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ABSTRACT: Stochastic simulation schemes, such as Monte Carlo simulation (MCS), is commonly
used to estimate failure probabilities in reliability analysis and risk assessment. However, these schemes
can be computationally intensive, often requiring many evaluations of expensive high-fidelity numerical
models, especially for rare event simulation. An additional challenge can arise when high-dimensional
response measures, corresponding to multiple limit states, are of interest. This work proposes an
efficient stochastic simulation approach based on multi-fidelity information fusion and dimensionality
reduction to overcome these difficulties. The high-dimensional low-fidelity and high-fidelity outputs are
first projected into a low-dimensional latent space using principal component analysis. A multi-fidelity
model is then built based on Gaussian process regression in the latent space to predict the relationship
between low- and high-fidelity outputs using a small number of high-fidelity model runs. Finally, the
low-fidelity model is first evaluated for a large number of MCS samples, and the corresponding results
are used to predict the high-fidelity outputs with rigorous confidence bounds based on the constructed
multi-fidelity model, from which the relevant failure probabilities can be estimated. The effectiveness
and efficiency of the proposed approach are validated on a 45-story steel building subject to stochastic
wind excitation.

1. INTRODUCTION

Complex engineering systems are usually simu-
lated using computational models (e.g., finite ele-
ment models) to explore the system’s behavior. To
achieve a high level of accuracy, these simulation
models usually involve high computational costs,
which prohibits subsequent analysis tasks, such as
uncertainty quantification and optimization. A spe-
cific problem of interest to this work is the esti-
mation of failure probabilities for use in reliability
analysis or risk assessment. Direct sampling-based

methods, such as Monte Carlo simulation (MCS),
are commonly used. However, they can be compu-
tationally intensive and often require many evalua-
tions of expensive high-fidelity numerical models.
The computational effort is even more significant
when rare event simulation is involved.

One approach to accelerate the estimation is
to develop a multi-fidelity stochastic simulation
scheme. The basic idea is to reduce the required
number of high-fidelity runs while maintaining the
accuracy of the estimated probabilities by fusing in-
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formation from the low- and high-fidelity models.
Among the various multi-fidelity stochastic simula-
tion methods, Bayesian multi-fidelity Monte Carlo
(BMFMC) (Koutsourelakis, 2009; Biehler et al.,
2015; Nitzler et al., 2020) has been successfully ap-
plied to complex and large-scale engineering sys-
tems and demonstrated remarkable effectiveness
in accelerating estimation of output statistics (e.g.,
failure probabilities). BMFMC directly predicts the
quantitative relationship between the low-fidelity
model output and the high-fidelity model output us-
ing a non-parametric Bayesian regression model,
which is then used to compute the statistics of the
high-fidelity model output efficiently.

One drawback of existing BMFMC methods is
that they are typically designed to estimate the
statistics associated with a single scalar output. In
many engineering systems, however, the model out-
puts of interest are high-dimensional. This high-
dimensionality has yet to be addressed by state-of-
the-art BMFMC methods. To extend the BMFMC
methods to deal with high-dimensional systems, a
straightforward way is to establish the relationship
between low-fidelity and high-fidelity models for
each individual output dimension. However, the
computational effort to train all regression models
and then use them for prediction fast becomes pro-
hibitive. In addition, the selection of the training
data that is optimal for all response measures is
challenging.

This work proposes a multi-fidelity stochastic
simulation scheme suitable for high-dimensional
engineering systems, where the challenges in the
high-dimensional response measures are addressed
by dimension reduction. The proposed multi-
fidelity method can enable simultaneous estimation
of the failure probabilities associated with multiple
limit states, and only requires a small number of
high-fidelity model evaluations. The effectiveness
and efficiency of the proposed approach are vali-
dated on a 45-story archetype steel building sub-
jected to stochastic wind excitation.

2. PROBLEM FORMULATION

Consider a building structure simulated by
a high-fidelity numerical model that maps the
input vector, x, to an output vector yh =

[y(1)h ,y(2)h , . . .,y(ny)
h ] ∈ Rny . An inexpensive low-

fidelity model can be established to approximate the
high-fidelity model outputs with relatively low ac-
curacy. The model output vector is assumed as yl =

[y(1)l ,y(2)l , . . .,y(ny)
l ] ∈ Rny . The problem of interest

to this work is to estimate the probabilities of the
response measure, y(i)h , exceeding a certain thresh-

old δ (i), i.e., the failure probability P(y(i)h > δ (i)) for
i = 1,2, . . . ,ny. Without loss of generality, the fail-
ure probability formulation takes into account both
non-collapse events, Dnc, and collapse events Dc.
Since Dnc and Dc are mutually exclusive, based on
the total probability theorem, the failure probability
can be expressed as:

P(y(i)h > δ
(i)) = P(y(i)h > δ

(i)|Dnc)(1−P(Dc))

+P(y(i)h > δ
(i)|Dc)P(Dc)

(1)
where P(y(i)h > δ (i)|Dnc) and P(y(i)h > δ (i)|Dc)
are exceedance probabilities conditional on non-
collapse and collapse events, respectively; P(Dc) is
the probability of system collapse; while P(y(i)h >

δ (i)|Dc) ≡ 1 under the assumption that y(i)h ex-
ceeds any value of δ (i) when the system collapses.
Within this context, this work aims to estimate
the non-collapse exceedance probabilities P(y(i)h >

δ (i)|Dnc) (simplified as Pnc(y
(i)
h > δ (i)) hereafter),

and the collapse probability P(Dc).

3. MULTI-FIDELITY INFORMATION FUSION

FOR EFFICIENT ESTIMATION OF SMALL

FAILURE PROBABILITIES
3.1. Multi-fidelity Stochastic Simulation

A multi-fidelity stochastic simulation scheme is
proposed to facilitate efficient estimation of the fail-
ure probabilities. The scheme consists of step-by-
step estimations of the collapse probability, P(Dc),
using a classification model and the non-collapse
exceedance probabilities, Pnc(y

(i)
h > δ (i)), using

a regression model. For this purpose, a Gaus-
sian process model, a non-parametric model com-
monly used in the machine learning community
(Rasmussen, 2003), is constructed to approximate
the relationship between the low-fidelity and high-
fidelity model. More specifically, a probabilistic re-
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lationship between the low-fidelity outputs and the
high-fidelity outputs is established based on a small
number of high-fidelity runs by applying a Gaus-
sian process regression (GPR) model to estimate
the non-collapse exceedance probabilities. Regard-
ing the collapse probability, a Gaussian process
classification (GPC) model is established to predict
whether the system collapses given any low-fidelity
outputs.

3.1.1. Non-collapse Exceedance Probability
A multi-fidelity model is established to predict

the high-fidelity outputs, yh, from the low-fidelity
outputs, yl , based on the GPR. The fundamental
concept of the GPR model is to assume the target
function, yh(yl), as a realization of a Gaussian pro-
cess. Since the low-fidelity and high-fidelity mod-
els drop the dependency on x, the corresponding
model outputs, yl and yh, may have a noisy relation-
ship instead of a one-to-one mapping. To account
for this, a zero-mean Gaussian noise, ε , is assumed
on top of the GPR model, i.e., ε ∼ N (0,σ2

ε ).
The formulation of the GPR model first requires

selecting a global regression model, m(yl), and
a covariance/kernel function, k(yl,y′l|θ). Condi-
tioned on n observations corresponding to the func-
tion outputs, Yh = {yh,i; i = 1, . . . ,n}, for different
inputs, Yl = {yl,i; i= 1, . . . ,n}, the predictive distri-
bution of the function output provided by the GPR
model is given by:

yh(yl)|Yl,Yh ∼ N
(

ŷh(yl),σ
2
ŷh(yl)

)
(2)

where ŷh(yl) and σ2
ŷh(yl)

are the predictive mean and
variance, respectively. The hyperparameters, θ and
σ2

ε , need to be calibrated. In particular, the optimal
hyperparameter values can be obtained by maxi-
mum likelihood estimation. The formulation of the
predictive mean and variance can be found in the
literature (Rasmussen, 2003). Note that the predic-
tive variance provides an estimation of the uncer-
tainty of the mean predictions as well as the contri-
bution from the assumed noise. The latter term cap-
tures the inherent uncertainty of the high-fidelity
model output, yh, given a low-fidelity model output,
yl , evaluated at the same model input x. The predic-
tive variance information can be used to guide the

intelligent selection of the training data within an
active learning framework.

The non-collapse exceedance probability,
Pnc(y

(i)
h > δ (i)), is then estimated from low-fidelity

stochastic simulation results calibrated by the
established multi-fidelity model. The calibration is
given by the following equation:

P̂nc(y
(i)
h > δ

(i)) =
∫

P̂(y(i)h > δ
(i) | yl)p(yl)dyl

=
∫ (∫

I f (y
(i)
h )p̂(y(i)h |yl)dy(i)h

)
p(yl)dyl

(3)
where p(yl) is the joint probability density of the
low-fidelity model outputs; p̂(y(i)h |yl) denotes the
predicted distribution of the high-fidelity model
output, y(i)h , given the low-fidelity model outputs,
yl , evaluated at the same sample, x, and can be
obtained from the established GPR-based multi-
fidelity model of Eq. (2); while I f is the indicator

function which can be obtained by Φ

(
ŷ(i)h (yl)−δ

σ
ŷ(i)h

(yl)

)
with Φ(·) the cumulative density function of the
standard normal distribution (due to the Gaussian
nature of the GPR prediction).

3.1.2. Collapse Probability
The estimation of the collapse probability is for-

mulated as a classification problem, which predicts
whether the system collapses or not given a set
of samples. The classification problem takes the
maximum value of the low-fidelity response ymax

l
(e.g., maximum peak interstory drift ratio) as the
model input while taking the label Ic = 0 (i.e., non-
collapse) and Ic = 1 (i.e., collapse) as the model
output. To build the input-output relationship, a
Gaussian process classification (GPC) is used. The
key idea behind the model is to assume a Gaussian
process prior over a latent function f (ymax

l ) (i.e.,
similar to the GPR described earlier) and then map
the latent function to the class probability through a
link function (e.g., probit function or logistic func-
tion) (Rasmussen, 2003). Take the probit function
for an example, the prior over the target function
is expressed by: p(Ic = 1|ymax

l ) = Φ( f (ymax
l )) and

p(Ic = 0|ymax
l ) = 1−Φ( f (ymax

l )). Note that the la-
tent function, f (ymax

l ), cannot be observed. How-
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erver, it is not required for the formulation of this
work. The adoption of f (ymax

l ) is only for the con-
venience of formulating the GPC model.

The inference of the GPC model involves esti-
mating the parameters of the GP based on the obser-
vations I c = {Ic,i; i = 1, . . . ,n} for different inputs
Ymax

l = {ymax
l,i ; i = 1, . . . ,n}. In addition, the latent

function, f (ymax
l ), is regarded as an additional un-

known parameter that also needs to be calibrated.
Unlike the GPR, the inference of the GPC model
using a Bayesian approach can be analytically in-
tractable (Kuss et al., 2005) since the likelihood,
p(I c|f), is non-Gaussian (i.e., the probit function
of this work), and therefore requires some approx-
imation methods, such as Laplace approximation,
and expectation propagation. More details can be
found in the reference paper (Rasmussen, 2003).
With the GPC model calibrated based on a probit
function and the Laplace approximation, the pre-
dictive class probability can be written as:

p(Ic = 1|Ymax
l ,I c,ymax

l ) = Φ

 µ̂(ymax
l )√

1+σ2
µ̂
(ymax

l )


(4)

where µ̂(ymax
l ) and σ2

µ̂
(ymax

l ) are the predictive
mean and variance over the latent function f (ymax

l ).
The class label, Îc(ymax

l ), predicted from the multi-
fidelity classification model is then obtained by ap-
plying a threshold to the predictive class probabil-
ity, i.e., Îc(ymax

l ) = 1 if p(Ic = 1|Ymax
l ,I c,ymax

l )>

0.5 and Îc(ymax
l ) = 0, otherwise.

3.2. Multi-fidelity Stochastic Simulation with Di-
mension Reduction

In order to address the challenges of high-
dimensional response measures (i.e., correspond-
ing to multiple limit states) when constructing the
multi-fidelity model for non-collapse exceedance
probabilities (i.e., ny is a large value), a dimension
reduction technique is applied to project the low-
fidelity outputs, yl , and the high-fidelity outputs,
yh, to a low-dimensional latent space. In paticu-
lar, principal component analysis (PCA) (Jackson,
2005) is used here to identify the low-dimensional
representations of yl and yh in the latent space, i.e.,
the principal components, preserving the primary

structure of the original outputs. The transforma-
tion between the original space and the latent space
is expressed by:

YT = PZT (5)

where P is the projection matrix established by
solving the eigenvalue problem for the covariance
matrix ΣY = YT Y where Y = [Yh;Yl] contains the
observations of the original high-fidelity and low-
fidelity outputs over a set of support points. In
Eq. (5), Z = [Zh;Zl] represents the latent outputs
which account for the maximal data variance in Y.
The latent output dimensionality, nz, can be ob-
tained by applying a threshold (e.g., 99%) to the
ratio of the data variance in Y captured by the la-
tent outputs.

Once the transformation is established, a multi-
fidelity model is established between the latent
high-fidelity outputs and the latent low-fidelity out-
puts based on the GPR model, denoted zh and zl , re-
spectively. Conditional on given training data and
an optimal selection of the model parameters, the
GPR model provides a prediction at any new latent
low-fidelity model output zl that follows a Gaussian
distribution, i.e., p̂(zh|zl)∼ N (ẑh(zl),σẑh(zl)).

3.3. Estimation of Failure Probability
The constructed multi-fidelity models are then

used to calibrate the failure probabilities estimated
from the efficient low-fidelity model. First, the col-
lapse probability, P(Dc), can be estimated as:

P̂(Dc) =
1

N j

N j

∑
t=1

Îc(ymax
l,t ) =

N̂ jc

N j
(6)

where N j is the total number of samples of x gen-
erated and N̂ jc is the number of collapse samples
predicted from the multi-fidelity GPC model.

The predicted non-collapse samples from the
GPC model are then used to predict Pnc(y

(i)
h > δ (i) |

yl), i.e., the non-collapse exceedance probabilities
associated with any response measure. The proba-
bilities are estimated by Eq. (3), where the proba-
bility, p̂(y(i)h | yl), can be obtained by transforming
p̂(zh|zl) back to the original space, i.e., p(yh|yl) ∼
N (Pẑh(zl),Pσẑh(zl)), recalling that PCA provides
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a linear transformation between the original space
and the latent space.

As a result, the estimator of the failure proba-
bility corresponding to any response measure us-
ing the multi-fidelity stochastic simulation scheme
is given by:

P̂(y(i)h > δ
(i)) =

1
N j − N̂ jc

N−N̂ jc

∑
t=1

Φ

 ŷ(i)h (yl(xt))−δ

σ
ŷ(i)h

(yl(xt))

+
N̂ jc

N j

(7)

4. ILLUSTRATIVE EXAMPLE
4.1. Overview

The proposed approach is tested on a case study
consisting of a 45-story archetype steel building
subject to stochastic dynamic wind loads and gen-
eral model uncertainty. Figure 1(a) illustrates the
building structure. System collapse of this structure
is defined as the maximum peak interstory drift ra-
tio exceeding 5%. The limit states of interest are the
peak interstory drift ratios of each floor exceeding
specific thresholds of interest.

To efficiently estimate the failure probabilities,
stratified sampling, an effective variance reduc-
tion technique that has seen extensive use in
performance-based wind engineering applications
(Ouyang and Spence, 2020, 2021b,a; Arunachalam
and Spence, 2022, 2023), is applied. To this end,
the maximum non-directional mean hourly wind
speed at the building top is selected as the strat-
ification variable. The resulting partitioning of
the non-directional wind speed hazard curve into
8 wind speed intervals (WSI) is shown in Fig-
ure 1(b). More details on the stratified sampling
scheme can be found in Arunachalam and Spence
(2023). Though efficient, stratified sampling still
requires many evaluations of the expensive high-
fidelity model in each stratum. To address this, the
proposed multi-fidelity (MF) stochastic simulation
scheme is integrated within the stratified sampling
framework to facilitate a more efficient estimation
of small failure probabilities.

4.2. Implementation Details
The high-fidelity (HF) model is a fiber-based fi-

nite element model considering inelasticity, buck-

Figure 1: 45-story archetype steel building and strati-
fied sampling of the non-directional wind hazard curve.

ling, and fiber fracture. The low-fidelity (LF) model
is a section-based finite element model with an elas-
tic perfectly plastic material model which does not
capture the effects of large displacement. The solu-
tion scheme is the adaptive fast nonlinear analysis
(AFNA) algorithm outlined in Li et al. (2021). In
total, the LF model is around 360 times faster than
the HF model. A full range of model and wind load
uncertainties are considered (Chuang and Spence,
2017; Suksuwan and Spence, 2018; Chuang and
Spence, 2022; Arunachalam and Spence, 2022).

Since the LF model can predict the HF response
well in low strata due to an essentially elastic re-
sponse, the MF stochastic simulation scheme is
only implemented in strata with high wind speeds.
More specifically, in the strata with high wind
speeds, the failure probabilities conditional on each
stratum are first estimated from the LF model using
Nl samples, then corrected by the MF model con-
structed using Nh HF runs (Nh << Nl), and finally
used to estimate the total failure probabilities. Nl is
selected as 1000 in this example, while Nh is deter-
mined by an active learning training data selection
strategy. The active learning strategy aims to intelli-
gently add the most informative data to the training
set and improve the MF model prediction with the
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Figure 2: Ratio of captured variance with latent out-
puts dimensionality in WSI 7.

least training cost.
Regarding the dimension reduction of the high-

dimensional model outputs, i.e., peak interstory
drift ratio with ny = 45, PCA is applied to find the
low-dimensional latent representations. Take the
7th WSI as an example, Figure 2 shows the vari-
ation of the data variance in the original outputs
captured by the latent outputs as the latent output
dimensionality nz increases. As can be observed,
the captured data variance increases quickly as nz
increases while staying stable when nz reaches a
certain number. By applying the threshold 99% to
the ratio of the captured variance, the dimension of
the latent outputs, nz, is identified as 5. This finally
leads to a dimension reduction of the outputs from
ny = 45 to nz = 5.

4.3. Results and Discussions
To demonstrate the performance of the GPC-

based MF models in collapse prediction, Figure 3
shows the comparision between true collapse/non-
collapse counts obtained from the HF model and
predicted collapse/non-collapse counts obtained
from the MF model over the 1000 samples gener-
ated in WSIs 7 and 8. It can be observed from the
figure that the MF models can accurately identify
collapse from non-collapse. In addition, the pre-
dicted conditional collapse probabilities for WSIs
7 and 8 are 21.0% and 24.3%, which are close to
the ground truth values of 22.4% and 28.2%, fur-
ther validating the good prediction accuracy of the
GPC-based MF models. These MF models are then
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Figure 3: True versus predicted collapse/non-collapse
counts in WSIs 7 and 8.

used to exclude collapse samples from the train-
ing of the GPR-based MF models which are used
for predicting conditional non-collapse exceedance
probabilities.

Figure 4 and 5 present the estimated conditional
non-collapse exceedance probabilities in WSIs 7
and 8, respectively. Peak interstory drift ratios at all
45 floors are the response measures of interest, and
the results for different thresholds are plotted. The
number of HF evaluations in WSI 7 and WSI 8 are
Nh = 111 and Nh = 116, respectively. The values of
Nh are selected based on the active learning strat-
egy discussed earlier with a stopping criterion de-
termined by the convergence of the GPR-based MF
models. For comparison purposes, the conditional
non-collapse exceedance probabilities are also esti-
mated using the HF model with the generated 1000
samples, which are used as reference values. From
the figures, it can be seen that the estimated condi-
tional non-collapse exceedance probabilities match
the reference values very well. However, the pre-
diction accuracy slightly degrades when the thresh-
old becomes higher, which is as expected due to the
small magnitude of the probabilities. By compar-
ing the two figures, it is found that the MF model
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Figure 4: Conditional non-collapse exceedance proba-
bilities in WSI 7.

in the higher WSI performs a little worse than the
MF model in the lower WSI, although more train-
ing data is used in the former. This implies that the
increasing wind speed may lead to more complex
LF-HF relationship and thus require more training
data to capture the relationship.

In terms of the computational cost, the HF ref-
erence solutions are obtained with 1000 HF runs
while the MF solutions are obtained by running
only around 100 HF models and 1000 LF mod-
els. Since the LF model is around 360 times faster
than the HF model, the computational gain of the
MF stochastic simulation scheme is approximately
1000/(100+ 1000/360) = 10 times. Overall, the
proposed MF stochastic simulation scheme is able
to estimate the non-collapse exceedance probabil-
ities and the collapse probabilities conditional on
high WSIs with a similar accuracy provided by the
HF stochastic simulation while using around a mag-
nitude less computational effort. After obtaining
the non-collapse exceedance probabilities and the
collapse probabilities conditional on all WSIs, the
failure probability of the structure can be readily
estimated by Eq. (7).
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Figure 5: Conditional non-collapse exceedance proba-
bilities in WSI 8.

5. CONCLUSIONS

This work proposes a multi-fidelity stochastic
simulation scheme to efficiently estimate failure
probabilities for structural systems characterized by
high-dimensional response measures (correspond-
ing, for example, to multiple limit states). The
key idea is to fuse information from low-fidelity
and high-fidelity models with the aim of establish-
ing a relationship between the two model repre-
sentations which can then be used to directly in-
form failure predictions without running the HF
model. To address the challenge stemming from
the high-dimensional response measures, a dimen-
sion reduction technique is used to project the high-
dimensional response measures to low-dimensional
representations. The proposed method is tested on
a 45-story wind-excited steel building to estimate
failure probabilities for high-dimensional response
measures. It is demonstrated that to achieve similar
accuracy to conventional high-fidelity model-based
stochastic simulation, the multi-fidelity scheme
only requires around 1/10 of the computational ef-
fort.
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