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ABSTRACT: Robust design optimization (RDO) can provide an optimum design solution that is 

relatively insensitive to input uncertainties, thus possesses significant value in the design of engineering 

structures. Generally, the RDO problem is a nested double-loop optimization process which requires 

huge computational costs especially for the case with complicated finite element model simulation. In 

view of this point, a completed decoupled adaptive RDO method based on the Kriging surrogate model 

is proposed, which can transform the nested double-loop uncertainty optimization process into the 

traditional deterministic optimization procedure. At the same time, closed-form expressions of the mean 

and standard deviation of performance functions under different design parameters are deduced and 

employed in the uncertainty propagation during the design optimization so to alleviate the post 

processing computational error. Moreover, the metamodeling uncertainty is considered in the established 

uncertainty propagation technique and an adaptive framework is introduced to improve the 

computational accuracy of uncertainty propagation so to further guarantee the estimation accuracy of 

RDO problems. An engineering application is introduced to illustrate the effectiveness of the established 

complete decoupled adaptive RDO method. 

Engineering structures inevitably involve various 

uncertainties, such as deviation of material 

properties and geometric dimensions, which may 

severely degrade the performance of engineering 

structures (Chen and Li 2015). Considering these 

uncertainties, it is urgent to conduct design 

optimization of engineering structures. Moreover, 

with the increasing demand for high-quality 

engineering structures, the solution of design 

optimization should be robust under these 

uncertainties. Robust design optimization (RDO) 

is a theory that aims at providing a design 

optimization solution that is both optimum and 

relatively insensitive to input uncertainties.  

Generally, the RDO problem requires 

making a tradeoff between the mean and standard 

deviation of the objective function, and this is 

usually completed by aggregating the mean and 

standard deviation in a single function with a 

weighted sum method. Directly solving the RDO 

problem is a nested double-loop optimization 

process, in which the outer loop searches for the 

optimal design parameter results and the inner 

loop estimates the mean and standard deviation of 

performance functions. This estimation process 
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needs huge computational costs, especially for the 

case with time-consuming finite element model 

simulation. One possible way of addressing this 

challenge is to employ the surrogate model to 

replace the time-consuming computer simulation 

(Moustapha et al. 2016; Shi et al. 2020). Moreover, 

there always exists a discrepancy between the 

computer model and the surrogate model at 

unsampled points, introducing the so-called 

“metamodeling uncertainty” (Arendt et al. 2012; 

Zhang et al. 2013). The metamodeling uncertainty 

possesses an important influence on the accuracy 

of the surrogate model and further affects the 

solution of the RDO, thus it’s necessary to take 

the metamodeling uncertainty into account in the 

surrogate model-assisted RDO, such as the 

methodology with a Bayesian framework (Apley 

et al. 2006), the approach with a multi-point 

objective-oriented sequential sampling strategy 

(Zhu et al. 2015) and the method with the 

Gaussian process model (Zhang et al. 2016). 

Generally, after the surrogate model of the 

performance function is well constructed by using 

the above surrogate model-assisted methods, 

several numerical integration techniques are 

usually used to estimate the mean and standard 

deviation of the performance function during the 

RDO procedure. However, although it is cheap to 

perform the uncertainty propagation based on the 

surrogate model, this process may introduce post-

processing computational error (Shi et al. 2018). 

In this work, an adaptive decoupled RDO 

method based on the Kriging surrogate model is 

proposed, in which a new description of 

metamodeling uncertainty that can 

simultaneously reflect the uncertainties in the 

prediction and the mean of performance function 

in estimating the standard deviation of the 

performance function is established. Furthermore, 

the closed-form expressions of the mean and 

standard deviation of performance function under 

different design parameters are deduced and 

employed in the uncertainty propagation during 

the design optimization, to alleviate the post-

processing computational error, and the nested 

double-loop uncertainty optimization process is 

transformed into the traditional deterministic 

optimization procedure. Furthermore, a novel 

uncertainty propagation technique based on the 

Kriging surrogate model is established in this 

work, in which the design parameter is separated 

from inputs and the closed-form expressions of 

output moments under different design 

parameters are obtained based on only one 

surrogate model for each performance function. 

At the same time, a new description of 

metamodeling uncertainty is considered in the 

established uncertainty propagation technique and 

an adaptive framework is introduced to improve 

the computational accuracy of uncertainty 

propagation to further guarantee the estimation 

accuracy of RDO problems. 

1. REVIEW OF THE ROBUST DESIGN 

OPTIMIZATION 

RDO aims at providing a design optimization 

solution that is both optimum and relatively 

insensitive to input uncertainties of structures. 

Generally, the mathematical model of the RDO 

problem can be expressed as follows (Zhang et al. 

2013): 

 

( ) ( )

( ) ( )
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d d d   

 (1) 

in which 
T

1 2, ,...,
XnX X X =  X  is the Xn -dimensional 

random design vector with mean value vector 

1 2

T

, ,...,
nX

X X X   =
 X , and lower and upper bounds 

being 
1 2

T

, ,...,
nX

L L L L

X X X   =
 X  and 

1 2

T

, ,...,
nX

U U U U

X X X   =
 X  respectively. 

T

1 2, ,...,
PnP P P =  P  

is the Pn -dimensional random parameter vector. 

The mean value vector X  of the random design 

vector and the random parameter vector P  

constitute the design parameter vector of the RDO 

problem. 
T

1 2, ,...,
dnd d d =  d  is the dn -dimensional 

deterministic design vector with 
T

1 2, ,...,
d

L L L L

nd d d =  d  

and 
T

1 2, ,...,
d

U U U U

nd d d =  d  being its lower and upper 

bounds respectively. ( ), ,f   X P d  and ( ), ,f   X P d  
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are the mean and standard deviation of the 

objective function ( ), ,f X P d  respectively. 

( ), ,ig   X P d  and ( ), ,ig   X P d  are the mean and 

standard deviation of the i -th constraint function 

( ), , ( 1,2,..., )i gg i n=X P d  respectively. c  is a constant 

value that reflects the risk attitude of the designer. 

2. COMPLETE DECOUPLED ADAPTIVE 

ROBUST DESIGN OPTIMIZATION 

Before constructing the complete decoupled 

adaptive RDO method, the random design 

variable ( 1,2,..., )i XX i n=  and the random parameter 

variable ( 1,2,..., )j PP j n=  are first transformed into 

standard normal variables ( 1,2,..., )
iX XU i n=  and 

( 1,2,..., )
jP PU j n=  respectively based on the 

equivalent probabilistic transformation technique 

(Rosenblatt 1952). Denote 
1 2

T

, ,...,
nX

X X XU U U =
 XU  

and 
1 2

T

, ,...,
nP

P P PU U U =
 PU , then the objective 

function ( ), ,f X P d  and constraint function 

( ), , ( 1,2,..., )i gg i n=X P d  in the standard normal space 

can be described by ( ), , ,F X P XU U d  and 

( ), , , ( 1,2,..., )i gG i n=X P XU U d  respectively. Such a 

treatment is beneficial to the construction of the 

complete decoupled adaptive RDO method. 

In each iterative optimization of RDO, the 

key is to calculate the mean and standard 

deviation of the performance function under the 

design parameter. Therefore, if closed-form 

expressions of the mean and standard deviation of 

the performance function under different design 

parameters can be obtained, the RDO problem 

will be transformed into a traditional deterministic 

optimization problem, which will provide great 

benefits to the robust design of complicated 

structures. Next, the closed-form expression of 

the mean and standard deviation under different 

design parameters will be established. 

2.1. Closed-form expression of the mean 

For the convenience of expression, denote 

 , , ,= X P XW U U d  and  ,= X PU U U  respectively. 

Take the construction of the closed-form 

expression of the mean of objective function 

( ), ,F XU d  for example, the similar way can be 

used for the constraint function 

( ), , ( 1,2,..., )i gG i n=XU d . It is supposed that there are 

two realizations of the input vector W , i.e., 
T

( ) ( ) ( ) ( ), ,i i i i =  Xw u d  and 
T

( ) ( ) ( ) ( ), ,j j j j =  Xw u d , in which 

( ) ( ) ( ),i i i =  X Pu u u  and ( ) ( ) ( ),j j j =  X Pu u u . Then, the 

Gaussian correlation function can be rewritten by 

the following expression when constructing the 

Kriging surrogate model (Lophaven et al. 2002) 

( )ˆ , ,F XU d  of the objective function ( ), ,F XU d : 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,i j i j i j i jR =   
Xu X X dw w u u d d    (2) 

in which ( ) ( )
2

( ) ( ) ( ) ( )

1

, exp
X Pn n

i j i j

k k k

k

u u
+

=

 
 = − − 

 
u u u , 

( ) ( )
2

( ) ( ) ( ) ( )

1

, exp
X

X P k k

n
i j i j

n n k X X

k

  + +

=

 
 = − − 

 
X X X    and 

( ) ( )
2

( ) ( ) ( ) ( )

2

1

, exp
d

X P

n
i j i j

n n k k k

k

d d + +

=

 
 = − − 

 
d d d . 

( 1,2,...,2 )k X P dk n n n = + +  is the correlation parameter 

in the Kriging surrogate model. 

It is assumed that the training set and the 

corresponding output are  (1) (2) ( ), ,..., m   =w w w w  

and 
T

(1) (2) ( )( ), ( ),..., ( )mF F F    =  F w w w . Then, the 

regression parameter   and the Gaussian process 

variance 2

  can be obtained as follows: 

 ( )
1

1 1

1 1 1m m m
−

− − 

  = I R I I R F  (3) 

 ( ) ( )
T

2 1

1 1

1
m m

m
   − 

 = − −F I R F I  (4) 

where R  is the correlation matrix with the 

element in i -th row and j -th column being 

( )( ) ( ), ( , 1,2,..., )i j

ijR R i j m

 = =w w . The prediction mean 

ˆ ( , , )
F

 Xu d , the prediction variance 2

ˆ ( , , )
F

 Xu d , and 

the prediction covariance    ( )ˆCOV , , , , ,
F

  
X Xu d u d   

can be rewritten as follows: 

 

        ( ) ( ) ( )( ) ( ) ( ) RFI

ˆ

1

( , , ) , , ,
m

i i i

iF
i

    

=

= +     XX u X X du d u u d d                                   (5) 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 ( ) ( ) ( ) R ( ) ( ) ( )

ˆ

1 1

2

IRI IR ( ) ( ) ( )

1

( , , ) 1 , , , , , ,

, , , 1

m m
i i i j j j

ijF
i j

m
i i i

i

i
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= =

  

=


= −        +



  
     −  

  





X X

X

X u X X d u X X d

u X X d

u d u u d d u u d d

u u d d

 



    

 

  (6) 

   ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

ˆ

( ) ( ) ( ) R ( ) ( ) ( )

1 1

IRI IR ( ) ( ) ( ) IR ( )

1

COV , , , , , , , ,

, , , , , ,

, , , 1 , ,

F

m m
i i i j j j

ij

i j

m
i i i j

i j

i



     

= =

    

=

     =    −

         +

 
      −    

 





X

X X

X X

X X u X X d

u X X d u X X d

u X X d u X X

u d u d u u d d

u u d d u u d d

u u d d u u



 

 

   

   

   ( ) ( )( ) ( )

1

, 1
m

j j

j



=

 
 −  

 
 d d d

 (7) 

 

in which ( )RFI 1

1m − 

= −R f I  and RFI

i  is the i -th 

element of the vector RFI . R 1−= R  and R

ij  is the 

element in i -th row and j -th column of the 

matrix R . IR 1

1 m

−

= I R  and IR

i  is the i -th element 

of the vector IR and the constant ( )
1

IRI 1

1 1m m

−
−

  = I R I . 

According to the above expressions shown in Eqs. 

(12)-(14), the design parameter vector  ,X d  is 

derived from the inputs for the prediction mean, 

the prediction variance and the prediction 

covariance based on the Kriging surrogate model. 

Based on the definition of the mean, the 

mean of the objective function under the design 

parameter vector  ,X d
 based on the Kriging 

surrogate model can be expressed by: 

 ( ) ( ) ( )ˆ ˆE , , , , dF F 


  =
  

U
U X X Uu d u d u u   (8) 

where ( )U u  is the joint probability density 

function of standard normal variable vector 

 ,= X PU U U , U
 is the value domain of U  and 

 EU
 represents the expected operator concerning

U . Because ( )ˆ , ,F Xu d  follows the normal 

distribution with the mean ˆ ( , , )
F

 Xu d  and the 

variance 2

ˆ ( , , )
F

 Xu d , then ( )ˆE , ,F 
 U Xu d  is not a 

constant but a random variable under the design 

parameter vector  ,X d . Therefore, the 

expectation of concerning random variable 

( )ˆ , ,F Xu d  can be used to be the mean of the 

objective function as follows: 

 
( ) ( ) 

( ) ( ) ( )
ˆ

ˆ

ˆ

ˆ ˆ, , E E , ,

ˆ ˆˆ , , d d
F

F

F

F F

F f f



 
 

   =
   

=  
U

X U X

X U

u d u d

u d u u

 


 (9) 

in which ( )ˆ
ˆ

F
f  is the probability density function 

of random variable ( )ˆ , ,F Xu d , 
F̂

  is the value 

domain of ( )ˆ , ,F Xu d  and  ˆE
F

 represents the 

expected operator with respect to ( )ˆ , ,F Xu d . The 

variance of ( )ˆE , ,F 
 U Xu d  with respect to random 

variable ( )ˆ , ,F Xu d  can be used to measure the 

variation of ( )ˆ , ,F  
 Xu d . 

( ) ( ) 

( ) ( ) ( )   ( )
ˆ

ˆ

2

ˆ ˆ

ˆ ˆ, , =V E , ,

ˆ ˆˆ ˆ, , d E E , , d
F

F

F F

F F

F F f f



 
 

   
   

 = −
  

U

X U X

X U U X

u d u d

u d u u u d

 

 

 (10) 

where  ˆV
F

 represents the variance operator with 

respect to ( )ˆ , ,F Xu d . According to Fubini’s 

theorem (Briol et al. 2019), Eqs. (9) and (10) can 

be simplified as follows: 

 ( ) ( )ˆ
ˆ , , ( , , ) d

F
F  



  =
  

U
X X Uu d u d u u   (11) 

 
( )    ( )

( ) ( )

ˆ
ˆ , , = COV , , , , ,

d d

F
F

 

 



    
 

 

 
U U

X X X

U U

u d u d u d

u u u u

  
(12) 

Substitute Eq. (5) into Eq. (11) and perform 

further derivation (Shi et al. 2018), the closed-

form expression of the mean of the objective 

function under the design parameter vector  ,X d  

can be obtained as follows: 

 
( )

( ) ( ) ( )

1 1
RFI

2 2

1

1( )T ( ) ( ) ( )

ˆ , ,

1
exp , ,

2

m

i

i

i i i i

F 
−

=

−   

  = + + 
 

 
− +   
 



X

X

X X d

u d A A I

u A I u d d



 

(13) 
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Similarly, the closed-form expression of 

( )ˆ , ,F  
 Xu d  under the design parameter vector 

 ,X d  is shown below: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
2 1 ( ) ( ) R ( ) ( )2

1 1

1 1
1 1 1( )T ( ) ( )T ( ) IRI IR ( ) ( )

2 2

1

ˆ , , 2 , , , ,

1 1
exp exp , ,

2 2

m m
i i j j

ij

i j

m
i i j j i i

i

i

F

 
−

−    

= =

− −− −     

=


  = + −        



    
+ − + − + +     +   

   





X X

X

X X X d X X d

X X d

u d A I d d d d

A A I u A I u u A I u d d A A I

 



    

 

( ) ( ) ( ) ( )
1 1

1 1( )T ( ) IR ( ) ( ) ( )T ( )
2 2

1

1 1
exp 1 , , exp 1

2 2

m
i i j j j j

j

j

−− −     

=




     
− + −     + − + −     
     

 X X X du A I u d d A A I u A I u  

 (14) 

in which 
1 2

1 1 1
diag , ,...,

2 2 2
X Pn n   +

 
=  

 
 

A , I  is the diagonal matrix with all diagonal elements being 1. 

2.2. Closed-form expression of the standard 

deviation 

Based on the definition of the variance, the 

variance of the objective function under the 

design parameter vector  ,X d  based on the 

Kriging surrogate model can be expressed by: 

( ) ( ) ( )  ( )
2

ˆ ˆ ˆV , , , , E , , dF F F 


   = −
   

U
U X X U X Uu d u d u d u u  

 (15) 

in which  VU
 represents the variance operator 

with respect to U . Because ( )ˆ , ,F Xu d  follows the 

normal distribution with the mean ˆ ( , , )
F

 Xu d  and 

the variance 2

ˆ ( , , )
F

 Xu d , then ( )ˆV , ,F 
 U Xu d  is not a 

constant but a random variable under the design 

parameter vector  ,X d . Therefore, the 

expectation of ( )ˆV , ,F 
 U Xu d  with respect to 

random variable ( )ˆ , ,F Xu d  can be used to be the 

variance of the objective function as follows: 

 
( )

( ) ( )

2 2 2

ˆ ˆ

2

ˆ , , E ( , , ) E ( , , )

ˆ ˆ, , , ,

F F
F

F F

  

 

     = + −    

   −
   

X U X U X

X X

u d u d u d

u d u d

  

 
(16) 

where 2

ˆE ( , , )
F

  U Xu d  and ( )ˆ , ,F  
 Xu d  are 

introduced in the expression of the variance of the 

objective function to measure the metamodeling 

uncertainty. It should be noted that except 
2

ˆE ( , , )
F

  U Xu d  and ( )2 ˆ , ,F  
 Xu d , the traditional 

description of the metamodeling uncertainty only 

considers 2

ˆE ( , , )
F

  U Xu d  in the expression of the 

variance of objective function. The new 

description of the metamodeling uncertainty can 

simultaneously reflect the uncertainties in the 

prediction and the mean of performance function, 

which plays a great role in improving the 

estimation accuracy of the RDO. 

Then, the standard deviation ( )ˆ , ,F  
 Xu d  of 

the objective function can be expressed as follows: 

 ( )
( ) ( )

2 2

ˆ ˆ

2

E ( , , ) E ( , , )
ˆ , ,

ˆ ˆ, , , ,

F F

F
F F

 


 

   + −   
  =
     −

   

U X U X

X

X X

u d u d
u d

u d u d

 


 
(17) 

( )2 ˆ , ,F  
 Xu d  and ( )ˆ , ,F  

 Xu d  can be estimated 

by Eqs. (13) and (14) respectively. By using the 

similar derivation process in estimation of mean, 

the closed-form expressions of 2

ˆE ( , , )
F

  U Xu d  and 

2

ˆE ( , , )
F

  U Xu d  can be expressed as follows:

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1
12 2 RFI ( )T ( ) ( ) ( )

2 2
ˆ

1

1
1 2

( ) ( ) RFI ( ) ( ) RFI
2

1 1

T 1( ) ( ) ( )

1
E ( , , ) 2 exp , ,

2

1
, , , , 2

2

1
exp 2

2

m
i i i i

iF
i

m m
i i j j

i j

i j

i j i

  
− −   

=

−
−   

= =

−   

 
  = + +  − +   +  

 

       +

− − −





X

X X

U X X X d

X X d X X d

u d A A I u A I u d d

d d d d A A A I

u u A u u



 

  

   

( )
T 1

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
exp

2 2 2 2 2 2

j i j i j

−

   
         

 − + + +        
         

u u A I u u

       (18) 
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( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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2
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i

−
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=

     
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  
 X X X d
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 (19) 

2.3. Adaptive framework for robust design 

optimization 

Since the closed-form expressions of the mean 

and standard deviation of the objective function 

and the constraint function can be obtained by the 

above procedure, the RDO problem shown in Eq. 

(1) can be rewritten as follows: 

 

( ) ( )

( ) ( )

ˆ ˆMinimize: , , , ,

ˆ ˆSubject to:  , , , , 0

( 1,2,..., )

,

i i i

g

L U L U

O F c F

C G c G

i n

 

 

   = +
   

   = + 
   

=

   

X X

X X

X X X

u d u d

u d u d

d d d

 

 

  

(20) 

Because ( )ˆ , ,F  
 Xu d , ( )ˆ , ,F  

 Xu d , ( )ˆ , ,iG  
 Xu d  

( 1,2,..., )gi n=  and ( )ˆ , , ( 1,2,..., )i gG i n   =
 Xu d  are 

analytical functions concerning the design 

parameter vector  ,X d , then the above 

expression shows a traditional deterministic 

optimization problem. 

To guarantee the estimation accuracy of the 

RDO, an adaptive framework is established in this 

work. It is supposed that the current optimal 

design parameter is , 
 X d  based on the current 

surrogate model, then the new sample will be 

identified to strengthen the surrogate model 

according to the current optimum. In this work, a 

modified version of learning function based on the 

one used for uncertainty propagation problems 

(Wei et al. 2020) is established as follows: 

 ( ) ( )
( )

( )

ˆ2

ˆ

COV , , , , ,
= ( , , )

d

F

F
L  






   
   

 


U

X X

X U

U

u d u d
u u d u

u u

 
 (21) 

Then, samples in the sample pool can be tested by 

the established learning function, and the new 

random sample u  can be determined by: 

 ( ) =max Lu u u  (22) 

New training sample is , , 
 Xu d . 

Before solving the RDO problem, initial 

surrogate models will be constructed for the 

objective function and constraint function 

respectively. Then, closed-form expressions of 

the mean and standard deviation of the objective 

function and constraint function will be calculated 

based on the current surrogate model, and the 

design optimization model shown in Eq. (20) will 

be solved to gain the current optimal design 

parameter , 
 X d . After that, the established 

learning function will be employed to test the 

sample pool and new training samples will be 

deterministic for each surrogate model. Finally, 

these new training samples will be added to the 

original training sample set so to update these 

surrogate models respectively. This process will 

be carried out iteratively until the absolute value 

of the relative error of O  at two consecutive 

iterations is less than the threshold. 

 
( ) ( 1)

0( )

k k

k

O O

O
 

−−
=   (23) 

in which ( 1)kO −  and ( )kO  mean the optimization 

objective in the ( 1)k − -th iteration and k -th 

iteration respectively. 0  is the threshold and it is 

suggested to be set 5 3

0 10 10 − −= . 

3. APPLICATIONS 

A self-balancing vehicle (Shi et al. 2020) shown 

in Figure 1 is modified to demonstrate the 

effectiveness of the established method for 

solving the RDO problem. The chassis provides a 

platform for two driving wheels, one lighting 

module, and one control unit. The design 

optimization objective is to maximize the area of 

the chassis’ upper surface so to make the self-

balancing vehicle stable in the driving process. 

The deformation of the chassis under two cases of 
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loads is used to design optimization constraints. 

The first case is that the deformation 
1YD  under the 

pressure 1Y  should be less than the allowable 

threshold to ensure the driving stability under the 

condition of turning. The other case is that the 

deformation 
2YD  under the pressure 2Y  should be 

less than the allowable threshold allow

2D  so to 

ensure the driving stability under the condition of 

acceleration. The RDO model of the self-

balancing vehicle can be expressed as follows: 

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

1

2

1 2

1 2

1 2

allow

1 1 2 1 1

allow

2 1 2 2 2

2 2

1 2

Minimize: , ,

Subject to:  , , 0( 1,2)

, =

, = , , ,

, = , , ,

,4 , ,2

400mm 500mm,200mm 300mm

i i i

Y

Y

X X

X X

O f c f

C g c g i

f X X

g D X X E Y D

g D X X E Y D

X N X N

 

 

 

 

=   +     

=   +    =   

−

−

−

   

X P X P

X P X P

X P

X P

X P

(24) 

in which 1X  and 2X  are the width and depth of the 

chassis respectively, and E  is the Young’s 

Modulus. Random parameter variables E , 1Y  and 

2Y  are normal variable, i.e., ( )272000,2000E N , 

( )2

1 1.5,0.1Y N , ( )2

2 1.5,0.1Y N . 

 

 

 

 

 

 

 

 

 

 
Figure 1: The self-balancing vehicle 

To test the accuracy of the proposed method 

(PM), the original Kriging surrogate model, the 

support vector machine (SVM), and the sparse 

polynomial chaos expansion (SPCE) are 

employed to approximate performance functions 

of these applications with the same computational 

cost of the PM. The design optimization result 

estimated by the general nested double-loop 

optimization process (GNDOP) based on real 

performance functions is used to be the true value 

of RDO. The final RDO solutions obtained with 

the Kriging, the SVM, the SPCE, and the PM 

based on real performance functions are also 

provided inside parentheses of the corresponding 

RDO solutions location in tables.  

For this self-balancing vehicle robust design 

problem, since the objective function is a simple 

and explicit expression, then the surrogate models 

are employed to approximate constraint functions. 

For the PM, the total computational costs are 72 

which contains 15 initial samples for each 

constraint function and 22 added samples for each 

constraint function. The GNDOP is used to be the 

reference, and 55 10  samples are used to estimate 

the mean and standard deviation of performance 

functions in each iteration and the number of 

iterations is 107. The RDO results with different 

methods are listed in Table 1. The evolution of 

RDO results with the number of iterations is 

shown in Figure 2. Evolution of output moments 

with the number of iterations is shown in Figure 3. 
Table 1: RDO results of the self-balancing vehicle 

Methods 
1 2
,X X  

   4/ 10O   1C  2C  

Kriging  408.83,213.08  -8.36 
-0.0001 

(-0.0165) 

0.0002 

(-0.0012) 

SVM  405.53,213.73  -8.31 
-0.0005 

(-0.0048) 

0.0003 

(0.0154) 

SPCE  409.95,213.58  -8.40 
-0.0007 

(0.0004) 

0.0001 

(0.0010) 

PM  410.54,213.43  -8.41 
0.0000 

(-0.0027) 

0.0000 

(-0.0023) 

GNDOP  410.08,213.58  -8.40 0.0004 -0.0002 

From Table 1, it can be seen that the design 

parameter results estimated by the SPCE and the 

PM can match well with that of the GNDOP, 

which illustrates the high accuracy of the PM. 

Both the ordinary Kriging surrogate model and 

the SVM have a bit of error when compared with 

the GNDOP, and the error is mainly caused by the 

inaccurate approximations of constraint functions. 

Figure 2 shows the good convergence of the PM 

in estimating both design parameters and RDO 

objectives. Simultaneously, it can be seen from 

Figure 3 that the mean and standard deviation of 

constraint functions converge to the 

corresponding references, which demonstrates the 

high accuracy of established closed-form 

expressions of the mean and standard deviation 

Driving wheel 
Lighting module 

1X

2X

Chassis 
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for performing the uncertainty propagation during 

the estimation of the RDO. 

 
(a) Design parameters              (b) Objective 

Figure 2 Evolution of RDO results 

 
(a) Function 

1g                 (b) Function 
2g  

Figure 3 Evolution of output moments 

4. CONCLUSIONS 

An effective adaptive decoupled RDO 

method by considering a new description of 

metamodeling uncertainty of surrogate model is 

proposed for dealing with robust design problems. 

Based on the proposed method, the uncertainties 

in the prediction and the mean of performance 

function are employed to measure the 

metamodeling uncertainty. Compared with the 

traditional description of metamodeling 

uncertainty, the new expression plays an 

important role in providing accurate uncertainty 

propagation solution during design optimization. 

Simultaneously, an adaptive framework is 

introduced to improve the computational accuracy 

of uncertainty propagation so to further guarantee 

the estimation accuracy of RDO problems. The 

RDO results of the self-balancing vehicle 

illustrate that the proposed method is effective in 

solving robust design problems. 
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