740*** 0.1045***

XLM 0.1096*** -0.0020 0.0251* 0.0585***

NANO 0.1159*** 0.0029** 0.0050*** 0.0092***

Panel E: GRNREG

BTC 0.1441*** 0.0347* -0.0169 0.2361***

ETC 0.1238*** 0.0120 -0.0215* 0.2001***

BCH 0.1224*** 0.0108 -0.0186 0.2355***

LTC 0.1536*** 0.0076 0.0041 0.1499***

ETH 0.1385*** 0.0159 -0.0102 0.2786***

ADA 0.1577*** -0.0056 0.0290* 0.0205

MIOTA 0.1532*** 0.0178 0.0117 0.0110

XRP 0.1274*** -0.0224 0.0317 0.0287

XLM 0.1689*** 0.0101 0.0245 0.0061

NANO 0.1494*** 0.0062 0.0507*** -0.0007

Panel F: GRNGEO

BTC 0.0867*** 0.0033 -0.0126 0.0955***

ETC 0.0722*** 0.0000 0.0000 0.0000***

BCH 0.0754*** 0.0026 -0.0011 0.0750***

LTC 0.0643*** 0.0030 -0.0100* 0.0518***

ETH 0.0664*** 0.0025 -0.0108 0.1088***
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Table 2.8 continued from previous page
ADA 0.1100*** 0.0202*** 0.0036 -0.0095
MIOTA 0.1218*** 0.0077*** -0.0001 -0.0020
XRP 0.0589*** 0.0051 0.0034 -0.0108
XLM 0.0977*** 0.0105*** 0.0032 -0.0154
NANO 0.0708*** -0.0021 0.0258*** -0.0207***
Panel G:

GRNSOLAR

BTC 0.1063*** 0.0185 -0.0380 0.2462***

ETC 0.0943*** 0.0061 -0.0296** 0.2133***

BCH 0.0798*** 0.0045 -0.0522 0.2300***

LTC 0.1097*** 0.0097 -0.0139 0.1446***

ETH 0.0996*** 0.0023 -0.0316 0.2345***

ADA 0.1304*** 0.0103 0.0269** 0.0316*

MIOTA 0.1370*** 0.0134 0.0160 0.0360

XRP 0.1003*** 0.0038 0.0566** 0.0799*

XLM 0.1334*** 0.0224* 0.0477*** 0.0457

NANO 0.1327*** 0.0076 0.0400*** 0.0426*

Panel I: GRNWIND

BTC 0.1164*** 0.0031 -0.0075 0.2458***

ETC 0.0862*** 0.0094 -0.0146 0.1841***

BCH 0.0859*** 0.0007 -0.0049 0.1095***

LTC 0.1176*** 0.0087* -0.0062 0.1220***

ETH 0.1213*** 0.0073** 0.0009 0.1295***

ADA 0.0808*** -0.0048 0.0211 0.0266

MIOTA 0.0909*** 0.0064 0.0157 0.0096

XRP 0.0685*** -0.0019 0.0063 0.0207*

XLM 0.0961*** 0.0008 0.0044 0.0090

NANO 0.0955*** 0.0011 0.0339*** 0.0010

Notes:

1. Equation 2.13 is used; Table shows the relationship between each clean energy index

(each panel) as a safe haven and various cryptocurrencies under extreme uncertainty;

2. Clean energy is a weak hedge for an individual cryptocurrency under extreme uncer-

tainty if θ0 is insignificantly different from zero, or a strong hedge if θ0 is negative. Clean

energy serves as a weak (strong) safe haven for an individual cryptocurrency under

certain level of uncertainty if any of θ1, θ2 or θ3 are non-positive (significantly negative);

3. ***, ** and * denote the rejections of the null hypothesis at the significance level of

1%, 5% and 10%, respectively.

67



CHAPTER 2. AN EXAMINATION OF THE RELATIONSHIP BETWEEN
RENEWABLE ENERGY STOCKS AND CRYPTOCURRENCIES

Table 2.9: Results of hedge and safe haven analysis of cryptocurrencies in periods

of extreme clean energy market uncertainty

Hedge (θ0) 90% threshold

(θ1)

95% threshold

(θ2)

99% threshold

(θ3)

Panel A: BTC

SPGTCED 0.1477*** 0.0924*** 0.0006 0.0170

ECO 0.1035*** 0.1312*** 0.0239 0.0757**

GRNBIO 0.1186*** 0.1436*** 0.0694*** 0.0546

GRNFUEL 0.0900*** 0.0653*** 0.0194 0.1249***

GRNGEO 0.0842*** 0.0228*** 0.0124 0.0235*

GRNREG 0.1289*** 0.1706*** 0.0371 0.1266***

GRNSOLAR 0.0933*** 0.0986*** 0.0938*** 0.0857**

GRNWIND 0.1129*** 0.0256*** 0.0595*** 0.0369*

Panel B: ETC

SPGTCED 0.1281*** 0.0118** 0.0106 0.0258**

ECO 0.1045*** 0.0302*** 0.0102 -0.0126
GRNBIO 0.0663*** 0.1311*** 0.0880*** 0.1266***

GRNFUEL 0.0668*** 0.0502*** -0.0358** 0.0876***

GRNGEO 0.0722*** 0.0000 0.0000*** 0.0000***

GRNREG 0.1206*** 0.0303*** 0.0034 0.1364***

GRNSOLAR 0.0873*** 0.0326*** 0.0756*** 0.1196***

GRNWIND 0.0856*** 0.0119 0.0353*** -0.0309

Panel C: BCH

ECO 0.0901*** 0.1179*** 0.0094 0.0429

GRNBIO 0.0680*** 0.1873*** 0.0631*** 0.0808*

GRNFUEL 0.0719*** 0.0813*** -0.0374** 0.0873***

GRNGEO 0.0740*** 0.0112*** 0.0208*** 0.0223***

GRNREG 0.1085*** 0.1224*** 0.0590*** 0.1295***

GRNSOLAR 0.0647*** 0.1100*** 0.0709*** 0.0620

GRNWIND 0.0848*** 0.0053 0.0271*** 0.0048

Panel D: LTC

SPGTCED 0.1438*** 0.0126*** 0.0186*** 0.0326***

ECO 0.1239*** 0.0665*** 0.0160 0.0578***

GRNBIO 0.1059*** 0.0898*** 0.0830*** 0.1421***

68



2.5. RESULTS

Table 2.9 continued from previous page
GRNFUEL 0.0943*** 0.0229*** 0.0064 0.0985***

GRNGEO 0.0623*** 0.0160*** 0.0140** -0.0013
GRNREG 0.1475*** 0.0499*** 0.0459*** 0.1297***

GRNSOLAR 0.1036*** 0.0326*** 0.0748*** 0.0856***

GRNWIND 0.1169*** 0.0128*** 0.0235*** 0.0005

Panel E: ETH

SPGTCED 0.1423*** 0.0490*** 0.0230** 0.0883***

ECO 0.1186*** 0.1004*** 0.0241 0.0926***

GRNBIO 0.1075*** 0.1365*** 0.0487*** 0.0814**

GRNFUEL 0.1068*** 0.0401*** -0.0254** 0.0728***

GRNGEO 0.0649*** 0.0103* 0.0187** 0.0332***

GRNREG 0.1243*** 0.1167*** 0.0920*** 0.1748***

GRNSOLAR 0.0885*** 0.059*** 0.1125*** 0.1064***

GRNWIND 0.1209*** 0.0135*** 0.0105* 0.0540***

Panel F: ADA

SPGTCED 0.1559*** 0.0258*** 0.0191** 0.1012***

ECO 0.1313*** 0.0638*** 0.0249** 0.0899***

GRNBIO 0.1218*** 0.0893*** 0.0657*** 0.1242***

GRNFUEL 0.1042*** 0.0278*** -0.0230* 0.0567***

GRNGEO 0.1096*** 0.0056 0.0356*** 0.0106

GRNREG 0.1491*** 0.0440*** 0.0749*** 0.1471***

GRNSOLAR 0.1256*** 0.0201** 0.0871*** 0.1051***

GRNWIND 0.0737*** 0.0337*** 0.0646*** 0.1311***

Panel G: MIOTA

SPGTCED 0.1478*** 0.0350*** 0.0179** 0.0759***

ECO 0.1318*** 0.1001*** 0.0126 0.0678**

GRNBIO 0.1272*** 0.1468*** 0.0570*** 0.0760**

GRNFUEL 0.1034*** 0.0437*** 0.0087 0.1089***

GRNGEO 0.1214*** 0.0055*** 0.0099*** 0.0087**

GRNREG 0.1432*** 0.0777*** 0.0663*** 0.1323***

GRNSOLAR 0.1315*** 0.0448*** 0.0580*** 0.0646***

GRNWIND 0.0853*** 0.0287*** 0.0664*** 0.0944***

Panel H: XRP

SPGTCED 0.1245*** 0.0806*** 0.0120 0.1588***
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Table 2.9 continued from previous page
ECO 0.1361*** 0.1317*** 0.0288 0.1156***

GRNBIO 0.1030*** 0.1279*** 0.0534*** 0.0924***

GRNFUEL 0.1250*** 0.0457*** 0.0374* 0.1884***

GRNGEO 0.0580*** 0.0069** 0.0129*** 0.0144**

GRNREG 0.1143*** 0.0701*** 0.0808*** 0.1669***

GRNSOLAR 0.0898*** 0.0761*** 0.1108*** 0.1315***

GRNWIND 0.0654*** 0.0160*** 0.0310*** 0.0255**

Panel I: XLM

SPGTCED 0.1691*** 0.0405*** 0.0141*** 0.0444***

ECO 0.1481*** 0.1237*** 0.021 0.0508**

GRNBIO 0.1431*** 0.1190*** 0.0854*** 0.1323***

GRNFUEL 0.1054*** 0.0699*** -0.0288** 0.0305

GRNGEO 0.0969*** 0.0086** 0.0169*** 0.0102

GRNREG 0.1567*** 0.1151*** 0.0388** 0.1029***

GRNSOLAR 0.1261*** 0.0696*** 0.0866*** 0.1051***

GRNWIND 0.0915*** 0.0269*** 0.0331*** 0.0561***

Panel J: NANO

SPGTCED 0.1574*** 0.0112** 0.0237*** 0.0349***

ECO 0.1549*** 0.0850*** 0.0051 0.0502***

GRNBIO 0.0867*** 0.0925*** 0.0532*** 0.1141***

GRNFUEL 0.1154*** 0.0100*** 0.0014 0.0090***

GRNGEO 0.0710*** -0.0041 0.0179*** 0.0124

GRNREG 0.1381*** 0.1014*** 0.0520*** 0.1627***

GRNSOLAR 0.1255*** 0.0564*** 0.0658*** 0.0738***

GRNWIND 0.0939*** 0.0148* 0.0447*** -0.0256

Notes:

1. Modified Equation 2.13 is used; Table shows the relationship between each cryp-

tocurrency index (each panel) as a safe haven and various clean energy indices under

extreme uncertainty;

2. A cryptocurrency is a weak hedge for a clean energy subsector index under ex-

treme uncertainty if θ0 is insignificantly different from zero, or a strong hedge if θ0 is

negative. A cryptocurrency serves as a weak (strong) safe haven for a clean energy

subsector index under certain level of uncertainty if any of θ1, θ2 or θ3 are non-positive

(significantly negative).

3. ***, ** and * denote the rejections of the null hypothesis at the significance level of

1%, 5% and 10%, respectively. 70
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2.6 Robustness Check

We further considered using a time-varying parameter VAR model (TVP-VAR)

proposed by Antonakakis et al. (2020) to examine the robustness of previous results

of spillover analysis sections. The TVP-VAR approach has advantages over the

DY (rolling window VAR) approach, suggested by Antonakakis et al. (2020) that it

does not require a rolling window size to be biasedly assigned and it avoids losing

observations as it introduces a time-varing variance-covariance matrix by adopting

the Kalman filter with forgetting factors assigned during the estimation step.

The TVP-VAR model with p lags is defined as the following:

(2.14)
yt = Φtzt−1 +εt εt | I t−1 ∼ N (0,Σt) ,

vec (Φt) = vec (Φt−1)+ e t e t | I t−1 ∼ N (0,E t) ,

where yt represents m×1 vector of endogenous variables, while zt−1 represents

pm×1 vector of lagged yt from t− p to t−1. εt and e t are vectors of error terms.

I t−1 denotes all known information until t−1. Σt and E t are time-varying variance-

covariance matrices.

Following Antonakakis et al. (2020), we initiated the Kalman filter using the

Minnesota prior, followed by using the benchmark decay factors of (0.99, 0.99) in the

estimation step to calculate the time-varing coefficients and variance-covariance

matrices. Subsequently, the time-varing coefficients and the time-varing variance-

covariance matrices were introduced to the step of generalized forecast error vari-

ance decomposition in the DY approach so that we could calculate the spillover

indicies TS, DSi← j, DSi→ j, and NS.

F.1 and G.1 list the average dynamic total return and volatility connectedness,

respectively. F.1 to F.6 are plots of dynamic return connectedness results, while G.1

to G.6 are plots of dynamic volatility connectedness results. By using the TVP-VAR

model, we avoided the loss of the first 200 observations. We show that there was

a decaying return connectedness from 2018 to 2019 and same for the volatility

connectedness but from 2018 to 2020, which were probably due to the collapse in

crypto market started in the January of 2018. The major differences between the

results of using the DY and TVP-VAR models happens in the period from 2020 April

till the year end. To better illustrate the difference, we dropped the first 200 results

of total connectedness obtained using the TVP-VAR model, and scale both results

obtained by DY and TVP-VAR models to 100 at the start. Figure 2.13 and 2.14

compare the dynamic total return and volatility connectedness using VAR and TVP-
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VAR approaches, respectively. Both show a drastic increase in the total spillovers

approaching the April of 2020. However, while using the VAR approach the high

level of spillovers lasted for nearly a year before collapsing at the beginning of 2021,

the spillover calculated using the TVP-VAR model has been decaying after the

peak. This is not surprising as the DY approach is more sensitive to outliers than

the TVP-VAR method as the latter is smoothed by a Kalman filter. Overall, both

approaches provided qualitatively similar information and our findings remain

robust.

Figure 2.13: Dynamic total return spillovers using VAR and TVP-VAR

2.7 Conclusion

Renewable energies and cryptocurrencies are both great innovations. Unlike the

former which are more positively regarded and are good choices for carbon-neutral

portfolios, the latter have received much more negative comments for the energy

consumption and pollution issues. In fact, there are increasing number of cryptocur-

rencies that are not energy-hungry, depending on what its underlying consensus is.

What the relationships and whether there are co-movements between renewable

energy (sectoral) stocks and (different) cryptocurrencies are unclear. Therefore, one

of the objectives of this paper is to investigate the financial integration between

72



2.7. CONCLUSION

Figure 2.14: Dynamic total volatility spillovers using VAR and TVP-VAR

the renewable energy stocks and cryptocurrencies. To achieve this, we followed

previous studies such as Corbet and Yarovaya (2020) and Schinckus (2021), among

others, to distinguish cryptocurrencies from the sustainability perspective. We

employed a popular spillover measure by Diebold and Yılmaz (2012) to calculate

the spillover indices across several selected markets. Overall, we found that the

return and volatility connectedness between clean energy and cryptocurrencies

is much lower than that between clean energy and the general equity market or

between clean energy subsectors, which suggests that clean energy markets are

more associated with the general market, while cryptocurrencies are more isolated

and act as a separate asset class. To some extent, our results support the findings

of Ji et al. (2018) which claimed the isolation of Bitcoin market. Clearly, investors

in the financial market have not to date really linked clean energy and either types

of cryptocurrencies together, and they appear to hold cryptocurrencies based on the

intrinsic or expected value of cryptocurrencies and not based on their fundamental

differences in transaction mechanisms or energy acquisition channels, which offers

the potentials of using clean energy as a hedge for cryptocurrencies in the future.

However, investors should be also aware that clean energy stocks do not homoge-

neously react to the movements of other markets such as cryptocurrencies in our

case, while Pham (2019) discovered similar evidence in the clean energy-crude oil
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relationship. This suggests that investors need to consider the own characteristics

of different clean energy indices/stocks and cryptocurrencies and manage their

portfolio at a disaggregate level. Policy makers need to aware that single policy

would not affect all clean energy markets to the same extent, instead they need

to carefully research the distinctive characteristics of each sub-market before the

implementation. The current weak connectedness between cryptocurrency markets

and other markets also provides opportunities for further integration of these

markets.

Moreover, past research such as Naeem and Karim (2021) and Pham et al.

(2021) suggested that green investments such as clean energy could be used as

diversification or hedge tool for cryptocurrency investors. However, in this paper, we

show that the time-varing dynamic conditional correlations between clean energy

indices and cryptocurrencies is mostly positive, regardless of cryptocurrency types,

which implies that clean energy indices might not be a direct hedge for either dirty

and clean cryptocurrencies.

Furthermore, we tested the hedge and safe haven properties of clean energy

indices in spells of extreme falling crypto markets and extreme crypto market

uncertainty and the reverse based on the framework proposed by Baur and Lucey

(2010) and Baur and McDermott (2010). We confirmed our previous finding that

clean energy stocks have not yet become an effective direct hedge for cryptocurren-

cies. However, we find compelling evidence that clean energy can can be viewed as a

safe haven for both dirty or clean cryptocurrencies at the 10% quantiles of negative

returns, in general; it can be a safe haven in the 5% and 1% quantiles as well,

depending on the selection of underlying assets. In addition, clean energy is more

likely to be a safe haven for dirty cryptocurrencies than for clean cryptocurrencies

in periods of increased market volatility, subject to the selection of underlying

assets as well. In contrast, cryptocurrency asset is not a universal safe haven for

clean energy stocks. We believe that retail investors or institutional managers

who have used or are seeking to use clean energy stocks to hedge cryptocurrencies

would find this study beneficial for their investments and portfolio constructions.

As we see more investors, especially from institutions, are pouring their money

into the crypto market, investing in clean energy stocks seems to be a valuable

decision. While cryptocurrencies have a significant negative ecological impact this

can be perhaps mitigated by investors in these assets also choosing clean energy

assets, which supports companies undergoing sustainable actions as well as the
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market growth, while also receiving the safe haven benefits for encountering cryp-

tocurrency extreme risks in return. In other words, portfolio stability and ecological

protection are not necessarily incompatible.

Ethereum, the second largest cryptocurrency in the market, has finally really

started its transition to Ethereum 2.0 since late 2022, which will gradually abandon

its current power-hungry PoW consensus and move forward with energy-efficient

PoS instead. We would like to see more dirty cryptocurrencies follow the steps of

Ethereum. Apparently, current policy of promoting sustainability is not appealing

enough for cryptocurrency founders as investors seem to be indifferent to investing

in dirty and clean cryptocurrencies, or somewhat slightly in favour of dirty cryptos.

We see that clean cryptocurrencies have been conveying volatility shocks to dirty

cryptos since 2021, but dirty cryptos are still dominating the crypto market being

the return transmitters. Policy makers should create incentives for the transition of

dirty cryptocurrencies from PoW consensus mechanism to energy-efficient non PoW

consensus, and for the investors, especially the institutional investors, to invest

more in cleaner cryptocurrencies rather than the dirty ones. The development of

green energy and green cryptocurrencies has brought significant environmental

benefits compared to fossil energy and dirty cryptocurrencies. Restrictions and legal

constraints of energy use in crypto-mining are still weak. Greater efforts should be

made by the society to promote greener industry and investment, and arouse the

environmental awareness of investors and companies of dirty cryptocurrencies.
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APPENDIX D. DCCS BETWEEN CLEAN ENERGY INDICES AND
CRYPTOCURRENCIES OVER TIME

Figure D.1: DCCs between SPGTCED and cryptocurrencies

78



Figure D.2: DCCs between ECO and cryptocurrencies
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APPENDIX D. DCCS BETWEEN CLEAN ENERGY INDICES AND
CRYPTOCURRENCIES OVER TIME

Figure D.3: DCCs between GRNBIO and cryptocurrencies
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Figure D.4: DCCs between GRNFUEL and cryptocurrencies
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APPENDIX D. DCCS BETWEEN CLEAN ENERGY INDICES AND
CRYPTOCURRENCIES OVER TIME

Figure D.5: DCCs between GRNREG and cryptocurrencies
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Figure D.6: DCCs between GRNGEO and cryptocurrencies
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APPENDIX D. DCCS BETWEEN CLEAN ENERGY INDICES AND
CRYPTOCURRENCIES OVER TIME

Figure D.7: DCCs between GRNSOLAR and cryptocurrencies
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Figure D.8: DCCs between GRNWIND and cryptocurrencies
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VOLATILITY SPILLOVER ANALYSIS

Table E.1: Estimation results of GARCH(1,1) model

µ ω α β Log-
Likelihood

SPGTCED 0.0008** 0.0000*** 0.1537*** 0.8447*** 2731.232
ECO 0.0008 0.0000*** 0.0946*** 0.9001*** 2343.399
GRNBIO 0.0007 0.0000*** 0.1364*** 0.8268*** 2380.133
GRNFUEL 0.0008 0.0000** 0.0647*** 0.9309*** 1861.709
GRNREG 0.0007** 0.0000** 0.1562*** 0.8391*** 3005.217
GRNGEO 0.0006 0.0000*** 0.3488*** 0.6854*** 2368.953
GRNSOLAR 0.0010 0.0000*** 0.1018*** 0.8599*** 2215.170
GRNWIND 0.0010** 0.0000* 0.0972*** 0.8646*** 2617.024
DCRYPT 0.0015 0.0003*** 0.1343*** 0.7439*** 1505.958
CCRYPT -0.0024 0.0004*** 0.1942*** 0.7526*** 1230.797
SP500 0.0011*** 0.0000*** 0.2907*** 0.6967*** 3027.870
Gold 0.0001 0.0000** 0.0631*** 0.9271*** 3136.461

Note:
1. Volatility clustering are captured as the coefficients α and β for all series are signifi-
cantly positive and their sum are closed to one.
2 . ***, **, and * indicate the significance level of 1%, 5%, and 10%, respectively.
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Table F.1: Average dynamic total return connectedness using TVP-VAR

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM
OTHERS

Gold 67.33 2.79 4.27 3.32 3.72 1.46 1.88 4.96 3 3.57 2.39 1.31 32.67
SP500 1.16 25.69 10.17 13.18 8.64 5.09 5.14 11.64 12.67 3.74 1.56 1.32 74.31
SPGTCED 1.28 9.07 21.99 15.23 7.3 6.92 4.79 13.17 10.59 7.44 1.19 1.03 78.01
ECO 0.91 11.46 14.78 21.98 8.23 9.36 4.59 9.81 13.5 3.33 0.96 1.08 78.02
GRNBIO 1.71 10.75 10.51 12.2 33.34 5 3.77 7.89 9.01 3.12 1.46 1.24 66.66
GRNFUEL 0.7 7.24 10.92 15.35 5.59 36.99 2.75 7.26 7.53 3.4 1.12 1.17 63.01
GRNGEO 1.29 8.06 9.2 8.62 5.05 3.27 44.21 8.55 5.89 3.32 1.48 1.06 55.79
GRNREG 1.75 10.43 13.72 10.38 5.74 4.86 4.64 22.92 11.64 11.35 1.43 1.13 77.08
GRNSOLAR 1.09 12.47 11.95 15.31 7.01 5.23 3.82 12.7 24.87 3.31 1.14 1.08 75.13
GRNWIND 1.76 5.91 13.05 6.51 3.8 4.22 3.14 18.28 4.98 36.3 1.17 0.87 63.7
DCRYPT 1.74 2.76 2.49 2.02 2.45 1.42 1.88 3.03 2.23 1.36 50.21 28.43 49.79
CCRYPT 1 2.54 2.23 2.51 2.44 1.74 1.28 2.41 2.13 0.81 29.06 51.86 48.14
TO others 14.39 83.49 103.31 104.62 59.96 48.56 37.68 99.71 83.17 44.75 42.95 39.73 762.32
Inc. own 81.73 109.18 125.29 126.61 93.3 85.55 81.89 122.62 108.03 81.05 93.16 91.59 TOTAL
NET -18.27 9.18 25.29 26.61 -6.7 -14.45 -18.11 22.62 8.03 -18.95 -6.84 -8.41 63.53

90



Figure F.1: Dynamic total return connectedness (TVP-VAR)

Figure F.2: Dynamic directional return connectedness FROM others (TVP-VAR)
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APPENDIX F. RETURN SPILLOVERS ANALYSIS USING TVP-VAR

Figure F.3: Dynamic directional return connectedness TO others (TVP-VAR)

Figure F.4: Total net return connectedness (TVP-VAR)
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Figure F.5: Net pairwise directional return connectedness for DCRYPT (TVP-VAR)

Figure F.6: Net pairwise directional return connectedness for CCRYPT (TVP-VAR)

93





A
P

P
E

N
D

I
X

G
VOLATILITY SPILLOVERS ANALYSIS USING

TVP-VAR

95



A
P

P
E

N
D

IX
G

.
V

O
L

A
T

IL
IT

Y
S

P
IL

L
O

V
E

R
S

A
N

A
L

Y
S

IS
U

S
IN

G
T

V
P

-V
A

R
Table G.1: Average dynamic total volatility connectedness using TVP-VAR

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM
OTHERS

GOLD 35.43 4.21 9.7 10.1 6.18 5.5 2.95 9.13 6.86 6.05 1.92 1.96 64.57
SP500 3.49 25.84 10.81 9.49 11.11 4.57 3.14 13.17 9.48 5.7 2.35 0.87 74.16
SPGTCED 4.78 7.54 18.39 14.03 10.05 7.37 4.82 12.94 10.39 6.87 1.66 1.14 81.61
ECO 4.95 7.97 14.75 17.72 10.6 7.95 4.27 11.47 10.73 6.45 1.74 1.39 82.28
GRNBIO 4.38 10.38 11.74 10.95 21.48 4.53 5.08 12.2 8.78 6.08 2.75 1.66 78.52
GRNFUEL 3.96 4.32 12.98 12.32 6.51 33.73 4.72 8.5 5.33 6.1 0.7 0.84 66.27
GRNGEO 4.23 6.53 11.26 9.87 8.33 4.49 30.87 8.78 6.81 5.86 1.48 1.48 69.13
GRNREG 4.36 9.11 13.96 11.06 9.38 6.72 3.97 18.27 10.01 8.74 2.86 1.56 81.73
GRNSOLAR 4.41 9.38 13.03 12.99 9.72 5.13 3.45 13.23 18.36 6.11 2.64 1.55 81.64
GRNWIND 4.05 4.63 12.9 10.56 7.09 6.75 4.62 15.25 7.63 21.05 3.18 2.29 78.95
DCRYPT 2.51 3.65 3.74 3.56 4.73 1.47 1.07 6.77 4.05 5.2 45.79 17.46 54.21
CCRYPT 1.36 1.66 3.21 3.82 3.04 2.47 1.4 4.6 2.48 2.76 17.92 55.27 44.73
TO OTHERS 42.48 69.4 118.08 108.74 86.74 56.95 39.48 116.05 82.54 65.91 39.22 32.2 857.79
Inc. OWN 77.91 95.24 136.47 126.46 108.22 90.68 70.35 134.32 100.91 86.96 85 87.47 TOTAL
NET -22.09 -4.76 36.47 26.46 8.22 -9.32 -29.65 34.32 0.91 -13.04 -15 -12.53 71.48
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Figure G.1: Dynamic total volatility connectedness (TVP-VAR)

Figure G.2: Dynamic directional volatility connectedness FROM others (TVP-VAR)

97



Figure G.3: Dynamic directional volatility connectedness TO others (TVP-VAR)

Figure G.4: Total net volatility connectedness (TVP-VAR)



Figure G.5: Net pairwise directional volatility connectedness for DCRYPT
(TVP-VAR)

Figure G.6: Net pairwise directional volatility connectedness for CCRYPT
(TVP-VAR)
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AN EXAMINATION OF HERDING IN EMERGING

ASSETS

3.1 Herd Behaviour in Cryptocurrencies

3.1.1 Introduction

It has only been 14 years since the birth of Bitcoin, the first decentralised virtual

currency, and as of the time of writing (November 2022), there are more than

20,000 kinds of crypto products in circulation, and the total market capitalisation is

worth more than 800 billion U.S. Dollar 1. These disruptive currencies are built on

innovative block-chain technology and most of them support numerous fascinating

applications such as smart contracts, file storage and secure transactions, among

others.

Investing in cryptocurrencies can be extremely rewarding, and this is one of the

most attractive features to investors. Taking Bitcoin as an example, it had once

reached a peak price of over 64,000 USD in 2021 from literally nearly zero face

value when it was launched. Such high value of this type of assets brings extremely

volatile nature in return as we see the current price of Bitcoin went back down to

around 17,050 USD. The high uncertainty in the cryptocurrency market always

raises concerns about price bubbles and necessitates more sophisticated trading

skills. In this overall context, investors are very likely to react differently if they
1Obtained from CoinMarketCap at https://www.coinmarketcap.com on Nov 30, 2022.
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trade with their own beliefs, according to rational asset pricing models. However,

similar to many other financial markets, the presence of herd trading in the crypto

market can still be reasonably expected. This refers to investors who tend to follow

the actions or mimic the trading decisions of others, which can be either completely

irrational or somewhat rational [Bikhchandani and Sharma (2001)].

Past studies treat all cryptocurrencies as the same, but these assets are intrin-

sically actually different, especially from a sustainability perspective [Corbet et al.

(2021), Gallersdörfer et al. (2020)]. The energy consumption of activities related

to conventional cryptocurrencies that use Proof-of-Work (PoW) as underlying con-

sensus, such as Bitcoin and Ethereum, is huge and has attracted much negative

commentary 2. Gallersdörfer et al. (2020) estimated the energy consumption of top

20 Proof-of-Work (PoW) based cryptocurrencies beyond Bitcoin. Even by modelling

in a conservative way, their estimates of these cryptos are all exceptionally high.

Both Corbet et al. (2021) and Gallersdörfer et al. (2020) suggested that future regu-

lators and practitioners should distinguish between cryptocurrencies that are built

on energy-intensive or energy-efficient algorithms. In fact, there exist a number of

energy-efficient cryptocurrencies at present, such as Cardano, Ripple, and IOTA

which have or had been the top 10 cryptocurrencies by market capitalisation and

with more being developed. The estimated energy consumption of Cardano, XRP,

IOTA is 0.5479, 0.0079, and 0.00011 KWh per transaction, respectively, signifi-

cantly lower compared to that of Bitcoin—707 KWh per transaction 3. With policy

globally leaning towards greater environmentally conscious actions, more environ-

mentally conscious investors are perhaps likely to switch from energy-intensive

cryptocurrencies to altcoins that are more sustainable.

In this study, we attempt to discover market dynamics of two distinct types of

cryptocurrencies based on their fundamental difference in energy consumption and

efficiency, termed black ("dirty") and green ("clean"), from a narrow perspective—

herding – to establish if there are different patterns. This adds to the behavioural

finance literature on cryptocurrency market from a novel angle. If clean cryptocur-

rencies display different market characteristics from dirty ones, it shows different

market efficiency and manipulation level, and this might provide opportunities

for investors or regulators to consider usage level of cleaner cryptocurrencies. If

the two markets display similar dynamics then, given the larger size of the dirty

2https://digiconomist.net/bitcoin-energy-consumption and https://
digiconomist.net/ethereum-energy-consumption.

3https://www.trgdatacenters.com/most-environment-friendly-cryptocurrencies.
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market it is likely that the still predominantly and at least retail crypto investors

will, at the margin, prefer trading dirty cryptocurrencies.

The remainder of this paper is structured as follows. We review some past liter-

ature in Section 3.1.2. We describe the methodology and data in Section 3.1.3 and

3.1.4, respectively. We discuss the results in Section 3.1.5, followed by Section 3.1.6

where we check the robustness of previous results. Finally, we conclude and address

implications of our study in Section 3.1.7.

3.1.2 Literature Review

A number of papers have investigated the presence of herd behaviour in the cryp-

tocurrency market as well as its possible driving forces. Poyser (2018) is the first

study analysing herd behaviour in cryptocurrency market. They examined the

largest 100 cryptocurrencies by market capitalisation using static regression model

and Markov-switching model. Their results suggest that the herding in cryptocur-

rencies depends on market states. Bouri et al. (2019) examined the herding phe-

nomenon among 14 leading cryptocurrencies using both static and rolling window

regression models. Their follow-up analysis suggest that herding in the market is

time-changing. Youssef (2020) also investigated the presence of the time-varying

behaviour. They discovered several factors that might affect the magnitude of herd-

ing, including the crypto-market volatility and trading volume, the U.S. stock index

price return, the strength of the U.S. dollar, gold price, and the economic policy

uncertainty. Amirat and Alwafi (2020) studied the behaviour of 20 largest cryp-

tocurrencies with the use of a MarketVector Index Solution (MVIS) CryptoCompare

Digital Assets 100 Index as a proxy for the crypto market. Their results showed

that herding is time-varying, and that consumer comfort among the Americans

might be related to the phenomenon.

Current empirical results are not always consistent due to differences in con-

structing the market portfolio, assets under investigation and time frames. For

example, Vidal-Tomás et al. (2019) discovered the existence of herding in cryp-

tocurrency market downturns from 2015 to 2017 using 65 cryptocurrencies. How-

ever, their results of using equal-weighted portfolio are not consistent to value-

weighted approach until they excluded the largest cryptocurrency—Bitcoin. Sim-

ilarly, Kallinterakis and Wang (2019) found significant herding of top 296 cryp-

tocurrencies from December 2013 to July 2018 using equal-weighted portfolio, but

the herding was insignificant and vanished after using value-weighted portfolio
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with and without Bitcoin, respectively. Stavroyiannis and Babalos (2019), on the

other hand, believed that herding did not exist in the cryptocurrency market using

a time-varying parameter regression model. Moreover, while Bouri et al. (2019)

suggested economic policy uncertainty might lead to such behaviour, Youssef (2020)

argued that economic policy uncertainty reduced the herding intensity.

3.1.3 Methodology

We tested the existence of herd behaviour in the clean and dirty cryptocurrency

markets using both cross-sectional standard deviation of returns (CSSD) approach

introduced in Christie and Huang (1995) and the cross-sectional absolute deviation

of returns (CSAD) approach proposed in Chang et al. (2000).

Christie and Huang (1995) suggested that the degree of the dispersion of asset

returns in a market portfolio can be used to detect whether herding exists in that

market, which is calculated as:

CSSDm,t =
√∑N

i=1
(
r i,t − rm,t

)2

N −1
,(3.1)

where N is the number of cryptocurrencies in the clean or dirty crypto portfolio, Ri,t

is the logarithmic return of individual cryptocurrency i in the respective portfolio

at time t, Rm,t is the portfolio return, representing the market return, at time t.

As suggested by Christie and Huang (1995), herd effects in the market usually

lead to low return dispersions of returns as returns are clustering, but low return

dispersions are not necessarily attributable to herding. Hence, it is hard to verify

the presence of herds with the use of the return dispersion (CSSD) during normal

market, but it is reasonable to test the presence of herding under market stress as

rational investors should be sensitive to outliers and react differently to the market

condition, causing the dispersion to increase. In other words, herding should exist

if low dispersion presents during extreme market movements. We followed Christie

and Huang (1995) to examine the herd effects by testing the level of dispersions in

extreme tails of return distribution:

CSSDm,t =α0 +α1DUT
m,t +α2DLT

m,t +εt,(3.2)

where DUT
m,t and DUT

m,t are dummy variables with values of 1 if the market return

at time t is in the upper or lower tails and 0 otherwise. A significantly negative
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coefficient α1 or α2 indicates the presence of herding during extreme up or down

market condition, respectively.

The CSSD approach has drawbacks. For example, it has been criticised being

too sensitive to outliers as it squares the difference between individual and market

returns when calculating the dispersions. More importantly, and it has limited use

in less extreme cases. To improve these, Chang et al. (2000) proposed a alternative

metrics called the cross-sectional absolute deviation of returns to measure the

dispersions, expressed as:

CSADm,t =
∑N

i=1

∣∣r i,t − rm,t
∣∣

N
,(3.3)

A general quadratic regression of CSADm,t on market returns was then built

to discover the presence of herding behaviour in the full sample:

CSADm,t = γ0 +γ1
∣∣Rm,t

∣∣+γ2R2
m,t +εt,(3.4)

As suggested by Chang et al. (2000), herd effects would lead to a non-linear

relationship between CSADm,t and the Rm,t as the linear relationship predicted by

the rational pricing model will no longer hold, which is inferred by a significantly

negative coefficient γ2.

Moreover, it is reasonable to assume that investors may react differently to

upward and downward trends, so we divided the market into up and and down

states to investigate the potential asymmetric herding behaviour in two market

conditions following Chang et al. (2000):

CSADUP
m,t = γ0 +γ1

∣∣∣RUP
m,t

∣∣∣+γ2

(
RUP

m,t

)2 +εt,(3.5)

CSADDOWN
m,t = γ0 +γ1

∣∣∣RDOWN
m,t

∣∣∣+γ2

(
RDOWN

m,t

)2 +εt,(3.6)

where
∣∣∣RUP

m,t

∣∣∣ and
∣∣∣RDOWN

m,t

∣∣∣ are positive and negative market returns, respectively.

Since the dirty cryptocurrencies have been dominating the market for years

especially Bitcoin and Ethereum which share much larger market capitalisation

and greater attention than other folks and any clean cryptocurrencies, we further

tested the possibility that clean cryptocurrency investors may tend to follow the

dynamics of the dirty cryptocurrency market (γ4) rather than their own (γ2):

CSADc,t = γ0 +γ1
∣∣Rc,t

∣∣+γ2R2
c,t +γ3CSADd,t +γ4R2

d,tεt,(3.7)

where subscription c refers to clean cryptocurrencies, while d is for dirty ones.
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Additionally, similar to the methodology used in single market analysis, we

tested the above relationship under asymmetric market conditions. For example,

Equation 3.8 and 3.9 allow us to examine whether clean cryptocurrencies asym-

metrically herd with the dirty cryptocurrencies (γ4 and γ5), and whether this is

conditioned on the market status of dirty crypto market (RUP
d,t and RDOWN

d,t ).

(3.8)
CSADUP

c,t = γ0 +γ1

∣∣∣RUP
c,t

∣∣∣+γ2(RUP
c,t )2 +γ3CSADd,t +γ4DUP

c (RUP
d,t )2

+γ5DUP
c (RDOWN

d,t )2 +εt

(3.9)
CSADDOWN

c,t = γ0 +γ1

∣∣∣RDOWN
c,t

∣∣∣+γ2(RDOWN
c,t )2 +γ3CSADd,t

+γ4DDOWN
c (RUP

d,t )2 +γ5DDOWN
c (RDOWN

d,t )2 +εt

where dummy variables DUP
c,t and DDOWN

c,t are equal to 1 when clean crypto market

return at t is positive or negative, respectively.

3.1.4 Data

We manually collected daily closing price data for 6 major "dirty" (Bitcoin, Ethereum,

Bitcoin Cash, Ethereum Classic, Litcoin, and Monera) 4 and 12 "clean" cryptocur-

rencies (Cardano, Ripple, Polygon, Algorand, Stellar, VeChain, TRON, Cosmos,

Hedera, Tezos, EOS, and IOTA) 5 ranked in the top 50 by market capitalisation

4Dogecoin was not selected because: 1. Dogecoin was originally created as a meme coin without
other uses; 2. its energy consumption is debated as Dogecoin can be mined in parallel with other
coins such as Litecoin without using additional power, which makes it actual energy consumption
hard to define and estimate; 3. it has been clearly, highly and temporarily influenced/boosted by
Musk’s social media comments, which will distract the results of the other cryptocurrencies.

5The “clean” cryptos are selected based on the market capitalisation status as well as recent
media attention. We first screened the most frequently discussed energy-efficient cryptos on
the internet, examples are on https://www.leafscore.com/blog/the-9-most-sustainable-
cryptocurrencies-for-2021/ (retrieved in November of 2021), https://finance.yahoo.com/
news/15-environmentally-sustainable-cryptocurrencies-invest-224849569.html,
https://www.thetimes.co.uk/money-mentor/article/eco-friendly-cryptocurrencies/,
etc. Second, we excluded cryptos that were not in top 50 or did not have a full two-year data when
we conducted the analysis. In this process, Solana, Polkadot, Avalanche, Chia, and some others
were not considered as they came to the market much later. Binance Coin was not selected as it
shares a completely different nature as a derivative of the Binance Exchange, historically built on
Ethereum blockchain, and began to support its own staking in 2020. IOTA was the last pick and
the smallest player which ranked 48th when we conducted this analysis. However, it ranked as 18th

largest cryptocurrency as of November 3, 2019.
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6 from CoinMarketCap, spanning from 1 November 2019 to 1 November 2021
7. Similar to the definition in the last chapter, the dirty cryptocurrencies are so

termed based on their reliance on PoW algorithms for consensus which requires

tremendous energy inflows to support mining and transaction activities, while

clean cryptocurrencies are built on different kinds of energy-efficient consensus

algorithms, including Proof-of-Stake (PoS), Proof-of-Authority (PoA), Ripple Pro-

tocol, Stellar Protocol, and some other alternatives. We calculated the respective

value-weighted portfolio returns based on end of day market capitalisation of these

assets.

3.1.5 Results

Table 3.1 reports the estimation results of herding using the CSSD approach using

5% extreme tails 8. The α1 and α2 for both clean and dirty crypto portfolios are

significantly positive, which indeed indicates that no herfing effect is found during

the periods of extreme market movements in either of markets.

Table 3.1: Regression results of CSSDm,t on dummy variables of value-weighted
average market return extremes

Market α0 α1 α2
0.0427*** 0.0478*** 0.0210***

Clean crypto (0.0000) (0.0000) (0.0000)
0.0251*** 0.0168*** 0.0247***

Dirty crypto (0.0000) (0.0000) (0.0000)

Notes:
1. Equation 3.2.
2. *** denotes the rejection of the null hypothesis at the 1% significance level.

From the CSAD approach we obtained opposite results to those in the CSSD

approach with respect to different types of cryptocurrencies as shown in Table

3.2. Specifically, herding behaviour only exists in the dirty cryptocurrency market,

captured by a significantly negative coefficient of the R2
m,t term (-0.3048***).

6On 5 November 2021 when we retrieved the data.
7As we define “dirty” and “clean” cryptocurrencies based on their energy consumption, we prefer

using coins than tokens as tokens using others’ blockchain technology are not that comparable to
coins such as Bitcoin on energy issues. We excluded stablecoins also because their volatilities are
slight on a daily basis.

8Our results remain robust for 1% and 10% extreme tails, albeit the 1% sample is small. All
results are available upon request.
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Table 3.2: Regression results of CSADm,t on unconditional value-weighted
average market returns

Market γ0 γ1 γ2
Clean crypto 0.0228*** 0.2160*** 0.3641***

(0.0000) (0.0000) (0.0009)
Dirty crypto 0.0124*** 0.2598*** -0.3048***

(0.0000) (0.0000) (0.0017)

Notes:
1. Equation 3.4 was used;
2. *** denotes the rejection of the null hypothesis at the 1% significance level.

Results from Table 3.3 confirms that the degree of herding varies from market

conditions. Herding behaviour in dirty cryptocurrency market only presents in down

markets as only the coefficient of
(
RDOWN

m,t

)2
is significantly negative (-0.4350***).

No evidence of herding is found in either rising and falling clean cryptocurrency

markets as γ2s are significantly positive, which is consistent with the previous

results with the use of a generalised formula.

Table 3.3: Regression results of CSADm,t on asymmetric value-weighted average
market returns

Market γ0 γ1 γ2
Panel A: Positive market returns
Clean crypto 0.0237*** 0.2158*** 0.9890***

(0.0000) (0.0000) (0.0004)
Dirty crypto 0.0147*** 0.0981* 0.9925*

(0.0000) 0.0975 (0.0587)
Panel B: Negative market returns
Clean crypto 0.0248*** 0.0476 0.6666***

(0.0000) (0.1880) (0.0000)
Dirty crypto 0.0117*** 0.3141*** -0.4350***

(0.0000) (0.0000) (0.0010)

Notes:
1. Equation 3.5 and 3.6 were used in Panel A and B, respectively;
2. *** and * denote the rejections of the null hypothesis at the 1% and 10% significance
levels, respectively.

So far, evidence indicates that there are herds in dirty cryptocurrencies, but not

in clean cryptocurrencies. However, interestingly, we found that the performance in

dirty cryptocurrency market does affect investors’ behaviour in clean cryptocurrency

market. As presented in the Panel A of Table 3.4, although investors do not herd in
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clean cryptocurrencies as γ2 is significantly positive (0.6927***), they herd with

information provided in price movements of dirty cryptocurrency, captured by

a negative and statistically significant coefficient γ4 (-0.3852***). Specifically, if

we look at the Panel B and C, we find that clean cryptocurrency investors only

herd towards dirty crypto market when both markets are positively rewarded as

only coefficient γ4 in the Equation 3.8 is significantly negative (-1.6619***). We

cannot conclude that clean crypto investors herd with the dirty crypto market when

both markets are falling as γ5 in the Equation 3.9 is negative but not statistically

significant. Nevertheless, it can be observed that when the two markets diverge, the

behaviour of clean crypto investors is more likely to be driven by the performance

of dirty cryptocurrencies as the values of γ5 (7.4689***) and γ4 (3.2001**) are much

larger than those of γ2 (0.7762*** and 0.7358***) in Panel B and C, respectively.

Table 3.4: Regression results of CSADc,t on unconditional and asymmetric
value-weighted market returns

Market γ0 γ1 γ2 γ3 γ4 γ5
Panel A: Unconditional market returns
Clean crypto 0.0231*** 0.1770*** 0.6927*** 0.0417 -0.3852***

(0.0000) (0.0000) (0.0000) (0.3290) (0.0001)
Panel B: Positive market returns
Clean crypto 0.0202*** 0.2849*** 0.7762*** 0.1801*** -1.6619*** 7.4689***

(0.0000) (0.0000) (0.0032) (0.0009) (0.0000) (0.0001)
Panel C: Negative market returns
Clean crypto 0.0240*** 0.0412 0.7358*** 0.0255 3.2001** -0.0852

(0.0000) (0.2919) (0.0000) (0.6831) (0.0189) (0.4389)

Notes:
1. Equation 3.7, 3.8, and 3.9 were used in Panel A, B and C, respectively;
2. *** and ** denote the rejections of the null hypothesis at the 1% and 5% significance
levels, respectively.

3.1.6 Robustness check

We have shown a difference in herding patterns in dirty and clean cryptocurrency

markets, taking into account the size effect [Kallinterakis and Wang (2019); Vidal-

Tomás et al. (2019)] by using value-weighted portfolios . However, emphasizing

weights on large participants may diminish the effects of noisy movements created

by small ones. To ensure that our results are robust, we re-performed tests using

equal-weighted portfolios of dirty and clean cryptocurrencies.
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For the clean crypto market, results are consistent with previous findings when

we employed the CSSD approach (Table 3.5). When we applied the CSAD approach,

results became slightly different. Specifically, the γ2 for clean cryptocurrency be-

comes negative (-0.1007) but not statistically significant (see Table 3.6). Such

change results probably because the relation between CSADUP
c,t and RUP

c,t )2 is no

longer significantly positive but insignificantly negative (-0.2259). Another minor

difference is that the γ2 and γ4 in the Panel C of Table 3.8 are not statistically

significant anymore.

Moreover, the signs of γ2 and γ5 are changed, which indicates the dispersions of

clean crypto returns are affected by dirty crypto price movements which however

makes sense as we have weakened the influence of larger participants on market

returns. Regarding dirty crypto market, results are same.

Overall, we can draw the same conclusions in regard to herding regardless of

using either equal-weighted or value-weighted portfolios as our market proxy.

Table 3.5: Regression results of CSSDm,t on dummy variables of equal-weighted
average market return extremes

Market α0 α1 α2
0.0395*** 0.0429*** 0.0228***

Clean
crypto

(0.0000) (0.0000) (0.0000)

0.0200*** 0.0302*** 0.0143***
Dirty
crypto

(0.0000) (0.0000) (0.0000)

Notes:
1. Equation 3.2 was used.
2. *** denotes the rejection of the null hypothesis at the 1% significance level.
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Table 3.6: Regression results of CSADm,t on unconditional equal-weighted average
market returns

Market γ0 γ1 γ2
0.0219*** 0.2344*** -0.1007

Clean
crypto

(0.0000) (0.0000) (0.1990)

0.0091*** 0.2496*** -0.2761***
Dirty
crypto

(0.0000) (0.0000) (0.0000)

Notes:
1. Equation 3.4 was used;
2. *** denotes the rejection of the null hypothesis at the 1% significance level.

Table 3.7: Regression results of CSADm,t on asymmetric equal-weighted average
market returns

Market γ0 γ1 γ2
Panel A: Positive market returns

0.0212*** 0.3341*** -0.2259
Clean
crypto

(0.0000) (0.0000) (0.6210)

0.0107*** 0.1822*** 0.8053**
Dirty
crypto

(0.0000) 0.0002 (0.0137)

Panel B: Negative market returns
0.0219*** 0.1269*** 0.1354*

Clean
crypto

(0.0000) (0.0000) (0.0946)

0.0094*** 0.1720*** -0.1387**
Dirty
crypto

(0.0000) (0.0000) (0.0140)

Notes:
1. Equation 3.5 and 3.6 were used in Panel A and B, respectively;
2. ***, ** and * denote the rejections of the null hypothesis at the 1% 5%, and 10%
significance levels, respectively.
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Table 3.8: Regression results of CSADc,t on unconditional and asymmetric equal-weighted
market returns

Market γ0 γ1 γ2 γ3 γ4 γ5
Panel A: Unconditional market returns

0.0200*** 0.1598*** 0.8967*** 0.2419*** -
0.8952***

Clean
crypto

(0.0000) (0.0000) (0.0000) (0.0002) (0.0000)

Panel B: Positive market returns
0.0161*** 0.2707*** 1.2907** 0.4120*** -

1.9123***
14.4398***

Clean
crypto

(0.0000) (0.0000) (0.0102) (0.0000) (0.0000) (0.0000)

Panel C: Negative market returns
0.0208*** 0.1234*** -0.0319 0.0689 2.2970 0.1604

Clean
crypto

(0.0000) (0.0003) (0.9196) (0.3504) (0.2118) (0.5752)

Notes:
1. Equation 3.7, 3.8, and 3.9 were used in Panel A, B and C, respectively;
2. *** and ** denote the rejections of the null hypothesis at the 1% and 5% significance levels,
respectively.

3.1.7 Conclusion

The environmental sustainability of cryptocurrencies is a subject of significant

debate. We distinguished cryptocurrencies by their estimated energy consumption

and analysed the market dynamics of both non-sustainable cryptocurrencies such

as Bitcoin, Ethereum, Monera, etc and more sustainable cryptocurrencies including

Cardano, Ripple, Stellar, etc, from the angle of herding. We found compelling

evidence of herd behaviour in dirty cryptocurrencies following the approaches of

Chang et al. (2000), which is asymmetric and more pronounced in down than in up

markets. More interestingly, although we did not find herds present in clean crypto

market themselves, we did find that clean crypto investors herd to dirty crypto

markets, especially when both markets are positive. In other words, investors in

clean cryptocurrencies tend to follow the actions of dirty crypto investors in up

markets, even as the set of clean cryptocurrencies is expanding and a significant

number of the most valuable cryptocurrencies are clean coins. These results are

robust across value- and equal-weighted portfolios. Overall, findings suggest that

policy efforts to shift investors towards cleaner cryptocurrencies may founder for so

112



3.2. HERD BEHAVIOUR IN CHINESE RENEWABLE ENERGY STOCKS

long as dirty cryptocurrencies remain dominant in size and salience.

3.2 Herd Behaviour in Chinese Renewable
Energy Stocks

3.2.1 Introduction

Climate change is one of the greatest challenges nowadays, which has been threat-

ening and disrupting the lives of humans and other creatures. Easing carbon

emissions by reducing the use of fossil based energy is an effective approach to

slowing down the global warming. Renewable energy sources as substitutes for

fossil energy have received increasing policy support in the development because of

its substantial benefits to the environment. Over the last twenty years, we have

seen a booming growth in renewable energy usage. Even during the COVID-19

outbreaks, global adoption and market growth of renewable energy has been re-

silient and has continued to peak higher [Hannah Ritchie and Rosado (2020)]. As

introduced in previous chapter, many financial service companies have created

a wide range of clean energy related equity indices to capture the movements

of publicly quoted clean energy related companies. Much research has emerged

analysing their usefulness as portfolio components against conventional markets or

products [examples include Shahbaz et al. (2021), Ahmad and Rais (2018), Kuang

(2021), etc].

In this chapter, we move on to examine the investor behaviour in the Chinese

renewable energy sector from the perspective of herding. Herding, again, refers

to the behaviour whereby investors do not rely on their own analysis, mimic and

follow others’ trading actions in financial markets, which can easily push or drag

price away from intrinsic values. There have been extensive studies of herding. See

as examples in global equities [Christie and Huang (1995), Chang et al. (2000),

Chiang and Zheng (2010), Zheng et al. (2015), Clements et al. (2017), Tan et al.

(2008), etc], options [Bernales et al. (2020)], commodity [Demirer et al. (2015),

Kumar et al. (2021), Youssef (2022a), Aytaç et al. (2018), Adrangi and Chatrath

(2008), etc], and cryptocurrency markets [Bouri et al. (2019), Kallinterakis and

Wang (2019), Vidal-Tomás et al. (2019), etc].

Evidence from many previous studies suggests that herding is subject to inter-

nal and external market conditions, and is thus intrinsically time-varying. Extant
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literature has shown that herding is asymmetric and the intensity varies between

market states [Chang et al. (2000), Kizys et al. (2021), etc]. Some studies have sug-

gested that herding may be more pronounced during periods of stress or heightened

market uncertainty [for example, see Bikhchandani and Sharma (2000); Aharon

(2021)]. Kizys et al. (2021) provided fresh evidence that investors tended to herd

in stock markets during the first wave of Covid-19 as Covid-19 brought severe

global economic uncertainty. Moreover, markets are interconnected [Chiou and Lee

(2009); Choi and Hammoudeh (2010)]. Investors behaviour is likely to be affected

by the performance of other associated markets [BenMabrouk and Litimi (2018);

Youssef (2022b)]. For example, Balcilar et al. (2014) studied the impact of U.S. stock

market and WTI oil volatilities on herd behaviour in Gulf Cooperation Council coun-

tries’ stock markets. Economou et al. (2018), Youssef (2022b), and Youssef (2022a)

analysed how external factors affect herd behaviour in stock, cryptocurrency, and

commodity markets, respectively. Chiang and Zheng (2010) found that U.S market

performance significantly influenced the behaviour in other global markets.

Despite this, there have been relatively few papers on herd effects at the sectoral

level [BenMabrouk and Litimi (2018)], especially for renewable energy market. To

the best of our knowledge, only three studies have paid attention to this emerg-

ing sectoral market, and only one has looked into the situation in China. This is

remarkable when one considers that China has for years been the world leader

in the renewable energy industry [Chiu (2017), Pan (2022)] as policy makers in

China have treated it as a priority for socioeconomic development. China has com-

mitted to hit peak emissions before 2030 and finally achieve carbon neutrality

by 2060. According to data released by Organisation for Economic Co-operation

and Development (OECD), China has been the largest producer of two primary

renewable energy sources, wind and solar energy, and the largest investors in

the renewable energy industry internationally 9. China also remains the largest

producer and exporter of electric vehicles, accounting for more than 50% shares of

global production and sales of electric vehicles 10. The support and promotion from

the Chinese government greatly stimulated the growth of these renewable energy

companies. We believe that the emerging Chinese stock market is truly worth

investigating. Historically, Chinese market has been criticised for having high infor-

9More information can be retrieved from their website https://data.oecd.org/energy/
renewable-energy.htm.

10https://thedriven.io/2022/02/08/china-regains-dominance-of-global-ev-market-
with-53-of-global-sales-in-2021/.
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mation asymmetry and market manipulation rates, low governance transparency,

and low quantity and quality of information disclosed by the companies. Besides,

Geretto and Pauluzzo (2012) added that the current regulation for Chinese equity

market is excessive, making the market even less efficient and accessible than

the other mature markets, such as the United States. These problems exacerbate

market inefficiency, and may lead to herding.

Our study therefore contributes to the literature in several ways. First, we

add to the scant literature on herding behaviour in the Chinese renewable energy

industry. We find compelling evidence that Chinese investors significantly herd in

these stocks, which contradicts the findings by Shen (2018). Second, we document

significant general stock market effects on such behaviour among Chinese investors.

Third, we use both static and time-varying coefficient models and consider a size

effect in calculating and verifying the results, which reinforces the methodological

framework in this area. Finally, our study provides implications for the investors,

analysts and regulators in the Chinese financial market. While China has ambi-

tions to lead the global renewable energy production and investments, particular

attention is required to stabilise the local financial market and improve the market

efficiency.

The remainder of this paper is structured as follows. We review some past

research in Section 3.2.2. We explain the methods in Section 3.2.3, followed by

Section 3.2.4 where we describe the data. We discuss the results in Section 3.2.5

and present robustness checks in Section 3.2.6. Finally, we conclude and address

implications of our study in Section 3.2.7.

3.2.2 Literature review

Numerous scholars have dedicated considerable effort to studying the behaviour

of market participants and its impact on asset prices. One strand of literature

focuses on the herding phenomenon. Despite the fact that the efficient market hypo-

thesis [Samuelson (1965); Fama (1965, 1970)] is commonly applied as a heuristic

in financial analysis, investors are observably likely to suppress their personal

research base and simply copy the actions of others. Such behaviour, herding, can

be either rational or completely irrational [Bikhchandani and Sharma (2000)].

There are different approaches to determining whether herd effects present, and

our method derives from Christie and Huang (1995). Christie and Huang (1995)

proposed that the dispersion level of asset returns in a market portfolio, measured
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by the cross-sectional standard deviation of returns (CSSD), can be used to detect

the existence of herd effect in the market. They defined that if investors react

individually based on their own views and do not herd around the market con-

sensus, dispersion should be relatively high, according to rational asset pricing

models. However, since their model based on the CSSD measure is linear, it can

be interpreted as showing co-movements of returns instead of herding. In other

words, herds are not necessarily attributes to low dispersions. Moreover, the con-

duct of this examination is restricted under extreme market circumstances, so it

is unable to detect the behaviour in normal times. To improve this, Chang et al.

(2000) suggested using the cross-sectional absolute deviation of returns (CSAD) to

measure the dispersions and introduced a non-linear term to break rational asset

pricing models and capture the presence of herding. The approach of Chang et al.

(2000) is considered an improvement of the previous one and both of the two have

been widely employed in later research in this area. Both models have been widely

applied in research.

The literature offers a extensive list of studies on herding. For example, Chang

et al. (2000) investigated asymmetric herd behaviour in international stock mar-

kets, where only in emerging markets such as South Korea and Taiwan it was

significantly evidenced. Bernales et al. (2020) documented the presence of herd-

ing in the U.S. equity options market, and found that it was driven by increased

volatility, position change, and information inflows. Bouri et al. (2019) studied the

herd behaviour in the cryptocurrency market represented by 14 large coins and

discovered that such behaviour is time-varying using a rolling window analysis.

Demirer et al. (2015) analysed whether the volatility of the stock market has an

impact on the herding phenomenon in the commodity market.

While most studies focus on the aggregated stock and commodity markets,

some have examined equity sectors. For example, Litimi et al. (2016) examined the

herding behaviour in U.S. listed companies across twelve NASDAQ sectors from

1985 to the end of 2013. The presence was only found in the public utilities and

transportation sectors in general, albeit it might be induced in other sectors such

as energy, health care, technology, etc by trading volume changes. Ukpong et al.

(2021) paint a different picture by using ten Thompson Reuters Datastream sectors

finding from 1990 to 2020 that herding was only found in financials, industrials

and real estate. Similarly, Zheng et al. (2017) studied 10 sectors across 9 Asian

markets and the US from 1993 to 2013. However, the number of studies on the
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renewable energy market is still rare, and their results are mixed. Shen (2018)

applied tests on different energy sectors of the Chinese stock market. The author

showed that herd behaviour presented in most sectors but not in the new energy

and nuclear energy. Trück and Yu (2016) performed tests on 170 U.S. renewable

energy companies that are included in indices. They showed that investors did

not herd in most cases, except that the market was generally positive during a

short period in 2008 when the oil market was experiencing sharp decreases. Chang

et al. (2020), on the other hand, extended the works of Trück and Yu (2016) to the

Europe and Asia markets and further analysed the dynamics in sub-periods of the

2008 global financial crisis, SARS, and COVID-19 by 2020 May end. Their results

confirmed the absence of herd behaviour in the local renewable energy sector in

these markets, and highlighted the external information from the oil and the fossil

energy markets to the behaviour in renewable energy markets. Overall therefore

the results to date are mixed.

3.2.3 Methodology

3.2.3.1 Base econometric models

Our initial and base econometric model for herd testing is the cross-sectional

absolute deviation of returns (CSAD) approach by Chang et al. (2000), which has

been already used in the previous essay.

We used the cross-sectional absolute deviation of returns in measuring the

dispersions of the Chinese renewable energy stock returns, expressed as:

CSADm,t =
∑N

i=1

∣∣r i,t − rm,t
∣∣

N
,(3.10)

where N is the number of renewable energy stocks, Ri,t is the logarithmic return of

individual renewable energy stock i on day t, Rm,t is the average market return on

day t.
Similarly, a general quadratic regression of CSADm,t on variants of market

returns was then built to uncover the presence of herding during the sample period

(Eq. 3.11). Eq. 3.11 is a modification of previous Chang et al. (2000) approach

as we included a Rm,t term on the right-hand side following Chiang and Zheng

(2010). This form enables us to account for asymmetric investor behavior in various

market scenarios 11. As suggested, the rational pricing model predicts a linear
11Please refer to Chiang and Zheng (2010) and Duffee (2001) for more details.
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relationship between dispersions and returns and herding is detected when a non-

linear relationship between CSADm,t and the Rm,t is found so that the dispersion

of individual returns decreases or increases at a nonproportional rate towards the

market returns during periods of high volatility. This is inferred by a significantly

negative coefficient γ3.

CSADm,t = γ0 +γ1Rm,t +γ2
∣∣Rm,t

∣∣+γ3R2
m,t +εt,(3.11)

Additionally, to avoid serial correlation between variables, we added a one-day

lagged dependent variable (CSADm,t−1) to Eq. 3.11 just as Eq. 3.12, following Yao

et al. (2014) and Alhaj-Yaseen and Rao (2019). Besides, the statistical inference

is based on Newey and West (1994) standard errors to further account for het-

eroskedasticity and serial autocorrelation in the error terms 12. We followed Chiang

and Zheng (2010) to test the presence of herd behaviour twice to ensure robustness;

we first tried using a constraint, γ1 = 0, to make equations more consistent with

that in Chang et al. (2000), followed by a second test of easing the restriction.

CSADm,t = γ0 +γ1Rm,t +γ2
∣∣Rm,t

∣∣+γ3R2
m,t +γ4CSADm,t−1 +εt,(3.12)

Moreover, we analysed whether such behaviour is asymmetric under different

market status using a nested model (Eq. 3.13), following Chang et al. (2000) and

Chiang and Zheng (2010) 13. We classified the market returns into positive and

negative returns using dummy variables and evaluated the intensity of herd or

anti-herd effect under the two market conditions.

(3.13)
CSADm,t = γ0 +γ1Dm,upRm,t +γ2Dm,downRm,t +γ3Dm,upR2

m,t

+γ4Dm,downR2
m,t +γ5CSADm,t−1 +εt

where Dm,up and Dm,down are dummy variables with values of 1 if the return of the

equally-weighted market portfolio at time t is positive and negative, respectively.

A significantly negative coefficient γ2 or γ3 indicates that herding in renewable

energy market exists in up or down market, respectively.

12Specifically, we used a Bartlett kernel based HAC covariance estimation using AR(1)
prewhitened residuals and automatically selected bandwidth by Newey and West (1994).

13Check Alhaj-Yaseen and Rao (2019) and Kumar (2020) for more examples
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The above econometric models examine the presence of herd effects in general,

which presumes the persistence of parameter in the whole sample period. However,

this is usually not the case for time series data. Thus, following the approach in

Bouri et al. (2019) and Evrim Mandaci and Cagli (2022), we applied the multiple

breakpoint test proposed by Bai and Perron (2003) on Eq. 3.12 to detect structural

breaks in the full period, which allows us to re-estimate the coefficients for different

short time periods based on the dates detected.

3.2.3.2 Time-varying autoregressive model

The Bai and Perron (2003) multiple breakpoint test mentioned in the last section

can estimate break points by minimising the global sum of squared residuals. How-

ever, this method does not allow us to track the time-varying transition from herd to

anti-herd and vice versa. We therefore employed the Time-Varying Autoregressive

(TV -AR) model to verify again the results obtained using previous models.

As a starting point, we first introduce the AR(p) model which is written as, in

general:

(3.14) yt = γ0 +γ1 yt−1 + . . .+γp yt−p +εt,

where p is the lag order of the dependent variable.

In above model (Eq. 3.14), yt only depends on its own lags. However, there are

other exogenous variables in our case, such as the Rm,t,
∣∣Rm,t

∣∣, R2
m,t. Hence, we

rewrite the equation as:

(3.15) yt =β0 +β1 yt−1 + . . .+βp yt−p +γ1x1t + . . .+γdxdt +εt,

The TV -AR(p) model fits the AR(p) model with time-varying coefficients. To

calculate the coefficients, we view the TV -AR(p) model as a special case of TV
linear regression model which has a general form of:

(3.16) yt =β (zt) X ′
t +εt, t = 1, . . . ,T,

where yt is the dependent variable, εt is the error term, X ′
t is a vector of independent

variables, and β (zt) is the vector of time-varying coefficents which is a function

of zt, a rescaled changing time period (t/T) or a random variable at time t. We

combined both ordinary least squares estimator and the local polynomial kernel
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estimator (in our case, we used the Nadaraya–Watson estimator) to minimise the

following 14:

(3.17)
(
β̂ (zt) , β̂(1) (zt)

)
= argmin

θ0,θ1

T∑
t=1

[
yt − x>t θ0 − (zt − z) x>t θ1

]2
Kb (zt − z)

where b is the bandwidth, K(·) is the kernel function which in our case is the

Triweight kernel for weights calculation.

Note that, for TV -AR(p), the regressors in Eq. 3.16 also contain p lagged value

of the response variable. We re-write the equation in a more intuitive way as:

(3.18)
yt =β0 (zt)+β1 (zt) yt−1 + . . .+βp (zt) yt−p +γ1 (zt) x1t

+ . . .+γd (zt) xdt +εt, for t = 1, . . . ,T.

For consistency, we used p = 1 so that our independent variables include a

one-day lagged dependent variable (CSADm,t−1) and exogenous variables Rm,t,∣∣Rm,t
∣∣, R2

m,t. Ultimately, our model is specified below (Eq. 3.19).

(3.19)
CSADm,t = γ0 (zt)+γ1 (zt)Rm,t +γ2 (zt)

∣∣Rm,t
∣∣+γ3 (zt)R2

m,t

+γ4 (zt)CSADm,t−1 +εt, for t = 1, . . . ,T.

where all γ coefficients are time-varying.

3.2.4 Data

We collected daily price data and the year-end market capitalisation data for the

constituents of the China Securities Index Co., Ltd. (CSI) New Energy Index.

CSI company is a leading Chinese financial market index provider that is jointly

funded and supported by the Shanghai Stock Exchange and the Shenzhen Stock

Exchange. The CSI has managed more than 5000 indices, providing benchmarks

for domestic and international markets, with focus on China Mainland and Hong

Kong markets. The CSI New Energy Index includes 80 major companies involved

in renewable energy production, applications, storage and interaction devices, or

other new energy service, which represents the overall performance of the Chinese

renewable or new energy industry. We also collected the CSI 300 Index price data, a

benchmark for the overall performance of the China A-share market, which tracks

the top 300 Chinese companies in terms of market capitalisation and liquidity

listed on either the Shanghai Stock Exchange or the Shenzhen Stock Exchange .
14See Casas and Fernandez-Casal (2019) for more clarifications
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All data were sourced from Bloomberg Database, spanning from 5 January 2015

to 29 April 2022. Note that prices are denominated in the Chinese Yuan and were

transformed to their first-differenced natural logarithms as log-returns before use.

3.2.5 Results

3.2.5.1 Full and sub- samples analysis

The coefficient estimates of general herd effects in the Chinese renewable energy

market are reported in Table 3.9. As we mentioned earlier, we tested the presence

of herd effect twice for robustness; we first imposed a constraint, γ1 = 0, to make

Eq. 3.12 more consistent with that in Chang et al. (2000) and then we eased the

constraint for the second time. We found that herding does exist in the market as

all γ3 for R2
m,t are significantly negative (-3.2483*** when γ1 = 0 and -3.7699***

when γ1 6= 0) in the full sample analysis, which contradicts the results reported by

Shen (2018) who concluded that Chinese investors do not herd in the new energy

industry, which is reasonable as they only analysed the market in 2015.

Table 3.9: Regression results of CSADm,t on unconditional renewable energy
market returns

CSADm,t Const. Rm,t
∣∣Rm,t

∣∣ R2
m,t CSADm,t−1

Full sample 0.0059*** 0.3073*** -3.2483*** 0.5161***
(0.0000) (0.0000) (0.0000) (0.0000)

0.0056*** -0.0365*** 0.3332*** -3.7699*** 0.5256***
(0.0000) (0.0004) (0.0000) (0.0000) (0.0000)

Notes:
1. Eq. 3.12: CSADm,t = γ0 +γ1Rm,t +γ2

∣∣Rm,t
∣∣+γ3R2

m,t +γ4CSADm,t−1 +εt was used;
2. The data range is from 05/01/2015 to 29/04/2022;
3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively.

We continued to test the herding intensity in asymmetric market states. The

coefficient estimates of asymmetric herd behaviour in the up and down Chinese

renewable energy market are reported in Table 3.10. Consistent with previous re-

sults, the values of both herding coefficients γ3 and γ4 are negative and statistically

significant, which implies the herding in Chinese renewable energy market has ex-

isted in the study period regardless of the market conditions. In addition, evidence

show that the herd effects are generally more profound in the up (-4.1552***) than
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in the down (-3.6424***) conditions, which is consistent with the general findings

of Chinese equity market by Chiang and Zheng (2010).

Table 3.10: Regression results of CSADm,t on asymmetric renewable energy
market returns

CSADm,t Const. DupRm,t DdownRm,t DupR2
m,t DdownR2

m,t CSADm,t−1
Full sample 0.0056*** 0.3136*** -0.3634*** -4.1552*** -3.6424*** 0.5253***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Notes:
1. Eq. 3.13: CSADm,t = γ0 + γ1Dm,upRm,t + γ2Dm,downRm,t + γ3Dm,upR2

m,t + γ4Dm,downR2
m,t +

γ5CSADm,t−1 +εt was used;
2. The data range is from 05/01/2015 to 29/04/2022;
3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively.

Given behaviour can be changing over time, we tested Eq. 3.12 for candidate

breakdates using Bai and Perron (2003) approach. Five structural breaks were

selected by most metrics, which are 07/03/2016, 10/04/2017, 26/06/2018, 22/11/2019,

and 05/01/2021 (Appendix H.0.1) 15. We then re-tested the presence of herding in

different timeframe based on these breakpoints using the Eq. 3.12. Results are

reported in Table 3.11. We found interesting evidence that significant herding only

existed in the period from 05/01/2015 to 07/03/2016 (sub-sample 1) and 05/01/2021

to 29/04/2022 (sub-sample 6), where the intensity was stronger in the former than

the latter period. These, again, contradict the results reported by Shen (2018) who

concluded that Chinese new energy investors do not herd in 2015. There was no

significant herding in the rest of periods. However, one might argue that in these

period weak herding might exist as although Chang et al. (2000) did not propose

the definition of weak herd behaviour, Zheng et al. (2017) and Bouri et al. (2019),

among others, suggested, qualitatively, so-called weak herding is because it is less

significant and/or having a lower negative herding coefficient.

15We note that the Chinese new energy industry had experienced sharp rises and falls in 2015
and early 2016 till the first breakdate. The market was bearish for a long time and kept trending
lower from 2018 till early 2019, and started recovering in late 2019, which is close to our penultimate
breakdate. After around our last breakdate which is the first day after the public holiday of the New
Year’s Day, the market has frequently spiked to new records, although fell sharply in the following
month, recovered quickly and peaked in the fourth quarter of 2021 and started to fall.
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Table 3.11: Regression results of CSADm,t on unconditional renewable energy

market returns in sub-samples

CSADm,t Const. Rm,t
∣∣Rm,t

∣∣ R2
m,t CSADm,t−1

Sub-sample 1 0.0144*** 0.2297*** -2.8764*** 0.2714***

(0.0000) (0.0145) (0.0019) (0.0022)

0.0132*** -0.0919*** 0.3511*** -4.8017*** 0.2976***

(0.0000) (0.0000) (0.0001) (0.0000) (0.0003)

Sub-sample 2 0.0075*** 0.2103** -0.1899 0.3251***

(0.0000) (0.0106) (0.9075) (0.0000)

0.0074*** -0.0292* 0.2233*** -0.4367 0.3294***

(0.0000) (0.0586) (0.0074) (0.8013) (0.0000)

Sub-sample 3 0.0098*** 0.3076*** -0.1264 0.1647***

(0.0000) (0.0000) (0.8895) 0.0062

0.0098*** 0.0003 0.3074*** -0.1185 0.1645***

(0.0000) (0.9793) (0.0000) (0.8966) 0.0065

Sub-sample 4 0.0077*** 0.0810** -0.1744 0.4452***

(0.0000) (0.0276) (0.7438) (0.0000)

0.0076*** -0.0286** 0.0954*** -0.5350 0.4453***

(0.0000) (0.0487) (0.0087) (0.3333) (0.0000)

Sub-sample 5 0.0095*** 0.2160*** -1.6491 0.4142***

(0.0000) (0.0013) (0.1032) (0.0000)

0.0097*** 0.0237 0.1868*** -1.1564 0.4124***

(0.0000) (0.1140) (0.0014) (0.1878) (0.0000)

Sub-sample 6 0.0054*** 0.2494*** -2.7000*** 0.6414***

(0.0000) (0.0000) (0.0001) (0.0000)

0.0054*** 0.0097 0.2487*** -2.6832*** 0.6394***

(0.0000) (0.4360) (0.0000) (0.0001) (0.0000)

Notes:

1. Eq. 3.12: CSADm,t = γ0+γ1Rm,t+γ2
∣∣Rm,t

∣∣+γ3R2
m,t+γ4CSADm,t−1+εt

was used;

2. The range of sub-sample 1 is from 05/01/2015 to 07/03/2016; The range

of sub-sample 2 is from 07/03/2016 to 10/04/2017; The range of sub-sample

3 is from 10/04/2017 to 26/06/2018; The range of sub-sample 4 is from

26/06/2018 to 22/11/2019; The range of sub-sample 5 is from 22/11/2019 to

05/01/2021; The range of sub-sample 6 is from 05/01/2021 to 29/04/2022.

3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%,

and 10% significance levels, respectively.
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Moreover, it is also essential to know that the tests following the Chang et al.

(2000) framework only test for herding within the specific asset, or in our case, the

industry, which is a particular type and strong form of herding Richards (1999). In

other words, while the investors do not herding within the industry, we should allow

the possibility of herd trading according to other markets’ performance. In light

of this, we focused on the period from 07/03/2016 - 05/01/2021 when no significant

local herding was found, and we followed a common approach in literature such

as Demirer et al. (2015), among others, to augment a term of squared returns of a

particular market that we want to explore the impact of. Because we were curious

about how investors were reacting to large price movements in the overall financial

market, we used the squared returns of CSI 300 Index as a proxy for the Chinese

equity market uncertainty to study the stock market effect in the herding context.

The equation is written as follows:

CSADm,t = γ0 +γ1Rm,t +γ2
∣∣Rm,t

∣∣+γ3R2
m,t +γ4R2

C300,t +γ5CSADm,t−1 +εt,

(3.20)

where RC300,t is the logarithmic return of CSI 300 Index on day t.

The results using the Eq. 3.20 are presented in Table 3.12. Consistent with

previous results, there was no within-industry herding from 07/03/2016 - 05/01/2021

as γ3s are not significantly negative. Instead, the dispersion was found significantly

negatively correlated to the squared returns of the general stock market (e.g.,

-2.3913***), which reveals that renewable energy investors still herd around the

equity market in the absence of local herding.

Table 3.12: Regression results of CSADm,t on unconditional renewable energy
market returns incorporating the stock market effect

CSADm,t Const. Rm,t
∣∣Rm,t

∣∣ R2
m,t R2

C300,t CSADm,t−1

0.0073*** 0.2075*** 0.0999 -2.3913*** 0.4222***
(0.0000) (0.0000) (0.8330) (0.0000) (0.0000)

0.0072*** -0.0115 0.2144*** -0.0449 -2.4313*** 0.4255***
(0.0000) (0.1786) (0.0000) (0.9301) (0.0000) (0.0000)

Notes:
1. Eq. 3.20: CSADm,t = γ0+γ1Rm,t+γ2

∣∣Rm,t
∣∣+γ3R2

m,t+γ4R2
C300,t+γ5CSADm,t−1+εt was used;

2. The data range is from 07/03/2016 to 05/01/2021 when the local herding was absent;
3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively.
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We further investigate the asymmetric impact of the overall stock market on

the investor behaviour of renewable energy stocks by using dummy variables to

capture the upturns and downturns of the general Chinese stock market (Eq. 3.21).

(3.21)
CSADm,t = γ0 +γ1Rm,t +γ2

∣∣Rm,t
∣∣+γ3R2

m,t +γ4DC300,upR2
C300,t

+γ5DC300,downR2
C300,t +γ6CSADm,t−1 +εt,

where DC300,up and DC300,down are dummy variables with values of 1 if the return

of the CSI 300 Index on day t is positive and negative, respectively.

Results of asymmetric stock market impact are presented in Table 3.13. We

confirmed that the overall equity market performance had influenced the investors’

self-confidence in renewable energy stocks. This phenomenon is more common

during stock market ups than downs.

Table 3.13: Regression results of CSADm,t on unconditional renewable energy
market returns incorporating the asymmetric stock market effect

CSADm,t Const. Rm,t
∣∣Rm,t

∣∣ R2
m,t DC300,upR2

C300,t DC300,downR2
C300,t CSADm,t−1

0.0071*** 0.2384*** -0.5421 -4.1258*** -1.5658*** 0.4227***
0.0000 0.0000 0.3293 0.0000 0.0017 0.0000

0.0072*** 0.0049 0.2385*** -0.5435 -4.2776*** -1.4687*** 0.4214***
0.0000 0.5876 0.0000 0.3209 0.0000 0.0023 0.0000

Notes:
1. Eq. 3.21: CSADm,t = γ0+γ1Rm,t+γ2

∣∣Rm,t
∣∣+γ3R2

m,t+γ4DC300,upR2
C300,t+γ5DC300,downR2

C300,t+
γ6CSADm,t−1 +εt was used;
2. The data range is from 07/03/2016 to 05/01/2021 when the local herding was absent;
3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively.

3.2.5.2 Time-varying Analysis

In this section, we present the results of time-varying herding coefficient. We first

employed the Eq. 3.21, where the bandwidth was automatically selected by cross

validation and the wild bootstrap 95% confidence levels were estimated after 30,000

runs based on Chen et al. (2018). Figure 3.1 plots the mean of the herding coefficient

estimates over time (γ3 (zt)) and their mean confidence intervals. The vertical dash

lines are the breakdates detected as in Table H.0.1. The result is qualitatively

similar to our previous results in Table 3.11, which confirms that herding in the

Chinese renewable energy industry is indeed time-varying. From the plot, we can

see that most of the herding coefficients in the sub-sample 1 and 6 are significantly
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negative, which confirms that strong form of herding within the industry happened

during these periods, and was more intense in the former. Industry herding was

also evidenced during other periods in a much weaker form, which is also consistent

with our previous findings. Overall, we found that the herd effect is time-varying

and is likely to persist.

Figure 3.1: Time-varying herding coefficient using Eq. 3.19

Furthermore, based on previous results of the potential impact of stock market

performance on the herding behaviour (Table 3.12). We employed the Eq. 3.20

again, but this time we estimated it using the time-varying coefficients as follows

(Eq. 3.22).

CSADm,t = γ0 (zt)+γ1 (zt)Rm,t +γ2 (zt)
∣∣Rm,t

∣∣+γ3 (zt)R2
m,t +γ4 (zt)R2

C300,t+
γ5 (zt)CSADm,t−1 +εt, for t = 1, . . . ,T.

(3.22)

We plot the mean of the coefficient estimates of stock market effect over time

(γ4 (zt)) and their mean confidence intervals. Evidence confirms that the volatility
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of the stock market influences the behaviour in the renewable energy market, espe-

cially during the period from 07/03/2016 - 05/01/2021 (sub-sample 2-5). Combining

with results from last section, we finally argue that investors tend to react to the

overall performance of the stock market, either being overconfident when the large

movements are positive, which is more likely as evidenced in Table 3.13, or feeling

panic during periods of extreme price drops. Hence, they simply follow the market

dynamics hoping to obtain better profits.

Figure 3.2: Time-varying herding coefficient using Eq. 3.22

3.2.6 Robustness check

3.2.6.1 Sized-based portfolios

In previous sections, we have presented the evidence of using equally-weighted

market portfolio. However, one might suggest that small stocks may react differ-

ently to large stock portfolios in some cases [McQueen et al. (1996)]. Therefore, we

applied similar approach by Chang et al. (2000) that we discretised the stocks into
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quantiles based on the market capitalization of each stock at the end of the year.

Given our sample size 16, we specified the top 25% as the largest, 25%-75% as the

medium, the last 25% as the smallest firms, and we reconstructed these portfolios

each year. We then re-estimated the Eq. 3.12 and 3.13 for the industry herding

using the new size-based portfolios, and empirical results are shown in Table 3.14

and 3.15, respectively. The new evidence still fully supports our previous results

that Chinese investors do herd in the renewable energy market. The behaviour is

generally more prevalent during upturns and among smaller stocks. Overall, our

results remain robust taking into account the size effect.

Table 3.14: Regression results of CSADm,t on sized-based unconditional renewable
energy market returns

CSADm,t Const. Rm,t
∣∣Rm,t

∣∣ R2
m,t CSADm,t−1

Panel A: Largest 0.0079*** 0.2725*** -2.4216*** 0.4080***
(0.0000) (0.0000) (0.0000) (0.0000)

0.0078*** -0.0172* 0.2857*** -2.7097*** 0.4109***
(0.0000) (0.0668) (0.0000) (0.0000) (0.0000)

Panel B: Medium 0.0064*** 0.3534*** -4.0480*** 0.4584***
(0.0000) (0.0000) (0.0000) (0.0000)

0.0062*** -0.0272* 0.3719*** -4.3963*** 0.4649***
(0.0000) (0.0530) (0.0000) (0.0000) (0.0000)

Panel C: Smallest 0.0069*** 0.4299*** -4.4046*** 0.3542***
(0.0000) (0.0000) (0.0000) (0.0000)

0.0068*** -0.0140 0.4402*** -4.5820*** 0.3553***
(0.0000) (0.2510) (0.0000) (0.0000) (0.0000)

Notes:
1. Eq. 3.12: CSADm,t = γ0 +γ1Rm,t +γ2

∣∣Rm,t
∣∣+γ3R2

m,t +γ4CSADm,t−1 +εt was used;
2. The data range is from 05/01/2015 to 29/04/2022;
3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively.

16We have 80 firms at most.
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Table 3.15: Regression results of CSADm,t on sized-based asymmetric renewable
energy market returns

CSADm,t Const. DupRm,t DdownRm,t DupR2
m,t DdownR2

m,t CSADm,t−1
Panel A: Largest 0.0078*** 0.2859*** -2.3000*** -3.1269*** -2.6324*** 0.4105***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Panel B: Medium 0.0061*** 0.3716*** -0.3866*** -4.9820*** -4.1675*** 0.4647***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Panel C: Smallest 0.0068*** 0.4555*** -0.4403*** -5.2152*** -4.3073*** 0.3529***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Notes:
1. Eq. 3.13: CSADm,t = γ0 + γ1Dm,upRm,t + γ2Dm,downRm,t + γ3Dm,upR2

m,t + γ4Dm,downR2
m,t +

γ5CSADm,t−1 +εt was used;
2. The data range is from 05/01/2015 to 29/04/2022;
3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively.

3.2.6.2 CSSD as the measure of dispersion

Gleason et al. (2004) proposed that the CSAD and the CSSD as measures of the

return dispersion can be swapped. Therefore, we replaced the dependent variable

(CSADm,t) in Eq. 3.12, 3.13, 3.19, and 3.22 by the CSSDm,t and re-checked the

herding results for robustness. The new equations are written as:

CSSDm,t = γ0 +γ1Rm,t +γ2
∣∣Rm,t

∣∣+γ3R2
m,t +γ4CSSDm,t−1 +εt,(3.23)

(3.24)
CSSDm,t = γ0 +γ1Dm,upRm,t +γ2Dm,downRm,t +γ3Dm,upR2

m,t

+γ4Dm,downR2
m,t +γ5CSSDm,t−1 +εt

(3.25)
CSSDm,t = γ0 (zt)+γ1 (zt)Rm,t +γ2 (zt)

∣∣Rm,t
∣∣+γ3 (zt)R2

m,t

+γ4 (zt)CSSDm,t−1 +εt, for t = 1, . . . ,T.

CSSDm,t = γ0 (zt)+γ1 (zt)Rm,t +γ2 (zt)
∣∣Rm,t

∣∣+γ3 (zt)R2
m,t +γ4 (zt)R2

C300,t

+γ5 (zt)CSSDm,t−1 +εt, for t = 1, . . . ,T.
(3.26)

Results in Table 3.16 and 3.17 provide exactly same information as before

that herding significantly exists in the Chinese renewable energy market and is

more pronounced during up than down markets even when we used CSSD as an
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alternative measure. Figure 3.3 and 3.4 plot the time-varying coefficient γ3 (zt)
and γ4 (zt) in Eq. 3.25 and 3.26, respectively. Similar conclusion can be drawn that

the within-industry herding has been time-varying and was more pronounced in

the first and the last period. Weak herd or anti-herd behaviour appeared more

frequently in other periods, where the stock market has taken part as a trading

signals transmitter. Overall, our results remain robust when using the CSSD as a

measure of the market return dispersion.

Table 3.16: Regression results of CSSDm,t on unconditional renewable energy
market returns

CSSDm,t Const. Rm,t
∣∣Rm,t

∣∣ R2
m,t CSSDm,t−1

Full sample 0.0090*** 0.2990*** -3.1393*** 0.5289***
(0.0000) (0.0000) (0.0000) (0.0000)

0.0085*** -0.0522*** 0.3360*** -3.8858*** 0.5402***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Notes:
1. Eq. 3.23: CSSDm,t = γ0 +γ1Rm,t +γ2

∣∣Rm,t
∣∣+γ3R2

m,t +γ4CSSDm,t−1 +εt was used;
2. The data range is from 05/01/2015 to 29/04/2022;
3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively.

Table 3.17: Regression results of CSSDm,t on asymmetric renewable energy
market returns

CSSDm,t Const. DupRm,t DdownRm,t DupR2
m,t DdownR2

m,t CSSDm,t−1
Full sample 0.0085*** 0.3023*** -0.3813*** -4.3102*** -3.7453*** 0.5400***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Notes:
1. Eq. 3.24: CSSDm,t = γ0 + γ1Dm,upRm,t + γ2Dm,downRm,t + γ3Dm,upR2

m,t + γ4Dm,downR2
m,t +

γ5CSSDm,t−1 +εt was used;
2. The data range is from 05/01/2015 to 29/04/2022;
3. ***, ** and * denote the rejections of the null hypothesis at the 1%, 5%, and 10% significance
levels, respectively.
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Figure 3.3: Time-varying herding coefficient using Eq. 3.25
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Figure 3.4: Time-varying herding coefficient using Eq. 3.26

3.2.7 Conclusion

We explore the existence of herd behaviour in Chinese renewable energy market

using various techniques. The growth of renewable energy generation capacity and

adoption has been tremendous over the years, where China’s effort is prominent.

The support from the Chinese government significantly promoted the rapid growth

and development of Chinese renewable energy companies. However, there has been

a paucity of research on the financial market dynamics of this emerging market

from a behavioural perspective, especially with a focus on China. Our paper fills

this gap.

We used modifications of the original static models proposed by Chang et al.

(2000) and Chiang and Zheng (2010), which account for multicollinearity and

autocorrelation problems, as well as a time-varying coefficient autoregressive

model, for robustness, to detect the potential herding behaviour among renewable

energy investors. By employing daily data from 5 January 2015, through 29 April
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2022, covering both major peaks and troughs and bullish and bearish times, we

documented significant time-varying herding pattern by sub-sample analysis and

time-varying modelling, which stands on the contrary to earlier literature that

pointed no local herding (herding within industry) in the U.S. [Trück and Yu

(2016)] or North America, Europe, and Asia markets [Chang et al. (2020)] or in

the Chinese market [Shen (2018)]. The behaviour is more profound during up

than down markets and among smaller firms. When there was an absence of local

herding, we showed that large price volatility in the general equity market affects

the trading behaviour.

The findings support the idea that the Chinese stock market is immature and

so inefficient [Geretto and Pauluzzo (2012)]. Herd trading has serious consequences

and implications for investors and market regulators. Herding exacerbated the

market inefficiency by pushing or dragging the stock prices away from the true

fundamentals of companies, which induces higher volatility and leads to investors

fears. While the number and size of Chinese renewable energy companies are

growing, we should pay particular attention to preventing the vicious growth

of stock prices, mitigating the risk of financial bubbles, and increasing market

transparency.
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APPENDIX H. STRUCTURAL BREAKS

STRUCTURAL BREAKS

Table H.0.1: Bai and Perron (2003) test of multiple structural breaks in Eq. 3.12 for
full sample

Sample: (01/01/2015 - 29/04/2022)
Breaks F-statistic Scaled F-statistic Weighted F-statistic Critical Value
1* 21.7665 108.8325 108.8325 22.40
2* 23.6232 118.1162 144.0285 18.37
3* 21.1570 105.7849 146.6325 16.16
4* 18.2022 91.0109 143.0628 14.25
5* 16.4864 82.4319 152.0984 12.14
UDMax statistic*: 118.1162, UDMax critical value**: 22.49
WDMax statistic*: 152.0984, WDMax critical value**: 24.50
Sequential F-statistic determined breaks: 5
Significant F-statistic largest breaks: 5
UDmax determined breaks: 2
WDmax determined breaks: 5
Estimated break dates:
1: 09/03/2016
2: 07/03/2016, 23/12/2019
3: 07/03/2016, 15/08/2018, 23/12/2019
4: 07/03/2016, 26/09/2018, 22/11/2019, 05/01/2021
5: 07/03/2016, 10/04/2017, 26/06/2018, 22/11/2019, 05/01/2021
Break test options:
Bartlett kernel
Prewhitening with AR(1)
Newey-West automatic bandwidth and Lag lengths
Different error distributions across breaks are allowed.
Trimming = 0.15, Max. breaks = 5,
*: Sig. level 0.01, **: Bai-Perron (2003) critical values
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