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ABSTRACT: The road network provides a connecting infrastructure that facilitates countless daily 

pursuits, supporting communication and economic activity. Flooding hazard often threaten the road 

network with physical damage and service interruption. Traffic disruptions are reflected in increased 

travel distance, increased travel time, and even inability to travel at all. This paper proposes a framework 

combining flooding scenarios and road network topological features to assess road network performance 

and risk. A graph-based model is introduced to assess the global network performance in terms of 

connectivity and accessibility. This model also allows to identify the critical components in the road 

network. The flood hazard is then presented in terms of flood depth and velocity for multiple return 

periods. Flood intensity maps are used to assess the vehicle risk of degraded driving performance on the 

entire network. The methodology is applied for the road network of Bristol, UK. Flood scenarios with 

10-year and 200-year return periods are considered. The results presented herein may be used to support 

the development of mitigation strategies to improve the resilience of road networks.

1. INTRODUCTION 

Transportation networks play an important role in 

supporting social and economic activities. In the 

road network system, roads and bridges are 

vulnerable to flood hazards (Somy et al., 2021). 

The increasing frequency of extreme weather due 

to climate change has spawned catastrophic 

natural disasters, rendering road networks non-

functional, and threatening human life of the users 

(e.g., Zhang & Alipour, 2019, Wardhana & 

Hadipriono, 2003). 

Several indicators quantifying infrastructure loss 

of functionality have been proposed in the 

literature. For general infrastructures, Bruneau et 

al. (2003) defined resilience as the ability to resist 

a damage and maintain the functionality during 

and after a disaster. For road network 

performance, Zhang (2019) identified two 

indicators: average node degree and average 

shortest path (see Sec. 2.1). Cimellaro et al. (2010) 

quantified road network resilience through an 

image-based methodology, where resilience is 

represented as area under the continuous curve 

composited by the relationship between road 

network functionality and flood extension. Henry 

et al. (2021) evaluated the importance of each link 

via betweenness centrality (BC) (see Sec. 2.1). 
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Shahdani et al. (2022) researched the varied 

maximum vehicle velocity due to different flood 

depths. Wang et al. (2021) considered flood 

velocity as the parameter affecting the sliding of 

different vehicle typologies. Alabbad et al. (2021) 

assessed the road network accessibility for 

different flood return periods and identified 

dysfunctional bridges. Although the above studies 

investigated the impact of flooding on road 

network resilience for different goals, limitations 

still exist. Specifically, there remains a need for 

optimizing the assessment of the road 

performance combining a graph-based analysis 

aimed at the identification of the road risk, and a 

functionality analysis aimed at checking the 

vulnerability of vehicles for the most vulnerable 

links. To this aim, an integrated graph-based 

method is developed and combined with the 

assessment of car stability during flooding. This 

method is applied to Bristol's road network 

performance. Bristol is a flood-prone area in 

Southwest England, UK. The results presented 

here may be used to support the development of 

mitigation strategies to improve the resilience of 

road networks. 

2. METHODOLOGY 

Fig. 1 shows the methodology underpinning this 

study, which includes nine steps. 

1. Construction of the road network graph using 

nodes and links as per Gauthier et al. (2018). 

2. Definition of the indicators quantifying the 

global road network performance. 

3. Stress tests of the network to assess the 

network functionality. 

4. Identification of the critical links based on 

betweenness centrality. 

5. Assignation the elevation of each link using 

the Digital Surface Model (DSM). 

6. Extraction of flooding intensities including 

depth and velocity from the flood maps. 

7. Computation of critical flood velocity to 

evaluate risk level of vehicle due to flood 

velocity. 

8. Identification of risk level of vehicle due to 

flood depth. 

9. Classification of link risk. 

2.1. Road network topology analysis 

In graph-based methods, a road network consists 

of links (e.g. roads) and nodes (e.g. 

origins/terminals and junctions). Zhang (2019) 

proposed two important indicators, the average 

node degree ( dave ) and average shortest path 

(Pave ), shown in Eq. 1 and Eq. 2, respectively. 

Definitions of these two variables are identified in 

the Table 1. 

                       dave =
1

N
∑ (di

In + di
Out)N

i=1                          (1) 

Figure 1: Methodological flowchart underpinning this study. 
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                  Pave =
1

N(N−1)
∑ ∑ SPij

N
j=1,j≠i

N
i=1,i≠j                (2) 

where N is the node number in the road network 

while i and j are indices of origin node and 

destination node. Furthermore, di
In  and di

Out  are 

the sum of number of incoming links to node i and 

the sum of number of outcoming links to node i, 

respectively. SPij  is the shortest travel path 

between i and j. 

 
Table 1: Indicators and definitions of road network 

performance quantification 

Indicators Definition 

Average 

node degree 

The average of the sum of the number of links 

connected to all nodes in the road network. 

This parameter represents the connectivity of 

the road network. 

Average 

shortest path 

The average of the sum of the shortest 

traversable distances between any two nodes. 

This parameter represents the accessibility of 

the road network. 

 

Betweenness Centrality (BC) is also a vital 

variable to evaluate the link importance. The 

definition of BC is “the frequency with which a 

point falls between pairs of other points on the 

shortest paths connecting them” (Freeman, 1978: 

p221). The definition of BC is also applicable to 

the evaluation of link criticality. The higher the 

value of BC, the more critical the link is to the 

performance of the global road network.  

The expression of the BC is: 

                                BC(l) =  ∑
σij(l)

σij
i≠l≠j                            (3) 

where σij(l) is the number of shortest paths that 

pass through the link l from node i to node j, while 

the σij  is the number of all available paths that 

traverse from these two nodes in the road network.  

Elevation is a significant attribute of a link. By 

calculating the difference between the flood depth 

and the elevation of the corresponding link, the 

inundation depth of the link by the flood can be 

derived. The road network elevation can be 

obtained from a Digital Surface Model (DSM). 

2.2. Flood intensity measure and risk analysis 

The impact of floods on the road network is 

mainly determined by two factors, the flood depth 

and the flood velocity. The flood depth refers to 

the inundation depth of the link by the floodwater. 

Shahdani (2022) proposed a relationship between 

the maximum vehicles speed and inundation 

depth (Table 2). 

 
Table 2: Effect of flood level on link maximum 

vehicle speed (from Shahdani et al., 2022) 

Flood Depth (m) Max Vehicle Speed (km/h) 

Depth < 0.1 

0.1 ≤ Depth < 0.3 

0.3 < Depth 

Road Speed unlimited 

20 

0 (Link Closed) 

 

According to these three categories, as the flood 

depth increases, the max speed of vehicle on roads 

decreases and the risk to the road posed by floods 

becomes higher. 

Flood velocity is another factor affecting link 

performance, causing vehicle instability during 

flood events. The flood depth derives the critical 

flood velocity, determining the maximum flood 

velocity that vehicle can withstand (Wang 2021). 

Herein, the critical flood velocity in two 

directions is considered: the flow parallel and 

perpendicular to the vehicle (Eq. 4 and Eq. 5).  

 

For 0o and 180o: 

                 Uc =  α(hf/hc)β√2glc[
ρchc

ρfhf
−  Rf]                (4) 

For 90o: 

                 Uc =  α(hf/hc)β√2gbc[
ρchc

ρfhf
−  Rf]              (5) 

 

where Uc  is the critical flood velocity of the 

incoming flow to cause the vehicle instability; α 

and β are parameters associated to the vehicle 

physical features and vehicle-road connection 

condition, such as vehicle appearance, type of tyre 

and roughness of vehicle-road connection surface. 

hf  and hc  are flood depth and vehicle height 

respectively, g is the acceleration of gravity (9.8 

m/s2), ρc  and ρf  are densities of vehicles and 

incoming water, Rf  is a parameter that controls 
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whether the vehicle floats or not. In Eq. 4 and Eq. 

5, only two parameters are different (lc and bc), 

which represent the length and width of the 

vehicle suffering incoming flood. According to 

Wang (2021), the most unfavourable condition is 

due to incoming flood perpendicular to vehicle; 

therefore, the Eq. 5 is adopted to derive the critical 

incoming flood velocity. Values of all parameters 

in Eq. 5 for critical velocity calculation are shown 

in Table 3. 

Wang (2012) determined the risk to vehicles due 

to flood velocity by calculating the ratio of the 

actual flood velocity and the critical flood velocity 

(Eq. 6).  
 

                                      Risk =  Uf/Uc                                 (6) 

 

Due to the different weights of different vehicles, 

the ability to resist the impact of floods is also 

different. For each return period, two different 

types of vehicles (SUV and car) are analysed 

separately (Wang et al., 2021). Eventually, the 

risk level of the road network is visualized at 

network level through maps. 

2.3. The case study 

Bristol is a middle-size city in the southwest of 

England, cut across by the Avon River. There are 

many bridges located in Bristol, connecting the 

road network. Bristol is regularly affected by 

flooding hazards, resulting in damaged bridges 

and a less functional road network (ARUP, 2020). 

Road network data were collected from 

OpenStreetMap (OSM), an open-source database 

that synthesizes all geospatial features (Costa 

Fonte et al., 2017). NetworkX is used to construct 

the digital road network components and analyse 

the topological performance of the road network; 

it is a Python module that can support user to 

create, manipulate and analyse the structure and 

physical features of road network (NetworkX, 

2022). Moreover, BC can be calculated directly in 

NetworkX. 

The DSM was obtained from the UK’s 

Department for Environment Food & Rural 

Affairs (DEFRA) data service platform (2021). It 

should be noted that DSM data is applied instead 

of Digital Elevation Model (DEM) because DSM 

contains the elevation of all environmental and 

artificial features, while DEM is the elevation of 

the bare surface of the earth. 

Flood data for the different return periods is 

provided by Fathom who is a company leading in 

flood and climate risk (Fathom, 2023); 10-year 

and 200-year return periods are used for the road 

network risk analysis. 

In a preliminary application, two main road 

classes (motorway and trunk) are obtained from 

OSM and imported into GIS. The road network 

Figure 2: Average node degree (a) and average shortest path (b) variations based on bridge closed. 

Vehicle

α β g  

(m) (m*s -̂2) (m) (m) (kg*m -̂3) (kg*m -̂3)

SUV 0.367 -0.451 1.737 9.8 5.089 1.983 203 1000 0.551

car 0.492 1.48 -0.344 9.8 4.945 1.845 170.44 1000 0.65

Parameters

Table 3: Parameters for calculating critical flood velocity of SUVs and Car (from Wang et al., 2021). 
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extends from Kingswood to the east, Avonmouth 

to the west, Hartcliffe to the south, and Severn 

beach to the north. The network is composed of 

8920 nodes and 1944 links, including 89 bridges 

and 1855 roads.  

3. RESULTS 

In this section, the indicators presented in Sec. 2 

are applied to understand the road network 

performance for 10-year and 200-year return 

periods. The analysis of the results is divided into 

the global performance of the road network, the 

criticality assessment of the links and the risk 

assessment of the links during floods.  

3.1. Global road network performance analysis 

Fig. 2 shows the average node degree and the 

average shortest path considering the closure of 

different bridges. Critical bridges which, if 

removed (i.e. rendered inaccessible to traffic) give 

rise to the lowest indicators or performance. Fig. 

2 also shows that the change trends of the average 

node degree and of the average shortest path are 

coherent when bridges are consequentially closed. 

It is worth noting that in Fig. 2(a) and Fig. 2(b) the 

minimum values of these two indicators are 

reached when bridges with ID 10 and ID 1758 are 

closed. Therefore, it can be inferred that these two 

bridges are critically significant for the 

topological capacity of the global road network. 

Fig. 3 shows the location of these two bridges in 

Google Maps, and photos in Google Earth. 

ID 10 bridge is a viaduct at the intersection 

between Bristol and the main highway M32 in the 

UK. So, the viaduct significantly impacts traffic 

entering and leaving Bristol. ID 1758 bridge 

(Cabot Way) is a riverine bridge within the main 

arterial road in the centre of Bristol. When this 

bridge is closed, connectivity and accessibility 

between the sides is significantly reduced. 

Therefore, the bridge plays an important role in 

the road network. 

3.2. Criticality of link analysis 

According to Sec. 2.1, Eq. 4 is used to calculate 

the criticality of links in the road network. To 

express the criticality of links in the road network, 

the BC values of all links in Bristol are mapped in 

the graph according to five categories of BC, 

which represent low criticality (green), medium-

low criticality (cyan), medium criticality (yellow), 

medium-high criticality (orange), and high 

criticality (red). Fig. 4 shows the classification 

and mapping of link criticality in the road network 

in Bristol. The majority links in North of Bristol 

are in the high criticality and medium-high 

criticality classifications, and links in the South 

are generally in the low criticality classification. 

 
 
Figure 4: Link criticality classification and mapping 

in Bristol. 

Figure 3: Locations and photos of bridges with ID 1758 (left) and 10 (right). 
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This result shows that the links in the North are 

more critical than those in the South. From the 

geographical distribution of Bristol's road 

network, the road network in the North of Bristol 

is sparser than that in the South. It shows that the 

redundancy of the northern road network is 

relatively low. Compared with the southern road 

network, the available routes in the northern road 

network are more limited. In addition, for vehicles 

in the East-West direction, the high criticality and 

medium-high criticality paths do not need to 

detour, and the driving distance is shorter than the 

low criticality path. Hence, in the East-West 

Figure 5: Link risk classification; a) 10-year return period flood extent; b) risk classification for SUVs in 

10-year; c) risk classification for cars in 10-year; d) 200-year return period flood extent; e) risk 

classification of SUVs in 200-year; f) risk classification of cars in 200-year. 
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direction, more shortest paths pass through the 

high criticality and medium-high criticality links. 

Therefore, Fig. 4 shows high and medium-high 

criticality of the road network in the North of 

Bristol, while low criticality characterizes the 

South. 

3.3. Risk analysis of link by integrating flood 

depth and velocity 

In this study, the flood data of 10-year and 200-

year return periods are used to analyse the risk 

level of the road network in low-intensity and 

high-intensity flood hazards, respectively. As 

mentioned in Sec. 2.2, flood depth and flood 

velocity are two factors that affect the link risk 

level. For the assessment of the flood velocity on 

the risk level of the road network, the unfavorable 

principal proposed by Wang (2021) was used, and 

the critical flood velocity of the two vehicles was 

calculated by Eq. 5. Then, the risk level of the 

vehicle caused by the flood velocity is derived by 

Eq. 6. For the assessment of the flood depth on the 

risk level of the road network, the criterion of the 

impact of the flood depth on the vehicle speed in 

Table 2 is used. To integrate flood velocity and 

flood depth into a comprehensive assessment of 

vehicle risk, Table 4 presents a classification 

matrix for vehicle risk based on these two factors. 

Classification is divided into 6 categories as no 

risk (green), low risk (cyan), medium-low risk 

(blue), medium risk (yellow), medium-high risk 

(orange), and high risk (red). Fig. 5 shows the risk 

range of the road network in the flood of 10-year 

and 200-year return periods, as well as the 

classification of the risk level of SUVs and cars.  

  
Table 4: Link risk classification 

 

As expected, the risk level of SUVs and cars in 

the 200-year return period flood is higher than that 

in the 10-year return period flood. Therefore, 

high-intensity flood events have a more profound 

impact on the road network. However, in both 10-

year and 200-year flood return periods, the risk 

level and distribution of SUVs and cars are the 

same.  

4. DISCUSSIONS 

This graph-based model quantified the global 

road network performance in terms of average 

node degree and average shortest path. 

Furthermore, through stress testing, the 

importance of bridges who have significant 

contribution to global road network performance 

were assessed based on average node degree and 

average shortest path changes. Road criticalities 

were evaluated through betweenness centrality to 

show the critical roads within road network. 

Moreover, for road network risk analysis, this 

model adopted 10-year (low-intensity flood) and 

200-year (high-intensity flood) flood return 

periods to assess the vehicle risks both for SUVs 

and cars. Results showed that high-intensity flood 

resulted in higher vehicle risk. 

However, in this study, the two features of road 

network performance and flood hazard are 

unintegrated. In future work, links defined as high 

risk in risk classification cloud be use for stress 

testing to derive the changes in average node 

degree and average shortest path to reflect the 

performance degradation of the road network and 

the redistribution of link criticality in actual flood 

event.  

5. CONCLUSIONS 

This article introduced a graph-based integrated 

framework to study the road network topological 

performance and risk in flooding events. This 

framework consists of two features: the road 

network topology feature and the flood intensity 

feature. For the topology module, the 

performance of the road network in Bristol was 

quantified by average node degree and average 

shortest path, reflecting the connectivity and 

accessibility of road network. By using the stress 
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testing on all bridges in Bristol, two critical 

bridges identified. Combined with Google Maps 

and Google Earth, the reasons why these two 

bridges are critical were analysed from the 

perspective of geographical location and type. 

Furthermore, the criticality of links is evaluated 

by betweenness centrality. This study showed that 

the criticality of paths with low redundancy and 

short length is relatively high in the whole road 

network. For the risk assessment of the road 

network in flood events, low-intensity floods and 

high-intensity floods were used to evaluate the 

risk levels of SUVs and cars, respectively. Results 

showed that high-intensity flooding increases the 

risk to the road network, although this study 

showed no difference in the risk level of SUVs 

and cars during the same flood scenario. 
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