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ABSTRACT: This paper develops a novel method for determining a closed-form non-stationary
stochastic response of linear systems with fractional derivative order 1/2 and subjected to stationary
stochastic excitation. This is achieved by relying on the Laplace transform-based method for the linear
fractional system, where the closed-form solution of the pulse response function is obtained by the
eigenvector expansion of the state-space equation of the linear system with fractional derivative order
1/2. Pertinent Monte Carlo simulations demonstrate the applicability and accuracy of the proposed
method.

1. INTRODUCTION

Fractional order derivative can be regarded as an
extension of the traditional integer-order derivatives
by allowing derivative operations of arbitrary real
or complex order [1]. The fractional order deriva-
tive concept has a history of over 300 years, and it
can be traced back to the idea during the correspon-
dence of Leibniz with L’Hospital in 1695 [2]. Dur-
ing the first century after its introduction, the frac-
tional derivative was considered only an interest-
ing topic without rigorous theoretical development
before its first mathematical definition by Liouville
in 1832. It was not until the middle of the twenti-
eth century when Gemant [3] and Bosworth [4] first
proposed using the fractional derivative on model-
ing viscoelastic materials the fractional derivative
began to be widely used by scientists and engi-
neers. In recent decades, the fractional derivative
has been applied in many science and engineer-
ing fields, such as the modeling of materials [5],
physics [6], civil engineering [7], applied mathe-
matics [8], bio-engineering [9] and so forth.

By allowing the derivative of arbitrary order,
fractional models exhibit distinct advantages in
modeling many natural and man-made phenomena
[10]. Consequently, the difficulty of the response
determination is increased due to the complicated
definition and system memorability [1]. Therefore,
developing analytical/numerical methods for frac-
tional systems under various excitation conditions
has become an increasingly important and active re-
search field [11]. Since fractional linear systems
satisfy the superposition principle, a natural idea
is the Duhamel integral to compute the determinis-
tic/stochastic response, which requires the impulse
response function (IRF) of the system. Therefore, a
popular strategy has been attempting to obtain the
fractional oscillator’s IRF first [12]. Specifically,
using the inverse Fourier transform of the frequency
response function, Gaul et al. [13] gave the IRF
of a linear system with fractional order α = 1/2.
Suarez and Shokooh [14] applied the Laplace do-
main method to obtain an analytical IRF of a frac-
tional oscillator with fractional order α = 1/2 and
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α = 1/3. By applying the generalized Mittag-
Leffler functions, Achar et al. [15] expressed the
IRF as a summation of infinity terms. Most re-
cently, Cao et al. [16] proposed the pole-residue
form solution for fractional systems with arbitrary
order and computed the system deterministic re-
sponse under arbitrary excitation. From the pre-
ceding literature review, it may be argued that, un-
like the integer-order linear dynamic systems with
a simple exact analytic-form solution, most of the
IRFs of fractional systems obtained so far are in
the forms of numerical, semi-numerical, or infinite
series. Note for a particular case with fractional
order 1/2, a simple analytical solution for the IRF
was developed based on the eigenvector expansion
of the state-space equation of the linear fractional
systems[17].

Furthermore, considering the uncertainties asso-
ciated with external excitations leads to the prob-
lem of determining the stochastic response of frac-
tional linear/nonlinear systems under stochastic
loads [18]. In the past few years, a great amount
of work has been focused on this topic and dedi-
cated to treating complicated engineering problems
such as the stationary response of a hysteretic sys-
tem with fractional derivative element[19], the non-
stationary response of a single-degree-of-freedom
(SDOF) [18, 20] and multi-degree-of-freedom
(MDOF) nonlinear systems[21], and fractional or-
der nonlinear systems subjected combined deter-
ministic and stochastic excitations [11]. Note
that most of these works are numerical or semi-
analytical methods and rely on special assumptions
to obtain approximate solutions. The analytical
method for the close-form response is rare even
for a very simple fractional system (a SDOF linear
fractional system for example) [1, 22]. Recently,
Cao el al. [23] proposed a Laplace domain method
for the non-stationary response of fractional oscilla-
tors to evolutionary stochastic excitation, which can
be regarded as an extension of the method proposed
by Hu et al. [24] to fractional systems. This ap-
proach requires the IRF of the fractional order sys-
tem, in which the inverse Fourier transform of the
frequency response function and Prony’s method
are utilized for calculating the pole-residue form of

IRF. Therefore, the stochastic response obtained is
approximate, and the accuracy of the method de-
pends on the numerical method.

This research proposed a novel method to com-
pute the closed-form non-stationary solution for de-
termining the stochastic response of linear systems
endowed with fractional derivative order 1/2 and
subjected to stationary stochastic excitation. Com-
pared to the work of Cao et al. [23], an analytical
expression of IRF with closed-form Laplace trans-
form obtained by the eigenvector expansion method
[17] is introduced. By doing so, the stochastic non-
stationary response of the considered system can be
derived in a closed form. Pertinent Monte Carlo
simulations demonstrate the applicability and accu-
racy of the proposed method.

2. MATHEMATICAL FORMULATION
The governing equation of motion of an SDOF

linear system endowed with fractional derivative el-
ements and subject to stochastic excitation is given
by

mẍ(t)+ cDαx(t)+ kx(t) = F (t) , (1)

where m, c and k are mass, damping and stiffness
coefficient, respectively; Dα represents the frac-
tional derivative based on the Riemann-Liouville
definition:

Dαx(t) =
1

Γ(1−α)

d
dt

∫ t

0

x(t − τ)
τα dτ 0 < α < 1,

(2)
where α is the factional order; Γ(·) is the Gamma
function; F(t) is a zero mean stationary Gaussian
stochastic excitation with the power spectrum den-
sity (PSD) SF (ω) and correlation function (CF)
RF (τ). The following Fourier transform pair relate
the PSD and CF

SF (ω) =
1

2π

∫ ∞

−∞
RF (τ)e−iωτdτ, (3)

RF (τ) =
∫ ∞

−∞
SF (ω)e−iωτdω. (4)

The random response x(t) is a zero mean
stochastic process, since the excitation of the linear
system is zero mean. Assume the system is initially
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at rest, that is, ẋ(0) = 0, x(0) = 0, the correlation
function of the response can be written as [24]

Rx (t1, t2) = E [X (t1)X (t2)]

=
∫ t1

0

∫ t2

0
h(t1 − τ1)h(t2 − τ2)RF (τ1,τ2)dτ1dτ2,

(5)

where h(t) is the IRF of the fractional system. Eq.
(5) illustrates the IRF plays a crucial role in the
stochastic response determination. However, the
closed-form solution of h(t) can not determined as
a simple analytical function for a linear system with
arbitrary fractional derivative order. Therefore, it is
unlikely to obtain an explicit analytical solution for
the response. It is worthy noting that for some spe-
cial cases, for example, when the fractional order
α is a rational number, the closed-from solution of
the IRF can be determined using eigenvector expan-
sion method [17]. For simplicity and without loss
of generality, a special fractional order α = 1/2 is
considered in this study for illustration.

3. CLOSED-FORM SOLUTION OF IRF
WHEN α = 1/2

The IRF is the response of the system subjected
to impulse excitation. That is

ẍ(t)+2ξ ω3/2
n D1/2x(t)+ω2

n x(t) = δ (t) , (6)

where
2ξ ω3/2

n =
c
m
, ω2

n =
k
m
. (7)

Let

z(t) = [z1 (t) ,z2 (t) ,z3 (t) ,z4 (t)]
T

=
[
D3/2x(t) , ẋ(t) ,D1/2x(t) ,x(t)

]T
,

(8)

the equation of motion can be transform into the
fractional-order state-space equation as

D1/2z(t) = Gz(t)+Q(t) , (9)

where

G =


0 0 −a −b
1 0 0 0
0 1 0 0
0 0 1 0

 , Q =


0
0
0

δ (t)

 , (10)

with a = 2ξ ω3/2
n , b = ω2

n . A solution based on
the eigenvector expansion can be used for solving
Eq. (9). In this regard, consider

G{Φ} j = λ j{Φ} j, (11)

where, λ j and {Φ} j, j = 1,2,3,4, are the eigenval-
ues and eigenvectors of G, respectively; See also
Ref. [17] for details of determining λ j and {Φ} j.
Specifically,

λ1 = λ ∗
2 = p+ iq,

λ3 =−p+ is,
λ4 =−p− is.

(12)

where ∗ means taking the complex conjugate, and

p =
√

ωnκ,

q =

√
ωn

(
κ + ξ

2
√

κ

)
, s =

√
ωn

(
κ − ξ

2
√

κ

)
,

κ = 21/3

4

[(
ξ 2 +

√
ξ 4 − 16

27

)1/3

+

(
ξ 2 −

√
ξ 4 − 16

27

)1/3
]
.

(13)
{Φ} j =

[
λ 3

j λ 2
j λ j 1

]Tα j, (14)

with α j = 1/
√

4λ 3
j +a.

The eigenvectors satisfy the following orthogo-
nality conditions{

{Φ}T
i G{Φ} j = 0, i ̸= j,

{Φ}T
i G{Φ} j = λ j, i = j.

(15)

Introducing a new variable y = [y1,y2,y3,y4]
T and

letting
z = [ΦΦΦ]y, (16)

the system displacement x(t) can be written as

x(t) =
4

∑
j=1

Φ4 jy j (t). (17)

Substituting Eq. (16) into Eq. (9), the state space
equation becomes

D1/2 [ΦΦΦ]y = G [ΦΦΦ]y+Q(t) . (18)
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Pre-multiplying Eq. (18) by {Φ}T
j and considering

Eq. (15) lead to four decoupled differential equa-
tions

D1/2y j (t)−λ jy j (t) = Φ4 jδ (t) , (19)

where [17]

Φ4 j =
1√

4λ 3
j +2ξ ω3/2

n

. (20)

The closed-form solution of Eq. (19) can be ob-
tained by the Laplace transform method. This is
achieved by relying on the Laplace transom prop-
erty of the fractional derivative elements, i.e.,

L [Dαx(t)] = sαX (s)−C, (21)

where X (s) is the Laplace transform of x(t), and C
is a constant defined as

C = Dα−1x(t)
∣∣
t=0. (22)

Furthermore, the Laplace transform of the impulse
function is

L [δ (t)] = 1. (23)

Taking Laplace transform of Eq. (19) and using
Eq. (23) and Eqs. (21)-(22) for α = 1/2, lead to

Yj (s) =
Φ4 j +R j√

s−λ j
, (24)

where Yj (s) is the Laplace transform of y j (t); R j is
a constant defined as

R j = D−1/2y j (t)
∣∣∣
t=0

. (25)

Taking inverse Laplace transform of Eq. (24) yields

y j (t) =
(
Φ4 j +R j

)
L−1

(
1√

s−λ j

)
. (26)

The inverse Laplace transform of
(
1/

√
s−λ j

)
can

be determined using residue theory and contour in-
tegration:

L−1
[

1√
s−λ j

]
=

1√
πt

+λ je
λ 2

j t [1+ erf
(
λ j
√

t
)]
,

(27)

where erf(·) is the error function, defined as

erf(x) =
2√
π

∫ x

0
e−t2

dt. (28)

Substituting Eqs. (26) - (28) into Eq. (17) leads to
the closed-form response of the considered system
under impulse excitation, i. e. the IRF

h(t) = x(t) =
1√
πt

4

∑
j=1

(
Φ2

4 j +Φ4 jR j
)

+
4

∑
j=1

(
λ jΦ2

4 jg j (t)+λ jΦ4 jg j (t)R j
)
,

(29)

where

g j (t) = eλ 2
j t [1+ erf

(
λ j
√

t
)]
. (30)

If the system is initially at rest, the following addi-
tional conditions should be satisfied

4

∑
j=1

Φ2
4 j = 0,

4

∑
j=1

λ jΦ2
4 j = 0,

4

∑
j=1

λ jΦ2
4 jR j = 0.

(31)
Finally, substituting Eq. (31) into Eq. (29) and re-
placing the eigenvector Φ4 j from Eq. (20), yields
the closed-form solution for the IRF of the frac-
tional system with fractional order α = 1/2. That
is

h(t) =
4

∑
j=1

λ j/2

2λ 3
j +ξ ω3/2

n

g j (t). (32)

The response in the Laplace domain can be writ-
ten as

x(s) = h(s) f (s) , (33)

where x(s), h(s) and f (s) are the Laplace trans-
forms of x(t), h(t) and f (t), respectively. Accord-
ing to Eq. (32) and Eq. (30)

h(s) =
4

∑
j=1

a jg j (s) , (34)

where

a j =
λ j/2

2λ 3
j +ξ ω3/2

n

, g j (s) =
1

s−λ 2
j
+

λ j
√

s
(

s−λ 2
j

) .
(35)
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4. LAPLACE DOMAIN METHOD FOR
THE RESPONSE

With the fully understanding of the IRF, the
stochastic response of the system can be further in-
vestigated. Substituting Eq. (4) into Eq. (5), yields

Rx (t1, t2) =
∫ t1

0

∫ t2

0
h(t1 − τ1)h(t2 − τ2)

×
[∫ ∞

−∞
SF (ω)eiω(τ1−τ2)dω

]
dτ1dτ2.

(36)

Regrouping Eq. (36) to separate variables τ1 and τ2,
leads to the following equation

Rx (t1, t2) =
∫ ∞

−∞

[∫ t1

0
h(t1 − τ1)eiωτ1dτ1

]
×
[∫ t2

0
h(t2 − τ2)e−iωτ2dτ2

]
·SF (ω)dω.

(37)

When t1 = t2, Eq. (37) reduces to the equation of
the mean square value (MSV) of the displacement
as follows

E
[
X2(t)

]
=

∫ ∞

−∞

[∫ t

0
h(t − τ1)eiωτ1dτ1

]
×
[∫ t

0
h(t − τ2)e−iωτ2dτ2

]
·SF (ω)dω.

(38)

Introducing new variables

p1 (t,ω) =
∫ t

0
h(t − τ)eiωτdτ, (39)

p2 (t,ω) =
∫ t

0
h(t − τ)e−iωτdτ = p∗1 (t,ω) . (40)

Substituting Eq. (39) - (40) into Eq. (38), leads to

E
[
X(t)2

]
=

∫ ∞

−∞
Θ(t,ω)dω, (41)

where

Θ(t,ω) = |p1 (t,ω)|2 SF (ω) , (42)

is the non-stationary power spectrum density of the
response. In the ensuing analysis, p1 (t,ω) is de-
rived in a closed form via the Laplace transform.

Taking Laplace transform of Eq. (39) and consid-
ering the closed-form solution of h(s) shown in Eq.
(34) lead to the Laplace transform of p1 (t,ω) in the
form

p1 (s,ω) =
4

∑
j=1

a j

 1
s−λ 2

j
+

λ j
√

s
(

s−λ 2
j

)
(

1
s− iω

)
,

(43)
Further, Eqs. (43) can be cast into

p1 (s,ω) =
4

∑
j=1

a jA j

[
1

s−λ 2
j
− 1

s− iω

+λ j
1

√
s
(

s−λ 2
j

) −λ j
1√

s(s− iω)

 ,

(44)

where A j = 1/
(
−iω +λ 2

j

)
.

Eq. (44) can be cast into a compact form as

p1 (t,ω) =
4

∑
j=1

4

∑
k=1

D jk, (45)

where

D j1 = a jA je
λ 2

j t ,
D j2 =−a jA jeiωt ,

D j3 = a jA je
λ 2

j terf
(√

λ 2
j t
)
,

D j4 =−a jA jλ j
1√
iω eiωterf

(√
iωt

)
.

(46)

Finally, substituting Eq. (45) into Eq. (42) leads
to the non-stationary power spectrum density of the
response

Θ(t,ω) =

∣∣∣∣∣ 4

∑
j=1

4

∑
k=1

D jk

∣∣∣∣∣
2

·SF (ω) . (47)

Integrating Eq. (47) with respect to ω , yields the
mean square value of the displacement of the con-
sidered system subjected to stationary stochastic
excitation.

5. NUMERICAL EXAMPLES
5.1. Deterministic response

Select the system parameters m = 1,c = 0.1,k =
1,α = 0.5. Calculate the response of the system
subjected to a sample of white noise with SF(ω) =
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0.01 via the Duhamel integral method (DIM) and
the Newmark-β method. The deterministic re-
sponse of the fractional system is shown in Fig. 1.
Note that the closed-form IRF shown in Eq. (34)
is used for the Duhamel integral result. From Fig.

0 20 40 60 80 100
-3

-2

-1

0

1

2

3
DIM
NMF

Figure 1: The response of the considered system sub-
jected to a white noise

1, it seems that the response obtained by the DIM
agrees with that obtained by the NMF quite well,
proving the accuracy of the closed-form solution of
the IRF.

5.2. Stochastic response
Investigate next the accuracy of the proposed

method (PM) for determining the stochastic re-
sponse of the considered system with typical pa-
rameters. The system parameters are the same as
those used in Section 5.1. White noise with param-
eters SF(ω) = 0.01,SF(ω) = 0.02,SF(ω) = 0.03
are used for the excitation. The response MSVs
of the system subjected to different excitation lev-
els are shown in Fig. 2. The results obtained via
the PM are compared with those estimated by the
Monte Carlo simulation (MCS) over 1,000 sam-
ples. Fig. 2 shows that the responses obtained
by the PM are in perfect agreement with those es-
timated by the MCS, both for the stationary and
non-stationary phases of the response. Due to the
limited number (1,000) of response samples, the
MSC estimation exhibits obvious fluctuation, espe-
cially in the stationary phase. Besides, the fluctua-
tion increases with increasing white noise strength.
Obviously, the PM is computationally efficient for

0 20 40 60 80 100
Time

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2: MSV of the system subjected to white noises
with different PSD strength

only closed-form expressions are used in the cal-
culation. Specifically, 870 seconds are needed for
10,000 times of simulation to obtain a satisfactory
estimation, whereas only 3s for the PM.

Investigate next the accuracy of the proposed
method under different system/excitation parame-
ters. For the convenience of comparison, define the
time-averaged standard deviation (TASD) of the re-
sponse as

σ̄ =
1
T

∫ T

0

√
E [X2 (t)]dt. (48)

The TASD of the response versus the strength of the
stochastic excitation, the frequency, and the damp-
ing ratio of the system, are shown in Figs. 3-5, re-
spectively. For each considered case, all the other
parameters remain the same as those used in Fig.
2(S0 = 0.01), except for the varying parameter un-
der investigation. The agreement of the relevant re-
sults obtained by the proposed method with the per-
tinent Monte Carlo data suggests the accuracy of
this method for systems with different parameters.

6. CONCLUDING REMARKS
An analytical method has been proposed to

derive a closed-form non-stationary solution for
the stochastic response of linear systems endowed
with 1/2-order fractional elements and subjected
to stationary stochastic excitation. This has been
achieved in two steps. First, the eigenvector expan-
sion of the fractional state-space equation has been
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Figure 3: TASD of the considered system subjected
to white noise stochastic excitation with various PSD
strength

0 0.5 1 1.5 2
0

2

4

6

8

10

12

Figure 4: TASD of the considered system with different
values of natural frequency ω

0 0.02 0.04 0.06 0.08 0.1
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1

Figure 5: TASD of the considered system with different
values of damping ratio ξ

applied to obtain the system impulse response func-
tion in a closed form. Next, the derived closed-form

impulse response function and the Laplace trans-
form have been utilized for determining the power
spectral density of the non-stationary response. Nu-
merical examples have shown the accuracy of the
proposed method under different system/excitation
parameters by comparing it to the Monte Carlo sim-
ulation. Besides, the proposed method has been
proven to be computationally efficient due to the
analytical solution. Therefore, the proposed ana-
lytical method may be helpful for the parameter
optimization study of isolated structures with vis-
coelastic bearings. The proposed method can be
further extended to multi-degree-of-freedom sys-
tems and/or subjected to stochastic excitation with
evolutionary power spectrum density. Extensions
to nonlinear fractional systems by applying the sta-
tistical linearization method also merit attention.
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