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ABSTRACT: Infrastructure networks, such as electrical power grids, transportation and water supply
systems, support critical societal functions of society. Failures of such networks can have severe
consequences, and quantification of the probability of failure of such systems is essential for
understanding and managing their reliability. Analytical and simulation methods have been proposed to
solve such kinds of problems, among which sampling methods feature prominently. Recently, the
authors extended widely used structural reliability algorithms, subset simulation, cross-entropy-based
importance sampling as well as uncertainty quantification methods built from particle integration
methods and exact confidence, all for efficient reliability analysis in discrete spaces. This paper tests the
performance of these algorithms for static network reliability assessment. In particular, we compare
these methods for optimal power flow problems in various IEEE benchmark models. Overall, the
cross-entropy-based method outperforms the other methods in all benchmark models except the largest
IEEE 300, while the adaptive effort subset simulation and particle integration methods are more suitable
for handling high-dimensional problems. By building up the benchmark models, we provide unified
examples for comparing different emerging methods in static network reliability assessment and also to
support improvement or combination of these methods.

1. INTRODUCTION

In network reliability assessment, one fundamen-
tal problem is to compute or estimate the failure

probability p f , the probability that the system per-
formance is less or equal than a specified thresh-
old. The system performance can be described by a
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limit state function (LSF) g(·), with failure defined
as F = {g(X) ≤ 0}. In particular, let X describe
the state of network components, whose probability
mass function (PMF) is pX(x),x ∈ ΩX , and let
I{·} denote the indicator function that takes value
one when the statement inside the braces is true and
zero otherwise. The failure probability can then be
written as

p f , EX [I{g(X)6 0}]
= ∑
x∈ΩX

I{g(x)6 0}pX(x). (1)

When quantifying the reliability of a power system,
X can represent the damage state of transmission
lines and/or connecting buses, and the system per-
formance can be either connectivity or power flow.
In such settings, X usually contains discrete ran-
dom variables, which can result in a LSF with dis-
continuous distribution as depicted in Figure 2.

A set of efficient non-sampling methodologies
are applicable (Li and He, 2002; Hardy et al.,
2007; Paredes et al., 2019), but many of them
rely on specific assumptions such as binary state,
independent components, perfect nodes, coherent
systems, etc., that limit their generality. Other
popular non-sampling-based methods such as the
matrix-based system reliability assessment (Byun
and Song, 2021) are restricted to small or moder-
ate number of components.

Sampling-based methods, including crude Monte
Carlo simulation (MCS) (Zio, 2013) and its dif-
ferent variants, trade efficiency, accuracy for their
wide applicability. These methods are often non-
intrusive and treat the network model as a black
box, which facilitates using advanced network
models in analysis. Nevertheless, the accuracy of
these methods clearly depends on the number of
samples and also the problems at hand, which high-
lights the importance of testing different emerging
algorithms in a unified benchmark.

For rare event estimation, crude MCS is infea-
sible when the limit state function is expensive to
compute, and hence, advanced variance reduction
techniques or meta models have been proposed.
These techniques include the standard subset sim-
ulation (SuS) (Zio and Pedroni, 2008; Zuev et al.,

2015; Jensen and Jerez, 2018), various creation pro-
cess embedded methods (Hui et al., 2005; Botev
et al., 2013; Cancela et al., 2019), and actively
trained meta models (Cadini et al., 2017; Dehghani
et al., 2021).

Recently, Chan et al. (2022a,b,c) generalized two
widely used structural reliability algorithms, the
standard SuS method (Au and Beck, 2001) and im-
proved cross entropy (iCE) method (Papaioannou
et al., 2019), for sampling efficiently in discrete
space. Concurrently, Paredes et al. (2019, 2022)
built upon particle integration methods (PIMs) (Del
Moral, 2013) and Gamma Bernoulli approximation
scheme (GBAS) (Huber, 2017) for a priori account-
able estimates.

The present paper focuses on testing the perfor-
mance of these algorithms for rare event estimation
in static networks. In particular, we consider the ap-
plication to the optimal direct current (DC) power
flow of IEEE benchmark models, which is used in
reliability-based design, as well as in contingency
analyses.

The remainder of the paper is organized as fol-
lows. A brief introduction of the optimal power
flow problem is given in Section 2. In Section 3,
we introduce the methodologies employed in this
paper. A comparative study is then conducted in
Section 4.

2. OPTIMAL POWER FLOW PROBLEM
The power flow in power transmission networks

is driven by Kirchhoff’s law and various operation
strategies. While alternating current (AC) models
can more accurately represent the power flow, their
solution is computationally challenging due to the
need for iterative solves and they require a num-
ber of inputs that are not generally available when
doing the reliability analysis. For this reason, we
use direct current (DC) power flow models, which
approximate the flow through solving a linear equa-
tion set that is absolutely convergent, in which the
net reactive power injection Qi and voltage magni-
tude Vi at each bus are neglected. The results are
less accurate than those of AC for transient analy-
ses, but adequate for system reliability. In addition,
instead of modelling cascading failures, we focus
on the standard DC optimal power flow (DC-OPF)
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problems, where we compute the optimal power
operation strategy that avoids network component
failure and at the same time minimizes a specified
cost function C (·).

Specifically, let η , {Pi,θi}nb
i=1 collect the volt-

age angle θi and net active power injection Pi at
each of the nb buses, so as to formulate the stan-
dard DC-OPF as follows:

min
η

C (η) (2)

s.t.G (η) = 0

H (η)6 0

η(min) 6 η 6 η(max)

where equality constraints in G (η) = 0 represent
the active power balance equations, and inequal-
ity constraints in H (η)6 0 result from the branch
flow limits, i.e., the power flow over any branch is
always below its capacity. The limits η(min) 6 η 6
η(max) include an equality constraint on the voltage
angle of the reference bus θ (re f ) and lower and up-
per bound for other variables in η. If a linear cost
function is chosen the optimization problem is lin-
ear and hence can be efficiently solved by various
linear programming solvers. To this end, a posi-
tive constant cost c is associated to each unit of the
power loss, and the cost function equals the con-
stant c multiplied by the total power loss lp(η), i.e.,

C (η), c · lp(η) = c ·

(
P(dem)− ∑

i∈Γg

Pi

)
, (3)

where the constant P(dem) represents the total power
demand, and Γg collects the index of all generator
buses.

3. BRIEF SUMMARY OF THE ADAPTIVE
MONTE CARLO METHODS

In this subsection, we give a brief introduction of
the methods investigated in the comparative study.

3.1. Particle integration methods
Particle Integration Methods (PIMs) consist of

sequential systems of samples, or particles, for ap-
proximating intractable integrals, such as the sys-
tem failure probability in Eq. (1). Standard SuS

can be regarded as one of these (interacting) par-
ticle systems (Del Moral, 2013), where the failure
probability is represented as a sequence of products
p f = p0 p1 · · · pk, with the common choice of a fixed
probability p0 = pi, for all i < k. The main ingre-
dients of a PIM are: 1) an initial distribution, i.e.,
the probability distribution pX of the input random
vector X ; 2) a sequence of probability kernels, or
MCMC samplers; and 3) a score function (or im-
portance function) that is intimately related to the
LSF. Typically, PIMs can be grouped as interacting
(or adaptive-levels) methods and non-interacting
(or fixed-levels) methods. Interacting methods can
adaptively construct the sequence of products rep-
resentation of the failure probability but they can be
heavily biased, especially when the LSF presents
discontinuities. In contrast, non-interacting particle
methods are guaranteed to be consistent and unbi-
ased estimators of the true failure probability; how-
ever, they assume the sequence of products repre-
sentation to be known. Naturally, as suggested by
Botev and Kroese (2012), one can combine the ap-
proaches as a two-step meta-algorithm where the
interacting PIM (iPIM) is run first to learn the se-
quence of products, and then the non-interacting
PIM is run second using the sequence of products
and as an unbiased and consistent estimator of the
true failure probability. We adopt the iPIM in Algo-
rithm 2 of Paredes et al. (2022), which is a biased
estimator similar to SuS. After this, we use the an-
nealed PIM (aPIM), which is an unbiased estimator
that takes the form of

p̂(aPIMs)
f =

(
1
p0

)k−1

|Xk|, (4)

where Xk is the set of particles in the last level; see
Algorithm 1 of (Paredes et al., 2022) for implemen-
tation details. Under certain conditions, the authors
proposed an optimal tuning of such meta-algorithm
by setting p0 = 0.2032 and showing that popu-
lar MCMC samplers such as the preconditioned
Crank-Nicolson and modified Metropolis-Hastings
algorithms can scale well in high-dimensional
problems with tens of thousands of random vari-
ables (Paredes et al., 2022).
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3.2. Adaptive effort subset simulation method
Au and Wang (2014) identify issues associated

with employing the standard SuS for LSFs with
a discrete cumulative distribution function (CDF),
where a fixed intermediate failure probability p0
can lead to an ambiguous definition of the inter-
mediate failure domains and hence inaccurate re-
sults. Chan et al. (2022a) address the problem
in the context of network reliability assessment
and propose the adaptive effort SuS (aE-SuS) al-
gorithm that tackles this issue through adaptively
choosing the intermediate failure probability p0
and the number of samples per level N. aE-SuS
can be combined with any Markov chain Monte
Carlo (MCMC) algorithm, e.g., the adaptive sam-
pling algorithm (essentially an adaptive variant of
the preconditioned Crank-Nicolson algorithm (Pa-
paioannou et al., 2015)), ideally suited for high-
dimensional inputs, an independent Metropolis-
Hasting algorithm that efficiently samples in low-
dimensional discrete spaces (Chan et al., 2022a), or
a Gibbs sampler for performing the reliability anal-
ysis conditional on data (Zwirglmaier et al., 2023).
The algorithm starts with an initial choice of p0 and
N so that at least N · p0 · tol seeds (or failure sam-
ples) are obtained at each level, where tol is a pre-
scribed hyperparameter. This leads to an adaptive
estimate of the intermediate failure probabilities in
terms of the failure samples and total number of
samples at the respective level.

When the intermediate level and the MCMC
chain length is predefined i.e., independent of the
sampling process, SuS corresponds to the fixed ef-
fort generalized splitting method and is theoreti-
cally unbiased (Botev and Kroese, 2012). Although
this does not hold for aE-SuS, we still find in prac-
tice that the bias is minor compared to the variance
of the p f estimator. However, the performance of
the algorithm heavily depends on the choice of the
MCMC algorithm. If an inappropriate MCMC is
selected, the final estimator is highly skewed and
estimating the mean and the variance of a highly
skewed distribution is challenging.

3.3. Bayesian improved cross entropy method
The cross entropy method is an adaptive im-

portance sampling (IS) method for rare event es-

timation. The method determines the IS distri-
bution chosen adaptively through successively ap-
proximating a sequence of intermediate target dis-
tributions that gradually approaches the optimal IS
distribution p∗(·) ∝ pX(·)I{g(·)6 0}.

There are different ways of designing the in-
termediate target distributions. Our approach is
provided by the iCE method (Papaioannou et al.,
2019), an improved version of the standard cross
entropy method (Rubinstein, 1997). iCE defines the
sequence by smoothing the indicator function I{·}
in p∗(·) via the standard normal CDF Φ(·), i.e.,

p(t)X (·) ∝ pX(·)Φ
(
−g(·)

σ (t)

)
, t = 1, ...,T (5)

where σ (t) is the scaling parameter.
Given a parametric family h(·;v), the iCE

method iteratively determines the distribution in
h(·;v), or equivalently the parameter vector v,
through minimizing an estimate of its Kull-
back–Leibler divergence from p(t)(·). This leads to
the successive solution of the following optimiza-
tion problem:

v̂(t) = argmax
v

N

∑
k=1

W (t)
k ln(h(xk;v) (6)

W (t)
k ,

pX(xk)Φ
(
−g(xk)

σ (t)

)
h(xk; v̂(t−1))

, xk ∼ h(·; v̂(t−1))

with h(x; v̂(0)) = pX(x).
σ (t) is chosen adaptively such that the effective

sample size of the weighted data {xk,W
(t)
k }

N
k=1 is

approximately equal at each level. One can prove
that σ (t) decreases monotonically when the input
distribution pX(·) is discrete and the intermedi-
ate target distributions p(t)X (·), t = 1, ...,T can be
perfectly restored from the parametric family, i.e.,
h(·; v̂(t)) = p(t)X (·), t = 1, ...,T (Chan et al., 2022c).

Eq. (6) indicates that v̂(t) is the weighted maxi-
mum likelihood estimation of v given the data set
{xk,W

(t)
k }

N
k=1. Hence, v̂(t) may suffer from over-

fitting when the sample size N is small. Chan
et al. (2022b) circumvent this issue through intro-
ducing Bayesian statistics in iCE and propose the
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Bayesian iCE (BiCE) method. Specifically for net-
work reliability assessment, they introduce a sym-
metric Dirichlet prior for the independent categor-
ical distribution and substitute the weighted maxi-
mum likelihood estimation v̂(t) with the weighted
posterior predictive estimate, or weighted maxi-
mum a posteriori estimate. To further consider
the dependence among network components, Chan
et al. (2023) employ a more flexible categorical
mixture, where the weighted maximum a posteri-
ori can be efficiently approximated through a gen-
eralized expectation-maximization algorithm. The
BiCE method is proved to be theoretical unbiased.

In addition to the parameters required by the
standard iCE (δtar and N), BiCE introduces another
parameter b that accounts for the ’strength’ of the
prior. In addition, the number of clusters in the
mixture, K, should also be chosen in advance if the
categorical mixture model is employed.

4. A COMPARATIVE STUDY
The methodologies introduced in Section 3 are

tested for solving the DC-OPF problem in 5 IEEE
benchmark models by using MATPOWER v7.1
(Zimmerman et al., 2010).

The objective is to estimate the probability that
the percentage blackout size, that is the percent-
age of load shed by DC-OPF, is below a specified
threshold thr. Note that the optimization problem
in Eq.(2) with cost function in Eq.(3) equivalently
quantifies the minimum power loss l(min)

p (x) asso-
ciated with the state of network components x, and
the percentage blackout size of the network PBS(x)
can be calculated as:

PBS(x),
l(min)
p (x)

P(dem)
·100. (7)

For each of the generator buses, we consider
4 damage states, namely negligible, minor, ma-
jor and complete damage, which correspond to
0%,20%,60% and 100% reduction of the power
production, respectively. The remaining non-
generator buses and all transmission lines have two
damage states, either safe or failure.

We estimate the true failure probability p f us-
ing a rigorous (ε,δ )-approximation method, i.e., a

randomized approximation that has relative error at
most ε with probability at least 1− δ , where both
parameters ε,δ ∈ (0,1) are chosen by the user. For
example, when p f = 10−4 and a user selects ε =
5% and δ = 1%, an (ε,δ )-approximation returns a
sample value p̄ f in the range [0.95× 10−4,1.05×
10−4] with probability 99%. In this paper, we
use the GBAS, an efficient (ε,δ )-approximation
method introduced by Huber (2017), as the base-
line for comparison and select ε = 5% and δ = 1%.
In the GBAS, for the chosen values of ε and δ , the
sample size is a random variable with a mean value
of roughly 2662/p f . The results along with the de-
tailed problem settings are reported for every net-
work case in Table 1. In addition, the distribution
of different network components is summarized in
Table 2.

Table 1: Benchmark settings

# nodes # lines LSF(g(x)) p̄ f (×10−4)
IEEE 14 14 20 40−PBS(x) 6.4
IEEE 30 30 41 29−PBS(x) 6.9
IEEE 57 57 80 40−PBS(x) 7.4
IEEE 118 118 186 10−PBS(x) 7.0
IEEE 300 300 411 12.5−PBS(x) 6.1

Table 2: Distribution of network components

type

prob. state
complete major minor negligible

generator 0.01 0.19 0.3 0.5
non-generator 0.01 / / 0.99
trans. line 0.01 / / 0.99

We compare different methods by their relative
efficiency with respect to the crude MCS. The con-
cept is borrowed from statistics and the relative ef-
ficiency is defined as

relEff(p̂ f ),
p f · (1− p f )

MSE(p̂ f )×Cost(p̂ f )
, (8)

where MSE(p̂ f ) represents the mean square error
of the failure probability estimator p̂ f , and the cost
of an algorithm is measured by the number of eval-
uations of the LSF. The relative efficiency of crude
MCS is equal to one; the larger the relative effi-
ciency of an estimator, the more efficient it is rela-
tive to MCS.

5



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

For aE-SuS, we employ the adaptive conditional
sampler and set N = 2,000, p0 = 0.1, tol = 0.8. For
BiCE, we use N = 2,000,δtar = 1.5,b = 10 and K
equals either 1 or 10. For PIMs, we select N =
2,000, p0 = 0.25, adopt the preconditioned Crank-
Nicolson method as the MCMC sampler, and use
the score function thr/PBS(x). One single run of
the iPIM is employed as the pilot run for fixing the
intermediate levels in all 200 repetitions of aPIMs.

We report the relative efficiency computed from
200 independent runs of aE-SuS, BiCE, iPIM and
aPIM in Table 3. Note that for unbiased estimators,
such as aPIM and BiCE, the average values of the
200 repetitions can be used to improve the conver-
gence of estimates to the true probability of failure.
The boxplot of the failure probabilities by the four
algorithms is also depicted in Figure 1.

Table 3: Relative efficiency of different sampling-based
methods

aE-SuS BiCE(K=1) BiCE(K=10) iPIM aPIM
IEEE 14 1.71 2.29 4.29 0.71 0.97
IEEE 30 1.82 3.26 4.05 0.79 0.94
IEEE 57 2.00 18.46 18.51 1.48 1.69
IEEE 118 1.99 5.52 2.41 1.87 1.93
IEEE 300 1.44 0.67 0.84 1.39 1.48

We can see that the BiCE method outperforms
aE-SuS with a higher relative efficiency in all IEEE
benchmarks except the IEEE 300, which is due
to the correlation among samples generated in aE-
SuS. For the IEEE 300 benchmark, there are in to-
tal 711 components, and performing BiCE in such
high dimensions, just like other adaptive IS meth-
ods, often leads to the degeneration of the weights
(Kroese et al., 2013) and hence to a poor result. The
efficiency of the BiCE method is even lower than
that of the crude MCS in IEEE 300.

In contrast, aE-SuS is more robust since the
adaptive conditional sampler employed in aE-SuS
is specially designed for tackling high-dimensional
problems (Papaioannou et al., 2015). The mean
value of the empirical CDF of g(X) obtained with
aE-SuS, together with the 10 and 90 percentile, is
shown in Figure 2, which agrees well with that of
crude MCS with 106 samples. In addition, the sim-
ulation results demonstrate that a large number of
clusters K in the categorical mixture leads to in-

creased performance in low-dimensional systems
but results in a less efficient estimator than simply
employing a single categorical distribution in BiCE
as the dimension increases.

PIMs did not lead to a significant variance reduc-
tion; however, their performance tends to be better
than MCS in larger benchmarks IEEE 57, IEEE 118
and IEEE 300. We attribute this to the smaller jump
discontinuities in the larger networks (see Figure 2
introduced next), which allows for a proper repre-
sentation of the failure probability as sequence of
products p0 p1 · · · pk. Also, for the larger bench-
marks, the unbiased estimator, aPIM, was more ef-
ficient than the biased estimator, iPIM, and is the
most efficient in the largest benchmark, the IEEE
300.

Figure 1: Performance of different sampling-based
methods (the red solid line represents the GBAS esti-
mate for each benchmark)

5. CONCLUSIONS
We test the performance of four recently devel-

oped sampling-based methods, namely the adap-
tive effort subset simulation (aE-SuS), Bayesian
improved cross entropy method (BiCE) and par-
ticle integration methods (PIMs), either interact-
ing or annealed, for rare event estimation in static
networks. In particular, we compare these meth-
ods for optimal direct current optimal power flow
problems in different IEEE benchmark models,
whose dimension ranges from dozens to several
hundreds. The aE-SuS method shows an efficiency
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Figure 2: Empirical CDF from the aE-SuS method

that is higher than crude Monte Carlo simulation
in all benchmarks. The BiCE method is the most
efficient method in the benchmarks with low to
moderate dimensions but performs poorly in the
IEEE300 benchmark due to the degeneration of
the IS weights. Here, its efficiency is less than
that of crude Monte Carlo simulation. PIMs per-
form poorly in the low-dimensional benchmarks,
but performs well in the large-scale applications
where its performance is comparable to SuS. Over-
all, while BiCE appears to be the method of choice
for smaller systems and provides a significant im-
provement over crude MCS, there is still room for
more efficient methods to handle large-dimensional
problem settings. SuS and PIM are both suitable
candidates that should be further enhanced to pro-
vide improved efficiency in these cases.

For future work, note that the PIMs in this ar-
ticle used the same conditional failure probability
value, p0, for all levels. This is the optimal strategy
for continuous score functions and failure probabil-

ities that can be represented as p f = (p0)
k; how-

ever, for discontinuous score functions, such as the
ones in this paper, a promising avenue would be to
integrate the adaptive SuS ideas from Chan et al.
(2022a) within PIMs. Additional future directions
include the make-up of entrance states, the variance
reduction possibilities of PIMs with cross entropy,
etc.
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