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ABSTRACT: Buckling is usually the governing failure mode for thin and slender structures. Small
variations of geometrical or material parameters can have a major influence on the buckling behavior.
Therefore, uncertainties have to be considered in a numerical buckling analysis which can be
computationally expensive. In this paper, an approach to the estimation of the second-order statistics of
the buckling loads is presented to reduce the computational effort. The second-order statistics are
estimated by blending the results obtained from a linear and nonlinear buckling analysis by means of
control variates. The approach is illustrated with a three-hinged arch and a cylindrical composite shell
panel, where the input parameters are defined by random variables.

1. INTRODUCTION

The evaluation of the buckling load is a cru-
cial issue when designing different types of struc-

tures. It is well known that buckling loads of
structures are highly sensitive to random deviations
from a nominal design, which may involve uncer-
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tainty regarding structural properties, geometry or
boundary conditions (Broggi et al., 2011; Lauter-
bach et al., 2018). Hence, quantifying the level
of uncertainties associated with buckling loads is
a task of paramount importance (Fina et al., 2020,
2021). The buckling load can be approximated by
means of a linearized approach (or linear buckling
analysis), which involves the solution of an eigen-
value/eigenvector problem (see e.g. McGuire et al.,
2000). While such an approach is quite convenient
from a numerical point of view, it may offer limited
insight due to its linearized nature. On the contrary,
a nonlinear buckling analysis offers better predic-
tion of the buckling load in case of a nonlinear pre-
buckling behavior. However, this requires a com-
plete geometrically nonlinear path tracking analy-
sis involving an iterative procedure. This means
higher numerical costs compared to a linear buck-
ling analysis. Considering these issues, this work
aims to estimate the second-order statistics (mean
and standard deviation) of buckling loads of thin
and slender structures like frames and shells whose
imperfections are characterized by means of proba-
bilistic models. Some methods can only be used to
estimate statistics for linear systems, see e.g. (Fina
et al., 2023). The proposed approach is cast within
the framework of control variates (Avramidis and
Wilson, 1993). This allows to exploit correlations
existing between buckling loads predicted using
linear and nonlinear analysis. In fact, the more ex-
pensive analysis (that is, nonlinear approach) has to
be done a few times only, while the cheaper anal-
ysis (that is, linearized approach) is used a consid-
erable number of times. In this way, it is possible
to estimate the statistics of the true buckling load,
even when the linearized approach is involved in
the analysis. In (Fina et al., 2022), the approach is
first studied on an arch girder and one random vari-
able. In the present paper, the approach is tested
on a three-hinged arch and a composite cylindrical
shell with up to four random variables. Thus, the
correlation between the linear and nonlinear buck-
ling analysis is investigated to show the applicabil-
ity of control variates.

2. BASICS OF BUCKLING ANALYSIS AND CON-
TROL VARIATES

2.1. Linear and Nonlinear Buckling Analysis
A stability point can be found using different

strategies, as discussed, for example, in Wagner
(1995). For some structures, it is possible to ob-
serve a linear prebuckling behavior. In such cases, a
geometrical nonlinear analysis of the load-bearing
behavior is not necessary and thus, only a single
linear calculation step and solving an eigenvalue
problem are required. This motivates to use the lin-
ear buckling analysis within a finite element (FE)
model, which is based on the decomposition of the
tangent stiffness matrix

KKKT = KKKlin +KKKnlin , (1)

where the stiffness matrix is divided into linear KKKlin
and nonlinear parts KKKnlin. Consequently, the eigen-
value problem for a linear buckling analysis can be
constructed as follows

[KKKlin +ΛKKKnlin]ϕϕϕ = 000 . (2)

The linear buckling analysis assumes for the dis-
placements uuu = 000, where for an external load PPP0
the linear solution

KKKT (000)uuu0 = PPP0 ⇐⇒ uuu0 = KKK−1
T (000)PPP0 (3)

is calculated with KKKT (000) = KKKlin. The lowest eigen-
value Λ is used to increase the nonlinear parts of the
stiffness matrix in the eigenvalue problem accord-
ing Eq.(2). The associated eigenvector ϕϕϕ is called
initial postbuckling mode. Λ = 1 leads to the math-
ematically precise eigenvalue problem

KKKT ϕϕϕ = 000 . (4)

In case of linear prebuckling behavior, it is assumed
that

PPPcr ∼ ΛKKKnlin . (5)

Solving the eigenvalue problem (2) leads to a crit-
ical load factor Λcr. The critical load with the cor-
responding critical displacement can be calculated
by

PPPcr = ΛcrPPP0 , (6)
uuucr = Λcruuu0 . (7)
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In case of a nonlinear prebuckling behavior, the re-
sults of a linear buckling analysis can strongly dif-
fer from the correct buckling load. This requires
a nonlinear buckling analysis, where a complete
geometrically nonlinear path tracking analysis in-
volving an iterative procedure by means of, e.g.
the Newton-Raphson scheme, has to be performed.
Parallel to the incremental calculation of the load-
displacement behavior the diagonal signs of the tan-
gent stiffness matrix can be observed. The sign of
the diagonal elements of KKKT determines the type of
equilibrium state:

∀Dii , Dii > 0 → stable
∃Dii , Dii = 0 → indifferent
∃Dii , Dii < 0 → unstable

. (8)

If one or more diagonal elements Dii become nega-
tive, an unstable equilibrium state is indicated Wag-
ner (1995).

2.2. Control Variates
Thin and slender structures may be subject to

variations of geometrical and material parameters.
Such variations are represented through a vector ξξξ

and hence, Eq. (1) becomes

KKKT (ξξξ ) = KKKlin(ξξξ )+KKKnlin(ξξξ ) (9)

It is assumed that uncertainty associated with ξξξ can
be characterized in terms of a random variable vec-
tor ΞΞΞ with probability distribution pΞΞΞ(ξξξ ) (Ditlevsen
and Madsen, 1996). Given the uncertainty model
associated with the imperfections, the buckling load
PPPcr also becomes uncertain. Such uncertainty can
be expressed, for example, in terms of second-order
statistics: mean E[PPPcr] and variance V [PPPcr]. Given
that there is no closed-form expression, which re-
lates PPPcr and ξξξ , second-order statistics may be esti-
mated by combining Monte Carlo simulation with
nonlinear buckling analysis (Fishman, 1996), that
is:

E[PPPcr]≈ µ̂ ′
1(PPPcr,ΞΞΞn) =

1
n

n

∑
j=1

PPPcr(ξξξ
( j)
),

ξξξ
( j) ∼ pΞΞΞ(ξξξ )

(10)

V [PPPcr]≈ µ̂2(PPPcr,ΞΞΞn)

=
1

n−1

n

∑
j=1

(PPPcr(ξξξ
( j)
)− µ̂ ′

1(PPPcr,ΞΞΞn))
2 ,

with ξξξ
( j) ∼ pΞΞΞ(ξξξ ) .

(11)

In the above equations, ΞΞΞn represents n realiza-
tions of the random variable vector, that is, ΞΞΞn =

[ξξξ
(1)
, . . . ,ξξξ

(n)
]; PPPcr(ξξξ

( j)
) identifies the buckling

load associated with the j-th realization of the im-
perfections ξξξ

( j); and µ̂ ′
1(PPPcr,ΞΞΞn) and µ̂2(PPPcr,ΞΞΞn)

represent estimators of the mean and variance of the
buckling load PPPcr as a function of the set of samples
ΞΞΞn. The application of Monte Carlo simulation for
calculating second-order statistics of the buckling
load is quite straightforward, as it can be carried
out using existing numerical models for determin-
istic analysis. However, the calculation process it-
self may become quite demanding from a numeri-
cal viewpoint, as one may require a large number
of analyses n to produce estimates of the second
order statistics with sufficient accuracy. On top of
that, each nonlinear buckling analysis can become
quite involved on its own, due to the necessity of
performing a Newton-Raphson iteration.

The estimation of second-order statistics can be
improved by including results from the linearized
buckling load P̂PPcr according to Eq. (2). In fact, cal-
culating P̂PPcr is numerically cheaper than calculating
the exact buckling load PPPcr. Although P̂PPcr is, in gen-
eral, different from PPPcr, the framework of control
variates (Fishman, 1996) can exploit correlations
existing between these two bucking loads. Indeed,
the mean of the buckling load µ ′

1 using control vari-
ates is equal to:

µ
′
1 = E[PPPcr]−αE[P̂PPcr]+αE[P̂PPcr] , (12)

where α is the so-called control parameter, which
is a real number. A close examination of Eq. (12)
reveals that the expected value of the linearized
buckling load P̂PPcr multiplied by the control param-
eter is added and substracted. Of course, from
a theoretical viewpoint, the effect of this addi-
tion/substraction is zero. However, from a practical
viewpoint, it is possible to exploit the correlation

3



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

between PPPcr and P̂PPcr as explained in the following.
Let ΞΞΞn and ΞΞΞm be two independent sets of n and
m samples of the random variable vector ΞΞΞ, where
m > n. Thus, the estimator of Eq. (12) becomes
(Fishman, 1996):

µ̂ ′
1
(CV )

= µ̂ ′
1(PPPcr,ΞΞΞn)−αµ̂ ′

1(P̂PPcr,ΞΞΞn)+

αµ̂ ′
1(P̂PPcr,ΞΞΞm)

, (13)

where the upper index CV denotes control variates.
From this equation one observes the last term on
the right (that is, αµ̂ ′

1(P̂PPcr,ΞΞΞm)) is actually an es-
timator of the linearized buckling load calculated
using m samples, which is multiplied by the con-
trol parameter α . As the linearized buckling load
P̂PPcr is numerically inexpensive to calculate (at least
in comparison with PPPcr), m can be relatively large
in order to obtain an accurate estimator. The term
µ̂ ′

1(PPPcr,ΞΞΞn)−αµ̂ ′
1(P̂PPcr,ΞΞΞn) shown in Eq. (13) plays

the role of adjusting the estimate of the mean value
of the buckling load, as it computes the differ-
ence between the mean value of the true buckling
load and the mean value of the linearized buckling
load (the latter one amplified by α). As PPPcr and
P̂PPcr should exhibit a high correlation (because both
characterize the buckling load), the variability of
the estimator µ̂ ′

1(PPPcr,ΞΞΞn)−αµ̂ ′
1(P̂PPcr,ΞΞΞn) should be

low, even if n is relatively small. Thus, the control
variates estimate as shown in Eq. (13) blends the in-
formation provided by both the linearized buckling
load P̂PPcr and the buckling load PPPcr to estimate the
sought mean value.
The variance of the estimator for the mean as shown
in Eq. (13) is (Fishman, 1996):

V
[

µ̂ ′
1
(CV )

]
=

µ2,0

n
−2α

µ1,1

n
+α

2 µ0,2

n
+α

2 µ0,2

m
.

(14)

Where µp,q is the bivariate central co-moment be-
tween PPPcr and P̂PPcr, which is defined as follows:

µp,q = E[(PPPcr −E[PPPcr])
p(P̂PPcr −E[P̂PPcr])

q] (15)

with p and q as the integers denoting the order of
the respective co-moment. Unbiased estimators of
these co-moments for different combinations of p

and q can be found in, e.g. González et al. (2019).
All of these co-moments can be calculated consid-
ering the sets of samples ΞΞΞn and ΞΞΞm.
Eq. (14) indicates that the variance depends
quadratically on the control parameter α . Thus, α

is set such that the variance of the estimator of the
mean is minimized, leading to the following expres-
sion

α
∗ =

µ1,1
n

µ0,2
n +

µ0,2
m

. (16)

The above discussion has been centered on the cal-
culation of the mean value of the buckling load.
Naturally, the same framework can be extended to
calculate its variance. Following a similar strategy
as that employed in Eq. (12), the variance µ2 of the
buckling load is:

µ2 =V [PPPcr]− γV [P̂PPcr]+ γV [P̂PPcr] , (17)

where γ is another control parameter. An estimate
of the above equation can be calculated using the
same set of samples generated for calculating the
mean, yielding:

µ̂2
(CV )

= µ̂2(PPPcr,ΞΞΞn)− γ µ̂2(P̂PPcr,ΞΞΞn)+

γ µ̂2(P̂PPcr,ΞΞΞm)
. (18)

The variance of the estimator of the variance is:

V
[
µ̂2

(CV )
]
= B1 −2γB2 + γ

2(B3 +B4) , ,

(19)

where the terms B1, B2, B3 and B4 are defined as
follows:

B1 =V
[
µ̂2(PPPcr,ΞΞΞn)

]
=

µ4,0

n
−

(n−3)µ2
2,0

(n−1)n
,

(20)

B2 = Cov
[
µ̂2(PPPcr,ΞΞΞn), µ̂2(P̂PPcr,ΞΞΞn)

]
=

2µ2
1,1

(n−1)n
+

µ2,2

n
−

µ2,0µ0,2

n

, (21)

B3 =V
[
µ̂2(P̂PPcr,ΞΞΞn)

]
=

µ0,4

n
−

(n−3)µ2
0,2

(n−1)n
,

(22)
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B4 =V
[
µ̂2(P̂PPcr,ΞΞΞm)

]
=

µ0,4

m
−

(m−3)µ2
0,2

(m−1)m
.

(23)

Minimizing the expression for the variance in
Eq. (19) provides a criterion for selecting the con-
trol parameter, leading to:

γ
∗ =

B2

B3 +B4
. (24)

Note that for the practical calculation of Eqs. (20),
(21), (22), (23), and (24), all required co-moments
are estimated based on the sets of samples ΞΞΞn and
ΞΞΞm.

3. NUMERICAL EXAMPLES
The approach of control variates is illustrated on

two buckling-sensitive structures. A three-hinged
arch and a cylindrical composite shell panel under
a single load is discussed. The input parameters
are defined by random variables. Before the results
of control variates are presented, the buckling be-
havior and the correlation between the linear and
nonlinear buckling analysis are investigated.

3.1. Three hinged arch
The first example is a three-hinged arch sub-

jected to a single load P at the middle hinge. The
system is illustrated in Figure 1. The determinis-

Figure 1: Three-hinged arch

tic parameters are the length L = 100cm and the
cross section area A = 25 cm2. Overall, three un-
certain parameters are modelled as truncated Gaus-
sian random variables. Their mean value µ and
standard deviation (std) σ are given in Table 1.
The FE model consists of 20 nonlinear Timoshenko
beam elements based on finite rotations with Green-
Lagrangian strains. The load-displacement curves

Table 1: Material and geometrical parameters of the
three-hinged arch quantified quantified as Gaussian
random variables

Parameter mean value µ std σ

length factor k [−] 1.75 0.05
height h [cm] L/10 L/100
Young’s modulus
E [kN/cm2]

1000 100

Figure 2: Load-displacement behavior of the three-
hinged arch

for two different length factors k = 1.75 and k = 2.0
are depicted in Figure 2. The length factor k con-
trols the symmetry of the system. A symmetric sys-
tem results for k = 2.0 and a non-symmetric sys-
tem for k = 1.75. This factor has a high influence
on the buckling behavior. As shown in Figure 2,
a non-symmetric (k = 1.75) three-hinged arch be-
haves more rigidly. Another interesting fact is that
two types of stability points are present. Stability
point (A) is a bifurcation point that can occur be-
fore the snap-through in point (B). In addition, the
eigenvectors ϕcr associated with the two stability
points are shown in Figure 2. The eigenvector ϕcr
at the bifurcation point (A) represents a buckling
of a single bar. The structure is loaded incremen-
tally with the arc-length method and ∆w = 0.02cm.
Thus, a nonlinear buckling analysis gives the result
of a critical load of Pcr = 9.84kN. A linear buck-
ling analysis according to Eq. (2) leads to a criti-
cal load of Pcr = 10.86kN. Despite the large influ-
ence of the three input parameters on the buckling
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behavior, a strong correlation between linear and
nonlinear buckling analysis can be observed, see
Figure 3. These are good conditions for the appli-
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Figure 3: Correlation between linear and nonlinear
buckling Analysis of the three hinged arch

cation of control variates. In Table 2 the estimates
for the second-order statistics are shown. The re-
sults obtained with the Monte Carlo simulation (see
Eqs. (10) and (11)) and control variates approach
(see Eqs. (13) and (18)) are given. In addition, Ta-

Table 2: Estimates of second-order statistics for buck-
ling load.

Approach Monte Carlo
Control Variates
with Splitting

n 100 60
m 0 90
ne 100 97.5
µ̂ ′

1 kN 10.05 10.04

V
[
µ̂ ′

1

]
kN2 0.04 0.03

δ
µ̂ ′

1
1.96% 1.49%

µ̂2 kN2 3.88 3.91
V
[
µ̂2
]

kN4 0.23 0.15
δµ̂2

12.5% 8.96%

ble 2 reports the coefficient of variation (δ ) of each
estimator, which is calculated as the square root of
the variance of the estimator divided by its expected
value. For Monte Carlo, the statistics are calculated
considering n = 100 samples of the random param-
eters, each of which involves performing nonlinear

buckling analysis. For control variates, one gener-
ates:

• n = 60 samples of the random parameter. For
each of these 60 samples, buckling analy-
ses considering both nonlinear and linearized
equations are carried out.

• m = 90 additional samples. For each of these
samples, only linear buckling analysis is car-
ried out.

Numerical efforts between the two approaches are
compared in terms of equivalent number of analy-
ses ne, that is:

ne = n+
n+m

fs
(25)

where fs is the speedup factor, which is the ratio
between the time of execution of a nonlinear buck-
ling analysis and a linear buckling analysis. For
this particular example, fs = 4 (that is, linear buck-
ling analysis is 4 times faster than nonlinear buck-
ling analysis). The results given in Table 2 indi-
cate that the second-order statistics obtained when
applying Monte Carlo simulation and control vari-
ates with splitting are almost identical. While nu-
merical efforts are also similar (measured in terms
of the equivalent number of analyses ne), the es-
timates generated with control variates possess a
smaller coefficient of variation than those associ-
ated with Monte Carlo. The latter is particularly no-
torious when comparing the coefficient of variation
of the variance (that is, δµ̂2

) obtained through each
method. In fact, if one would like to produce an es-
timate of the variance with a coefficient of variation
as that one obtained with control variates but using
Monte Carlo simulation, one would require to per-
form about 200 simulations (that is, perform 200
nonlinear buckling analyses). This is quite remark-
able and highlights the advantages of the proposed
framework considering control variates.

3.2. Cylindrical composite shell panel under sin-
gle load

To show the approach for shell structures the sec-
ond example is a composite shell under a single
load similar as given in (Wagner and Gruttmann,
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1994). The system with a 8 × 8 finite element
mesh and the material data are shown in Figure
4. The shell is simply supported on the two lat-

Figure 4: Cylindrical composite shell panel under a
single load

eral edges. Symmetry is not used with respect to
arbitrary stacking sequences and a parameter vari-
ation along the whole structure. In Figure 5 the
load-displacement curves P versus w for three dif-
ferent shell thicknesses are depicted. The curves

Figure 5: Load-displacement curves of the composite
shell

are computed by the arc-length method. Even small
variations of the shell thickness have a large influ-
ence on the buckling behavior. For a shell thick-
ness of h = 12.7mm a critical load of Pcr = 1.79kN
results from a nonlinear buckling analysis and a
linear buckling analysis leads to a critical load of
Pcr = 2.71kN. In Table 3, the defined truncated
Gaussian random variables are listed. The given
mean values and standard deviations are typical for
a composite material. The variation of the fiber ori-

Table 3: Material and geometrical parameters of the
cylindrical composite shell panel quantified as Gaus-
sian random variables

Parameter mean value µ std σ

h 12.7 1.00
E11 3300 330
E22 1100 110
∆α 0 1.50

entation α are considered within the stacking se-
quence: 0◦ + ∆α/90◦ + ∆α/0◦ + ∆α . Figure 6
shows the correlations between linear and nonlin-
ear buckling analysis for one parameter h (above)
and all four parameters h,E11,E22 and ∆α (below)
as random variables. If only h is defined as a ran-

Figure 6: Correlations between linear and nonlinear
buckling analysis of the composite shell

dom variable, a perfect correlation with correlation
coefficient of ρ = 1 can be observed. More parame-
ters defined as random variables do not significantly
change the correlations. This is a good condition
for using control variates. The results are given in
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Table 4.

Table 4: Estimates of second-order statistics for the
buckling load.

Approach Monte Carlo
Control Variates
with Splitting

n 500 60
m 0 555
ne 500 375
µ̂ ′

1 kN 1.8 1.8

V
[
µ̂ ′

1

]
kN2 2.4×10−4 2.3×10−4

δ
µ̂ ′

1
0.9% 0.8%

µ̂2 kN2 0.121 0.125
V
[
µ̂2
]

kN4 6×10−5 6×10−5

δµ̂2
6.4% 6.3%

The mean and standard deviation are predicted
nearly with the same precision (measured in terms
of the coefficient of variation δ ). However, the ap-
proach with control variates requires only a number
of 375 equivalent simulations instead of 500.

4. CONCLUSIONS
The results presented in this contribution show a

promising path for estimating second-order statis-
tics of buckling loads. Indeed, blending the results
of linearized and nonlinear buckling analyses, it is
possible to obtain estimators with improved accu-
racy. However, the validity of the previous asser-
tions must be thoroughly evaluated by addressing
additional and more involved numerical models. In
this paper, only random variables are used for the
geometrical and material parameters. However, im-
perfections are spatially correlated. The applicabil-
ity of the approach, when imperfections are mod-
elled as random fields has to be investigated.
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