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ABSTRACT: This paper proposes a novel probabilistic method to model soil properties using quantile 
functions, based on fractional probability-weighted moments, principle of maximum entropy, and Akaike 
information criterion. The quantile function is a counterpart to distribution functions of a random variable 
since the quantile function is mathematically the inverse cumulative distribution function. The maximum 
entropy method is presented to generate unbiased quantile functions for measured soil properties. The 
use of the fractional probability-weighted moments facilitates more accurate quantification of soil 
uncertainties by the entropy-based quantile functions than the probability density or cumulative 
distribution functions. Akaike information criterion is then used to locate the optimal order of maximum 
entropy quantile functions. Maximum entropy quantile distributions are compared to the traditional 
quantile distributions to evaluate their performance. The analytical entropy quantile distribution obtained 
can be used in probabilistic reliability analysis.    

1. INTRODUCTION 
 
In application of probability and statistics in the 
planning, analysis, and design of civil engineering 
systems, quantification of uncertainty is an 
essential step before the probability of failure can 
be estimated. This includes collection of relevant 
data, determination of underlying distribution of 
the random variable, estimation of distribution 
parameters, and performance of statistical tests. 
Probabilistic modelling of soil parameters is 
especially necessary because randomness is 
ubiquitous in soil properties of geotechnical 
engineering projects. 

Soils are among the most variable of all 
engineering materials, and thus, soil sample data 
are extremely amenable to comprehensive 
probability, statistics, and reliability treatment. 
Using this approach, the uncertainties are fully 
modeled by either distribution functions or 
quantile functions (QFs). Distribution functions 
comprise probability density functions (PDFs) 
and cumulative distribution functions (CDFs). 
The CDF is the integral of the PDF, and the QF is 
the inverse of the CDF. Uncertainties are also 
partially characterized by descriptive statistics, 
such as moments. The moments of a random 
variable can be obtained from its distribution 
functions. Several methods have been proposed to 
recover a PDF from the first four moments, such 
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as the saddlepoint approximation, the Gram-
Charlier and Edgeworth expansions, and the 
maximum entropy principle (MEP) [Kennedy and 
Lennox 2000; Singh 2015; Zhao and Lu 2021]. 
The MEP is attractive and widely used because it 
can generate a “minimally prejudiced probability 
distribution which maximizes the entropy subject 
to constraints supplied by the given information” 
[Rao and Hsieh 1987]. The following advantages 
of fractional moments over integral moments 
have been highlighted in recent research: (1) they 
can extract more information from samples with 
fat-tailed distributions; (2) they contain lower 
sampling variability; and (3) fewer fractional 
moments are needed to accurately characterize a 
distribution [Deng and Pandey 2023].  

This paper proposes a novel probabilistic 
method to model soil properties using quantile 
functions, based on the principle of maximum 
entropy constrained by fractional probability-
weighted moments. Maximum entropy quantile 
distributions are compared to the traditional 
quantile distributions to evaluate their 
performance. 

2. SOIL SAMPLING AND TESTING 
 
A large landslide on April 23, 1990, on the east 
bank of the Nipigon River about 8 km north of 
Nipigon Township and 8 km south of Alexander 
Generating Station in Northwestern Ontario, 
Canada, moved approximately 300,000 m3 of soil 
and extended almost 350 m inshore, with a 
maximum width of approximately 290 m. Soil 
from the landslide was pushed into the Nipigon 
River 300 m upstream and downstream and 
formed several islands in the river. These islands 
redirected the river current and caused subsequent 
erosion on the west bank of the river opposite of 
the slide area. This likely caused several 
landslides to occur farther south one month later 
[Radhakrishna et al, 1992]. This landslide 
incurred significant negative environmental and 
economic impacts. Although the riverbank soil 
erosion and landslides of various scales have 
taken place along all stretch of the Nipigon River, 
but the 1990 landslide was the first one that 

received public and academic attention, and the 
investigations were conducted to locate the main 
factors which caused it and to understand the 
landslide’s failure mechanism. 

Landslide investigation and soil sampling in 
the Nipigon River area were conducted in August 
2022 with the help of Red Rock Indian Band, 
which is shown in Figure 1. Thirty samples were 
obtained and transported to the soil laboratory at 
Lakehead University, then direct shear tests were 
performed (Figure 2) to estimate the soil effective 
shear strength parameters (the effective cohesion, 
𝑐𝑐 and the effective angle of internal friction, 𝜙𝜙) by 
following the procedure of the direct shear testing 
of soils suggested by ASTM D3080-90[Bowles 
1992]. The soil was sandy to clayey silt on the 
surface layer of the Nipigon River valley. The 
results of direct shear tests provide fundamental 
data to calculate slope stability, soil bearing 
capacity, pavement designs, and lateral earth 
pressures on retaining structures. 

 
 

 
Figure 1: Nipigon River landslide and Soil sampling 
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Figure 2: Direct shear test equipment.  

 
The direct shear box tests were conducted 

using the ELE Direct Shear Apparatus EL28-007 
series and associated data acquisition system. The 
size of the chosen shear box is 60 mm × 60 mm × 
40 mm. The temperature and humidity of the soil 
laboratory were 23°C and 40%, respectively 
throughout the tests. Before testing, we installed 
the shear box with the soil sample and assembled 
the dial gauges to obtain the readings of vertical 
loads and displacements. Consolidated-drained 
conditions were chosen during the tests: A vertical 
normal force is applied on the soil sample. The 
horizontal shear force is delayed until all 
settlement stops. The shear force is then applied 
so slowly that the small pore pressure that 
develops in the sample can be ignored. The strain 
rate to be applied in the test was fixed as 0.25 
mm/min using the gears provided on the device, 
such that pore pressure buildup in the soil samples 
can be prevented. Readings of the shear force and 
displacement dials are recorded in the computer. 
Perform the test for three vertical loadings for 
each sample: 10, 25, and 50 kg which are 27.2, 
68.1, and 136.2 kPa, respectively. All 30 samples 
were tested using the same procedure with the 
same strain rate and vertical load values. Only the 
effective cohesion of the soil is listed in Table 1. 
It is evident that the data are highly variable even 
if all possible measures were taken to ensure 
uniform conditions during the soil collecting and 
testing. In next section, maximum entropy 

quantile function will be developed to describe the 
randomness in the effective cohesion of soil. 

 
Table 1: Effective cohesion of soil (kPa)  

35.5 11.7 16.6 18.4 19.1 15.5 14.9 21.7 

18.9 24.4 15.0 20.3 16.5 17.9 26.4 9.9 

15.0 15.7 12.8 16.4 14.0 15.7 8.5 15.9 

10.8 18.7 3.1 14.7 12.0 12.2   

3. METHODOLOGY 
The maximum entropy principle constrained by 
the fractional probability-weighted moments from 
a sample of data is used to derive a series of 
unbiased quantile functions. Akaike information 
criterion is then used to locate the optimal order 
of the maximum entropy quantile function. 

3.1 Fractional probability weighted moments 
This section defines and estimates the fractional 
probability weighted moment (FPWM). The 
FPWM is used to numerically model uncertainty 
in a random variable, which is defined as 

𝛽𝛽𝑠𝑠 = ∫ 𝑥𝑥(𝐹𝐹)𝐹𝐹𝑠𝑠d𝐹𝐹1
0 , (1) 

where 𝐹𝐹 ≡ 𝐹𝐹(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)  is the probability 
of non-exceedance, E[∙]  is the mathematical 
expectation, and  𝑠𝑠  is a real number (fractional 
number). 𝛽𝛽𝑠𝑠  is called the fractional probability 
weighted moment (FPWM) of the quantile 
function 𝑥𝑥(𝐹𝐹). 

If a sample of data 𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)  is 
available, then the FPWM can be estimated by  
𝑏𝑏𝑠𝑠 ≈ 𝛽𝛽𝑠𝑠 = ∫ 𝑥𝑥(𝐹𝐹)𝐹𝐹𝑠𝑠d𝐹𝐹1

0 ≈ 1
𝑛𝑛
∑ [(𝐹𝐹𝑖𝑖)𝑠𝑠𝑥𝑥𝑖𝑖]𝑛𝑛
𝑖𝑖=1 ,   (2) 

where 𝑛𝑛 is the sample size, 𝐹𝐹𝑖𝑖 is a proper formula 
for plotting position of the element 𝑥𝑥𝑖𝑖,  

𝐹𝐹𝑖𝑖 = 𝑖𝑖−𝑎𝑎
𝑛𝑛

, 0 < 𝑎𝑎 < 1;    (3) 

or 
𝐹𝐹𝑖𝑖 = 𝑖𝑖−𝑎𝑎

𝑛𝑛+1−2𝑎𝑎
,−1

2
< 𝑎𝑎 < 1

2
.  (4) 

For example, 𝑎𝑎 = 0.44  is called the 
Gringorten plotting position. 
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3.2 Maximum entropy principle using FPWMs   
This section derives the maximum entropy 
quantile function using the maximum entropy 
principle and sample FPWMs. The maximum 
entropy principle is often used to infer a 
probability distribution based on only partial 
information of a random variable, usually in terms 
of moments. The entropy of a random variable 𝑋𝑋 
is defined by 

𝐻𝐻[𝑥𝑥(𝐹𝐹)] = −∫ [𝑥𝑥(𝐹𝐹) ln[𝑥𝑥(𝐹𝐹)] d𝐹𝐹1
0 ,  (5) 

where 𝑥𝑥(𝐹𝐹) is the QF,  𝐻𝐻[𝑥𝑥(𝐹𝐹)] is the entropy, 
and 𝐹𝐹 is the probability of non-exceedance. The 
available infromation are given by FPWMs  

∫ 𝑥𝑥(𝐹𝐹)𝐹𝐹𝛿𝛿𝑠𝑠d𝐹𝐹1
0 =𝛽𝛽𝑠𝑠, for  𝑠𝑠 = 0,1,2,⋯ ,𝐾𝐾,  (6) 

where 𝛽𝛽𝑠𝑠 is the 𝑠𝑠th order FPWM with the total of 
𝐾𝐾  FPWMs, 𝛿𝛿𝑠𝑠  is a real number and 𝛿𝛿0 = 0 . 𝛽𝛽𝑠𝑠 
can be determined from a sample of data in terms 
of 𝑏𝑏𝑠𝑠 in Eq. (2), i.e., 𝛽𝛽𝑠𝑠 ≈ 𝑏𝑏𝑠𝑠. 

The maximum entropy principle requires that 
the entropy 𝐻𝐻[𝑥𝑥(𝐹𝐹)]  be maximized under the 
constraints in Eq. (6). To do so, the Lagrangian 
function 𝐻𝐻� is coined as 

𝐻𝐻� = −∫ [𝑥𝑥(𝐹𝐹) ln[𝑥𝑥(𝐹𝐹)] d𝐹𝐹1
0 − (𝜆𝜆0 − 1) �∫ 𝑥𝑥(𝐹𝐹)d𝐹𝐹1

0 −

𝑏𝑏0� − ∑ 𝜆𝜆𝑠𝑠 � ∫ 𝑥𝑥(𝐹𝐹)𝐹𝐹𝛿𝛿𝑠𝑠d𝐹𝐹1
0 − 𝑏𝑏𝑠𝑠�𝐾𝐾

𝑠𝑠=1 , (7) 

where 𝐻𝐻�  is the Lagrangian and 𝜆𝜆𝑠𝑠  is the 
Lagrangian multiplier. Substitution of Eq. (7) into 
the condition of maximization of 𝐻𝐻� 
𝜕𝜕𝐻𝐻�

𝜕𝜕𝑥𝑥(𝐹𝐹) = 0 (8) 

leads to  
𝑥𝑥(𝐹𝐹) ≈ 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿) = exp�−∑ 𝜆𝜆𝑠𝑠𝐹𝐹𝛿𝛿𝑠𝑠𝐾𝐾

𝑠𝑠=0 �,   (9) 

where 𝑥𝑥𝐾𝐾(𝐹𝐹)  is referred to as the maximum 
entropy quantile function (MEQF) based on the 𝐾𝐾 
order sample FPWMs.  

Substitution of Eq. (9) into Eq. (6) gives 𝐾𝐾 +
1 nonlinear equations, 𝑠𝑠 = 0,1,⋯ ,𝐾𝐾. 
∫ 𝐹𝐹𝛿𝛿𝑠𝑠 exp�−∑ 𝜆𝜆𝑖𝑖𝐹𝐹𝛿𝛿𝑖𝑖𝐾𝐾

𝑖𝑖=0 �d𝐹𝐹1
0 =𝑏𝑏𝑠𝑠.                (10) 

If 𝐾𝐾 and 𝛿𝛿𝑖𝑖 have already known, solving this 
set of equation gives the Lagrangian multipliers 
𝜆𝜆𝑠𝑠, which can be done by the command “fsolve” 

in Matlab (the Gauss-Newton method with 
numerical gradient and Jacobian). 

3.3 Akaike information criterion   
This section is to estimate 𝐾𝐾  and 𝛿𝛿𝑖𝑖  of the 
maximum entropy quantile function in Eq. (9).  

If 𝑥𝑥(𝐹𝐹)  is the true QF, and 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿)  or 
𝑥𝑥𝐾𝐾(𝐹𝐹) is the estimated QF given in Eq. (9). The 
proximity between 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿)  and 𝑥𝑥(𝐹𝐹)  can be 
estimated by Kullback-Leibler (KL) entropy, 
KL[𝑥𝑥(𝐹𝐹), 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿)] = ∫ 𝑥𝑥(𝐹𝐹) ln 𝑥𝑥(𝐹𝐹)

𝑥𝑥𝐾𝐾�𝐹𝐹�𝜆𝜆, 𝛿𝛿� d𝐹𝐹1
0 = 𝐶𝐶 −

𝐿𝐿(𝜆𝜆, 𝛿𝛿,𝐾𝐾),   (11) 

𝐶𝐶 = ∫ 𝑥𝑥(𝐹𝐹) ln 𝑥𝑥(𝐹𝐹) d𝐹𝐹1
0 ,                                                (12)               

 𝐿𝐿(𝜆𝜆, 𝛿𝛿,𝐾𝐾) = ∫ 𝑥𝑥(𝐹𝐹) ln 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿) d𝐹𝐹1
0 .                     (13) 

The smaller the KL[𝑥𝑥(𝐹𝐹), 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿)] , the 
closer 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿) to 𝑥𝑥(𝐹𝐹). Therefore, 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿) 
should be chosen such that the KL  entropy is 
minimized, 

min
𝐾𝐾

� min
𝜆𝜆0,⋯,𝜆𝜆𝐾𝐾

� min
𝛿𝛿0,⋯,𝛿𝛿𝐾𝐾

{KL[𝑥𝑥(𝐹𝐹), 𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿)]}�� .  (14) 

The term 𝐶𝐶  in Eq. (11) is independent of 
𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆, 𝛿𝛿), and the term 𝐿𝐿(𝜆𝜆, 𝛿𝛿,𝐾𝐾) can be taken 
as the expectation of the function ln𝑥𝑥𝐾𝐾(𝐹𝐹|𝜆𝜆,𝛿𝛿). 
So 𝐿𝐿(𝜆𝜆, 𝛿𝛿,𝐾𝐾) can be estimated from a sample of 
data by 𝐿𝐿�(𝜆𝜆,𝛿𝛿,𝐾𝐾)  

𝐿𝐿�(𝜆𝜆, 𝛿𝛿,𝐾𝐾) = 1
𝑛𝑛
∑ [𝑥𝑥𝑖𝑖 ln 𝑥𝑥𝐾𝐾(𝐹𝐹𝑖𝑖|𝜆𝜆,𝐾𝐾)]𝑛𝑛
𝑖𝑖=1 ,   (15) 

KL�(𝜆𝜆, 𝛿𝛿,𝐾𝐾) = 𝐶𝐶 − 𝐿𝐿�(𝜆𝜆, 𝛿𝛿,𝐾𝐾),   (16) 

where KL� (𝜆𝜆,𝛿𝛿,𝐾𝐾)  is an estimate of the KL 
entropy.  The minimization in Eq. (14) is given by 

min
𝜆𝜆,𝛿𝛿,𝐾𝐾

{KL�(𝜆𝜆, 𝛿𝛿,𝐾𝐾)} = 𝐶𝐶 + min
𝜆𝜆,𝛿𝛿,𝐾𝐾

{−𝐿𝐿�(𝜆𝜆, 𝛿𝛿,𝐾𝐾)} =

𝐶𝐶 + min
𝜆𝜆,𝛿𝛿,𝐾𝐾

�− 1
𝑛𝑛
∑ [𝑥𝑥𝑖𝑖 ln 𝑥𝑥𝐾𝐾(𝐹𝐹𝑖𝑖|𝜆𝜆, 𝛿𝛿,𝐾𝐾)]𝑛𝑛
𝑖𝑖=1 �.   (17) 

The minimization is equivalent to the 
maximum of the term 
1
𝑛𝑛
∑ [𝑥𝑥𝑖𝑖 ln 𝑥𝑥𝐾𝐾(𝐹𝐹𝑖𝑖|𝜆𝜆, 𝛿𝛿,𝐾𝐾)]𝑛𝑛
𝑖𝑖=1 , which is a likelihood 

estimate. It was noted that the maximum 
likelihood estimate is often biased. One of the 
unbiased estimates of −𝐿𝐿�(𝜆𝜆, 𝛿𝛿,𝐾𝐾)  is given by 
Akaike information criterion 
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Γ�(𝜆𝜆, 𝛿𝛿,𝐾𝐾) = −𝐿𝐿�(𝜆𝜆, 𝛿𝛿,𝐾𝐾) + 𝐾𝐾
𝑛𝑛

, (18) 

or 
Γ�(𝜆𝜆, 𝛿𝛿,𝐾𝐾) = ∑ 𝜆𝜆𝑠𝑠 �

1
𝑛𝑛
∑ �𝑥𝑥𝑖𝑖(𝐹𝐹𝑖𝑖)𝛿𝛿𝑖𝑖�𝑛𝑛
𝑖𝑖=1 �𝐾𝐾

𝑠𝑠=0 + 𝐾𝐾
𝑁𝑁

=

∑ (𝜆𝜆𝑠𝑠𝑏𝑏𝑠𝑠)𝐾𝐾
𝑠𝑠=0 + 𝐾𝐾

𝑁𝑁
= 𝐻𝐻�[𝑥𝑥(𝐹𝐹)] + 𝐾𝐾

𝑁𝑁
.          (19) 

This is done by substituting Eq. (9) into the 
term ln 𝑥𝑥𝐾𝐾(𝐹𝐹𝑖𝑖|𝜆𝜆, 𝛿𝛿,𝐾𝐾) of Eq. (17) and considering 
Eq. (2).  

3.4 Procedure   
The procedure to infer an optimal and unbiased 
MEQF from sample FPWMs is given as follows. 

(1) Obtain a sample of data 𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2,⋯ ,𝑛𝑛) 
for random variable 𝑋𝑋 , and specify the highest 
order of FPWM 𝜅𝜅. For example, 𝜅𝜅 = 10.   

(2) For a specific 𝐾𝐾 (𝐾𝐾 = 1, 2,⋯ , 𝜅𝜅) , 
generate 𝐾𝐾  distinct real random numbers as the 
fractional exponents 𝛿𝛿𝑠𝑠(𝑠𝑠 = 1, 2,⋯ ,𝐾𝐾) and 𝛿𝛿0 =
0 by performing Monte Carlo simulation.  

(3) Calculate the FPWM 𝑏𝑏𝑠𝑠 using Eq. (2). 
(4) Determine the 𝐾𝐾 + 1  Lagrangian 

multiplier, 𝜆𝜆𝑠𝑠, in Eq. (9) using Eq. (10). 
(5) Repeat steps (3)–(4) until the cycle of 

Monte Carlo simulation for 𝛿𝛿𝑠𝑠 terminates. Choose 
the smallest Γ�(𝜆𝜆, 𝛿𝛿,𝐾𝐾) of Eq. (19) in all Monte 
Carlo simulations for the given 𝐾𝐾 . The 
corresponding 𝜆𝜆  and 𝛿𝛿  are the entropy 
coefficients and fractional exponents for this 𝐾𝐾.  

(6) Repeat steps (2)–(5) until the highest 
order of fractional moments 𝜅𝜅 arrives. We obtain 
the relation of Γ�(𝜆𝜆, 𝛿𝛿,𝐾𝐾) in Eq. (35) as a function 
of 𝐾𝐾 only. 

(7) Locate the optimal order 𝐾𝐾  that 
minimizes the Γ�(𝜆𝜆, 𝛿𝛿,𝐾𝐾). This order is the optimal 
order of the MEQF based on FPWMs. 

4. MAXIMUM ENTROPY QUANTILE 
FUNCTIONS OF SOIL SHEAR 
STRENGTH 

4.1 Quantile functions of soil shear strength 
This section is to derive the maximum entropy 
quantile function of the soil from the Nipigon 
River area by following the procedure in Section 
3.4. A sample of the soil data was obtained in 

Table 1. A MATLAB code has been developed by 
specifying 𝜅𝜅 = 10  and using the Gringorten 
plotting position formula. The cycle of Monte 
Carlo simulation is 5000. The function “rand” in 
MATLAB is used to generate the fractional 
exponents 𝛿𝛿𝑠𝑠(𝑠𝑠 = 1, 2,⋯ ,𝐾𝐾) . We obtain 10 
values of Γ�(𝜆𝜆, 𝛿𝛿,𝐾𝐾) : −46.1867 ; −46.1594 ; 
−46.2462 ; −46.2147 ; −46.2114 ; −46.1794 ; 
−46.1681 ; −46.1366 ; −46.1054 ; −46.0733 . 
Therefore, the optimal order is  𝐾𝐾 = 3   since 
−46.2462 is the smallest value. The parameters 
of the optimal maximum entropy quantile 
function are listed in the upper half of Table 2. 
The maximum entropy quantile function is 
𝑥𝑥(𝐹𝐹) = exp[−3.45387055 +
5.38446475𝐹𝐹1.21150197 −
7.70107589𝐹𝐹2.02596742 + 4.18244208𝐹𝐹3.99411995].                           

                                                                               (20) 

Table 2. Parameters of quantile functions (FPWM 
order 𝐾𝐾=3) 

 𝛿𝛿𝑠𝑠  𝜆𝜆𝑠𝑠  

𝑠𝑠=0 0 −3.45387055 
𝑠𝑠=1 1.21150197 5.38446475 
𝑠𝑠=2 2.02596742 −7.70107589 
𝑠𝑠=3 3.99411995 4.18244208 
Normal 
distribution 

𝜇𝜇 =16.2745 𝜎𝜎 =5.8704 

Lognormal 
distribution 

𝜇𝜇=2.7184 𝜁𝜁=0.4174 

 
To further verify the accuracy of the 

proposed method in Section 3, comparison is 
made to normal distribution and lognormal 
distribution, two commonly used probability 
distributions in geotechnical engineering. Their 
parameters are determined by the method of 
moments and are given in the lower half of Table 
2.  The quantile functions can be obtained from 
their PDFs as follows. 

𝑓𝑓1(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

exp �− 1
2
�𝑥𝑥−𝜇𝜇

𝜎𝜎
�
2
� =

1
5.8704√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�𝑥𝑥−16.2745

5.8704
�
2
�,                                                   (21) 

𝑓𝑓2(𝑥𝑥) = 1
𝜁𝜁 𝑥𝑥√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�𝑙𝑙𝑙𝑙 𝑥𝑥−𝜇𝜇

𝜁𝜁
�
2
� =

1
0.4174 𝑥𝑥√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�𝑙𝑙𝑙𝑙 𝑥𝑥−2.7184

0.4174
�
2
�,                                              (22) 
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where 𝑓𝑓1(𝑥𝑥) is the normal PDF and 𝑓𝑓2(𝑥𝑥) is the 
lognormal PDF for the cohesive shear strength 𝑋𝑋.  

4.2 Comparison and accuracy 
Comparison between the maximum entropy 
quantile functions with various orders (𝐾𝐾 = 1 −
5)  and the normal and lognormal distributions is 
given in Figure 3. The sample data were drawn by 
using the Gringorten plotting position formula. A 
semi-log plot of probability of exceedance in 
Figure 4 illustrates that the lognormal quantile 
function overestimates the sample tail region, but 
the normal quantile function underestimates the 
sample tail region, especially in the domain 
between 10−1 and 10−2. The optimal maximum 
entropy quantile function with order 3 behaves 
between the normal QF and the lognormal QF, so 
a better fit is found to the soil cohesion strength. 

Furthermore, two more indexes, relative root 
mean square error (RRMSE) and relative absolute 
error (RAE), are introduced to quantitatively 
compare accuracy of these quantile functions:  

RRMSE= � 1
𝑛𝑛−1

∑ �𝑄𝑄0𝑖𝑖−𝑄𝑄𝐶𝐶𝐶𝐶
𝑄𝑄0𝑖𝑖

�
2

𝑛𝑛
𝑘𝑘=1 �

1/2
,               (23) 

RAE= 1
𝑛𝑛
∑ �𝑄𝑄0𝑖𝑖−𝑄𝑄𝐶𝐶𝐶𝐶

𝑄𝑄0𝑖𝑖
�𝑛𝑛

𝑘𝑘=1 ,                                (24) 

where 𝑛𝑛  is the sample size; 𝑄𝑄0𝑖𝑖  and 𝑄𝑄𝐶𝐶𝐶𝐶  are the 
𝑖𝑖th sample element and the 𝑖𝑖th computed value of 
the 𝑖𝑖 th given probability, respectively. The 
smaller RAE and RRMSE, the better fit of the 
distribution. Table 3 shows that the maximum 
entropy quantile function with order 3 in Eq. (20) 
has smaller of both RAE and RRMSE than the 
lognormal distribution, and has smaller RAE than 
the normal distribution. However, the negative 
domain of the normal distribution makes it an 
adverse quantile function for the soil cohesion, 
which is always positive values. 

Another interesting point is the higher order 
of MEQF, the smaller of both RAE and RRMSE. 
However, the higher order MEQF has a potential 
to overfit the sample of data. The Akaike 
information criterion can effectively prevent 
overfitting and underfitting, thus lead to an 
optimal maximum entropy quantile function. 

5. CONCLUSIONS 
This paper proposes a novel probabilistic method 
to model the soil shear strength properties using 
the quantile functions, which are derived by the 
maximum entropy principle, Akaike information 
criterion, and fractional probability-weighted 
moments.  The maximum entropy principle is 
constrained by the fractional probability-weighted 
moments from a sample of data and is used to 
derive a series of unbiased quantile functions. 
Akaike information criterion is then used to locate 
the optimal order of the maximum entropy 
quantile function. The use of fractional 
probability-weighted moments facilitates more 
accurate quantification of soil uncertainties by the 
entropy-based quantile functions than the 
probability density or cumulative distribution 
functions. The maximum entropy quantile 
distributions are compared to the traditional 
quantile distributions to evaluate their 
performance. The analytical entropy quantile 
distribution obtained can be used in the 
probabilistic reliability analysis. The maximum 
entropy quantile distributions are only applicable 
to random samples with positive values. 

 
Figure 3: Quantile functions.  
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Figure 4: Semi-log quantile fonctions.  
 
Table 3. RRMSE and RAE of quantile functions. 

QF RRMSE RAE 

Normal 0.109 0.087 

Lognormal 0.219 0.124 

MEQF(𝐾𝐾 = 1) 0.365 0.144 

MEQF(𝐾𝐾 = 2) 0.322 0.139 

MEQF(𝐾𝐾 = 3) 0.162 0.076 

MEQF(𝐾𝐾 = 4) 0.149 0.073 

MEQF(𝐾𝐾 = 5) 0.091 0.058 
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