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ABSTRACT: In stochastic model updating, a probabilistic model is assumed for the model parameters 

and its hyperparameters (e.g., means and variances) are calibrated to minimize the stochastic discrepancy 

between model outputs and measurements. Thus, if the assumption about the probabilistic model is 

inappropriate, it may introduce a bias in the updating results. To avoid such inappropriate assumptions, 

we have recently developed a distribution-free approach that uses the staircase density function (SDF) to 

arbitrarily approximate a wide range of probability distributions. In this study, we aim to extend this 

approach to the calibration of dependent parameters. The dependence structure is represented by several 

types of copulas and the marginal distributions are modeled using the SDFs. An approximate Bayesian 

computation framework is then developed to calibrate the copula parameter as well as the SDF 

hyperparameters. Furthermore, in this framework, the most appropriate copula class is determined in the 

context of Bayesian model class selection. 

1. INTRODUCTION 

Stochastic model updating has attracted 

increasing attention as a fascinating technique to 

mitigate the discrepancy between model outputs 

and experimental measurements, taking into 

account uncertainties in both the modeling and 

measurement processes (Mares et al., 2006). To 

adequately deal with such uncertainties, the 

uncertainty quantification (UQ) metric plays an 

important role in stochastic model updating. 

Among the different types of UQ metrics, the 

Bhattacharyya distance has been shown to be a 

promising choice to quantitatively measure the 

stochastic discrepancy between model outputs 

and measurements (Bi et al., 2019).   

On the other hand, in stochastic model 

updating, it is also important to assume an 

appropriate probabilistic model for the model 

parameters to be calibrated. In this context, the use 

of the staircase density function (SDF) has 

recently been investigated by the first author and 

his co-workers (Kitahara et al., 2022a; Kitahara et 

al., 2022b). The SDF is a discrete probability 

distribution that can arbitrarily approximate a 

wide range of bounded distributions given its four 

hyperparameters, namely the mean, variance, and 

third- and fourth-order central moments (Crespo 

et al., 2018). Kitahara et al. (2022a) have 

developed an approximate Bayesian computation 

(ABC) model updating framework, in which an 

approximate likelihood function is defined using 

the Bhattacharyya distance metric and the model 

parameters are then calibrated by inferring the 

posterior of the SDF hyperparameters.  

While the above updating framework is 

based on the independent assumption among the 

model parameters, Kitahara et al. (2022b) have 

extended it to calibrate the dependent parameters.  
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Table 1: Summary of the copula functions employed in this study. 

Copula Copula function 𝐶(∙; 𝜃) Range of 𝜃 Prior distribution of 𝜃 

Gaussian Φ𝜃(Φ−1(𝑢1), Φ−1(𝑢2)) [−1 1] Truncated standard normal 

Clayton (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)
−

1
𝜃 (0 ∞) Gamma (𝑎 = 2, 𝑏 = 1) 

Frank −
1

𝜃
log [1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
] (−∞ ∞) Gaussian (𝜇 = 0, 𝑚2 = 9) 

Gumbel exp [−((−log𝑢1)𝜃 + (−log𝑢2)𝜃)
1
𝜃] (1 ∞) 

Gamma (𝑎 = 2, 𝑏 = 1) for 

𝜃 − 1 

Note:Φ𝜃 is the bivariate standard normal CDF with the correlation coefficient 𝜃; Φ is the standard 

normal CDF; 𝑎 and 𝑏 are the shape and scale parameters of Gamma distribution. 

 

The dependence structure is characterized by a 

Gaussian copula function and its marginal 

distributions are represented as the SDFs. Thus, 

the correlation matrix in the Gaussian copula 

function is inferred as the posterior together with 

the SDF hyperparameters. 

However, the Gaussian copula can only 

represent Gaussian dependence structures, and it 

may introduce a bias in the model calibration if 

the real dependence structure differs from this 

assumption. Several different types of bivariate 

copulas, such as Gaussian, Clayton, Frank, and 

Gumbel copulas, are commonly used to represent 

different types of dependence structures. In this 

study, we investigate the combination of these 

copulas with the marginal SDFs to calibrate the 

dependent parameters with different dependence 

structures. Furthermore, the most appropriate 

copula class is determined from the available 

measurement data in the context of Bayesian 

model class selection. 

2. THEORIES AND METHODOLOGIES 

2.1. Copula functions 

Let the model parameters 𝒙 = [𝑥1, 𝑥2]  be 

bivariate random variables. According to Sklar’s 

theorem (Haff, 2013), the joint cumulative density 

function (CDF) of 𝒙 is given by: 

𝐹(𝒙) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2); 𝜃) (1) 

where 𝑢𝑖 = 𝐹𝑖(𝑥𝑖) (𝑖 = 1,2) is the marginal CDF 

of 𝑥𝑖 ; 𝐶  is the copula function; 𝜃  is the copula 

parameter describing the dependence structure. 

The copula function is itself a joint CDF on [0 1]2 

with uniform marginal distributions on [0 1]. 
There are many copulas in the literature, 

including the Gaussian, Clayton, Frank, and 

Gumbel copulas. Each copula is characterized by 

its own dependence structure. These four copula 

functions and the ranges of their parameter 𝜃 are 

summarized in Table 1.  

2.2. Staircase density functions 

Let 𝑥𝑖  (𝑖 = 1,2) have the support set [𝑥𝑖, 𝑥𝑖] and 

the prescribed values for the hyperparameters 

𝜽𝑥𝑖
= [𝜇𝑖, 𝑚2𝑖, 𝑚3𝑖 , 𝑚4𝑖], where 𝜇𝑖  is the mean, 

𝑚2𝑖 is the variance, 𝑚3𝑖 is the third-order central 

moment, and 𝑚4𝑖  is the fourth-order central 

moment. Note that, in practice, 𝑚3𝑖  and 𝑚4𝑖 are 

normalized as skewness �̃�3𝑖 = 𝑚3𝑖 𝑚2𝑖
1.5⁄  and the 

kurtosis �̃�4𝑖 = 𝑚4𝑖 𝑚2𝑖
2⁄ , respectively, in model 

updating. Any such variable needs to satisfy the 

feasible conditions 𝑔(𝜽𝑥𝑖
) ≤ 0 given in Crespo et 

al. (2018). The realizations of 𝜽𝑥𝑖
 satisfying these 

conditions constitute the feasible domain Θ𝑖 =

{𝜽𝑥𝑖
: 𝑔(𝜽𝑥𝑖

) ≤ 0}. 

The CDF of 𝑥𝑖 is then given as the SDF: 

𝐹𝑖(𝑥𝑖) = 𝜅 ∑ 𝑙𝑖
𝑗

𝑗

𝑛=1
 ∀𝑥𝑖 ∈ (𝑥𝑖

𝑗
 𝑥𝑖

𝑗+1
],  

∀𝑗 = 1, ⋯ , 𝑛𝑏 

(2) 

where 𝑛𝑏 is the number of bins; 𝑙𝑖
𝑗
 is the density 

height at the 𝑗 th bin; 𝑥𝑖
𝑗

= 𝑥𝑖 + (𝑗 − 1)𝜅  with 
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𝜅 = (𝑥𝑖 − 𝑥𝑖) 𝑛𝑏⁄ . In this study, 𝑛𝑏  is set to be 

𝑛𝑏 = 25. The density heights 𝒍𝑖 are obtained by 

solving the optimization problem: 

 min
𝒍𝑖>0

{𝐽(𝒍𝑖): 𝐀(𝜽𝑥𝑖
, 𝑛𝑏)𝒍𝑖 = 𝒃(𝜽𝑥𝑖

), 𝜽𝑥𝑖
∈ Θ𝑖}  (3) 

where 𝐽  indicates the cost function; 𝐀𝒍𝑖 = 𝒃 are 

moment matching constraints. In this study, the 

cost function is defined based on the principle of 

maximum entropy: 

𝐽(𝒍𝑖) = 𝜅log𝒍𝑖
𝑇𝒍𝑖  (4) 

2.3. Approximate Bayesian computation 

Given the copula class ℳ  from its candidates 

listed in Table 1, ABC (Beaumont, 2019) is used 

to calibrate the model parameters 𝒙 according to 

the well-known Bayes’ theorem: 

𝑃(𝝑|ℳ, 𝐘𝐷) =
ℒ̃(𝐘𝐷|𝝑, ℳ)𝑃(𝝑|ℳ)

𝑃(𝐘𝐷|ℳ)
 (5) 

where 𝑃(𝝑|ℳ)  is the prior distribution of 𝝑 =
[𝜃 𝜽𝑥1

 𝜽𝑥2
] reflecting one’s initial knowledge on 

𝝑; 𝑃(𝝑|ℳ, 𝐘𝐷) is the posterior distribution of 𝝑 

reflecting the posterior state-of-knowledge on 𝝑; 

ℒ̃(𝐘𝐷|𝝑, ℳ) represents the so-called approximate 

likelihood function that serves as the connection 

between the available measurement data 𝐘𝐷  and 

𝝑; 𝑃(𝐘𝐷|ℳ) is the evidence of ℳ ensuring that 

the integral of the posterior distribution equals to 

one. 

In this study, the inference parameters 𝝑 are 

assumed to be independent of each other. The 

prior distribution of the copula parameter 𝜃  is 

defined for each copula function considering its 

range and is summarized in the last column of 

Table 1. In addition, the prior distribution of the 

hyperparameters 𝜽𝑥𝑖
 is assumed to be the uniform 

distribution over the feasible domain Θ𝑖. 

Let 𝐘𝐷 = {𝒚(𝑖); 𝑖 = 1, ⋯ , 𝑁𝐷}  be 𝑁𝐷  sets of 

the measurement quantities 𝒚. The corresponding 

𝑁𝑆 sets of the model outputs can be obtained as 

𝐘𝑆 = {ℎ(𝒙(𝑖)|𝝑, ℳ); 𝑖 = 1, ⋯ , 𝑁𝑆} , where ℎ  is 

the simulator. The Bhattacharyya distance can be 

then defined to measure the stochastic distance 

between 𝐘𝑆 and 𝐘𝐷: 

 𝑑𝐵(𝐘𝑆, 𝐘𝐷) = −log {∑ √𝑃𝑗(𝐘𝑆)𝑃𝑗(𝐘𝐷)𝑁𝑏𝑖𝑛
𝑗=1 }  (6) 

where 𝑁𝑏𝑖𝑛 denotes the total number of bins and 

is set as 𝑁𝑏𝑖𝑛 = 102  in this study; 𝑃𝑗(∙) denotes 

the probability mass function value at the 𝑗th bin. 

Therefore, the approximate likelihood function is 

expressed as: 

ℒ̃(𝐘𝐷|𝝑) ∝ exp {
𝑑𝐵(𝐘𝑆, 𝐘𝐷)2

𝜀2
} (7) 

where 𝜀 is the scaling parameter controlling the 

centralization degree of the posterior distribution 

and is set to be 𝜀 = 0.02 in this study.  

Furthermore, the evidence 𝑃(𝐘𝐷|ℳ) can be 

viewed as the plausibility measure of the copula 

class ℳ given the measurement data 𝐘𝐷. Hence, 

in the context of Bayesian model class selection 

(Beck and Yuen, 2004), the most appropriate 

copula class that best represents 𝐘𝐷  can be 

determined as the one that provides the largest 

evidence value. 

Finally, an analytical solution for the 

posterior distribution in Eq. (5) is generally not 

available and sampling methods are often used to 

estimate it. In this study, the transitional Markov 

chain Monte Carlo (TMCMC) algorithm (Ching 

and Chen, 2007) is used. TMCMC is a class of 

sequential Monte Carlo methods and samples 

from a series of intermediate distributions that 

will progressively converge to the true posterior 

distribution. In addition, the evidence is estimated 

as a byproduct. The reader is referred to Ching and 

Chen (2007) for details on TMCMC. 

3. NUMERICAL EXAMPLES 

3.1. Problem descriptions 

The proposed stochastic updating framework is 

demonstrated using a three degree-of-freedom 

(DOF) spring-mass system shown in Figure 1. 

Three stiffness coefficients 𝑘1 , 𝑘2 , and 𝑘3  are 

assumed as the model parameters to be calibrated 

and the prior knowledge on them is provided in 

Table 2. Here, 𝑘2 follows a Gaussian distribution. 

Its mean and variance are not fully determined but 

fall within given intervals. Meanwhile, 𝑘1 and 𝑘3 
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Table 2: Prior knowledge on the model parameters. 

Parameter Uncertainty characteristics Target values 

Distribution Support set / hyperparameters 

𝑘2 Gaussian 𝜇2 ∈ [3.0, 7.0], 𝑚22 ∈ [0, 0.25] 𝜇2 = 5.0, 𝑚2 = 0.01 

𝑘1, 𝑘3 Unknown, dependent 𝑘1 ∈ [2.5, 5.5], 𝑘3 ∈ [5.0, 7.0] Given in Tables 3 and 4 

𝑘4–𝑘6, 𝑚1–𝑚3 Deterministic – – 

 
Figure 1: 3-DOF spring-mass system.  

 

are dependent of each other within the given 

support sets, but their dependence structure and 

marginal distributions are unknown. Besides, the 

remaining parameters, three stiffness coefficients 

𝑘4 to 𝑘6 and three masses 𝑚1 to 𝑚3, are set to be 

constants with determined values: 𝑘𝑖 = 5.0 N/m 

( 𝑖 = 4, 5, 6 ), 𝑚1 = 0.7  kg, 𝑚2 = 0.5  kg, and 

𝑚3 = 0.3 kg. 

In total, four target joint distributions defined 

by different copulas are considered for 𝑘1 and 𝑘3. 

The target dependence structures and marginal 

distributions are summarized in Tables 3 and 4, 

respectively. While the marginal distributions are 

truncated, they cover more than 99.99 % of their 

original Gaussian distributions. 

 
Table 3: Target dependence structures. 

Copulas Target value of 𝜃 

Gaussian 0.7 

Clayton 2.0 

Frank -5.0 

Gumbel 2.0 

 
Table 4: Target marginal distributions. 

Parameter Distribution Target value 

𝑘1 Truncated 

Gaussian 
𝜇1 = 4.0,  

𝑚1 = 0.09 

𝑘3 Truncated 

Gaussian 
𝜇3 = 6.0,  

𝑚3 = 0.04 

The outputs of the system are three natural 

frequencies 𝑓1, 𝑓2, and 𝑓3. The measurement data 

𝐘𝐷 consists of these three natural frequencies and 

is generated by multiple model evaluations with 

multiple sets of the model parameters sampled 

from their target joint distributions. In this study, 

the number of data is set as 𝑁𝐷 = 3000. Figure 2 

shows the measurement data in the plane of 𝑓1 and 

𝑓3 for each target copula class. It can be seen that 

different copula functions result in different data 

scatters. Therefore, the aim of model updating is 

to identify the most appropriate copula class that 

reproduces the uncertainty characteristics of the 

measurement data. 

 

 
Figure 2: Measurement data with different target 

copula classes.  

3.2. Model updating results 

The TMCMC algorithm is employed to generate 

1000 samples from the posterior distribution. In 

this section, the copula class ℳ is chosen to be 

the same as the target copula class that is used to 

generate the measurement data 𝐘𝐷. 

In the case where the Gaussian copula is used 

as the target dependence structure, a total of 16 
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iterations are performed to get converged. Figure 

3 illustrates histograms of the posterior samples of 

11 inferring parameters, i.e., 𝜇2, 𝑚2, and 𝝑. It can 

be observed that all the inferring parameters are 

significantly updated from the prior distribution 

and are converged around their target values. 

 

 
Figure 3: Posterior distribution of the inferring 

parameters in histograms.  

 

The means of the posterior samples are then 

obtained as the posterior estimates of the inferring 

parameters. The same procedure is performed for 

all target copulas and the posterior estimates of the 

inferring parameters are summarized in Table 5. 

The percentage estimation errors are given in the 

parentheses after the posterior estimates. 

 
Table 5: Posterior estimates of the inferring 

parameters. 

(a) Gaussian copula 

Inferring parameter Target 

value 

Posterior 

estimate 

𝜇2 5.0 4.99 (0.2) 

𝑚22 0.01 0.0100 (0.0) 

𝜃 0.7 0.707 (1.0) 

𝜇1 4.0 3.99 (0.3) 

𝑚21 0.09 0.1063 (18.1) 

�̃�31 0.0 0.002 

�̃�41 3.0 3.23 (7.7) 

𝜇3 6.0 5.99 (0.2) 

𝑚23 0.04 0.0475 (18.8) 

�̃�33 0.0 -0.002 

�̃�43 3.0 3.03 (1.0) 

(b) Clayton copula 

Inferring parameter Target 

value 

Posterior 

estimate 

𝜇2 5.0 5.01 (0.2) 

𝜎2 0.01 0.0104 (4.0) 

𝜃 2.0 2.09 (4.5) 

𝜇1 4.0 3.99 (0.3) 

𝑚21 0.09 0.1337 (48.6) 

�̃�31 0.0 -0.133 

�̃�41 3.0 5.69 (89.7) 

𝜇3 6.0 6.01 (0.2) 

𝑚23 0.04 0.0563 (40.8) 

�̃�33 0.0 0.113 

�̃�43 3.0 4.07 (35.7) 
 

(c) Frank copula 

Inferring parameter Target 

value 

Posterior 

estimate 

𝜇2 5.0 4.99 (0.2) 

𝜎2 0.01 0.0096 (4.0) 

𝜃 -5.0 -4.77 (4.6) 

𝜇1 4.0 4.02 (0.5) 

𝑚21 0.09 0.1228 (36.4) 

�̃�31 0.0 -0.206 

�̃�41 3.0 3.52 (17.3) 

𝜇3 6.0 6.00 (0.0) 

𝑚23 0.04 0.0467 (16.8) 

�̃�33 0.0 -0.128 

�̃�43 3.0 3.24 (8.0) 
 

(d) Gumbel copula 

Inferring parameter Target 

value 

Posterior 

estimate 

𝜇2 5.0 5.00 (0.0) 

𝜎2 0.01 0.0101 (1.0) 

𝜃 2.0 2.13 (6.5) 

𝜇1 4.0 4.03 (0.8) 

𝑚21 0.09 0.1319 (46.6) 

�̃�31 0.0 -0.238 

�̃�41 3.0 4.68 (56.0) 

𝜇3 6.0 6.01 (0.2) 

𝑚23 0.04 0.0535 (33.8) 

�̃�33 0.0 -0.221 

�̃�43 3.0 3.29 (9.7) 

Note: Percentage errors compared to the target 

values are shown in parentheses. 
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As can be seen, the posterior estimates for the 

mean 𝜇2 and the variance 𝑚22 agree well with the 

target values for all four cases, demonstrating that 

the Gaussian distribution of 𝑘2 is well calibrated. 

More importantly, the posterior estimates for the 

copula parameter 𝜃  show good agreement with 

the target values for all copula classes, indicating 

that the dependence structure between 𝑘1 and 𝑘3 

is precisely inferred from the available data. For 

the marginal distributions of 𝑘1  and 𝑘3 , on the 

other hand, the means 𝜇1  and 𝜇3  are accurately 

estimated but relatively large errors are observed 

in the higher moments. The errors in the variances 

m21  and m23  may be caused by the very small 

target values, while the errors in the skewnesses 

�̃�31 and �̃�33 and the kurtoses �̃�41 and �̃�43 may 

be caused by the fact that they are relatively 

insensitive to the measurement data compared to 

the means and variances.  

This can also be seen in Figure 4, where the 

calibrated marginal distributions of  𝑘1 and 𝑘3 are 

compared with the target distributions in the case 

where the Clayton copula is used as the target 

dependence structure. While the large errors are 

found in the higher moments, the SDFs assigning 

the posterior estimates to the hyperparameters 

show good agreement with the target Gaussian 

distributions. 
 

 
Figure 4: Calibrated marginal distributions of 𝑘1 and 

𝑘3.  

 

Figure 5 shows the relative position of the 

measurement data and the updated model outputs 

for each target copula class. The model outputs 

are generated by multiple model runs with a total 

of 1000 sets of the model parameters sampled 

from the calibrated joint distribution. As can be 

seen, the updated model outputs show favorable 

agreement with the target measurement data for 

all the cases, indicating that the proposed updating 

procedure can fully reproduce the uncertainty 

characteristics of the measurement data by using 

the appropriate copula class. 
 

 
Figure 5: Relative position of the measurement data 

(in blue) and updated model outputs (in orange).  

3.3. Model class selection results 

While, in the last section, the copula class is 

chosen to be the same as the target copula class, 

the target copula class is commonly unknown a 

priori and thus the most appropriate copula class 

needs to be determined from the available data. In 

this section, all the four copula functions are taken 

into account as the candidate copula classes and 

the TMCMC algorithm is used to compute the 

evidence for each candidate. The results are given 

in Table 6 for each target copula class. 

As can be observed from the tables, for all the 

cases, the candidate copula class that coincides 

with the target copula class results in the 

maximum evidence value. Hence, the copula class 

with the maximum evidence value is chosen as the 

most appropriate copula class that best represents 

the available measurement data in the context of 

Bayesian model class selection. From the results, 
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it is indicated that the proposed approach enables 

to calibrate the joint probability distribution of the 

model parameters as appropriate by determining 

the best copula class and inferring its parameter 

together with the SDF hyperparameters.  

 
Table 6: Evidence for each candidate copula class. 

(a) Gaussian copula 

Candidate copula class Evidence 

Gaussian 2.81 × 10−15 

Clayton 8.73 × 10−16 

Frank 6.09 × 10−16 

Gumbel 1.23 × 10−15 
 

(b) Clayton copula 

Candidate copula class Evidence 

Gaussian 1.50 × 10−16 

Clayton 6.67 × 10−13 

Frank 5.89 × 10−18 

Gumbel 4.41 × 10−17 
 

(c) Frank copula 

Candidate copula class Evidence 

Gaussian 2.46 × 10−17 

Clayton 2.33 × 10−30 

Frank 2.26 × 10−16 

Gumbel 1.78 × 10−28 
 

(d) Gumbel copula 

Candidate copula class Evidence 

Gaussian 1.17 × 10−14 

Clayton 1.18 × 10−16 

Frank 2.26 × 10−15 

Gumbel 1.02 × 10−13 

4. CONCLUSIONS 

 

System output may have dependencies, especially 

in the tail regions. Such dependencies strongly 

affect the system reliability and thus need to be 

properly dealt with. However, it is often assumed 

in model updating that the model parameters to be 

calibrated are independent of each other, which 

hinders us to quantify the dependence structure in 

the system output and makes the updating results 

unreliable. 

This paper presents a novel stochastic model 

updating framework to calibrate the dependence 

structure between the model parameters. The joint 

distribution is modeled using different copulas to 

represent different dependence characteristics. Its 

marginal distributions are modeled using SDFs to 

avoid limiting hypotheses on distribution formats. 

Then, ABC is used to infer the copula parameter 

and the SDF hyperparameters from the available 

measurement data on the system of interest. In 

addition, Bayesian model class selection is used 

to determine the most appropriate copula that best 

represents the measurement data among different 

candidate copula classes. A simple 3-DOF system 

example is studied to demonstrate the capability 

of the proposed approach and the results indicate 

that it enables to reproduce different dependence 

characteristics as appropriate. 

Open questions still remain. This study only 

focuses on the calibration of bivariate dependent 

model parameters. Among the copula classes used 

in this study, the Clayton, Frank, and Gumbel 

copulas have only a single parameter and cannot 

provide general dependence structures. While the 

Gaussian copula can provide general dependence 

structures through the correlation matrix, it can 

only represent Gaussian dependence structures. 

For the calibration of high-dimensional dependent 

model parameters, further research efforts are thus 

still needed in the future. 
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