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ABSTRACT: Optimal inspection and maintenance planning for deteriorating pipelines is necessary for 

cost-effective risk management decisions. The objective of this study is to develop a framework for 

determining the optimal inspection and maintenance planning for deteriorating pipelines considering 

failure probabilities. The framework is developed based on a decision tree model by using analytical 

methods to evaluate events and considers the inspection schedules and the threshold for repair as the 

design variables. To evaluate the probability of failure, an accurate probabilistic failure pressure model 

for thin-walled pipelines containing crack-like defects is proposed. The failure pressure prediction model 

is developed by adding a correction factor to the modified Ln-Secant method, a semi-empirical model 

developed previously. It is found that the proposed model provides unbiased and more accurate 

predictions. To illustrate the proposed framework, a simple problem of a steel pipeline with an initial 

crack is used, where a stochastic model of crack propagation is assumed. The case study indicates that 

finding an optimal inspection and maintenance planning is a compromise of the costs of inspection, 

repair, and failure.  

1. INTRODUCTION 

Risk assessment for pipelines with anomalies is 

critical, since anomalies weaken the pipeline and 

make it more vulnerable to failure that can lead to 

tremendous consequences (both economically 

and environmentally). Usually, inspection and 

repair actions are performed to ensure pipeline 

integrity. However, inspections and repairs can be 

costly throughout the service life of pipelines if 

not well planned.  

In the literature, frameworks have been 

proposed to optimize the inspection and repairs 

strategies for deteriorating pipelines. For 

example, Arzaghi et al. (2017) developed a risked 

based decision-making framework for the 

maintenance scheduling of subsea pipelines, with 

the aim of maximizing the expected utilities for 

maintenance alternatives every year of facility 

operation. Xie and Tian (2018) proposed a risk-

based pipeline framework to determine the 

inspection time by finding the optimal probability 

of failure threshold by minimizing the total cost 

rate and the consecutive inspection time is 

updated using the latest inspection data. However, 

the framework is not based on the expected total 

life-cycle cost which typically is the interest of 

decision makers. Gomes and Beck (2014a) 

suggested a framework for optimal inspection 

planning and repair under crack propagation by 

minimizing the expected total cost of initial 

construction, inspection, maintenance, and failure 

costs, where the expected numbers of failures and 

repairs are calculated using a decision trees 

concept with Monte Carlo simulation. Li et al. 

(2019) proposed a framework where the expected 

number of failures was calculated based on the 

renewal theory; however, the impact of repair 

actions on the probability of failure is not 

considered. Zou et al. (2019) suggested a 
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framework that considers the impact of 

maintenance actions on the probability of failure, 

but the failure cost is calculated based on 

probability of only one failure occurrence during 

the service life. There is a need to develop a 

reliable framework that is not too complex to use 

in the risk management decisions practically.  

In addition, an accurate failure pressure 

model plays a critical role in the assessment of 

probability of failure. For pipelines with single 

crack-like defect, the failure pressure has been 

assessed using models like the original Ln-Sec 

(Kiefner et al., 1973), modified Ln-Sec (Kiefner, 

2008), CorLASTM (Polasik et al., 2016), and 

failure assessment diagram (FAD) methods such 

as API 579 (API 579-1/ASME FFS-1, 2016) and 

BS 7910 (BS 7910, 2013). Several studies have 

compared the performance of the existing models. 

For instance, Yan et al. (2014) compared 4 models 

(i.e., original Ln-Sec, CorLAS, BS 7910-version 

2013, and API 579-version 2016) using 112 full 

scale burst test data. They found that the CorLAS 

model had the best performance, and the original 

Ln-Sec, BS 7910, and API 579 are in general 

conservative. The authors also conducted 

prediction comparison of several existing models 

such as the original Ln-Sec, modified Ln-Sec, 

CorLASTM, API 579, and BS 7910 based on the 

mean and standard deviation of the ratio of the 

predicted to the actual burst failure pressures 

(Kere et al., 2022). It is found that most of existing 

models are conservative, which is not suitable to 

use in the risk management of pipelines.  

There are two objectives in this study: to 

develop an accurate probabilistic failure pressure 

model for thin-walled pipelines containing single 

crack-like defects and to develop a decision 

framework that is easy to use for determining the 

optimal inspection and maintenance planning for 

deteriorating pipelines. Firstly, the probabilistic 

failure pressure model is developed by adding a 

correction factor to an existing prediction model 

using a multivariate linear regression based on a 

database established in this study. Next, the 

framework is developed based on a decision tree 

model by using analytical methods to evaluate 

events. The optimum design variables are 

determined by minimizing the expected total life-

cycle cost, which consists of construction, 

inspection, repair, and failure costs. Lastly, a case 

study of a steel pipeline with an initial crack is 

used to illustrate the proposed framework.  

2. MODEL DEVELOPMENT FOR 

PRESSURE PREDICTION  

Based on a study by Kere et .al (2022), it is found 

that the modified Ln-Sec model provides the best 

prediction performance among the existing 

models they studied, although the model displays 

a big prediction variance. Here, the failure 

pressure, Pb, is modeled by adding a correction 

factor to the modified Ln-Sec model, PMod Ln -Sec, 

which is expressed as follows: 

𝑃𝑏 = α ∙ 𝑃𝑀𝑜𝑑 𝐿𝑛−𝑆𝑒𝑐 
(1) 

𝑃𝑀𝑜𝑑 𝐿𝑛−𝑆𝑒𝑐 =
2𝑡𝜎𝑓

𝐷
∙

1 − 𝐴/𝐴0

1 − (𝐴/𝐴0)𝑀𝑇
−1 ∙ 

cos−1(𝑒−𝑥) / cos−1(𝑒−𝑦) 
(2) 

𝑥 =
𝜋𝐾𝑚𝑎𝑡

2

8𝑐𝑒𝑞𝜎𝑓
2     &      𝑦 = 𝑥(1 − 𝑎/𝑑𝑤)−1 (3) 

where α = correction factor; D = outside diameter 

of the pipe; dw = wall thickness of the pipe; a = 

depth of crack; 2c = crack length; 2ceq =A/a 

equivalent length of crack; A = actual area of the 

surface crack along its length; A0 = 2cdw; y = 

yield strength of the pipe material; f  = y + 68.95 

MPa = flow stress of the pipe material; MT = folias 

or bulging factor of pipe, and Kmat = fracture 

toughness of the pipe material. If actual data of 

Kmat is not available, it can be approximated using 

the following empirical expression:  

𝐾𝑚𝑎𝑡
2 = 𝐶𝑣𝐸/𝐴𝑐 (4) 

where Cv = upper shelf energy determined from 

tests of Charpy V-notch impact specimens, Ac = 

cross-sectional area of the Charpy specimen used, 

and E = Young’s modulus of the pipe material. 

The correction factor, α, is modeled using a 

multivariate linear regression formulation in this 

study as follows: 
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α = 𝛽0 + ∑ 𝛽𝑖𝑧𝑖

𝑚

𝑖=1
+ 𝜎𝜀 (5) 

where βi = model parameters; Z = {zi} = 

independent variables; and σε = residual model 

error in which σ is the standard deviation of the 

model error (assumed to be constant) and ε is the 

standard normal random variable (i.e., normality 

assumption). Four normalized variables and their 

2nd order interaction among these four variables 

are used here to construct Z, as shown below: 

𝒁 = (

𝐷

𝑑𝑤
 ,
𝜎𝑢

𝜎𝑦
,
𝑎

𝑑𝑤
,
𝑎

𝑐
,

 2nd order interaction 

) (6) 

where σu = ultimate strength of the pipe material. 

Considering all the 2nd order interaction among 

the four basic variables, a total of 14 variables are 

resulted in Z. 

When considering all the 14 variables in Eq. 

(5), the model is a full model. An all-possible-

subset model selection is adopted to eliminate the 

ones that do not contribute statistically 

significantly to the prediction (Sheather, 2009). In 

addition, a maximum model size of five (i.e., five 

variables in a model) is considered to avoid 

complex model formulations, and the model 

performance for each model size is compared 

using the model error standard deviation, . The 

model with the lowest  is the most desirable 

model. 

A comprehensive database of pipelines with 

single crack-like defect (including both 

experimental and numerical data), which consists 

of the data collected (a total of 122 data points) 

from the literature is used for the model 

development. After model selection, it was found 

that the model with size 5 is the best model overall 

compared with other sizes models. Table 1 shows 

the variables selected and the statistics of the 

corresponding model parameters in the final 

model. It is worth noting that the data ranges used 

for the model development are D/dw in [22   100], 

a/dw in [0.19   0.99], and a/c in [0.0032   0.5140]. 

The prediction performance of the proposed 

model is compared with the modified Ln-Sec 

model through the mean, standard deviation of the 

ratio of the predicted to the actual burst failure 

pressures, Ppred/Pact, as shown in Figure 1, where 

the cross refers to mean and the horizontal lines 

refer to mean  1 standard deviation. Figure 1 

indicates that the modified Ln-Sec model 

overestimates the burst pressure, while the 

proposed model provides unbiased prediction. 

Also, the proposed model shows smaller 

variability in Ppred/Pact. Therefore, one can 

conclude that the correction factor proposed 

improves the modified Ln-Sec model for the 

failure pressure prediction of a pipe with 

longitudinally oriented single crack-like defect. 

   
Figure 1: Comparison of Ppred /Pact using the 

modified Ln-Sec model (Mod Ln-sec) and the 

proposed model (PM)  

 
Table 1: Variables and model parameter statistics 

for the correction factor 

Model Parameters Mean STD 

β0 (Intercept) 1.960 0.167 

β1 (D/dw) -0.020 0.006 

β2 (σu/σy) -0.701 0.115 

 β3 (D/dw · σu/σy) 0.019 0.004 

β4 (D/dw · a/dw) -0.007 0.001 

β5 (D/dw · a/c) -0.007 0.003 

3. FRAMEWORK DEVELOPMENT 

The proposed decision framework aims to 

determine the optimal inspection interval and 

repair planning for deteriorating pipelines by 

minimizing the expected total cost, which consists 

of construction, inspection, repair, and failure 

costs. Considering the number of failures that 
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could happen during the pipeline service life, the 

expected total cost, E[CT], can be calculated using 

the following expression: 

𝐸[𝐶𝑇] = 𝐶0 + ∑ 𝑃𝑓,𝑘 ∙ 𝐸[𝐶𝑇|𝑘 failures]

𝑛

𝑘=0

 (7) 

where C0 = cost of initial construction; Pf,k = 

probability of k number of failures occurrence 

during the service life, and E[CT|k failures] = 

expected total cost given k number of failures 

occurrence. In this framework, the decision 

variables considered are: (1) the inspection times 

and (2) defect size threshold for repair. Also, the 

following assumptions are made: 

• The time interval between successive 

inspections is constant. 

• Inspection detection error is negligible. 

• At inspection, a repair action is performed if 

the defect size exceeds a threshold. 

• If failure occurs, a replacement will be put in 

place.  

• After repair/replacement action, the pipe is 

restored to its initial state. 

3.1. Expected total cost given no failure 

When k = 0, the expected total cost during a 

service life ts, is calculated using the following 

expression:  
𝐶𝑁𝐹(𝑡𝑠) = 

𝑃𝑓,0 ∙ (𝐸[𝐶𝑖𝑛|0 failure] + 𝐸[𝐶𝑟|0 failure]) 
(8) 

where CNF (ts) = expected total costs of inspection 

and repair given no failure during ts; E[Cin| 0 

failure] and E[Cr| 0 failure] = expected cost of 

inspection and repair given no failure, 

respectively. Figure 2 shows a decision tree where 

there are various scenarios (branches) due to 

possible failure occurrences and repair actions. 

Each branch corresponds to a unique defect 

growth path due to the repair/replacement actions. 

If the number of inspections prior to inspection 

time ti is nin,i, then the total number of branches, 

nb will be 2𝑛𝑖𝑛,𝑖 . Thus, the expected costs of 

inspection and repair can be calculated as follows, 

respectively: 

𝑃𝑓,0 ∙ 𝐸[𝐶𝑖𝑛|0 failure]

= ∑
𝐶𝐼

(1 + 𝛾)𝑡𝑖

𝑛𝑖𝑛

𝑖=1

 ∙ 𝑃𝑓,0(𝑡𝑖) 
(9) 

𝑃𝑓,0 ∙ 𝐸[𝐶𝑟𝑒𝑝|0 failure]

= ∑∑
𝐶𝑅

(1 + 𝛾)𝑡𝑖

𝑛𝑏

𝑗=1

𝑛𝑖𝑛

𝑖=1

∙ 𝑃𝑓,0,𝑗(𝑡𝑖) ∙ 𝑃(𝑅𝑖,𝑗) 

(10) 

where nin = total number of inspections during ts; 

CI and CR = unit costs of inspections and repairs, 

respectively; ti = time of inspection; γ = discount 

rate; Pf,0(ti) = 1- Pf (ti) = probability of no failure 

occurrence before time ti where Pf(ti) = probability 

of failure at time ti; Pf,0,j (ti) = probability of no 

failure occurrence in each branch j before time ti; 

and P(Ri,j) = probability of performing a repair 

action at ti based on the defect size resulting from 

branch j. 

The failure here refers to the burst failure of 

a pipeline. The probability of failure, Pf, is defined 

as the conditional probability of attaining or 

exceeding prescribed limit states given a set of 

boundary variables, and can be written as: 

𝑃𝑓(𝑡) = ∫ 𝑓(𝑿)𝑑𝐗

.

𝐶(𝑡)−𝐷≤0

 (11) 

where f(X) is the joint probability density function 

of a vector of random variables, X; C(t) ‒ D  0 

refers to the failure domain in which C is the 

pressure capacity of the pipe, and D is the demand 

(that is the operating pressure of the pipe). This 

probability is assessed by conducting a reliability 

analysis such as Monte Carlo simulations or First 

Order Reliability Methods (FORM).  

If Tf is the time at which failure occurs, then 

the event of Tf > t is equivalent to the event of C(t) 

>D; thus, P(Tf ≤ t) = P(C(t) ≤ D) = Pf(t). In other 

words, Pf(t) can be considered as the cumulative 

distribution function (CDF) of Tf. Furthermore, 

the evolution of C(t), thus Pf(t), depends on the 

defect time evolution that is impacted by the 

maintenance actions (i.e., repair or no repair). As 

an illustration, the decision tree shown in Figure 2 
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is used to show how the CDF of Tf , 𝐹𝑇𝑓 (t), is 

derived: 

For 0 < 𝑡 ≤ 𝑡1 

𝐹𝑇𝑓(𝑡) = 𝑃(𝑇𝑓 ≤ 𝑡) = 𝑃(𝐶(𝑡) ≤ 𝐷) 
(12) 

For 𝑡1 < 𝑡 ≤ 𝑡2 

    𝐹𝑇𝑓
(𝑡) = 𝑃(𝑇𝑓 ≤ 𝑡|𝑅1,1) ∙ 𝑃(𝑅1,1) 

          + 𝑃(𝑇𝑓 ≤ 𝑡|�̅�1,1) ∙ 𝑃(�̅�1,1) 

(13) 

where 

𝑃(𝑇𝑓 ≤ 𝑡|𝑅1,1) = 𝑃(𝑇𝑓 ≤ 𝑡1|𝑅1,1) 

+𝑃(𝑡1 < 𝑇𝑓 ≤ 𝑡|𝑅1,1) 

(13a) 

     𝑃(𝑇𝑓 ≤ 𝑡1|𝑅1,1) = 𝑃(𝐶(𝑡1) ≤ 𝐷) (13b) 

     𝑃(𝑡1 < 𝑇𝑓 ≤ 𝑡|𝑅1,1) = 

                                (1 − 𝑃(𝑇𝑓 ≤ 𝑡1|𝑅1,1)) 

                             ∙ 𝑃(𝑇𝑓 ≤ (𝑡 − 𝑡1)|𝑅1,1) 

(13c) 

     𝑃(𝑇𝑓 ≤ 𝑡|�̅�1,1) = 𝑃(𝐶(𝑡) ≤ 𝐷) (13d) 

     𝑃(𝑅1,1) = 𝑃(𝑑1 ≥ 𝑑𝑟) (13e) 

where di = defect size at the ith inspection and dr = 

defect size threshold for repair. 

 
Figure 2: Decision tree (F: failure, �̅�: survival)  

3.2. Expected total cost given one failure 

occurrence 

The expected total cost considering only one 

failure occurrence during ts can be interpreted as 

the sum of the expected cost of one failure 

occurrence at time Tf and the expected total cost 

given no failure during [0 Tf) and during the 

remaining of the service life, (ts  ̶ Tf), both of which 

can be calculated using Eq. (8) by setting ts to be 

the last inspection time before failure and ts  ̶ Tf, 

respectively. Since Tf is a random variable, the 

product of the probability of one failure 

occurrence and the expected total cost considering 

only one failure occurrence can be calculated 

using the probability density function (PDF), f(tf), 

of Tf  as follows: 

𝑃𝑓,1 ∙ 𝐸[𝐶𝑇|1 failure] = ∑𝑃(𝐴𝑖)

𝑛𝑖𝑛

𝑖=1

 

∙

[
 
 
 
 
 
 

𝐶𝑁𝐹((𝑖 − 1)∆𝑡)

+ ∫
𝐶𝐹

(1 + 𝛾)𝑡𝑓1
∙ 𝑓𝑇𝑓1

(𝑡𝑓1)𝑑𝑡𝑓1

𝑖∆𝑡

(𝑖−1)∆𝑡

+∫ 𝐶𝑁𝐹(𝑡𝑆 − 𝑡𝑓1) ∙ 𝑓𝑇𝑓1
(𝑡𝑓1)𝑑𝑡𝑓1

𝑖∆𝑡

(𝑖−1)∆𝑡 ]
 
 
 
 
 
 

 

+𝑃(𝐴𝑠)

∙

[
 
 
 
 

𝐶𝑁𝐹(𝑛𝑖𝑛∆𝑡)

+ ∫
𝐶𝐹

(1 + 𝛾)𝑡𝑓1
∙ 𝑓𝑇𝑓1

(𝑡𝑓1)𝑑𝑡𝑓1

𝑡𝑠

𝑛𝑖𝑛∆𝑡 ]
 
 
 
 

 

(14) 

𝑃(𝐴𝑖) = 𝑃 ((𝑖 − 1)∆𝑡 < 𝑇𝑓1

≤ 𝑖∆𝑡 ∩ 𝑇𝑓2 > 𝑡𝑠) 

= ∫ ( ∫ 𝑓𝑇𝑓1,𝑇𝑓2
(𝑡𝑓1 , 𝑡𝑓2)𝑑𝑡𝑓1

𝑖∆𝑡

(𝑖−1)∆𝑡

)𝑑𝑡𝑓2

∞

𝑡𝑠

 

(14a

) 

𝑃(𝐴𝑠) = 𝑃(𝑛𝑖𝑛∆𝑡 < 𝑇𝑓1 ≤ 𝑡𝑠 ∩ 𝑇𝑓2

> 𝑡𝑠) 

= ∫ ( ∫ 𝑓𝑇𝑓1,𝑇𝑓2
(𝑡𝑓1, 𝑡𝑓2)𝑑𝑡𝑓1

𝑡𝑠

𝑛𝑖𝑛∆𝑡

)𝑑𝑡𝑓2

∞

𝑡𝑠

 

(14b

) 

𝑓𝑇𝑓1,𝑇𝑓2
(𝑡𝑓1, 𝑡𝑓2)

= 𝑓(𝑡𝑓1) ∙ 𝑓(𝑡𝑓2 − 𝑡𝑓1) 

(14c

) 

where 𝑇𝑓1and 𝑇𝑓2= time of first failure and second 

failure, respectively, and they are random 

variables; 𝑓𝑇𝑓1 ,𝑇𝑓2
(𝑡𝑓1, 𝑡𝑓2) = joint distribution of 
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𝑇𝑓1and 𝑇𝑓2; Δt = interval of inspection, CF = unit 

cost of failure; CNF(ts − 𝑡𝑓1) and CNF ((i−1)Δt) = 

expected cost of inspections and repairs given no 

failure occurs during the remining service life (ts 

− 𝑡𝑓1 ) and before the (i−1)th inspection, 

respectively; Ai = the event of having the first 

failure in the time interval [(i−1)Δt   iΔt]; As = the 

event of having the first failure in the time interval 

[ninΔt   ts]. Note that if a failure occurs, the next 

time of inspection will be determined considering 

the failure time as the new start time. 

The expected total cost considering two or 

more failures during ts can be calculated using the 

same approach. It is worth noting that the 

expected total cost considering two or more 

failures can be neglected if the probability of two 

or more failures occurrence is negligible.  

4. CASE STUDY 

In this section, the proposed decision framework 

is applied to a steel pipeline with an initial crack, 

where the probability of failure is assessed based 

on the proposed failure pressure model. This 

pipeline has the same material and geometry 

properties used by Hosseini et al. (2010), as 

shown in Table 2. A stochastic model of crack 

propagation proposed by Madsen et al. (1986) is 

considered in this study with a model uncertainty 

MU added by Friis-Hansen (2000). The model is 

an analytical solution of the Paris’ law by 

assuming that the geometry function is 

independent of the crack depth and the stress 

range follows a Weibull distribution; and is 

written as: 

𝑎 = (𝑎0

2−𝑚
2 + 𝐾𝑀𝑈𝐴𝑚)

2
2−𝑚

, 𝑚 ≠ 2 
(15) 

𝐾 = 𝐶𝑁𝛤 (1 +
𝑚

𝐵
)𝑌𝑚𝜋

𝑚
2 (1 −

𝑚

2
) (16) 

where a0 = initial crack depth; A and B = scale and 

shape parameters of the Weibull distribution 

followed by the stress range, respectively; C and 

m = material parameters and m ≠ 2; N = number 

of applied load cycles; and Y = geometry function. 

The added model uncertainty, MU, is to account 

for the uncertainty on the deterministic variables 

of C, N, m, and Y. The parameters used in the 

crack growth model are also listed in Table 2.  

 
Table 2: Distribution parameters of random 

variables 

Random variable Mean STD 

Outside diameter of 

pipe, D (mm) 
508* 25.4 

Nominal wall thickness 

(mm), dw 
5.7* 0.285 

Yield strength, σy 

(MPa) 
433* 12.99 

Ultimate strength, σu 

(MPa) 
618* 18.54 

Estimated fracture 

toughness, Kmat 

(MPa2m)  

335.49 16.77 

Operating Pressure, 

OP (MPa) 
5.6 0.28 

Material parameter, C 2.1710-13** - 

Material parameter, m 3.0** - 

Scale parameter 

Weibull, A (MPa) 
6.8 1.36 

Shape parameter 

Weibull, B 
0.53 - 

Geometry function, Y 1 - 

Number of load cycles, 

N 
106 - 

Model uncertainty, Mu 1** 0.18** 

Initial crack depth, a0 

(mm) 
0.5 - 

Crack length, c (mm) 5 - 
*(Hosseini et al., 2010) ; **(Friis-Hansen, 2000)  

To determine the optimal inspection and 

maintenance planning for the deteriorating 

pipeline, the following unit costs are assumed: CI = 

ainC0, CR = arC0, and CF = afC0, where ain (= 

0.0177), ar (= 0.243), and af (= 25) are 

multiplicative factors for inspection, repair, and 

failure, respectively. Those factor values are 

chosen based on the ranges presented in Gomes 

and Beck (2014b). In addition, the discount rate is 
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assumed to be 2% (0.02), the inspection interval, 

Δt, is an integer number within the range of [2   10] 

years, and the repair threshold, dr is within the 

range [0   20%] of the wall thickness, dw. For a 

service life of 20 years, Figure 3 displays the 

expected total costs for different combination of Δt 

and dr/dw. The lowest expected life-cycle cost 

occurs at Δt = 8 years and dr/dw= 19%.   

 
Figure 3: Expected total costs versus inspection time 

 

Figure 4 shows for a given repair threshold 

(i.e., dr/dw = 13%) how three different expected 

costs change with the value of the inspection 

interval. As expected, the expected total cost with 

no failure (only consists of inspection and repair 

costs), Pf,0E [CT| 0 failure], decreases with the 

increase of Δt, since the frequency of inspection 

and repair decrease with the increase of Δt. In 

addition, the expected total cost with one failure, 

Pf,1E [CT| 1 failure], increases with Δt, since Pf,1 

increases with the increase of Δt due to the lower 

frequencies of inspection and repair actions.  

Using Eq. (7) with n = 1 (assuming 

probability of having two or more failure is 

negligible), the expect total cost, E[CT], is shown 

in the solid line in Figure 4. As shown in Figure 

4, when Δt < 8 years, the cost due to inspection 

and repair dominates E[CT]; while when Δt > 8 

years, the failure cost starts to dominate. For this 

case study (with setting repair criteria of dr/dw = 

13%), it seems that when the inspection interval is 

between 4~8 years, one can effectively avoid 

failure occurrence without spending too much on 

the inspection and repair. 

While the probability of having two or more 

failures is assumed to be negligible, one could 

follow the proposed framework to study the 

impact of adding those scenarios to the total cost. 

Nevertheless, the proposed framework provides a 

decision-making tool that analytically calculate 

failure, inspection, and repair cost. 

  
Figure 4: Different expected total costs versus 

inspection interval for dr = 0.13dw  

5. CONCLUSIONS 

In this paper, a decision framework for 

determining the optimal inspection and 

maintenance planning for deteriorating pipelines 

has been proposed. The framework is developed 

based on a decision tree model by using analytical 

methods to evaluate events, where the time 

interval between inspections and the threshold for 

repair are set as the design variables. This 

framework is easy to implement for risk 

management. In addition, a probabilistic failure 

pressure model for thin-walled pipelines 

containing crack-like defects is proposed in order 

to accurately assess the probability of failure. A 

comparison study shows that the proposed model 

provides unbiased and more accurate predictions. 

A case study of a steel pipeline with an initial 

crack is then used to illustrate the proposed 

framework. Using the proposed framework, 

different components of costs (inspection, repair, 

and failure costs) can be easily examined, which 

can be useful for determining an optimal 

inspection and maintenance planning.  

E [CT] 

Pf,0*E [CT| 0 failure] 

 

Pf,1*E [CT| 1 failure] 
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