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ABSTRACT: The paper presents a study on the use of Markov Processes in determining the optimal 
lifecycle management strategy for a pavement network. A comprehensive analysis of condition data 
recorded on the Irish national road network, which falls under the remit of Transport Infrastructure 
Ireland, is presented. Transition Probability Matrices are developed for alternative condition indicators 
and considering factors such as AADT. The use of homogeneous vs non homogenous chains is 
considered. Overall the technique is demonstrated to be central to pavement asset management.   

Deterministic Pavement Deterioration models are 
commonly used due to their relative simplicity, 
ease of use, and familiarity. The modelling 
techniques include straight-line extrapolation, S-
shaped curves, polynomial constrained least 
squares, and logistic growth models. Some of the 
disadvantages of deterministic models include the 
facts that: (i) models do not take into account the 
uncertainties in pavement behaviour under 
variable traffic load, (ii) developing models 
requires an accurate and comprehensive dataset 
and (iii) ideally, all variables that affect pavement 
deterioration should be included in the models.  

Traditionally, pavement deterioration models 
predict either an absolute condition value for a 
given pavement age, or the incremental change of 
the condition from one year to another. Modelling 
uncertainty requires the use of probabilistic 
techniques. Among probabilistic models, the 
Markov model is the most popular approach to 
modelling pavement performance as Markov 
probabilities can be derived from as little as two 
years of pavement condition data collection. A 
critical component of the Markov model is the 
transition probability matrix (TPM). A TPM 
represents the probability that a segment will stay 
in a specific condition for a specific year. 

Generally, the TPM is calculated based on the 
historical pavement condition data. 

There are large variations in construction 
type, pavement condition and traffic volumes 
across the Transport Infrastructure Ireland (TII) 
network. Accordingly, TII have broken the 
network into sub-networks based on construction 
(engineered or legacy) and traffic volumes to 
more effectively manage the network overall. 
This approach has led to 5 Sub-networks being 
established, enabling different levels of service, 
treatment strategies, intervention effects, 
intervention costs etc to be applied as appropriate. 
The 5 sub-networks are: Subnetwork 0 (1200 km) 
– Motorway and dual carriageway; Subnetwork 
1(1200 km) - Engineered Single Carriageway; 
Subnetwork 2 (700 km) - Urban Pavements; 
Subnetworks 3 (1300 km) and 4 (1000 km) - 
Legacy Single Carriageway. The KPI’s use the 
qualitative descriptors of Very Good, Good, Fair, 
Poor and Very Poor. Currently these condition 
classes are defined separately for the key 
pavement performance parameters of 
International Roughness Index (IRI), Rut Depth 
(RUT) and Longitudinal Evenness (LPV3). 
Estimations obtained using Markov transition 
probabilities are used to evaluate, 
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probabilistically, the relative condition of a 
network as a function of time. Individual TPMs 
are developed for each sub-network, reflecting the 
very large difference in pavement response across 
sub-networks. The process makes possible the 
evaluation of the implication of alternative 
maintenance scenarios on network condition and 
to optimise budget spend as a function of time to 
maximise the condition of the network or to 
maintain the condition of the network above a 
prescribed limit, i.e. no more that 25% in Fair 
condition by Year X. Furthermore, alternative 
thresholds for condition states are analysed. TPMs 
are presented in the context of either homogenous 
and/or inhomogeneous chains, i.e. TPM’s varying 
as a function of the considered time step. The 
results of the work provides TII with an extremely 
powerful asset management tool for optimal 
lifecycle management of its >5000km pavement 
network. 
 

1. MARKOV CHAIN MODELLING OF 
PAVEMENT DETERIORATION 
 
Markov chain modelling is a probabilistic 

method that is used in a variety of pavement 
management systems (Kulkarni, 1984, Carnahen 
et al., 1987, Thompson et al., 1987, Butt et al. 
1987, Butt, 1994, Corotis et al., 2005, Costello et 
al., 2005, Hassan et al., 2015) to build 
probabilistic models that predict pavement 
degradation. Markovian models require an initial 
condition state vector and a transition probability 
matrix (TPM). The number of TPM’s is 
conditional on the system’s homogeneity; if the 
degradation of the network is constant throughout 
time, one TPM suffices for the model, but 
variability in network degradation requires more 
than one TPM. The future state of pavement 
intervals depends on the present state of the 
intervals, not the past state/s, which is a feature of 
Markov models. 

In applying Markov chain modelling to the 
problem of pavement degradation, the condition 
states of the pavement segments are assumed to 
range from State 1, which represent the proportion 

of the pavement segments in near-perfect 
condition, to State n, which represent the 
proportion of the pavement segments in very poor 
condition, i.e. the pavement segment is 
completely damaged/degraded. The 
present/current condition of the pavement 
segments is represented as a vector and it is named 
the Initial condition state vector with notation 𝑎!: 

 
𝑎!
=	 (𝑆𝑡𝑎𝑡𝑒	1, 𝑆𝑡𝑎𝑡𝑒	2, . . . , 𝑆𝑡𝑎𝑡𝑒	𝑛) 

(1) 

Markov chain modelling then employs 
Transition Probability Matrices (TPM’s) to 
predict the future condition of pavement segments 
as they degrade as a function of time. Probabilities 
of transition are stored in a matrix in which rows 
correspond to the present state and columns to the 
future state. The elements of the TPM are referred 
to with the notation 𝑝"#, where 𝑖	indicates the row 
and 𝑗	indicates the column of the matrix element. 
The general form of a 5x5 transition matrix is 
presented in Table 1. 

 
Table 1: General form of a Transition Probability 
Matrix, P. 

Moving 
from 
State i 

To State j 
State 

1 
State 

2 
State 

3 
State 

4 
State 

5 
State 1 p11 p12 p13 p14 p15 
State 2 0 p22 p23 p24 p25 
State 3 0 0 p33 p34 p35 
State 4 0 0 0 p44 p45 
State 5 0 0 0 0 p55 = 1 

 
The following six rules must be considered 

when developing transition matrices: 
1. Transition probabilities, pii (p11, p22, p33, 

p44) – main diagonal (highlighted with 
orange in Error! Reference source not 
found.), denote the proportion of the 
pavement segments remaining in 
condition i after one time step (e.g. 1 year) 
has passed.  

2. Values below the main diagonal 
(highlighted with grey in Error! 
Reference source not found.) are 
generally represented with zeros, 
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suggesting that the pavement segments 
condition cannot improve without 
treatment (pij = 0 for i>j). Where 
improvements/repairs are modelled the 
lower diagonal is non zero.  

3. Values above the main diagonal 
(highlighted with green in Error! 
Reference source not found.) indicate the 
probability of the pavement segments in 
condition i moving to a lower condition 
within one time step.  

4. The element p55 equal to unity suggest that 
the pavement segment has reached its 
worst state of degradation and cannot 
deteriorate further.  

5. All elements of the matrix should be 
positive. 

6. The sum of elements in each row should 
be equal to 1.0. 

The elements of a TPM may be calculated 
based upon survey data using Equation 2 (Ortiz-
García et al. 2006):  

𝑝"# = 𝑁"# 𝑁"⁄  (2) 
 

Where Nij represents the total number of 
pavement segments moving from state i to state j 
following one time step, and Ni is the total number 
of pavement segments in state i at the start of the 
time step. 

Error! Reference source not found. 
presents a numerical example of a TPM, with 
Figure 1 presenting a directed graph to illustrate 
this information. In the table the following 
condition states are considered: Very Good (VG), 
Good (G), Fair (F), Poor (P) and Very Poor (VP). 
The threshold values for each performance 
indicator condition state are as specified by the 
managing authority. Table 3 illustrates the 
classification system adopted per subnet by TII.    

 
Table 2: Numerical Example of a Transition 
Probability Matrix. 

Moving 
from 
State i 

To State j 
VG G F P VP 

VG 0.9 0.08 0.01 0.005 0.005 
G 0 0.8 0.1 0.07 0.03 

F 0 0 0.7 0.2 0.1 
P 0 0 0 0.6 0.4 
VP 0 0 0 0 1 

 

 
Figure 1: Directed Graph of Transition Probabilities.  

 
Table 3: TII Network Condition Category Thresholds 

  Subnet Number 
 Cat. 0 1 2 3 4 

IRI 

VG <1.5 <2 <2.7 <2.7 <3 
G 1.5 

to 2 
2 to 
2.5 

2.7 
to 
3.2 

2.7 
to 
3.2 

3 to 
4 

F 2 to 
2.5  

2.5 
to 3 

3.2 
to 4 

3.2 
to 4 

4 to 
5 

P 2.5 
to 3 

3 to 
3.5 

4 to 
5 

4 to 
5 

5 to 
7 

VP >3 >3.5 > 5 > 5 >7 

RUT 

VG <3 <3 < 4 < 4 < 6 
G 3 to 

5 
3 to 
5 

4 to 
6 

4 to 
6 

6 to 
9 

F 5 to 
6 

5 to 
6 

6 to 
9 

6 to 
9 

9 to 
15 

P 6 to 
9 

6 to 
9 

9 to 
15 

9 to 
15 

15 to 
20 

VP >9 >9 > 15 > 15 >20 

LPV3 

VG < 1 < 1 < 2 < 2 < 2 
G 1  to 

2 
1  to 
2 

2 to 
3 

2 to 
3.5 

2 to 
4 

F 2 to 
3 

2 to 
3 

3 to 
4 

3.5 
to 5 

4 to 
7 

P 3 to 
4 

3 to 
4 

4 to 
6 

5 to 
7 

7 to 
10 

VP > 4 > 4 > 6 > 7 > 10 
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The first row in Table 2 shows the 
probabilities of pavement segments in very good 
(VG) condition moving to any of the good, fair, 
poor and very poor conditions. The probability 
that pavement segments in very good condition 
will stay in the same very good condition is 0.90. 
This means that 90% of the pavement segments 
will not deteriorate after one time step. There are 
8% of pavement segments that will degrade from 
very good to good condition. Only 1% will 
downgrade from very good to a fair condition and 
a combined 1% from very good to poor and very 
poor condition. The third row represents the 
transition probabilities for pavement segments in 
fair (F) current condition. The probability of 
staying in the same fair condition is 0.70. The 
pavement segments cannot move to a better 
condition (good or very good) without repair 
works, therefore, the values in the columns 
associated with these two conditions is 0 (zero). 
There is a probability of 0.20 for transitioning 
from fair to poor, and 0.10 for moving from fair 
to very poor, respectively. For each of the five 
states, colours are used in Figure 1 to show the 
transition probabilities. Moreover, arrows 
indicate the transitioning from State i to State j. 

Using Equation 2 in combination with 
available survey data recorded on TII’s network, 
per 100m interval, from 2010 to 2019 considering 
IRI, LPV and RUT, TPM’s were developed for 
Subnets 0, 1, 2, 3 & 4, with the % distribution 
across the network as described in Table 4. Table 
5 details the total data set available noting that one 
side of the road (i.e. direction) is surveyed each 
year, therefore each sample unit has data for every 
second year.  
 
Table 4: TII Subnet Classifications. 

Subnet 
No.  

Classification % Of 
Network 

0  Motorway/DC 23% 
1 Engineered Pavements 22% 
2 Urban Areas 13% 
3 High Traffic Non-Engineered 24% 
4 Low Traffic Non-Engineered 18% 

 
Table 5: Data Summary. 

Direction 1 Direction 2 

SubNet No. of 
records 

Unique 
roads 
per 
SubNet 

SubNet No. of 
records 

Unique 
roads 
per 
SubNet 

0 11959 25 0 11965 25 
1 11923 54 1 12161 54 
2 6736 58 2 6742 58 
3 12617 50 3 12609 50 
4 9825 28 4 9577 28 
NaN 
values 

40 40 NaN 
values 

36 36 

Total 53100 66 Total 53090 66 
 
Furthermore, in considering the Subnets 

TPM’s, traffic volume, i.e. AADT, was 
considered to differentiate the TPM’s. In this 
context for Subnet 0, TPM’s were developed for 
the case of AADT < 20,000, 
20,000<AADT<40,000 and AADT>40,000. In 
this context, Table 6 presents the TPM for IRI, 
considering SubNet 0, for AADT <20,000. It is 
observed that a high percentage (over 95 %) of 
pavement segments will remain in the same 
condition state after one duty cycle. Similar 
subdivision was performed for Subnets 1, 2, 3 & 
4 reflecting traffic volumes. 

 
Table 6: TPM for IRI Subnet 0, AADT<20,000. 

Moving 
from 
State i 

To State j 
VG G F P VP 

VG 0.9817 0.0177 3.75E-
04 

1.13E-
04 

1.12E-
04 

G 0 0.9753 0.0227 0.0017 3.0E-
04 

F 0 0 0.9684 0.0279 0.0037 
P 0 0 0 0.96 0.04 
VP 0 0 0 0 1 

 
After defining both the initial vector and the 

TPM, Equation 4 can be employed to determine 
the probability distribution of the condition states 
at any particular time, t: 

 
𝑎$ =	𝑎!𝑃$ (4) 

Where 𝑎!  is the initial condition vector, 
𝑃$represents the TPM raised to the power of 𝑡, 𝑡 
is time in years, and 𝑎$ depicts the distribution of 
pavement segments condition at time 𝑡. 
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An example of degradation over a 20-year 
period is presented below, in Figure 2. Illustrated 
is the evolution in condition considering Subnet 0 
for varying AADT based upon IRI, where the x-
axis depicts the time interval in years since the 
start of the analysis, i.e. a 20 year horizon. 

Similarly, Figure 3(a), presents general 
degradation for Subnet 1 based upon TPM’s 
developed from survey records for segments with 
AADT>5000. While Figure 3(b) presents general 
degradation for the non-engineered pavement 
class from Subnet 4 for AADT>5000.  
 

 
(a) AADT < 20,000 

 
(b) 20,000 < AADT < 40,000  

Figure 2: Subnet 0 – IRI- General Degradation. 
 
Markov chain modelling can be used in this 

way in evaluating the condition of an asset or a 
network of assets throughout their lifespan. 
Estimations obtained using Markov transition 
probabilities can be used to evaluate, 
probabilistically, the relative condition of a 
network and its assets as a function of time. 
Evolution of individual indicators can be analysed 
or combined indicators can be developed. The 
process makes possible the evaluation of the 
implication of alternative maintenance scenarios 

on network condition and to optimise budget 
spend as a function of time to maximise the 
condition of the network or to maintain the 
condition of the network above a prescribed limit, 
i.e. no more that 25% in condition X by Year Y. 
Furthermore, alternative thresholds for condition 
states can be analysed. Significantly, TPM’s may 
be developed for either homogenous and/or 
inhomogeneous chains, i.e. TPM’s varying as a 
function of the considered time step and condition 
state (Butt et al., (1987). 

 

 
(a) Subnet 1, AADT > 5,000 

 
(b) Subnet 4, AADT> 5,000  

Figure 3: (a) Subnet 1- IRI - General Degradation, 
(b) Subnet 4 - IRI - General Degradation . 

 

2. VALIDATION OF DEVELOPED TPM’S 
TPM’s were developed across three 

condition indicators (IRI, RUT, LPV3) for data 
recorded between 2010 and 2019. The data 
employed to develop the TPM’s was recorded in 
odd and even years on alternate sides of the 
carriageway, i.e. survey performed in direction 1 
in even years and direction 2 in odd years. In order 
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to validate the developed TPM’s a number of 
alternative validation scenarios were considered.  
 
Scenario I: The data per the 2017 dataset was 
assumed to be the initial vector and the 2019 
dataset was the field data. The TPM is assumed to 
be the average of the first seven matrices derived, 
namely the average of TPM’s derived for the 
inspection periods 2010-2012, 2012-2014, 2014-
2016, 2016-2018, 2011-2013, 2013-2015 and 
2015-2017.  
 
Scenario II: A second verification was to 
consider both odd and even years. The field data 
consists of total number of road segments in 
different condition states as inspected in 2018 and 
2019. The average TPM as per Scenario I was 
used.  
 
Scenario III: The TPM was redefined as the 
average of 2010-2012, 2012-2014, 2011-2013 and 
2013-2015. The initial Vector and data vector are 
the same as those used in Scenario II. 
 

In the subsequent analysis the predicted 
condition in 2019 was compared to actuals. The 
results presented in Tables 7, 8 and 9 demonstrate 
very good agreement. It is noted that the precision 
of the agreement is a function of the indicator 
considered, i.e. IRI, RUT or LPV3. 
  
Table 7: Validation of Asset Condition Measurement 
and Prediction - IRI Subnet 0, AADT<20,000. 

Initial 
Vector 

Prediction Data 

Scenario 1 
 No. 

Sections 
% No. 

Sections 
% 

3845 3554 71.36 3557 71.43 
943 1147 23.03 1141 22.91 
145 207 4.15 213 4.28 
33 51 1.03 45 0.90 
14 22 0.43 24 0.48 

Scenario 2 
 No. 

Sections 
% No. 

Sections 
% 

7670 7089 70.19 7130 70.59 
1993 2390 23.66 2351 23.28 
327 454 4.50 463 4.58 
76 116 1.15 107 1.06 

34 51 0.50 49 0.49 
Scenario 3 

 No. 
Sections 

% No. 
Sections 

% 

7670 7079 70.09 7130 70.59 
1993 2389 23.66 2351 23.28 
327 456 4.52 463 4.58 
76 119 1.17 107 1.06 
34 57 0.56 49 0.49 

 
Table 8: Validation of Asset Condition Measurement 
and Prediction - RUT Subnet 0, AADT<20,000. 

Initial 
Vector 

Prediction Data 

Scenario 1 
 No. 

Sections 
% No. 

Sections 
% 

2834 2231 62.70 2263 63.60 
674 1138 31.99 1042 29.29 
33 125 3.52 154 4.33 
17 62 1.74 92 2.59 
0 2 0.06 7 0.20 

Scenario 2 
 No. 

Sections 
% No. 

Sections 
% 

6985 5498 66.67 5649 68.50 
1177 2384 28.91 2190 26.56 
56 246 2.99 261 3.16 
29 115 1.39 139 1.69 
0 3 0.04 8 0.10 

Scenario 3 
 No. 

Sections 
% No. 

Sections 
% 

6985 5727 69.45 5649 68.50 
1177 2211 26.82 2190 26.56 
56 207 2.51 261 3.16 
29 98 1.19 139 1.69 
0 3 0.04 8 0.10 

 
Table 9: Validation of Asset Condition Measurement 
and Prediction – LPV3 Subnet 0, AADT<20,000. 

Initial 
Vector 

Prediction Data 

Scenario 1 
 No. 

Sections 
% No. 

Sections 
% 

4801 4651 89.48 4601 88.51 
390 526 10.12 563 10.83 
3 13 0.26 26 0.50 
3 3 0.06 5 0.10 
1 4 0.08 3 0.06 

Scenario 2 
 No. 

Sections 
% No. 

Sections 
% 

9684 9382 89.13 9306 88.41 
814 1088 10.34 1151 10.93 
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23 39 0.37 56 0.53 
4 9 0.09 8 0.08 
1 8 0.07 5 0.05 

Scenario 3 
 No. 

Sections 
% No. 

Sections 
% 

9684 9416 89.46 9306 88.41 
814 1054 10.01 1151 10.93 
23 36 0.34 56 0.53 
4 9 0.09 8 0.08 
1 10 0.09 5 0.05 

3. PAVEMENT MANAGEMENT 
STRATEGIES 

Having developed and validated TPM’s for the 
Irish network it is now appropriate to employ 
these in determining the optimal maintenance 
strategy for the network, by subnet, over a 
specified time horizon e.g. 20 years. In doing so it 
is necessary to identify treatment options, to cost 
these treatment options and to determine 
appropriate thresholds where they are to be 
applied. By way of example Table 10 lists four 
alternative treatment options with an associated 
Trigger for action.   
 
Table 10: Treatment Type and Trigger 

Treatment Type Trigger 
Replace Surface IRI, RUT or LPV = F 
Overlay IRI, RUT or LPV = P OR RUT = VP 
Strengthen IRI, RUT or LPV = VP 
Reconstruct IRI or LPV = VP AND RUT = VP  

 
Where Replace Surface implies a treatment 

with the objective of sealing of pavement surface, 
improving skid resistance, roughness and rutting. 
Overlay has the objective to increase Strength, 
retard aging, improve or restore surface 
characteristics, improve or restore functionality. 
Strengthen has objectives to increase Strength, 
retard aging, improve or restore surface 
characteristics, improve or restore functionality. 
Finally the objectives of Reconstruct are to: 
increase capacity and pavement strength to 
provide a long life pavement. In all cases it is 
necessary to categorise the performance of the 
repair in terms of associated triggers for 
intervention, e.g. Table 11 for RUT, and the unit 
costs (e.g. per m2) per intervention by subnet.  

In the temporal analysis following repair 
action, two strategies to model inhomogeneity 
were followed (a) TPM’s were derived to 
represent the behavior of improved segments and 
these were employed following an intervention 
and (b) when a reconstruction was applied to a 
non-engineered pavement (Subnet 3 or 4) the 
performance was reclassified to be represented by 
the TPM for an engineered pavement. 
 
Table 11: Treatment Trigger Matrix 

  RUT Class 
  1 2 3 4 5 

Comfort 
Class* 

1 N N S O O/T 
2 N N S O O/T 
3 S S S O O/T 
4 O O O O O/T 
5 T T T T/R R 

*Comfort Class = Max of IRI and LPV Class 
 
Where N = No Treatment, S = Replace Surface, O 
= Overlay, T = Strengthen and R = Reconstruct.  
 

On the basis of this treatment trigger strategy 
and employing the probabilistic models of 
deterioration per AADT as derived from records 
and validated as above it is possible to identify the 
suite of optimal interventions over a given time 
horizon for a pavement network, Figure 4. 
Furthermore, it should be considered whether a 
‘hybrid’ indicator, combining the various 
individual indicators should be used (COST 354, 
2008).  

 
Figure 4: Optimising Pavement Lifecycle Strategy. 

 
By way of example Figure 5 presents the network 
condition as a function of an optimized suite of 
interventions for (a) a Do-Nothing and (b) Budget 
A intervention scenario. The optimization was 
performed using the software dTIMS, TII’s PAM 
system. As can be seen in the Do-Nothing 
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scenario the network is essentially consumed over 
the time horizon whereas with the budget 
intervention scenario, a steady state is 
approached. It should be noted that an additional 
constraint on the optimization can relate to the % 
of the network in a Good or better condition.  

 

 
(a) Do Nothing 

 
(b) Budget Scenario A  

Figure 5: Alternate Budget Scenarios. 

4. CONCLUSIONS 
The purpose of this paper is to present the 

calibration of Transition Probability Matrices 
(TPM’s) for 3 pavement characterization 
parameters. The matrices, which present the 
probability of transition between condition states, 
are calibrated on the basis of survey data collected 
over a multi-annual period. TPM’s are then 
employed in a Markov Process to determine the 
evolution of condition states with time and to 
predict condition as a function of time. In concert 
with alternative pavement management strategies, 
the process may be employed to predict the 
condition of the network under alternative budget 
scenarios. Applications of the methodology 
further arise in Risk Based Asset Management 
activities to provide for optimal performance 
management of the network.  

5. REFERENCES 
Butt, A. A. (1994). Application of Markov process to 

pavement management systems at network 
level. Third International Conference on 
Managing Pavements, Texas.  

Butt, A.A., Shahin, M.Y., Feighan, K.J. & Carpenter 
S.H., (1987), Pavement Performance 
Prediction Model Using the Markov Process,. 
Transportation Research Record, 1123. 

Carnahan, J.V., Davis, W.J., Shahin, M.Y., Keane, 
P.L., Wu, M.I., (1987), Optimal Maintenance 
Decisions for Pavement Management, ASCE 
Journal of Transportation Engineering, 
113(5).  

Corotis, R.D., Hugh Ellis, J., Jiang M., (2005), 
Modeling of Risk-Based Inspection, 
Maintenance and Life-Cycle Cost with 
Partially Observable Markov Decision 
Process, Structure and Infrastructure 
Engineering, 1(1), 75-84.  

COST 354, (2008), Performance Indicators for Road 
Pavements: Final Report – The Way Forward 
for Pavement Performance Indicators Across 
Europe, 
http://cost354.zag.si/fileadmin/cost354/1fr/
COST354_FinalReport_05062008.pdf 

 Costello, S. B., Snaith, M. S., Kerali, H., Tachtsi, L. 
V. & Ortiz-García, J. J. (2005), Stochastic 
model for strategic assessment of road 
maintenance.  Proceedings of the institution of 
civil engineers-transport. Thomas Telford 
Ltd, 203-211. 

Hassan, R.A., Lin, O. & Thananjeyan, A., (2015), 
Markov Vhain Modelling of Pavement 
Surfacing, Transportation Research Record, 
2473, 3-12. 

Kulkarni, R. B. (1984). Dynamic decision model for a 
pavement management system. 
Transportation Research Record, 997, 11-18. 

Ortiz-García, J. J. Costello, S. B., & Snaith, M. S., 
(2006), Derivation of Transition Probability 
Matrices for Pavement Deterioration 
Modelling.  ASCE Journal of Transportation 
Engineering. 132(2). 

Thompson, P. D., Neumann, L. A., Miettinen, M. & 
Talvitie, A. (1987). A micro-computer 
Markov dynamic programming system for 
pavement management in Finland.  
Proceedings of the Second North American 
Conference on Managing Pavements, 
Toronto, Canada. 


