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ABSTRACT: This paper aims at approximating the bounds of the static response of structures with
interval uncertainties. Such task is often challenging due to the large number of computationally intensive
response evaluations required. To address this challenge, we propose an efficient non-intrusive method,
namely, parallel Bayesian interval optimization (PBIO). The PBIO first assumes a Gaussian process (GP)
prior over the response function. Such a prior can be updated to a posterior GP given observations arising
from evaluating the response function at some locations. The main contribution lies in proposing a two-
stage infill sampling strategy to guide the selection of multiple update points at each iteration. Briefly, the
first stage is to search for promising points that bring significant improvements to the current minimum
and maximum responses, using a new acquisition function called Average expected improvement (AvEI)
and an improved multi-modal optimization (MMO) algorithm. The second stage is to find additional
points that still have significant improvements to the current minimum or maximum response, based on
traditional EI and improved MMO. By using PBIO, multiple response values can be evaluated in parallel,
and both lower and upper response bounds can be obtained simultaneously in a single run. A static finite
element example is studied to show the effectiveness of PBIO.

1. INTRODUCTION
Structural static analysis is essential in the en-

gineering field, as it enables engineers to analyze
structures under different loading conditions. Tra-
ditionally, a deterministic structural static analy-
sis is performed, where a well-defined compu-
tational model with prescribed parameters is in-
volved. Nevertheless, such deterministic analy-
sis is not suitable for practical engineering situa-
tions since uncertainty is ubiquitous. Alternatively,
non-deterministic structural static analysis can be
adopted. In the state of lack of knowledge, the de-
scription of uncertainty is imprecise. When only

bounds of uncertain parameters are available, un-
certainty can be described by an interval. Un-
der this concept, a nondeterministic parameter is
treated as an interval variable whose value is taken
within given lower and upper values. The main
task to quantify the output uncertainty is to find
the lower and upper bounds on the static structural
response, providing information about the range
of possible outcomes, namely the best and worst
cases.

This best/worst case search can be transformed
into an optimization problem where the objective is
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to find the global minimum and maximum of the
response. In this regard, traditional global opti-
mization methods, such as genetic algorithm, can
be adopted. However, these methods require a
large number of response function calls, which is
quite computationally expensive because the eval-
uation of response function usually involves time-
consuming structural static finite element analysis.
To alleviate the computational burden, the response
function can be treated during the optimization pro-
cess with a Bayesian model, e.g., Gaussian process
(GP) model. Along this line, Bayesian global op-
timization (BGO) (Jones et al. (1998)) can be ap-
plied. The basic idea of BGO is to assume a GP-
prior over the response function based on some
observations, and then update the GP-prior by se-
quentially selecting update points in terms of an in-
fill sampling strategy. Existing BGO methods for
interval uncertainty propagation (De Munck et al.
(2009); Liu et al. (2019)) mainly focus on develop-
ing efficient infill sampling strategies to reduce the
number of response function calls. Nevertheless,
most strategies only allow to choose one update
point in each iteration and obtain the global min-
imum and maximum responses separately. Some
parallel BGO methods (Dang et al. (2022)) enable
to address this issue, however, they may still en-
counter problems related to the selection of update
points. On the one hand, the location of selected
update points may be too close to their neighbors,
causing unnecessary computational wastes. On the
other hand, too many update points can be added at
one iteration, some of which may only have little
contribution to the GP model refinement.

In this work, a novel parallel BGO method,
named parallel Bayesian interval optimization
(PBIO), is proposed for estimating the response
bounds of structures with interval uncertainties. To
reduce the simulation time of existing BGO, a two-
stage infill sampling strategy that allows parallelism
is developed. The proposed strategy enables to se-
lect a batch of diverse and informative points in
each iteration, and obtain the lower and upper re-
sponse bounds simultaneously in a single run. The
effectiveness of PBIO is verified by a static finite
element example.

2. PROBLEM STATEMENT
In the context of finite element method, a general

governing function for structural static analysis can
be expressed as

KKK (uuu)uuu = FFF , (1)

where KKK (uuu) is an nu × nu stiffness matrix for non-
linear case, which can also be KKK (uuu) = KKK for linear
case; uuu is a nu-dimensional static displacement vec-
tor; FFF is a nu-dimensional external load vector; and
nu is the degrees of freedom of the structure. Eq. (1)
is usually solved with all involved parameters pre-
cisely given. However, such deterministic analysis
is not suitable for practical engineering problems
where uncertainties need to be considered. For the
case of lack of knowledge, the input parameters of
Eq. (1), such as material properties and external
loads, are subject to pure epistemic uncertainty. In
this paper, such epistemic uncertainty is modeled
by intervals. Denote the input uncertain parameter
vector as xxxI =

[
xI

1,x
I
2, ...,x

I
ns

]
, we have

xxxI = [xxx,xxx] = {xxx ∈ Rns |xxx ⩽ xxx ⩽ xxx} , (2)

where xxx =
[
x1,x2, ...,xns

]
and xxx = [x1,x2, ...,xns ] are

the lower and upper bounds of xxxI , respectively; and
ns is the number of variables in xxxI . Then the gov-
erning equation can be rewritten as

KKK
(
xxxI)uuu

(
xxxI)= FFF

(
xxxI) . (3)

By solving Eq. (3), any static response of inter-
est, such as stress and strain at a critical location,
can be derived from its relationship with uuu. Let us
consider a response function written as

yI = f
(
uuu
(
xxxI))= g

(
xxxI) , (4)

where yI =
[
y,y

]
=
{

y ∈ R
∣∣y ⩽ y ⩽ y

}
denotes the

response of concern, which is one-dimensional and
is also an interval valued with lower and upper
bounds y and y; f (·) is the function describing the
relationship between yI and uuu

(
xxxI); g(·) represents

the mapping from xxxI to yI . To evaluate the effect of
uncertainty over yI , the main objective is to obtain
y and y, which can be regarded as the solutions of
following optimization problems:

y = min{y |y = g(xxx) ,xxx ⩽ xxx ⩽ xxx} , (5)
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y = max{y |y = g(xxx) ,xxx ⩽ xxx ⩽ xxx} . (6)

Although the definitions are simple, for most cases,
analytical solutions for y and y are difficult to ac-
quire since the response function (i.e., Eq. (4)) is
usually implicit and expensive to evaluate. Alter-
natively, we can resort to numerical approximation
methods that estimate y and y. However, existing
numerical approximation methods are usually un-
able to strike the balance between estimation accu-
racy and computational efficiency. Hence, a novel
method for evaluating Eqs. (5) and (6) is proposed,
which is given in detail in the following section. For
notational simplicity, the superscripts of xxxI and yI

are omitted when there is no confusion.

3. PROPOSED METHOD
3.1. Gaussian process model

Following the Bayesian approach, a prior belief
about the response function can be modeled by a
stochastic process model. Commonly, the Gaus-
sian process (GP) model can be applied for the pur-
pose. In this manner, the prior belief about the re-
sponse function can be described as ŷ0 = ĝ0 (xxx) ∼
GP(µ0 (xxx) ,κ0 (xxx,xxx′)), where µ0 (xxx) and κ0 (xxx,xxx′)
are the prior mean and covariance function, re-
spectively. According to Williams and Rasmussen
(2006), there are various kinds of prior mean and
covariance functions. Here, we consider the mean
to be a constant such that µ0 (xxx) = µ̃ ∈ R, and the
covariance function takes the squared exponential
form as

κ0
(
xxx,xxx′

)
= σ

2
0 exp

(
−1

2
(
xxx− xxx′

)
ΣΣΣ
−1 (xxx− xxx′

)T
)
,

(7)
in which σ2

0 > 0 is the overall variance; ΣΣΣ =
diag

(
l2
1 , l

2
2 , ..., l

2
ns

)
is a diagonal matrix and li >

0, i= 1, ...,ns is the characteristic length scale in the
i-th dimension. Here, a total of ns +2 unknown hy-
perparameters ψψψ = {µ̃,σ0, l1, ..., lns} are involved.

Suppose we have N ∈ Z+ observations that
are collected in a training dataset D = {XXX ,yyy} ={

xxx(1), ...,xxx(N),y(1), ...,y(N)
}

, where y(i) = g
(

xxx(i)
)

.
Based on D , the hyperparameters can be evaluated
by maximizing the log marginal likelihood function
as:

ψψψ
⋆ = argmax

ψψψ
(log(p(yyy|XXX ,ψψψ))) , (8)

with

log(p(yyy|XXX ,ψψψ)) =−1
2 (yyy− µ̃)T KKK−1

0 (yyy− µ̃)

−1
2 log(|KKK0|)− N

2 log(2π) ,
(9)

where KKK0 is an N ×N covariance matrix with its
(i, j)-th element as κ0

(
xxx(i),xxx( j)

)
.

Once ψψψ is determined, a posterior distribution of
response function, denoted as yn = gn (xxx), can be
acquired by conditioning the GP-prior on D . This
distribution still follows a GP, i.e., ŷn = ĝn (xxx) ∼
GP(µn (xxx) ,κn (xxx,xxx′)). The posterior mean µn (xxx)
and covariance function κn (xxx,xxx′) are derived in a
closed form:

µn (xxx) = µ0 (xxx)+κκκ0 (xxx,XXX)KKK0
−1 (yyy−µ0 (XXX)) ,

(10)

κn
(
xxx,xxx′

)
= κ0

(
xxx,xxx′

)
−κκκ0 (xxx,XXX)KKK0

−1
κκκ0

(
xxx′,XXX

)T
,

(11)
in which κκκ0 (xxx,XXX) is an 1×N covariance vector de-
scribing the dependency between xxx and XXX , whose
i-th component is κκκ0

(
xxx,xxx(i)

)
; κκκ0 (xxx′,XXX) is simi-

larly defined; µ0 (XXX) is an N × 1 mean vector with
i-th element as µ0

(
xxxi). In this manner, a full pre-

dictive distribution at a new observation xxx follows
the Gaussian distribution such that ŷn = ĝn (xxx) ∼
N
(
µn (xxx) ,σ2

n (xxx)
)
, where µn (xxx) can be regarded as

the predictor and σ2
n (xxx) = κn (xxx,xxx) measures the

prediction uncertainty.

3.2. Proposed two-stage infill sampling strategy

In order to find the lower and upper response
bounds with fewer response function calls, a novel
two-stage infill sampling strategy is developed here
for GP model refinement. First, multiple update
points associated with the minimum and maximum
responses are selected at each iteration based on a
newly developed acquisition function and an im-
proved multi-modal optimization algorithm. In this
regard, better approximations of the bounds are
obtained simultaneously. Subsequently, additional
update points related to the minimum or maximum
response are selected to avoid possible local conver-
gence. The proposed strategy is described in detail
below.
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3.2.1. First stage: averaged EI
Following the traditional expected improvement

(EI) (Jones et al. (1998)), a new acquisition function
is defined to guide the selection of update points as-
sociated with improving both the current minimum
and maximum responses.

Let ymin =min
{

y(1),y(2), ...,y(N)
}

be the current
minimum value of response in D . The improve-
ment at a new point xxx over ymin can be measured as
Imin (xxx) = max(ymin − ĝn (xxx) ,0). The traditional EI
is defined as the expected value of Imin (xxx) condi-
tioning on the current training dataset D , which has
the analytical expression as

L EI
min (xxx) = ED [Imin (xxx)]

= (ymin −µn (xxx))Φ

(
ymin−µn(xxx)

σn(xxx)

)
+σn (xxx)φ

(
ymin−µn(xxx)

σn(xxx)

)
,

(12)

where φ (·) and Φ(·) represent the probability den-
sity function and cumulative distribution function
of the standard Gaussian distribution, respectively.
The promising point to be added in D is selected by
maximizing the EI over ymin:

xxx+min = arg max
xxx∈[xxx,xxx]

L EI
min (xxx) . (13)

Note that maximizing the first term in Eq. (12)
reflects the preference for point xxx with response
value smaller than ymin, while maximizing the sec-
ond term in Eq. (12) prefers the point xxx with a larger
prediction uncertainty.

Similarly, let ymax = max
{

y(1),y(2), ...,y(N)
}

be
the current maximum response among D . The EI
over current ymax can be defined as

L EI
max (xxx) = (µn (xxx)− ymax)Φ

(
µn(xxx)−ymax

σn(xxx)

)
+σn (xxx)φ

(
µn(xxx)−ymax

σn(xxx)

)
.

(14)

The promising update point is selected by the fol-
lowing optimization:

xxx+max = arg max
xxx∈[xxx,xxx]

L EI
max (xxx) . (15)

Note that the traditional EI selects only one up-
date point at each iteration, which does not allow

to evaluate the response value in parallel. More-
over, the lower and upper response bounds can only
be obtained in two separate optimization schemes,
namely, Eqs. (13) and (15). In this regard, the tra-
ditional EI has limited computational efficiency in
estimating the response bounds.

To overcome the limitations of traditional EI, a
basic idea is to choose multiple update points that
contribute to the improvement of both the lower and
upper bounds of the response in a single iteration,
so as to find better approximations of the minimum
and maximum responses simultaneously. A simple
way to do this is to form an acquisition function that
considers the improvements to the minimum and
maximum estimated responses in the current itera-
tion. Since the amount of improvement over ymin or
ymax in each iteration is not known in advance, the
improvements to ymin and ymax are treated equally
in the acquisition function. Hence, an averaged EI
(AvEI) function is formulated, which is defined as

L AvEI (xxx) =
1
2
L EI

min (xxx)+
1
2
L EI

max (xxx) . (16)

In this manner, the update point to be added in D
can be found by maximizing the proposed AvEI
function over the input range:

xxx+ = arg max
xxx∈[xxx,xxx]

L AvEI (xxx) . (17)

Note that to capture multiple update points asso-
ciated with both the minimum and maximum re-
sponses based on the AvEI function, a multi-modal
optimization (MMOP) algorithm is required. Such
algorithm captures the local maxima of the AvEI
function and therefore allows the selection of up-
date points at each AvEI maximum. Recently,
a series of MMOP algorithms have been devel-
oped. Among these algorithms, it has been found
that the Evolutionary Multi-Modal Optimization
based Multi-Objective Optimization (EMO-MMO)
(Cheng et al. (2017)) is more advantageous due to
its applicability to infinite optimal set and its robust
performance in benchmark comparisons. Hence,
the EMO-MMO is used here to select update points.
However, since the EMO-MMO was developed for
capturing multiple global optima rather than local
optima, an improved EMO-MMO that finds local
maxima is proposed in the following section.
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3.2.2. Improved multi-modal optimization algo-
rithm

A general procedure of the EMO-MMO (Cheng
et al. (2017)) applied to find the maxima of the
AvEI function is briefly summarized below.

To begin with, a multiobjective fitness landscape
approximation (MOFLA) is developed to obtain
the approximate fitness landscapes that reflects the
shape characteristics of the AvEI function (Cheng
et al. (2017)). In the MOFLA, the MMO is
first transformed to a multi-objective optimization
(MOP) with the first optimization objective as the
AvEI function and the second optimization objec-
tive being a grid-based diversity indicator. Here,
the widely used Elitist Non-Dominated Sorting Ge-
netic Algorithm (NSGA-II) (Deb et al. (2002)) is
utilized to perform the transformed MOP. The can-
didate solutions created in each generation during
MOP are stored in a set Dland = {Xland,Yland} as
the approximate fitness landscape, where Xland ={

xxx(1)land,xxx
(2)
land, ...

}
and Yland = L AvEI (Xland).

Then, based on Dland, the possible regions of all
local AvEI maxima can be located by identifying
the peaks of the fitness landscape. Such peak iden-
tification is performed by using a binary cutting-
based adaptive peak detection (BC-APD) technique
(Cheng et al. (2017)). The basic idea is to make a
cut at the top of Dland to form a gap that disconnects
the peaks from each other, so that the peaks can
be identified based on the gaps. The BC-APD first
makes an initial cut at the top of Dland, using a user-
defined cutting ratio γ ∈ (0,1) to generate a cut-
ting slice Dc = {Xc,Yc}, where Xc =

{
xxx(1)c ,xxx(2)c , ...

}
and Yc = L AvEI (Xc). Note that in order to identify
the peak sets that include the local maxima of the
AvEI function, the initial γ is set to be 0.9. After
that, each peak set within Dc is identified succes-
sively by checking the neighboring distances be-
tween each point in Xc. Here, an adaptive threshold
is required for each peak set to determine whether
neighboring points belong to the same peak, which
is defined as

η = max
i

{
min
j ̸=i

∥∥∥xxx(i)c − xxx( j)
c

∥∥∥
1

}
(18)

The neighboring points having distances smaller

than η will be regarded as belong to the same peak.
Afterwards, binary cuttings with γ = 0.5 are suc-
cessively operated based on Dc until all points in
Dc have been assigned to a corresponding peak.

Subsequently, on the basis of the detected peak
sets and Dland, local search is implemented inside
each peak set to obtain the final result of all lo-
cal AvEI maxima. Here, a competitive swarm op-
timizer (CSO) (Cheng and Jin (2014)) is directly
applied to independently search for the maximum
within each peak.

However, the EMO-MMO may have some prob-
lems when searching for local maxima. First, the
EMO-MMO sometimes obtains points with lower
AvEI function values around the local AvEI max-
ima. This is due to the fact that some of the peak
sets detected by the BC-APD may be "fake" peak
sets, i.e., not the actual peak sets of the fitness
landscape. The fitness landscape points contained
in these "fake" peak sets may be a set of fitness
landscape "outliers" that have their neighboring dis-
tances slightly greater than the threshold defined in
Eq. (18) but should still belong to the same peak set
of neighboring points. In this case, these "outliers"
will be identified as belonging to a new and "fake"
peak set rather than to the actual peak set of fitness
landscape. Second, the AvEI function in a single
iteration may have many local peaks, resulting in
many update points being added. Some of these
update points may have very low AvEI function
values, indicating negligible contributions to GP
model refinement. If this is the case, adding such
update points would result in unnecessary compu-
tational waste. Hence, to improve computational
efficiency, it is desired to select update points that
contribute significantly to GP model refinement.

In this regard, we propose two schemes to im-
prove the EMO-MMO. First, a peak checking
scheme is developed to remove the "fake" peak sets.
The idea is to generate a set of equidistant addi-
tional points around the point xxx corresponding to
the maximum AvEI function value of each peak
set, and then remove the "fake" peak set whose
maximum function value is lower than one of the
function value of the additional points. For conve-
nience, we propose to first project the input space
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to a unit hypercube space. The additional points for
each peak set can be then generated by a grid-based
scheme based on the transformed space. Specifi-
cally, we pick 8 equidistant additional points along
the boundary of an equidistant grid that is formed
around the point xxx corresponding to the maximum
value of AvEI function for each peak set. Take a
two-dimensional input as an example. The equidis-
tant additional points distributed around the point
corresponding to the maximum function value of
the detected peak set are shown in Figure 1. Here,
the distance Ddist between the point related to max-
imum and each additional point takes 0.0002. By
comparing the AvEI function values of these 9
points, the "fake" peak set can be identified and then
removed.

0.4998 0.5 0.5002
0.4998

0.5

0.5002

Additional points

Point corresponding to maximum

Figure 1: Additional points for "fake" peak set checking

Second, to reduce the number of possibly exces-
sive update points, a cluster-based scheme is pro-
posed to only select update points that contribute
significantly to GP model refinement in one iter-
ation. Here, the density-based spatial clustering
of applications with noise (DBSCAN) (Ester et al.
(1996)) is adopted to cluster the update points.
Since the input space is transformed into a unit hy-
percube space and there is only one maximum value
per peak set, the neighborhood search radius is set
to ζ = 0.1 and the minimum number of neighbor-
hoods nminpts required to identify the core point is
set to 1. In each cluster, among all included up-
date points, the update point with the largest AvEI
function value is selected as the update point to be
added in D . In addition, the maximum number of
update points n+ is required to be no greater than a
user-defined number qmax. Therefore, only the first
qmax update points with larger AvEI function val-

ues are finally added to the training dataset D , i.e.,
xxx+ =

{
xxx(1),+, ...,xxx(n+),+

}
,n+ ⩽ qmax.

3.2.3. Stopping criteria and second stage
Based on the proposed AvEI function and im-

proved MMO algorithm, the selected update points
will be successively added to D until a stopping cri-
terion is satisfied. Considering that the magnitude
of the response function may be quite large, a nor-
malized stopping criterion is applied:

maxxxx L AvEI (xxx)
max

{
y(1), ...,y(N)

}
−min

{
y(1), ...,y(N)

} < ε1,

(19)
where ε1 is a user-defined small convergence
threshold, which can be specified as 10−3 − 10−2.
To accommodate stochastic evaluations, a delayed
judgment is adopted such that the above stopping
criterion is required to be satisfied for several times
(e.g., three times).

It is found that sometimes the first stage may con-
verge too quickly to accurately obtain the global
maximum and minimum of y. To avoid this, a sec-
ond stage based on L EI

min (xxx) and L EI
max (xxx) is per-

formed after Eq. (19) is satisfied. Two more stop-
ping criteria are checked:

maxxxx L EI
min (xxx)

max
{

y(1), ...,y(N)
}
−min

{
y(1), ...,y(N)

} < ε2,

(20)
and

maxxxx L EI
max (xxx)

max
{

y(1), ...,y(N)
}
−min

{
y(1), ...,y(N)

} < ε3,

(21)
where ε2 and ε3 are two small thresholds specified
by users. If either of Eqs. (20) and (21) is not satis-
fied, then it is necessary to add a set of update points
to D using the improved MMO algorithm accord-
ing to either Eq.(13) or Eq.(15).

3.3. Proposed algorithm
Based on the GP model and proposed two-stage

infill sampling strategy, a novel parallel Bayesian
interval optimization (PBIO) method is proposed
here for estimating the lower and upper bounds of
y. The implementation procedure of the PBIO is
provided as follows:
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Step 1: Initialization. According to the response
function y = g(xxx) and the inputs xxxI , define the
minimization and maximization optimization prob-
lems as Eqs. (5) and (6). Specify the initial sam-
ple size Nini (e.g., Nini = 10), and then generate
the corresponding training dataset D = {XXX ,yyy} ={

xxx(1), ...,xxx(Nini),y(1), ...,y(Nini)
}

of size Nini using

Latin hypercube sampling over xxxI . Set N = Nini.

Step 2: Train a GP model. Construct a GP model
ŷn = ĝn (xxx) ∼ GP(µn (xxx) ,κn (xxx,xxx′)) based on D .
The involved hyperparameters can be evaluated by
Eq. (8).

Step 3: Check the stopping criterion given by
Eq. (19)), where the threshold ε1 can be any small
value, such as 0.02. If Eq. (19) is satisfied for three
times consecutively, then go to Step 5; otherwise,
go to Step 4.

Step 4: Identify update points in the first stage. A
set of update points xxx+ =

(
xxx(1),+, ...,xxx(n+),+

)
are

identified by Eq. (17) using the improved MMO
algorithm, where n+ ⩽ qmax and qmax can be any
positive integer. Then, go to Step 7.

Step 5: Check the two stopping criteria given by
Eqs. (20) and (21), where the thresholds ε2 = ε3 =
ε1 for convenience. If both Eqs. (20) and (21) are
satisfied, then go to Step 8; otherwise, go to Step 6.

Step 6: Identify update points in the second
stage. A set of update points are identified by either
Eq. (13) or Eq. (15) using the improved MMO al-
gorithm according to the unsatisfied local stopping
criteria. Then, go to Step 7.

Step 7: Enrich the training dataset. Evaluate the
response over the identified update points in par-
allel. And then, add both the identified update
points and corresponding responses into D such
that D = D ∪Dadd, where Dadd = {xxx+,g(xxx+)} and
xxx+ with size n+ include update points from both
first and second stages. Set N = N + n+ and then
return to Step 2.

Step 8: Record results and end the algo-
rithm. Record y = min1⩽i⩽N g

(
xxx(i)

)
and y =

max1⩽i⩽N g
(

xxx(i)
)

as the estimates of lower and up-
per response bounds, and then end the algorithm.

4. CASE STUDY

To demonstrate the effectiveness of the proposed
PBIO, a static finite element example involving a
3D elastic cantilever beam subjected to stress (van
Alem (2022)) is studied here. The geometry of the
cantilever beam is shown in Figure 2, where the
F5 surface is supported and the F2 surface is under
stress loading. The structural response of interest
is the maximum vertical displacement of the beam,
which is evaluated by using the Partial Differential
Equation (PDE) toolbox in MATLAB software. Six
mutually independent interval variables are consid-
ered here, whose description is listed in Table 1.

The lower and upper response bounds are esti-
mated by the PBIO, particle swarm optimization
(PSO) algorithm, vertex method (Dong and Shah
(1987)), and non-parallel BGO (N-PBGO) (Jones
et al. (1998); Dang et al. (2022)), where their ob-
tained results are given in Table 2. Here, the param-
eters of PBIO are set as: Nini = 10, Ddist = 0.0002,
ε1 = ε2 = ε3 = 0.02, and qmax = 8. The PSO result
is served as the reference result, which is obtained
by two independent minimization and maximiza-
tion optimizations. In addition, the N-PBGO results
are evaluated by two separate optimizations using
the traditional EI (i.e., Eqs. (12) and (14)) with
Nini = 10, whose stopping conditions (i.e., Eqs.
(20) and (21)) need to be satisfied twice succes-
sively and use the same threshold as ε1. It is found
that although PBIO provides a slightly narrower re-
sponse interval than the PSO result, PBIO requires
only 16 simulations in total and 4 iterations, which
is much more efficient than PSO. Besides, the re-
sponse bounds estimated by vertex method using 8
processors for parallel computation have acceptable
accuracy but require more simulations than PBIO.
Moreover, N-PBGO performs worse than PBIO,
which uses more simulations and iterations to ob-
tain a narrower response interval.
Table 1: Description of interval variables

Variable Unit Description Interval
E Pa Young’s modulus

[
1.8×1011,2.2×1011

]
υ - Poisson’s ratio [0.25,0.35]
P Pa Applied stress

[
1.5×107,2.5×107

]
l m Length of beam [0.095,0.105]
b m Width of beam [0.0095,0.0105]
h m Height of beam [0.0095,0.0105]
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Figure 2: Geometry of the beam

Table 2: Comparison of results by different methods

Method y (mm) y (mm) N Niter

PSO 1.9959 7.5448 6420 6420
Vertex 1.9967 7.5425 64 8
N-PBGO 1.9972 7.4408 26 26
PBIO 1.9968 7.5442 16 4

5. CONCLUSIONS
In this paper, a parallel Bayesian interval opti-

mization (PBIO) method is proposed for static anal-
ysis of structures with interval uncertainties. A new
two-stage infill sampling strategy, including a new
acquisition function and an improved MMO algo-
rithm, is developed to guide the optimization search
towards the global minimum and maximum of re-
sponse with improved efficiency. Such strategy en-
ables to add multiple update points at each iteration
and obtain both lower and upper response bounds
simultaneously in a single run. The feasibility of
the proposed PBIO is tested with a static finite ele-
ment analysis example. The results show that PBIO
is able to find the lower and upper response bounds
with a reduced computational cost.
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