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ABSTRACT: The propagation of damage evolution at different scales leads to the uncertainty of failure 
mode for shear walls, and it is difficult to determine the reliability of shear walls with shear failure 
accurately using the threshold value of flexural failure. In this study, the feasibility of three-parameter 
kinematic theory for shear-dominated reinforced concrete shear walls is validated by the shear capacity 
of 27 RC shear walls and the lateral load-displacement curves of 8 RC shear walls. The deterministic and 
stochastic parametric analysis of shear walls’ nonlinear behavior are conducted, and the results indicate 
that multiple failure modes occur in shear walls with compressive strength of concrete 44-64MPa. Finally, 
the damage state is chosen as the failure threshold, and the calculation results indicate that the reliability 
of RC shear walls under major earthquake was improved by increasing the compressive strength of 
concrete. 

The shear walls with stochastic dimensions and 
materials properties experience catastrophic 
dynamic effects with significant randomness in 
terms of time, location and amplitude during their 
service period (Roberts and Spanos 2003). 
Uncertainty in the failure mode for shear walls is 
caused by the propagation of damage at different 
scales. The threshold value of flexure failure 
makes it inaccurate to assess the shear wall’s 
reliability with shear failure. Therefore, it has 
important theoretical significance and practical 
value of engineering to examine the reliability of 
shear walls under multiple failure using a 
methodology with clear physical meaning. 

The unified theory of concrete structures 
(Hsu and Mo 2010) has made significant 
advancements in understanding the ultimate 
bearing capacity and failure modes of structural 
components. The shear failure is essentially a 
two-dimensional problem, and it has taken a long 
time to develop the mechanical mechanism and 
failure criterion of shear failure. Modified 
compression field theory (Vecchio and Collins 
1986) and softened membrane model (Hsu and 
Zhu 2002) are examples of mesoscopic shear 
theory, while multiple vertical line element model 

(Vulcano et al. 1988) and strut-and-tie model 
(Zhao et al. 2018) are representative examples of 
macroscopic modes of shear walls. 

The average force-deformation response has 
been established empirically by taking into 
account the effects of strain or stress at cracks and 
between cracks, as well as bond slip and shear slip 
at cracks within the framework of mesoscopic 
shear theory. The force transfer path is assumed 
for shear walls within the framework of 
macroscopic shear model, resulting in its 
mechanical mechanism to be ambiguous. 
Mihaylov et al. (2016, 2019) recently developed a 
kinematics-based method for studying the shear 
behavior of RC components, which allows for 
accurate simulation of the force-displacement 
response of RC members under disturbed stresses. 

The coupling effect between nonlinearity and 
randomness brought attention to the necessary to 
incorporate reliability index into the structural 
analysis. Li et al. (2004, 2017) proposed a 
probability density evolution method for 
compound random vibration analysis of stochastic 
structures. The augmented state vector is 
introduced to construct a state equation with 
random initial conditions. The governing equation 
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for the response of compound random vibrations 
is deduced and solved with the precise integration 
method and various difference schemes. 

The combination explosion problem in the 
conventional global reliability analysis of 
engineering structures is dissolved by the 
equivalent extreme-value event (Li et al. 2007, 
Chen and Li 2007). The physically-based 
synthesis method integrates the physical and 
mechanical mechanisms, the physical failure 
criteria and the propagation law of randomness 
inherent in physical systems (Li 2018). The 
rationality of the aforementioned physical failure 
criteria depends on the establishment of an 
accurate physical model. At the component level, 
the propagation of damage evolution at different 
scales and the competing mechanism of several 
failure modes (such as flexural failure, shear 
failure) results in the uncertainty of failure mode. 

In this paper, the bearing capacity of 27 sets 
of RC shear walls and the load-displacement 
curves of 8 sets of RC shear walls are used to 
verify the feasibility of the kinematics-based 
approach. The stochastic fluctuation of nonlinear 
response of RC shear walls is proved to be caused 
by the randomness of the axial force, structure 
dimensions and material properties. The 
coefficient of variation of ultimate bearing 
capacity, residual bearing capacity and their 
corresponding deformation are quantified. The 
calculation results indicate that increasing the 
concrete strength can improve the reliability of 
RC shear walls under major earthquakes. 

1. SHEAR MODEL BASED ON KINEMATIC 
PRINCIPLE 

The application of the three-parameter kinematic 
theory for shear-dominated RC shear walls 
(Mihaylov et al. 2016) was constrained by the 
assumptions regarding its displacement field and 
failure state: (1) the axial load ratio N/bhf’c < 0.2; 
(2) an aspect ratio ≤ 3.0; (3) normal strength 
concrete, that is f’c ≤ 60MPa; (4) a wall-height-to-
thickness ratio ≤ 25; (5) no lap-splices in the base 
section and no diagonal shear reinforcement. The 
authors’ investigation (Gao et al. 2021) of the 
shear behavior of RC coupling beams indicates 
that the kinematic-based approach is valid even 
when the concrete compressive strength and 
aspect ratio are 80MPa and 3.5, respectively. 

1.1. Calculation method of shear walls 

1.1.1. Displacement fields 
The displacement fields of the RC shear walls is 
primarily determined by the average longitudinal 
reinforcement strain εt,avg, the horizontal shear 
deformation Δc, and the vertical deformation Δcx 
in the shear compression zone. Thus, the 
displacement fields of uncracked shear walls are 
expressed as: δx(x, z) = f1(εt,avg, Δcx), δz(x, z) = 
f2(εt,avg, Δcx, Δc); and the displacement fields of 
cracked shear walls are expressed as: δx(x, z) = 
f3(εt,avg), δz(x, z) = f4(εt,avg). (Figure 1) 

 
Figure 1: Deformation patterns and DOFs of RC shear wall (Mihaylov et al. 2016) 

 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 3 

1.1.2. Geometrical parameters 
The expression for characteristic length lb1e of 
shear compression zone is: 

 2 20.11 370mmb1el a h     (1) 

The angle of inclined crack is calculated 
according to simplified modified compression 
field theory proposed by Bentz et al. (2006): 

  1 29 7000 750.88
2500
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where normal strain εx at the half section height 
and crack spacing parameters sxe are calculated 
according to AASHTO (2007). 

Length of transition zone between fan-
shaped zone and rigid block is calculated as 
follows: 
  0 1min , cot cotk crl l s d         (3) 

Cracked length along longitudinal 
reinforcement is calculated as follows: 
  1cott k 0l d l l     (4) 

1.1.3. Shear mechanism 
The shear mechanism of RC shear walls can be 
represented by a set of nonlinear spring, and the 
shear capacity provided by shear compression 
zone is determined as follows: 
  ,CLZ b1e c CLZ CLZF l bf    (5) 

where fc,CLZ is the stress-strain relationship of 
concrete, and Popovics’ model (1970) and 
Mander’s model (1988) are used for unconfined 
concrete and confined concrete, respectively. 

The aggregate interlock force is calculated as 
follows: 
   1 10.18 , sinci ci ciF v w bd     (6) 

where Li’s model (1989) is adopted to calculated 
the aggregate interlock shear stress vci.  

The force in the stirrups is calculated 
according to Eq. (7): 
  s v v vF A f    (7) 

Where Av = ρvbꞏmax[d1cotα1 – 1.5lb1e – l0(d/d1), 
0.5d1cotα1]. 

The dowel action force is calculated as 
follows: 
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The lateral displacement Δ, the vertical 
displacement Δcx, and the rotation θ of uncracked 
shear wall are adopted as numerical degrees of 
freedom. The displacement method, where secant 
stiffness is employed for iteration, is used to 
investigate the shear behavior of the RC shear 
walls. The specific numerical algorithm is 
elaborated in reference (Mihaylov et al. 2016). 

1.2. Model validation 

1.2.1. Prediction of shear capacity 
The feasibility of the shear model was validated 
by the shear capacities of 27 experimental RC 
shear walls in the literatures (Bimschas 2010, 
Hannewald et al. 2013, Maier and Thürlimann 
1985, Pilakoutas and Elnashai 1995, Tran and 
Wallace 2012, Luna et al. 2013, Lefas et al. 1990, 
Oh et al. 2002). In the test dataset, the parameters 
of the RC shear walls satisfy the restriction on its 
applicability, where the aspect ratio ranges from 
0.33- 3.00, the wall-height-to-thickness ratios are 
between 5.00- 21.20, and the axial force ratio 
ranges from 0- 0.1. 

 
Figure 2: Experimental-to-predicted ratio of shear 

strength 

The mean, standard deviation, and 
coefficient of variation of the experimental-to-
predicted shear capacity ratios were found to be 
1.09, 0.09 and 0.08, respectively (Figure 2). The 
predicted shear capacity of 23 shear walls are 
within the range of standard deviation, and this 
good agreement sufficiently demonstrates that the 
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kinematic theory provides an accurate assessment 
of the shear capacity of RC shear walls. 

1.2.2. Analysis of load-displacement curves 
The feasibility of the shear model based on the 
kinematic approach to analyze the load-
displacement curves is verified by eight shear 
walls specimens, where VK1, TW3, WR10 and 

WR20 are flexural failure, and VK3, VK6, VK7 
and WR0 are shear failure (Figure 3). Therefore, 
the inherent multiple failure modes under the 
condition of the stochastic excitation, structure 
dimensions and material properties can be 
analyzed by the kinematic-based approach.  
 

    

Figure 3: Experimental and predicted lateral load versus lateral drift 

 

2. COMPOUND STOCHASTIC NONLINEAR 
ANALYSIS OF RC SHEAR WALLS 

2.1. Deterministic parametric analysis 
The compressive strength of concrete was chosen 
as the influencing factor to perform deterministic 
parametric analysis based on the seismic 
performance test specimen VK3 conducted by 
Bimschas (2010). The design concrete 
compressive strength is 34MPa. The load-
displacement curves of test specimens with 
concrete compressive strength of 24MPa-74MPa 
are analyzed in this study. It can be concluded that 
the post-peak nonlinear response of the RC shear 
walls gradually changes from softening to 
ductility (Figure 4). 

2.2. Stochastic parametric analysis 
In this study, the axial force, structure dimensions 
and mechanical parameters are taken as random 
variables, and the experimental value is taken as 

the mean of each random variable while the 
coefficient of variation and probability 
distribution of random variables are determined 
according to JCSS (2000). In Table 1, N denotes 
axial force; a denotes wall height; h denotes wall 
width; b denotes wall thickness; db denotes 
diameter of longitudinal reinforcement; dv 
denotes diameter of stirrups; El denotes elastic 
modulus of longitudinal reinforcement; fyl denotes 
yield strength of longitudinal reinforcement; Ev 
denotes elastic modulus of stirrups; fyv denotes 
yield strength of stirrups; f’c denotes concrete 
compressive strength; ag denotes diameter of 
aggregate. 

In order to achieve good balance between 
accuracy and efficiency, a GF-discrepancy (Chen 
et al. 2016) for point selection is adopted and 400 
samples Θi (i = 1, 2, ꞏꞏꞏ, 400) are selected based 
on the probability distribution of random 
variables. After the representative points are 
selected, deterministic physical analysis can be 
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carried out according to the shear model based on 
the kinematic approach. 

The compound stochastic nonlinear analysis 
results of RC shear walls is presented in Figure 4. 
The mean and coefficient of variation of the shear 
capacity and corresponding displacements, as 
well as residual shear capacity and corresponding 
displacements are presented in Figure 5. When the 
concrete compressive strength is 44MPa, 54MPa 
and 64MPa, multiple failure occurs for shear 
walls, and the coefficient of variation of the 
displacement corresponding to shear capacity and 
the residual shear capacity reaches 0.32 and 0.29, 
respectively. Additionally, the designed flexural 
failure is changed into shear failure by introducing 
the randomness of excitation and material 
properties, and vice versa. 

Table 1: Probability distribution characteristics of 
random sources 

Random 
sources 

Mean 
Coefficient 
of variation 

Distribution  

N/kN 1300 0.1 Normal 
a/mm 3300 0.001 Normal 
h/mm 1500 0.001 Normal 
b/mm 350 0.001 Normal 
db/mm 14 0.001 Normal 
dv/mm 6 0.001 Normal 
El/GPa 200 0.01 Normal 
fyl/MPa 515 0.01 Normal 
Ev/GPa 200 0.01 Normal 
fyv/MPa 518 0.05 Normal 
f'c/MPa - 0.25 Normal 
ag/mm 16 0.04 Normal 

 

   
(a) Compressive strength 24MPa (b) Compressive strength 34MPa (c) Compressive strength 44MPa 

   
(d) Compressive strength 54MPa (e) Compressive strength 64MPa (f) Compressive strength 74MPa 

Figure 4: Stochastic nonlinear analysis of RC shear wall 

 
Figure 5: Statistical characteristic of key point of lateral load-displacement curves 
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3. PROBABILITY DENSITY EVOLUTION 
ANALYSIS 

3.1. The generalized density evolution equation 
and total variation diminishing difference 
scheme 

The principle of probability preservation occupies 
a fundamental role in the state evolution process 
of a conservative stochastic system (Li and Chen 
2009). We now consider the generic stochastic 
dynamical system where Θ = (Θ1, Θ1, … , Θs) is 
an s-dimensional vector characterizing the 
randomness and Z(t) = (Z1(t), Z2(t), … , Zn(t))T is 
an n-dimensional physical quantities associated 
with the system. Note that the joint PDF of system 
(Z, Θ) is pzθ(z, θ, t), and Eq. (9) can be derived 
according to random event description of the 
principle of preservation of probability: 

  D
d d 0, ,

D t

p t
t  


Θ

zθ z θz θ   (9) 

After a series of mathematical operations on 
Eq. (9) and taking into account the arbitrariness of 
Ωt×Ωθ, we have: 

     
1

, , , ,
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mp pt t
Z t

t 
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z
 

   (10) 

The joint density of Z(t) can then be given by: 

    d, , ,p pt t


 Z Zθ θz z θ   (11) 

The TVD difference scheme is adopted to 
solve the compound stochastic nonlinear analysis 
results of RC shear walls. Figure 6 presents the 
probability density evolution analysis of lateral 
load of RC shear walls. The probability density is 
relatively concentrated and the evolution 
trajectory is similar in the rising portion of the 
load-displacement curves. There is a softening 
trend due to the shear failure of some samples, 
resulting in stochastic bifurcation of the 
horizontal load when it exceeds the peak bearing 
capacity, where some probability density curves 
evolve in the direction of the peak bearing 
capacity and the other evolve in the direction of 
the softening of the bearing capacity. 

   
(a) Compressive strength 24MPa (b) Compressive strength 34MPa (c) Compressive strength 44MPa 

   
(d) Compressive strength 54MPa (e) Compressive strength 64MPa (f) Compressive strength 74MPa 

Figure 6: Probability density evolution analysis of lateral load of RC shear walls 

 
When the concrete compressive strength is 

24MPa, 34MPa, 64MPa and 74MPa, the 
probability density of lateral load is unimodal. 

When the concrete compressive strength is 
44MPa, the design failure mode is shear failure, 
and the probability density branches off in the 
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direction of the peak bearing capacity when the 
displacement is 45mm. The probability 
distribution changes from unimodal form to 
bimodal distribution. When the concrete 
compressive strength is 54MPa, the design failure 
mode is flexural failure, but the probability 
density branches off in the softening direction 
when the displacement is 75mm, which is 
detrimental to the structural safety. 

3.2. Absorbing boundary condition method and 
reliability analysis 

If a sample violates the criterion to ensure the 
safety of the structure, this sample will contribute 
to the failure probability, but not contribute to the 
reliability (Li and Chen 2009). Thus, equivalently, 
an absorbing boundary condition can be imposed 
on Eq. (10): 
   0,, , fp xt  zθ z θ

   (12) 

Where Ωf is the failure domain, and the remaining 
probability density can be calculated as follows: 

    d, , ,p pt t


 
θ

z zθ θz z θ
 

  (13) 

The reliability is then given by: 

    d,R p tt



  z zz


  (14) 

 
Figure 7: Reliability analysis of RC shear wall 

In this study, the failure domain is defined as 
Δ > Δpeak and Vresidual < (1 - Coe) × Vpeak. Vpeak and 
Δpeak are the peak bearing capacity and the 
corresponding displacement, Vresidual is the 
residual shear capacity and Coe is the degradation 
coefficient of bearing capacity. Technical 
specification for concrete structures of tall 
building (JGJ3 2010) define five component 
damage states, where the limit for severe damage 

state is the degradation of the bearing capacity by 
20%. In this paper, the degradation coefficient of 
bearing capacity is 0.5 corresponding to the 
failure state. It can be concluded that increasing 
the concrete compressive strength can 
significantly increase the reliability of the shear 
walls under major earthquakes (Figure 7). 

4. CONCLUSIONS 
In this paper, the shear model of shear walls based 
on the kinematics principle and the probability 
density evolution method are used to analyze the 
reliability of RC shear walls with uncertainty of 
failure mode. The main conclusions are as follows: 

1. The shear model of shear walls based on the 
kinematics approach has good applicability on 
the prediction of nonlinear behavior of shear 
walls. 

2. The influence of randomness on the damage 
evolution at different scales leads to the 
uncertainty of failure mode for shear walls. 
The coefficient of variation of key point 
reaches about 0.3. 

3. Increasing the concrete compressive strength 
can significantly improve the reliability of the 
shear walls under major earthquakes. 
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