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ABSTRACT: Timber construction offers substantial advantages in terms of sustainability, ease of 

modular construction, and aesthetics. In recent years, structural members made from timber have been 

increasingly used in residential and commercial buildings. When used in building applications,  structural 

timber members must meet required fire resistance ratings. Fire resistance of timber members can be 

evaluated by standard fire testing, which requires sophisticated and expensive testing facilities, and is 

labor-intensive and time-consuming. An alternative to fire testing is using advanced numerical models, 

which is computationally intensive. This study leverages machine learning (ML) methods to overcome 

the complications of fire testing and complex numerical modeling. Therefore, an ML workflow is 

developed and applied to a database of 70 fire tests reported in the literature to accurately evaluate the 

fire resistance of timber columns. The input parameters considered for training the models comprise 

geometric and material properties and loading conditions during the fire tests. Four different ML 

algorithms were implemented, namely, multiple linear regression, support vector machines, light 

gradient boosting, and random forest. The ML models benefited from an automated training procedure 

comprising hyperparameter tuning and cross-validation. Furthermore, Shapley additive explanations 

were used to interpret the relationship between timber column geometry, material properties, and fire 

resistance. The results show that random forest provides a higher accuracy with an R-squared of 0.84 on 

the test set, where column capacity, width, depth, and load level are the most critical parameters.  

In recent years, there has been a consistent 

increase in the application of timber for load-

bearing members in residential and commercial 

construction (Braun et al. 2022; Gasparri and 

Aitchison 2019). The growing use of timber as a 

primary building material is mainly driven by 

sustainability considerations. For example,  using 

wood with lower embodied carbon in place of 

steel or concrete for construction can lower 

greenhouse gas emissions by 2 metric tons per 

cubic meter of installed timber products (Sathre 

and O’Connor 2010). Timber construction 

permits offsite modular prefabrication, reducing 

construction time and labor costs. Moreover, 

timber components are relatively light due to the 

high strength-to-weight ratio of timber, which 

results in savings in foundation materials (Zaker 

Esteghamati et al. 2022).  

Different jurisdictions are now permitting 

the use of timber for framing in mid-rise and high-

rise buildings. However, the fire safety of timber 

construction is still an area of concern. This 

concern stems from the unique fire behavior of 

timber. Timber is combustible under fire 

exposure, which complicates the structure’s 

overall fire dynamics and associated fire 

performance (Gorska et al. 2021). Under fire 

scenarios, burning timber can contribute to 

additional fuel load, increasing the fire growth 

rate, extending the period of fire exposure, and 

negatively impacting structural performance. 

Furthermore, the combustion of timber produces 

smoke and harmful incomplete combustion gases, 

which can be detrimental to evacuating occupants 

and firefighters (Cheng et al. 2022). Lastly, timber 

members are susceptible to failure even after the 
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end of the heating phase due to smoldering 

combustion after flame extinction and significant 

loss in the mechanical properties of timber at low 

temperatures of 100°C. At this temperature, 

timber loses up to 65% and 75% of its modulus 

and compressive strength, respectively (Gernay et 

al. 2022; Wiesner et al. 2019).  

The fire performance of a structural 

member is captured in terms of fire resistance, 

which is the duration of time for which a member 

sustains the applied loading and limits 

deformations to a specified limit. The fire 

resistance of timber structures can be evaluated 

through standard fire testing. However, fire tests 

are expensive, time-consuming, and require 

specialized testing equipment and skilled 

personnel. More recently, advanced analysis 

procedures have been incorporated using 

nonlinear finite element methods (Banerji and 

Kodur 2022). Despite the relatively good 

agreement between finite element models and fire 

tests, advanced numerical simulations require 

significant computational efforts and prior 

training or experience. In addition, the accuracy 

of advanced finite element analyses is essentially 

dependent on reliable input data on high-

temperature anisotropic material properties of 

wood, which has a significant variation in the 

current literature.  

For the past two decades, machine 

learning (ML)-based approaches to address 

traditional structural engineering problems have 

been gaining momentum (Zaker Esteghamati and 

Flint 2021). Compared to experiments and 

advanced numerical modeling, ML-based models 

can address the complexities associated with 

nonlinear interdependencies among influencing 

parameters and high levels of data variability, thus 

saving considerable time and resources. However,  

the incorporation of ML in structural fire 

engineering is infrequent. This gap is partly 

caused by the limited availability of data from 

intricate fire tests for validating and testing ML 

models. The majority of the research in structural 

fire engineering has been conducted on predicting 

the fire resistance of reinforced concrete, steel, 

and composite members (Li et al. 2021; Naser 

2021; Zhao 2006). Some studies have focused on 

estimating the high-temperature material 

properties of concrete and steel (Banerji 2022; 

Naser 2018). Unlike other construction materials, 

there have hardly been any ML-based studies on 

the fire behavior of timber. Among the few ML-

based studies are the works by Naser (Naser 

2019), wherein Artificial Neural Networks 

(ANN) and genetic algorithms were utilized to 

develop high-temperature response relations for 

timber at material and member levels.To address 

the current gaps in literature, this study 

implements ML approaches to understand the fire 

resistance of timber columns based on a carefully 

compiled database of experimental tests. The 

results of this study aim to answer two key 

research questions: (1) How well can ML models 

predict the fire resistance of timber columns? (2) 

What geometric and material parameters are more 

critical for the fire resistance of timber columns? 

To this end, an ML workflow is developed, and 

the predictive capabilities of four ML algorithms 

are assessed. Model-agnostic interpretation 

methods are then implemented to interpret the 

underlying relationship between fire resistance 

and columns’ geometric and mechanical 

properties.  

1. TIMBER COLUMN DATABASE 

1.1. Data sources  

A detailed literature review was conducted to 

compile data from experiments on timber 

columns. A database was collected from about 70 

tests reported in the works of Fackler (Fackler 

1961), Stanke et al. (Stanke et al. 1973), Malhotra 

and Rogowski (Malhotra and Rogowski 1967), 

and Ali and Kavanagh (Ali and Kavanagh 2005). 

The dataset did not include numerical modeling 

results since the selected material models, solver 

techniques, mesh sizes, and other assumptions 

considerably impact the numerical predictions.  

The selected studies carried out fire tests on 

timber columns uniformly exposed (i.e., all four 

sides) to fire curves equivalent to standard fire 

ISO 834 (ISO 834-1 1999). These tests capture the 
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effect of varying parameters on the fire resistance 

of timber columns, including temperature-

dependent  material properties, cross-sectional 

dimensions, and loading level. The tests carried 

out by Fackler (Fackler 1961), Stanke et al. 

(Stanke et al. 1973), and Malhotra and Rogowski 

(Malhotra and Rogowski 1967) are also 

summarized in the Technical Report (TR) no. 10 

prepared by the American Wood Council (AWC) 

(American Wood Council (AWC) 2018).. The 

AWC report utilizes 2012 National Design 

Specification (NDS) behavioral equations for 

calculating the effective length and resisting 

capacity of these tested columns, and these 

calculated values have been utilized for the 

database used in this study. The compiled 

database provides information on experiment time 

(t), smaller dimension of column (D), larger 

dimension of column (W), specific gravity (SG), 

compressive strength (fc), modulus of elasticity 

(E), length (L), capacity (C) and load level (P), 

and column fire resistance (R).  

1.2. Statistical properties of the database 

Spearman correlation was used to measure the 

relationship between different features. Unlike 

Pearson correlation, which can only capture linear 

data association, Spearman correlation measure 

can account for both linear and nonlinear data 

association. Figure 1 shows the Spearman 

correlation values (ρs) between different input 

features. Capacity has a strong positive 

correlation to shorter dimension of column, D (ρs 

= 0.88) and longer dimension of column, W (ρs 

=0.66), which is intuitive as column capacity is 

related to its geometric configuration. In addition, 

the columns’ compressive strength is strongly 

related to the modulus of elasticity (ρs =0.79) and 

column length (ρs =0.78). In addition, there is a 

moderate correlation between depth and width, 

and between the modulus of elasticity and column 

length.  

2. ML MODEL DEVELOPMENT 

ML models were developed to predict fire 

resistance using the discussed predictors in 

Section 1. As shown in Figure 2, the compiled 

database was split into 70% training and 30% 

testing data sets. Four algorithms of multiple 

linear regression (MLR), support vector machine 

(SVM), light gradient boosting (LGBM or 

LightGBM), and random forest (RF) were 

implemented to identify the best ML model. The 

selected algorithms cover a variety of alternatives 

in the flexibility-interpretability tradeoff. The 

hyperparameters of each ML algorithm were then 

tuned by performing a three-fold cross-validation 

on the training set through a hybrid randomized-

grid search method. Lastly, the ML models’ 

accuracy was measured using root mean squared 

error (RMSE) and coefficient of determination 

(R2) performance criteria.  

MLR algorithm extends a simple regression 

by assigning a separate slope (i.e., regression 

coefficient) to each predictor. Each model 

coefficient shows the average effect of a unit 
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Figure 2: ML development framework 

Figure 1: Correlation structure of the compiled 

database 
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increase in the corresponding predictor on the 

response, if all other predictors are fixed. SVM 

was built as an extension of the maximal margin 

classifier algorithm and was later extended to 

regression problems. SVM aims to find a 

hyperplane that could separate training data based 

on their labels and deviate by a maximum of a 

given margin. LightGBM is a boosting algorithm 

with two key characteristics that accelerate 

training time. First, the conventional gradient 

boosting method is modified to focus on training 

samples with larger gradients (referred to as 

gradient-based one-side sampling). Second, an 

automatic feature selection method, exclusive 

feature bundling, is implemented to aggregate 

sparse mutually exclusive features (Ke et al. 

2017). Lastly, RF (Breiman 2001) uses the 

bagging approach, and averages the prediction of 

an ensemble of RTs to achieve a low-variance and 

more accurate prediction. To this end, RF chooses 

repeated samples of training data (i.e., 

bootstrapping) and trains several regression trees 

on each training sample (Hastie et al. 2016).  

3. ML MODELS ACCURACY 

Figure 3 shows the ML model prediction for 

training and testing sets, and Table 1 shows the 

RMSE and R2 values. Overall, the RF algorithm 

provides the best accuracy to predict fire 

resistance for test set data. The R-squared and 

RMSE of RF for testing sets are 84% and 5.55, 

respectively. In contrast, LGBM provides the 

lowest accuracy. For example, the R2 of LGBM is 

13% lower than the RF, whereas its RMSE is 61% 

higher than RF. The RMSE values of MLR and 

SVM are close, whereas MLR provides a higher 

R2 value. 

Figure 4 shows the relative importance of RF 

predictors. Overall, capacity has the highest 

importance. Column cross-sectional information 

(i.e., width and depth) shows relatively higher 

significance than other parameters, whereas 

modulus of elasticity, specific weight, and column 

length are deemed unimportant for RF prediction.  

Algorithm Training Testing 

RMSE R2 RMSE R2 

MLR 6.06 0.88 6.10 0.81 

SVM 6.74 0.85 6.70 0.77 

LGBM 9.87 0.69 9.87 0.69 

RF 4.87 0.92 5.55 0.84 

Table 1: Comparison of model accuracy 

 

Figure 3: Comparison of different ML models 

accuracy 

Testing Training 

(a) MLR

(d)
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4. ML MODELS INTERPRETATION  

Shapley additive explanations (SHAP) (Lundberg 

and Lee 2017) explain the prediction of a given 

data instance by computing the contribution of 

each predictor to the prediction based on game 

theory. In this approach, the prediction (i.e., 

payout) is “fairly” distributed to the features (i.e., 

players) based on their coalition to receive profit. 

Each predictor’s Shapley value is defined as the 

average marginal contribution of the predictor 

across all possible coalitions.  

Figure 5 shows the SHAP summary plots for 

RF. In these plots, the impact of higher and lower 

values of features on the SHAP values are shown. 

In addition, the features are sorted based on their 

importance in descending order on Y axis. Figure 

5 shows that for the RF model, timber columns 

with higher capacity and longer dimension (W) 

have higher fire resistance, whereas timber 

columns subjected to higher load levels show 

lower fire resistance. The contribution of other 

features is very small. However, it can be 

observed that columns with larger shorter 

dimension (D), specific weight and compressive 

strength show slightly higher fire resistance.  

5. CONCLUSIONS 

The study compiled a database of fire tests on 

timber column and compared the performance of 

different ML algorithms to develop predictive 

models. Furthermore, Shapley explanations were 

used to interpret the best trained model. The main 

findings from this study are as follows:  

• Among the studied algorithms, the 

random forest model provided the 

highest accuracy with an R2 of 84 on 

the test set.  

• The performance of support vector 

machines and light gradient boosting 

algorithms was not better than a 

multiple linear regression model for 

the studied database.  

• Among different predictors, column 

capacity was found to be the most 

influential feature in predicting the 

fire resistance of timber columns. 

• Specific weight, modulus of 

elasticity, and column length had 

negligible impact on the fire 

resistance of timber columns.  
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