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ABSTRACT: Design problems in engineering require computing the probability of exceedance of
decision variables, that can be calculated by arbitrarily complex mathematical models from basic
variables and their corresponding distributions. This work tries to explore answers to an important
question for engineers: How would my design change if we include uncertainty in the models used? We
study the inclusion of the so called epistemic sources of uncertainty in typical design problems in civil
engineering, by means of Bayesian predictive posterior estimates. Through relatively simple synthetic
examples, we compare these estimates with the traditional approach. We found that the inclusion of
epistemic uncertainties in the model relating basic and decision variables can yield significant impact on
design estimates that strongly depend on the shape of this relatinoship and the uncertainty
characterization of its parameters.

1. THE DESIGN PROBLEM
Most engineering systems are designed on the basis
that their probability of under-performance is ap-
propriately low. More sophisticated approaches re-
quire the designer to explicitly compute this prob-
ability of failure using appropriate probabilistic
methodologies (Melchers and Beck (2018)). The
failure condition can be generically expressed as
the exceedance of a given design, or decision, met-
ric Z over a threshold z as in Eq. (1).

p f = p(Z ≥ z) (1)

In standard structural reliability theory, for ex-
ample, the decision variable can be the safety mar-
gin Z = R− S (where R is the resistance variable
and S the demand on the system) and the thresh-
old simply z = 0. In risk assessments of engineer-
ing systems, Z might well represent some impact
or demand metric, like the water level at a dike
from an extreme flood, or the inter-story drift ratio
in a building during an earthquake. Depending on

the type of decision problem and the stakeholders
involved, socio-economic consequence metrics are
also typical in engineering decision making, such
as the repair cost of a building, or the number of
people displaced from their homes.

The decision metric is, in almost every practi-
cal scenario, not directly measured. So in order
to develop probabilistic models, it is usually com-
puted as a function of a set of basic variables X that
are easier to characterize from an analytic and/or
empirical standpoint. This model that translates
basic variables into the decision variable will be
called here, the reliability model. It can range from
very simple analytical structural models that trans-
late a load into a stress, to complex environmental
and socio-economic models that translate the oc-
currence of extreme natural events into extended
spatial damage.

This model can be generically represented by a
mathematical function g that depends on the basic
variables X and usually, a set of model parameters
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β as per Eq. (2). This parameters are all input nec-
essary to characterize the model, outside of X .

Z = g(X ,β ) (2)

Combining Equations 1 and 2 we can express the
exceedance probability of z as,

p(Z ≥ z) = 1−FX
(
g−1 (z,β )

)
(3)

Where FX is the cumulative distribution of the basic
variable X , and the function g is considered mono-
tonically increasing in X .

The above equations, however, do not take into
account the temporary nature of true processes.
That is, engineering systems are designed to with-
stand a given level of performance during a prede-
fined lifetime T . Without losing generality, we can
think that the failure condition is a function of time
and all variables involved are stochastic processes.
Then, the probability of failure can be computed as
the probability that Z (t) ≥ z(t) occurs during the
lifetime T . This is generally known as the ’first-
passage probability’ (Melchers and Beck (2018)).

In most risk and reliability analysis in civil engi-
neering the occurrence of failures is very rare and
can be considered as independent events. The Ho-
mogenous Poisson Process (HPP) appears, usually,
as a reasonable model to compute the likelihood of
failures over time. Under this simplifying assump-
tion the probability of failure over lifespan T can be
computed as per Eq. (4).

p f T (z) = 1− exp
(
−λ0T p f (z)

)
≈ λ0T p f (z) (4)

Where λ0 is the mean rate of occurrence of extreme,
potentially critic levels of X .

The definition of ’event’ depends on context, but
it can generically be thought of as extreme levels
of X that can potentially lead to failure. Many
problems naturally adjust to this discrete-events
methodologies, like the consequences generated by
natural hazards such as earthquakes, hurricanes or
thunderstorms. Other problems might intuitively
be associated to continuous time variables, such as
wind loading, sea-level, or even resistance param-
eters of structures. In any case, continuous pro-
cess can be discretized by selecting an appropri-

ate threshold to define an ’extreme event’. For ex-
ample, we are not interested in the continuous sea-
level rise process, but rather in sea-level rises above
2m.

Thus, from a modelling perspective, the problem
requires to estimate the distribution FX of the basic
variables for each (discrete) event, and the corre-
sponding design level Z by means of g(X ,β ) (see
Figure 1 for an illustrative scheme). The engineer-
ing system is then designed so that p f T is appro-
priately low, or similarly so that the return period
Tr is appropriately high. A very common approach
is to calculate the zp level for a given return pe-
riod in order to use as a design value or to ver-
ify a given design (see Figure 1 for an illustrative
scheme). For example, the height of a dike is de-
signed for the water level with an exceedance return
period of 500yrs. Or the resistance of a structural
member should be calculated so that the probabil-
ity of being lower than the demand in 50 years is 1
in 2% (i.e. a return period of 2,500 years approx-
imately). Many more examples are ubiquitous in
civil engineering (Melchers and Beck (2018)).

Figure 1: Qualitative scheme of the time dependent
design problem in engineering

The objective of the present work is to explore
how uncertainty in the construction of the models
to compute this probability of exceedance impact
in the design of engineering systems. This uncer-
tainty, that stems from limited data and knowledge
about the actual evolution of the system, adds a
layer of complexity to the computation of Eq. (4).
While its inclusion in the distribution model FX has
been conceptually addressed in the literature (Merz
and Thieken (2005)), it is still not clear the relative
influence of considering uncertainty in the reliabil-
ity model g. The rest of this work describes how
we can include these into the design problem, and
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how its inclusion is compared to more traditional
approaches that do not account for them using sim-
plified synthetic models.

2. UNCERTAINTIES
The engineering design problem is, as described in
the previous section, tightly related to predicting an
uncertain event in the future. Thus, it is strictly an
uncertainty quantification task. At its core, Eq. (4)
is a mathematical representation of what is known
as ’aleatory uncertainty’, here characterized by the
HPP and the probability distribution FX of the basic
variable at any event.

Aleatory uncertainty is considered as an inher-
ent component of the physical process and it does
not depend on the amount of knowledge and infor-
mation that the modeller has. However, there are
other sources of uncertainty around the estimation
of the probability of failure that are related to our
incomplete knowledge about the engineering sys-
tem being analyzed. These are commonly known
as ’epistemic uncertainties’ (Spiegelhalter and Ri-
esch (2011)).

As described by Spiegelhalter and Riesch (2011),
epistemic uncertainty stems mainly from (1) lim-
ited information to properly characterize the proba-
bilistic models and (2) limited knowledge to prop-
erly describe the true physical processes through
the selected models. This more operational descrip-
tion of epistemic uncertainties allows for a more
rigorous wat of including them in the decision mak-
ing process. Limited information appears in prac-
tice, as limited-length data, observation errors, or
missing variables. It can, typically, be represented
through uncertainty in the parameters that describe
the models as data is not sufficient to perfectly iden-
tify them.

Limited knowledge, on the other hand, is usu-
ally represented as uncertain models, such as the
distribution family chosen for FX or the particu-
lar physics-based model chosen for g, and sim-
plified hypothesis such as the HPP model. It is
much harder to represent this mathematically, al-
though it can, and has been done through model
ensembles (i.e. considering and weighting many
possible models) or statistical representations of
model deficiencies (Kennedy and O’Hagan (2001)).

Other, deeper, sources of uncertainty are also de-
scribed and characterized in (Spiegelhalter and Ri-
esch (2011)) although its inclusion in a reliability
framework is not straightforward and beyond the
scope of this work.

Besides the epistemological differences between
the two, it is not always clear which sources of un-
certainty belong to each category, and it can vary
depending on the context. In any case, the most im-
portant feature that differentiates aleatory and epis-
temic uncertainty is the fact that the former can-
not be practically reduced since it is an inherent
property of the system under analysis. The epis-
temic uncertainty, on the other hand, can be reduced
by further collecting information and improving
knowledge. This distinction is crucial when allo-
cating resources for model improvement (Der Ki-
ureghian and Ditlevsen (2009)).

2.1. Epistemic uncertainties in the risk integral
The inclusion of epistemic uncertainties greatly

increases the complexity of the problem from an an-
alytical and computational standpoint. In this con-
text, the risk metrics of Eq. (4) can be understood
as conditional to a given set of models and models’
parameters.

p f T (z|Θ,H) = λ0T
[
1−FX

(
g−1 (z,β ) |θ

)]
(5)

Where Θ include all parameters used to describe the
models, and H represent a set of hypothesis used to
build the estimate, such as the HPP.

The set of parameters Θ include the ones that
characterize the probability distribution FX , here
named θ , the parameters that characterize the HPP
process (i.e. λ0), and the parameters β that char-
acterize the reliability model. These might also in-
clude parameters that assign a probability to an en-
semble of different possible models, so it can re-
liably represent a wide range of epistemic uncer-
tainty sources.

One way of incorporating uncertainty regarding
the values of Θ is provided by Bayesian decision
theory. In this context, an appropriate estimate of
the design value z should take into account the con-
sequences of over or underpredicting its true value.
Fawcett and Green (2018) discusses this in the con-
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text of return period levels for environmental ex-
treme events, and it suggests the use of the predic-
tive posterior return level as point estimate that in-
corporates epistemic uncertainty. This is obtained
by integrating out the parameters Θ using their pos-
terior distribution p(Θ|x) as per Eq. (6). In the
Bayesian statistical context, is the distribution of
the parameters given the available data and mod-
eller’s prior knowledge.

p f T (z|data,H) =
∫

Θ

p f T (z|Θ) p(Θ|data,H)dΘ

(6)

3. NUMERICAL SIMULATIONS
3.1. Models and data

We use a semi-synthetic flood hazard case study
to study the impact of the inclusion of epistemic
uncertainties in the design process. The case study
requires to design the height of a riverine levee in
order to protect a certain area from flooding with
a minimum probability of 10% in 10 years (i.e. a
return period of 100 years).

There are no historical measurements of water
heights there, but there are flow discharge measure-
ments at a gauge station a few kilometers upstream.
Flow discharge is, then, used as basic variable X for
our study. Real discharge data was used, from pub-
licly available daily data at Buscot weir, in a small
reach of Thames River, obtained from the UK Na-
tional River Flow Archive. The series spans from
19 years from 1980 to 1998 with some minor gaps
that are not expected to affect the extreme statistics
analysis to perform.

This dataset was analyzed using Peaks-Over
Threshold (POT) theory to identify extreme events
and characterize the probabilistic distribution of the
discharges. A total of 73 extreme events were
identified in 18.8yrs of data, using a threshold of
12m3/s (See Figure 2) and a minimum separation
of 7 days between events. The estimated mean rate
of occurrences of events was λ0 = 3.9events/year.
The selected probability distribution for the peak
discharges FX (x|θ) above the threshold was the
Generalized Pareto Distribution (GPD) as the stan-
dard extreme events theory indicates (Bousquet and
Bernardara (2021)).
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Figure 2: Daily discharge for Buscot gauge station and
identification of extreme events. Blue cross indicates
event’s peak discharge.

The posterior distribution of the GPD shape and
scale parameters (ξ and σ respectively) was ob-
tained by Markov Chain-Monte Carlo simulation
using an non-informative prior as defined in Castel-
lanos and Cabras (2007). The ’best fit’ parame-
ters were selected as the mode of these distributions
(also known as maximum a-posteriori estimates),
that would be practically equal to standard maxi-
mum likelihood parameters in this case. Figure 3
shows the posterior distribution for both parame-
ters.

0.5 0.0 0.5
shape

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

10 20 30
scale

0.000

0.025

0.050

0.075

0.100

0.125

De
ns

ity

Figure 3: Prior (red) and posterior (blue) distri-
butions of GPD parameters. Best fit parameters are
ξ ∗ =−0.05, σ∗ = 16.5

The model g that propagates river flow dis-
charges downstream is called a flow routing model
and is typically based on simplified versions of
the 1D fluid dynamics equations (Di Baldassarre
(2012)). Typical parameters of these models are the
roughness of the channel, the cross-section prop-
erties, and downstream boundary conditions. For
simplicity, and since this is an exploratory study,
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we used simple mathematical analytical functions
to describe g that depend only on discharge X and
a single model parameter β .

In the numerical experiments explored here, we
examined two very simple formulations for g(x,β ):
(1) A linear model both in x and β , and a (2) non-
linear model in x but linear in β .

In this case, we defined three different curves for
the posterior distributions for β : (1) a standard Nor-
mal distribution, (2) a right-skewed Normal distri-
bution, and (3) a left-skewed Normal distribution.
All three models share the same mode β ∗ = 1, so
they basically represent the same ’best fit’ model
defined by g(x,β ∗). In practice, the posterior distri-
bution could also be obtained from available data,
or from expert knowledge. By any means, these
actual posterior distribution should resemble a Nor-
mal, or skewed Normal. We believe, however, that
these simple models can still be useful for under-
standing how they might impact the predictive pos-
terior estimates.
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Figure 4: Three different posterior distributions for β

3.2. Simulation methodology
The integral in Eq. (6) does not have an analytic

solution for most cases of practical importance. In
this work we use a standard Monte-Carlo (MC) ap-
proach that simulates draws from the posterior dis-
tribution of the parameters p(Θ|data,H) and then
compute the probability from Eq. (5) for each. The
predictive posterior estimate is then numerically ap-
proximated using the average of the simulated val-
ues as in Eq. (7).

p f T (z)≈
1
N

S

∑
j=1

p f T
(
z|Θ j

)
(7)

Computing p f T
(
z|Θ j

)
from Eq. (5) is not

straightforward, as well, since the forward simula-
tor g(x,β ) does not typically have an explicit ex-
pression (i.e. it generally involves finite differences
of finite element methods of resolution). Thus, in-
verting the model to compute the exceedance prob-
ability of z is not possible analytically.

An equivalent simulation-based expression to
compute Eq. (1) is given by Eq. (8).

p f =
∫

x
1{g(x,β )≥ z} p(x)dx=E [1{g(x,β )≥ z}]

(8)
Where 1{cond} is a function that returns 1 when
cond is true and 0 otherwise.

The exceedance distribution of level z can then
be numerically approximated by the average of the
simulations as per Eq. (9).

p f ≈
1
N ∑

j
1
{

g
(
x j,β

)
≥ z

}
(9)

Where xi are random draws from FX (x|θ) and N
the number of simulations used.

The number of simulations N depends on the pre-
cision we need on the results, and on the available
computational power. For higher return periods,
more simulations are needed to achieve a given pre-
cision in the estimate by Eq. (9) (Bousquet and
Bernardara (2021)). We used here, N = 20,000 and
S = 1,000 since computational time was not an is-
sue.

Finally, it is standard in practice to compute the
mean recurrence between events instead of the ex-
ceedance probability for a given T . This is com-
puted as per Eq. (10), and results are shown in next
section using this metric.

Tr (z) =
(
λ0 p f

)−1 (10)

3.3. Results
3.3.1. No epistemic uncertainties

Assuming that best fit parameters are enough to
perfectly characterize the probability distribution of
discharges and the flow model, we can compute the
design height simply by means of Eq. (4). We used
the mode of the GPD parameters for the FX model,
and the mode of the β parameter for the routing

5



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

model as ’best fit parameters’. In this context, it is
named as the ’traditional approach’.

Figure 5 shows the exceedance curves for the dis-
charges X , the flow model Z = g(x,β ∗), and the re-
sulting design curve for water depths. Using this
estimate, we should design the levee with a height
of 10m.

3.3.2. Epistemic uncertainty in distribution of X
We consider then, the influence of the epistemic

uncertainty in the distribution of the discharges,
represented by the posterior distribution of GPD
parameters. In this case, we compute many ex-
ceedance curves for X for each random draw of a
set of {ξ ,σ}. Figure 6 shows a small subset of the
different curves simulated, together with the best fit
curves (i.e. the traditional approach), and the pre-
dictive posterior estimates.

The comparison shows that the predictive pos-
terior estimate, which includes the epistemic un-
certainty, yields more conservative design values.
That is, the levee height for 100 years, should be
around 11m if we consider the predictive poste-
rior estimate. Furthermore, the difference between
the curves grows with return period as is expected,
since more rare events are more uncertain to predict
from limited-length data.

This is in line with previous studies in the in-
clusion of epistemic uncertainties when estimating
probability models (Merz and Thieken (2005)). It is
also a well-known result in Bayesian statistics that
the predictive distribution of new observations has
heavier tails than the underlying distribution model
for the data (Gelman et al. (2013)).

3.3.3. Epistemic uncertainty in reliability model
As a next step, we considered only the epistemic

uncertainty in the flow routing model, via the pos-
terior distributions for β plotted in Figure 4. Dif-
ferent cases were computed, combining the linear
or the non-linear model, with each of the posterior
distributions for β from Figure 4.

Figure 7 shows the case of a linear model and a
standard Normal distribution for β . It can be seen
that the traditional approach gives the same design
curve as the predictive posterior estimate. Theoret-
ically, in this case, it will be sufficient to compute

the water depths for the best β parameter only. This
is likely related to the fact that, when g(x,β ) is lin-
ear in β , and thus the expected water level for a
given discharge is the same as the water level for
the expected discharge: E [Z|X ] = Z|E [X ].

This, however, is not the case when g(x,β ) is
non-linear. Figure 8 shows the results when us-
ing the non-linear model and the standard Normal
distribution for β . There is a small departure of
the predictive posterior curve from the traditional
approach towards the non-conservative side in this
case. The magnitude of this departure is expected to
be very dependent on the non-linearity of the func-
tion. The same is expected to happen with the ’di-
rection’ of this shift.

A deviation of both design curves can also be
seen when using the non-symmetric distributions
for β , like the skewed Normal distributions. This
will generally yield a non-symmetric distribution
for Z|X , where the water levels for the best fit pa-
rameters will not coincide with the mean water lev-
els, even for a linear model. Figure 9 shows that
when uncertainty in β is skewed towards higher Z
values, then the predictive posterior design curve
will be shifted towards more conservative estimates
than the traditional approach. The opposite tends to
happen when the distribution for β is skewed in the
opposite direction as shown in Figure 10.

The inclusion of epistemic uncertainties in both
the probability model for X and the reliability
model g, will be a direct combination of both the
results described above.

4. CONCLUSIONS
This work intended to compare estimates of a gen-
eralizable design problem, using the traditional ap-
proach that uses ’best fit’ models and a novel ap-
proach that includes epistemic sources of uncer-
tainty. This tries to address an important question
for engineers: How would my design change if we
include uncertainty in the models used?

Results showed that uncertainty in characterizing
the probability distribution of the basic variables X
will lead to conservative estimates for design as was
discussed previously by Merz and Thieken (2005).

On the other hand, results showed that it is less
straightforward to determine the differences be-
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Figure 5: Inclusion of aleatory uncertainty only
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Figure 6: Inclusion of epistemic uncertainty in probability model for X
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Figure 7: Inclusion of epistemic uncertainty in linear reliability model g(x,β )

tween the traditional approach and the predictive
posterior estimate when including uncertainties in
the reliability model g. Generalizations on this mat-
ter, seem to require further inspection of the math-
ematical equations defining the problem. How-
ever, the simple numerical examples ran in this

work seem to imply that the specific structure of
the model (e.g. non-linearity) and the posterior dis-
tribution of the parameters (e.g. calibration proce-
dure used) can shift the traditional approach results
in vastly different ways, and not necessarily on the
conservative side.
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Figure 8: Inclusion of epistemic uncertainty in non-
linear reliability model g(x,β )
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Figure 9: Inclusion of epistemic uncertainty in linear
reliability model with right-skewed distribution for β
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Figure 10: Inclusion of epistemic uncertainty in linear
reliability model with left-skewed distribution for β

Rigorous exploration of the influence of the
uncertainties in the reliability model are difficult
to find in the literature, and generally problem-
specific. Further studies could try to generalize
some of the findings by exploring different types
of non-linearities, posterior distributions for β , or
simply by studying general calibration procedures
for g.

All code and data used to develop the models and

figures is publicly available at GitHub repository
Balbi (2023).
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