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ABSTRACT: Multiple-hazard (or simply multi-hazard) interactions are either disregarded or addressed 

inadequately in most existing computational risk modelling frameworks for natural hazards, leading to 

inaccurate life-cycle consequence estimates. This, in turn, can lead to ineffective risk-informed decision-

making for disaster-mitigation strategies and/or resilience-enhancing policies. Probabilistic multi-hazard 

life-cycle consequence (LCCon) analysis (e.g., assessment of repair costs, downtime, and casualties over 

an asset’s service life) enables optimal life-cycle management of critical assets under uncertainties. 

However, despite recent advances, most available LCCon formulations fail to accurately incorporate the 

damage-accumulation effects due to incomplete (or absent) repairs in between different hazard events. 

This paper introduces a Markovian framework for efficient multi-hazard LCCon analysis of deteriorating 

structural systems, appropriately accounting for complex interactions between hazards and their effects 

on a system’s performance. The proposed framework can be used to test various risk management and 

adaptation pathways. Specifically, the Markovian assumption is used to model the probability of a system 

being in any performance level (e.g., damage or functionality state) after multiple hazards inducing either 

“shock deterioration” or “gradual deterioration”, as well as after potential repair actions given such 

deteriorating processes. The expected LCCon estimates are then obtained by combining the performance 

level distribution with suitable system-level consequence models. The proposed framework is illustrated 

for a case-study reinforced concrete building considering earthquake-induced ground motions and 

environmentally-induced corrosion deterioration during its service life.

1. INTRODUCTION 

As the world becomes more populated and 

interconnected and human settlements continue to 

expand, it is imperative to quantify the potential 

impacts that multiple natural-hazard events and 

their complex interactions can have on the 

performance of critical assets and the 

communities they serve. This calls for effective 

risk-informed decision-making on future disaster-

mitigation strategies and/or resilience-enhancing 

policies (e.g., UNDRR, 2015). Many existing risk 

modelling frameworks independently analyse and 

aggregate the expected consequences (e.g., repair 

costs, downtime, and casualties) due to multiple 
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hazards. However, it has been demonstrated that 

multiple, often interacting, hazards can lead to 

consequences greater than the sum of those 

related to the individual hazards (e.g., De Angeli 

et al., 2022). Accordingly, frameworks for multi-

hazard life-cycle consequence (LCCon) analysis 

have gained increased attention to better quantify 

the expected consequences during the service life 

of structural systems subject to multiple hazard 

events (e.g., Dong & Frangopol, 2016). 

Nevertheless, most available frameworks assume 

that systems sustaining structural/non-structural 

damage are either instantaneously repaired or do 

not receive any repair actions after an event (e.g., 

Fereshtehnejad & Shafieezadeh, 2018). Hence, 

dynamic changes in the performance of the 

systems during their service life are not 

adequately tackled, preventing the accurate 

quantification of the associated LCCon estimates. 

This paper proposes a Markovian framework 

for multi-hazard LCCon analysis of deteriorating 

structural systems (e.g., buildings and bridges), 

enabling the optimal life-cycle management of a 

structural system under uncertainties due to 

multiple (and often interacting) hazard events and 

their associated, interacting, consequences. Using 

the Markovian assumption (e.g., Bonamente, 

2017), the framework can adequately model 

damage accumulation and, therefore, 

performance deterioration (i.e., reduction) while 

being computationally efficient (e.g., Iervolino et 

al., 2016). It is worth recalling that Markov 

processes have been extensively used for LCCon 

analysis of utility networks (e.g., Bocchini et al., 

2013). Nonetheless, they have only recently been 

used for buildings, mainly in mainshock-

aftershock-related applications (e.g., Shokrabadi 

& Burton, 2018). The framework proposed in this 

paper advances the current knowledge by 

including the lifetime adverse impact of multiple 

hazard events and their interactions on the LCCon 

analysis of structural systems. 

2. GENERAL FRAMEWORK 

The aim of the proposed Markovian framework 

for multi-hazard LCCon analysis (Figure 1) is to 

efficiently compute expected LCCon estimates of 

a structural system subject to multiple state-

changing hazard events. The performance of the 

system is modelled as a discrete-time Markovian 

process (i.e., treating the state of the process as a 

discrete variable; e.g., Iervolino et al., 2016). 

Specifically, a structural system’s performance 

domain is partitioned into mutually exclusive and 

collectively exhaustive performance states/levels. 

Such states should be represented using a single 

harmonised scale valid for different hazard types 

since specific hazards can cause different types of 

performance impairment to a system. Thus, for 

instance, a valid (hazard-agnostic) scale could be 

defined in terms of the system’s functionality. In 

such a case, the adopted functionality states (FSs) 

can be defined as: 1) occupiable and fully 

functional; 2) occupiable and partially functional; 

3) not occupiable and reparable damage; and 4) 

not occupiable and irreparable damage (e.g., 

Burton et al., 2016). If the considered hazards can 

cause similar damage mechanisms to a system 

(i.e., a consistent damage scale can be used), the 

performance can also be defined directly in terms 

of damage states (DSs), as done in the illustrative 

application presented later in this paper. 

The transition probabilities between FSs (i.e., 

the probabilities that after one event, the system is 

in a 𝑚-th FS given that it was in a 𝑛-th FS) are 

derived employing state-dependent functionality 

models (defining the probability of exceeding a 

FS given a hazard intensity and the FS achieved 

during a prior event; e.g., fragility relationships) 

and hazard models (defining the probability of 

exceeding a hazard intensity measure –IM– given 

the hazard characteristics; e.g., hazard curves). 

The transition matrices (i.e., the stochastic square 

matrices used to describe the FS transitions) are 

assembled by collecting each (𝑛,𝑚)  transition 

probabilities between FSs, also characterising the 

system’s performance deterioration. The resulting 

expected consequences are obtained from suitable 

system-level consequence models (i.e., linking 

the FSs to a consequence metric of interest).  

The analytical formulation to compute the 

expected LCCon estimates is introduced in the 
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following section. The formulation builds upon 

classical hypotheses for performance-based 

engineering, separating the modelling of the 

occurrence of hazard events and the impact that 

those events impose on a structural system. Two 

modelling stages can be hence identified based on 

the above distinction (e.g., Zaghi et al., 2016), 

namely: 1) hazard modelling, considering Level I 

interactions through the nature of the hazards (i.e., 

interactions that are independent of the presence 

of a physical system; e.g., a landslide triggered by 

an earthquake event); 2) consequence modelling, 

considering Level II interactions as a result of the 

impact of the hazards on a physical system (e.g., 

functional impairment due to the accumulation of 

damage during a seismic sequence).  

 

Figure 1: Markovian framework for multi-hazard 

life-cycle consequence analysis 

The Level I interactions can be subclassified 

for modelling purposes (Iannacone et al., 2023) 

in: 1) non-interacting: hazards whose probability 

of co-occurring is negligible (e.g., earthquakes 

and hurricanes with a low joint probability of 

occurrence); 2) concurrent: hazards that co-occur 

or have a significant joint probability of 

occurrence in a period of time (e.g., storm surge, 

sea waves, and strong wind that co-occur during a 

hurricane); 3) successive: hazards having a causal 

relationship between a primary and secondary 

hazard(s); these causal relationships depend on 

the hazards involved, and two broad categories 

can be hence identified, denoted as Type A (i.e., a 

secondary hazard is triggered after the occurrence 

of a primary hazard) and Type B (i.e., the rate of 

occurrence of a secondary hazard increases 

following the occurrence of a primary hazard). 

The Level II interactions are exclusively 

related to the performance (described by damage 

or functionality states) impairment of a physical 

system given the occurrence of hazard events. In 

general, the system’s performance deterioration 

(i.e., reduction) can be caused and subclassified 

also for modelling purposes in: 1) “shock 

deterioration” processes (associated with hazard 

events occurring at a point in time; e.g., an 

earthquake-induced ground motion); 2) “gradual 

deterioration” processes (associated with ageing 

and/or deteriorating mechanisms; e.g., steel rebars 

corrosion). In contrast, a system’s performance 

can be recovered (i.e., increase) due to potential 

repair actions executed in between hazard events. 

However, those actions are commonly intended to 

recover from shock deterioration processes rather 

than those due to gradual deterioration. Therefore, 

it is assumed that repair actions do not revert the 

gradual deterioration impact on the system’s 

performance since it is continuous over time. 

3. ANALYTICAL FORMULATION 

The total expected LCCon estimates associated 

with a structural system subject to multiple hazard 

events can be obtained by summing the expected 

hazard-induced consequences during its service 

life, obtained as in Equation (1). 

𝐸[𝐶] = ∑𝑃(𝑖, 𝑡𝐿𝐶)

∞

𝑖=1

∑𝑭𝑺𝑗𝐸[𝑪𝑭𝑺]
𝑇

𝑖

𝑗=1

 (1) 

In Equation (1), 𝑭𝑺𝑗  is the probability mass 

function (PMF) of the system’s FSs after the 𝑗-th 

hazard event, 𝐸[𝑪𝑭𝑺] is the consequence model 

(i.e., expected consequences associated with each 

FS), and 𝑃(𝑖, 𝑡𝐿𝐶) is the probability of having 𝑖 
hazard events during the service life ( 𝑡𝐿𝐶 ), 
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obtained as in Equation (2). 𝑭𝑺𝑗  and 𝐸[𝑪𝑭𝑺] are 

1x𝑁𝐹𝑆  vectors. 𝑁𝐹𝑆  is the total number of FSs. 

𝑃(𝑖, 𝑡𝐿𝐶) =
(𝜈𝑇𝑡𝐿𝐶)

𝑖𝑒−(𝜈𝑇𝑡𝐿𝐶)

𝑖!
 (2) 

In Equation (2), 𝜈𝑇  is the total rate of 

occurrence (in a selected time unit) of 𝑁ℎ hazards, 

regardless of their type and event characteristics. 

It is assumed that hazard events of the same type 

(ℎ) occur according to a homogeneous Poisson 

process with a rate of occurrence equals 𝜈ℎ (ℎ =
1, … , 𝑁ℎ ). Therefore, 𝜈𝑇  can be computed as in 

Equation (3). 

𝜈𝑇 =∑𝜈ℎ

𝑁ℎ

ℎ=1

 (3) 

It is worth noting that 𝑃(𝑖, 𝑡𝐿𝐶) can also be 

obtained through a simulation-based approach 

(e.g., Iannacone et al., 2023). The PMF of the 

system’s FSs after the 𝑗 -th hazard event only 

depends on the current PMF of the system’s FSs 

and can be estimated as in Equation (4). 

𝑭𝑺𝑗 = 𝑭𝑺𝑗−1𝑻𝑭𝑺 (4) 

In equation (4), 𝑭𝑺𝑗−1  is the PMF of the 

system’s FSs after the (𝑗 − 1)-th hazard event and 

𝑻𝑭𝑺  is the transition matrix which quantifies the 

probability of transitioning between the FSs given 

an event, calculated as in Equation (5). 𝑭𝑺𝑗−1 is a 

1x𝑁𝐹𝑆  vector and 𝑻𝑭𝑺  is a 𝑁𝐹𝑆x𝑁𝐹𝑆  matrix. 

𝑻𝑭𝑺 = ∑ ∑ 𝑓(𝑡𝑗−1, 𝑡𝑗|𝑖, 𝑡𝑙𝑐)𝑻𝑺𝑻𝑮,Δ𝑡𝑻𝑹,Δ𝑡

𝑡𝑗

𝑡𝑗−1=0

𝑡𝐿𝐶

𝑡𝑗=0

 (5) 

In Equation (5), 𝑻𝑭𝑺  accounts for possible 

repair actions and gradual deterioration in the time 

between the occurrence of the (𝑗 − 1)-th hazard 

event and the 𝑗-th hazard event (i.e., interarrival-

time), denoted as Δ𝑡𝑗. 𝑓(𝑡𝑗−1, 𝑡𝑗|𝑖, 𝑡𝑙𝑐) is the PDF 

of two hazard events occurring at a time 𝑡𝑗−1 and 

𝑡𝑗 , conditioned on the occurrence of 𝑖  hazard 

events during the nominal lifetime of the system 

(details on how to obtain this particular PDF are 

shown in Fereshtehnejad & Shafieezadeh, 2018), 

𝑻𝑺 is the transition matrix associated with a shock 

deterioration process accounting for the possible 

hazard events (e.g., earthquake- and flood-related 

events), 𝑻𝑮,Δ𝑡  is the transition matrix associated 

with a gradual deterioration process occurring in 

Δ𝑡𝑗 (e.g., deteriorating mechanisms), and 𝑻𝑹,Δ𝑡 is 

the transition matrix associated with the repair 

actions occurring in Δ𝑡𝑗 . The matrix 𝑻𝑺  can be 

obtained combining the transition matrices for 

individual, non-interacting, hazard types 𝑻𝑺ℎ , as 

in Equation (6). 𝑻𝑺, 𝑻𝑮,Δ𝑡, 𝑻𝑹,Δ𝑡, and 𝑻𝑺ℎ  are all 

𝑁𝐹𝑆x𝑁𝐹𝑆  matrices. 

𝑻𝑺 =∑
𝜈ℎ
𝜈𝑇

𝑁ℎ

ℎ=1

𝑻𝑺ℎ  (6) 

A significant challenge in using Equation (1) 

is linked to the high computational cost of 

integrating all the possible outcomes for the 

occurrence of the hazard events and the total 

number of hazard events during the selected time 

horizon. Such a drawback is exacerbated by 𝑻𝑮,Δ𝑡 
and 𝑻𝑹,Δ𝑡  being a function of Δ𝑡𝑗 . Nonetheless, 

Equation (1) can be significantly simplified by 

modelling the expected LCCon estimates as the 

sum of the expected consequences in 𝑁𝑡  fixed 

time intervals of length Δ𝑡, where 𝑁𝑡 = ⌊𝑡𝐿𝐶/Δ𝑡⌋. 
Selecting a sufficiently small Δ𝑡  such that only 

one (primary) hazard event is likely within each 

interval, the expected LCCon estimates can be 

computed with Equation (7). 

𝐸[𝐶] = ∑ 𝑭𝑺𝑡+𝑚Δ𝑡

𝑁𝑡

𝑚=1

𝐸[𝑪𝑭𝑺]
𝑇
 (7) 

In Equation (7), 𝑭𝑺𝑡+𝑚Δ𝑡  is the PMF of the 

system’s FSs at time 𝑡 + 𝑚Δ𝑡 , computed as in 

Equation (8). 𝑭𝑺𝑡  is the PMF of the system’s FSs 

at time 𝑡  (i.e., the time just before 𝑡 + 𝑚Δ𝑡 ), 

computed also with Equation (8) in a previous 

time step. 𝑭𝑺𝑡+𝑚Δ𝑡  and 𝑭𝑺𝑡  are 1x𝑁𝐹𝑆  vectors. 

𝑭𝑺𝑡+𝑚Δ𝑡 = 𝑭𝑺𝑡∏[𝜈𝑇𝑻𝑺𝑻𝑮 + (1 − 𝜈𝑇)𝑻𝑹𝑻𝑮]

𝑚

𝑖=1

 (8) 

In equation (8), 𝜈𝑇𝑻𝑺𝑻𝑮 corresponds to the 

transition probability due to shock and gradual 

deterioration, multiplied by the probability of 
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observing a shock-type hazard event in a selected 

Δ𝑡 (equal to the rate 𝜈𝑇  under the small-interval 

assumption). (1 − 𝜈𝑇)𝑻𝑹𝑻𝑮  corresponds to the 

transition probability due to repair actions and 

gradual deterioration, multiplied by the 

probability of not observing a shock-type hazard 

event in a selected Δ𝑡 (equal to 1 − 𝜈𝑇 under the 

small-interval assumption). It is assumed that only 

a transition due to a hazard event or a repair action 

occurs in a unit of time since, commonly, repair 

actions will be stopped after a significant event. 

Nonetheless, such an assumption can be relaxed. 

In this case, 𝜈𝑇𝑻𝑺𝑻𝑮 can be written as 𝜈𝑇𝑻𝑺𝑻𝑹𝑻𝑮. 

If 𝑻𝑺, 𝑻𝑮, and 𝑻𝑹 do not vary with time (i.e., are 

stationary), they define a homogeneous Markov 

process. In such a case, Equation (8) can be 

simplified to Equation (9). 𝑻𝑺 (as mentioned), 𝑻𝑮, 

and 𝑻𝑹 are 𝑁𝐹𝑆x𝑁𝐹𝑆  matrices.  

𝑭𝑺𝑡+𝑚Δ𝑡 = 𝑭𝑺𝑡[𝜈𝑇𝑻𝑺𝑻𝑮 + (1 − 𝜈𝑇)𝑻𝑹𝑻𝑮]
𝑚 (9) 

The following subsections describe the 

derivation of the described transition matrices. 

3.1. Shock Deterioration Transition Matrix 

The shock-type deterioration transition matrix 

(i.e., 𝑻𝑺) only has diagonal and upper-triangular 

entries corresponding to the probabilities of 

transitioning from a given FS to a higher FS (i.e., 

a transition between progressively worse FSs) or 

staying at the same FS after a hazard event. It is 

obtained from the transition matrix of the 

individual hazard types 𝑻𝑺ℎ  using Equation (6). In 

this section, the methods to assemble each 𝑻𝑺ℎ are 

detailed for four (particular) cases, accounting for 

Level I and II interactions: 1) hazard type ℎ does 

not interact with other hazards; 2) hazard type ℎ 

induced the simultaneous occurrence of other 

multiple concurrent hazards; 3) hazard type ℎ is 

the primary hazard of a successive Type A 

interaction; 4) hazard type ℎ is the primary hazard 

of a successive Type B interaction. It is worth 

noting that equations accounting for interactions 

between two hazards are shown for each 

particular case. Nonetheless, such equations can 

generally be adapted for cases including more 

than two distinct hazard types. 

3.1.1. Non-interacting hazards 

If hazard type ℎ does not interact with any other 

hazards, the PDF of the hazard’s intensity 

measure, 𝑓𝐼𝑀(𝑖𝑚), is obtained from probabilistic 

hazard analysis. The probability that a system in 

the 𝑛 -th FS transitions to the 𝑚 -th FS after a 

hazard event of intensity 𝐼𝑀, 𝑃(𝐹𝑆𝑚|𝐹𝑆𝑛, 𝐼𝑀), is 

computed using state-dependent fragility 

relationships, as thoroughly described in Iervolino 

et al. (2016). The (𝑛,𝑚) entry of the matrix 𝑻𝑺ℎ 

is obtained as in Equation (10). 

𝑻𝑺ℎ(𝑛,𝑚) = ∫ 𝑃(𝐹𝑆𝑚|𝐹𝑆𝑛 , 𝐼𝑀)
∞

−∞

𝑓𝐼𝑀(𝑖𝑚)d𝑖𝑚 (10) 

3.1.2. Concurrent hazards 

If hazard type ℎ  induced the simultaneous 

occurrence of other two concurrent hazards, the 

joint PDF of the intensity measures of the 

associated hazard events, 𝑓𝐼𝑀1,𝐼𝑀2(𝑖𝑚1, 𝑖𝑚2), can 

be obtained from vector-valued probabilistic 

hazard analysis (e.g., by multi-variate Normal 

distributions or Copulas; e.g., Lan et al., 2022).  

The probability that a system in the 𝑛 -th FS 

transitions to the 𝑚 -th FS after the concurrent 

hazard events with intensities 𝐼𝑀1  and 𝐼𝑀2 , 

𝑃(𝐹𝑆𝑚|𝐹𝑆𝑛, 𝐼𝑀1, 𝐼𝑀2), is computed using state-

dependent fragility surfaces. The (𝑛,𝑚) entry of 

the matrix 𝑻𝑺ℎ  is obtained as in Equation (11), 

where 𝑃𝑐 = 𝑃(𝐹𝑆𝑚|𝐹𝑆𝑛, 𝐼𝑀1, 𝐼𝑀2)  and 𝑓𝑐 =
𝑓𝐼𝑀1,𝐼𝑀2(𝑖𝑚1, 𝑖𝑚2). 

𝑻𝑺ℎ(𝑛,𝑚) = ∫ ∫ 𝑃𝑐

∞

−∞

𝑓𝑐d𝑖𝑚1d𝑖𝑚2

∞

−∞

 (11) 

3.1.3. Successive hazards – Type A 

If hazard ℎ is the primary hazard of a successive 

Type A interaction, the PDF of the secondary 

hazard’s intensity measure given the primary 

hazard’s intensity measure, 𝑓𝐼𝑀2|𝐼𝑀1(𝑖𝑚2|𝑖𝑚1) , 

can be obtained from probabilistic hazard analysis 

that accounts for the probability of triggering a 

secondary event given the primary one. The 

probability that a system in the 𝑛-th FS transitions 

to the 𝑚-th FS after a primary event of intensity 

𝐼𝑀1  and a secondary one of intensity 𝐼𝑀2 , 

𝑃(𝐹𝑆𝑚|𝐹𝑆𝑛, 𝐼𝑀1, 𝐼𝑀2), is obtained using state-
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dependent fragility surfaces. The (𝑛,𝑚) entry of 

the matrix 𝑻𝑺ℎ  can be obtained as in Equation 

(12), where 𝑃𝐴 = 𝑃(𝐹𝑆𝑚|𝐹𝑆𝑛, 𝐼𝑀1, 𝐼𝑀2)  and 

𝑓𝐴 = 𝑓𝐼𝑀2|𝐼𝑀1(𝑖𝑚2|𝑖𝑚1)𝑓𝐼𝑀1(𝑖𝑚1). 

𝑻𝑺ℎ(𝑛,𝑚) = ∫ ∫ 𝑃𝐴

∞

−∞

𝑓𝐴d𝑖𝑚1d𝑖𝑚2

∞

−∞

 (12) 

3.1.4. Successive hazards – Type B 

If hazard ℎ is the primary hazard of a successive 

Type B interaction, the transition matrix related to 

the primary hazard, 𝑻𝑺ℎ1
 , is characterised as per 

Section 3.1.1. A conditional rate of occurrence is 

used for the secondary hazards (e.g., Iannacone et 

al., 2023; Iervolino et al., 2020) to obtain: 1) the 

PDF of the secondary hazard events given the 

selected primary hazard’s characteristics (𝜣 ), 

𝑓𝐼𝑀2|𝜣(𝑖𝑚2|𝜣); and 2) the expected number of 

secondary hazard events caused by the primary 

hazard, 𝐸[𝑁ℎ2|𝜣
 (0, ∆𝑡)]. The (𝑛,𝑚) entry of the 

transition matrix of the secondary hazard 𝑻𝑺ℎ2
  is 

obtained as in Equation (13), where 𝑃𝐵 =
𝑃(𝐹𝑆𝑚|𝐹𝑆𝑛, 𝐼𝑀2) and 𝑓𝐵 = 𝑓𝐼𝑀2|𝜣(𝑖𝑚2|𝜣).  

𝑻𝑺ℎ2
 (𝑛,𝑚) = ∫ ∫ 𝑃𝐵

∞

−∞

𝑓𝐵d𝑖𝑚1d𝑖𝑚2

∞

−∞

 (13) 

The transition matrix for the entire sequence 

of events is finally obtained as in Equation (14). 

𝑻𝑺ℎ = 𝑻𝑺ℎ1
 (𝑻𝑺ℎ2

 )
𝐸[𝑁ℎ2|𝜣

 
(0,∆𝑡)]

 (14) 

3.2. Gradual Deterioration Transition Matrix 

Before the gradual deterioration initiation time 

(𝑡𝑖), there is no transition between FSs. Thus, the 

gradual-type deterioration transition matrix (i.e., 

𝑻𝑮 ) is numerically equal to the identity matrix 

(𝑻𝑮= 𝑰). After 𝑡𝑖 , the system starts transitioning 

from a given FS to a higher FS (i.e., a transition 

between progressively worse FSs) or staying at 

the same FS, and 𝑻𝑮 becomes an upper-triangular 

matrix whose entries correspond to the probability 

of transitioning in Δ𝑡, as in Equation (15) (which 

is valid for 𝑡 > 𝑡𝑖). Several probabilistic models 

can be used to model the system’s gradual 

deterioration (e.g., Duracrete, 2000) and, thus, to 

obtain the (𝑛,𝑚) entry of the matrix 𝑻𝑮 . In the 

described procedure, gradual deterioration is 

treated for modelling purposes as the impact of 

non-monitored, yet frequent, small shocks. 

𝑻𝑮(𝑛,𝑚) =

{
 
 

 
 
𝑃(𝐹𝑆𝑚|𝐹𝑆𝑛, Δ𝑡)  if 𝑛 < 𝑚

1 −∑ 𝑻𝑮(𝑛, 𝑖)

𝑁𝑃𝑆

𝑖=1

  if 𝑛 = 𝑚

0  if 𝑛 > 𝑚

 (15) 

3.3. Repair Actions Transition Matrix 

The repair-type recovering transition matrix (i.e., 

𝑻𝑹) only has diagonal and lower-triangular entries 

relating to the probabilities of transitioning from a 

given FS to a lower FS (i.e., a transition between 

progressively better FSs) or staying in the same 

FS as the structural system recovers with time. 

The repair actions are modelled through a Poisson 

process. The daily rate of occurrence of an event 

where the system is recovered from a worse FS to 

a better FS is assumed as the inverse of the 

difference between the repair times for each FS 

(𝑇𝑛,𝑚). This time difference does not necessarily 

correspond to the repair times associated with 

each state-dependent FSs; however, this is the 

simplest approximation to a potential recovery 

path between the FSs. Further details on such 

recovery paths can be found in Burton et al. 

(2016). The values of 𝑇𝑛,𝑚 are only defined if 𝑛 >
𝑚, and they can be found in the literature (e.g., 

HAZUS, 2003). The (𝑛,𝑚) entry of the matrix 

𝑻𝑹 is obtained as in Equation (16). The ∆𝑡 should 

be expressed in the same units than 𝑇𝑛,𝑚. 

𝑻𝑹(𝑛,𝑚) =

{
  
 

  
 (

1

𝑇𝑛,𝑚
∆𝑡) 𝑒

−(
1

𝑇𝑛,𝑚
∆𝑡)
  if 𝑛 > 𝑚

1 −∑ 𝑻𝑹(𝑛, 𝑖)

𝑁𝐹𝑆

𝑖=1

 if 𝑛 = 𝑚

0 if 𝑛 < 𝑚

 (16) 

4. ILLUSTRATIVE APPLICATION 

The proposed framework is demonstrated using 

an archetype four-storey, four-bay, moment-

resisting reinforced concrete frame located in a 

seismic-prone region and subject to harsh 

environmental conditions. It represents a typical 
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building vulnerability class in Southern Italy (e.g., 

Minas & Galasso, 2019) and is located in 

Ponticelli, Napoli ( 𝜈ℎ =0.054). The frame is 

characterised by a total height equal to 13.5 m 

(i.e., a first story of 4.5 m and upper stories of 3.0 

m) and a total width equal to 18.0 m (i.e., bay 

spans of 4.5 m). It comprises beams and columns 

with 30x50 cm cross sections, designed and 

detailed according to the Eurocode 8 Part 3 

seismic provisions for high ductility class 

structures (EN 1998-3, 2005). The building is 

assumed to undergo earthquake-induced ground 

motions while experiencing environmentally-

induced corrosion deterioration in a marine splash 

exposure. DSs are used as performance states (so 

FS = DS in the previous equations) since a unique 

shock-type hazard is investigated, as in common 

performance-based engineering practice. The 

time- and state-dependent fragility relationships 

developed in Otárola et al. (2023) for this case-

study frame are used to assemble 𝑻𝑺 and HAZUS 

repair times are used to assemble 𝑻𝑹  (HAZUS, 

2003). Table 1 to 3 present the transition matrices 

for the case-study building. In total, four DSs are 

adopted, corresponding to slight (DS1), moderate 

(DS2), extensive (DS3), and complete (DS4) 

structural damage. Although the entries for 𝑻𝑺 

and 𝑻𝑹 are obtained from fragility and recovery 

models, respectively; values for 𝑻𝑮 are ideal and 

are used for illustrative purposes, estimating its 

non-diagonal entries as those corresponding to 𝑻𝑺 

divided by 100 for a ∆𝑡 expressed in months. 

Table 1: 𝑻𝑺 transition probability matrix  
DSs DS0 DS1 DS2 DS3 DS4 

DS0 7.69e-1 9.49e-2 6.38e-2 4.14e-2 3.12e-2 

DS1 0 8.23e-1 9.77e-2 4.76e-2 3.17e-2 

DS2 0 0 9.03e-1 6.42e-2 3.31e-2 

DS3 0 0 0 9.61e-1 3.88e-2 

DS4 0 0 0 0 1 

Table 2: 𝑻𝑮 transition probability matrix 
DSs DS0 DS1 DS2 DS3 DS4 

DS0 9.98e-1 7.91e-4 5.31e-4 3.45e-4 2.60e-4 

DS1 0 9.99e-1 8.14e-4 3.97e-4 2.64e-4 

DS2 0 0 9.99e-1 5.35e-4 2.76e-4 

DS3 0 0 0 9.99e-1 3.24e-4 

DS4 0 0 0 0 1 

Table 3: 𝑻𝑹 transition probability matrix 
DSs DS0 DS1 DS2 DS3 DS4 

DS0 1 0 0 0 0 

DS1 3.64e-1 6.36e-1 0 0 0 

DS2 1.97e-1 3.05e-1 4.98e-1 0 0 

DS3 8.41-2 1.15e-1 1.53e-1 6.47e-1 0 

DS4 4.82e-2 5.32e-2 6.74e-2 9.16e-2 7.40e-1 

The expected LCCon is estimated in terms of 

expected repair costs and considering 60 years as 

the system’s service life. The expected repair cost 

can be computed as in Equation (17). 

𝐸[𝐶𝑇] = 𝐶0 + 𝐶𝑀,𝑁𝑃𝑉 + 𝐸[𝐶]𝑁𝑃𝑉  (17) 

𝐶0  is the initial construction cost of the 

building, 𝐶𝑀,𝑁𝑃𝑉  is the maintenance cost during 

the building service life actualised to the time of 

construction (Net Present Value, NPV), obtained 

from the annual cost of maintenance 𝐶𝑀 (assumed 

to be 0.01𝐶0 constant per year; e.g., Jalayer et al., 

2011) as in Equation (18).  

𝐶𝑀,𝑁𝑉𝑃 = ∑
1

(1 + 𝛼)𝑡
𝐶𝑀

𝑡𝐿𝐶−1

𝑡=0

 (18) 

𝐸[𝐶]𝑁𝑃𝑉 is the expected cost (consequence) 

of repairs due to hazard-induced damage also 

actualised at the time of construction, obtained as 

in Equation (19) (with 𝑚=1). The discount factor, 

𝛼 , is illustratively assumed to be 0.05 for the 

adopted case-study building. 

𝐸[𝐶]𝑁𝑃𝑉 = ∑
1

(1 + 𝛼)𝑡

𝑡𝐿𝐶−1

𝑡=0

(𝑭𝑺𝑡+1Δ𝑡𝐸[𝑪𝑭𝑺]
𝑇
) (19) 

Figure 2 shows the expected life-cycle cost 

normalised with the initial cost of construction 

(i.e., 𝐸[𝐶𝑇]/𝐶0) of the case-study building as a 

function of time, using the consequence model 

(i.e., 𝐸[𝑪𝑭𝑺] =[0,0.01,0.10,0.55,1.00], related to 

the mean repair-to-replacement cost ratio of the 

system) proposed by Di Pasquale et al. (2005) and 

starting in pristine conditions (𝑭𝑺0 =[1,0,0,0,0]). 

Additionally, the expected life-cycle unit (i.e., 

normalised) cost of a structural upgraded building 

at 𝑡 = 0 years (yr) is presented. Such an upgrade 

is assumed to ideally cost 10.0% of the initial cost 

and to increase the median fragility values by 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 

 

 
8 

25.0% (i.e., to increase the lateral-resisting system 

structural capacity). The maintenance and repair 

costs of the upgraded and as-built configurations 

are assumed to be equal. Although initially much 

more expensive, an enhancement in the building’s 

seismic lateral resisting system can significantly 

reduce its life-cycle cost, as observed in Figure 2. 

Given the flexibility and efficiency of the 

proposed framework, such improvements can be 

analysed at any point in time and utilised to 

showcase the value and/or significance of risk 

management and adaptation pathways. 

 

Figure 2: Normalised expected life-cycle cost of the 

case-study building 

5. CONCLUSIONS 

The study presented a Markovian framework for 

multi-hazard life-cycle consequence analysis of 

deteriorating structural systems. Consequences in 

terms of repair costs are obtained from the 

performance states of the system over time. 

Transition matrices for shock deterioration, 

gradual deterioration, and repair actions are 

established to model the performance state 

change.  The framework can be used to model the 

time- and state-dependent deterioration and 

recovery processes with significantly low 

computational demand. A case-study moment-

resisting reinforced concrete building subjected to 

earthquake-induced ground motions as well as 

corrosion-induced deterioration was presented to 

illustrate the proposed framework. The results 

showcase how the formulation can be effectively 

implemented in actual risk modelling practice to 

adequately assess the life-cycle consequences of 

structural systems due to multiple hazards. 
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