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ABSTRACT: Uncertainty quantification has been realized as of vital importance in structural reliability
engineering to achieve credible results especially when the available information is scarce, incomplete,
imprecise, etc., and it is also recognized that the aleatory and epistemic uncertainties need to be distin-
guished and separated and characterized through the whole analysis process. For addressing the above
challenge, beyond the classical probability models, imprecise probability models, such as probability
boxes, evidence theory, and fuzzy probabilities, as well as non-probabilistic models with interval/convex
models as examples, have been developed for addressing alternative cases. However, given the mixed
inputs characterized by the probability model, the imprecise probability, and the non-probabilistic model,
the resultant failure probability is presented to be an interval variable, and it is then the key to estimating
the bounds, especially the upper bound, of this interval. Following our development of Collaborative and
Adaptive Bayesian Optimization for estimating the bounds of the expectation of the structural response,
we propose a generalization of it for efficiently estimating the bounds of the failure probability by intro-
ducing several key improvements. The method starts by training a Gaussian Process Regression (GPR)
model in the joint aleatory and epistemic spaces and then inferring the resultant stochastic process models
in the marginal subspaces. With the above treatments, the double-loop formulation is then decoupled and
two acquisition functions are introduced for specifying the optimal training points respectively in the two
marginal spaces. Different from the original CABO algorithm, the above inference is realized based on
an efficient numerical simulation of the GPR model, and thus applies to any output of interest. The above
process is repeated until the stopping criteria are satisfied in both subspaces. Numerical results indicate
that the CABO algorithm is efficient and shows good performance of global convergence.
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1. INTRODUCTION
Quantifying alternative types of uncertain-

ties and propagating them through expensive-to-
estimate simulators have been realized as of vital
importance in many research areas such as struc-
tural reliability engineering. It has also been real-
ized that different types uncertainties need to be dis-
tinguished and separately characterized with proper
mathematical models for making reliable estima-
tion and decision on risk and reliability Abdar et al.
(2021). Three groups of mathematical models, in-
cluding probability model, imprecise probability
models (such as probability boxes, evidence the-
ory, and fuzzy probabilities) Beer et al. (2013) and
non-probabilistic models (such as interval/convex
models) Crespo et al. (2014) have been developed
for addressing alternative scenario. Specifically, the
probability model is most applied to the random pa-
rameters with sufficient information for character-
izing the aleatory uncertainty; the imprecise prob-
ability models are applicable to random param-
eters with insufficient information for separately
characterizing the aleatory and epistemic uncertain-
ties; the non-probabilistic models are applied to
the deterministic-but-unknown parameters for de-
scribing the epistemic uncertainty (see Crespo et al.
(2014) for example). A major challenge in Un-
certainty Quantification (UQ) is then the propaga-
tion of these three group of methods through the
expensive-to-estimate simulators to quantifying the
uncertainties of the outputs, and in this work, the
estimation of the failure probability bounds, given
the three kinds of uncertainty models as inputs, is
of special concern.

Resulted from the hierarchical structure of the
imprecise probability models, most available meth-
ods for addressing the above problem involves a
double-loop scheme, and these methods follows
two alternative strategies. The straightforward
methods conduct the global optimization proce-
dures in the space of epistemic uncertainty in the
outer loop, then perform the probabilistic analy-
sis, for examples, Monte Carlo Simulation (MCS)
Raychaudhuri (2008), of the response of interest
in the inner loop. The another strategy, called as
Interval Monte Carlo Simulation (IMCS) Zhang
et al. (2010), randomly create the random inter-

val samples in the outer-loop, and carry out op-
timization methods to the response of interest in
the inner-loop by performing either intrusive meth-
ods or non-intrusive methods Zhang et al. (2013).
The above two strategies are utilized to address the
2014 NASA Langley UQ challenge problem Patelli
et al. (2015). According to the structure of both
strategies, computational burden maybe is heavy
for computational expensive simulator as the re-
quired number of calling the time-consuming simu-
lators is large for satisfying the required numerical
errors.

For mitigating the computational cost cased by
the double-loop procedure, many methods have
been developed, such as, the decoupling methods
Wei et al. (2014), and the surrogate model based
methods, etc. Through, the decoupling methods
can transform the double-loop scheme to a sing-
loop scheme with the reduction the number of call-
ing the model simulator, however, the computa-
tional burden is still too heavy to apply. The sur-
rogate model based methods, such as Polynomial
Chaos Expansion (PCE) Fox and Okten (2021),
Neural Networks (NN) Abiodun et al. (2018), and
Gaussian Process Regression (GPR) Rasmussen
and Williams (2006), etc, build an easy-to-compute
surrogate model replacing the computational ex-
pensive model response, and the corresponding
probability analysis will be applied to the surrogate
model for saving the computational cost. The pre-
diction error of a GPR model is treated as a source
of epistemic uncertainty, and is quantified by the
posterior variance. The above property of GPR
model is the most appealing character compared
with other surrogate model methods, therefore, the
GPR model is utilized in this paper.

For further improving the efficiency of estimat-
ing the bounds of variance and failure probabil-
ity of an expensive simulator, the Bayesian Prob-
abilistic Optimization (BPO) Hennig and Schuler
(2012) and the stochastic simulation strategy Chiles
and Delfiner (2009) are integrated in a collabo-
rative and adaptive way and constitute a general
Bayesian numerical framework to solve the opti-
mization problems, which is inspired by CABO
method Wei et al. (2021). The proposed frame-
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work starts from a trained Gaussian process regres-
sion (GPR) model in the joint space of aleatory and
epistemic uncertainty, and decouples the double-
loop trap in a collaborative scheme, where the BPO
is employed to optimize the global best points in
the space of interval inputs and epistemic parame-
ters, and the corresponding global optimal value is
estimated by the Bayesian Probabilistic Integration
(BPI) . Two learning functions are introduced to es-
tablish a adaptive deign strategy to collaboratively
generate the optimal design points in the joint space
of inputs and epistemic parameter. The proposed
framework possesses several attractive characteris-
tics, i.e., requiring few simulator calls, presenting
quantification of numerical errors, applying to any
kind of uncertainty characterization models, etc.

2. PROBLEM STATEMENTS
Considering a deterministic model response of

interest y = g(xI,xII,xIII), where xI =
(
x1

I , · · · ,x
nI
I
)

denotes the nI-dimensional random input vec-
tor with its aleatory uncertainty characterized by
a precise probability model fI (xI) called prob-
ability density function, xII =

(
x1

I , · · · ,x
nII
II
)

rep-
resents the nII-dimensional random input vector
with fII (xII | θ) being the joint probability density
function, where θ expresses the non-deterministic
distributional parameter vector whose uncertainty
modeled by the hyper-rectangle

[
θ L,θ U], and

xIII =
(
x1

III, · · · ,x
nIII
III
)

denotes nIII-dimensional in-
terval input variables belonging to the hyper-
rectangle

[
xL

III,x
U
III
]
. The random uncertainty of

the input variables (xI,xII,xIII) is characterized by
probability density function fI (xI) and fII (xII | θ),
and the epistemic uncertainty of which is mod-
eled by hyper-rectangular support

[
xL

III,x
U
III
]

and[
θ L,θ U]. For simplicity, it is assumed that all

input variables (xI,xII,xIII) are independent, the
corresponding joint density and cumulative distri-
bution function of (xI,xII) can be formulated as
fI (xI) = ∏nI

i=1 f i
I
(
xi

I
)

and fII (xII) = ∏nII
i=1 f i

II
(
xi

II
)
,

where f i
I
(
xi

I
)

and f i
II
(
xi

II
)

represent the marginal
density of xi

I and xi
II respectively.

Based on the above settings, the probabilistic
characters of the g-function, such as statistical mo-
ments, are functions of the interval input vector
xIII and the epistemic parameters θ . The target of

this work is to estimate the bounds of these proba-
bilistic characters, and specifically, the model out-
put variance Vy (xIII,θ) and the failure probability
Pf (xIII,θ), are of focus. These two characters are
formulated as:

Vy (xIII,θ) =
∫
RnI+nII

(g(xI,xII,xIII)−my (xIII,θ))2

× fI (xI) fII (xII|θ)dxIdxII

Pf (xIII,θ) =
∫
Rn

IF (xI,xII,xIII) fI (xI) fII (xII|θ)dxIdxII

(1)
, where

my (xIII,θ) =
∫
Rn

g(xI,xII,xIII)

× fI (xI) fII (xII|θ)dxIdxII

(2)

denotes the expectation function, IF (xI,xII,xIII)
indicates the indicators function of g(xI,xII,xIII)
being less than zero, and is often called in-
dicator function of the failure domain F =
{(xI,xII,xIII) : g(xI,xII,xIII)< 0}. The bounds of
the output variance and the probability of failure are
then formulated as

VL = min
θ∈[θ ,θ̄ ],xIII∈[xIII ,x̄III ]

Vy (xIII,θ)

VU = max
θ∈[θ ,θ̄ ],xIII∈[xIII ,x̄III ]

Vy (xIII,θ)
Pf L = min

θ∈[θ ,θ̄ ],xIII∈[xIII ,x̄III ]
Pf (xIII,θ)

PfU = max
θ∈[θ ,θ̄ ],xIII∈[xIII ,x̄III ]

Pf (xIII,θ)

(3)

For estimating the bounds of the output response
my, the collaborative and adaptive Bayesian opti-
mization (CABO) Wei et al. (2021) has been devel-
oped based on the properties of linear operation of
the Gaussian process. However, this scheme cannot
be directly extended to the response variance and
the failure probability due to the non-linear map-
ping. In this work, we propose a efficient simula-
tion scheme for realizing the extension.

3. COLLABORATIVE AND ADAPTIVE

BAYESIAN OPTIMIZATION FRAMEWORK
The estimation of the bounds of variance and

failure probability of CABO involves a double-loop
procedure. In the first-step, a Bayesian adaptive
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optimization process is applied to search the min-
imum and maximum points of the variance or fail-
ure probability in the space of xIII and θ , and, an
acquisition function is utilized to adaptively gener-
ate random design site to make the estimates satisfy
the required estimated errors in the space of xI and
xII in the second-step.

Before applying the procedure of CABO, the
pretreatment is needed. First, the imprecise input
variables xII are need to be transformed to make
it independent of θ by using xII = F−1

II ((u | θ)),
where u follows independent uniform distribution
in interval [0,1], F−1

II ((· | θ)) is the inverse CDF of
xII . Then the g-function can be rewritten as G (ω)
in the augmented space ω = (xI,u,xIII,θ)

Based on a set of training samples, a Gaussian
process regression (GPR) model is trained in the
space of ω , the specific procedures are introduced
in the next subsection.

3.1. Gaussian process regression
Assume that G (ω)-function follows a Gaus-

sian process G P (m(ω) ,κ (ω,ω ′)) with m(ω)
and κ (ω,ω ′) being the prior mean function, and
prior covariance function (kernel function). With
no loss of generality, the exponential squared ker-
nel function is applied in this paper, which is for-
mulated as

κ
(
ω,ω ′)= σ2

0 exp

(
−(ω −ω ′)Σ−1 (ω −ω ′)T

2

)
(4)

, where σ2
0 and Σ indicate the hyper-parameters of

the GPR model.
Let D = (W,Y ) denotes the training data set

with size N0, based of which, the hyper-parameters
included in mean function and covariance func-
tion are then evaluated by maximizing the corre-
sponding likelihood function of D. With all hyper-
parameters estimated, the posterior Gaussian pro-
cess ĜD (µy (ω) ,covy (ω,ω ′)) can be derived with
mean and covariance formulated as

µy (ω) = m(ω)+κ (W,ω)T K−1 (Y −m(W )) (5)

and

covy
(
ω,ω ′)=κ

(
ω,ω ′)

−κ (W,ω)T K−1κ
(
W,ω ′) (6)

respectively, where K = κ (W,W ) denotes N ×
N matrix with the i j-th component Ki j being
κ
(
Wi,Wj

)
, κ (W,ω) is N-dimensional column vec-

tor, the i-th component of which is κ (Wi,ω). It
should be noted that the mean function of GPR
model is the prediction at site ω , while the variance
function measures the corresponding numerical er-
ror.

3.2. The adaptive optimization strategy
Once the GPR model ĜD (ω) of G (ω) is trained,

the output variance function Vy (xIII,θ) and the fail-
ure probability function Pf (xIII,θ) can both be
approximated by the induced stochastic processes
V̂y (xIII,θ) and P̂f (xIII,θ), although they are not
Gaussian. These two stochastic processes can then
be combined with the Bayesian optimization for
searching the global optima and for designing the
training points in the epistemic uncertainty space.

The core of a Bayesian optimization method is
the so-called learning function or acquisition as
it determines the locations of the training points.
Over the past several decades, many learning
functions, which includes but not limited to, the
expected improvement (EI) function, Probability
of Improvement (PI) function, Knowledge Gradi-
ent(KG) function, Entropy Reduction (ER), Predic-
tive Entropy Reduction (PER), etc., have been de-
veloped, and one can refer to Frazier (2018) for a
review. The EI function is utilized in the work, but
other learning functions also apply. There are also
several versions of EI functions being established,
and the one utilized in this work is formulated as:

LEI
∗ (xIII,θ) = E [max(µ∗ (x∗III,θ ∗)−∗̂(xIII,θ) ,0)]

(7)
In Eq.(7), µ∗ (x∗III,θ

∗) denotes the mean of variance
or failure probability at site (x∗III,θ

∗), ∗̂(xIII,θ)
represents the corresponding stochastic process,
and (x∗III,θ

∗) is the current best solution, which can
be obtained by the following equation

(x∗III,θ ∗) = argmin µ∗ (xIII,θ)+ασ∗ (xIII,θ) (8)

with α measuring the degree of risk aversion, and
the solutions of Eq.(8) are searched in the training
set D
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In practical application, Eq.(7) can not be cal-
culated analytically as the distribution type and
parameters of stochastic process V̂y (xIII,θ) and
P̂f (xIII,θ) are unknown. A Monte Carlo simula-
tion scheme is implied to estimate the above inte-
gration based on the random samples V̂ ( j)

y and P̂( j)
f

of stochastic V̂y and P̂f , by using of which, Eq.(7)
can be estimated as

L̂EI
∗ (xIII,θ) =

1
Ng

Ng

∑
j=1

max
(

µ̂∗ (x∗III,θ ∗)−∗̂( j) (xIII,θ) ,0
) (9)

where, the mean function µ∗ (xIII,θ) and variance
function σ2

∗ (xIII,θ) of V̂y and P̂f can be evaluated
as

µ̂∗ (xIII,θ) =
1

Ng

Ng

∑
j=1

∗̂( j) (xIII,θ)

σ̂2
∗ (xIII,θ) =

1
Ng −1

Ng

∑
j=1

[
∗̂( j) (xIII,θ)−µ∗ (xIII,θ)

]2

(10)
In Eq. 9 and 10, ∗̂( j) (xIII,θ) refers to the j-th sam-
ple of the stochastic process ∗̂(xIII,θ), and will be
discussed in detail in the following subsection.

The above MCS estimators will converges to the
true values when the sample size approaches to in-
finity. By maximizing Eq.(9), a new design site(
x+III,θ

+
)

will be solved, i.e.,(
x+III,θ

+
)
= argmax L̂EI

∗ (xIII,θ) (11)

There are many global optimization algorithms,
such as, particle swarm optimization, genetic algo-
rithm, to solving Eq.(11).

In next subsection, an efficient sampling strategy
is introduced to generate samples from the stochas-
tic process V̂y (xIII,θ) and P̂f (xIII,θ).

3.3. Sampling strategy for Stochastic process
It is difficult to directly sample from V̂y and P̂f

because the type of stochastic process and the dis-
tribution parameters are implicit. Then a indirectly
way is implied by sampling from ĜD (ω).

An efficient sampling procedure, named as
"GPR conditioning sampling scheme", developed

by Le Gratiet et al. (2014), is performed to sample
from the posterior GPR model ĜD (ω). Assume that
ĥD (ω) follows a unconditional Gaussian process
G P (0,κ (ω,ω ′)), then the posterior GPR model
ĜD (ω) can be rewritten as

ĜD (ω) = µy (ω)− µ̂y (ω)+ ĥD (ω) (12)

with µ̂y (ω) being

µ̂y (ω) =m(ω)+κ (W,ω)T K−1 (ĥD (W )−m(W )
)

(13)
Based on the Eq.(12), the samples of ĜD (ω) can
be gained by sampling from the unconditional
GP model ĥD (ω) using, such as, Karhunen-Loève
(KL) expansion or stochastic harmonic function
representation. In this work, the KL expansion is
utilized to generate the samples of ĥD (ω). Let de-
noted by Ĝ

( j)
D (ω) with j = 1, · · · ,Ng the samples of

ĜD (ω) by using Eq.(12), where Ng is the size of the
sample set.

Generate a set of joint samples W =
(XI,U,XIII,T ) of size Nx. Once the samples
set Ĝ

( j)
D (ω) is obtained, the samples V̂ ( j)

y and P̂( j)
f

of stochastic V̂y and P̂f can be deduced as

V̂ ( j)
y (xIII,θ) =

1
Nx −1

Nx

∑
i=1 Ĝ

( j)
D

(
X (i)

I ,U (i),xIII,θ
)
−

1
Nx

∑Nx
k=1 Ĝ

( j)
D

(
X (k)

I ,U (k),xIII,θ
) 2 (14)

and

P̂( j)
f (xIII,θ)=

1
Nx

Nx

∑
i=1

[
Ĝ

( j)
D

(
X (i)

I ,U (i),xIII,θ
)
< 0
]

(15)
with X (i)

I and U (i) being the i-th row of XI and U
respectively.

3.4. The adaptive design strategy
By maximizing the learning function introduced

in Subsection 3.2, the design site
(
x+III,θ

+
)

in epis-
temic uncertainty space is generated. To ensure
the accuracy of the estimates of the output variance
and the failure probability at the site

(
x+III,θ

+
)
, two
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extra acquisition functions are introduced respec-
tively for adaptively generating new design site in
the aleatory uncertainty space of xIII and u respec-
tively.

For reducing the posterior variance σ2
Vy
(xIII,θ)

of the output variance, the acquisition function,
named as Posterior Variance Contribution (PVC)
function, is utilized (Wei et al. (2020)), which is
formulate as

LPVC (xI,u) = fI (xI)× fu (u)×∫
RnI+nII

covy
(
w,w′) fI

(
x′I
)

fu
(
u′
)

dx′Idu′

(16)
where fu (u) is the probability density of uniform
distribution in interval [0,1]. The value of PVC
function measures the contribution of the posterior
variance of ĜD (ω) at site ω , and by adding the
maximum of PVC function, the most reduction of
the variance σ2

V (xIII,θ) can be achieved. The PVC
function is estimated by MCS with estimator:

L̂PVC (xI,u) = fI (xI)× fu (u)×
1

Nx

Nx

∑
i=1

covy

((
xI,u,x+III,θ

+
)
,
(

x(i)I ,u(i),x+III,θ
+
))
(17)

The acquisition function for estimating failure
probability utilized in this paper is the U-function,
which is formulated as

U(xI,u) =
| µ̂y

(
xI,u,x+III,θ

+
)
|

σ̂y
(
xI,u,x+III,θ

+
) (18)

The value of the Φ(−U(xI,u)) measures the
probability of misjudging the sign of the esti-
mate µ̂y

(
xI,u,x+III,θ

+
)
. Assume that the sign of

µ̂y
(
xI,u,x+III,θ

+
)

can be correctly determined if
U(xI,u)> 2, otherwise, find the minimum

(
x+I ,u

+
)

of U(xI,u), and add ω+ =
(
x+I ,u

+,x+III,θ
+
)

to the
training data set and update the GPR model.

3.5. Summary of CABO
Based on the above discussion, the main steps

of CABO for estimating the bounds of variance or
failure probability are summarized with the pseu-
docode displayed as Algorithm 1.

Algorithm 1: CABO method for estimating
the bounds of variance or failure probability
Input: Augmented g-function G (w),

sample size Nx, Ng, N0, stopping
threshold ∆EI, ∆COV

Output: Bounds µ∗
(
x+III,θ

+
)

of variance or
failure probability and its
corresponding site(
x+I ,u

+,x+III,θ
+
)
.

1 Generate a set of joint samples
W = (XI,U ,XIII,T ) of size Nx by
random sampling;

2 Create the initial training set D of size N0
from sample pool W;

3 while (1=1) do
4 Train or update the GPR model ĜD (ω)

based on training set D ;

5 Generate a set of Ng samples Ĝ
( j)
D (ω)

for ĜD (ω) with j = 1, · · · ,Ng;
6 Compute the design site

(
x+III,θ

+
)

by
Eq. (11);

7 Compute the design site
(
x+I ,u

+
)

by
maximizing Eq. (17) or minimizing Eq.
(18);

8 if LEI (x+III,θ
+
)
< ∆BPO and

COV∗
(
x+III,θ

+
)
< ∆COV then

9 break while-do;
10 else
11 add ω+ =

(
x+I ,u

+,x+III,θ
+
)

and
G (ω+) to the training set D ;

12 end
13 end

Before running Algorithm 1, the value of Nx of
the size of sample set W should satisfy that the
maximum of COV of bounds of variance or fail-
ure probability is less than a given threshold, such
as ∆COV, the value of Ng of the size of sample set
ĥD (ω) is recommended to be chosen in 1000 ∼
5000 according to the property of G (ω). As men-
tioned above, the stopping threshold ∆EI and ∆COV

are selected from [0.001,0.01] and [0.01,0.05] re-
spectively. Algorithm 1 is developed for the lower
bounds of the output variance and the failure prob-
ability, but it also applies to the upper bounds.
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4. BENCHMARKS

4.1. Illustrative example
Considering the following two g-functions:

g1 (x) = x1
(
x2

2 + x2 + cos(πx3)−7
)

g2 (x) = 7− (x1 + x3)
2 + x2

(19)

For g1-function, x1 ∼ N (0,1), x2 ∼ N (µ,2) with
µ ∈ [−1.3,1.8], and x3 ∈ [−0.5,1.3]; For g2-
function, x1 ∼ N (0,1), x2 ∼ N (µ,2) with µ ∈
[−2,1], and x3 ∈ [−1,2].

CABO is implemented to estimate the bounds of
the output variance of g1-function by setting the ini-
tial training size N0 as 30, ∆EI be 0.005, and ∆COV

be 0.01. The algorithm successfully converges to
the global optima by adding 55 samples, the results
are displayed in Figure 1 and Table 1, together with
the reference solution being computed analytically.
One can see from Figure 1, the CABO methods can
well search the global optimal points in each iter-
ation until the convergence condition is satisfied.
Let’s take the lower bound of variance as an exam-
ple, the estimate of which estimated by CABO is
18.980 with the posterior COV being 0.06 indicat-
ing that the results shows high accuracy and robust-
ness. The difference between the optimal points ob-
tained by CABO and reference extreme points is a
little bigger, it is probably because the sensitivity
of the model variance to these parameters is lower
in the area around the extreme points revealed in
Figure 1.

Table 1: Results of evaluating the bounds of variance of
the numerical example.

MethodBoundsEstimates Points COVs (%)NOF

Ref
Lower 19 (0,1.3028) –

–
Upper 54.56 (1,-0.5) –

CABO
Lower 18.98 (0.05,1.26) 0.06

82
Upper 54.63 (1.02,-0.57) 0.01

Then, the bounds of failure probability of g2-
function is evaluated by the CABO algorithm with
N0 = 20, ∆EI = 0.005, and ∆COV = 0.01, the corre-
sponding results are displayed in Figure 2 and Ta-
ble 2, together with the reference solutions com-
puted with double-loop MCS procedure. As shown

Figure 1: Training details in interval space of x3 and µ
of CABO for evaluating the bounds of output variance,
with the heat map referring to the reference solution.

in Figure 2 and Table 2, the bounds of failure prob-
ability can be well estimate by CABO with high ro-
bustness. For the upper bound, the extreme points
computed by CABO is as the same as the reference
points, and the upper bound estimated by CABO
shown high accuracy compared with the reference
value. Though the lower bound is not well evalu-
ated as the value of lower bound is too small to es-
timate using MCS, it does not affect the efficiency
of the proposed method.

Table 2: Results of evaluating the bounds of failure
probability of numerical example.

MethodBoundsMeans Points COVs (%)NOF

Ref
Lower 0.0071(-0.0264,1) – –
Upper 0.4296 (2,-2) –

CABO
Lower 0.0076(-0.0353,1) 0.50

29
Upper 0.4203 (2,-2) 0.04

5. CONCLUSIONS
An efficient framework named as CABO is pro-

posed to estimate the bounds of variance and fail-
ure probability of a g-function with three category
uncertainty inputs variables. The proposed method
jointly perform Bayesian optimization in the epis-
temic parameter space and Bayesian cubature (or
Bayesian reliability analysis) in the aleatory uncer-
tainty space, and this way to adaptively produce
training points in the joint space. The proposed
is shown to be efficient and of good performance
on global convergence. Results of the numeri-
cal example show that, bounds of both response
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Figure 2: Training details in interval space of x3 and µ
of CABO for evaluating the bounds with the heat map
referring to the reference solution of Pf (x3,µ).

variance and failure probability are estimated with
few training points, saving a lot of computational
sources. It should be noted that, in some appli-
cations, the lower bound of the failure probability
may be less accurately estimated, as its exact value
is very small. For this case, advanced MCS meth-
ods, such as subset simulation needs to be properly
embedded in the algorithm, and this will be con-
ducted in the future work.
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