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Abstract—In the existing literature on joint timing and fre-
quency synchronization of orthogonal time frequency space
modulation (OTFS), practically infeasible impulse pilot with
large peak-to-average power ratio (PAPR) is deployed. Hence,
in this paper, we propose a timing offset (TO) and carrier
frequency offset (CFO) estimation for OTFS over a linear time-
varying (LTV) channel, using a low PAPR pilot structure. The
proposed technique utilizes the recently proposed practically
feasible pilot structure with a cyclic prefix (PCP). We exploit
the periodic properties of PCP in both delay and time domains
to find the starting point of each OTFS block. Furthermore,
we propose a two-stage CFO estimation technique with over
an order of magnitude higher estimation accuracy than the
existing estimator using the impulse pilot. In the first stage,
a coarse CFO estimate is obtained which is refined in the
second stage, through our proposed maximum likelihood (ML)
based approach. The proposed ML-based approach deploys the
generalized complex exponential basis expansion model (GCE-
BEM) to capture the time variations of the channel, absorb
them into the pilot and provide an accurate CFO estimate.
Since our proposed synchronization technique utilizes the same
pilot deployed for channel estimation, it does not require any
additional overhead. Finally, we evaluate the performance of our
proposed synchronization technique through simulations. We also
compare and show the superior performance of our proposed
technique to the only other existing joint TO and CFO estimation
method in OTFS literature.

Index Terms—OTFS, timing offset estimation, carrier fre-
quency offset estimation, maximum likelihood estimation.

I. INTRODUCTION

Orthogonal time-frequency space (OTFS) is a prominent
waveform candidate for the sixth-generation (6G) wireless
communication systems due to its robustness to time-varying
wireless channel and backward compatibility with orthogonal
frequency division multiplexing (OFDM), [1]. Unlike OFDM,
OTFS places modulated data symbols in the delay Doppler
(DD) domain and spreads it on the time-frequency (TF)
plane, thus exploiting the full diversity gain of the time and
frequency selective channel in high mobility scenarios, [2].
Since the performance of multicarrier modulations depends on
the orthogonality among subcarriers, timing and carrier syn-
chronization are of paramount importance in modern wireless
communication systems. Even though there exists a large body
of work on OFDM synchronization [3], OTFS literature on this
topic is still in its infancy.

Timing offset (TO) and/or carrier frequency offset (CFO)
estimation in OTFS are addressed in [4]–[7]. A threshold-
based TO offset estimation technique for OTFS uplink trans-
mission using random access (RA) preamble is presented in
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[4]. In [5], the authors developed a correlation-based method
for TO estimation in OTFS downlink transmission, which uses
a preamble consisting of a linear frequency-modulated (LFM)
waveform and two OTFS symbols. Due to the rapid variation
of the channel in high mobility scenarios, the TO estimated at
the base station using the preamble would be outdated during
the data transmission phase. Hence, the methods developed in
[4] and [5] are not suitable for high-mobility scenarios, and
CFO estimation is not addressed in either [4] or [5].

A time domain joint channel-CFO estimation and time
domain equalization technique for OTFS are presented in [6].
In [6], the CFO is estimated and compensated as a part of the
channel which hinders the pre-compensation of the CFO at
the user terminal which is unsuitable for uplink transmissions.
Recently, in [7], we addressed the TO and CFO estimation in
the OTFS systems, where we developed a correlation-based
estimation scheme that exploited the periodic structure of
the pilot in the delay-time domain. The embedded impulse
pilot which is proposed in [8] and widely used for channel
estimation in OTFS systems is employed in [6] and [7].

Accurate TO and CFO synchronization using the methods
proposed in [6] and [7] requires a high-power impulse pilot.
However, the high power of the impulse pilot and the zero
guards around it increases the peak-to-average power ratio
(PAPR) of the transmitted signal [9]. High PAPR of the
transmitted signal will result in a reduction in the efficiency
of the power amplifier at the radio frequency (RF) front end,
[10]. Hence, the widely used impulse pilot is not suitable for
practical applications. To address this issue in [9], we proposed
a novel embedded pilot which uses a constant amplitude pilot
sequence with a cyclic prefix (CP), called pilot with cyclic
prefix (PCP), placed along multiple delay bins of a single
Doppler bin in the delay-Doppler domain. PCP significantly
reduces the PAPR of the transmitted signal and thus, it is more
suitable for practical applications than impulse pilot.

Based on the above, the very limited literature available
on the synchronization in OTFS uses practically infeasible
pilot structures. Hence, to address this issue in this paper,
we develop a practical TO and CFO estimation for OTFS,
using the PCP deployed for channel estimation in [9]. We
exploit the periodicity of the PCP in the delay-time domain and
propose a correlation-based TO and coarse CFO estimation.
Furthermore, to improve the accuracy of CFO estimation we
approximate the time variation of the channel using a gen-
eralized complex exponential basis expansion model (GCE-
BEM) [11]. We propose a maximum likelihood (ML) CFO fine
estimation technique that provides over an order of magnitude
higher estimation accuracy than the existing estimator using



the impulse pilot. To corroborate our claims, we analyze
the performance of our proposed TO and CFO estimation
techniques through simulations. In our simulations, we study
the mean and variance of the TO estimation error and the mean
square error (MSE) of the CFO estimates.

The rest of this paper is organized as follows. Section II
describes the system model. The proposed estimation tech-
niques are presented in Sections III and IV, respectively, and
their performance is evaluated by simulations in Section V.
Finally, Section VI concludes the paper.

Notations: Scalar values, vectors, and matrices are denoted
by normal letters, boldface lowercase, and boldface uppercase,
respectively. diag[.], blkdiag[.], ((.))k, and maxk{.}, present
a diagonal matrix, block diagonal matrix, kth circular shift,
and maximum of a function regarding k, respectively. |.|, ∠.,
and Re{.} denote the gain, phase, and real part of the complex
argument, respectively. IN is an identity matrix with size N×
N . The superscripts (.)H, (.)T and (.)−1 indicate hermitian,
transpose, and inverse operations, respectively. CM×N stands
for a set of complex values with size M×N and the Kronecker
product is denoted by ⊗. Finally, O(.) presents the order of
the complexity for a function.

II. SYSTEM MODEL

We consider an OTFS system with M delay and N Doppler
bins, with a Doppler resolution of ∆ν = 1

MNTs
and a

delay resolution of ∆τ = Ts, where Ts is the sampling
period [1]. The data symbols and the pilot sequence are
multiplexed together to form the delay-Doppler domain OTFS
transmitted block D ∈ CM×N with the elements D[m,n] for
m = 0, . . . ,M − 1 and n = 0, . . . , N − 1. In this paper, we
deploy the pilot structure, PCP, that was originally proposed
for channel estimation in [9], also for synchronization. Con-
sidering L as the channel length, in PCP, a constant amplitude
Zadoff-Chu (ZC) sequence with length L is placed in the
Doppler bin np and the delay bins mp, . . . ,mp + L− 1. The
last L−1 samples of this sequence are then appended as a CP
in the Doppler bin np and the delay bins mp−L, . . . ,mp−1.
The remaining Doppler bins within the pilot region are set to
zero. The delay-Doppler domain OTFS block where the PCP
is embedded with data symbols, is shown in Fig. 1.

The OTFS transmitter spreads the symbols D[m,n] from
the delay-Doppler to the delay-time domain by taking inverse
discrete Fourier (IDFT) across the Doppler dimension, [2],

X[m, l] =
1√
N

N−1∑
n=0

D[m,n]e
j2πln

N , (1)

where l = 0, . . . , N−1 is the time index and m = 0 . . . ,M−
1 is the delay index. The delay-time domain signal is then
converted to the serial stream x = [x[0], . . . , x[MN − 1]]T,
where x[lM+m] = X[m, l]. Finally, the OTFS transmit signal
s[k] is formed by appending a CP with the length LCP ≥ L−1
at the beginning of the OTFS block. Assuming ideal pulse-
shaping, the received delay-time signal for B OTFS blocks,

Fig. 1. PCP structure in both delay-Doppler and delay-time domains.

after transmission over the linear time-varying (LTV) channel
and in presence of TO and CFO, can be represented as

r[k] = ej
2πεk
MN

B−1∑
i=0

L−1∑
ℓ=0

h[ℓ, k]s[k − ℓ− θ − iNT] + η[k], (2)

where 0 ≤ k ≤ LCP + MN − 1, θ and ε are the TO and
CFO values, normalized by the delay and doppler spacings,
respectively, and NT = MN + LCP. h[ℓ, k] is the delay-time
domain channel impulse response of the kth delay tap at ℓth

time instant. η[k] is the complex additive white Gaussian noise
(AWGN) with the variance σ2

η .

III. PROPOSED TO ESTIMATION TECHNIQUE

In this section, we present our proposed TO estimation
technique for OTFS using PCP. PCP has a very attractive dual
periodicity property in the delay-time domain. The periodicity
of PCP in the delay dimension is due to the presence of CP.
Meanwhile, the periodicity in the time domain is due to the
spreading effect of the OTFS transmitter which scales and
then repeats each pilot sample across the time dimension.
We exploit this dual periodicity of the PCP in the delay and
time dimensions to estimate the TO. We consider the TO as
θ = θd +Mθt, where θd and θt are the TO in delay and time
dimensions, respectively. Our proposed TO estimator finds θd
and θt in two stages, without any estimation range limitation.

A. TO estimation in delay dimension

The delay-time domain pilot sequence in the delay dimen-
sion can be split into two identical halves, each with the
length L − 1, see Fig. 1. Assuming that the time variation
of the channel within the pilot duration in delay, i.e., 2L− 1
samples, is negligible, the LTV channel over this duration
can be considered as linear time-invariant (LTI). Hence, the
periodic property of the pilot along the delay dimension is
preserved and the TO can be estimated by searching for two
identical halves in the received pilot signal. However, channel
time variations along the time dimension are not negligible.
As it was shown in [7], the identical parts of the pilot along
the time dimension should be brought as close as possible to
each other to exploit the periodicity in time for TO estimation.
The extreme case for this is satisfied for PCP in the delay-
time domain as all the pilot samples in a given delay bin
m ∈ {mp − L, . . . ,mp + L − 1} have the same amplitude
and the linear phase of 2πnpl/N for l = 0, 1, . . . , N − 1. For



Fig. 2. Sliding window for estimation of θd.

instance, when np = N/2, the adjacent pilot samples across
each delay row have a phase difference of π, see Fig. 1. The
impulse pilot in [7] can only exploit the diversity in L delay
bins for TO estimation. In contrast, PCP achieves an improved
timing estimation performance, as it takes advantage of the full
diversity provided by all the 2L − 1 delay bins allocated to
pilot transmission.

As shown in Fig. 2, our proposed TO estimator searches
for a periodic signal with identical parts in both delay and
time dimensions using a sliding window. To find the periodic
sequence in the delay dimension, we define a window with two
halves covering L−1 samples each. The window slides across
the delay dimension to find two pairs of data samples with the
highest similarity. In fact, the window searches for the pilot
sequences with two identical halves along the delay dimension.
To cast this process into a mathematical formulation, using the
received signal r[k], we define the timing metric

Pd[m] =

N−1∑
i=0

L−2∑
u=0

r∗[iM +m+ u]r[iM +m+ u+ L], (3)

that can be efficiently implemented in an iterative manner as

Pd[m+ 1] = Pd[m]−
N−1∑
i=0

r∗[iM +m]r[iM +m+ 1]

+

N−1∑
i=0

r∗[iM +m+ L− 2]r[iM +m+ L− 1], (4)

where m=0, . . . ,M − 1 and l=0, . . . , N − 1. Consequently,
θd is estimated by finding the peak of this timing metric as

θ̂d = argmax
m

{|Pd[m]|} − (mp − L)− LCP − ⌊µh⌋, (5)

where µh =
∑L−1

ℓ=0 (ℓ+1)α2
ℓ∑L−1

ℓ=0 α2
ℓ

is the mean of delay that is imposed
by the channel and αℓ for ℓ = 0, . . . , L − 1 represents the
channel power delay profile (PDP), [12]. The multipath effect
of the channel leads to a bias in the TO estimate that can
be corrected by the knowledge of the channel’s first-order
moment [13]. The proposed estimator even works without this
knowledge by increasing the CP length with ⌊µh⌋ samples.

B. TO estimation in time dimension

The peak of the correlation function Pd[m] on the row m′
p−

L = θ̂d + (mp −L) +LCP + ⌊µh⌋ of the delay-time grid can

Fig. 3. Sliding window for estimation of θt.

provide an estimate of θt, where m′
p = θ̂d + mp. However,

this estimate is not very accurate. This is while even a single
error in time cannot be afforded as the estimation error of one
sample in θt leads to an effective error of M samples in the
final TO estimate. This highlights the importance of the need
for a highly accurate estimation of θt. Thus, to estimate θt, we
deploy a sliding window with the length 2N−1 that covers the
delay bins m′

p−L, . . . ,m′
p+L−1 and slides along time, see

Fig. 3. This window calculates the correlation between every
two adjacent samples in time for all 2L− 1 delay bins in the
pilot region. This process can be mathematically shown as

Pt[l] =

m′
p+L−1∑

i=m′
p−L

N−2∑
v=0

r∗[(l+v)M+ i]r[(l+v+1)M+ i], (6)

that can be iteratively implemented as

Pt[l + 1] = Pt[l]−
m′

p+L−1∑
i=m′

p−L

r∗[lM + i]r[(l + 1)M + i]

+

m′
p+L−1∑

i=m′
p−L

r∗[(l +N − 2)M + i]r[(l +N − 1)M + i], (7)

where l = 0, 1, ..., N − 1. Hence, θt is estimated by finding
the peak of Pt, i.e.,

θ̂t = argmax
l

{|Pt[l]|}. (8)

Fig. 4 shows a snapshot of the timing metrics at the SNR
of 20 dB for an OTFS system with M = 128 and N = 32 for
both LTI and LTV channels.

After correcting the TO with θ̂ = θ̂d + Mθ̂t, in the fol-
lowing section, we propose a novel two-stage CFO estimation
technique. Our proposed technique finds a coarse estimate of
the CFO by using the angle of the timing metric that we used
for TO estimation, and then this estimate is refined by using
our proposed ML estimation technique.
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Fig. 4. One snapshot of the timing metrics in delay and time dimensions for
SNR=20 dB where (θd + LCP) = 72 and θt = 15.

IV. CFO ESTIMATION USING MAXIMUM LIKELIHOOD

Considering this phase difference, and averaging the corre-
lation angle over the delay bins allocated with the pilot at the
timing instant θ̂t from (6),

Υθ̂t
=

1

2L− 1

m′
p+L−1∑

i=m′
p−L

∠
N−2∑
v=0

(r∗[(θ̂t + v)M + i]×

r[(θ̂t + v + 1)M + i]), (9)

a coarse CFO estimate can be obtained as

ε̂c =
N

2π
Υθ̂t

− np. (10)

To refine this CFO estimate and improve the estimation
accuracy, in the following, we develop an ML-based technique
as a fine CFO estimation stage.

After correcting the TO, the received pilots in the delay bins
mp to mp+L−1 over all the bins along the time dimension are
used for CFO estimation. For ease of explanation, in the rest of
the paper, the received pilots refer to the received signal in the
delay bins mp to mp+L−1. After removing the CP from the
received pilot, and stacking the resulting signals at different
time slots, rl,p = [r[LCP + lM + mp], . . . , r[LCP + lM +
mp+L−1]]T, into the vector rp = [rT0,p, r

T
1 , . . . , r

T
N−1,p]

T ∈
CNL×1, using (2), rp can be expressed as,

rp = Γ(ε)Hsp + η, (11)

where, Γ(ε)=blkdiag[Γ0,Γ1, . . . ,ΓN−1] with

Γl = diag[e
j2πε(LCP+lM+mp)

NT , e
j2πε(LCP+lM+mp+1)

NT , . . . ,

e
j2πε(LCP+lM+mp+L−1)

NT ], (12)

and H = blkdiag[H0,H1, ...,HN−1] with Hl being the
channel matrix, whose structure is shown in (13), on the top
of the next page. In (11), sp = [sT0,p, . . . , s

T
N−1,p]

T ∈ CNL×1,
sl,p is the transmitted delay-time pilot samples in the delay
bins mp to mp+L−1 and the time slot l. η ∼ CN (0, σ2

ηILN )
is the AWGN vector with size LN × 1 that affects the pilot.
By interchanging the convolution order in (11), the received
pilot at the time slot l can be expressed as

rl,p = Γl(ε)Al,phl + ηl, (14)

where Al,p = [S0
l,p, ...,S

L−1
l,p ], Sℓ

l,p = diag[((sl,p))ℓ], hl =

[(h0
l )

T, (h1
l )

T, . . . , (hL−1
l )T]T, and hℓ

l = [h[ℓ, LCP + lM +
mp], h[ℓ, LCP + lM + mp + 1], . . . , h[ℓ, LCP + lM + mp +
L− 1]]T for ℓ = 0, 1, . . . , L− 1. ηl ∈ CL×1 is the AWGN at
time slot l affecting the pilot.

BEM-based methods are used for approximating the time
variation of the LTV channels. Depending on the basis
functions, different BEM methods such as complex expo-
nential based (CE-BEM) [14], polynomial based BEM [15],
Karhunen-Loeve (KL) decomposition based BEM [16], are
presented in the literature. Due to its simplicity and high
accuracy, in this paper, we use the oversampled GCE-BEM
[11] to approximate the channel time variation in the delay-
time domain. The channel coefficient for the ℓth path at the
time instant k can be expressed using GCE-BEM as

h[ℓ, k] =

Q−1∑
q=0

B[k, q]cℓ(q), (15)

where B[k, q] = ej2
2π(q−⌈Q/2⌉)k

KMN , 0 ≤ k ≤ MN −1, 0 ≤ ℓ ≤
L−1 and 1 ≤ q ≤ Q. For the accurate approximation of
the time variation of the channel, the oversampling factor and
the number of basis functions are chosen as K≥1 and Q =
⌈2Kνmax(MNTs)⌉+1, respectively, [11]. Using (15), hl can
be expressed in terms of BEM coefficients as

hl = (IL ⊗Bp
l )c, (16)

where Bp
l = B[k, q]∀k ∈ {LCP+lM+mp, LCP+lM+mp+

1, . . . , LCP+ lM+mp+L−1}, c = [cT0 , c
T
1 , . . . , c

T
L−1]

T and
cℓ = [cℓ(0), cℓ(1), . . . , cℓ(Q− 1)]T. Inserting, (16) in (14), rp

in (11) can be approximated using GCE-BEM as

rp = Γ(ε)Gc+ η, (17)

where G = [GT
0 ,G

T
1 , . . . ,G

T
N−1]

T and Gl = Al(IL ⊗ Bp
l )

for l = 0, 1, . . . , N − 1.
For a given pair (c, ε), the vector rp is assumed to have

the Gaussian distribution with the mean Γ(ε)Gc and covari-
ance matrix σ2

ηILN , [17]. Thus, the joint probability density
function of rp, parameterized by (c̃, ε̃), is given by

f(rp; c̃, ε̃) =
1

(πσ2
η)

NL
e

−1

σ2
η
[rp−Γ(ε̃)Gc̃]H[rp−Γ(ε̃)Gc̃]

. (18)

Thus, the ML estimates of the BEM coefficient vector and the
CFO are obtained as

(ĉ, ε̂) = argmax
c̃,ε̃

{f(rp; c̃, ε̃)}. (19)

Taking the logarithm and removing the constant terms, the
estimation problem in (19) can be simplified as

(ĉ, ε̂) = argmax
c̃,ε̃

{g(c̃, ε̃)}, (20)

where g(c̃, ε̃) = −1
σ2
η
[rp−Γ(ε̃)Gc̃]H[rp−Γ(ε̃)Gc̃] is the joint

cost function. The maximization problem in (20) can be solved
in two steps. In step 1, we find the c̃ which maximizes the joint
cost function parameterized by ε̃. In step 2, the c̃ obtained in



Hl =


h[0, LCP + lM +mp] h[L−1, LCP + lM +mp] · · · h[1, LCP + lM +mp]

h[1, LCP + lM +mp + 1] h[0, LCP + lM +mp + 1] · · · h[2, LCP + lM +mp + 1]
...

...
. . .

...
h[L− 1, LCP + lM +mp + L−1] h[L− 2, LCP + lM +mp + L−1] · · · h[0, LCP + lM +mp + L−1]

 (13)
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Fig. 5. TO estimation comparison for the impulse pilot and PCP where
M=128 and N=32.

step 1 is used to find a new cost function for ε̃ and we perform
a grid search in the vicinity of coarse CFO estimate to find
the fine CFO estimate which maximizes the cost function for
ε̃. Thus, we fix the ε̃ and the c̃ that maximizes g(c̃, ε̃) can be
obtained as

c̃(ε̃) = (GHG)−1GHΓH(ε̃)rp. (21)

Substituting c̃(ε̃) into g(c̃, ε̃), the cost function for CFO can
be obtained as

gCFO(ε̃) = (rp)HΓ(ε̃)ΛΓH(ε̃)rp, (22)

where Λ = G(GHG)−1GH. The fine estimate of CFO can
then be obtained using a single-dimensional search centered
around the coarse CFO estimate ε̂c in (10) as

ε̂ = argmax
ε̃

{gCFO(ε̃)}. (23)

In addition, channel estimation can also be developed using the
estimated CFO. The BEM coefficients can be estimated after
obtaining the CFO estimate as, ĉ = (GHG)−1GHΓH(ε̂)rp,
and finally the complete LTV channel in delay-time can be
estimated using (15).

Regarding complexity, the periodic structure of the pilot
in the delay-time domain can reduce the complexity of the
maximum-likelihood estimator. In other words, the existing
repetition of every L pilot sample leads to a reduction of the
complexity of the estimator by a factor of L. Additionally,
Λ is a symmetric matrix that provides the opportunity to
only calculate half of the cost function, which reduces the
complexity by a factor of 2. Thus, the cost function in (22)
can be calculated in the form

gCFO(ε̃) = −β[0] + 2Re{
N−1∑
m=0

β[m]e
j2πmε̃

N }, (24)

and

β[m] =

NL−1−mL∑
k=0

Λ[((k+mL))NL, k]r
p∗[((k+mL))NL]r

p[k],

(25)
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Fig. 6. TO estimation comparison vs. normalized maximum Doppler spread
for PCP at SNR=20 dB.

where Λ[i, j] and rp[i] are the [i, j]th and ith entries of the
Λ and rp, respectively. Calculating the cost function gCFO(ε̃)
using (22) requires O(N2L2) complex multiplications. How-
ever, it can be reduced to O(N

2L
2 ) by using (24) and (25).

V. SIMULATION RESULTS

In this section, we numerically analyze the performance of
both the proposed estimation techniques. The reduced-OTFS
system with 16-QAM symbols in this analysis is formed by
M = 64, 128, 256 and N = 64, 32, 16 delay and Doppler bins,
respectively [18]. We use the extended vehicular A (EVA)
channel model with length L = 21, [19], the bandwidth
of 8.25 MHz and the delay-Doppler resolution (∆τ,∆ν) =
(121.21 nsec, 2.01 kHz). The power of the PCP is set to 40 dB
and the pilot is inserted at the center of the Doppler axis
within delay bins, mp − L to mp + L − 1, [9]. To model
the channel with GCE-BEM, we choose the oversampling
factor K = 4 and the order of BEM basis functions Q =
1, 3, 6, 8 for different normalized maximum Doppler spreads of
νmax = 0, 0.66, 1.64, 2.73 kHz, respectively [11]. Throughout
our simulations, the normalized TO and CFO values are
randomly generated from a uniform distribution in the range
[−MN

2 , MN
2 ) and [−N−νmaxT

2 , N−νmaxT
2 ), respectively, where

T = MNTs is the total time duration of an OTFS block.
In Fig. 5, we compare the performance of our proposed

TO estimation technique using PCP with the impulse pilot-
assisted method proposed in [7]. We analyze the estimation
error mean and variance as a function of signal-to-noise ratio
(SNR), for the normalized Doppler spread of νmaxT ≈ 1.36.
The PDP of the channel leads to a small bias in the proposed
estimation technique. Although we removed ⌊µh⌋ from the
estimated TO in (5), the existing bias in Fig. 5 originates from
the fractional part of the mean delay in the channel. This figure
also shows that, for the same pilot power level, the proposed
technique outperforms the technique in [7]. Fig. 6 shows the
performance of the proposed TO estimator as a function of
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normalized Doppler spread, for different combinations of M
and N , and a fixed MN = 4096. It can be observed that as
the normalized Doppler spread increases, estimation accuracy
also increases. This improvement originates from the diversity
provided by the time-selectivity of the channel.

To analyze the performance of our proposed CFO estimation
technique, we assume perfect knowledge of TO. In Fig. 7,
we evaluate the MSE performance of our proposed CFO
estimation technique as a function of SNR and compare it
with the CFO estimation technique proposed in [7]. It can
be observed that the CFO estimation proposed in this paper
gives an order of magnitude better estimation accuracy than
the method using impulse pilot in [7]. In Fig. 8, we study the
performance of our proposed CFO estimator as a function of
Doppler spread. Furthermore, our results show that the MSE
performance degrades as the Doppler spread or the number of
delay bins increases. Higher M leads to a channel with more
time variation within a column of the OTFS block which is
the main reason for CFO estimation degradation.

VI. CONCLUSION

In this paper, we proposed TO and CFO estimation tech-
niques for OTFS using PCP. We exploit the periodicity prop-
erty of PCP in the time domain to develop the correlation-
based metrics for TO and CFO estimation. Furthermore, the
TO estimation accuracy is improved using diversity offered by
the constant amplitude PCP in different delay bins. To improve
the accuracy of the CFO estimate we approximated the time
variation of the channel using GCE-BEM and developed an
ML estimator. Additionally, we also developed low-complexity
implementation strategies for the proposed techniques. Since
we use the same practical pilot used for channel estimation,
the proposed method does not impart additional overhead for
synchronization. Hence the proposed synchronization methods
are highly apt for practical OTFS systems in high mobility
scenarios in the envisioned 6G systems.
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