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ABSTRACT: Geo-statistical modelling challenges arise when regional models in data-scarce regions are 

required. This is relevant when evaluating and dealing with geotechnical uncertainty in earthquake 

engineering applications. From a geotechnical earthquake engineering perspective, VS30 (shear-wave 

velocity in the upper 30m of soil) predictions must cover regional scale study areas. A systematic lack 

of data can significantly limit obtaining a satisfactory dataset for accurate soil amplification definition. 

This paper implements a novel geo-statistical framework to create VS30 mapping. Such a framework 

employs an approach of Bayesian Kriging, implemented initially within the context of petroleum 

reservoir modelling and recently applied to the case of Kathmandu Valley. The approach uses primary 

and secondary data to apply either debiasing or declustering to deal with typical issues of data availability 

in data-scarce regions. The multidisciplinary use of this analysis method provides an assessment of 

uncertainty, and an informed quantification of geotechnical parameters where traditional statistical 

methods may not produce sufficiently acceptable results. In this paper, a new set of secondary data using 

the case study of Kathmandu Valley (Nepal) is employed to demonstrate the flexibility of the geo-

statistical framework developed in a previous study by the same authors. 

 

1. INTRODUCTION 

 

Using geo-statistics is a standard 

methodology for predicting parameters at regional 

level where measurements are scarce. As Kriging 

is a linear estimator, it is constrained by the data 

range of the original measurements (Deutsch & 

Journel, 1998). Usually, this would be a good 

assumption (capturing a dataset variability about 

the mean), yet, when a limited range of 

measurements is used for a large-scale prediction, 

Kriging, in the traditional sense, may not capture 

the full range of possible scenarios. Estimation 

can become even more challenging when data 

scarcity leads to sampling bias. 

This is the context of the geo-statistical 

framework developed by Gilder et al. (2022) 

where the combined use of secondary data and 

Bayesian Kriging enables an improved 

estimation. This framework was originally 

developed for the estimation of the shear-wave 

velocity in the upper 30m of depth (VS30) (see also 

the thesis of Gilder (2022) for more details on the 

development of the framework). In this study, 

further use of the framework is presented for 

additional geotechnical parameters, using the 

same case study of the Kathmandu Valley in 

Nepal. 
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2. VS30 PREDICTION 

 

VS30 can be estimated from correlation with 

topographic gradient (slope) obtained from 

Digital Elevation Models (DEM) (Wald & Allen 

2007; Allen & Wald 2009). This method is used 

by the United States Geological Survey (USGS) 

to develop shake maps (Wald et al. 2006). From 

an engineering geology perspective, this 

relationship simulates the effect expected from 

soils with different friction angles. The basis of 

the used predictors is that soils on steep slopes 

must indicate rock with corresponding high VS30. 

Where VS30 is not measured, Eurocode 8 (CEN 

2004) suggests using the parameter SPT-N. Other 

proxies for VS30 include the geology-based model 

(Wills & Clahan 2006) or terrain-based models 

(Yong et al. 2012). A hybrid combination of these 

methodologies is commonly used to include the 

relative benefits of the different methods (e.g., 

Thompson et al. 2014; Stewart et al. 2014; Wills 

et al. 2015).  

Uncertainty may be associated with 

measurements, and the possibility of sampling 

bias (preferentially testing particular sediments, 

or near seismic stations or for other reasons 

caused by accessibility issues) has led to the 

hypothesis that distributions of VS30 built from 

regional databases may potentially be skewed 

(Mital et al. 2021).  

The geo-statistical framework developed by 

Gilder et al. (2022) to predict VS30 uses both 

primary and secondary data and implements the 

multi-gaussian Bayesian updating technique 

presented by Deutsch & Zanon (2007) building 

upon the robust kriging approach developed in De 

Risi et al. (2021). When using the methodology, 

the term primary is given to the variable being 

predicted in the Kriging (which is scarce 

geospatially). Secondary is a densely sampled 

variable that can provide information for 

predicting the primary variable. This differs from 

previous VS30 geospatial estimation efforts as the 

method can fully capture both local scale 

measurements and regional scale trends.  

The case study used in this research was 

made possible by the SAFER geodatabase for the 

Kathmandu Valley (Gilder et al. 2020), 

assembled as part of the Global Challenges 

Research Fund project Seismic Safety and 

Resilience of Schools in Nepal (SAFER) 

(https://www.safernepal.net/) funded by the 

Engineering and Physical Sciences Research 

Council. This provided a suitable example of 

geotechnical uncertainties affecting an 

earthquake-prone region and seismic hazard 

estimation. The first section of this paper presents 

the selection of secondary predictors. The second 

section uses the geo-statistical framework 

developed in Gilder et al. (2022) to present a 

Bayesian SPT-N map for the region. 

3. METHODOLOGY 

 

The methodology of Gilder et al. (2022) is 

organised into six steps: 

1. Selection of primary and secondary variables. 

2. Selection of Option A or Option B (data 

debiasing or declustering). 

3. Variable transformation. 

4. Simple Kriging of the primary variable. 

5. Definition of likelihood distribution using the 

secondary variable/s. 

6. Bayesian updating of Step 4. 

 

Taken from the original paper, Step 6 relies on 

the Bayesian Updating Equations presented by 

Deutsch & Zanon (2007): 

 

𝑦̅𝑈 =  
𝑦̅𝐿𝜎𝑃
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where subscript P is for the prior distribution, U is 

for the updated distribution, and L is for the 

likelihood. The y̅U is the updated Kriging output, 

and 2
U is the accompanying estimation variance 

for that prediction. The y̅P is the Simple Kriging 

result of Step 4 (i.e., mean of the distribution at 

https://www.safernepal.net/
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each location, u), 2
P is the accompanying 

estimation variance of the Simple Kriging 

prediction, y̅L is the mean likelihood, and 2
L is 

the likelihood variance built from the secondary 

variables.  

Step 4 involves the development of a 

variogram. The variogram is created in 

geostatistics to understand whether samples close 

together have similar properties. This aspect is left 

to the modeller's discretion, including the choice 

of variogram type, i.e., spherical or exponential 

(e.g., Wackernagel 2010). When using the 

framework presented here, the variogram must be 

decided prior to any declustering or debiasing of 

the primary data. Before using Equations 1 and 2, 

the original data values of the primary 

measurements and secondary predictor are 

transformed to normal space. 

In step 2, as explained in Gilder et al. (2022), 

sampling bias in a dataset can be common, as 

often, geotechnical data are taken at specific 

points with the intent of answering a particular 

question. Debiasing of data can be accomplished 

by incorporating a data trend between primary and 

secondary variables. A judgement-based bivariate 

trend is needed to translate the conditional 

distribution of the primary variable, given a 

secondary variable, to portions of the distribution 

where data is unknown. Step 2 (Option A) uses: 

 

𝑓𝑌(𝑦) =  ∫ 𝑓𝑌|𝑋(𝑦|𝑥)
𝑥

𝑓𝑋(𝑥) 𝑑𝑥  (3) 

 

where 𝑓𝑌(𝑦)  is the debiased distribution of the 

primary variable, 𝑓𝑌|𝑋(𝑦|𝑥)  is a conditional 

distribution between secondary (𝑥) and primary 

(𝑦) variables, where they are collocated (Deutsch 

et al. 1999). Collocated is used to describe where 

both parameters are available at a particular 

location, u. 𝑓𝑋(𝑥) is the distribution provided by 

the secondary data, densely sampled and 

unbiased, so it provides a better understanding of 

the entire possible range of 𝑦. 

Declustering is selected as a debiasing option 

when a primary dataset is favouring a particular 

interval of values. This might occur when drilling 

in a concentrated area exhibiting particularly high 

or low primary parameter values. Step 2 (Option 

B) uses declustering in the configuration: 

 

𝑦𝑑,𝑖 = 𝛼𝑖𝑦𝑖 =
𝐴𝑉𝑖

𝐴
𝑦𝑖   (4) 

 

where a weight is assigned to a primary data point 

(𝑦𝑖), using the ratio (𝛼𝑖) between the area of the 

Voronoi polygon around each data (𝐴𝑉𝑖) and the 

total area of the window of interest (𝐴).  

4. ANALYSIS 

4.1. Secondary predictors 

 

The process of selecting a good secondary 

predictor is dependent on the strength of 

correlation with the primary variable. Where VS30 

is the variable to be predicted, several options for 

secondary data may be available based on 

understanding how it may vary. The database 

developed for the Kathmandu region by the 

authors (Gilder et al. 2020) is used as a source of 

additional data. Where in a data-scarce region, the 

option of having a densely populated secondary 

variable is uncommon, the first step may be to 

undertake simple Kriging to understand if the 

resulting distribution of a secondary dataset 

characterises the region effectively.  

Soil grain size was selected as an option due 

to the understood correlation with VS30 values, 

(i.e., splitting correlation models for grain size is 

a common approach) (Wair et al. 2012). In Figure 

1, the updated Kriging estimate from Gilder et al. 

(2022) where slope based VS30 estimation and 

bedrock depth was used as secondary data (Figure 

1a) is compared with the percentage of soil 

passing 0.075 mm sieve (% fines) (Figure 1b). 

The data points for grain size informing the 

Simple Kriging are averaged at each location for 

the entire soil column (ranging between 10 m and 

35 m depth). This has resulted in 63 data points 

(circle points in Figure 1b). However, many 

points occur at concurrent sites and are not 

distinguishable or suitable for developing the 

model at the regional scale. Considering the above 

limitations and given the distribution in Figure 1b, 
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grain size does not form a good secondary 

predictor.  

 

 
 
Figure 1: (a) Updated Kriging estimate from Gilder 

et al. (2022) compared with (b) Simple Kriging 

estimate of % fines. 

 

The % fines result also does not follow the 

trend expected from the geological knowledge of 

the region, where granular materials dominate the 

northern portion of the basin (Shrestha et al. 

1998). This corroborates the authors' previous 

work, where splitting the correlation of 

geotechnical parameters vs VS30 for grain size did 

not significantly improve results (Gilder et al. 

2021). 

This is an example of how a suitable 

candidate as secondary predictor such as % fines 

cannot be then used further in the framework due 

to insufficient geographical distribution affecting 

its informative value in the framework as in this 

case for VS30. 

 

4.2. Spatial prediction of N using the framework 

 

SPT-N or N is the blow count measured 

during a Standard Penetration Test (denoted as 

SPT-N in the following). In the context of 

earthquake engineering, various authors have 

explored indirect prediction methods involving 

the correlation of Vs with this geotechnical 

parameter (e.g., Otha & Goto 1978). In this 

section, the Kathmandu database (Gilder et al. 

2020) is used as a source of SPT-N data to 

understand its regional distribution making use of 

the Gilder et al. (2022) framework developed for 

VS30. 

In Figure 2a, the primary data points for SPT-

N are averaged across the soil column at each 

location. The data over intervals (up to the 

maximum depth of the data of 35m) are compared 

to understand if this is a good approximation. In 

Figure 3, four histograms are presented, produced 

of averaged SPT-N values for intervals of 5m, 

10m, 20m and >20m (data does not include the 

preceding interval). The frequency of averaged 

SPT-N values does not change significantly until 

the interval of >20m is reached. It is concluded 

that taking an average of the entire soil column 

will not affect the resulting distribution, and it can 

be accepted as an approach for this dataset. 

The Simple Kriging estimate for SPT-N 

(Figure 2b) is indicating several zones of low 

SPT-N values (below 5 blows), and the mean 

value of the dataset is 13. At the edges of the 

modelling area, higher values of SPT-N are 

observed, and are increasing to 50, guided by 

point data present at the western side of the 

Valley. The inner black line represents the Valley 

boundary between the relatively flat, level inner 

portions and the outer mountainous areas. The 

primary data and the Simple Kriging results 

(Figure 2) are taken through to the Bayesian 

analysis (i.e., step 5 and 6 presented in section 3).  

In the first section of this paper, % fines was 

considered as a possible secondary predictor for 
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VS30. Here, this variable is considered again in the 

context of improving the Simple Kriging result for 

SPT-N. Where data are collocated, Figure 4 shows 

that there is a reasonable correlation between the 

two parameters. However, for use in the 

framework, % fines is needed at all unknown 

locations which are to be considered in the 

estimate, for it to serve as a secondary data set. As 

seen in the first part of this paper for the case of 

VS30, the dataset for % fines, even when Kriging is 

undertaken, remains too few to present a 

reasonable definition across the Kathmandu 

Valley. 

 

 
 
Figure 2: (a) Average SPT-N primary data points (b) 

Simple Kriging estimate for average SPT-N. 

 

A more robust secondary dataset for the 

Valley, and a dataset which is commonly 

available in other regions, is the Digital Elevation 

Model (DEM). This provides the elevation across 

the study area in meters above mean sea level (m 

AMSL). In Figure 5a, the DEM data is shown, and  

the data ranges between 900m and 2600m AMSL. 

 

 
 
Figure 3: Histograms of average N values quantified 

at each depth increment (a) <=5m, (b) >5 to <=10m, 

(c) >10 to <=20m,(d) >20m) 

 
Figure 4: Collocated data for SPT-N and % Fines (n 

= number of data-points, R2 = coefficient of 

determination) 

 

Step 2 of the framework (Gilder et al. 

2022) is required to ensure that data is not either 

clustered, causing some concentration of values 

within the dataset or biased (missing an interval in 
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the dataset altogether). This step can be achieved 

by inspection of the primary data histogram. 

The histograms in Figure 3 indicate that 

the current SPT-N data for the Valley is not biased 

i.e., the full possible range of data (blows 0 to 50) 

are represented. However, the dataset may be 

considered clustered. To understand this concept 

better and how clustered data might affect the 

prediction, in Figure 5b, the histogram, presenting 

the ground level data (m AMSL) at the point of 

the SPT-N measurements is shown to highlight 

how little the SPT-N values are distributed at 

points of high and low topography in the 

modelling area. This histogram is compared to the 

histogram in Figure 5c, which presents all 

topographic data taken at each square of the DEM 

(Figure 5a). 

 

 

 
 
Figure 5: (a) DEM showing the Kathmandu Valley in 

the centre; (b) Histogram presenting DEM data 

collocated with primary N data points; (c) Histogram 

of DEM sampled at the unknown locations to use as 

secondary data. 

 

Where the DEM indicates a mountainous area, it 

might be expected to have a high SPT-N value, 

such as >50, which is indicative of rock or highly 

dense material. When considering the decision 

between Option A (debiasing) and Option B 

(declustering) of the framework, the primary data 

histogram should be consulted in the first 

instance. Additional geological or judgement-

based understanding of the dataset can be gained 

from other evidence, such as that presented in 

Figure 5, and this is needed prior to attempting 

any modelling scenario. Both Figures 3 and 5 

have helped to understand that Option B of the 

framework should be selected in this case and that 

the primary data distribution can be declustered 

using Equation 4. As this Kriging method requires 

the use of Gaussian techniques, all variables are to 

be normally distributed, which requires a 

transformation. Once the declustering weights 

have been defined, the declustered cumulative 

distribution function (CDF) can be established by 

weighting the statistical function. This provides a 

way to transform to the standard normal space and 

back. In Figure 6, the original CDF of the N data 

is compared to the declustered CDF.  

 

 
Figure 6: The original CDF of the blow count in SPT 

data compared to the declustered CDF 

 

Where the primary data points for SPT-N 

(Figure 2a) are concentrated predominantly in the 

centre of the map, and values are lower (between 

5 and 10), these data will be assigned the lowest 

weights to transfer the weight to areas of the 

model which represent more sparsely sampled 

areas. This has the effect of increasing the sample 
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mean from 13 to 15. The declustered CDF in 

Figure 6 has translated downwards in the upper 

values of SPT-N, indicating that the distribution is 

now corrected for the predominance of lower 

values, and this fits with the observation of the 

higher declustered average. The population is 

considered to be representative of the entire study 

area, and the final steps of the framework can be 

taken. As per the original framework, Equation 1 

and 2 are used to produce the Bayesian result. To 

fully understand the constituent parts of this 

analysis, further equations are provided by Gilder 

et al. (2022). The main steps are in completing the 

simple Kriging, so finding the 𝑦̅𝑃  for each 

unknown location (in this case, the result in Figure 

2b, but maintaining it in normal space), also 

defining the secondary variable (i.e., all values at 

each unknown location in Figure 5a) and 

converting again to normal space prior to use in 

the equations. The likelihood is defined between 

the secondary variable/s and the primary by 

calculating the Pearson's correlation coefficients 

(see Gilder et al. 2022 for further details). Both 

these steps result in an accompanying 

quantification of the estimation variance, 

parameters 2
P and 𝜎𝐿

2. 

The final calculation gives the updated 

Kriging map in Figure 7. The result shows where 

prediction has been determined by the primary 

data alone (data in the basins) and where the 

prediction refers to the DEM map (outside of the 

main Valley extent) being potentially 

overestimated. This is based on the hypothesis 

that the mountainous areas might contain rocky 

outcrops, which would result in a high SPT-N 

values. Where lower topographic levels might be 

expected to be level and contain sediments, the 

updated estimate provides an enhanced 

distribution and further clarification of possible 

changes which might occur at the extremities of 

the model. In the centre of the model, where most 

data is known, the Kriging estimate has 

maintained the local distribution (compared to the 

simple Kriging in Figure 2), and so provides a 

good mix of both detail and combination of 

judgment. 

 

 
Figure 7: Updated SPT-N Kriging map 

 

5. CONCLUSIONS 

 

The use of a multivariate geo-statistical 

method to predict VS30, which includes steps for 

debiasing or declustering the data, is particularly 

relevant in data-scarce regions. The original study 

by Gilder et al. (2022) provided a spatial 

prediction of VS30 quantified using multivariate 

geo-statistics. In this paper, a novel application of 

the framework to the case study of the Kathmandu 

Valley is presented. A further estimate for blow 

count measured during a Standard Penetration 

Test is presented, attempting the use of different 

variables as secondary data and finally using a 

digital elevation model to obtain an updated 

Kriging map of SPT-N for the Kathmandu Valley. 

This highlighted a further use of the framework, 

which can be flexibly implemented in other 

earthquake-prone regions.  
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