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ABSTRACT: In the past decade, the use of drones, or unmanned aircraft systems (UAS), to supplement 

engineering activities such as structural inspections has increased considerably due to the advances in 

the associated technology in terms of UAS positioning, operation, control, and payload capacity. High-

resolution imagery of structures obtained using drones fitted with digital cameras can be post-processed 

using computer vision and photogrammetry techniques to potentially provide more reliable structure 

geometry and inventory, structure condition, and structural performance (SHM) data, in less time and 

possibly at a lower cost than current methods. This approach can aid Principal Inspections for bridge 

structures, particularly where access is difficult, obviating the need for expensive under-bridge 

equipment and/or lane closures. However, challenges remain for the widespread implementation of 

drones for bridge inspections, primarily relating to measurement accuracy and stabilisation of images 

recorded during drone flight, while issues around safety and regulation can also limit UAS operation for 

this purpose. This paper presents a brief overview of these challenges and investigates the use of 

computer vision and photogrammetry techniques for measurement and defect detection in bridge 

elements. This is carried out via the processing of images of concrete bridge elements obtained using 

low-cost drones. 

1. INTRODUCTION 

Due to concentrated periods of development and 

construction, a significant proportion of built 

infrastructure is now reaching or is already past 

their original design life. This results in greater 

risk of failure and increasing economic costs in 

terms of preventative maintenance. For example, 

from about the year 1990, bridge maintenance 

costs have exceeded construction costs of new 

bridges in highly industrialised countries 

(Miyamoto and Motoshita, 2015). Furthermore, 

as of the year 2021 in the United States, the 

backlog in bridge rehabilitation costs was 

estimated at $125 billion (ASCE, 2021). To 

address these high maintenance costs and reduce 

bridge rehabilitation backlogs, it is important to 

implement efficient and effective bridge 

inspection campaigns as these form the basis of 

maintenance programs, inform key decision 

makers and motivate them to prioritise actions. 

Key aspects for a successful inspection include 

defect detection, defect documentation and 

effective communication of information on 

defects information to the aforementioned 

decision makers (Collins et al, 2018).  

Infrastructure condition assessment has 

traditionally been carried out by visual inspection;  

bridge inspectors visually inspect the entire bridge 
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structure at arm’s length. Where access is difficult 

such as where a safe working platform cannot be 

mounted under bridge decks, or on high bridges, 

underbridge equipment worth hundreds of 

thousands of euros or dollars (Wells and 

Lovelace, 2018) is required and usually results in 

accompanying expensive lane closures. During 

this process, a thorough record of all defects such 

as cracks, spalls, material degradation are 

manually recorded on inspection forms or the 

bridge itself, or both. The quality and quantity of 

the defects recorded during a visual inspection are 

dependent on the ability of the inspector. 

However, visual inspections have been shown to 

lack consistency from inspector to inspector and 

lack repeatability (Moore et al, 2000).  

Approaches supported by technology, 

including sensor-based condition and assessment 

methods, have become increasingly popular to 

obtain more information about a bridge’s 

performance and to assist in addressing the 

challenges facing traditional approaches. These 

sensor-based approaches aim to provide 

information on the static and/or dynamic 

behaviour of a bridge that allows inspectors to 

infer the bridge’s structural condition. Typically, 

quantities such as displacement, strain and 

acceleration are measured using wired or wireless 

sensing and data acquisition systems, including 

non-contact optical and infrared (Matsumoto et al 

2013) camera-based techniques; the latter offering 

the potential to directly identify and quantify 

defects such as cracks. Non-contact and wireless 

systems have also become commonplace in 

bridge assessment and monitoring applications as 

they can hold the advantage of removing, or 

reducing the need to directly instrument 

structures, and the requirement for specialist 

access equipment for visual inspections, thereby 

reducing the safety risk also. 

2. UAS IMPLEMENTED BRIDGE 

INSPECTIONS 

In recent years, bridge inspections incorporating 

unmanned aircraft systems (UASs), or drones, in 

the inspection process have been advanced as a 

promising alternative (Zink and Lovelace, 2015). 

UAS assisted bridge inspections have the dual 

benefit of implementing non-contact sensing 

technologies while allowing remote access to 

difficult regions on a bridge structure. However, 

there are a number of challenges associated with 

this and hence research on this topic is growing, 

in parallel with ever-increasing interest in the 

technology by hobbyists.  

According to the Federal Aviation 

Administration (FAA) in the United States, in the 

recent past, hobbyist purchases of drones have 

increased exponentially with purchases of drones 

expected to grow from $1.9 million in 2016 to 

$4.3 million by 2020, while the sale of drones for 

commercial purposes was expected to grow from 

$600,000 in 2016 to a potential of $2.7 million by 

2020 (FAA, 2016). The overall global market is 

expected to reach around $58 billion by 2026. As 

of April 2022, there were almost one million 

drones registered with the FAA, with around a 

third of these for commercial operations. In 

Ireland, the number of drone operators increased 

by 50% in the calendar year 2022, with this 

increase also expected to be reflected across 

Europe.  

Ham et al (2016) undertook a review of 

visual monitoring of civil infrastructure systems 

via camera-equipped UASs. They note that there 

has been an exponential growth in the use of 

UASs equipped with cameras for visual 

monitoring of construction and operation of civil 

infrastructure. This rapid rise in the architecture 

and civil engineering community has been 

attributed to the equally rapid improvement in 

UAS technology that has led to UASs being 

cheaper, more reliable and easier to operate. 

Collins et al (2018) evaluated the use of 

drones for bridge inspections in a four year study 

and demonstrated that a qualified bridge inspector 

utilising a drone can improve the ability to detect 

deficiencies and provide high quality high-

resolution digital and infrared images. The use of 

these types of drones may also reduce the need for 

expensive access methods and traffic control. 

Zink and Lovelace (2015) also demonstrated that 

using collision resistant drones, it is possible to 
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inspect under bridges and in tight and congested 

areas where flying a drone would be otherwise 

difficult. It is shown that with these specialised 

drones, nearly 100 percent inspection coverage of 

a bridge can be achieved, equipping inspectors 

with high-resolution imagery for continued offsite 

defect inspection. These high-resolution images 

can be further processed into 3D photogrammetry 

models where defects are recorded, either from 

the annotations marked on the bridges and 

photographed, or the inspector can zoom into a 

region of interest on the model and annotate the 

defects.  

Feroz and Dabous (2021) review UAV (or 

UAS) based remote sensing applications for 

bridge infrastructure, highlighting the wide range 

of literature on the topic and techniques that can 

be utilized successfully for defect detection, 3D 

model building, including optical images, LiDAR 

and infrared thermography. They note the 

technical challenges and practical limitations 

associated with UAS approaches, some of which 

relate to the equipment capabilities, battery 

power, and data analysis requirements etc. An 

important challenge is raised regarding the lack of 

standardized procedures for UAS assisted bridge 

inspections. This is likely due to the relatively 

recent development of the body of research in this 

area; the emergence of a comprehensively 

validated, reliable and robust common approach 

is needed to address this, in order to be accepted 

by the wider community of bridge inspectors, 

managers and owners. Considering the large 

volume of data that can generated by UAS 

assisted bridge inspections, the evolution of 

existing Bridge Management Systems to a higher 

level is expected necessary to accommodate this 

(Habeenzu et al, 2021). 

Kim et al (2022) carried out a comparative 

study of a UAS assisted bridge inspection 

approach against a conventional human-based 

approach, carried out on the basis of a UAS-based 

Bridge Management System (U-BMS), and a 

deep learning-based damage identification 

method. The automated UAS based approach was 

more objective, allowed more accurate 

measurements of defects such as crack widths (of 

less than 0.3 mm) and lengths, and was faster; 

although confirming the best way to incorporate it 

within a BMS requires further work. 

While the state of the art in bridge 

inspections is promising, at present, a bridge 

inspector is still required to manually annotate 

defects. The amount of images produced during a 

bridge inspection using drones can range from 5 

to 50 Gigabytes of data (Wells and Lovelace 

2018) which remains a daunting task to manage 

and sift through to find the required images to 

annotate accordingly. In fact, this extra time to sift 

through and process data obtained from a UAS 

assisted inspection is responsible for increasing 

costs of UAS assisted inspections compared to 

traditional approaches. Furthermore, in some 

cases, the challenge of visual inspection is simply 

shifted from the bridge site to the computer screen 

when 3D bridge models are generated.  

Automated approaches that can automatically 

detect defects are thus desirable, however, these 

can also have associated computational time and 

equipment costs in order to achieve useful results. 

It is also desirable to reduce the time duration, and 

hence the associated cost, of this automated post 

inspection processing. This paper thus presents a 

simple approach for the automatic annotation of 

3D photogrammetric models obtained using a 

low-cost UAS, with a focus on crack detection 

and measurement, and briefly summarizes some 

of the remaining challenges that UAS assisted 

inspections face. 

3. METHODOLOGY OF SIMPLE 

AUTOMATED APPROACH 

As 3D photogrammetric models are generated 

from high quality images, the generated models 

are large files in the form of point clouds that 

makes analysis of these models for defects a 

challenging task for any automated computer 

algorithm. In this paper, crack defect annotation 

in 2D images prior to generation of 3D models is 

explored. The proposed pipeline is shown in 

Figure 1 below. 

The relatively low-cost DJI Spark and Mavic 

Pro 2 drones are used in this study to capture 
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images of a concrete cube and concrete beam 

representative sample in the lab. The drones are 

held by hand and images captured. The relevant 

drone specifications are summarised in Table 1. 

 
Figure 1: Annotated 3D model generation workflow.  

 
Table 1: Drone specifications  

 

  

Drone DJI Spark 
DJI Mavic Pro 

2 

Release Date April 2017 21 August 2018 

Dimensions 

(W x H x D) 

143×143×5

5 mm 

322x242x84 

mm 

Weight 0.3 kg 0.9 kg 

Camera 

Sensor and 

resolution 

1/2.3" 

CMOS 

Effective 

pixels: 12 

MP 

1-inch CMOS " 

Effective 

Pixels: 20 MP 

Video 

Resolution 

FHD: 

1920×1080 

30 fps 

1080p video up 

to 30 fps 

Field of View 81.9° 77° 

3.1. Crack detection 

Crack detection is one of the major activities in 

bridge inspection as deterioration usually 

manifests itself as cracking. Cracks can be an 

indication of distress, or the manifestation of 

material failure, which make a bridge vulnerable 

to further deterioration, and early failure. Several 

studies have been conducted to identify cracks 

from 2D images. The current state of the art uses 

image intensity thresholding, deep learning 

algorithms (Kim et al 2022) or machine learning 

classifiers (Spencer et al 2019). None of these 

approaches are universally effective and remain 

active areas of research. This study uses 

thresholds or edge detection techniques as they 

are easy to implement using a computer and will 

suffice for the requirements of this study. 

To extract crack features from images, cracks 

are taken as ‘edges’ where an edge is defined as 

pixels at which there is an abrupt change in pixel 

intensity value. Mathematically abrupt changes in 

intensity values can be detected using derivatives. 

In image processing this is approximated by the 

digital difference in the horizontal, vertical and 

diagonal directions of an image. The digital 

difference in the horizontal x direction (and 

similarly in the vertical y direction) is given 

mathematically as (further details can be found in 

Gonzalez and Woods (2007)): 

  
𝜕𝑦

𝜕𝑥
= 𝑓′(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥) (1) 

 

More advanced edge detection methods take 

into account the edge characteristics and noise 

content of an image. One such method is the 

Canny edge detector. The Canny edge detector 

was formulated with three key performance 

criteria in mind, that is, good detection, good 

localisation and only one response to a single edge 

(Canny, 1986). The steps in the Canny edge 

detector can be summarised as follows: 

• Smooth the input image with a Gaussian 

filter to reduce noise and accentuate 

edges; 

• Compute the gradient magnitude and 

angle images; 

• Apply non-maxima suppression to the 

gradient magnitude image to retain only 

the strongest edge response; and 

• Use double thresholding and connectivity 

analysis to detect and link edges. 

This results in an edge image with edges only 

one pixel wide. The canny edge detector is used 

in this study due to its superiority in localising and 

detecting edges. As can be seen in Figure 2(b), the 

process of extracting edges results in noisy images 

in which unimportant features are detected. 

Capture Images
Crack 

Detection and 
Mark-up

Photogrammetric 
3D Modelling 

Calibration and 
Annotation
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(a) (b) (c) 

Figure 2: (a) Original Image (b) Initial edge 

detection (c) after classification of crack or non-

crack 

 

One addition pre-processing method is added 

to the Canny algorithm in this study to reduce the 

noise. A threshold is employed that limits the 

greyscale image pixel intensity to a maximum 

value of two standard deviations below the mean 

greyscale pixel intensity. A further refinement is 

employed after edges have been detected by 

filtering out non-crack like features that: (i) Are 

smaller than a predetermined pixel length, (ii) 

have a ratio of major axis to minor axis that 

approaches to that of a circle, (iii) are completely 

straight as cracks by nature display a property 

called tortuosity, that is, they twist and turn. 

Figure 2(c) shows the improved crack detection 

after application of the above methods.   

3.2. Photogrammetry 

The word “photogrammetry" is derived from the 

three Greek words phos or phot, meaning light; 

gramma, which means letter or something drawn, 

and metrein, the noun of measure. It is defined by 

the American Society for Photogrammetry and 

Remote Sensing (ASPRS, 2020) as “the art, 

science and technology of obtaining reliable 

information about physical objects and the 

environment, through processes of recording, 

measuring and interpreting images and patterns 

of electromagnetic radiant energy and other 

phenomena”. 

One of the main algorithms and approaches 

used to reconstruct the 3D geometry of an object 

or a scene from 2D images in photogrammetry is 

structure from motion (SfM). The SfM algorithm 

aims to derive the 3D scene points and all the 

camera relative poses from correspondence 

feature points in multiple overlapping 2D images. 

Scale ambiguity remains thus the reconstructed 

scene needs to be scaled to the correct scale after 

the reconstruction process. When all the camera 

poses and 3D points and camera poses have been 

determined, a mesh of the scene is created and 

textured to create the full 3D model as represented 

in the 2D images. The full SfM pipeline is 

summarised in Figure 4 below. In this study, 

Autodesk Recap Photo was used to create the 3D 

models. 

 

 
Figure 3: Structure from motion pipeline 

 

4. EXPERIMENTAL SETUP 

A 100x100x100 mm crushed concrete cube and a 

65x100x1800 mm cracked concrete beam were 

used as representative specimens in this study. 

The concrete cube was used to generate a 

complete 3D model using images captured by the 

DJI Mavic 2 Pro while only the beam face was 

studied using images obtained from the DJI Spark 

drone. The concrete cube and beam are shown in 

Figure 5 below. A total of 62 overlapping photos 

were used for the concrete cube and 39 for the 

concrete beam. 

The edge detection was carried out in 

MATLAB and the 3D modelling using Autodesk 

Recap. An HP Envy laptop with an Intel Core i7-

5500U (Intel Core i7) processor and NVIDIA 

GeForce GTX 850M - 4096 MB graphics card 

was used in this study. To speed up processing 

time in MATLAB, the image size was reduced by 

50% from about 5.2 MB to 2.6 MB for the Mavic 

2 Pro and from about 2.8 MB to 1.4 MB for the 

Spark. 

Input Images
Feature 

extraction 
Image 

matching

Estimate 
camera poses

Triangulate 
3D points

Bundle 
adjustment

Scene 
reconstruction 

Texturing



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 6 

 

 
 

Figure 4: Test specimens used in this study (a) 

concrete cube (b) concrete beam 

5. RESULTS AND DISCUSSION 

5.1. 3D Modelling and crack detection 

Figure 5 below shows the results of the approach 

employed in this study for crack detection and 

annotation on the concrete beam cube. Figures 6 

and 7 show the comparison between the approach 

employed in this study to enhance the output of 

the Canny edge detector and the Canny edge 

detection without any enhancement. Note that in 

both cases the same thresholds  were used during 

hysteresis thresholding (Gonzalez and Woods, 

2007).  
 

 
Figure 5: Concrete cube 3D model with crack 

locations marked on the model 
 

As can be seen from the figures the geometry 

of the concrete specimens is faithfully 

reproduced. Furthermore, the crack detection 

algorithm is able to correctly locate all of the 

cracks in the concrete beam and many of the 

cracks in the concrete cube despite the cube 

having a very noisy texture. The minimum crack 

width on the concrete beam was measured with a 

crack gauge to be 0.3 mm.  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6: (a)- (f) Comparison of results of the 

algorithm employed in this study (left) and ordinary 

edge detection (right) 

5.2. Geometric accuracy of 3D models and crack 

measurements 

Prior to taking measurements of cracks on the 

concrete cube, the 3D model was calibrated. As 

noted in section 3, during modelling there is a 

scale ambiguity that is not recovered. To correctly 

scale the model, a scale object such as a ruler is 

usually fixed on the object to assist with scaling. 

In this case, the known size of the cube was used 

to scale and calibrate the dimensions of the 3D 

model in Autodesk ReCap Photo. Figure 8(a) 

shows concrete cube with dimension lines marked 

in ReCap. After calibration, the dimensions of the 

lines are measured as 98.231 mm.  
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(a) 

 
(b) 

Figure 7: Comparison of crack detection results for 

(a) the algorithm employed in this study and (b) 

ordinary edge detection 

 

Figure 8(b) shows the location used for 

sample measurement of crack length. Table 2 

provides a comparison of measurements obtained 

in ReCap Photo. 
 

 
 

Figure 8: (a) Calibrating the concrete cube 

dimensions (b) Crack measurements 

 
Table 2: ReCap measurement comparison 

Feature 

Measured 

Actual 

Measurement 

(mm) 

ReCap Photo 

Measurement 

(mm) 

Error 

(mm) 

Dimension 98 98.231 0.231 

Crack  

Length 
44 44.097 0.97 

 

From the Table 2, it can be seen that after 

calibrating and setting distances in the 3D model, 

very accurate results are obtained with an error of 

less than 1 mm despite reducing the image 

resolution by half. 

5.3. Image Processing time  

The 3D model generation in ReCap was 

completed via the cloud where for the educational 

version of the software, there is a waiting period 

and as a result the actual processing time required 

could not be determined. The image processing 

for crack detection using MATLAB took only 

about 10 seconds per image.  

6. ONGOING CHALLENGES FOR UAS 

ASSISTED BRIDGE INSPECTIONS 

Improvements in technology that have enabled 

the investigation of UAS assisted bridge 

inspections can also result in expensive UAS 

equipment, cameras, and very complex image 

processing techniques using multiple UAS, which 

can require significant computational power and 

time. While it was not possible to report the image 

processing time required for the 3D model 

generation presented in this study with low-cost 

drones, it remains an active topic of study in terms 

of improving the computational efficiency with 

single UAS based approaches. Alongside this, 

challenges remain in relation to: 

• Image stabilization: while current UAS 

technology enables a relatively stable hover 

while recording images, measurements 

remain sensitive to the hovering motion of 

the UAS which can be in the order of cm, 

even in calm weather. Stable feature 

reference points are required within the 

image frame to correct for the motion – 

these are not always available in the field. 

An upcoming publication by the authors 

presents a solution to this. 

• Environmental conditions: The majority of 

commercially operated and low-cost UAS 

cannot be operated in windy or wet 

conditions, thus limiting their applicability. 

Sunshine and shadows on target structures 

can also impact measurement quality.  

• Limited flight time: most UAS have a 

limited flight due to payload and battery 
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capacity, typically in the 14-18 minute 

range, although this is improving. 

• Safety, regulation and privacy concerns: 

Regulation can lag behind advances in UAS 

technology which can further delay 

adoption of validated approaches in BMS. 

7. CONCLUSIONS 

In a UAS assisted bridge inspection, high 

resolution imagery of nearly 100% of the bridge 

structure can be obtained and the focus has now 

shifted from the ability to collect data to making 

effective use of the data in a low-cost and efficient 

manner. While a number of challenges remain for 

widespread adoption and acceptance of UAS for 

inspections and within updated BMSs, this study 

has concluded that image processing techniques 

and photogrammetry can be used together with 

low-cost UAS to effectively automate the task of 

detecting cracks and annotating 3D 

photogrammetric models generated from 2D 

images. 
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