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ABSTRACT: Near-fault ground motions have the forward directivity effect and fling-step effect, both 

of which can produce the distinct long-period pulse in velocity time histories. Such velocity pulses with 

larger amplitude easily result in the nonlinear seismic responses and severe damage to building structures. 

Generally, earthquake ground motions also possess strong randomness and nonstationary characteristic. 

Therefore, the stochastic generation model of near-fault ground motions and the reliability assessment 

of structures play crucial roles in performance-based earthquake engineering. This study proposes the 

stochastic synthesis model of nonstationary near-fault ground motion and the efficient method for 

assessing first-passage dynamic reliability for structures. Firstly, the stochastic model for generating 

stationary near-fault pulse-like ground motions is established. In the model, the velocity time history 

with the strongest pulse is generated based on the orthogonal horizontal components by using wavelet 

analysis. The nonstationary model is suggested to synthesize the high-frequency residual acceleration 

time history. Secondly, the probability density integral equation (PDIE) controlling the propagation of 

randomness from stochastic ground motions to structural responses is derived based on the principle of 

probability conservation. By using the techniques of partition of probability space and smoothing of 

Dirac delta function, the direct probability integral method (DPIM) is proposed to efficiently solve PDIE 

and obtain the probability density functions of stochastic responses of structures. Moreover, the DPIM 

is extended to assess the first-passage dynamic reliability of building structures with nonlinear hysteretic 

behaviour. Finally, the effectiveness of established stochastic model and efficiency of proposed DPIM 

for seismic reliability assessment for hysteretic frame structure in near-fault area are demonstrated by 

numerical examples. Additionally, the effect of the velocity pulse on the failure probability of building 

structures is also scrutinized. 

1. INTRODUCTION 

Near-fault ground motions are closely related 

with the rupturing mechanism of the fault, and 

generally present the effects of forward directivity 

and fling-step. Both the effects may cause the 

distinct long-period pulse in velocity time 

histories (Bray and Rodriguez-Marek 2004). Such 

velocity pulses possess larger amplitude and long 

duration and exhibit large uncertainty, which 

usually result in the nonlinear responses and 

damage for building structures. Therefore, the 

reliability assessment of building structures 

subject to near-fault ground motions is critical for 

seismic design of structures. 

Many studies on the near-fault pulse model 

have been carried out. Commonly, a simple 

velocity waveform, such as the trigonometric 

functions (Mavroeidis and Papageorgiou 2003) 

and wavelet function (Baker 2007), is used to fit 

the long-period velocity pulse. Dickinson and 

Gavin (2011) suggested a statistical analysis 

method for ground motion records under a seismic 

hazard level and a geographic region, and 

obtained the probability distribution of the 

parameters that describe the low- and high-

frequency stochastic contents of ground motions. 
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By taking the orientation of the strongest pulse 

into account, Yang and Zhou (2015) proposed a 

stochastic synthesis model of near-fault pulse-like 

ground motion, in which the velocity pulse was 

described by single Gabor wavelet. Dabaghi and 

Der Kiureghian (2017) suggested another model 

by combining M-P pulse model and filtered 

Gaussian random process, which can reflect the 

nonstationarity of ground motions. In above 

models, however, a lot of random variables are 

inevitably introduced to reproduce the near-fault 

impulsive ground motions. Such models have to 

make the Monte Carlo simulation (MCS) to assess 

the dynamic reliability of structures. 

Recently, authors proposed an efficient 

method, namely direct probability integral 

method (DPIM) (Chen and Yang 2019), for 

stochastic response analysis of structures. This 

method is based on the probability density integral 

equation governing the randomness propagation 

of structures. With this idea, the DPIM can be 

easily extended to reliability analysis, including 

static reliability, dynamic reliability and system 

reliability (Chen and Yang 2021, Chen et al. 2022). 

This study aims to evaluate the dynamic reliability 

of building structures under near-fault ground 

motions. For this purpose, firstly, this work 

establishes a stochastic model for near-fault 

impulsive ground motion, which represented the 

velocity pulse and time-frequency non-

stationarity of near-fault ground motions. Then, 

the dynamic reliability of building is assessed by 

utilized the DPIM. Finally, the effects of velocity 

pulse parameters on dynamic reliability of 

structures are also scrutinized. 

2. STOCHASTIC MODEL OF NEAR-FAULT 

GROUND MOTIONS  

2.1 Long-period velocity pulse 

In this paper, the long-period velocity pulse is 

expressed by the M-P pulse model proposed by 

Mavroeidis and Papageorgiou (2003) that is 
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where / 2 / 2pk p c pk p cT T N t T T N−   + , and Tp, Nc, 

Tpk and φ represent the pulse period, number of 

circles in the pulse, the time of peak value of the 

velocity pulse, respectively; the attenuation of 

PGV is fitted by using the regression formula 

presented by Bary and Rodriguez-Marekis (2004) 

( ) 2 2

rup lnln + ln( )w PGVPGV a bM c R d = + + +  (2) 

in which Mw is the moment magnitude; Rrup 

denotes the closest distance from the recording 

site to the ruptured area, which is considered as 

the fault distance in this study; and c1, c2, c3 and 

c4 are the regression parameters; σ represents the 

regression residual, respectively. 

2.2 High-frequency components 

The residual acceleration time series can be 

generated by extracting the domain pulse and 

differentiating the residual velocity history. In this 

study, a random variable based spectral 

representation method (Liu et al. 2016) is 

employed to simulate the residual stochastic 

nonstationary high-frequency components of 

near-fault ground motion, which is written as 

 
0

res ( ) ( ), cos( ) sin( ) )
N

k

k

k k k ka t S t t X t Y   
=

=   + (3) 

where S(t, ωk) is the nonstationary power spectral 

density function of residual acceleration time 

history; Δω=(ωu–ωl)/N denotes the frequency step 

size; ωk=ωl+k(ωu–ωl)/N means the discrete 

frequency; Xk and Yk are the orthogonal random 

variables, which can be defined as a random 

function with one elementary random variable γ 

as follows 

= 2 cos( 4), = 2 sin( 4)k kk kX X   + +/ /   (4) 

in which the elementary random variable γ is 

uniformly distributed within [−π, π]. 

In Eq. (3), a modified K-T (Kanai-Tajimi) 

spectrum with high-pass filter modulated by a 

random variable based envelope function in Yang 

and Zhou (2015) is used to express the 

nonstationary spectral function, namely 

 
2

K-T( , ) ( ) ( ) ( )S t e t G S  =   (5) 

where e(t), G(ω) and SK-T(ω) indicate the 

envelope function, Butterworth filter, K-T 
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spectrum, respectively. To present the variability 

of envelope function, the following stochastic 

envelope function with three random parameters 

(Yang and Zhou 2015) is also adopted 
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In Eq. (7) the parameter t0 describes the 

initial instant of non-zero ground motion; tpk 

denotes the time of peak value of residual 

acceleration; α and β are the power exponents 

corresponding to the ascending and descending 

segments. In this model, the envelope parameters 

tpk, α and β are considered as random variables. 

Consequently, the stochastic velocity time 

history Vs(t) of ground motion scaled by the peak 

of residual velocity history Vres, and the high-

frequency acceleration as(t) of the near-fault 

ground motion can then be obtained by 

differentiating the scaled velocity time series. 

Finally, the acceleration time series with the 

strongest pulse can be generated by the 

superposition of the high-frequency acceleration 

and the low-frequency counterpart ap(t) achieved 

from the velocity pulse function shown in Eq. (1). 

3. PARAMETERS ESTIMATION AND 

SYNTHESIS OF GROUND MOTIONS 

3.1 Model parameters identification 

As stated in Section 2.1, the velocity time history 

with strongest velocity pulse is first generated 

based on the two orthogonal components of fault-

normal and fault-parallel directions by means of 

wavelet transformation. Then, the long-period 

velocity pulse time history can be extracted from 

the generated velocity time history with strongest 

pulse by utilizing a low pass filter. Finally, the 

pulse parameters in Eq. (1) can be identified by 

the nonlinear least square method: 

ln
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To identify the parameters of envelop 

function, the instantaneous amplitude ( )a t of 

residual acceleration time histories ( )x t  are first 

solved by combining with its Hilbert 

transformation ( )Hx t , i.e., 

 2 2( ) ( ) ( )Ha t x t x t= +   (9) 

Then, the multimodal point method is adopted to 

find the local maximal value of instantaneous 

amplitude in Eq. (9) so as to form the pth level 

envelope ( )( )pa t . Then, the obtained envelope ( )( )pa t  

is fitted by envelope function e(t) in Eq. (7) to identify 

the envelope parameters in a least square sense: 

 2
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Figure 1 shows the 2th envelope lines of 

residual acceleration time history recorded at 

station TCU031. 

 

 
 

Figure 1: Envelope of the acceleration time history 

with strongest pulse at TCU031 station 

 

In this study, the model parameters are 

identified by 34 near-fault pulse-like records with 

the rupture forward directivity effect in the range 
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of fault distance Rrup ≤ 30 km in Chichi 

earthquake event (Mw=7.6). Table 1 shows the 

probability distribution of model parameters and 

its mean value and standard deviation, in which 

model parameter for high frequency γ is uniformly 

distributed within [−π, π] to represent the residual 

high-frequency stochastic process. 

 
Table 1: Probability distribution of parameters of 

stochastic ground motion model 
Parameters Distribution Bounds Mean Std. D. 

Tp Normal [2.39, 10.84] 6.72 1.89 

Nc Lognormal [1.10, 4.23] 2.35 0.74 

Tpk Normal [7.04, 51.60] 25.69 10.05 

φ Uniform [0, 2π] 2.32 1.95 

σlnPGV Normal [−0.6, 0.6] 0.00 0.25 

tpk Normal [10.43,47.58] 25.63 9.18 

α Lognormal [0.22, 14.14] 2.59 3.34 

β Lognormal [0.03, 0.41] 0.09 0.07 

γ Uniform [−π, π] 0.00 π2/3 

3.2 Synthesis of near-fault pulse-like ground 

motions 

After obtaining the probability distribution of 

model parameters, the representative ground 

motions can be generated by means of the point 

selection technology (Liu et al. 2016, Li and Chen 

2009). In this work, a new point selection 

technique based on the generalized F-discrepancy 

(GF-discrepancy) (Chen et al. 2016) is adopted, 

which is suitable for the cases of non-normal 

distributed parameters.  

The GF-discrepancy is defined as  

  ,
1
max sup ( ) ( )GF N i i

i s
D F F 

 
= −   (11) 

where Fi(θ) is the marginal CDF of the ith random 

variable; FN,i(θ) is the empirical CDF considering 

the effects of assigned probability 
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The first step is to generate the N initial point 

set θq = (θq,1, θq,2, …, θq,s), q =1, 2, …, N from a 

Sobol set In={(uq,1, uq,2, …, uq,s), q =1, 2, …, N} 

over a unit hypercube by 

 
1

, ,( )m i i m iF u −=   (13) 

where 1( )iF−  denotes the inverse CDF of the ith 

random variable. To ensure that the weights of 

numerical integration, that is, assigned probability 

are close to each other, then the following 

transformation is performed in each dimension  

 1

, , ,

1

1 1 1
{ }

2

N

m i i q i m i

q

F I
N N

  −

=

 
 =   +  

 
  (14) 

The second step is to calculate the assigned 

probability and transform point set so as to 

minimize the assigned probability of point set. 

Hence, the point set ,1 ,2 ,( , ,..., )q q q q sθ      =  , q =1, 

2, …, N are further transformed as 
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By using the new points selection technique, 

the final representation points with smaller GF-

discrepancy can be determined as 

,1 ,2 ,( , ,..., )q q q q sθ      = .  

 

   

 
Figure 2: Velocity and acceleration time histories at 

the station of (a) TCU031; (b) TCU051 
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Figure 2 illustrates the velocity and 

acceleration time histories at stations of TCU031 

and TCU051. From these figures, one can observe 

that the velocity pulses can be effectively 

extracted from the velocity time histories of actual 

records, and the synthetic acceleration time 

histories are matched with the original records 

4. DYNAMIC RELIABILITY ASSESSMENT 

VIA DIRECT PROBABILITY INTEGRAL 

METHOD 

4.1 Synthesis of near-fault pulse-like ground 

motions 

A nonlinear MDOF system subjected to the 

ground motion acceleration can be descripted by 

the following differential motion equation 

(physical mapping) 

 ( ) ( , )gu t+ + = − MX CX f X MI   (16) 

with the deterministic initial condition 

 
0 00 0

( ) , ( )
t t

t t
= =

= =X X X X   (17) 

where X represents the relative displacement 

vector; M and C are mass and damping matrix, 

respectively; f indicates the restoring force vector; 

I is the n×1 unit column vector; ( , )gu tΘ  is the 

acceleration history of near-fault impulsive 

ground motion descripted in Section 3; Θ=(Tp, Nc, 

Tpk, φ, σlnPGV, α, β, tpk, γ) denotes the random 

parameters vector of near-fault ground motion; 

the deterministic initial condition X0 and 0X are 

considered in this study.  

Based on the principle of probability 

conservation of random event description, Chen 

and Yang 0 derived uniformly the probability 

density integral equations (PDIEs) for static and 

dynamic structural systems, respectively. In this 

study, the structure is subjected to the seismic 

ground motions. The PDIE of dynamic version, 

therefore, is expressed as follows  

  ( ) , ), ( ) ( dp t tp 


= −
Θ

X Θx g θxθ θ   (18) 

where δ(∙) is the Dirac delta function; g(θ,t) 

denotes the solution of physical equation in Eq. 

(17); pΘ(θ) is the joint probability density function 

of random parameters Θ; ΩΘ is the distribution 

domain of Θ. 

If the certain component of responses X(t) is 

concerned, the PDIE in Eq. (18) can be reduced 

according to the property of Dirac delta function, 

that is  

  , ,( ) ( ) ( ) dXp t px x tg
Θ

Θ θ θ θ


= −   (19) 

4.2 Direct probability integral method (DPIM) 

To solve the PDIE in Eq. (19), the direct 

probability integral method (DPIM) was proposed 

by means of the partition of probability space and 

smoothing of Dirac delta function in previous 

work (Chen and Yang 2019, 2021).  

By using the partition of probability space, 

the representative point set can be generated 

according GF-discrepancy based point selection 

method, then the representative ground motions 

can be synthesized. The PDIE in Eq. (19), 

therefore, can be written as (Chen and Yang 2019) 

  
1

( ,( , ) )
N

qX q

q

p x t gx t Pθ
=

 −    (20) 

where the assigned probability of a representative 

point θq is obtained by numerically solving the 

following integration 
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= ( )d
q

q pP
 Θ

Θ
θ θ   (21) 

In numerical integration, the non-smooth 

Dirac delta function involved in Eq. (19) needs to 

be approximated by using smooth function. The 

previous work showed that the Gaussian function 

is an appropriate to treat this problem. 

Consequently, Eq. (20) can be further expressed 

as follows (Chen and Yang 2019, 2021) 
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in which σ is the smoothing parameters. When 

σ→0, the smooth function ˆ( ; )y   tends to Dirac 

delta function, i.e., 
0

ˆ( ) lim ( ; )y y


  
→

= . 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 6 

4.3 First-passage dynamic reliability analysis 

based on DPIM 

Based on the first passage failure criterion, the 

dynamic reliability of structures is defined as (Li 

and Chen 2009) 

  r ( ) Pr ( ) ,0sP t X t =      (23) 

where Ωs denotes the safety domain.  

Accordingly, once the response crosses the 

safety boundary in certain moment, the system 

would be failure. Thus, a random process can be 

viewed a serial system over the time domain, 

namely, the structure fails when the maximum of 

response in time interval (0, t] exceeds the 

threshold. Then, the reliability of structure at 

instant t can be expressed as (Li and Chen 2009) 

  max

0

( ) Pr ( , ) Prr s

t

P t X X bΘ



 

 
=  =  

 
(24) 

where b is the given threshold; 

 max
0

= ( )= max ( , )
t

X h XΘ Θ



 

, which is a mapping 

H: Θ→Xmax. The stochastic response Y(t) is 

transformed into the random variable Xmax, then 

the performance can be rewritten as follows 

 ( )= ( )Z g b hθ θ   (25) 

In the context of the DPIM, the PDF of 

performance in Eq. (25) can be attained by  

 
 

2 2( ) /2

1

1
( ) e

2π
q

z
N

g

q

Zp Pz




− −

=

 
 
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
θ

  (26) 

Thus, the dynamic reliability at instant t can 

also be calculated by  

 
0

( ) Pr[ 0] ( )dr ZP t Z p z z


=  =    (27) 

This approach transforms the stochastic process 

into a random variable to obtain the dynamic 

reliability of structures. 

5 NUMERICAL EXAMPLE 

In this section, a two-span 20-story shear frame 

subjected to stochastic ground motion, as 

illustrated in Fig. 3, is considered. The floor 

lumped masses of the frame are from the bottom 

to top floor are taken as: m1=m2=4.5, m3=…=m12 

=4.3, m13=…=m17=4.1, m18=m20=3.9 (105 kg); 

and the initial lateral inter-story stiffnesses: 

k1=k2=3.5, k3=…=k12=3.2, k13=…=k17 =3.0, k18= 

k20=2.8 (108 N/m). 

Assume that the failure occurs once the inter-

story drift exceeds prescribed threshold, i.e., 

b=0.06 m. The stochastic inter-story drift is 

denoted as Y(Θ,t)=[Y1(Θ,t), Y2(Θ,t), …Y20(Θ,t)], 

in which Y1(Θ,t)=X1(Θ,t); Yi(Θ,t)=Xi(Θ,t)− 

Xi−1(Θ,t), i=2,…, 20. Therefore, the performance 

function can also be given by the mapping 

 
1 20

( , )= max{ ( , )}i
i

Z g t b Y t
 

= −Θ Θ   (28) 

where the Xi(Θ,t) indicate the ith floor 

displacement of the frame, which can be 

calculated by the physical mapping: 

) )1 ( ,( h x t + + = −+ −MX C X MIX K K ΘZ  (29) 

in which M=diag(m1, m2,…, m20) denotes the 

mass matrix; K is the initial stiffness matrix; 

C=α1M+ α2K (α1=0.4602 s−1, α2=0.0041 s) is 

adopted; Zh=(Zh,1, Z h,2, …, Z h,20)
T denotes the 

hysteretic displacement, which is described by 

Bouc-Wen model; α is the ratio of the final tangent 

stiffness to initial stiffness in this model, and the 

other parameters are be found in Refs. (Chen and 

Yang 2019, 2021) 

 

 

Figure 3: Two-span 20-story shear frame 

subjected to earthquake ground motion 
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Figure 4: Restoring curves of structure under (a) 

pulse-like ground motion; (b) non-pulse ground 

motion 
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Figure 5: Dynamic reliability under different (a) 

thresholds and (b) fault distances Rrup 

 

Figure 4 (a) and (b) illustrate the curves of 

restoring force versus inter-story drift of the 

structure subjected to near-fault pulse-like and 

non-pulse-like ground motion, respectively. It is 

seen that the velocity pulse can result in larger 

inter-story drift than the non-pulse like ground 

motion. It presents the importance of the study on 

reliability of structures under near-fault pulse-like 

ground motions.  

The dynamic reliability of tall building under 

different threshold values (0.04, 0.06, 0.08, 0.10, 

0.12 m) are depicted in Fig. 5(a). From this figure, 

it shows that the DPIM obtains agree results with 

those by MCS, and demonstrates the good 

accuracy of proposed method. Fig. 5(b) examines 

the effect of occurrence instant Tpk of velocity 

pulse for near-fault ground motion with different 

fault distances on dynamic reliability of the 

structure. It is observed that the reliability 

decreases remarkably from 1 to the minimum 

value in the time interval [ 3
pkpk TT − , 3

pkpk TT + ], 

and the velocity pulse of near-fault ground motion 

affects significantly the dynamic reliability of 

structures, especially for the structures located in 

the area closer to the fault. 

6. CONCLUSIONS 

In this work, an efficient framework is proposed 

to assess the dynamic reliability of structures 

subjected to near-fault pulse-like ground motions. 

(a) 

(b) 
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Firstly, a stochastic synthesis model is established 

on the basis of near-fault ground motion records. 

Then, the direct probability integral method is 

employed to perform dynamic reliability analysis 

for nonlinear structures. As a numerical example, 

the dynamic reliability of the 20-story shear frame 

building is achieved.  

Accordingly, the velocity pulse of near-fault 

ground motion has a critical effect on failure of 

structures in the area closer to the rupturing fault. 

The variability of velocity pulse parameters plays 

an important role and cannot be neglected in 

structural dynamic reliability analysis. The 

proposed DPIM is an efficient and accurate 

method for dynamic reliability assessment of 

nonlinear structure subjected to near-fault pulse-

like ground motions. 
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