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Stability maps for columnar structures
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ABSTRACT

We have previously explored the hysteresis and reversibility
of transitions between ordered packings of soft spheres of
diameter d in cylindrical channels of diameter D [A.
Mughal, J. Winkelmann, D. Weaire, S. Hutzler, Phys. Rev. E
98, 043303 (2018)]. Here we extend these initial results to
include transitions between all columnar structures without
inner spheres (i.e. packings in which all of the spheres are
in contact with the cylindrical boundary). These results can
be represented by a directed network showing permissible
transitions between structures. From the hard sphere limit
we deduce that there are two dierent types of transitions,
reversible and irreversible. We explore the nature of these
transitions for soft spheres as a function of pressure and
due to changes in the ratio D/d. These results are
illustrated by the use of schematic diagrams, indicating the
topological features of each transition. Specic cases are
tabulated and can be understood by reference to the
appropriate schematic diagram.
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1. Introduction

Ordered dense packings of spheres in cylindrical connement have attracted

increasing attention in recent years, with examples being found at various

length scales [1]. On the microscopic scale, many examples of biological micro-

structures (e.g. microtubules, viruses and agella) can be described as tubular

packings of spheres [2, 3], while on the macroscopic level the arrangement of

buds and leaves in plants can be understood by similar means [4].

Columnar structures have also been realised in a range of experiments, some

of the earliest include the packing of bubbles inside tubes [5–12]. More recently,

it has been shown that colloidal particles also crystallise into microscopic helical

structures when trapped inside cylindrical pores [13–16]. In nano-science,
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similar structures have been generated by inserting molecules or atoms into

cylinders [17–20] or on their surface [21] in order to create novel materials.

Further elaborations on the same theme include, the ground state arrangement

of repulsive point-like particles conned to the surface of a cylinder [22], the

packing of spheroids in cylinders [23] and the packing of ellipses on the

surface of a cylinder [24]

We and others have published extensive results for the packing of hard [3,

25–28] and soft [12, 16, 29] spheres. The latter are modelled by purely repulsive

harmonic forces, allowing for an overlap between spheres. This is a rough rep-

resentation of bubbles in particular [30]. These results are contained in an

extensive phase diagram (Figure 2 in [29]) which species the equilibrium

structures for all relevant values of D/d (i.e. the ratio of cylinder diameter D

to sphere diameter d) and applied pressure p.

For the macroscopic systems for which this work has proved relevant so far

(foams [6, 7, 31, 32]), questions of metastability and hysteresis arise. The system

must remain in a (meta)stable state, but not necessarily that of lowest enthalpy.

We have broached this question in our earlier investigation, but provided only

one limited example of what we term a ‘stability diagram’, indicating the struc-

tures that are encountered for a given change of pressure p or size ratioD/d, and

the loci for instability and structural transitions.

In the present paper we will provide a more comprehensive answer to the

question raised, by investigating all parts of the phase diagram (up to the point

at which internal spheres are found in the structures of maximal density, i.e.

D/d = 2.713 [27]). There are several such cases: we condense the results by

representing various types of stability diagrams by a few key parameters.

The paper is organised as follows. In Section 2 we summarise some of our

previous results for hard and soft sphere packings. In Section 3 we present

the key features of a stability diagram. In Section 4 we introduce a new directed

network graph of possible transitions between packings. In Section 5 we extend

our results to a number of reversible transitions and also present stability dia-

grams for irreversible transitions. We give our conclusions in Section 6.

2. Summary of previous results

2.1. Hard sphere packings

For close packings of hard spheres in cylindrical tubes, such as those shown in

Figure 1, the key parameter is the ratio D/d between the tube diameter D and

sphere diameter d [26, 27]. Varying D/d gives rise to a family of helical struc-

tures for which we have provided a complete taxonomy (in terms of phyllotactic

indices, see [26, 27] for details) up to the above mentioned critical value

D/d = 2.713. Figure 2 shows the variation of packing density Φ (volume frac-

tion of spheres) with D/d for most of the structures discussed in this paper.
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For a set of discrete values ofD/d the densest packing arrangements are given

by uniform structures, that is packings in which each sphere is in contact with

six neighbouring spheres. For all other values of D/d the densest packings are

line-slip arrangements whereby neighbouring spiral chains slide over each

other, so that some spheres only have ve contacts. An example of a uniform

and its related line-slip structure is given in Figure 1.

In Figure 2 the uniform structures correspond to the local peaks in the

packing density. Uniform packings can be continuously transformed into the

appropriate line-slip arrangement by the loss of a contact, the result is a struc-

ture with a lower density. Local minima, on the other hand, are where a given

line-slip is surpassed in density by another line-slip structure. The two struc-

tures are unrelated to each other, that is, there is no simple continuous trans-

formation between them.

Figure 1. An example of a (4, 4, 0) uniform (a) columnar structure and its line slip modication
(b), generated by packing spheres of diameter d into a tube of diameter D. In the uniform struc-
ture, every sphere has an identical neighbourhood with a coordination number z = 6. Its corre-
sponding line slip structure (shown to the right) is characterised by gaps (i.e. loss of contacts),
highlighted by the (red) ellipse. For the structure classication we use the phyllotactic notation
(see [26, 27] for details).
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In what follows we will have reason to refer to the region highlighted in grey

in Figure 2. For now we simply note that the diagram presents the packing

arrangement (either a uniform arrangement of a line-slip packing) with the

greatest density for any given D/d, alternative packings with lower density

are not shown. However, in the grey region of Figure 2 we illustrate the con-

tinuation of some of these line-slip structures (of a lower density) by dotted

lines. These dotted lines have been simply sketched in for illustrative purposes

and are not the result of computation.

2.2. Soft sphere packings: phase diagram

In [12, 29] we have extended our study of columnar sphere packings to pack-

ings of soft spheres. In this case the pressure P is an additional parameter.

Stable structures are found by minimising the enthalpy H = E + PV for a

system of N soft spheres contained in a volume V and given diameter

ratio D/d; E is the internal energy due to sphere-sphere and sphere-cylinder

overlaps. The results were presented in the form of an equilibrium phase

diagram, showing the structure of minimal enthalpy for a given value of

D/d and P [12, 29] (see Appendix A for details of how the simulations

Figure 2. Computational results for the densest columnar sphere packings. Shown is the
packing density Φ as a function of the ratio D/d of tube to sphere diameter, together with
the phyllotactic notation of the structures (see [27] for an extended range of D/d values).
The shaded region of the diagram is of relevance to the soft sphere packings discussed in
this article. Whenever the line-slip packings (3, 2, 1) and (3, 3, 0) are not those of highest
density their packing fraction is indicated by dotted lines (these are for illustrative purposes
only and not the result of computation).
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were conducted). Boundaries between phases can be continuous or discon-

tinuous, indicating a smooth or abrupt change in the enthalpy, respectively.

For illustrative purposes we present a part of this phase diagram as a sche-

matic in Figure 3 (see Figure 2 in [29] for the full version). The various

regions correspond to dierent lowest enthalpy structures. Their labelling, U

or L concern their classication as uniform or line-slip structures, respectively.

The regions are separated by phase boundaries at which the change of structure

is either continuous (dashed lines) or discontinuous (solid lines).

The nature of these boundaries can be deduced using the fact that the hard-

sphere results (for the shaded region) in Figure 2 correspond to the horizontal

axis (P = 0) in Figure 3.

To illustrate the relationship between hard sphere results and the phase

diagram for soft sphere packings we shall concentrate on the grey (shaded)

region shown in Figure 2. Note in particular that the uniform packing

(3, 3, 0) can be transformed into the line-slip (3, 3, 0) and this eventual

becomes the uniform packing (4, 3, 1). That is, in the hard sphere limit, as

shown by the dotted line, the line-slip (3, 3, 0) connects the uniform packings

(3, 3, 0) and (4, 3, 1) by a continuous transformation. Even if for part of the

shaded region shown in Figure 2 the line-slip (3, 3, 0) has a lower density as

compared to other packings, nevertheless it still provides a metastable solution.

This is reected in the soft-sphere results, as sketched in Figure 3, whereby the

line-slip (3, 3, 0) continues as a metastable solution (of higher enthalpy)

between the two regions labelled L1.

From the hard sphere results it can be seen that the uniform packing (3, 3, 0)

can be transformed continuously into the line slip structure (3, 3, 0) by the loss

of a contact. This relationship extends into the soft-sphere results, as indicated

by the dashed line between U1 and L1. As expected, the enthalpy varies

smoothly and continuously across the boundary [12].

Figure 3. A schematic version of a part of the full phase diagram presented in [29], showing the
structure of minimal enthalpy structure. The horizontal axis (i.e. the pressure p = 0 (hard-sphere)
limit) corresponds to the shaded part of Figure 2. The red diamond indicates the value of D/d at
which the uniform packing (4, 2, 2) is found in the hard sphere limit. The regions of the phase
diagram indicates which packing – either uniform structures (U0, U1, U2) or line-slip (L0, L1, L2)
has the lowest enthalpy.
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Similarly, it can be seen from hard sphere results that the uniform structure

(4, 3, 1) can be transformed into (3, 3, 0) by the loss of a contact, this is again

reected in the phase diagram, Figure 3. In a similar manner, the correspon-

dence between U0 and its associated line-slips (L2 & L3) can also be easily

deduced by comparing Figures 2 and 3.

At higher pressures the line-slip arrangements become unstable, vanishing at

triple-points, leaving only uniform packings. As such the boundaries between

these packings (at high pressures) are given by solid lines to indicate that the

change is discontinuous. That is, the change in structure is abrupt and this

can also be seen in the enthalpy, which upon crossing the boundary may

involve a sudden change in the gradient and (or) a jump-discontinuity (see

for example Figure 3 in [12]).

Finally, there are the boundaries between adjacent line-slip packings in

Figure 3 – such as the boundary between L1 and L2, or between L1 and L3.

These are discontinuous (as expected) since there exists no simple continuous

transformations leading from one to the other.

3. Metastability and hysteresis

Given a phase diagram of the type shown in Figure 3, one may ask the question

what happens to a given equilibrium structure if the pressure or the diameter

ratio is continuously varied? (Experimentally, the rst such variation might

be easier to realise.) Could the system remain in a metastable state, giving

rise to hysteretic eects? Assuming the pressure is suciently low, is it possible

to begin with the structure U1 and gradually increase the diameter of the

conning cylinder so that it transforms rst into an intervening line-slip

arrangement and then into U2? Could this process be reversed?

The answer is yes, and we have demonstrated this in [29] for the case

U1 = (3, 2, 1) which can be transformed into U2 = (4, 2, 2) (and back again).

We summarised our results in the form of a stability diagram, which we will

discuss in Section 5, as it is of relevance to all reversible transitions encountered

for the range of D/d analysed here.

Below a critical pressure p , p3 the transformations between uniform and

line-slip structures is continuous and is accompanied by a smooth variation

in the enthalpy, or at most a change in the derivative of the enthalpy when a

new contact is formed (see Appendix A for details of how the simulations

were conducted).

The situation is more complex at higher pressures where transitions between

structures become discontinuous, leading to hysteresis. Nevertheless, a trans-

formation between the two uniform structures U1 and U2 is possible.

A change in D/d can potentially transform a uniform structure into a

number of intermediate line-slip arrangements, each leading to a dierent

uniform structure. In our numerical results we do not observe all of these
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potential transitions, only a subset, which we call favourable transitions. For a

given uniform structure the favourable transition can easily be identied from

our previous hard sphere results: it corresponds to the line-slip immediately

adjacent to a given uniform structure; see Table 1 in [27] for a list.

This table lists the densest sphere packing structures in sequence with

increasing D/d, thus for example the uniform structure (3, 3, 0) is listed as

the 10th structure. Immediately adjacent to this in the table are two line-slip

structures: the 9th structure (3, 2, 1) and the 11th structure (3, 3, 0), which

occur at slightly lower or higher values of D/d respectively. Starting with the

uniform structure (3, 3, 0) and increasing D/d implies that it will transform

into the line-slip (3, 3, 0) which eventually leads to the uniform structure

(4, 3, 1), while starting with (3, 3, 0) and decreasing D/d implies that it will

transform into the line-slip (3, 2, 1) which eventually leads to the uniform

structure (3, 2, 1).

These are the favourable transitions leading away from a uniform structure,

that is, the line-slip with the greatest density the uniform structure can trans-

form into due to an innitesimal change in D/d.

The favourable transitions (i.e. the line slips) can also be identied from

Figure 2. They occur via the line slips immediately adjacent to a local peak

(i.e uniform packing) corresponding to the line-slips with the greatest (local)

density. Thus for example, starting with the uniform structure (3, 3, 0) an

increase in D/d will transform it into the line slip (3, 3, 0) and eventually

into the uniform structure (4, 3, 1) – that is we follow the dotted line in

Figure 2 that leads from (3, 3, 0) to (4, 3, 1) via (3, 3, 0). If the pressure is

below p3 this transformation is continuous, while above this pressure there is

hysteresis.

4. Network of structural transitions in the hard sphere limit

To summarise the structural transitions that are encountered upon a change of

the ratio D/d of tube to sphere diameter we have developed a directed network

graph which indicates a pattern for favourable transitions amongst all possible

transitions. From this network graph, shown in Figure 4, we identify two

dierent transition types (reversible and irreversible), as described below. In

addition to providing a new perspective on the previous hard sphere results,

the network also predicts structural transitions yet to be realised experimentally.

The network has as its nodes all uniform structures (specied by their

respective phyllotactic notation), arranged so that their distance to some con-

ceptual origin (0, 0, 0) increases with their values of D/d. The dierent types

of transitions, as detailed below, are indicated by dierent types of arrows. A

transition from one uniform structure to another which requires moving

along the diagram in the direction perpendicular to the contours of constant

D/d (shown as dashed lines) implies a change in D/d.
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Favourable transitions are indicated by bold blue arrows in Figure 4. Also shown,

by the red arrows, are the transitions identied from previous hard sphere results

[27] which are found to be unfavourable (i.e. intermediate line slip structures

exist between these uniform packings but we do not observe these transitions in

our numerical simulations). The black dashed arrows indicate line slip transitions

that are mechanically unstable. These are of two types as described below.

The rst type are rhombic arrangements. That is the transition between pack-

ings involves an ane shear of the entire packing (as opposed to a line-slip where

the shear is restricted to single ‘line’) which we showed previously to be unstable

[33]. In Figure 4 these are transitions between adjacent packings with indices

(n+ 2, n+ 1, 1), i.e. (2, 1, 1)⇔(3, 2, 1) ⇔ (4, 3, 1)⇔(5, 4, 1)⇔(6, 5, 1).

The other mechanically unstable transitions are due to so called re-entrant

line slips [26, 27, 33]. These are line-slips for which the cylinder diameter

does not increase (or decrease) monotonically with the line-slip. See for

example the line slip between (4, 2, 2) and (4, 3, 1) in Figure 10 of [27],

where the line slip appears to ‘double back’.

Reversible transitions take place between structures connected via two blue

arrows, for instance (3, 2, 1)⇔(4, 2, 2). When increasing D/d starting from

(3, 2, 1), the preferred transition (blue arrow) is into (4, 2, 2); similarly upon

decreasingD/d the favoured transition returns the systemback to (3, 2, 1) structure.

An example of an irreversible transition is that from (4, 2, 2) ⇒ (5, 3, 2).

Here, the (5, 3, 2) structure can not be transformed back into the (4, 2, 2) via

decreasing D/d, instead it transforms (reversibly) into (4, 3, 1).

Figure 4. Directed network displaying possible structural transitions between uniform struc-
tures, in the hard sphere limit. The structures are restricted to packings without internal
spheres and are labelled using phyllotactic notation. The point (0, 0, 0) represents a conceptual
origin for the diagram, corresponding to D/d = 0. Dashed lines are contours of constant D/d – a
transition from one structure to another which involves moving along the diagram in a direc-
tion perpendicular to the contours implies a change in D/d. Favourable transitions are marked
with blue arrows, unfavourable transitions with red arrows and all unstable cases are shown
with black dashed arrows.
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Following the favourable transitions in the network, we can identify cyclic pat-

terns that can only be followed counterclockwise, with the rst cycle starting in

the third row: (3, 2, 1)⇔(4, 2, 2) ⇒ (5, 3, 2)⇔(4, 3, 1)⇔(3, 3, 0) ⇒ (3, 2, 1).

The transitions are achieved via increasing D/d until the (5, 3, 2) structure is

reached, at which point decreasing D/d leads back to the original structure via

(4, 3, 1) and (3, 3, 0). Another potential cycle could start and end with the struc-

tures (5, 3, 2) (conrmation would require further simulations that we have not

conducted here).

The structural transitions presented in the network of Figure 4 is broadly

consistent with previous results for similar systems. The earliest detailed exper-

imental work appears to be that by [7] who dilated and compressed crystalline

arrangements of equal volume soap bubbles that were conned in a cylinder, by

the use of a piston. The observed cycles of structural transitions were inter-

preted by the authors with reference to the nucleation and motion of a dislo-

cation on a triangular lattice [6, 7]. More recently, transitions between

assemblies of hard particles in cylinders were explored numerically using

Monte Carlo simulations [14]. By compressing the system it is possible to

induce transitions between structures, again we nd that the favourable tran-

sitions listed by Fu et al. [14] are consistent with Figure 4.

5. Stability diagrams for columnar structure with D/d , 2.713

Having dened the two dierent transition types (reversible and irreversible) in

the previous section, we now want to explore how these transitions change with

increasing pressure p.

We do this by computing trajectories in the (p, D/d) plane, and recording

boundaries where a structure changes to one of a dierent character. With a

sucient number of trajectories, a stability diagram is built up, that is, a map

of the location of structural transitions.

We will present schematic stability diagrams for both reversible and irrevers-

ible transitions, applicable to all the transitions between columnar structures

with size ratioD/d , 2.713 (without inner spheres). The corresponding critical

pressures, which demarcate dierent transition routes, are presented in a table.

5.1. The reversible case

In [29] we had presented, as an example of a reversible transition, the case

(3, 2, 1) ⇔ (4, 2, 2). The corresponding stability diagram can be represented

schematically, as in Figure 5, so that it shows the topological features of any

reversible transition between two uniform structures U1 and U2.

Below pressure p3 the uniform structure U1 can be transformed by a con-

tinuous (i.e. reversible) transition into its associated line slip. A further

increase in D/d leads to a second continuous transition, whereby the line-
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slip is transformed into the uniform structure U2. For a xed pressure, the

transitions occur at the same value of D/d, independent whether taking

the forward trajectory (i.e. increasing D/d) or backward trajectory (i.e.

decreasing D/d). This is indicated by the use of double-headed arrows in

Figure 5.

For pressures p with p3 , p , p2 the transition from the uniform structure

U1 to the line-slip remains continuous on both the forward and reverse trajec-

tories. However, the transitions between the line-slip and the uniform structure

U2 are now discontinuous and no longer occur at the same value of D/d.

Increasing the pressure further (i.e. p2 , p , p1) results in the transition

from the uniform structure U1 to the line-slip becoming discontinuous; fur-

thermore the line-slip is no longer observed on the reverse trajectory

(instead the system makes a discontinuous jump from U2 to U1). Finally,

above p1 the line slip also disappears from the forward trajectory and

instead there are only discontinuous transitions between the two uniform

structures U1 and U2.

To demonstrate the interpretation of Figure 5 we now give an example.

Suppose we x the pressure to be in the regime p3 , p , p2 and start with

the structure U1 to the left of the diagram (i.e. low D/d). Keeping p constant

and increasing D/d allows us to move towards the right of the diagram and

eventually brings us into region C in the diagram. At the dashed boundary

the change in enthalpy in going from U1 to LS is continuous (as indicated by

the dashed line). Increasing D/d (i.e. moving further towards the right)

Figure 5. Schematic displaying the topological features of a stability diagram for reversible tran-
sitions. The two uniform arrangements are labelled by U1 and U2 and the intermediate line slip
is labelled LS. Solid lines represent discontinuous transitions, continuous transition are marked
as dashed lines and the arrows at the lines indicate the direction of the transition. For this type
of transition U1 transforms reversibly into U2, showing only hysteresis above a threshold
pressure p3. (Taken from previous publication [29])
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brings us into region B but the boundary can be ignored since the arrow points

in the opposite direction. The nal boundary (with an arrow pointing to the

right) however is relevant and the solid line indicates a discontinuous change

in the enthalpy, upon crossing the boundary the line-slip is transformed into

the uniform packing U2.

Reversing the trajectory we start with U2 and decrease D/d (i.e. moving

now towards the left), we rst enter the region labelled B but the boundary

can be ignored (since the arrow points in the opposite direction). Upon

crossing from region B to C the solid boundary (with an arrow pointing to

the left) is relevant and indicates a discontinuous transition from U2 to the

line-slip. Further decreasing D/d results in a continuous transition from

the line-slip and back to the the uniform packing U1.

The critical pressures p1, p2, p3 depend on the choice of the uniform struc-

tures U1 and U2. and were determined from our simulations.

Figure 5, together with Table 1 containing the values for the critical pressure

thus presents all the information required to characterise reversible transitions

with D/d , 2.713 (excluding structures with inner spheres).

5.2. The irreversible case – structural hysteresis

Irreversible transitions also lead from an initial to a nal uniform structure (by

a change of D/d), however, by denition the reverse path is not observed: it is

unfavourable.

Within the range of cases discussed here we identify two types of irreversible

transitions. The topological features of the rst type, I, for which the initial

uniform structure U1 has the phyllotactic indices of the form (l, l/2, l/2), is

shown in Figure 6 (a). The second type, II, for which the initial uniform struc-

ture U2 has phyllotactic indices of the form (l, l, 0) is shown in Figure 6 (b).

Note that a common feature of both types of irreversible transitions is that

the initial uniform structure is achiral.

Table 1. Critical pressures for reversible transitions.

Structural transition U1 ⇔ U2 p1/10
2 p2/10

2 p3/10
2

(2, 2, 0) ⇔ (3, 2, 1) 0.79 0.40 0.21
(3, 2, 1) ⇔ (4, 2, 2) 2.74 2.48 1.47
(4, 3, 1) ⇔ (5, 3, 2) 4.70 2.34 0.90
(3, 3, 0) ⇔ (4, 3, 1) 3.54 0.87 0.24
(5, 3, 2) ⇔ (6, 3, 3) 4.36 2.94 1.18
(5, 4, 1) ⇔ (6, 4, 2) 5.36 2.00 0.12
(4, 4, 0) ⇔ (5, 4, 1) 5.46 1.02 0.08
(5, 5, 0) ⇔ (6, 5, 1) 6.18 0.94 0.08

Note: The values for the pressures p1, p2 and p3 determine the type of transitions encountered upon a change of
the size ratio D/d in the stability diagram of Figure 5. This characterises all reversible cases for structures without
inner spheres (D/d , 2.713). The uniform structures (6, 3, 3) and (6, 4, 1), which appear above the limit
D/d , 2.713, have also no inner spheres in our cases. All stability diagrams were obtained with a resolution
in pressure of Dp = 4 · 10−4, which determines the uncertainties for all pressures.
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5.2.1. Irreversible transition of type I

Starting with a uniform structure U1 of the type (l, l/2, l/2) we nd that below

p3 the structure can be transformed continuously (and reversibly) into its

associated line-slip, as shown in Figure 6(a) by the symbol U1 ↔ LS. A

further increase in D/d leads to the formation of a new contact, resulting in

the uniform structure U2. While this second transition is continuous (since

the enthalpy varies smoothly throughout) it is not reversible, as indicated by

the symbol LS  U2

Figure 6. Schematic stability diagrams for irreversible transitions. The uniform arrangements
are labelled by U1, U2 and U3 and the intervening line slip, in each case, is labelled LS. Solid
lines represent discontinuous transitions, continuous transition are marked as dashed lines
and the arrows at the lines indicate the direction of the transition. (a) Type I transition: Structure
U1 is of the type (l, l/2, l/2). (b) Type II transition: Structure U2 is of the type (l, l, 0).
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The transition from U1 to U2 is irreversible in the sense that beginning with

U2 a decrease in D/d does not lead back to U1. For example, increasing D/d

leads from (4, 2, 2) to (5, 3, 2) but a decrease in D/d from (5, 3, 2) leads even-

tually to (4, 3, 1) (and not back to (4, 2, 2)). This is evident also from the

directed network shown in Figure 4).

For higher pressures in the range p3 , p , p1 the transformation from the line-slip

to U2 becomes discontinuous (i.e. accompanied by a sudden change in the enthalpy).

Finally, for pressures above p1 the intervening line-slip between the two uniform struc-

tures disappears completely and this leads to a discontinuous change from U1 toU2.

5.2.2. Irreversible transition of type II

In the case of initial structures of the type (l, l, 0) the topological features of the

transitions are similar, except that the transition is from the initial uniform

structure U2 to the nal uniform structure U3 and involves a decrease in D/d.

However, in the case of the (l, l, 0) structures a protracted diculty was

encountered in the regions indicated by ‘· · ·’ in Table 2. We expect the tran-

sition from U2 to the line slip to be continuous below a critical pressure p3,

however we encountered pressures that were so low that we reached the limit

of our numerical capabilities and were unable to obtain an estimates.

A further decrease in D/d eventually leads to a continuous (and reversible)

transition from the line-slip to U1. In the regime p3 , p , p2 the transition

from U2 to the line-slip becomes discontinuous (as we have observed in simu-

lations). Finally above p2 the line slip disappears completely and the transition

form U2 to U3 is by a single discontinuous jump in enthalpy.

6. Conclusion

When equal-volume hard spheres, bubbles or other similar entities are conned in

narrowcylinders, they forma fascinating variety of helical andnon-helical structures.

Extensive numerical simulations of such columnar packings showed that for

monodisperse hard spheres the ratio of the cylinder diameter to the sphere

diameter is the key parameter which determines the type of arrangement.

For soft spheres both applied pressure and size ratio play a role and we have

provided a complete taxonomy of the competing structures.

Table 2. Critical pressures for irreversible transitions.

Transition U1 ⇒ U2 p1/10
2 p3/10

2 Transition U3 ⇐ U2 p2/10
4 p3/10

4

(3, 2, 1) ⇐ (3, 3, 0) 0.16 · · ·

(4, 2, 2) ⇒ (5, 3, 2) 2.89 1.62 (4, 3, 1) ⇐ (4, 4, 0) 0.62 · · ·

(5, 4, 1) ⇐ (5, 5, 0) 0.16 · · ·

Note: The values for the pressures p1, p2 and p3 determine the type of transitions encountered upon a change of
the size ratio D/d in the stability diagram of Figure 6. This summarises the characteristics of all irreversible tran-
sitions for structures without inner spheres (D/d , 2.713). The direction of the arrow indicates whether the
transition happens at increasing D/d (marked by ⇒) or at decreasing D/d (marked by ⇐). The uncertainties
of all pressures are again Dp = 4 · 10−5 where ‘· · ·’ indicate that the transition was not directly observed
due to the numerical limits of our algorithm.
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Here we have completed the survey of the hysteretic eects predicted for soft

spheres, as was anticipated in our earlier work [29]. Transitions between pack-

ings, due to either changes in D/d or pressure P, are shown to be either revers-

ible or irreversible. These relationships are summarised by a directed network

and key parameters have been tabulated. Our results are found to be in broad

agreement with other studies of transitions between columnar structures, either

in the context of foams [6, 7] or colloids packed into tubes [14].

Our work is of relevance to the eld of discrete or droplet microuidics, in

which ordered assemblies of bubbles or droplets are transported through chan-

nels [34–36]. Our directed network oers guidance how particular structures

may respond to changes in either channel diameter or pressure.

A further relevance of ourworkmaybe to the recent observations of helical pack-

ings that formduring the clogging of spherical particles in cylindrical channels [37].
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Appendix

Simulation model

We consider the same model as in our previous work [29]. The interaction energy between

spheres of diameter d is then given by,

ESij =
1
2
(rij − d)2 if rij ≤ d

0 if rij . d

{

(A1)

where rij = |ri − rj| is the distance between the centres of the spheres. Note the interaction

energy is zero when there is no overlap between the spheres.

The interaction energy between the ith sphere and the cylindrical boundary is given by,

EBi =
1
2
k(riB − d/2)2 if riB ≤ d/2

0 if riB . d/2

{

where riB = |D/2− ri|. The spring constant k determines the softness of the spheres.

We conduct simulations using a unit cell of length L (volumeV = p(D/2)2L), containing

N spheres. On the ends of the unit cell we impose twisted periodic boundary conditions. The

periodic boundaries are implemented by placing image spheres above and below the unit

cell, where each sphere of the unit cell is moved in the z-direction by L (and −L) and

twisted by an angle α (and −a, respectively) in the xy-plane [27].

Our simulations were run with 12 spheres in the unit cell, commensurable with the

minimum number of spheres required for the previously identied hard-sphere packings
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in the investigated range of D/d (N = 1, 2, 3, 4, see Table 1 in [27]). For simulations of the

(5, 5, 0) structure or its adjacent line slips, which are the only structures with at least ve

spheres in the unit cell, N = 60 spheres was used.

Stable structures can be generated by minimising the enthalpy H = E + PV. Here

E = ES + EB is the internal energy due to overlaps with other spheres (ES =
∑N

i≤j E
S
ij) and

with the cylindrical boundary (EB =
∑N

i EBi )) and P is the pressure. During the minimis-

ation, the free parameters are the sphere centres {ri}, the twist angle α, and the length of

the unit cell L, while the pressure P is kept constant.

Enthalpy and pressure have to be rescaled accordingly to obtain non-dimensional quan-

tities. We use the dimensionless enthalpy h = H/(kd2) and dimensionless pressure

p = P/(k/d), where k is the spring constant and d is the sphere diameter.

From our previous results we are able to identify the minimal enthalpy structure for a

given value of p and D/d. For this stable structure we ask how does it change when the

pressure p and diameter ratio D/d are continuously varied (where in the latter case we

only explore the change in D/d by varying D and not by varying d), while remaining in

the local minimum of enthalpy? Thus, we will only be using the BFGS method [38] here,

which uses a conjugate gradient algorithm to search for the nearest local minimum.

With this procedure, structures of high symmetry, such as the (4, 2, 2) or (3, 3, 0), can get

stuck on a saddle point, where the enthalpy is not minimal, but its gradient is zero. This can

be avoided by applying a small random perturbation to the structure, which displaces it from

the saddle point, followed by a local minimisation. Starting with a given uniform structure, a

change in D/d may lead to a mechanically unstable structure which is identied as a struc-

ture that starts out as the expected line-slip arrangement but then collapses into a metastable

structure.
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