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ABSTRACT: After the Tohoku earthquake-tsunami (Japan, 2011), the regulatory efforts to mitigate the 

external hazards increase both safety requirements and the total capital cost of nuclear power plant (NPP). 

In these circumstances, identify not only the robust but also the cost-effective capacity of NPP becomes 

one of the most important tasks for the nuclear power industry. A few studies performed to relocate the 

seismic capacity of NPP, yet the effect of multihazard had not been accounted for NPP capacity 

optimization. The major challenges in extending this problem to the multihazard dimension are (1) high 

computational cost for both multihazard risk quantification and system-level optimization and (2) lack 

of capital cost database of NPP. To resolve these issues, this paper presents an effective method that 

identifies the optimal multihazard capacity of NPP using a multi-objective genetic algorithm, two-stage 

direct quantification of fault tree using Monte Carlo simulation (two-stage DQFM) method, and indirect 

capital cost measure. The proposed multihazard capacity optimization framework for NPP is 

demonstrated and tested by the NPP example.

1. INTRODUCTION 

An NPP is one of the most robust man-made 

structure systems which ensures a sufficient 

safety margin through regular probabilistic safety 

assessments (PSAs). However, NPP PSA is 

mainly performed for single hazards risk (e.g., 

Seismic PSA) while an NPP system can be 

exposed to the joint effect of various multihazard, 

which consist of more than one hazard. In these 

circumstances, an NPP system which robust 

against the various type of single hazards can 

remain vulnerable to multihazard since securing 

the NPP system from a single hazard does not 

necessarily guarantee the multihazard safety of 

the NPP (Choi et al., 2020). For example, 

Fukushima-Daiichi NPP which experienced a 

core-damage accident due to the earthquake-

tsunami (Japan, 2011), was robust enough from a 

seismic safety perspective yet prone to the joint 

effect of strong ground motion and extreme 

flooding. Therefore, mitigating the risk from a 

multihazard perspective is one of the top priorities 

of the nuclear power industry. At the same time, 

not only the multihazard safety of NPP but also 

reducing the capital cost of the NPP, which is 

often proportional to the capacity of the structure, 

systems, and components (SSCs), become a 

critical issue in making cost-competitive 

commercial nuclear energy.  

However, despite the importance of these 

two issues, cost and multihazard risk-informed 

design or maintenance had not been extensively 

investigated in the field of nuclear safety 

engineering. Therefore, we aim to identify the 
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optimal relocation of multihazard capacity SSCs 

of NPP which minimize both multihazard risk and 

capital cost.  

To date, in the field of structure and system 

reliability engineering, various frameworks were 

developed to identify the optimal cost and risk-

informed design or maintenance of a system under 

the single- (e.g., earthquake (Zhu, B. and 

Frangopol, D. M., 2013; Gomez, C. and Baker, J. 

W., 2019; Xu, N. et al., 2007), hurricane 

(Mondoro, A. et al., 2017), extreme weather 

(Rocchetta, R. et al., 2015) and multihazard 

conditions (Nikellis, A. and Sett, K., 2020; 

Chandrasekaran, S. and Banerjee, S., 2016). Often, 

to optimize the retrofitting of the system (e.g., 

building (Liu, M. et al., 2005), bridge (Kwag, S. 

and Ok, S. Y., 2013), transportation network 

(Choi, E. and Song, J.,2019) and power grid (Choi, 

E. and Song, J., 2020)), multi-objective genetic 

algorithm (MOGA) is combined with the system-

level functionality, reliability, risk, and life cycle 

cost analysis.  

Especially in the nuclear safety engineering 

domain, the optimal seismic capacity of SSCs of 

NPP had been studied with consideration of both 

cost and seismic risk in the work of Kwag and 

Hahm (2020) and Bolisetti et al. (2021). It is 

identified in these works that optimal relocation 

of SSCs can reduce both core-damage frequency 

(CDF) and capital cost more than the original 

setting. However, the optimal multihazard 

capacity of NPP which accounting both cost and 

multihazard risk is not investigated yet. This may 

be due to the high computational cost for both 

multihazard risk quantification and optimization 

algorithm, and the lack of a publicly open capital 

cost database for the NPP SSCs.  

Therefore, to address this computational 

efficiency issue, we propose a framework that 

combines MOGA with the two-stage direct 

quantification of fault tree using Monte Carlo 

simulation (two-stage DQFM) (Choi et al., 2021), 

which is recently developed by the authors. Also, 

to resolve the cost data availability issue, we 

proposed the multihazard cost function which 

uses the hazard capacity of two hazards indirect 

measure. In addition, to merge the capital cost for 

two different hazards, the current budget ratio 

between the two hazards is also adopted. The 

proposed methods are demonstrated and tested by 

a numerical example. 

2. MULTIHAZARD RISK 

QUANTIFICATION OF NPP 

While identifying the optimal multihazard 

capacity of NPP, it is essential to evaluate the 

multihazard risk as one of the multi-objectives. 

For multihazard risk quantification of NPP, 

several methods including Boolean (Leverenz, F. 

L. and Kirch, H.,1976), Original DQFM 

(Watanabe, Y. et al., 2003), Improved DQFM (I-

DQFM) (Kwag, S. et al., 2019), and Two-stage 

DQFM (Choi et al., 2021) are developed. Among 

the proposed sampling-based multihazard risk 

quantification methods, two-stage DQFM, which 

was recently developed by the authors, shows a 

superior outcome in terms of efficiency and 

accuracy. Therefore, we adopted a two-stage 

DQFM as a multihazard risk quantification 

module of the proposed framework. In this section, 

we briefly summarize the basic idea of 

conventional DQFM and two-stage DQFM. 

2.1. Basic idea of conventional DQFM 

Two-stage DQFM uses conventional DQFM as 

the base algorithm. The algorithm requires a 

system model (i.e., fault tree), fragility curve of 

each component, and hazard curve as an input, 

and begins with setting discrete multi-hazard 

grids into the uniform interval. For each hazard 

condition point, the hazard response R and the 

capacity of the components C are sampled. Both 

R and C are assumed to be log-normal 

distributions, which can be expressed as follows: 

 
R(a) ~ LN(Rm(a),𝛽𝑅𝑐) (1) 

C(a) ~ LN(Cm(a),𝛽𝐶𝑐) (2) 

 

where, LN( 𝛼, 𝛽 ) represent the log-normal 

distribution with median 𝛼  and log-standard 

deviation 𝛽 . 𝛽𝑅𝑐  and 𝛽𝐶𝑐  denote the composite 

log-standard deviations of R and C, respectively. 

While generating R and C for each hazards, partial 
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correlations between the components can be 

introduced by the correlation coefficient matrix. 

The generated sample set of R and C are compared 

with each other and expressed in binary form (i.e., 

0 and 1 represent the survival and failure of the 

components, respectively). The state of the 

component is considered as survival only when 

the component survived both hazards. Using the 

binary condition of each component and the fault 

tree, the binary state of the system is decided. The 

final system fragility is estimated as the number 

of system failures over the total number of 

samples N at each multihazard condition (Kwag., 

2019). 

2.2. Two-stage DQFM 

It is important to note that conventional DQFM 

uses a uniform interval to define hazard 

conditions, and used a large number of sampling 

(N = 104) for all hazard points. When the 

contribution of certain multihazard is trivial to the 

final risk, however, the system failure estimated 

by small N1 and large N2 can have negligible 

differences. With this inspiration, in the two-stage 

DQFM, the algorithm generates a relatively small 

N1 (e.g., 102) sample set for multihazard points 

that make a little contribution to the final 

multihazard risk, and generates large enough N2 

(e.g., 104) sample set for others (Figure 1).  

In the first DQFM stage, a system failure 

probability is determined for all multihazard 

points with a small N1. Using the results of the 

first DQFM stage, the importance of each 

multihazard point is identified in terms of its 

contribution to the final risk. The cumulative ratio 

of hazard and risk is adopted as the criteria for 

selecting the resampling points. The cumulative 

rate of the hazard and risk values for each 

multihazard point can be determined as follows: 
 

𝐻𝑐(𝑎) = ∑ 𝑑𝐻(𝑖∗)/𝑑𝑝𝑑𝑞

𝑎

𝑖∗=1

∑𝑑𝐻(𝑖∗)/𝑑𝑝𝑑𝑞

𝑚𝑎𝑥

𝑖∗=1

⁄  (3) 

Figure 1: Flowchart of the two-stage DQFM (adopted from Choi et al., 2021). 
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𝑅𝑐(𝑎) = ∑ 𝑅𝑖𝑠𝑘(𝑖∗)

𝑎

𝑖∗=1

∑𝑅𝑖𝑠𝑘(𝑖∗)

𝑚𝑎𝑥

𝑖𝑠=1

⁄  
(4) 

 

where Hc and Rc are the cumulative rates of the 

differential hazard values for hazard and risk 

values, respectively. i* is the newly given order 

that was achieved through the min-to-max sorting 

process. For instance, in previous work on two-

stage DQFM, the H3.5R20 threshold, which skip 

the group of the point that contributed 10-3.5 to the 

total differential value of the hazard and those 

contributed 20% to the final risk value at the 

second DQFM stage, is identified as a most 

efficient threshold for multihazard risk evaluation 

(Choi et al., 2021). With these threshold values, 

multihazard points that are identified to have a 

non-negligible contribution to the final risk are 

sampled again at the second DQFM stage with 

large N2. Finally, the multihazard risk of the NPP 

system is determined by a convolution of the 

hazard curve and the updated fragility curve.   

3. MULTIHAZARD CAPACITY 

OPTIMIZATION OF NPP 

3.1. NSGA-II 

For the system optimization problems, authors 

employ the NSGA-II (Deb et al., 2002) to 

optimize the multihazard capacity of SSCs of NPP 

with two objectives (i.e., multihazard risk and 

capital cost). 

As a bio-inspired optimization algorithm, the 

NSGA-II algorithm generates the sample 

population from the initial sample population 

while pursuing the balance between elitism and 

exploration. From an initial population, an 

offspring sample set is generated using the genetic 

operators (i.e., crossover and random mutation). 

In this stage, the total sample population is 

temporarily doubled. To generate the following 

sample population that is better fitted to the 

selected objective functions, the fitness of each 

sample is evaluated for both parents and offspring 

populations. In this step, the multihazard risk is 

evaluated using two-stage DQFM (light blue 

colored in Figure 2) as one of the objectives. 

Later, using the objective values of the sample 

population, the Pareto rank is assigned using fast 

non-dominated sorting and crowd distance sorting. 

With these criteria, eventually, the sample sets 

more- fitted to the objective functions and more 

spread in search space are chosen as the parent 

sample of the following generation. 

 

 
Figure 2. Flowchart of the NSGA-II 

3.2. Genetic representation 

To optimize the multihazard capacity of the NPP 

using a genetic algorithm-based method, 

multihazard capacity requires a genetic 

representation. As illustrated in Figure 3, we 

propose a polynomial string that represents the 

multihazard capacities. The length of the string 

can be varying by the type of multihazard 

combination. 

 
Figure 3. Genetic representation of earthquake-

tsunami hazard capacity of NPP 
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3.3. Multi-objective functions 

To identify the optimal multihazard capacity of 

the NPP in terms of both multihazard risk and 

capital cost, two objective functions which 

generally have a trade-off relationship are 

selected: (1) multihazard risk of NPP, and (2) 

capital cost.  

3.3.1. Multihazard risk: core damage frequency  

The CDF under multihazard condition is adopted 

as the objective function to identify the 

multihazard capacity setting that reduces the 

multihazard risk. The CDF can be described as: 
 
𝑅𝑖𝑠𝑘𝑚𝑢𝑙𝑡𝑖

= ∫ ⋯∫ 𝐹(𝑝,⋯ , 𝑞)
𝑑𝐻(𝑝,⋯ 𝑞)

𝑑𝑝⋯𝑑𝑞

∞

0

𝑑𝑝⋯
∞

0

𝑑𝑞 
(3) 

 

where p and q denote multihazard intensity and F 

and H are the system failure probability 

multihazard curve, respectively. Since we pursue 

to reduce the multihazard CDF of current NPP, 

risk measure is normalized by dividing the CDF 

of sample NPP by those of current NPP.  

3.3.2. Multihazard capital cost 

To identify the optimal multihazard capacity also 

in terms of the capital cost, measuring the capital 

cost of a given multihazard setting of NPP is 

important. If the capital cost database is available, 

and the relationship between the SSCs capacity 

and cost is given, the total capital cost for NPP can 

be estimated from those models. However, it is 

difficult to apply for most multihazards, since 

monetary cost data of the NPP design against the 

hazards are publicly not available. Therefore, 

under the assumption that capital cost is 

proportional to each hazard capacity (Kwag and 

Hahm (2020), an indirect capacity-based cost 

model is proposed in this paper as follows: 
 

𝐶𝑜𝑠𝑡𝑚𝑢𝑙𝑡𝑖 =
1

1+𝛼
(
∑𝐴𝑚1𝑖
∑𝐴′𝑚1𝑖

+𝛼
∑𝐴𝑚2𝑗
∑𝐴′𝑚2𝑗

) (4) 

 

where Am1 and Am2 denotes the median capacity of 

sample set for hazard 1 and 2, respectively. A’m is 

the median capacity of current NPP. In addition, 

to combine the cost of two different hazards in one 

measure, the current budget ratio between the two 

hazard capacities 𝛼 is adopted as weighting factor. 

If current cost for hazard 2 capacity is double the 

those of hazard 1 capacity, value of 𝛼  is 2. In 

addition, proposed cost measure is normalized by 

the current multihazard capacity of NPP. 

4. NUMERICAL EXAMPLES 

4.1. Problem setting 

To illustrate the proposed framework and to 

investigate the effect of the parameters (i.e., the 

ratio between seismic and tsunami capacity cost), 

a multi-hazard example, the NPP under 

earthquake–tsunami hazard was investigated. The 

earthquake–tsunami hazard information was 

taken from a report by the Korea Atomic Energy 

Research Institute (KAERI, 2017) and the NPP 

system model and component multihazard 

information is adapted from the work of 

Ellingwood (1990) and Kwag et al. (2019). The 

NPP system core meltdown (CM) model is 

described in Eqs. 5 to 6, respectively. The list of 

LGS NPP components is summarized in Table 1. 
 
𝐴 = 𝑆11 ∪ 𝑆12 ∪ 𝑆13 ∪ 𝑆14 ∪ 𝑆15 ∪ 𝑆16 ∪ 𝐷𝐺𝑅  (5) 

𝐶𝑀 = 𝑆4 ∪ 𝑆6 ∪ 𝑆1 ∩ [𝐴 ∪ (𝑆3 ∪ 𝐶𝑅)
∩ (𝑆10 ∪ 𝑆𝐿𝐶𝑅) ∩ (𝑆17 ∪𝑊𝑅)] 

(6) 

 

Among these system components, some are 

likely to have correlated multihazard response and 

capacity due to their spatial proximity. Therefore, 

components S11, S12, S13, and S14 which are 

located in the same reactor building; and 

components S15 and S16 located in the same 

diesel generator building are assumed to be 

partially correlated (ρs = ρt= 0.7).  

These spatial distributions of the SSCs also 

affect the genetic representation of the 

multihazard capacity of SSCs. Under the 

assumption that the seismic capacity of SSCs can 

be chosen for each component while the tsunami 

protection is assigned for each location, a string 

with a length of 18 (sum of ns 13 and nt 5) is 

chosen as a genetic representation of multihazard 
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capacity of NPP. In the string, the first 13 values 

indicate the median seismic capacity of SSCs 

components from S1 to S17, and the following 

values represent the median tsunami capacity of 

Offsite (S1), Condensate storage tank (S2), 

Reactor building (S11, S12, S13, and S14), Diesel 

generator circuit (S15), and RHR heat exchangers 

(S17).  
 

Table 1: LGS NPP components 
 

Components 

S1 Offsite power S14 
4-kV bus / steam 

generator 

S2 
Condensate 

storage tank 
S15 

Diesel generator 

circuit 

S3 
Reactor 

internals 
S16 

Diesel generator 

heat and vent 

S4 

Reactor 

enclosure 

structure 

S17 

Residual heat 

removal system 

heat exchangers 

S6 
Reactor pressure 

vessel 
DGR 

DGR – diesel 

generator common 

mode 

S10 

Standby liquid 

control system 

tank 

WR 
WR – containment 

heat removal 

S11 

440-V bus / 

steam generator 

breakers 

CR 
CR – scram system 

mechanical failure 

S12 

440-V bus 

transformer 

breaker 

SLCR 
SLCR – standby 

liquid control 

S13 
125/250-V DC 

bus 
 

 

Finally, the current cost ratio between the 

seismic and tsunami capacity budget 𝛼  and the 

capacity limits for seismic and tsunami capacity 

should be also selected to perform the 

optimization. The parametric study is performed 

with seven values (i.e., 𝛼 = 0, 0.25, 0.5, 1, 2, 4, 

and infinite), and their effect on final Pareto 

solutions are compared with each other. 

Besides the multihazard budget ratio 𝛼 and 

capacity constraints, various parameters should be 

selected to perform the prosed method. First, 

while performing two-stage DQFM, the seismic 

intensity (PGA, g) and tsunami intensity 

(inundation depth, m) were uniformly divided into 

21 and 41 points, respectively. Also, the H3.5R20 

threshold is chosen (Choi et al., 2021), and the 

number of samples 102 and 104 are used for the 

first and second stages of two-stage DQFM, 

respectively. Second, for the NSGA-II, the 

population size is 100; the mutation ratio is 1/18 

(Ochoa, G., 2002); the number of total 

generations 1200 is conservatively determined 

based on several test runs. 

4.2. Results and discussions  

Figure 4 shows the Pareto solutions of 

multihazard capacity relocation of NPP with 

seven different earthquakes and tsunami capacity 

budget of the current NPP and the critical zone 

(shaded area). The optimal system curves of NPP 

and the detail distribution of the multihazard 

capacity of each SSCs are investigated for default 

setting (i.e., 𝛼 = 1; seismic and tsunami capacity 

range from 0g to 3g and from 0 m to 20m, 

respectively) (black line in Figure 4). These upper 

limits are selected to provide sufficient search 

space to the algorithm, and not to limit the 

potential optimal solutions by selected constraints.  

Each point that constructs the Pareto curve 

indicates the certain non-dominated optimal NPP 

SSCs solutions. Figure 5 shows the multihazard 

fragility of NPP at the system level, some of the 

non-dominated optimal solutions (“o” marks in 

figure 4) are compared with the original NPP 

conditions. For instance, the red curve indicated 

the system fragility curve that delivers the same 

multihazard CM value with only 24.5% of the 

current NPP cost. While its system failure 

probability has a negligible difference in most 

hazard conditions, shows lower system failure 

probability at relatively low PGA and high 

tsunami height conditions. On the other hand, the 

cyan-colored curve indicated the system fragility 

curve that reduces 20% of both the current NPP 

cost and CM risk; and blue colored curve 

indicated the system fragility curve that maintains 

the current NPP cost and reduces 24.2% of the 

current NPP cost and reduces 24.2% of the current 

NPP CM risk.  
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Relocating optimal capacity for each SSCs on a 

given budget cannot be directly known by 

intuition, and become further challenging as the 

system model become more complex system size 

increases and the number of hazard increases. In 

these circumstances, the proposed method 

successfully identifies the group of non-

dominated solutions with consideration of cost 

and multihazard risk and therefore will provide 

useful insight to the management authorities who 

aim to reduce both multihazard risk and cost of 

current NPP by SSCs capacity relocation. 

 

 
Figure 4. Pareto solutions of multihazard capacity 

relocation of NPP with various 𝛼 

 

 

Figure 5. Comparison of the optimal system fragility 

curves with current NPP  (“o” marks in figure 5) 

5. CONCLUSIONS 

In this study, a multihazard capacity optimization 

framework that combines NSGA-II and two-stage 

DQFM is proposed for NPP SSCs. To perform 

optimization, the genetic representation of the 

multihazard capacity of NPP SSCs, and the 

indirect cost measure were also proposed. 

Through the numerical example, it is identified 

the proposed framework and objective functions 

successfully identify the optimal SSCs 

multihazard capacity setting which accounting 

both multihazard risk and cost. We expect that the 

proposed method can provide useful insight to the 

NPP management authorities by demonstrating a 

group of optimal system settings that can reduce 

both multihazard risk and corresponding capital 

cost. 
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