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ABSTRACT: Hot temperatures drive excessive energy use for space-cooling in built environments. In a
building, a system operator could save costs by making better decisions under the uncertainties
associated with urban temperature and future energy demands. In this paper, we assess the impact of
urban weather modeling on energy cost, using a value of information (VoI) analysis, in a day-ahead
(DA) electricity market. To do that, we combine two probabilistic models: (a) a model for forecasting
urban temperature and (b) a model for forecasting hourly net electric load of a building given ambient
urban temperature. We then quantify the impact of better urban weather modeling by propagating the
uncertainty from the temperature model to the load forecasting model. We perform a numerical case
study on residential building prototypes located in the city of Pittsburgh. The result indicates that using
a better weather model could save 4.34-8.22% of the electricity costs for space-cooling.

1. INTRODUCTION

According to the annual report of the U.S. Energy
Information Administration (EIA), in 2021 cooling
of residential and commercial buildings used ap-
proximately 10% of the entire national electricity
consumption of the US (U.S. Energy Information
Administration). As a building interacts with ambi-
ent environments, better modeling of ambient envi-
ronments, specifically of urban temperature, could
save energy costs in built environments. For exam-
ple, the authors of Chen et al. (2019) showed that a
model predictive control scheme could help saving
energy use when they consider ambient weather in-
formation as a predictor for the thermostatic status
of a building. In the work of Chen et al. (2020),
a machine learning model used weather variables

to estimate energy demands and renewable energy
generation to better control the thermostatic behav-
ior of buildings in response to power grid con-
ditions. Using information about future weather,
therefore, could help saving energy costs and mak-
ing better decisions.

In 1960, Nelson and Winter Jr (1960) conducted
case studies illustrating that the quality of eco-
nomic decisions could be improved by enhanc-
ing the quality of weather forecasts. After that
work, several others quantified the value of weather
information, related to economic decision-making
(Steinker et al. (2017); Badorf and Hoberg (2020);
Turner et al. (2021)).

In this paper, we propose an analysis method that
quantifies the impact of accurate urban temperature
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modeling on decision-making, related to building
energy systems, based on the Value of Informa-
tion (VoI). The Value of Information (VoI) assesses
the economic benefit of information in decision-
making under uncertainty (Pozzi and Der Ki-
ureghian (2011); Li and Pozzi (2019)). Based on in-
formation theory (Howard (1966)), the framework
has been used in a variety of fields, such as finance
(Poh (2000)), industrial management (Keisler and
Brodfuehrer (2009)), manufacturing (Yokota and
Thompson (2004)), structural health monitoring
(Pozzi and Der Kiureghian (2011); Straub (2014);
Zonta et al. (2014); Memarzadeh and Pozzi (2016);
Li and Pozzi (2019)), sensor placement (Malings
et al. (2018)), and information prioritization (Lin
et al. (2022)).

This paper applies the VoI analysis to a day-
ahead (DA) market for a single building. The case
study exploits two forecasting models: one for am-
bient air temperature forecasts in an urban area
and another for forecasts of electricity demand in
a single building under a given temperature sce-
nario. We consider urban temperature as a repre-
sentative weather variable to estimate the electric-
ity demand of a building (Singh et al. (2012); Yang
et al. (2018); Burillo et al. (2019)). By coupling the
models, the method propagates the uncertainty in
urban temperature to electricity use of a building.
Then, we derive an optimal solution for the given
stochastic optimization to minimize electricity cost
of a building in the energy-purchasing market.

This paper presents the VoI analysis for urban
temperature modeling in the following sections. In
Section 2, we provide a background and important
assumptions on the DA market, which we use for
the case study. Then, Section 3 introduces a proba-
bilistic spatio-temporal model (PSTM) for forecast-
ing near-surface temperature, of Choi et al. (2021);
Choi (2023), and a probabilistic short-term load
forecasting model (PSTLF) for a building, of Choi
(2023). Section 4 provides a background about the
value of information metric for the analysis. Then,
Section 5 conducts a case study of the VoI analy-
sis, for residential buildings in a region around the
city of Pittsburgh, Pennsylvania. Section 6 provides
concluding remarks.

2. THE DAY-AHEAD MARKET

In the DA market, customers voluntarily purchase
electricity one day in advance at locked prices,
based on their projection of the future energy use
of the next day. Alternatively, customers also can
buy energy from the real-time (RT) market that sells
electricity at changing prices (usually higher than
DA prices). Thus, to minimize costs, system opera-
tors make economic decisions in the market, as de-
scribed in Parvania et al. (2014); Ayón et al. (2017);
Di Somma et al. (2018). This paper focuses on the
demand side of the market to emphasize the value
of accurate temperature modeling at a single build-
ing scale. Also, we assume that the DA market is
open to individual building owners (or operators).
We neglect the price-sensitive demands in the mar-
ket so that the market only allows a customer to de-
cide the amount of energy the next day.

We adopt the market design of Philpott and Pet-
tersen (2006) and modify the design for a tractable
solution to the problem. Under the hypothetical
market design, the DA market requests a customer
to submit a bid that specifies the amounts of energy
one day in advance, and the market also assumes
that they have enough supply capacity for the DA
purchasing. A customer buys shortfalls at a higher
price from the RT market if the actual load of the
running day is higher than the DA purchasing (up-
regulation case). On the other hand, if the actual
load is lower than the DA purchasing, the customer
resells the excessive purchase at the lower RT price
(down-regulation case); see Philpott and Pettersen
(2006) for more details. Although the electricity
prices is determined by the total demand in either
the DA or the RT market, this paper deals with the
DA and RT prices as random variables, assuming
the demand of an individual customer is negligible,
compared to that of the whole market.

For a single customer, we minimize the expected
cost, as follows:

min
LDA

t ≥0

[
E
[
π̄

DA
t

]
LDA

t +E
[
π

RT
t

(
Lt −LDA

t
)]]

π
RT
t =

{
π̄UP

t , if Lt ≥ LDA
t

π̄DN
t , otherwise

(1)
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where π̄DA
t is the price in the DA market that is

a random variable, and π̄UP
t is the up-regulation

(UP) price in the RT market (when a customer uses
more energy than their previously purchased energy
from the DA market). π̄DN

t is the down-regulation
(DN) price of the opposite case (when the down-
regulation works). LDA

t is the DA purchasing of a
customer for an assigned time t of the running day.
Lt is the actual use that is a random variable to fore-
cast its future value. E [·] denotes expectation.

We also assume that the electricity prices are in-
dependent of the energy use of a single building,
as the decision of a customer has a negligible influ-
ence on other customers. Then, we derive the op-
timal solution of Eq.(1) in a closed form. We take
a derivative of the objective function in Eq.(1) with
respect to the DA purchase LDA

t . Then, one can find
an optimal purchase LDA∗

t as follows:

LDA∗
t = P−1

Lt
[r∗t ]

where r∗t =
E
[
π̄UP

t
]
−E

[
π̄DA

t
]

E
[
π̄UP

t
]
−E

[
π̄DN

t
] . (2)

PLt (·) is the cumulative density function (CDF) of
Lt , E

[
π̄DA

t
]

is the expected DA price, E
[
π̄UP

t
]

is
the expected UP price, andE

[
π̄DN

t
]

is expected DN
price. Under perfect knowledge of future energy
use, the optimal decision will buy the actual load Lt
from the DA market.

The energy market designs the three prices, as
follows:

E
[
π̄

DN
t

]
≤ E

[
π̄

DA
t

]
≤ E

[
π̄

UP
t

]
(3)

See Choi (2023) for the details.

3. ELECTRICITY DEMAND FORECASTS UNDER

STOCHASTIC TEMPERATURE
In Section 3.1 and 3.2, we revisit the probabilistic
temperature forecasting model of Choi et al. (2021)
and the probabilistic electric load forecasting model
of Choi (2023) for the building energy use1. Then,

1Hereafter, the probabilistic spatio-temporal model
(PSTM) refers to the probabilistic temperature forecasting
model of Choi et al. (2021), and the probabilistic short-term
load forecasting model (PSTLF) refers to the probabilistic
electric load forecasting model of Choi (2023)

Section 3.3 briefly describes model coupling and
uncertainty quantification method.

3.1. Probabilistic spatio-temporal model for tem-
perature forecasts

The temperatures of multiple locations within a re-
gion are listed in vector yt [P×1], which consists
of the sum of three terms: a mean temperature field
µτ(t), a linear combination of the embedding matrix
Φ [P×R] and the low-dimensional latent states xt
(R ≪ P), and an error term ν t [P×1]. The relation-
ship between the variables is expressed as:

yt = µτ +Φxt +ν t (4)

The mean temperature field µτ depends on the time
of the day τ , discretized into h steps from 00:00 to
24:00. In this paper, we discretize a day into h =
24 steps, then τ ∈ {00:00, 01:00, 02:00, ..., 23:00}
(hours of the day). τ can also be computed as τ =
HoD(t) where HoD(·) is a function that returns the
hour of the day τ for input of timestamp t. ν t is a
zero-mean Gaussian noise.

The dynamic process follows a linear Markov
model whose transition matrix Fτ also depends on
the hour of the day τ .

xt = Fτ xt−1 + ε t (5)

where ε t is the process noise that follows a zero-
mean Gaussian distribution. The random variables
xt and yt follow Gaussian distributions. See Choi
et al. (2021) for details.

We introduce the observation vector zt to enable
probabilistic temperature forecasts.

zt = Ht yt +η t (6)

where Ht is an observation matrix that linearly re-
lates the full temperature field yt to the observa-
tion vector zt with a zero-mean Gaussian noise η t .
The elements of zt are either local measurements
(of past/present temperature) or outputs of another
coarse-resolution forecasting model. Next, the lo-
cal temperature yloc

t of interest is expressed as fol-
lows:

yloc
t = eT yt . (7)
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where e is a vector whose element takes one if
the element associates with a location of inter-
est, or zero, otherwise. The probabilistic fore-
cast then estimates the posterior distributions of
the state vector xt and local temperature yloc

t from
the observation vector zt . Using the Kalman Fil-
ter/Smoother scheme, following the procedures of
Barber (2012), the probabilistic temperature fore-
cast estimates the posterior distribution of local
temperature, p(yloc

t |z1:T ), conditional to a time se-
ries of observation vectors z1:T = {z1,z2, ..., zT}
for t = 1, 2, ..., T ; where p(·) represents the proba-
bilistic density function of interest.

3.2. Probabilistic short-term load forecasting
model

We use a benchmark-class model, based on mul-
tivariate polynomial regression, to forecast a time
series of electrical loads of a building. The model
predicts future hourly loads, given the inputs of
past/present loads and ambient air temperature. The
logarithm of hourly electrical load, log(Lt), con-
sists of two additive terms: µ

τ,ω
L and lt .

log(Lt) = µ
τ,ω
L + lt (8)

where µ
τ,ω
L is the mean of the logarithm load, by

the hour of the day τ and the type of day ω , i.e.,
τ = HoD(t) and ω = ToD(t); ToD(·) returns an
index that denotes the type of day. For example, ω

indexes the entries of a set {Off-day, Work-day}, or
alternatively {Sunday-or-Holiday, Saturday, Work-
day}. Different sets of day types can be adopted,
depending on the energy use patterns of a building.
We use local temperature yloc

t as a predictor for the
perturbation lt .

Then, the PSTLF model predicts the electrical
load at time t + δt , based on a multivariate poly-
nomial regression model:

lt+δt = f τ,ω
δt

(ve,δt )+ζt+δt (9)

where f τ,ω
δt

(·) is a polynomial function whose coef-
ficients depend on the forecasting ahead time δt , the
hour of the day τ , and the type of day ω of the fore-
casting generation time t, e.g., the present. ζt+δt

is a forecasting residual, which follows zero-mean

Gaussian distribution that depends on τ and ω . The
input vector ve,δt is assembled by two sub-vectors,

le,δt and ỹe,δt , i.e., ve,δt =
[
lT
e,δt

, ỹT
e,δt

]T
. le,τ consists

of several past to present perturbations:

le,δt =
[
lt+δt−24, lt−Np, ... , lt−2, lt−1

]T (10)

where lt+δt−24 denotes the 24 hours ago perturbed
load from t + δt , and Nl is the number of consecu-
tive past hourly loads to the present t. This paper
uses Np = 3. Similarly, ỹe,δt is a time series of local
temperatures, from t +δt −Ny to t +δt :

ỹe,δt =
[
yloc

t+δt−Ny
, ... ,yloc

t+δt−1, yloc
t+δt

]T
(11)

where Ny < 24 represents the number of consecu-
tive temperatures in consideration. This paper sets
Ny = 3.

3.3. Quantile estimation: inverse reliability prob-
lem

As shown in Eq.(2), the optimal purchase is related
to a quantile value. We compute the quantile value
by adopting an approximation method for the in-
verse reliability problem, as discussed in Der Ki-
ureghian et al. (1994), Wu (1994), and Youn et al.
(2003). This paper uses the algorithm of Wu (1994)
to estimate quantile values with a first-order ap-
proximation method.

4. VALUE OF INFORMATION

Let A be a set of possible actions in considera-
tion. C (s,a) be the cost function that is a function
of state s and action a. The prior loss Lpri is the
minimum of expected cost when the decisions are
made solely based on the prior distribution of the
state, assuming less informative models or no use
of sensors. The prior loss is formulated as follows:

Lpri = min
a∈A

Es [C (s,a)] (12)

where Es[·] is the expectation with respect to the
state s.

The expected posterior loss Lpost is the expecta-
tion of the minimum of the conditional expectation
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of the cost, assuming the adoption of informative
models or sensor deployments.

Lpost = EZ

[
min
a∈A

Es|z [C (s,a)]
]

(13)

where Es|z[·] is the conditional expectation of the
cost, given z. Then, VoI is the difference between
the prior and posterior expected losses.

VoI = Lpri −Lpost (14)

In this paper, the state s consists of the local tem-
perature yloc

t+δt
and the associated electric load of

a building Lt+δt for δt = 0, 1, ..., T , assuming t is
the present time. In the energy purchasing mar-
ket, the action a is the DA purchasing amount LDA

t+δt
for δt = 0, 1, ..., T . We can compute the VoI by
Monte-Carlo simulation (MCS), but this paper also
computes it with an approximation method based
on first-order linearization, for computational effi-
ciency. See Choi (2023) for the details.

5. THE VALUE OF TEMPERATURE MODELING

We investigate case studies, performing the VoI
analysis, for three types of residential buildings: the
Base, High, and Low models. The Base model rep-
resents the prediction on the hourly load of 2009
IECC single-family houses, located in Very Cold
and Cold climate zones of U.S. Energy Informa-
tion Administration (2020); see International Code
Council Inc. (2009) and Ong and Clark (2014) for
details. The High model roughly approximates a
large old house with poor insulation and low en-
ergy efficiency. The Low model describes a smaller
house with excellent insulation and energy-efficient
equipment. The dataset of Ong and Clark (2014)
includes building energy simulations of these three
residential buildings under representative weather
conditions, based on the typical meteorological
year, at about 1,000 locations (Wilcox and Marion
(2008)). The PSTLF of Section 3.2 learns the re-
lations between ambient air temperature and elec-
tricity use of each building from the dataset for the
three residential building prototypes.

We set up realistic electricity prices in the DA
market. We assume that the electricity prices at
a building scale present no significant difference

Figure 1: Expected electricity prices by the hour of the
day, revisited by Choi (2023)

from the case of a bulk transmission system. We
employ the price information of the whole pricing
node of PJM interconnection LLC from June 1st to
August 31st, 2022, both for the DA and RT mar-
kets. The data were used to estimate the expected
DA, UP, and DN prices of Eq.(2). We also set the
prices to only depend on the hour of the day for
simplicity. Figure 1 is adapted from Choi (2023) to
represent the estimated expectations on the electric-
ity price by hours of the day.

Using the calibrated model of Section 3.1, we
conduct a case study for the VoI analysis in the re-
gion around the city of Pittsburgh. We assume that
the prior distribution of the probabilistic tempera-
ture forecasting model well represents the true tem-
perature distribution of summer in the region. Next,
we consider the model use case 3 of Choi et al.
(2021), which exploits local temperature measure-
ments (6-km spacings with 30-min intervals for in-
formation of past/present temperature) and coarse
resolution outputs of external forecasting model
(12-km grid zones with 3-hour intervals for fu-
ture temperature). Then, the PSTLF model pre-
dicts the energy use of a building up to the next
25 hours, producing the forecast at 23:00 in local
time. Again, the observation vector z of Eq.(13) is
the vector of temperature information (local mea-
surements and coarse resolution outputs of external
forecasting system). Table 1 represents the input
information for the VoI analysis. With hypotheti-
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Figure 2: The value of information for the residential
building prototypes by hours of the day

cal field measurements, this case provides multiple
average temperatures of 12km ×12km grid zones,
from WRF-PUCM data, with three hourly intervals
(00:00, 03:00, ..., 18:00, 21:00 UTC) for the future.
The spatial resolution and time intervals are similar
to those of the North American Meso-scale Fore-
cast System (NAM).

In the numerical case study, the PSTM of Section
3.1 downscales ambient-air temperature, by pro-
cessing the information in Table 1. Then, the load
forecasting of Section 3.2 forecasts the electricity
demand of a building, using the posterior distribu-
tion of ambient air temperature. We conduct the
VoI analysis to measure the economic benefits of
having the uncertainty-aware temperature model in
the DA market. In Figure 2, the VoI is calculated
for the residential building prototypes by different
hours of the day. The VoI integrates hourly price,
intensity and variability of temperature, and the en-
ergy use pattern of the building. So, the VoI shows
a fluctuating pattern over a day.

Figure 3 shows the VoI according to the build-
ing prototype in percentage after normalizing the
metric by its own nominal cooling cost. In the fig-
ure, the nominal cooling cost is computed as the
average electricity cost under perfect information.
We computed the average minimum cost for each
hour of the day, using the data of Ong and Clark
(2014) for June/July/August at Pittsburgh Interna-
tional Airport. The heterogeneity of the buildings

produces significance, and the weather information
reduced 4.34-8.22% of energy costs in the DA mar-
ket. The variability would come from material char-
acteristics, occupancy schedule, and tightness of set
points (a range of allowable indoor temperatures).

Figure 3: Ratio of VoI by building prototypes

6. CONCLUSION
In this paper, we have proposed a method to as-
sess the impact of accurate temperature modeling
on cost savings in the DA electricity market, open
to individual building owners. We coupled two
uncertainty-aware models: a probabilistic spatio-
temporal model for temperature forecasts and a
load forecasting model for the electricity demand
of a building, given a temperature scenario. Then,
we have assessed the VoI, to measure the economic
benefits of better urban temperature modeling in
saving energy costs for buildings. Through the nu-
merical case study, we showed that better tempera-
ture modeling could help saving electricity costs in
the DA market: using the uncertainty-aware tem-
perature model reduces 4.34-8.22% of space cool-
ing costs in residential building prototypes. The nu-
merical examples also demonstrated how the VoI
integrates prices, temperature, and energy use pat-
tern, and the heterogeneity of buildings could sig-
nificantly affect the VoI.
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Table 1: Summary of input information for the case study

Local measurements (past/present) External forecasting model (future)
Grid spacing Time interval Spatial resolution Time interval

Input resolution 6 km 1 hour 12 km × 12 km 3 hour
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Prodanović, M. (2017). “An optimal day-ahead load
scheduling approach based on the flexibility of aggre-
gate demands.” Applied Energy, 198, 1–11.

Badorf, F. and Hoberg, K. (2020). “The impact of daily
weather on retail sales: An empirical study in brick-
and-mortar stores.” Journal of Retailing and Con-
sumer Services, 52, 101921.

Barber, D. (2012). Bayesian reasoning and machine
learning. Cambridge University Press.

Burillo, D., Chester, M. V., Pincetl, S., Fournier, E. D.,
and Reyna, J. (2019). “Forecasting peak electricity
demand for los angeles considering higher air temper-
atures due to climate change.” Applied Energy, 236,
1–9.

Chen, B., Cai, Z., and Bergés, M. (2019). “Gnu-rl: A
precocial reinforcement learning solution for build-
ing hvac control using a differentiable mpc policy.”
Proceedings of the 6th ACM international conference
on systems for energy-efficient buildings, cities, and
transportation, 316–325.

Chen, B., Yao, W., Francis, J., and Bergés, M. (2020).
“Learning a distributed control scheme for demand
flexibility in thermostatically controlled loads.” 2020
IEEE International Conference on Communications,
Control, and Computing Technologies for Smart
Grids (SmartGridComm), IEEE, 1–7.

Choi, B. (2023). “Urban temperature and electricity de-
mand: probabilistic modeling and adaptive decision-
making.” Ph.D. thesis, Carnegie Mellon University,
Carnegie Mellon University.

Choi, B., Bergés, M., Bou-Zeid, E., and Pozzi, M.
(2021). “Short-term probabilistic forecasting of
meso-scale near-surface urban temperature fields.”
Environmental Modelling & Software, 145, 105189.

Der Kiureghian, A., Zhang, Y., and Li, C.-C. (1994).
“Inverse reliability problem.” Journal of engineering
mechanics, 120(5), 1154–1159.

Di Somma, M., Graditi, G., and Siano, P. (2018). “Op-
timal bidding strategy for a der aggregator in the day-
ahead market in the presence of demand flexibility.”
IEEE Transactions on Industrial Electronics, 66(2),
1509–1519.

Howard, R. A. (1966). “Information value theory.”
IEEE Transactions on systems science and cybernet-
ics, 2(1), 22–26.

International Code Council Inc. (2009). “2009 interna-
tional energy conservation code (iecc).

Keisler, J. M. and Brodfuehrer, M. (2009). “An ap-
plication of value-of-information to decision process
reengineering.” The Engineering Economist, 54(3),
197–221.

Li, S. and Pozzi, M. (2019). “What makes long-
term monitoring convenient? a parametric analy-
sis of value of information in infrastructure mainte-
nance.” Structural Control and Health Monitoring,
26(5), e2329.

Lin, C., Song, J., and Pozzi, M. (2022). “Optimal inspec-
tion of binary systems via value of information anal-
ysis.” Reliability Engineering & System Safety, 217,
107944.

Malings, C., Pozzi, M., Klima, K., Bergés, M.,
Bou-Zeid, E., and Ramamurthy, P. (2018). “Sur-
face heat assessment for developed environ-
ments: Optimizing urban temperature monitoring.”
Building and Environment, 141, 143–154 DOI:
10.1016/j.buildenv.2018.05.059.

Memarzadeh, M. and Pozzi, M. (2016). “Value of in-
formation in sequential decision making: Component
inspection, permanent monitoring and system-level
scheduling.” Reliability Engineering & System Safety,
154, 137–151.

7



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

Nelson, R. R. and Winter Jr, S. G. (1960). “Weather
information and economic decisions preliminary re-
port.” Report no., RAND Corporation.

Ong, S. and Clark, N. (2014). “Commer-
cial and residential hourly load profiles
for all tmy3 locations in the united states,
<https://data.openei.org/submissions/153> (11).

Parvania, M., Fotuhi-Firuzabad, M., and Shahidehpour,
M. (2014). “Iso’s optimal strategies for scheduling the
hourly demand response in day-ahead markets.” IEEE
Transactions on Power Systems, 29(6), 2636–2645.

Philpott, A. B. and Pettersen, E. (2006). “Optimizing
demand-side bids in day-ahead electricity markets.”
IEEE Transactions on Power Systems, 21(2), 488–
498.

Poh, K.-L. (2000). “An intelligent decision support sys-
tem for investment analysis.” Knowledge and Infor-
mation Systems, 2(3), 340–358.

Pozzi, M. and Der Kiureghian, A. (2011). “Assessing the
value of information for long-term structural health
monitoring.” Health monitoring of structural and bi-
ological systems 2011, Vol. 7984, SPIE, 812–825.

Singh, R. P., Gao, P. X., and Lizotte, D. J. (2012). “On
hourly home peak load prediction.” 2012 IEEE Third
International Conference on Smart Grid Communica-
tions (SmartGridComm), IEEE, 163–168.

Steinker, S., Hoberg, K., and Thonemann, U. W.
(2017). “The value of weather information for e-
commerce operations.” Production and Operations
Management, 26(10), 1854–1874.

Straub, D. (2014). “Value of information analysis with
structural reliability methods.” Structural Safety, 49,
75–85.

Turner, D. D., Cutler, H., Shields, M., Hill, R., Hart-
man, B., Hu, Y., Lu, T., and Jeon, H. (2021). “Eval-
uating the economic impacts of improvements to the
high-resolution rapid refresh (hrrr) numerical weather
prediction model.” Bulletin of the American Meteoro-
logical Society, 1–36.

U.S. Energy Information Administration. “How much
electricity is used for cooling in the united states?. Re-
trieved: October, 31, 2022.

U.S. Energy Information Administration (2020).
“Climate zones - doe building america program.
https://atlas.eia.gov/datasets/eia::climate-zones-doe-
building-america-program/about.

Wilcox, S. and Marion, W. (2008).
“Users manual for tmy3 data sets.
https://www.nrel.gov/docs/fy08osti/43156.pdf.

Wu, Y.-T. (1994). “Computational methods for efficient
structural reliability and reliability sensitivity analy-
sis.” AIAA journal, 32(8), 1717–1723.

Yang, Y., Li, S., Li, W., and Qu, M. (2018). “Power load
probability density forecasting using gaussian process
quantile regression.” Applied Energy, 213, 499–509.

Yokota, F. and Thompson, K. M. (2004). “Value of infor-
mation analysis in environmental health risk manage-
ment decisions: past, present, and future.” Risk anal-
ysis: an international journal, 24(3), 635–650.

Youn, B. D., Choi, K. K., and Park, Y. H. (2003). “Hy-
brid analysis method for reliability-based design op-
timization.” J. Mech. Des., 125(2), 221–232.

Zonta, D., Glisic, B., and Adriaenssens, S. (2014).
“Value of information: impact of monitoring on
decision-making.” Structural Control and Health
Monitoring, 21(7), 1043–1056.

8


	Introduction
	The day-ahead market
	Electricity demand forecasts under stochastic temperature
	Probabilistic spatio-temporal model for temperature forecasts
	Probabilistic short-term load forecasting model
	Quantile estimation: inverse reliability problem

	Value of Information
	The value of temperature modeling
	Conclusion
	REFERENCES

