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Summary

This thesis examines human mobility patterns in developing countries. It leverages
different types of mobile phone data enabling the observation of individuals’
movements and locations at spatio-temporal scales which are notoriously difficult
to attain with traditional survey data. These movements are investigated in various
contexts, including spatial inequalities and frictions, labor reallocation dynamics
in the face of climate variability, and the interplay between different modalities of
short-term mobility as mechanisms to access urban markets.

Chapter 1 uses smartphone app location data from three African countries over
a one-year period to characterize patterns of high-frequency mobility. The data
reveal the types of locations that people visit and the frequency with which they
make trips. Overall, they point to considerable mobility within the sample. The
average smartphone user in the data ventures more than 10 km from home on
10-15% of the days when they are observed. On average, when observed away from
home, smartphone users are typically 35-50 km from home. The granular nature
of the data allows to obtain insights into the specific destinations where people
are observed when they are away from home. These include locations associated
with shops and markets, government offices, and places offering a range of goods,
services, and recreational venues. Big cities seem to be particularly important
destinations, perhaps reflecting the range of amenities that they offer to visitors. A
conceptual framework is developed to characterize the role of visits for individuals.
It provides a number of testable predictions that are consistent with the move-
ment patterns that are observed in the data. Although the sample of smartphone
users is not representative of national populations, their mobility patterns offer
novel insights into spatial frictions and the geographic patterns of economic activity.

Chapter 2 provides a suite of methodological tools to derive temporary migra-
tion statistics from mobile phone data. First, the chapter delves into well-known
challenges surrounding cross-sectional representativeness. Additionally, it offers
new insights on potential measurement errors and selection issues related to sample
characteristics on the time dimension. Second, an enhanced temporary migra-
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Summary iv

tion detection method based on a clustering technique is presented, wherein the
preliminary identification of users’ primary residence location allows for a better
characterization of movement direction, i.e. departure versus return. Third, the
chapter addresses challenges in creating time-disaggregated temporary migration
statistics derived from individual trajectories, presenting a well-defined set of rules
to mitigate them. Applying this methodological framework to three years of Call
Detail Records (CDR) from Senegal, the results unveil a remarkable level of tem-
porary movements and bring novel understandings about the magnitude, timing,
spatial distribution and orientation of temporary migration trends in Senegal.

Chapter 3 investigates the impact of climate variability on the short-term spatial
reallocation of individuals in a developing country setting. Centering on Senegal as
a case study, the study scrutinizes the relationship between precipitation patterns
during the rainy season (spanning June to October) and the temporary migration
decisions for the remaining agricultural calendar. We exploit a multi-year mo-
bile phone dataset in Senegal and draw on the methods developed in Chapter 2
to construct a uniquely granular temporary migration matrix. We combine the
temporary migration dataset with satellite-based local precipitation measures,
and exploit variations in the quality of rainy seasons over three years to identify
the effect of climate variability on temporary migration decisions. First, we take
advantage of the richness of our data to corroborate a recent explanation to a
recurrent empirical puzzle in the migration literature, whereby local shocks are
found to have significant impacts on local economic outcomes but only limited
effect on out-migration rates from affected areas. Relying on our empirical setting,
we confirm that failing to incorporate conditions at destinations when studying
migration responses to local shocks can effectively yield misleading results. Second,
we outline a simplified location choice model, within which climate variability is
incorporated in the production environment. This conceptual framework serves to
motivate the estimation of dyadic regressions for the analysis of the effect of rainy
season conditions on temporary migration. Our main findings indicate that poorer
rainfall conditions at a rural origin during the rainy season (June-October) impede
temporary migration during harvest (September-November) but act as a push factor
over the following off-season (February-May). We find evidence that these effects
are more pronounced in rural locations exhibiting lower standards of living. On
the other hand, the quality of the rainy season at a destination is found to be pos-
itively related to the level of attractiveness of that destination to temporary migrants.

Chapter 4 builds upon the novel insights on human mobility provided in
Chapter 1, and examines the interplay between two predominant forms of transient
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mobility toward cities in developing countries: visits and temporary migration.
Drawing from the Senegalese mobile phone data utilized in previous chapters, this
study taps into the unique amalgamation of high frequencies of observation with
extended observation spans offered by CDR. Such a combination renders the CDR
data especially apt for capturing individuals’ mobility across various temporal
scales. I rely on the methodology of Chapter 2 to measure temporary migration, and
I develop a simple procedure for detecting visits within CDR trajectories. I provide
an overview of visiting patterns that not only corroborates but also expands upon
the main findings of Chapter 1, thanks to a larger rural coverage and longer periods
of observation. During a year of observation, 83% of users embark on at least one
visit to a city, while 17% temporarily migrate to an urban locale. Then, I investigate
the relation between users’ decisions to visit and temporarily migrate to cities via
regression analyses. The results indicate that those who engage in urban temporary
migrations exhibit 17.5 additional days of visits compared to their counterparts,
which is almost entirely driven by supplementary visits made to their migration
destination. Furthermore, I provide evidence highlighting the non-random nature
of visits to migration destination; they display discernible patterns around the
departure and return dates of temporary migration episodes. The mobility patterns
are consistent with anticipatory and follow-up behaviors, wherein individuals
willingly incur the costs of pre-migration visits to gain information about the
destination, and often make subsequent visits in the weeks following their return.
Finally, I capitalize on the simultaneous observation of both visits and temporary
migration choices to shed light on cost differentials between these two mobility
modalities. Findings from gravity regressions suggest that the inherent fixed costs
of temporary migration to cities exceed those related to visits.
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Introduction

Human mobility is an integral component of development processes. From
rural-urban migration driven by the promise of better economic opportunities to
cross-border movements triggered by regional disparities, these movements reflect
and influence the evolving economic landscape. In the developing world, where
economies are in transition and the pace of urbanization is swift, understanding
human mobility is crucial for several reasons. First, it informs us about the dynamics
of labor markets, wages, and living conditions. These movements, in turn, impact
wage equilibria, resource allocations, and productivity levels in both the origin and
destination regions.

Second, mobility patterns are intricately linked with infrastructure development,
urban planning, and housing policies. As people move to cities, they shape urban
growth, leading to challenges related to infrastructure demand, housing shortages,
and urban sprawl. Efficient policy planning, thus, requires insights into these
mobility trends at different temporal scales.

Additionally, human mobility can be an adaptive response to environmental
stresses, socio-political conflicts, and economic downturns, reflecting the resilience
and adaptive capacities of populations. It also provides an opportunity for
individuals to diversify income sources, potentially insulating households from
localized economic shocks.

Yet, the dynamics of human mobility beyond permanent migratory movements
in developing countries remain underexplored. This thesis aims to delve into the
intricacies of subtler patterns of human mobility in the developing world, harness-
ing the potential of mobile phone data. It hopes to shed light on the economic
implications, challenges, and opportunities associated with human mobility at
previously understudied spatio-temporal dimensions. Through this exploration, it
aspires to perhaps contribute valuable insights to policymakers, researchers, and
development practitioners eager to harness the potential of human mobility for
sustainable economic growth and development.

Chapter 1 examines a type of human mobility that has previously been difficult
to capture in a developing context. Census data and standard surveys have

xxii
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primarily allowed to capture migration between survey waves, but fail to capture
movements that do not involve an individual’s long-term relocation. On the other
hand, recent studies have made strides in tracking temporary or seasonal migrations
via specialized surveys – although their geographical scope remains limited. We
know little, however, about human mobility over other temporal scales.

Meanwhile, a number of studies have highlighted the potential of newer sources
of “big data” and digital traces to construct more granular measures of migration
and commuting in low-income countries. Embracing these innovative approaches,
our study taps into novel smartphone app location data in three African countries
to examine what we term as “visits”: the short-term movements of individuals from
their home location to other locations. These movements, therefore, stand apart
from routine commutes and do not imply a shift in the individual’s permanent
residence. For instance, short trips from rural to urban locations, or between
cities differing in size, may enable individuals to access the amenities of large
agglomerations without migrating to these locations.

Each entry in our dataset denotes an instance when a user’s smartphone
accesses the internet via an application,1 providing a precise timestamp and a GPS
coordinate location for each such use. We use these information to observe the
movements and locations of over one million smartphone devices over an entire
year across three large African countries: Nigeria, Kenya, and Tanzania.

First, we rely on secondary survey data sources to contextualize the demograph-
ics of smartphone owners in comparison to the broader population. Of course,
smartphone users are not representative of the general population and our sample
exhibits anticipated patterns of cross-sectional bias. Nevertheless, in the urban
regions across our three studied countries, smartphone ownership manifests at
noteworthy rates, ranging from 23% in Nigeria to a high of 51% in Kenya.

Second, we construct a set of mobility metrics that characterize the frequency of
visits, the spatial extent of such movements, as well as the destination characteristics.
We evaluate these measures within the three countries from which our data is
sourced, and the results reveal a high degree of mobility among smartphone users.
They are seen more than 10km away from their home location on about 10-15%
of the days on which they are observed. Individuals residing in less densely
populated regions tend to travel away from their homes more frequently than
those living in urban centers, and travel longer distances when they depart from
their home locales. Examining spatial transition matrices, we observe that in these
countries, urban inhabitants visit towns and many rural villages. Correspondingly,
some individuals originating from these villages travel to more prominent towns

1The data originates from a multitude of smartphone applications; however, we do know
specifically which particular applications they are.
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and urban centers. This suggests a robust network of connectivity across various
geographical landscapes. The analysis of the composition of visitors to the main
cities confirms those observations. The largest cities (Nairobi, Lagos, Dar Es
Salaam) appear as mobility magnets and attract large numbers of non-urban
dwellers. Moreover, secondary cities receive large inflows of visitors from these
primate cities, as well as visitors from non-urban locales, but only modest flows
originating from other secondary cities. This suggests that secondary cities are
relatively substitutable for one another, whereas the major cities present distinctive
amenities that are not available in other locations. We find that many users visit
more than one city over the studied period, and we see users making multiple
visits to the same city.

Third, we take advantage of the precise locations offered by smartphone data to
identify the specific places that users frequent when they visit cities. We consider
the six main cities across our three countries: Lagos, Abuja, Nairobi, Mombasa, Dar
es Salaam and Dodoma. We link our data entries with Open Street Map polygons
delineating buildings and areas with identified characteristics. Users are seen at a
range of different places related to travel, administrative matters, health services,
shops and markets, and commercial zones, thus reflecting the consumption of a
wide array of amenities.

Finally, we develop a conceptual framework in which individuals decide to
make city visits, taking into account an associated cost structure, and through
which they consume an urban amenity. We derive a number of testable predictions,
which we show are consistent with the mobility patterns observed in our data.
For instance, the number of visits per person made from a smaller settlement to a
larger one surpasses the number of visits made in the opposite direction. Moreover,
the fraction of days users spend visiting a city depends on the distance between
their home and the destination city, and thus follows a gravity equation. Lastly,
controlling for distance, destinations with higher populations tend to be more
appealing for prospective visitors than smaller cities.

This paper first contributes to a growing literature that has exploited digital
traces to study human mobility and interactions. We add to this literature by
providing a set of metrics allowing to describe a new type of mobility in a
development context: visits. We study mobility patterns in three countries in
sub-Saharan Africa, emphasizing inter-city movements in particular. Second, we
relate to a literature that has used quantitative spatial models to study commuting,
migration and labor markets. Our model focuses on visits and provide gravity-style
expressions which are commonly found in this literature. Our study is connected
to a large strand of literature that has documented significant and persistent spatial
gaps in nominal wages and standards of living, as well as differences in productivity
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across sectors in developing countries. These disparities are suggestive of significant
frictions and market imperfections that constrain the movements of people and
the flow of information, culminating in spatial and sectoral misallocation. We
contribute to this discussion by analyzing the mobility patterns of individuals on
a previously overlooked temporal dimension. The pervasiveness of visits across
varied locales challenges the notion of insurmountable mobility costs.

More generally, our study has implications about the role of cities and the
connectedness of locations in the context of spatial inequalities in developing
countries. The widespread nature of visiting flows to urban areas suggest that
cities provide benefits for a much larger set of people than their own residents
and commuters. More importantly, the significant flows of visits originating from
non-urban locales challenge the idea of a strict rural-urban divide, and could be
interpreted as a mechanism by which people achieve partial urbanization.

Chapter 2 explores the use of mobile phone data to measure temporary migration
within developing countries. Numerous studies have emphasized their significance
in households’ economic decisions, yet systematic inclusion of these temporary
migrations in national statistical frameworks remains sparse, leaving them largely
undocumented. In fact, such short-term movements are inherently difficult to
measure due to recall biases and attrition, and require specialized and often costly
survey instruments. Even when such surveys are deployed, they often adhere to
strict definitions that miss relatively brief migration events of less than one to two
months. These shorter durations, however, have been identified as constituting
a substantial portion of temporary migration moves. Moreover, these surveys
typically have a restricted geographical coverage, hindering a comprehensive
analysis of temporary movements at national scales.

Concurrently, mobile phone data have emerged as a promising alternative,
offering insights into human movements at broader geographic scales and with a
refined spatio-temporal resolution. Nonetheless, deriving temporary migration
statistics with mobile phone data poses several challenges. First, mobile phone users
form a non-random subset of the population at large, which implies well-known
issues of cross-sectional biases for the production of representative migration statis-
tics. Moreover, patterns of phone usage align with socio-economic characteristics,
potentially introducing additional biases when subsets of frequently observed users
are selected for analysis. Second, the identification of migration events within raw
trajectories from mobile phone data requires the definition of migration criteria and
systematic algorithmic rules. Previous methods have predominantly used ad-hoc
frequency-based methods, where a user’s location over successive time frames is
determined based on the most recurrent observation. Migration movements are
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then flagged when a persistent shift in location is detected. Those methods present
several drawbacks and limitations, including increased measurement errors on
the timing and duration of migration events, an inability to detect short-duration
migration episodes, and a deficiency in determining the directionality of move-
ments. Third, periods of inactivity necessarily imply some degree of uncertainty in
the exact start date, end date and, therefore, in the duration of migration events,
which complicates the calculation of time-disaggregated migration measures . For
instance, pinning down a migration departure to a particular time frame, such as a
week or month, becomes uncertain if the user in question has not been observed
for a significant span preceding that date.

In this chapter, I outline a set of methodological tools designed to address these
various challenges, with the goal of generating robust temporary migration statistics.
The first part of the chapter is dedicated to the analysis of mobile phone sample
representativeness. I start by detailing systematic methodologies to effectively
understand the non-random nature of mobile phone data samples. Statistics
derived from secondary survey data allow to compare the characteristics of mobile
phone users with those of a broader national population. This is informative about
disparities between the at-large population and mobile phone users in general, but
it does not pinpoint the cross-sectional biases inherent to a specific mobile phone
dataset. In this respect, I also present simple metrics directly inferred from mobile
phone data, allowing to effectively characterize the specific set of phone users in a
dataset. Additionally, I delve into the temporal attributes of mobile phone data,
focusing on the frequency with which users are observed and their observation span.
First, I gauge the precision of the ensuing migration detection algorithm against
those parameters. Most notably, I show that the detection rate declines sharply
for users with a fraction of days with observations below 0.5. Second, I present a
simple empirical test to investigate the existence of selection patterns on the time
dimension, whereby users would exhibit observational gaps precisely when they
temporarily migrate. I do not find evidence for such non-random attrition patterns
in the sample of CDR from Senegal. Lastly, I quantify the influence of commonly
employed filtering criteria on both sample size and observable cross-sectional,
furnishing valuable guidance for selecting working subsets for the production of
migration statistics.

Then, I build upon previous work to develop a temporary migration detection
algorithm. The algorithm relies on a clustering method designed to identify periods
of continuous presence of a user at a single location, allowing for idiosyncratic
deviations corresponding to short visits at other locales. This segment-based
approach has been showed to out-perform all versions of traditional frequency-
based method. By examining user locations over an extended timeframe, I
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also assign a primary residence to each individual. This step allows to clearly
characterize the direction of migration flows, differentiating between departures
from and returns to the designated home location.

Next, I develop a systematic methodology that facilitates the conversion of
user-specific migration trajectories into time-disaggregated temporary migration
statistics. I address the uncertainties arising from sampling irregularities and intro-
duce a straightforward weighting strategy that compensates for spatial disparities
in user distribution.

I illustrate the methodology with a large dataset of Call Detail Records (CDR)
from Senegal. The temporary migration profile obtained from CDR data unveil a
pronounced degree of short-term movements across the country. Nearly a third
of the adult population engages in one or more temporary migrations of at least
twenty days over a ten-month period, with a significant portion of these migrations
estimated to last less than two months. The unique granularity and coverage of
CDR data offer new insights into both the spatial and temporal dynamics of these
movements. Rural areas exhibit a noticeably higher proportion of users undertaking
temporary migration episodes compared to urban locales. Moreover, while primary
cities, notably Dakar, account for a significant portion of the overall migration inflow,
an equally substantial segment is directed towards rural regions. In particular, the
data uncovers prominent short-distance, rural-to-rural movements. Furthermore,
the data’s three-year span distinctly brings to light marked seasonal trends. Large
increases are consistently observed during the June-September period, coinciding
with the rainy season. During this period, the count of temporary migrants roughly
doubles compared to other times of the year.

This chapter makes a methodological contribution to the literature leveraging
digital traces to study human mobility. While issues of cross-sectional biases in
mobile phone data are well-established, I provide a streamlined suite of metrics
and secondary data sources designed to systematically assess these biases. More
importantly, this chapter elucidates previously unexplored facets of selection and
measurement error associated with the temporal attributes of mobile phone data,
i.e. with the frequency and length of observation of phone users. The temporary
migration detection algorithm is largely inspired from previous work, but notably
incorporates a primary home location estimation phase. This inclusion facilitates a
more nuanced understanding of the directionality of temporary migration flows,
distinguishing between departures from and returns to the designated home loca-
tion. This research further enriches the migration literature centered on developing
countries by offering a comprehensive account of temporary migration movements
in Senegal, both at a national level and with an unparalleled spatial-temporal
granularity.
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Chapter 3 studies the impact of climate variability on temporary migration
decisions in a developing context. The investigation centers on the specific case
of Senegal, a country where a significant fraction of the population still lives
in rural areas and heavily relies on precipitation patterns during a single rainy
season. Rural households thus grapple with important year-on-year income
fluctuations, occasionally facing negative shocks such as droughts. Past research
has scrutinized various coping mechanisms, including consumption smoothing
strategies, risk-sharing networks and informal insurance markets. Temporary
migration constitutes another viable strategy in the face of income volatility. Yet,
it remains largely understudied, mainly due to the lack of detailed data on these
movements.

Building upon Chapter 2, we harness a multi-year CDR dataset to derive a
highly granular pseudo-panel of temporary migration estimates in Senegal. This
dataset is then paired with satellite-based local rainfall estimates, facilitating the
observation of temporary migration choices across diverse periods of the year and
under a range of rainy season conditions, notably after a pronounced drought
event.

The reaction to variations in rainy season conditions in terms of temporary
migration is not straightforward to predict. Anecdotal evidence suggests that
historically nomadic West African populations are notably mobile. Adverse rainfall
conditions could conceivably act as a push factor, prompting individuals to move
temporarily from areas hampered by a shock to more productive areas. On the other
hand, such income shocks may erode the financial capacity of affected households,
exacerbating liquidity constraints and thus making migration unfeasible. Spatial
frictions and market imperfections could further hinder households from resorting
to temporary migration as a means to cope with income variability. Another
perspective posits that temporary migration could be a standard element in
livelihood strategies, specifically designed to mitigate income risks. If such
strategies are well-devised and closely aligned with actual income distribution, the
occurrence of a particular shock should not influence the decision to migrate.

We develop a simple temporary migration model which incorporates precipita-
tions as an input to location-specific production functions. Individuals choose a
location at each time period, where they provide labor. Movements come with a
cost related to distance and individuals inherently favor their home location. This
conceptual framework allows to derive a reduced-form expression relating rainy
season conditions at an origin and a destination on the corresponding bilateral
stock of temporary migrants for a specific time period.

First, we capitalize on the richness of our data to investigate an empirical
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conundrum highlighted in the strand of literature studying migration responses
to local shocks. Indeed, several studies have identified a detrimental effect of
adverse shocks on economic outcomes such as income or employment. Yet, these
impacts often do not often translate to migratory responses, prompting scholars
to infer the presence of prohibitive migration costs. Recent work has suggested
that this might stem from the bilateral nature of migration decisions. Failing to
account for conditions at relevant destinations might introduce an omitted variable
problem, especially when the shock exhibits significant spatial correlation. Taking
advantage of our empirical setting, we estimate a conventional migration regression
relating rainy season conditions at an origin to the (total) out-migration rate, and we
compare the results to a dyadic regression that accounts for both rainfall conditions
at origin and destination. The findings show critical differences, reinforcing the
notion that traditional migration regressions should be interpreted with caution.

Second, we delve into the outcomes of dyadic regressions that offer insights
into the impact of rainy season conditions at both the origin and destination on the
bilateral stock of temporary migrants throughout various phases of the agricultural
year, primarily focusing on rural locations. Controlling for precipitations at destina-
tion, poor rainfall conditions at origin are found to decrease temporary migration
over the period immediately following the rainy season, and corresponding to the
harvest season. This result indicates that temporary migration might be hindered by
short-term liquidity constraints. However, we also find some evidence hinting that
this result may be partly influenced by a non-linear effect, specifically the negative
impact of excess rainfall. On the other hand, poor rainfall conditions at origin are
associated with increased levels of temporary migration in the months following
the main harvest season, and corresponding to the off-season. Surprisingly, these
effects are primarily driven by rural-to-rural movements. Additionally, the effect of
rainfall conditions at destination remains positive throughout the agricultural year.
This suggests that destinations with relatively unfavorable conditions become less
appealing to potential temporary migrants.

This chapter contributes to various strands of literature. It connects to an
extensive body of research that has investigated households’ coping strategies
in the face of income variability, by studying temporary migration dynamics as
a response to climate variability. In doing so, it concurrently enriches the cli-
mate migration literature. which has primarily focused on the impact of weather
anomalies and climate trends on long-term permanent migration choices. It also
resonates with a set of studies that have highlighted the benefits of and con-
straints to temporary migration amid income seasonality. Lastly, it supplements a
growing collection of studies that integrate mobile phone data with environmental
indicators to delve into human mobility patterns triggered by environmental shocks.
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Chapter 4 builds upon the novel perspectives on human mobility presented in
Chapter 1, examining the role of visits as a mechanism to access urban markets,
relative to other forms non-permanent movements. I leverage the CDR dataset
from Senegal to observe the mobility choices of a large number of phone users. The
unique strength of CDRs, combining high observational frequencies with extended
periods of user activity, allows me to simultaneously track both the visits and
temporary migration decisions of individual phone subscribers. I draw on the
methodology developed in Chapter 2 to gauge temporary migration and introduce
a straightforward method to identify visits within CDR trajectories.

First, similar to Chapter 1, I document visiting patterns in Senegal over a period
of one year. The higher coverage of rural areas, coupled with the heightened
frequency and duration of observations, affords a more holistic view of these
movements compared to the insights provided by smartphone app location data. I
find that 83% of users make at least one visit to a city over the year. I can confidently
estimate the frequency and duration of individual visits: the median visitor register
a visit every 1.3 month, and each visit lasts for 1.5 days on average. The inclination
to visit cities is consistently high, regardless of the place of origin, from large urban
center to the most sparsely populated rural areas. However, as we transition to
areas with lower population density, both the frequency of visits and the cumulative
days spent in cities increase significantly. Intriguingly, this finding reinforces the
hypothesis set forth in Chapter 1, suggesting that non-urban residents visit cities to
consume a broadly defined urban amenity unavailable in their home location. By
contrast, a mere 17% of users register a temporary migration event of at least 20
days.

Second, I conduct an empirical analysis to discern the relation between visits
and temporary migration choices of individuals facing similar movement costs. In
practical terms, I run regressions linking the total number of visits to cities by a user
over a year with a binary variable indicating the occurrence of a temporary migration
event within the same period. The results illuminate a positive association between
these two forms of mobility: temporary migrants register an extra 17.5 days of
urban visits per year compared to non-migrants. Subsequent analysis reveals that
this association is almost entirely driven by supplementary visits undertaken by
temporary migrants to their eventual migration destination. Delving deeper into
the temporal dynamics of these supplementary visits in relation to the timing of
temporary migration events, findings suggest that temporary migrants undertake
more visits to their chosen destination in the weeks leading up to their actual
migration. This pattern hints at the existence of anticipatory behaviors wherein
prospective migrants would shoulder the affordable costs of visits in order to gain
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information about the destination and mitigate potential risks of migration failure.
The results also point to post-migration behaviors, indicating that temporary
migrants frequently revisit their previous destinations after they have returned to
their original location.

Finally, this chapter takes advantage of the joint observation of both visits
and temporary migration to probe into potential disparities in the costs tied to
each form of mobility. I assume that a transient move to a city, be it a visit or a
temporary migration, is tied to a cost structure comprised of fixed costs specific to
each mobility type, a distance-related cost, and a destination-specific cost related
to the duration of stay. Incorporating this cost configuration into a rudimentary
conceptual framework yields formulas for the frequency and duration of both
visits and temporary migration episodes. Importantly, these relations underscore
that the distance elasticity of mobility choices, which can be simply estimated
with observed movements, does not directly correspond to the incremental cost of
distance. Instead, it is inversely related to the fixed costs tied to the corresponding
type of mobility. Drawing upon this conceptual foundation, I estimate gravity
regressions. The findings corroborate the primary predictions of the model: while
the frequency of both visits and temporary migration declines with distance, their
duration increases, and the aggregate time spent exhibits a decrease. However, the
disparities observed in the magnitude of these elasticities suggest that temporary
migration is marked by elevated fixed costs, positioning visits as a comparatively
affordable alternative.

The paper contributes to a strand of literature studying the causes, consequences
and barriers to accessing urban markets via temporary migration. While previous
studies have highlighted the lack of information about urban destinations as a
significant deterrent to rural-urban temporary migration, this paper reveals that
a considerable segment of non-migrants gain direct exposure to urban markets
via regular visits. This work further resonates with existing research suggesting
that substantial fixed costs, encompassing psychological barriers stemming from
separation from familiar social networks and the apprehensions surrounding
potential migration failures, serve as impediments to temporary migration. The
paper closely align with Chapter 1 by confirming that visits are a comparatively
more affordable alternative allowing individuals to access urban markets.

The thesis closes with a concluding section that summarizes the key insights
from all four chapters and proposes potential directions for future research.



Chapter 1

High-Frequency Human Mobility
in Three African Countries
Joint with Douglas Gollin and Martina Kirchberger.

Contribution

My contribution to this study includes cleaning and processing the data, building
mobility indicators and datasets for regression analyses, performing analyses and
producing figures and graphs, and co-writing the manuscript.

1.1 Introduction

Understanding human mobility patterns in low-income contexts has previously
been limited by the lack of data. Census data and standard household surveys seek
to capture migration flows between survey waves, but these data sources offer little
information about movements that do not involve changes in an individual’s home
location. In a number of recent studies, survey instruments have been designed
to measure temporary and seasonal migration flows in low-income countries
(Bryan, Chowdhury, et al., 2014; Lagakos et al., 2023; Imbert and Papp, 2020a). For
high-income economies, a few surveys provide detailed commuting data (e.g., the
American Community Survey), but these normally miss non-work trips. Moreover,
such surveys are not available for most low-income countries. Newer sources
of “big data” have allowed researchers to construct more fine-grained measures
to characterize migration and commuting behaviors for low-income economies
(Blumenstock, 2012; Blumenstock, Chi, et al., 2022; Kreindler and Miyauchi, 2023).
Migration inferred from such data is informative about human mobility over longer
time periods, and commuting data offer insights into a specific type of daily travel.
We know little, however, about human mobility within developing countries over
other time scales.

1
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In this paper, we bring new data to the study of a type of mobility that has
previously been difficult to capture. Specifically, we examine what might be
characterized as “visits”: the movement of people from their home locations to
other locations, not necessarily for daily work. By using a new source of data and
defining a novel set of metrics to measure phenomena that were previously difficult
to characterize, we follow examples such as Henderson, Storeygard, et al. (2012) or
Akbar et al. (2023). We find in our data that “visits” are in fact an important form of
mobility. In a theoretical sense, trips between rural and urban locations (or between
smaller cities and larger ones) may allow people to benefit from the amenities of
large cities without migration. With short visits to cities, people from rural areas
and small towns may be able to manage administrative and legal matters, enjoy
consumption goods that are unavailable elsewhere, and perhaps also to purchase
or consume market goods and services without having to pay costs to traders and
middlemen. We know anecdotally that this kind of mobility is both important and
ubiquitous; anyone who spends time at a bus station in Accra or Arusha can see
first-hand the numbers of people in motion. But we have hitherto had little ability
to quantify these flows or to understand their patterns.

To measure mobility, we use newly available, fine-grained, anonymized data on
smartphone locations. Each observation in our data reflects an instance when a
user’s phone connects to the internet to use a particular app. For each such use,
we observe the GPS location and the precise time. We use the data to map and
categorize the movements of people and the connectedness of locations. Unique
to our study is the scale at which we can study the phenomenon of short-term
population movements. Our raw data covers more than one million smartphone
devices over an entire year across three large African countries: Nigeria, Kenya,
and Tanzania.1 We are therefore able to present novel evidence on high-frequency
mobility for large numbers of people, and at high spatial and temporal resolution.
We show that this type of mobility is both substantial and prevalent.

The paper makes three main contributions. First, since we study a new type
of mobility, we start by defining a novel set of metrics for characterizing mobility
across space related to frequency, spatial extent, and destination characteristics.
Our metrics are parsimonious and easily interpretable across different contexts, yet
paint a rich picture of the extent of spatial mobility and the interconnectedness of
locations. Second, we analyze these measures to provide insights into the patterns
of human mobility within the three countries where our data originate. We can
ask how frequently residents of a particular location pass through a given city
or market centre; or how the composition of visitors to the capital differs from

1 In the remainder of the paper we will refer to a device as a user. We recognize that this is an
inexact equivalence: some users possess more than one device, and some devices are shared by
multiple users. We address these issues in detail in Section 1.3.
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Figure 1.1: Mobility flows to cities.

(a) Kenya (b) Nigeria (c) Tanzania

visitors to secondary cities. Within cities, we can examine the types of destinations
where visitors are seen. Third, we develop a conceptual framework in which
individuals decide what locations to visit. The framework delivers a number of
testable propositions that, for example, relate the duration of visits or the distance
travelled. To our knowledge, this is also one of the first papers using smartphone
app location data in the context of low-income countries.

To provide a first glance at our data, Figure 1.1 shows visits from every spatial
grid cell outside the city perimeter to any city of more than 50,000 residents in each
of our study countries. The brightness of lines reflects the counts of distinct visits.
It is immediately obvious that the largest cities in each of these countries draw in
visitors from all over the populated areas of these countries, suggesting a strong
connectedness of cities with their hinterlands. But it is also striking that there are
many other lines linking secondary cities and other locations to one another.Our
paper digs deeply into these connections and suggests a need to think in more
nuanced ways about spatial frictions and patterns of mobility.

Capital cities of course attract disproportionate flows; but political centrality by
itself is less of a driver than urban primacy; this is well illustrated in Tanzania’s
map, where Dar es Salaam (on the east coast) acts a clear magnet. By contrast,
the capital, Dodoma (located towards the center of the country), is little different
from other secondary cities in terms of incoming visitors. Our metrics allow us to
quantify such patterns and to investigate the connectedness of locations at national
scales.

The strength of our approach is that we are able to make clear and objective
observations that match people to the locations they have visited, covering a large
sample over a lengthy time period, without relying on recall data. These metrics
can be easily applied in other contexts when similar data are available. Although
the smartphone users whom we observe are in no way representative of the entire
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population, we can characterize this set of people with reasonable accuracy. We
interpret our results as broadly representative of mobility within the populations
of smartphone users in each of our countries, and we develop a number of methods
that allow us to characterize in great detail the similarities and differences that
our sample shares with the general population of each of the three countries.
Smartphone owners accounted for a significant fraction of the urban population in
each of our three countries at the time period under study, ranging from 23 percent
of the urban population in Nigeria to 51 percent in Kenya.2 Given the virtual
absence of data on this type of mobility for entire populations, we argue that our
results represent a useful contribution. They provide insights into high-frequency
mobility within a substantial fraction of the overall population – and a subset that
is worthwhile and informative to study. While not the primary objective of this
paper, the methods we develop to examine and characterize selection could easily
be applied to similar digital trace data.

Our analysis finds striking evidence of a high degree of mobility within our
samples for each of these three African countries. Our smartphone users are highly
mobile. Users are seen more than 10km away from home on about one-sixth of
the days on which they are observed. Residents from more sparsely populated
areas are more frequently away from home than city center residents, and our
users with rural home locations venture farther when they leave home. Spatial
transition matrices show that towns and many villages in these countries appear to
receive visits from urban dwellers, and in turn these villages generate travellers who
venture to larger towns and cities. The networks of connectivity between different
geographies are strong. This challenges, for instance, the notion that villages and
towns in rural areas are effectively isolated; at least some (relatively prosperous)
residents are maintaining regular connections to more densely populated locales.

Beyond these qualitative findings, we show that large cities exert a dispropor-
tionate influence: Nairobi, Lagos, and Dar es Salaam are powerful magnetic forces
that pull in visitors from every corner of their countries, while secondary cities
appear to be substitutes for each other. Finally, we show that high-frequency mobil-
ity follows specific patterns consistent with the propositions from our conceptual
framework: first, the number of visits per person made from a smaller settlement
to a larger one will exceed the number made in the opposite direction. Second,
the fraction of days users spend visiting a city follows a gravity-style equation.
Third, given a choice between visiting two equidistant locations, individuals more
frequently visit the more populous destination.

This paper contributes to three main strands in the literature. First, our
2If “feature phones” are included (i.e., phones that have some limited ability to connect to

particular apps), the numbers range from 36 percent of urban users in Tanzania to 63 percent in
Kenya.
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primary contribution is methodological, in proposing key metrics that allow us
to characterize the extent of high-frequency mobility. Digital trace data, similar
to ours, have been used, for example, to study the length of time that individuals
spend with their families for Thanksgiving in the US (Chen and Rohla, 2018), to
construct a measure of experienced segregation (Athey et al., 2021), to study the
effect of chance meetings on knowledge spillovers in the Silicon Valley (Atkin,
Chen, et al., 2022), to measure the effectiveness of social distancing (Mongey et al.,
2021), social interactions (Couture et al., 2022) and the importance of travel along
trip chains (Miyauchi et al., 2022). We add to this literature by focusing on three
countries in sub-Saharan Africa and by looking at patterns of mobility across cities.

Second, we relate to a literature using quantitative spatial models (Monte
et al., 2018; Owens et al., 2020; Ahlfeldt et al., 2015; Dingel and Tintelnot, 2023;
Kreindler and Miyauchi, 2023). While our model focuses on visits, our conceptual
framework also predicts a gravity-style equation, in flavor similar to the familiar
gravity equations employed in this literature.

Third, our findings relate to a growing literature in economics that documents
large gaps in nominal wages and productivity across sectors and in developing
countries (Gollin, Lagakos, et al., 2014). There are similarly large gaps in living stan-
dards across space, with people in sparsely populated rural locations consistently
worse off than those in dense urban settlements (Gollin, Kirchberger, et al., 2021).
The persistence of these gaps raises the possibility that significant frictions and
market imperfections limit the movements of people and information, leading to
spatial and sectoral misallocation (Bryan and Morten, 2019; Brooks and Donovan,
2020; Caselli and Coleman II, 2001; Eckert and Peters, 2022; Lagakos et al., 2023).
In contexts where spatial frictions are high, the allocation of factors across firms
will tend to result in gaps in marginal products. Similarly, spatial frictions may
lead to allocations such that marginal utilities are not equalized across consumers,
and utility may not be equalized across people living in different locations. These
static effects may also lead to dynamic impacts, as frictions move the economy
away from a theoretically efficient benchmark.3 By examining the frequency with
which individuals move across space – from rural areas to towns and villages,
or between cities – we inform this debate by assessing the potential salience of
different frictions. For instance, a world in which people travel frequently between
cities, or between rural and urban locations, is unlikely to be one in which the costs

3The importance of within-country spatial frictions in the movement of goods has been doc-
umented in recent work (e.g., Arkolakis et al. (2012), Costinot and Donaldson (2016), Atkin and
Donaldson (2015), Donaldson and Hornbeck (2016), Donaldson (2018), and Allen and Arkolakis
(2014)). This emerging literature has pointed out that spatial frictions have implications for patterns
of specialization and exchange. An additional literature has documented the importance of spatial
frictions as they relate to the flow of information (e.g., Aker (2010) and Jensen (2007)). Allen (2014)
suggests that information frictions can compound spatial frictions.
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of mobility are prohibitive.
Beyond the implications for spatial frictions, our analysis points to a number of

interesting features of the data. First, the widespread prevalence of non-residents
visiting cities suggests that urban areas generate benefits for a much broader set
of people than their own residents and nearby commuters. Our data is consistent
with a world in which people travel to cities from substantial distances – and with
some frequency – to enjoy the benefits that cities provide. Second, we observe
that ’visits’ allow for some rural people (and the inhabitants of towns and small
cities) to break down the rural-urban binary. Put differently, ’visits’ allow people
to achieve partial urbanization. In this sense, ’visiting’ cities may substitute for
migration, in the same way that rental markets allow people to solve the problems
of lumpy capital purchases. The feasibility and (apparent) affordability of trips
may represent an additional factor helping to explain the low rates of rural-urban
migration, even in contexts where there are large differences in wages, productivity
and living standards across space.4 What is unambiguously clear in the data is the
ubiquity of visits; this suggests that we should be cautious in treating rural and
urban areas as entirely distinct; our data suggest that instead, they are connected
by non-trivial flows of people. With the movements of people, it seems reasonable
to imagine that there may also be corresponding flows of goods and information.

It would be interesting to compare what we observe in our three countries
with a benchmark of high-frequency mobility patterns observed in higher-income
countries where spatial frictions are less prevalent. Unfortunately, smartphone
penetration rates across space within countries - and therefore the observed sample
- would also be very different in these countries, making comparisons difficult
to interpret. We therefore focus on analysing patterns within the three study
countries.

This paper is structured as follows. Section 1.2 discusses the smartphone app
data we use and how we define home locations. Section 1.3 focuses on sample
selection and characterizes the sample. Section 1.4 presents our mobility indicators.
Section 1.5 sketches our conceptual framework. Section 1.6 examines to what extent
the data is consistent with the propositions coming out of our model. Section 1.7
concludes.

1.2 Smartphone app data

This paper draws primarily on smartphone app location data for three African
countries: Kenya, Nigeria and Tanzania. We selected these countries based on data
availability and on having a sufficiently high number of users in the sample. This

4There are of course many alternative interpretations of the frequency of trips.
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section summarizes the main ways in which we process the raw data; for more
detail, we refer the interested reader to Appendix 1.A.

Each observation in our data set (referred to hereafter as a "ping") represents
an instance where a smartphone accesses the internet via a set of apps. Pings
are sourced from a large number of apps that (with the user’s permission) access
location data. These apps include standard social, navigation, information and
other apps, but we do not know precisely which apps, and we cannot associate
specific pings with specific apps. Each ping comes from a device – i.e., a particular
smartphone. For each ping we know the device identifier (i.e., a particular phone,
rather than a SIM card), a timestamp and longitude/latitude coordinates of the
current position, measured to an accuracy of approximately 10 meters. Each
country dataset covers a period of one year between 2016 and 2018.5

In the remainder of the paper we refer to a device as a user, subject to the caveats
already mentioned in Footnote 1 and discussed in further detail below. In this
section we start by discussing how we assign home locations to users and outline
how we identify and deal with irregularities in the data.

1.2.1 Home locations

We use two criteria to define home locations. First, we identify the modal 0.01-
degree cell (≈ 1.1𝑘𝑚 at the equator) in which the user is seen at night (between
7pm and 7am, local time). Second, we consider two additional restrictions: (a)
that a user is observed for a minimum of 10 nights; and (b) that the user is at
the inferred home location for at least 50% of the total nights when that user is
observed anywhere. These two restrictions eliminate cases where the user is seen
infrequently at night, or is seen frequently but at multiple locations. Given the
central role home location plays in our analysis, we define our core sample – which
we call the “high-confidence” sample – as users that satisfy both criteria. Unless
specified otherwise, we use our high-confidence sample for our analysis.6 We then
carry out data cleaning procedures described in Appendix 1.A.2.

Table 1.1 shows the number of users and pings per user for our base sample
of users and our high-confidence sample. Columns (1) and (2) show the number
of users and average pings per user over the entire year, for those users who are
observed at least once at night. The average is computed by summing over all pings
and dividing by the number of users; for this sample we have on average slightly
more than one ping per day per user. Columns (3) and (4) apply the two restrictions

5The precise time frame is 2016-12-01 to 2017-12-01 in Kenya and 2017-04-01 to 2018-04-01 in
Nigeria and Tanzania. Note that these data come from before the period of the Covid-19 pandemic
and do not reflect any of the subsequent lockdown restrictions.

6The distributions of home locations and patterns of mobility are very similar whether we use
the base data or low-, medium-, and high-confidence samples.
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Table 1.1: Sample and pings per user

All High confidence
Users Pings ratio Users Pings ratio

(1) (2) (3) (4)
Kenya 195,630 593 18,545 4,864
Nigeria 659,407 304 78,750 1,721
Tanzania 237,123 457 22,994 2,132
TOTAL 1,092,160 389 120,289 2,284

Note: Columns (1) and (2) show the total number of users per country and average pings
per user. Columns (3) and (4) only use high-confidence users (users who are observed for a
minimum of 10 nights and who are at the inferred home location for at least 50% of the
total observed nights.)

to obtain our high-confidence sample. This yields a sample of just over 120,000
devices across the three countries, with an average of over 2,000 pings observed per
user. Users in the high-confidence dataset are therefore seen on average 6 times per
day, compared to users in the complete dataset who are seen on average slightly
more than once per day.7

Table 1.2 summarizes user-level temporal statistics for our high-confidence
users considering three different measures. The first statistic that we consider is the

Table 1.2: User-level temporal statistics by country

Variable Mean Median Min Max
Length of obs. (in days) 102.2 74.5 8.7 365.0

Kenya Days seen 39.5 30.0 8.0 352.0
Mean pings per day 99.1 9.0 1.0 20,665.4

Length of obs. (in days) 101.1 82.1 8.6 365.0
Nigeria Days seen 40.6 29.0 8.0 346.0

Mean pings per day 40.2 12.9 1.0 9,585.8
Length of obs. (in days) 95.1 70.7 8.6 364.9

Tanzania Days seen 38.9 28.0 7.0 349.0
Mean pings per day 51.6 10.7 1.0 14,765.6

Length of obs. (in days) 100.1 77.2 8.6 365.0
TOTAL Days seen 40.1 29.0 7.0 352.0

Mean pings per day 51.4 11.8 1.0 20,665.4

Note: This table shows the duration over which we observe a user, the number of distinct
days we observe a user, and mean pings per day, defined as the ratio of the total number of
pings for a user divided by the number of distinct days she is seen.
duration over which we observe a particular user, defined as the number of days
between the first and the last observation of that user. Second, we count the number
of distinct days on which we see a particular user. The third statistic is the mean

7As is common with these types of data, there is a large variation in the number of pings across
users, with about 59% of users having at most 20 pings in the initial sample. Our two conditions
defining high-confidence users reduce the fraction of users with at most 20 pings to 0.3%.
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number of pings per day per user. The mean number of pings per day is defined as
the total number of pings for a user divided by the number of distinct days she is
seen.8 These statistics are roughly similar for the three countries. We see users on
average over a span of about 100 days, on about 40 distinct days, and they have
between 40 and 100 pings per day on average.9 The relatively short time frame over
which we observe individuals suggests that while the data is informative about the
overall mobility of the population, it is not ideal for longer-term individual-level
analysis, such as measuring the extent of seasonal or permanent migration.10

Similar to home locations, in Appendix Section 1.A.3 we have defined work
locations as the modal 0.01-degree cell in which a user is observed between 9am
and 6pm on weekdays, again imposing two restrictions: that (a) the user is observed
for a minimum of 8 distinct weekdays and (b) is seen at the inferred work location
for at least 50% of the total weekdays. We find that home and work locations are
found within the same 0.01-degree cells for 80% of users, consistent with high rates
of self-employment and short-distance commuting. We interpret this to mean that
relatively few of the trips observed in our data are associated with daily commuting
between home and work.

1.3 Selection

The key selection concern when using smartphone app location data is that we
only capture individuals who own a smartphone. A further restriction affecting
selection into our sample is that individuals require data credit on their phones,
similar to requiring phone credit to make calls or send texts. On the other hand,
as app usage is increasing through the use of messaging services (e.g., Facebook
Messenger or WhatsApp), replacing “traditional” calling and texting, we are more
likely to capture locations of individuals engaging in this kind of activity. Further,
we are more likely to capture passive use of a mobile phone if a device connects to
an app without the deliberate action of the holder of the device. This would make
location detection more representative, in some sense, than relying on call and text
events only which require a deliberate action. In terms of characteristics of the
selected sample, we expect this to bias our sample towards richer, more educated
and younger individuals.

Given these general concerns about selection, we seek to understand how our
population of users compares to the broader populations of these three countries.

8This differs from the pings ratio in Table 1.1 which simply summed over all pings in the data
across all users and divided by the number of users.

9The minimum number of days is less than 10 as some users are seen on 10 nights but have pings
on fewer than 10 days.

10These are issues explored in Bryan, Chowdhury, et al. (2014), Imbert and Papp (2020a), Lagakos
et al. (2023) or Blumenstock, Chi, et al. (2022) using call detail records data.



Chapter 1. High-Frequency Human Mobility in Three African Countries 10

We proceed in three steps. First, we link users’ locations with geo-coded population
density data from WorldPop to understand how the home locations of users relate to
the overall spatial distribution of population. Second, we draw on data from other
nationally representative surveys – specifically, the ICT Access and Usage Surveys
2017-2018 – to examine differences between individuals who own a smartphone
and those who do not. To the extent that our population of smartphone app users
is typical of all smartphone owners, these survey data will tell us something about
how our users compare to the broader national populations of their countries.
Third, to measure how representative our users are, in terms of their home locations,
we develop a methodology to match home locations with nationally representative
micro-data from the Demographic and Health Surveys (DHS). This allows us to say
something about whether the locations where our users live are typical or atypical.

Figure 1.2 shows the distribution of home locations in the left panel and
compares it with the population distribution in the right panel. Darker values
indicate a higher number of users. Unsurprisingly, we observe a higher number
of users in the main cities. However, the figure shows that coverage of users is
broadly national, with users residing in fairly distant places as well as in the densest
cities. In fact, we have users in all but three of the 115 regional capitals in the three
countries we study. When looking within the three capital cities we find again
that our users reside in locations spread out across these cities rather than being
concentrated in a few rich neighborhoods.

To examine how representative home locations of our users are for different
levels of population density, we extract the population density values at users’
home locations using WorldPop population grids and we then infer the distribution
of users across population density bins. The distribution of users is largely skewed
to the right with around 70 percent of users falling in the two densest bins (see
Figure 1.3).11

We compute three further metrics to measure the representativeness of our
users across different levels of population density: first, we take all 10-km pixels
in a country and regress the number of users in a pixel on population of the
corresponding pixel. We find that the R-squared ranges between 0.36 in Kenya
to 0.81 in Tanzania, depending on the source of the population density estimates.
Second, we compare the rank in terms of the total number of users at the first
administrative level in our three countries with the rank of the population. The
bivariate correlation coefficients range between 0.29 in Nigeria and 0.7 in Tanzania.

11To be specific, we divide each country into gridcells and assign each gridcell an absolute
population density based on WorldPop or other data. Using the national population data, we can
divide the entire population into equal-sized bins based on the population density in which they live.
This gives rise to a set of gridcells associated with each density decile. We can then identify each of
our users with the population density and/or the density bin of their home location; e.g., we can
speak of a user whose home location is in the third density decile.



Chapter 1. High-Frequency Human Mobility in Three African Countries 11

Figure 1.2: Distribution of home locations and population.

Note: This figure shows the distribution of home locations of users at a 10km resolution (on
the left) and the distribution of the population at a 1km resolution (on the right).

Next, we compare the fraction of users located in cities of at least 200,000 people
with the corresponding fraction of the population living in those cities.12 In Nigeria,
86.1% of our users are found in cities of 200,000 people, whereas these are host to

12Our approach to defining urban peripheries is described in Appendix Section 1.B. Using 2018
as our base year, we identify 6, 39, and 10 cities of at least 200,000 people in Kenya, Nigeria, and
Tanzania respectively.
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Figure 1.3: Users by population density decile.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows the distribution of users across population density deciles based
on national population data so that each decile contains one tenth of the population
(rather than one tenth of grid-cells).Appendix Figure 1.E.1 shows the same figure based on
Landscan measures of density instead of WorldPop and also shows the sensitivity to our
definition of the high-confidence sample.

only 20.5% of the population. Similar results are observed in Kenya and Tanzania
where we find 75.9% and 68% of users in major cities that host 15.9% and 16.7% of
the population respectively, which is indicative of an urban selection pattern. The
urban tilt of our sample is unsurprising; we expect that smartphone users will be
concentrated in cities.

To understand how this pattern is driven by differential device ownership
rates across urban and rural areas, we use data from the ICT Access and Usage
Survey 2017-2018 for Nigeria, Kenya and Tanzania. These surveys are nationally
representative and have detailed questions on mobile phone ownership and usage,
as well as individual and household characteristics. Overall, between 19 and 43
percent of the population have either a feature phone or a smartphone in our three
countries.13 Figure 1.4 shows ownership rates for different types of mobile phones,
comparing rural and urban locations. Compared to rural areas, respondents in
urban areas are unsurprisingly more likely to own a mobile phone, and the phone
is likely to be more sophisticated. The figure shows that in all three countries,
smartphone ownership is highest in urban areas, with rates between 23 and 51
percent. If we include feature phones, this increases the rate to between 50 and 60
percent. The proportion of individuals with a basic mobile phone ranges between
21 and 38 percent. Across the rural areas of our three countries, smartphone
and feature phone ownership is highest in Nigeria, at 31 percent penetration,
and lowest in Tanzania, with 11 percent. Figures 1.C.1-1.C.4 in Appendix 1.C
examine ownership rates by gender, and explore how owners of different devices

13A "feature phone" is defined as one that has a small screen and some rudimentary internet
access, but button-based data entry rather than touch screen. It is more complex than a "basic phone,"
which can only carry out simple calling and texting functions.
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Figure 1.4: Device ownership by location.
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Note: This figure shows device ownership rates for rural and urban respondents. All
figures use the sample weights provided.

differ in terms of income, education, age and main source of income. In all three
countries, women are less likely than men to own a mobile phone. While basic
phone ownership rates are roughly equal between men and women, fewer women
own a feature phone or a smartphone; still, smartphone ownership rates of women
are between 11-20 percent in our three countries. Unsurprisingly, respondents with
no mobile phones tend to have the lowest incomes and owners of smartphones
tend to have the highest incomes. However, Figures 1.C.2 - 1.C.4 highlight that
these distributions are not distinct. Appendix Table 1.C.1 shows the proportion of
smartphone owners across different categories and compares this to the sample
averages. The Table suggests that smartphone users are not just from one occupation
(e.g., traders) but are represented across different types of economic activities.

Finally, the survey also asks respondents about their usage of a range of apps,
including social networking apps and news, weather, trading, business, health and
dating apps. Figure 1.C.5 shows that between 76 and 83 percent of smartphone
owners report using an app weekly on their phones, and more than 55 percent
use these apps daily, suggesting that selection due to differential usage patterns is
likely less of a concern.

In a third step, we characterize the home locations of our users by drawing on
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available data from Demographic and Health Surveys (DHS). The key challenges
are how to link a relatively small number of DHS survey clusters (the total number
of clusters ranges from 608 in Tanzania to 1,594 in Kenya) to a large number of home
locations for our users, spread across the entire geography of our three countries.14
For our analysis, we aim to match each user’s home location to a nearby DHS
cluster that might be considered comparable. We then compare these matched
DHS clusters to the full DHS sample. Appendix 1.D provides details on how we
link home locations of users with DHS clusters. Following this procedure, we are
able to link 70% of our users in the high-confidence sample with at least one DHS
cluster.

This matching exercise allows us to see whether the home locations of our users
are atypical, relative to the nationally representative sampling frames that have
yielded the DHS clusters. In other words, if we look at the set of DHS clusters
where we find our users, we can ask whether this matched DHS sample looks
statistically similar to the overall ("raw") set of DHS clusters. We carry out this
analysis by conducting t-tests for equality of means between the raw DHS and
matched DHS samples on a range of directly quantifiable household characteristics,
such as whether the household has a constructed floor, walls, roof, overcrowding
and access to public services such as electricity and tap piped water. Moreover,
we produce results for rural and urban sub-samples separately to account for both
the prevalence of urban users in our sample and the lower matching rate in low
density areas, which together may lead to results being mainly driven by the urban
component of the sample. We produce t-tests comparing our two weighted data
sets, with bootstrapped standard errors robust to heteroskedasticity. The survey
weights are used for the reference DHS sample, while those of the matched DHS
sample correspond to the number of users each cluster is paired with.

Appendix Tables 1.E.1-1.E.3 show that we find statistically significant differences
between the matched clusters and the raw DHS clusters. Our users live in locations
that are not nationally representative. In particular, the DHS data show that
individuals residing in matched clusters have smaller household size than that
found in the nationally representative DHS sample. The matched clusters also
have younger household heads with higher education levels, and better access
to services and housing characteristics. Most of the differences are statistically
significant. What we find, however, is that the absolute levels do not differ by
large amounts; the differences between matched clusters and the raw DHS data are
quantitatively small, especially within the rural and the urban samples.15

14Adding to the challenge is that the published locations for the DHS clusters are randomly
displaced by a small amount in an effort to ensure data confidentiality (Perez-Heydrich et al., 2013).

15In almost two-thirds of rural and urban comparisons for these three categories of variables, the
differences between the matched and unmatched clusters are less than 10 percent.
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Our takeaway message from this analysis is that our population of users resides
in more densely populated locations and is likely to be richer, more educated and
younger. Within urban locations, smartphone users represent a significant fraction
of the population. Given the selection biases here, we must be extremely cautious
in generalizations about aggregate behavior. However, given the lack of data on
the kind of mobility that we study in this paper, we feel that it is still worthwhile
to study the mobility characteristics of our sample. While our samples are not
nationally representative, they represent non-trivial sections of the population, and
we can observe their behavior in rich detail.

To conclude this section of the paper, we return to the potential biases that we
may have introduced by equating "devices" with "users". We also consider other
potential challenges in working with our ping data. We acknowledge that distinct
users may use the same device, and individual users might have multiple devices.
Unfortunately we do not have data on the extent to which smartphones are shared
among contacts. From the ICT Access and Usage Survey we know that between
20 and 35 percent who stated that they do not own a mobile phone say that they
nevertheless used a mobile phone in the past three months. It is reasonable to
assume that device sharing is likely to occur within households. If so, it would
not affect the home locations we determined for our users, nor would it alter the
characteristics of home locations we discussed.

Individuals could also have multiple phones or SIM cards. The latter problem
is not a significant concern for us. Our data observe devices, rather than SIM
cards; even when the SIM card is swapped, the device identifier remains the
same, so our smartphone app data are unaffected. There is some reason for us
to be concerned about users who own multiple devices. This would affect our
results in the opposite way of device sharing, such that the movement data of these
two-device-owners would get a higher weight in our mobility metric calculations.
A possible additional complication would arise if a user maintains two devices,
with each linked to a different location or set of locations. This would make a
highly mobile user look artificially as though she does not move very much. For
example, someone who commutes each week from home in a rural area to work
in a big city, using a different device in each location, will appear as a relatively
immobile individual. Unfortunately, we do not have information on the extent
to which users own multiple devices, but given that smartphones are relatively
expensive – and given the attachment that people feel to particular devices – it is
likely to be a rather small number.

One other issue with the ping data is that, for many purposes, we may want
to exclude incidental pings – such as those made by a person in transit. Someone
traveling by road between two locations may appear to have ’visited’ a location when
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in fact she simply passed by in a bus or train. This requires distinguishing between
locations that were deliberately visited and those that appear to be incidental. In
particular, the use of navigation apps might skew the distribution of pings towards
low density areas that users are simply passing through but not deliberately visiting.
This is particularly relevant for our metrics that categorize destinations by their
population density. In Appendix 1.A.4 we describe a filtering algorithm that
we developed to identify transit pings. In general, we find that relatively small
fractions of pings appear to be ’transit pings’. In the analysis that follows, where
our descriptive statistics are most susceptible to being distorted by transit pings,
we show the robustness of our results to removing transit pings.

Finally, we note that users may not leave their devices turned on at all times,
they might not always have coverage, and they may not connect with apps during
all of their travels (e.g., if data charges are high). This would lead to a systematic
underestimation of the frequency of travel and the distance travelled. With all
these caveats, however, we proceed to analyze the mobility data.

1.4 Quantifying mobility

In this section, we develop and implement a number of indicators to measure
high-frequency mobility patterns. We consider mobility on two levels: the mobility
of individual users across locations, and the connectedness of different locations
through these individual movements. We characterize mobility at the user level
on four key dimensions: frequency, spatial extent, densities and specific locations
visited. Our preferred indicators in this respect are the fraction of days with
mobility beyond 10km away from home (frequency), the average distance away from
home (spatial extent), the distribution of (non-home) pings/users across population
density categories (densities visited), and distinct cities visited.16 We investigate how
these vary across subsets of users residing in different population density categories
– for which we use population density deciles as cutoff values to define these density
bins. In characterizing the connectivity of locations, we quantify incoming and
outgoing flows separately. We characterize incoming mobility flows by their size,
with the number of distinct visitors during the period of observation, but also
by the frequency of visits to the city, the distance travelled, and the population
density at visitors’ home locations. Similarly, we calculate the size of outgoing
flows, i.e. the number of distinct residents seen outside the city during the period,
the frequency of movements outside the city, their spatial extent and the population
densities visited. In addition, we provide measures of mobility flows for pairs

16Appendix Figure 1.E.3 and Tables 1.E.4– 1.E.5 show days with mobility and mean distance away
from home for the base, low-, medium-, and high confidence sets. We find that the observed patterns
are very similar.
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of cities. We examine the origin locations of visitors in the five largest cities in
each of our three countries, and we also look at the top destinations visited by
their residents. We disaggregate both the origin and destination locations into
densities and summarize our data in the form of a spatial transition matrix to
examine the connections between remote and dense areas. Finally, we define visits
and present evidence on the type of locations visited: flows of visitors between
specific locations, number of cities visited and destinations visited within cities.

We begin by considering the frequency with which people leave their home
locations. Some initial notation is helpful. Let 𝑥 ∈ 𝑋 denote a location, where
𝑋 is a set of 0.01-degree resolution grid cells covering the country extent. For
any given user 𝑖 in the set of users 𝐼, we can partition 𝑋 in two ways. First, we
partition 𝑋 into the home location and non-home locations. Let 𝑑𝑖(𝑥) denote the
haversine distance to location 𝑥 from the home location of user 𝑖.17 Define the
distance threshold �̄� to be the limit of the home location. Then for user 𝑖, the set
of locations such that 𝑑𝑖(𝑥) ≤ �̄� defines a set of locations near home, 𝐻𝑖 . Similarly,
�̄�𝑖 = {𝑥 ∈ 𝑋 | 𝑑𝑖(𝑥) > �̄�} defines a set of locations away from home. For any user 𝑖,
it is true that 𝐻𝑖 ∪ �̄�𝑖 = 𝑋.

A second useful way to partition 𝑋 for a given user 𝑖 is into the subset of
locations (typically a strict subset) where user 𝑖 is observed with a ping and those
where the user is not observed. We use 𝑍𝑖 to represent the set of locations where
we observe a ping from 𝑖 during the period of observation, and we in turn partition
𝑍𝑖 into those locations near 𝑖’s home location - as defined by �̄� - denoted 𝑍𝐻

𝑖
and

those that are considered away from home, denoted 𝑍�̄�
𝑖

. In addition, we denote by
𝑍𝑖𝑡 the set of locations where we observe a ping from 𝑖 on any given day 𝑡 and that
we can partition into 𝑍𝐻

𝑖𝑡
and 𝑍�̄�

𝑖𝑡
.

As a final notational preliminary, define an integer-valued function 𝑝𝑖(𝑥) that
counts the number of pings for user 𝑖 in each location 𝑥 ∈ 𝑋. Clearly, 𝑝𝑖(𝑥) ≥ 1 for
𝑥 ∈ 𝑍𝑖 , and 𝑝𝑖(𝑥) = 0 elsewhere. Let 𝑃𝑖 =

∑
𝑥∈𝑋 𝑝𝑖(𝑥) give the total number of pings

for user 𝑖.

1.4.1 Frequency

As our first measure, we use the fraction of days a user is seen more than 10 km
away from her home location (i.e., we set �̄� = 10km). Let 𝑀𝑖𝑡 be a mobility indicator
such that 𝑀𝑖𝑡 = 1 on any day, 𝑡, if there is at least one ping observed for person 𝑖 at
a location away from home; i.e., 𝑍�̄�

𝑖𝑡
≠ ∅. Define 𝑀𝑖 =

∑365
𝑡=1 𝑀𝑖𝑡 to be the number of

days the user is seen more than 10 km away from her home location. Similarly, let
17Strictly speaking, we use the haversine distance between 2-decimal rounded latitude-longitude

locations. This is equivalent to taking the haversine distance between the centroids of two narrowly
defined grid cells.
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𝑇𝑖𝑡 be a dummy indicating whether at least one ping is observed for person 𝑖 at any
location on day 𝑡; i.e., 𝑇𝑖𝑡 = 1 if 𝑍𝑖𝑡 ≠ ∅; and let 𝑇𝑖 =

∑365
𝑡=1 𝑇𝑖𝑡 be the number of days

over the period of study where at least one ping from user 𝑖 is observed. Then we
define the mobility frequency for user 𝑖 as:

𝐹𝑖 =
𝑀𝑖

𝑇𝑖
. (1.1)

In this expression, the numerator denotes the number of days with at least one
ping 10 km away from home for user 𝑖, and the denominator gives the total number
of days on which user 𝑖 is observed (i.e., days with at least one ping). We find that
the fraction of days on which users are more than 10km away from home ranges
from 11.8 in Tanzania to 15.2 in Nigeria. A limitation of this metric is that it does
not allow us to distinguish between users making a lot of short trips and those
travelling less but spending more time at their destinations, something we consider
in Section 1.4.4.

To translate this individual measure into a characteristic of a group of people,
we average across the members of that group. For this, it is useful to define some
groups of people. As noted above in Section 1.3, we assign each user to a population
density bin, based on the characteristics of the user’s home location. For instance,
we consider the set of decile-bounded bins, 𝐵 = {𝑏1 , 𝑏2 , ..., 𝑏10}, and we define
the corresponding subsets of users 𝐼1 , ..., 𝐼10. Let 𝑛 𝑗 denote the number of users
assigned to bin 𝑏 𝑗 , i.e. the number of users in 𝐼 𝑗 . We then compute:

𝐹 𝑗 =
1
𝑛 𝑗

∑
𝑖∈𝐼𝑗

𝐹𝑖 . (1.2)

Figure 1.5 shows this frequency for all three countries, broken down by density
bin. The pattern is consistent across countries: on roughly 12-15 percent of the
days when we observe them, users appear beyond the 10 km radius from their
home locations. There is a distinct pattern, too, in that those who live in the most
densely populated areas are the least likely to be observed away from home. We
also calculate the fraction of days with mobility beyond 20km and observe similar
and even more marked patterns. One plausible interpretation is that those who live
in relatively remote areas are likely to travel more frequently than those who live in
towns and central cities. We cannot, of course, distinguish between the frequency
of trips and the frequency with which users turn to their phones for information.
It is possible that users are more likely (or less likely) to use their devices when
they are travelling, compared to when they are home; and these patterns may
differ for people whose home locations are in different bins of population density.
Nevertheless, the data are suggestive both of a relatively high overall frequency of
mobility and of differences between rural and urban residents.18

18As a robustness check, we reproduce Figure 1.5 with truncated means; that is, we discard values
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Figure 1.5: Fraction of days with mobility beyond 10km by density bin.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows the fraction of days on which a user is seen more than 10km away
from their home location by density decile over the period of a year.

1.4.2 Spatial extent

We define the spatial extent of mobility for user 𝑖 as the average distance between
non-home pings and the home location. Note that for this metric, we take �̄� = 0 to
define the sets of home locations and non-home locations, 𝐻𝑖 and �̄�𝑖 . As before,
let 𝑝𝑖(𝑥) be the number of pings we observe for user 𝑖 at location 𝑥. Then let
𝑃𝑖𝐻 =

∑
𝑥∈𝐻𝑖 𝑝𝑖(𝑥) and 𝑃𝑖�̄� =

∑
𝑥∈�̄�𝑖 𝑝𝑖(𝑥); consistent with our notation above, the

total number of pings observed for user 𝑖 is simply 𝑃𝑖 = 𝑃𝑖𝐻 + 𝑃𝑖�̄� . In simple terms,
𝑃𝑖�̄� is the number of non-home pings of user 𝑖.

Given this, we can construct the spatial extent of user 𝑖’s mobility, which is the
average distance to each of her non-home pings. Thus:

𝑆𝑖 =
1
𝑃𝑖�̄�

∑
𝑥∈𝑍𝑖�̄�

𝑑𝑖(𝑥)𝑝𝑖(𝑥). (1.3)

We find that the average distance of non-home pings ranges from 37.1 km in Kenya
to 52.2 km in Tanzania. In extrapolating this measure to a group of people, we
can once again take an average. For example, we can measure the average of our
spatial extent measure for the individuals belonging to a population density bin 𝑏 𝑗
by simply averaging the individual values of 𝑆𝑖 . Thus:

𝑆 𝑗 =
1
𝑛 𝑗

∑
𝑖∈𝐼𝑗

𝑆𝑖 . (1.4)

Figure 1.6 shows that non-home pings are not all highly local. In fact, the
average distance – across countries and density bins – ranges from 30 km to above
100 km.

in the top 5 percentiles, to address the concern that the results could be driven by a small set of highly
mobile users. We observe small decreases in the average fraction of days away in all density bins but
no change in the overall pattern of decreasing frequency with population density.
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Figure 1.6: Mean distance away from home by density bin.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows the average distance from users’ home locations of non-home pings
by density decile over the period of a year.

As in Figure 1.5, we see a pattern across density bins suggesting that those in
relatively sparsely populated areas seem to travel the farthest – in the sense that
their average distance away from home (conditional on being away from home) is
higher than for those in more densely populated locations. It is interesting that
both the absolute distances and the relative patterns across density bins look quite
similar across the three countries.

Taken together, Figures 1.5 and 1.6 seem suggestive of a pattern in which those
from relatively remote areas travel more frequently and farther – possibly to get
to towns and cities. To assess this conjecture, we next turn to the third dimension
of mobility and construct a first measure that allows us to characterize locations
visited by users in terms of population density.

1.4.3 Densities visited

Let 𝑁(𝑥) denote the population density at location 𝑥. Based on this, let �̃�(𝑥) be
an indicator mapping locations into density bins; in other words, �̃� : 𝑋 → 𝐵. We
consider the set of non-home locations pinged by person 𝑖, and we assign each
ping to a density bin 𝑏 𝑗 . Then the fraction of pings in non-home locations by user 𝑖
to locations in density bin 𝑏 𝑗 is given by:

𝑣𝑖 𝑗 =

∑
𝑥∈{𝑥∈�̄�𝑖 :�̃�(𝑥)=𝑏 𝑗}

𝑝𝑖(𝑥)

𝑃𝑖�̄�
(1.5)

Once again, we summarize our measure at the level of each group 𝐼𝑜 of users
with home location in density bin of origin 𝑏𝑜 by calculating the average fraction of
non-home pings in each one of the 10 density bins of destination (𝑏𝑑)𝑑∈[1;10]. Then
our measure becomes:

𝑉𝑜𝑑 =
1
𝑛𝑜

∑
𝑖∈𝐼𝑜

𝑣𝑖𝑑 . (1.6)
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From this, we construct an aggregate metric at the density bin level to describe the
population densities visited at least once by users belonging to each density bin 𝑏 𝑗 .
For each user 𝑖 ∈ 𝐼 𝑗 and each density bin 𝑏𝑘 , we define 𝑝𝑖𝑘 as a dummy indicating
whether user 𝑖 ever visited a location in density bin 𝑏𝑘 :

𝑝𝑖𝑘 =


1, if ∃𝑥 ∈ {𝑥 ∈ 𝑍𝐻

𝑖
|�̃�(𝑥) = 𝑏𝑘}

0, otherwise

Then the fraction of users whose home location is in density bin 𝑏 𝑗 and who are
seen at least once in a location belonging to population density bin 𝑏𝑘 is:

Δ𝑗𝑘 =

∑
𝑖∈𝐼𝑗

𝑝𝑖𝑘

𝑛 𝑗
. (1.7)

Table 1.3 shows the results for the mobility measure Δ𝑜𝑑 and thus provides
more detail about the locations visited by people when they are away from their
home location.19 This table gives the fractions of users residing in a given density
bin who are seen over the course of the observation span on at least one occasion
in a non-home location within each of the ten density bins. For instance, this tells
us that 6.7% of those Kenyans living in the most densely populated locations in
the country were observed on at least one occasion during the year in a cell that
falls within the least densely populated parts of the country. At the other end of
the distribution, 32.1% of the users whose home locations are in the most sparsely
populated areas of the country were observed at least once during the year in the
most densely populated parts of the country. These results hold even after filtering
out potential “transit pings” as discussed in Section 1.A.4 (for details, see Appendix
Tables 1.E.7 and 1.E.8). Taken together, these tables offer a picture of highly mobile
populations across all three countries, with people travelling both far (measured in
terms of distance) and to locations that differ markedly from their home locations.

1.4.4 Specific locations visited

As an alternative to using density deciles for our analysis, we consider in Appendix
Table 1.E.9 the "visitors" to the major cities of our three countries. A visitor is
defined here as someone whom we observe in a city whose home location falls
outside the city boundaries. We categorize visitors as those who are residents
of other major cities in the same country, and then we also consider a group of
"non-urban" visitors, who are those who live outside the boundaries of any city of
more than 200,000 people.20

19Results for 𝑉𝑜𝑑 (the average distribution of non-home pings across density bins) are shown in
Appendix Table 1.E.6 for our three countries.

20See Appendix Section 1.B for the definition of city boundaries. The reference year for city-level
population counts is 2018.
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Table 1.3: Share of users by home bin-visited bin pair, no adjustment for transit
pings.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 72.3% 32.9% 15.1% 11.8% 11.9% 14.7% 13.3% 15.1% 9.5% 6.7%
2 42.9% 61.4% 38.1% 26.9% 21% 17.5% 18.6% 20.9% 15% 11.4%
3 25.9% 46.2% 55.5% 43.8% 35.8% 29.6% 28.8% 25.5% 19.4% 14.7%
4 33.9% 34.2% 52.5% 56.6% 46.9% 39.4% 35.3% 29.6% 23.7% 17.8%
5 30.4% 25.9% 43% 52.2% 53.6% 49.3% 38.8% 35.7% 25.5% 18.9%
6 27.7% 27.2% 30.2% 47.1% 46.6% 55.5% 47.4% 38.3% 26.5% 19.7%
7 26.8% 28.5% 35.5% 44.8% 45% 56.5% 57.9% 48.5% 35% 24.5%
8 42% 44.9% 45.7% 56.9% 57.1% 60.8% 68.4% 69.7% 50.8% 36%
9 55.4% 54.4% 53.6% 66% 65% 67.8% 72.1% 79.8% 89.8% 76%
10 32.1% 36.1% 30.6% 41.4% 37.5% 40.9% 45.8% 51.7% 70% 88.6%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 35.7% 19.6% 18.8% 6.8% 6.1% 3.8% 3.3% 3.1% 2.5% 1.5%
2 23.8% 33.3% 35% 12.1% 12.6% 9.1% 6.8% 6.1% 5.3% 3.2%
3 26.2% 29% 41.5% 32% 18.9% 13.1% 10.5% 8.8% 7.3% 4.7%
4 31% 26.8% 45.3% 35.2% 32.6% 22.3% 15% 12% 11.2% 6.9%
5 23.8% 33.3% 43.6% 45.9% 51.3% 38.1% 27% 21% 20.1% 15.2%
6 33.3% 33.3% 37.6% 53.9% 60% 68.7% 45.8% 31.5% 26.8% 17.4%
7 42.9% 55.8% 50.9% 52.7% 64% 69.9% 76.1% 56.1% 39.8% 25.5%
8 71.4% 58.7% 54.7% 58.7% 61.5% 60% 72.8% 81.2% 63.7% 37.9%
9 76.2% 61.6% 62.8% 62.6% 66.8% 64.1% 68.4% 81.2% 91.5% 64.7%
10 42.9% 44.9% 43.2% 44.7% 50.2% 47.8% 46.9% 46.9% 61.9% 95.3%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 73.6% 33.8% 18.2% 15% 15.2% 10.3% 11.6% 9.5% 7.9% 4.4%
2 18.7% 50% 40% 29.3% 22.6% 15.2% 14.9% 11.6% 9.1% 5.4%
3 13.2% 39.7% 43.6% 38.8% 30% 20.1% 15.4% 13.7% 10.6% 6.3%
4 14.3% 38.2% 40.9% 42.2% 39.2% 24.2% 20.7% 15.8% 12.3% 7.7%
5 16.5% 33.8% 42.7% 40.8% 36.9% 43.4% 27.2% 20.3% 14.3% 8.3%
6 19.8% 26.5% 35.5% 41.5% 46.5% 51.2% 42.2% 24.5% 17.7% 10.6%
7 30.8% 38.2% 44.5% 46.9% 41.9% 54.2% 64.4% 42.6% 26.5% 15.8%
8 42.9% 44.1% 50% 47.6% 51.2% 55% 62.6% 82.6% 56.9% 33.6%
9 40.7% 51.5% 54.5% 48.3% 55.8% 59.1% 56.1% 68.7% 88.4% 66.2%
10 40.7% 35.3% 31.8% 38.1% 32.7% 38.8% 39.7% 45% 64.5% 93.5%

(c) Tanzania

Note: These matrices show the proportion of users residing in home density bin i that are
seen at least once in visited density bin j over the period of a year.

The data for all three countries show similar and interesting patterns. The
largest city consistently has a large number of visitors defined as "non-urban",
implying that these cities are magnets for travellers from the entire country. There
are consistently large flows from secondary cities to these primate cities, but the
proportions fall off sharply to more minor cities. In contrast, the secondary cities
typically see large inflows of visitors from the primate cities, along with large
inflows from non-urban areas. The flows across and between secondary cities are
typically fairly modest, according to this metric. In Kenya, Eldoret has little that
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Kisumu lacks, and vice versa – so even though these cities are less than 150 km
apart, each accounts for less than 3% of the visitors in the other. The same patterns
are seen in Nigeria and Tanzania. For Nigeria, to give another example, although
visitors from Kano make up 10% of the documented visitors to Kaduna, relatively
few of those visiting Kano are from Kaduna. In each city, far more visitors come
from towns, villages, and rural areas (together characterized as "non-urban").21 A
striking feature of these tables is that the largest city is the leading destination for
those living in almost all other cities – regardless of distance. Curiously, urban
dwellers are also relatively likely to have been seen in non-urban areas. This is
suggestive of the possibility that secondary cities are relatively substitutable for one
another, but the largest cities (and perhaps also non-urban areas) offer benefits that
are somehow distinct. This may reflect a lack of specialization and differentiation
between secondary cities – an issue that has been raised previously in sub-Saharan
Africa (see, for example, Henderson and Kriticos (2018)).

As a final step in our characterization of mobility, we examine in more detail
the number of distinct visits individuals make as well as what type of amenities the
data suggest people consume when making these visits. Appendix 1.A.5 provides
the details on how we define visits. Figure 1.7 shows the distribution of users
by number of cities that they visit (excluding the home cities of urban residents).
The figure shows that a sizeable fraction of residents make visits to one or more
cities other than their own during the period over which we observe them. Rural
residents are again more likely to make a visit to a larger number of cities.

To what extent are visits to cities events that occur as an exception rather than
journeys individuals embark on with some regularity? Figure 1.8 shows the average
number of visits to cities users make, again by density decile. The data shows that
users make multiple visits to non-home cities on average, further supporting the
view that visits represent a technology to consume amenities on repeated occasions
that these cities offer but home locations do not.

While we can not know the type of amenities that are consumed on visits nor
the precise purpose of a visit to a particular location, in a final step we inspect
the locations that visitors to cities are seen at. To investigate these destinations
systematically, we link our ping locations with data from Open Street Map polygons
for six cities, two from each country: Lagos, Abuja, Nairobi, Mombasa, Dar es
Salaam and Dodoma.22 We then pool all these pings and show the types of places
visited for these six cities.

21We can similarly look at the destinations of those whose home locations are in the major cities of
our three countries. For these urban dwellers, we can ask what proportion were seen during the year
in other major cities and in non-urban areas. The results of this analysis are shown in Appendix
Table 1.E.10.

22See Appendix 1.A.6 for details.
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Figure 1.7: Distribution of users according to the number of cities visited, by
population density bin.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows for each decile the distribution of users who are never seen in a
city, those who visit exactly one city, those seen in two cities and those visiting three or
more cities. These counts exclude the home city in the case of urban residents.

Figure 1.8: Average number of visits to cities, by population density bin.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows for each decile the average number of distinct visits to cities across
users.

Overall, we match more than 80% of visitors to at least one polygon as shown
in column (1) of Table 1.4.23 The first two columns show the places visitors are
seen at. We then split the sample of visitors into those from rural and urban areas,
taking a threshold value of 300 people per square km.24 For comparison, the final
two columns show locations visited by residents of these cities. The table shows
that about 80 percent of visitors are seen at residential locations, and about half
of the visitors are seen while on a road or a roadside. Slightly more than one
third of visitors are seen at locations related to travel (e.g., airports, train stations,
hotels). About one out of three visitors is seen at shops and markets or retail

23Matching rates disaggregated by city are provided in Appendix Table 1.A.2.
24We chose this threshold for comparability with other datasets; for example, in the Global Human

Settlement Layer, most rural clusters have a density below 300 inhabitants per square km (Schiavina
et al., 2022).
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locations. About one out of five visitors is seen at a commercial or industrial zone.
Slightly more than 10 percent of visitors are seen at recreational locations (e.g.,
stadium, cinema, nightclub, theatre). About 12 percent is seen at a location offering
public goods and services (e.g., hospital, health centre, university, police station,
government buildings). The other category includes military zones and urban
agricultural areas. When disaggregating visitors by home population density, the
main differences are that a lower proportion of rural visitors is seen at residential
areas; they are more often seen at shops and markets, public goods and services,
recreational locations, locations related to food and drinks (e.g., restaurants, bars,
food courts, cafes) and places of worship (e.g., cathedrals, mosques, synagogues
and churches).

When comparing residents with visitors, residents are, reassuringly, more
often seen at residential locations as well as most of the other categories. This is
unsurprising, since we observe them for longer times in these cities we are more
likely to see them visiting one of these different types of locations. The only places
we observe them less often than visitors are places related to travel.

Table 1.4: Distribution of users across places visited by density of origin.

Visitors Visitors from Visitors from ResidentsBelow 300 Above 300

Users % of users Users % of users Users % of users Users % of users
Total 16,156 - 590 - 15,543 - 67,982 -
Total users matched with OSM 13,214 100.0% 438 100.0% 12,756 100.0% 60,432 100.0%
Residential 10,628 80.4% 288 65.8% 10,325 80.9% 54,633 90.4%
Roads and roadsides 6,815 51.6% 251 57.3% 6,560 51.4% 36,795 60.9%
Travel 4,825 36.5% 162 37.0% 4,652 36.5% 17,329 28.7%
Shops and markets 3,775 28.6% 159 36.3% 3,614 28.3% 30,076 49.8%
Commercial zone 2,835 21.5% 88 20.1% 2,745 21.5% 21,366 35.4%
Industrial zone 2,280 17.3% 78 17.8% 2,197 17.2% 21,445 35.5%
Public goods and services 1,540 11.7% 70 16.0% 1,469 11.5% 16,315 27.0%
Recreational 1,008 7.6% 45 10.3% 962 7.5% 10,516 17.4%
Other 733 5.5% 35 8.0% 696 5.5% 7,311 12.1%
Food and drinks 347 2.6% 16 3.7% 331 2.6% 3,893 6.4%
Worship 331 2.5% 16 3.7% 314 2.5% 4,733 7.8%

Note: This table links the locations of visitors to Lagos, Abuja, Nairobi, Mombasa, Dar
es Salaam and Dodoma and residents of these cities with OSM data to show the type of
locations visitors and residents are seen at.

This section has reported on a number of different measures of mobility. These
measures point to some consistent stories. The smartphone users in our data
represent a mobile population. On average, they are more than 10 km from home
on about one-sixth of the days on which they are observed. Those in more sparsely
populated areas are more frequently away from home than those who live in city
center locations. When they venture from home, they frequently travel far; when
we sight them away from home, they are on average between 35 and 50 km away.

Flows are not limited to inter-urban movements of city dwellers visiting other
cities; on the contrary, the data show extensive movement across and between
many different locations. Many users visit more than one city (other than their
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home city) over the sample period, and we observe people making repeat visits to
the same city. Users appear to consume a diverse range of amenities during their
stays, taking advantage of opportunities for market visits, administrative tasks,
health services, and more. We emphasize that these visits do not appear to reflect
regular commuting, nor do they correspond to permanent or seasonal migration.

1.5 Conceptual framework

Having documented the patterns of mobility that we observe in the data, we
now turn to a theoretical framework in which these mobility choices arise from
optimizing behavior of individuals. We presume that individuals make choices
about where to live, which destinations to visit (and how frequently and for what
duration), along with the usual choices about consumption. We consider that
individuals are operating within the context of spatially dispersed economies
that are characterized by a range of mobility frictions. These frictions shape the
equilibrium patterns of location choice and mobility.

Our theoretical structures are designed to correspond to the mobility patterns
that we observe in the data. The evidence shows many individuals travelling from
their home locations to visit other destinations, returning to their points of origin
location. In our data, many of these visits are temporary; individuals return to the
home location after each visit. But most of the visits we observe do not appear to
be well characterized as commuting: they cover longer time periods and distances
than one would expect from daily commutes. This is not to deny the significance
of daily commuting in our three countries; but our model, like our data, focuses
instead on the phenomenon of longer-duration and longer-distance visiting. We
also note that our data do not allow us to observe permanent migration with any
confidence, since we have only one year of data and observe individuals on average
on 40 distinct days over a period of 100 days. Our theoretical framework leaves
open the possibility of permanent migration but has little to say about it.

Our model draws on insights from models such as Miyauchi et al. (2022) or
Redding and Turner (2015), but we simplify greatly in matters on which our data
are silent. In particular we abstract from detailed modelling of housing costs,
and we greatly simplify our treatment of labor markets and goods markets. This
allows us to focus solely on the between-location visits that comprise our data. In
comparison with Bryan and Morten (2019), we also abstract from modelling labor
market matching and the corresponding implications for permanent or seasonal
migration.

The model economy is defined spatially as consisting of a set of locations, 𝑋. As
in our mobility metrics above, a particular location – corresponding approximately
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to a grid cell in the data – can be denoted as 𝑥 ∈ 𝑋. In our data, people are
observed living at particular home locations. We consider that the initial allocation
of individuals across home locations is historically determined but is sustained at
present as a spatial equilibrium with frictions.

1.5.1 People

The economy is populated by a large number of people. Each person 𝑖 has a home
location, ℎ ∈ 𝑋, which is the location in which the person lives and purchases
consumption goods.

1.5.1.1 Preferences

Individuals have preferences over an agricultural good, 𝑎𝑖 ; a non-agricultural
good, 𝑐𝑖 ; and a good 𝑞𝑖 that can be characterized as location-specific amenities.
Individuals also have additively separable idiosyncratic preferences over home
locations; individual 𝑖 receives utility 𝜓𝑖 (ℎ) from living in home location ℎ. These
preferences over home locations capture a large range of unobserved dimensions
of location characteristics that may differ across individuals, such as proximity
to families and social networks, or local knowledge of customs and norms. This
structure also rationalizes the initial distribution of population, in the sense that
a spatial equilibrium holds essentially by construction. Thus, preferences are
represented by the utility function𝑈𝑖 = 𝑢(𝑎𝑖 , 𝑐𝑖 , 𝑞𝑖) + 𝜓𝑖 (ℎ).

Note that the goods 𝑎𝑖 and 𝑐𝑖 are purchased in the home location at the prevailing
prices in that location. When at home, individuals also consume the amenities
produced in the home location. However, individuals may also consume the
amenities produced in different locations. These are imperfect substitutes for one
another, and individuals have a preference for variety in these location amenities.
To consume the amenity of a different location, an individual must travel to that
location for a “visit” of some minimum duration. (Without loss of generality, think
of this as at least one day. In other words, simply passing through a location does
not allow a person to experience the amenity.)

The quantity of the amenity consumed on a visit to a location depends on the
duration of the visit. It also depends on the quantity of amenities that the location
produces; as will be discussed below, different locations provide different levels of
amenity to their visitors. Let 𝜃𝑖𝑥 denote the fraction of time that person 𝑖 spends in
location 𝑥 in the course of a year. Assume that location 𝑥 produces amenities 𝑦 (𝑥).
Then 𝑞𝑖𝑥 = 𝜃𝑖𝑥𝑦 (𝑥), where 0 ≤ 𝜃𝑖𝑥 ≤ 1. Note that across locations,

∑
𝑥 𝜃𝑖𝑥 ≤ 1.

(The inequality may hold strictly, since we exclude time spent in transit.) Over
the course of the year, an individual thus aggregates location amenities based on
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the time spent in different locations, according to a CES expression that allows for
some preference for variety:

𝑞𝑖 =

[∑
𝑥

(𝑞𝑖𝑥)𝜌
] 1

𝜌

=

[∑
𝑥

(𝜃𝑖𝑥𝑦 (𝑥))𝜌
] 1

𝜌

.

1.5.1.2 Travel and the accumulation of location amenities

In what follows, we will assume that a visit to any particular location has a minimum
time duration (e.g., one day), so as to avoid treating transit through a location as a
visit. This implies that the fraction of time that individual 𝑖 spends in location 𝑥
will be the sum of time spent on some integer number of distinct blocks of time that
the person makes to that location. We define each of these blocks of time as a visit.
Let 𝑉𝑖𝑥 ≥ 0 denote the number of distinct visits by person 𝑖 to location 𝑥. (Without
loss of generality, we can treat the home location as simply one of the locations
𝑥 ∈ 𝑋.) Using 𝑣 to index these visits, and letting 𝜃𝑖𝑣𝑥 denote the proportion of
person 𝑖’s time spent in location 𝑥 on visit 𝑣, then:

𝜃𝑖𝑥 =
𝑉𝑖𝑥∑
𝑣=1

𝜃𝑖𝑣𝑥

During a visit, the individual receives utility that reflects the duration of the visit
and the quantity of amenities available in the destination, as discussed below.
Longer visits generate higher utility, as do visits to locations with higher levels of
amenities. Amenities accumulated from different locations are effectively varieties,
and the utility structure allows for consumption to vary along both the extensive
margin (number of different locations visited) and intensive margin (duration spent
in particular locations).

Travel to a location is costly. When person 𝑖 travels to location 𝑥, where 𝑥 ≠ ℎ,
three costs are incurred. The first is a fixed cost of making a trip – the cost of leaving
home; this is denoted by 𝜆. The second is a cost per unit of distance travelled from
origin to destination. Finally, there is a cost per unit of time spent in 𝑥. In a slight
abuse of notation, let 𝐷𝑖𝑥 represent the distance between the home location ℎ of
person 𝑖 and location 𝑥, and let 𝛾 represent the unit cost of distance. Moreover, let
𝜏𝑥 denote the cost associated with time spent in location 𝑥. Then the cost faced by
person 𝑖 of a visit to location 𝑥 of duration 𝜃𝑖𝑣𝑥 is: 𝜆 + 𝛾𝐷𝑖𝑥 + 𝜏𝑥𝜃𝛼

𝑖𝑣𝑥
, where 𝛼 > 1

to reflect the fact that longer visits are more costly, per unit of time, than shorter
ones. (This assumption serves to motivate the possibility that an individual might
make multiple visits to the same destination in the course of a year.)

The cost structure of travel seems complicated, but each of these costs has a
corresponding real-world element. For instance, one could think of the fixed cost
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as related to the monetary and non-monetary costs of planning a trip, while the
distance cost is the bus fare. The increasing cost of visit duration is intended to
capture the fact that a brief visit might involve only modest imposition on friends
and relatives, while a longer visit requires a more substantial investment in room
and board, not to mention higher costs associated with being absent from the home
location. For instance, a shopkeeper from a small town can travel for two days at
relatively low cost to a nearby city to visit family members and to source supplies.
To be gone for two weeks, however, requires turning over management of the
shop to an assistant, and it may require paying a higher price – either formally or
informally – for room and board.

1.5.1.3 Budget constraint

Individuals supply one unit of labor inelastically to the labor market in their home
location, and in return they receive a real wage 𝑤 (ℎ) that is location-specific. They
allocate this income to expenditures on the agricultural good, the non-agricultural
good, and the costs of any trips that they make. The agricultural good and non-
agricultural good have prices that are location-specific, 𝜋𝑎 (𝑥) and 𝜋𝑐 (𝑥). Wages
and travel costs are denominated in a numeraire good. The amenities themselves
are of course free to consume, but travel to non-home locations incurs the costs
described above. This gives rise to a budget constraint for individual 𝑖 that can be
written as:

𝜋𝑎 (ℎ) 𝑎𝑖 + 𝜋𝑐 (ℎ) 𝑐𝑖 +
∑
𝑥

[
𝑉𝑖𝑥 (𝛾𝐷𝑖𝑥 + 𝜆) +

𝑉𝑖𝑥∑
𝑣=1

𝜏𝑥𝜃
𝛼
𝑖𝑣𝑥

]
≤ 𝑤 (ℎ) .

1.5.1.4 Individual’s problem

The individual’s problem is then well-defined. Taking her home location as given,
she chooses the quantities of the consumption goods, 𝑎𝑖 and 𝑐𝑖 , and the number
and duration of visits to each non-home location, 𝑉𝑖𝑥 and 𝜃𝑖𝑣𝑥 to maximize utility
subject to the budget constraint above.

1.5.2 Geography

Let 𝑁(𝑥) be the population living within location 𝑥; in effect, this is a measure of
population density. We will describe a location as populous if it has a population
density 𝑁(𝑥) > �̄�. We will go further and define a settlement (a term intended
to include both towns and cities) to be a subset of populous locations 𝐾 ⊂ 𝑋

that meets three criteria: (a) the locations form a contiguous spatial group within
𝑋; (b) for each location 𝑥 in 𝐾, the density criterion is satisfied; and (c) the total
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population of the settlement exceeds some threshold value for total population –
i.e.,

∑
𝑥∈𝐾 𝑁(𝑥) > �̄� . There will necessarily be a finite set of settlements, which we

denote as �̄�. For notational simplicity, let 𝑁1 , 𝑁2 , ...𝑁�̄� denote the populations of
the different settlements; furthermore, without loss of generality, we can order the
indexing such that 𝑁1 < 𝑁2 < ... < 𝑁�̄� . Note that not all people live in settlements;
we define as “rural” those people who live in low-density locations, along with
those living in clusters of density that do not meet the aggregate population
threshold (e.g., small villages and communes).25

1.5.2.1 Location amenities

The amenity is a non-tradable public good (non-rival and non-excludable) that is
consumed by people who live or visit a location. The amenity is produced with
increasing returns to population size. In particular, for settlement 𝑘, 𝑦 (𝑘) = 𝐴𝑁

𝛽
𝑘

gives the production quantity of this location amenity, where 𝛽 > 1. It would be
possible to define amenities produced at different rural locations in the same way,
but for simplicity here, we will assume that all non-home rural locations produce
an identical amenity, 𝑦𝑟 , which is lower than the level produced in the smallest
settlement; in other words, 𝑦𝑟𝐴�̄�𝛽.

The structure of amenity production captures in a simple way that there are
agglomeration effects in the provision of amenities, such that larger cities in general
produce higher levels of amenities. This implies that the utility derived from a
one-day visit to a large city is greater than that from a visit of identical length to
a smaller city. However, working against that are the preference for variety and
the role of distance. A nearby small city may be less costly to visit than a faraway
city that is larger; and all else equal, individuals will be inclined to want to visit
multiple locations. The duration of visits will reflect a balance between the fixed
cost and distance cost of travel, on the one hand, and the increasing duration cost,
on the other hand. Individuals will be likely to make multiple visits to the same
destination when that location is relatively close (so that the distance cost is low).
The duration of a visit will tend to be longer when the destination is far away.

1.5.3 Production

In what follows, we consider the simplest possible production arrangement for
this economy. All rural areas produce the agricultural good, and all settlements
produce the composite non-agricultural good. With no disutility from labor, each
worker supplies one unit of labor inelastically. Each worker in a location produces

25In the data for our three countries, cities and towns are defined in a variety of different ways.
Our formulation is a convenient one to use, and it is consistent with many standard approaches.
However, none of our results depends on this particular way of defining or characterizing settlements.
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one unit of the good, so 𝑦𝑎𝑥 = 𝑁𝑥 for every rural location, and 𝑦𝑐𝑥 = 𝑁𝑥 for every
urban location. In the simplest specification, both goods are frictionlessly traded
on a world market, with prices 𝜋𝑎 (𝑥) = 𝜋∗

𝑎 ∀𝑥 and 𝜋𝑐 (𝑥) = 𝜋∗
𝑐 ∀𝑥 determined

exogenously to the model economy. This is obviously a strong simplification,
particularly for the economies we are studying, but it allows us to focus on frictions
to the mobility of people, consistent with our data. Note that an immediate
implication of the production structure is that wages will differ in rural and urban
regions, with 𝑤𝑎 = 𝜋∗

𝑎 and 𝑤𝑐 = 𝜋∗
𝑐 .

1.5.4 Equilibrium

We focus on a short-run spatial equilibrium for this economy. The equilibrium
is trivial, in the sense that there are few endogenous variables. Assume (not
unrealistically) that the marginal value product of a worker in non-agriculture
is higher than the marginal value product of a worker in agriculture; or in other
words that 𝜋∗

𝑐 > 𝜋∗
𝑎 .With prices of the two tradable goods identical across locations,

this immediately implies that real wages will be higher in urban areas than in rural
areas; indeed, realized utility per unit of income will be higher in larger cities than
in smaller cities, since larger cities are more productive in supplying amenities.
This seemingly creates some potential for spatial gaps, but the equilibrium is
sustained by a combination of differences in location-specific preferences and
mobility frictions.

In a sense, the only interesting feature of the equilibrium is the endogenous
optimization by individuals of the number, duration, and destination of visits. The
structure of the problem gives rise to a number of predictions that can be tested
against the data.

Proposition 1 Assume for simplicity that 𝜏𝑥 = �̄� ∀𝑥. Define the number of visits from
settlement 𝑘1 to settlement 𝑘2 as the sum of the number of visits by each individual living in
any location within the boundary of 𝑘1 to any location within the boundaries of 𝑘2. Denote
this number as 𝑉𝑘 (1, 2). Then:

𝑁𝑘2 > 𝑁𝑘1 ⇒
𝑉𝑘 (1, 2)
𝑁𝑘1

>
𝑉𝑘 (2, 1)
𝑁𝑘2

.

In other words, the number of visits per person made from the smaller settlement
to the larger will exceed the number made in the opposite direction. This reflects
the higher level of amenities produced in the larger settlement. The logic of this
proposition is simple. Wages and prices are the same in both settlements; the
distance and travel costs are also identical. But the utility value of visiting the more
populous location is higher for an individual in the less populous location. The
same logic will hold in general for visits from rural areas to settlements of different
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size, but because rural wages are assumed to be lower, the overall prediction
is ambiguous; it depends on the size of the income effect and the difference in
wages. For the case where 𝜋∗

𝑐 = 𝜋∗
𝑎 , it certainly follows that rural people will visit

settlements more frequently than town dwellers visit rural areas.

Lemma 1 If an individual makes multiple visits to the same location, they will be of
the same duration. This follows from the increasing cost with duration; the total cost is
minimized by making all visits equal in duration.

Proposition 2 Building on Lemma 1, this tells us that for any two locations that are
visited, there is a relationship between the settlement size (or rural status), the distance, the
cost of spending time, and the duration of the visit. Visits to settlement 𝑘1and 𝑘2 will be
related according to the non-linear relationship given by:(

𝜃1𝑁
𝛽
1

𝜃2𝑁
𝛽
2

)𝜌−1

=
𝛾𝐷1 + 𝜆 + 𝜏1𝜃𝛼

1
𝛾𝐷2 + 𝜆 + 𝜏2𝜃𝛼

2

This expression does not give neat closed-form relationships, but consider the
simple case in which 𝜏1 = 𝜏2 = 𝜆 = 0; in other words, a situation in which the only
costs of visits are the linear costs of distance. In this case, we can solve for the
duration of a visit as a function of distance and city size:

𝜃 =
(𝜉𝛾𝐷)

1
𝜌−1

𝐴𝑁𝛽
.

This in turn gives rise to an estimating equation in the form:26

ln𝜃 = 𝛿0 + 𝛿1 ln𝑁 + 𝛿2 ln𝐷 + 𝜖.

A more complete specification of the location-specific production function for
amenities might include a set of observable and unobservable location characteris-
tics; this would motivate an estimating equation in the same form, but including
origin and destination fixed effects 𝜑𝑜 and 𝜈𝑑, with the destination fixed effect
subsuming the destination city size:

ln𝜃𝑜𝑑 = 𝛿0 + 𝛿1 ln𝐷𝑜𝑑 + 𝜑𝑜 + 𝜈𝑑 + 𝜖𝑜𝑑 . (1.8)

We will explore this relationship further in the next section.

Proposition 3 Given a choice between visiting two equidistant locations, an individual
will be more likely to visit the more populous location, and/or to stay longer in the more
populous location.

26This equation is similar in flavor to a gravity equation coming out of quantitative spatial models
developed by Ahlfeldt et al. (2015) and Kreindler and Miyauchi (2023).
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This follows trivially from the fact that a visit to the more populous location
delivers higher marginal utility because of the greater amenity value provided
during a visit of the same length.

1.6 Empirical tests

We next explore to what extent our proposed conceptual framework is consistent
with the mobility patterns that we observe in the data by examining each of the
propositions.

1.6.1 Proposition 1

Proposition 1 states that the number of visits per person from a smaller settlement
to a larger will be higher than the number made in the opposite direction. To test
this proposition, we sum all visits of users between city pairs throughout the year.27
We normalize the number of visits by the number of users with home locations in
each city, reflecting the fact that we observe only a subset of the population. This
gives a matrix where each entry corresponds to the proportion of residents in a
particular origin city who are observed travelling to a given destination. We then
determine which of the two cities is larger in population and compare the flows of
visitors in each direction. We do this for all pairs and perform a simple pairwise
t-test of the following null hypothesis

𝐻0 :
𝑉𝑘 (1, 2)
𝑁𝑘1

=
𝑉𝑘 (2, 1)
𝑁𝑘2

(1.9)

where the proposition assumed that 𝑁𝑘2 > 𝑁𝑘1 for any two settlements within one
of our three countries. Table 1.5 presents the results from these tests. The table
shows that in all cases the average number of visits per person from the smaller
location to the larger exceeded the number made in the reverse direction. Given

Table 1.5: Number of visits between locations

Kenya Nigeria Tanzania
𝑉𝑘(1, 2)/𝑁𝑘1 0.343 0.233 0.144
𝑉𝑘(2, 1)/𝑁𝑘2 0.056 0.037 0.033
𝐻𝑎 : (𝑉𝑘(1, 2)/𝑁𝑘1 −𝑉𝑘(2, 1)/𝑁𝑘2) > 0 0.000 0.000 0.000
n 121 751 157

Note: This table tests Proposition 1 by conducting a paired t-test that compares the number
of visits between locations of different sizes.

27As for the rest of the paper, we define city boundaries as described in Appendix Section 1.B.
Here we consider the subset of cities above 50,000 inhabitants – based on 2018 WorldPop population
estimates. We exclude visits that originate in non-urban locations.
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that some of the location pairs might have small differences in populations, we also
explore whether the distribution of visits becomes more distinct when we vary the
difference between the origin and destination populations. Appendix Figure 1.E.4
shows that this is indeed the case. The same pattern holds true for Tanzania and
Nigeria.

1.6.2 Proposition 2

Proposition 2 gives rise to a relationship between distance to the destination and
the duration of visits. We now use our device-level data to estimate the equation
(1.8)

ln𝜃𝑜𝑑 = 𝛿0 + 𝛿1 ln𝐷𝑜𝑑 + 𝜑𝑜 + 𝜈𝑑 + 𝜖𝑜𝑑 .

where 𝜃𝑜𝑑 represents the fraction of days a user residing in 𝑜 spends in a particular
city 𝑑, 𝜑𝑜 and 𝜈𝑑 are origin and destination fixed effects and𝐷𝑜𝑑 represents distance
between the origin and the destination.

Table 1.6: Gravity model for inter-city mobility.

Kenya Nigeria Tanzania
(1) (2) (3)

ln (Distance) -.049∗∗ -.086∗∗∗ -.051∗∗∗
(0.021) (0.01) (0.017)

Obs. 7201 40077 7032
𝑅2 0.115 0.107 0.111

Note: This table estimates equation (1.8). The dependent variable is the fraction of days a
user residing in origin 𝑜 spends in destination 𝑑. All models include origin and destination
fixed effects. Reported standard errors are clustered at the user level. ∗, ∗∗, ∗∗∗ denote
significance at 10%, 5% and 1% levels.

Origin fixed effects proxy for any observables or unobservables at the origin.
Table 1.6 shows the results from estimating this relationship using all visits in
our dataset, where we exclude visits that originate from rural areas. The table
shows a clear negative relationship between distance and the fraction of days users
spend visiting a city, after controlling for origin and destination fixed effects. The
results are very similar when we use travel time instead of distance.28 The negative
coefficient on the distance variable is also a key empirical regularity found in
standard gravity equations that regress a commuting or migration probability on
the log of distance while controlling for origin and destination fixed effects.

28When we cluster standard errors at both the origin and destination the significance levels in
Kenya and Tanzania drop to the 10 and 12 percent level, respectively.
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1.6.3 Proposition 3

Proposition 3 states that holding distance constant, an individual will be more likely
to visit a more populous destination and/or stay longer. To test this proposition,
we extract the destination fixed effects that we estimated with equation 1.8 and
examine their relationship with population. Figure 1.9 plots the city fixed effects
against city size, where we use the smallest city in each of the countries as the
omitted category. A few points are worth highlighting. First, the city fixed effects

Figure 1.9: Destination fixed effects and city size.

Arochukwu

Agbor

Biu

Numan

Uromi

Afikpo

Badagry

Epe
Bichi

LangtangDamaturu

Wudil

Gwarzo

Malumfashi
Okigwe

Amaigbo

Dambarta

UgepIse

Wukari

Gashua

Idah

Gamboru

Ajaokuta
Ikire

Kazaure

Shaki

Keffi

Auchi

Dutsin Ma

Jega

Sapele

Azare
Ughelli

Gumel

Lafia

Kontagora

Ikere−Ekiti

Nguru

Offa

Ikot Ekpene

Owo

Jalingo
Do

Mubi

Ijero

Ikare

Kaura Namoda

Oron

Ilawe

Dutse

Ikirun

Iseyin

Etiti
Kagoro

Birnin Kebbi

Nsukka

Iwo
Funtua

Daura

Umuahia

Hadejia

Ondo

Gwagwalada

AbakalikiGusauIfePotiskum

Gboko
Ado

Makurdi

Oyo

Ilesa

Gombe

Ogbomosho

Owerri

Bida

BauchiCalabar
Uyo

Shagamu

Warri

Okene

Minna
Akure

Ijebu Ode

Abeokuta
Oshogbo

Katsina

Jimeta

Jos

AbaZaria

IlorinSokoto

Enugu

Maiduguri

Benin City

Port Harcourt

Kaduna

Abuja

Onitsha
Ibadan

Kano

Lagos

−
1

−
.5

0
.5

1
C

it
y
 F

ix
e
d
 E

ff
e
c
ts

11 12 13 14 15 16
Log of Population

NGA

Tunduma

Sengerama

Korogwe

Kahama

Mpanda

Kasulu

Kibaha

Mtwara

Shinyanga
Singida

Sumbawanga

Musoma

Iringa

Tabora
Songea

Kigoma

Tanga

Dodoma

Moshi

Morogoro

Mbeya

Arusha

Mwanza

Zanzibar

Dar es Salaam

−
.5

0
.5

1
C

it
y
 F

ix
e
d
 E

ff
e
c
ts

11 12 13 14 15 16
Log of Population

TZA

Busia

NyahururuWebuye
Embu

Nanyuki

MigoriBungoma

Wajir

MachakosNyeri

Ukunda

Naivasha
Meru

Kakamega

Kericho
MalindiThika

Mandera

Kisii

Kitale

Garissa

KisumuEldoretNakuru

Mombasa

Nairobi

0
.2

.4
.6

.8
1

C
it
y
 F

ix
e
d
 E

ff
e
c
ts

11 12 13 14 15 16
Log of Population

KEN

Note: This figure shows the city fixed effects 𝜈𝑑 from equation (1.8) and log of population.

correlate significantly with city size. Second, the figures highlight that Lagos, Dar
es Salaam and Nairobi are outliers in terms of city size; all have the highest city
fixed effects, conditional on distances between city pairs and origin city fixed effects.
The political capital Abuja is well above the predicted regression line, indicating
that it receives more visits than its population size would predict. Other locations,
like Zanzibar, receive fewer visits than predicted by their population size. The
model suggests that Zanzibar, located on an island, clearly would receive more
visitors than it does without this barrier.

Table 1.7 shows the results from the regressions of the city fixed effects on log
population to investigate the relationship more formally. The table shows that
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Table 1.7: Destination fixed effects and city size.

Kenya Nigeria Tanzania
(1) (2) (3)

ln (Population) 0.156∗∗∗ 0.146∗∗∗ 0.161∗∗∗
(0.024) (0.021) (0.042)

Obs. 26 105 25
𝑅2 0.313 0.268 0.374

Note: This table regresses the city fixed effects from equation (1.8) on log city city. Robust
standard errors in parentheses. ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and 1% levels.

the destination fixed effect is significantly higher for more populous locations,
suggesting that individuals are significantly more likely to spend a higher fraction
of days in larger settlements. This underlines the magnetic forces large cities play.

1.7 Conclusion

Until now, most of our knowledge about human mobility in low-income countries
has come from surveys that show migration flows between survey rounds. Often
the surveys are several years apart or longer (e.g., decennial censuses). This means
that mobility is only evident in these data sources over very long time horizons.
The data from these surveys are useful and informative in thinking about certain
types of population movements, but they tell us little about the ways in which
individuals serve as links between different locations – potentially moving goods,
ideas, information, and relationships.

In this paper, we use smartphone location data to show how individuals move
between multiple locations, taking advantage of the different opportunities and
amenities that are available, and presumably building and maintaining social
networks. But individuals’ movements also serve to construct networks of locations.
The extent of mobility between locations serves as evidence of spatial integration.
Our data provide a detailed look at one type of network of locations – a network
based on human mobility. The paper builds on a recent literature that has used “big
data” to study commuting, migration and travel along trip chains (Blumenstock, Chi,
et al., 2022; Kreindler and Miyauchi, 2023; Miyauchi et al., 2022). Our contribution
here is to focus on “visits”, which turn out to be ubiquitous.

The data help us to improve our understanding of travel and mobility in
African countries. Our smartphone users travel frequently and relatively far. Travel
is not limited to peri-urban commuting, nor to migration (whether seasonal or
permanent). Most of our sample consists of urban dwellers, and we observe many
of them travelling to other cities – indeed, significant numbers travel to multiple
cities other than their home cities. But perhaps surprisingly, our urban users
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also travel to rural areas. For instance, some 20-40% of our urban Kenyan users
are observed in locations that can be characterized as rural (i.e., locations in the
bottom half of the population density distribution). Our research thus suggests
that we should be cautious in imagining that the villages, towns, and small cities of
sub-Saharan Africa are functionally cut off from large cities – or from each other.
On the contrary, we see substantial flows of people in all directions. Smartphone
ownership appears not to deter people from travelling; in that sense, smartphones
do not appear to substitute for human mobility; we find that smartphones are often
used by people when they are visiting non-home locations.

Our analysis benefits from the availability of new data sources that allow for a
startling level of detail in observing mobility. Such data sources are increasingly
available for low-income countries, as well as for rich countries. The Covid-19
pandemic saw similar data used to characterize the impact of lockdowns and other
short-term questions. Our paper can be viewed as an illustration of the potential for
using such data to address deeper questions about a range of issues in development.
At the same time, the widespread availability of these data raises concerns about
privacy and security. Our analysis has avoided mining the data to extract further
information about individual users; we argue that there is much to learn from the
data while respecting the anonymity and privacy of individuals.

The data clearly also embed some intrinsic limitations. One relates to the
selection issues that make our sample unrepresentative. Although we filter
out many “transit pings,” we cannot fully determine which places people visit
deliberately; we can only tell that people used their devices while they were in
particular locations.29 But we benefit from the large number of observations and
the large number of users.

Our samples are clearly selected and are not representative of national popula-
tions. For the poorest people in our three countries, patterns of mobility may be
very different from those we describe here. Even small monetary costs of mobility
can be highly salient for the poor. Poverty is not the only barrier to mobility: people
also face mobility barriers linked to gender, ethnicity, social class, age, and other
dividing lines. Our data may also be atypical at the country level; we cannot
extrapolate clearly from our three countries to other parts of sub-Saharan Africa,
and certainly not to other parts of the developing world. Patterns of mobility
and frictions may look very different in Latin America or Asia. Nevertheless, the
methods that we develop in this paper illustrate the promise of new data sources.
As such data become more widely available, there is potential to learn far more
about spatial frictions, mobility, and the geographic patterns of human activity.

29The underlying distinction is itself somewhat unclear; it depends on the unobservable intent of
the traveller, rather than on the characteristics of the locations or the trips.
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Appendix 1.A Details on smartphone app data

1.A.1 Algorithm to identify home locations

The calculation of users’ home locations plays a critical role in our analysis of
high-frequency mobility patterns. First, home locations are often used as reference
locations to observe mobility trajectories. Second, home locations are used to
evaluate the spatial coverage of our sample by comparing the spatial distribution
of users to the distribution of the population. Third, knowing where our users
live helps us infer key information allowing to characterize them, e.g. by pairing
users with DHS clusters. In our base sample, we define home locations as the
most frequently observed 2-decimal rounded coordinates at night (between 7pm
and 7am, local time). We consider that the likelihood of correct home location
prediction increases with both the number of nights a user is seen and the fraction
of these she is observed at the inferred home location. Therefore, we select a subset
of users that are seen at least 10 nights, of which at least half are at their home
location. We call this subset the "high-confidence" sample and use it as our core
sample in the analysis of high-frequency mobility patterns throughout the paper.
We also build medium- and low-confidence subsets that include users seen at least
8 and 5 nights respectively in order to evaluate the robustness of our results - the
required fraction of nights seen at home is kept at 0.5. The corresponding sample
sizes are given in Table 1.A.1.

Table 1.A.1: Number of users by subset and country

Base High Medium Low
Kenya 195,630 18,535 23,490 37,249
Nigeria 659,407 78,694 96,954 146,346
Tanzania 234,213 22,728 28,853 46,116
TOTAL 1,089,250 119,957 149,297 229,711

Note: This table shows the number of users in each subset by country. Unsurprisingly, the
sample size decreases with the minimum number of observed nights imposed and nearly
doubles between the high- and low-confidence subsets.

1.A.2 Construction of the base sample and data irregularities

Our initial samples have 317,420 users in Kenya, 958,207 users in Nigeria and
780,760 users in Tanzania. According to the methodology presented in Section
1.A.1, we cannot infer home locations for users never observed at night (7pm-7am)
and 121,790, 297,895 and 173,886 users are thus removed in Kenya, Nigeria and
Tanzania respectively. Moreover, in Nigeria, inferred home locations with equal
latitude and longitude were deemed erroneous which resulted in 905 users being
removed. In Tanzania, we identified a data sink of 372,661 users with an inferred
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home location at (35.75;-6.18), which is located within the city of Dodoma. This
represents 52% of the initial sample while we estimated the city of Dodoma to host
0.5% of the population.30 We entirely remove users with home location coordinates
at the data sink from the sample.

1.A.3 Algorithm to identify work locations

Similarly to home locations, we assign a work location as the modal 0.01-degree
cell in which a user is observed between 9am and 6pm on weekdays. We again
impose two restrictions: that (a) the user is observed for a minimum of 8 distinct
weekdays and (b) is seen at the inferred work location for at least 50% of the total
weekdays. Overall, nearly all users of the high-confidence set are seen for at least
one weekday and 87,920 meet the confidence criteria for the identification of work
location, which represents 73% of the high-confidence set. In this subset (“work
subset”), home and work locations are found within the same 0.01-degree cells for
80% of users which is in line with high rates of self-employment and short-distance
commuting.31

For those with distinct home and work cells, the median distance between home
and work is about 4.4 km with again some differences between urban (4.5km) and
non-urban (3km) users. Restricting our subset to users observed for a minimum of
10 days or considering a higher resolution (0.001-degree cells) for home and work
locations imply only marginal changes to the results.

1.A.4 Algorithm to identify transit pings

To define transit pings we first define visits as sequences of successive pings located
within a same 5-km grid cell. We infer the minimum duration of visits from the
time elapsed between their first and last pings and classify these as a stay when they
last more than some limit value 𝑇𝑠𝑡𝑎𝑦 . We choose a value for 𝑇𝑠𝑡𝑎𝑦 that corresponds
to the amount of time required to drive through a 5km cell at 20 km/h. Other visits
are then classified as transits when (i) there is no evidence of their duration being
at least greater than 𝑇𝑠𝑡𝑎𝑦 and (ii) a speed value greater than 20km/h is observed
for at least 25% of their pings. The second condition ensures that we are observing
a user moving significantly faster than a walking pace.

30See Appendix Section 1.B for more details on the definition of city boundaries. We overlay 2018
WorldPop population map to estimate the population in Dodoma, as we do in other parts of the
paper to estimate city sizes.

31For instance, in Tanzania, the LSMS data show that median travel time between home and work
for urban wage workers is 30 minutes, which would normally correspond to about 2.5 km, assuming
walking as the mode of transport. The numbers for the self-employed and for rural workers are
substantially less. The fraction of users with identical home and work locations is higher in our data
for the subset of non-urban residents (86%), consistent with lower fractions of commuters in small
cities and rural areas.
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More formally, for a user 𝑖, the sequence of successive pings is denoted
(𝑎 𝑖1 , ..., 𝑎

𝑖
𝑃𝑖
) with 𝑃𝑖 the total number of pings for user 𝑖. Each ping consists of a

timestamp 𝑡 𝑖
𝑗

(in seconds) and longitude/latitude coordinates 𝑐𝑜𝑜𝑟𝑑𝑖
𝑗
. For each

country, we can partition the country extent to resolve raw longitude/latitude
coordinates and form a finite set of 𝑁 locations 𝑋 = {𝑥1 , ..., 𝑥𝑁 }. In this case, we
use a 5-km resolution fishnet so that 𝑋 is a set of 5km grid cells and we associate
the sequence of pings (𝑎 𝑖1 , ..., 𝑎

𝑖
𝑃𝑖
) to the sequence of 𝑋-locations (𝑥 𝑖1 , ..., 𝑥

𝑖
𝑃𝑖
). We

formally define a visit as a sequence of successive pings at one given location
𝑥 ∈ 𝑋 where the time elapsed between two consecutive pings is lower than some
parameter 𝜖𝑣𝑖𝑠𝑖𝑡 .32 For the 𝑚𝑡ℎ visit of user 𝑖, 𝑣 𝑖𝑚 = (𝑥 𝑖

𝑗𝑚
, ..., 𝑥 𝑖

𝑗′𝑚
), we define the visit

minimum duration 𝑇𝑚𝑖𝑛(𝑣 𝑖𝑚) as the time elapsed between the first and last pings
of the visit, i.e. 𝑇𝑚𝑖𝑛(𝑣 𝑖𝑚) = 𝑡 𝑖𝑗′𝑚 − 𝑡 𝑖

𝑗𝑚
. The visit maximum duration 𝑇𝑚𝑎𝑥(𝑣 𝑖𝑚) is the

time elapsed between the last ping of the preceding visit and the first ping of the
following visit, i.e. 𝑇𝑚𝑎𝑥(𝑣 𝑖𝑚) = 𝑡 𝑖𝑗′𝑚+1 − 𝑡

𝑖
𝑗𝑚−1. 𝑇𝑚𝑖𝑛(𝑣 𝑖𝑚) (resp. 𝑇𝑚𝑎𝑥(𝑣 𝑖𝑚)) represents

a lower (resp. an upper) bound estimate of the actual amount of time spent at the
corresponding location during visit 𝑣 𝑖𝑚 . Finally, we define the travelling speed at
ping 𝑎 𝑖

𝑗
, 𝑠𝑝𝑒𝑒𝑑𝑖

𝑗
, as the ratio of the haversine distance to the preceding ping 𝑎 𝑖

𝑗−1
over the corresponding time elapsed 𝑡 𝑖

𝑗
− 𝑡 𝑖

𝑗−1, if 𝑡 𝑖
𝑗
− 𝑡 𝑖

𝑗−1 ≤ 𝜖𝑠𝑝𝑒𝑒𝑑. The value for
𝜖𝑠𝑝𝑒𝑒𝑑 is typically small to ensure that the straight line between 𝑎 𝑖

𝑗
and 𝑎 𝑖

𝑗−1 is a
good approximation for the user’s trajectory between those two pings so that the
estimated speed value reflects the actual travelling speed – here we set 𝜖𝑠𝑝𝑒𝑒𝑑 to 30
seconds.

With these definitions in mind, we implement a filtering algorithm with the
objective of identifying pings corresponding to users simply driving through some
locations. First, we identify all visits for each user by setting 𝜖𝑣𝑖𝑠𝑖𝑡 equal to 30
minutes. We classify a visit as a stay if its minimum duration is greater than some
value 𝑇𝑠𝑡𝑎𝑦 corresponding to the time required to travel along the diagonal of a 5km
cell at an average speed of 20km/h, i.e. 𝑇𝑠𝑡𝑎𝑦=1,273 seconds.33 Then, we classify a
visit 𝑣 𝑖𝑚 as a transit visit if the following two criteria are met: (i) 𝑣 𝑖𝑚 is not a stay
34 and (ii) at least 25% of speed values are greater than 20km/h.35 Visits that are
neither stays nor transits are classified as undefined.

32𝜖𝑣𝑖𝑠𝑖𝑡 can be interpreted as the maximum amount of time of inactivity between two consecutive
pings at the same location we are willing to tolerate before considering that the user may likely have
visited other locations and returned to the initial location during said period of inactivity. Also,
“isolated” pings, i.e. pings being at least 𝜖𝑣𝑖𝑠𝑖𝑡 seconds away from both their preceding and following
pings, are considered as single-ping visits.

33By considering the longest segment within a 5km cell and a speed value of 20km/h in the lower
range of possible average driving speeds, we use a conservative value for the parameter 𝑇𝑠𝑡𝑎𝑦 .

34More formally, either 𝑇𝑚𝑎𝑥(𝑣 𝑖𝑚) < 𝑇𝑠𝑡𝑎𝑦 , or 𝑇𝑚𝑎𝑥(𝑣 𝑖𝑚) ≥ 𝑇𝑠𝑡𝑎𝑦 and 𝑇𝑚𝑖𝑛(𝑣 𝑖𝑚) ≤ 𝑇𝑠𝑡𝑎𝑦 .
35We further impose that speed values are available for at least 80% of the pings in the visit to

avoid misclassifying visits where there is a high uncertainty around the estimated proportion of
pings with speed greater than 20km/h.
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We apply this algorithm to the three countries. Overall, 11% of the pings in
the high-confidence set are identified as transit pings while 70% are stay pings.
Differences across individual countries are only modest. Since the estimated total
fraction of transit pings can be largely influenced by a handful of major users,
we also calculate the average fractions of transit, stay and undefined pings across
users.36 We find that, on average, only 2% of a user’s pings are classified as transit –
48% are identifies as stay pings and the remaining 50% as undefined. The average
fraction of transit pings is markedly lower than the total fraction and disparities
between countries are also less pronounced, which together suggests that major
users differ from other users in that they showcase a relatively larger fraction of
pings sourced from navigation apps – or, at least, are relatively more observed
when travelling.

1.A.5 Algorithm to identify visits

For the purpose of detecting distinct visits to cities, we consider the set of locations𝑋
as the set of cities defined by 3km-buffered GRUMP polygons37 and its complement
that we qualify as “non-urban” areas, such that their union forms the country extent.
A visit of user 𝑖 to a given (non-home) city 𝑐 is broadly defined as a certain period
of time spent by 𝑖 in city 𝑐. Taking this to our smartphone data, the 𝑚𝑡ℎ visit of 𝑖 to
𝑐, 𝑣 𝑖𝑚,𝑐 , materializes as a sequence of pings (𝑎 𝑖

𝑗𝑚,𝑐
, ..., 𝑎 𝑖

𝑗′𝑚,𝑐
) located within city 𝑐 and

reflecting a single stay of 𝑖 to 𝑐. For each user 𝑖, we effectively observe successive
locations but to the extent that we do not control the frequency of observation,
we cannot always determine with absolute certainty the location of users between
two consecutive pings. In particular, a higher duration between two consecutive
pings in a visited city is associated with a greater uncertainty as to whether the
user travelled to another location or returned home while unobserved. Also, we
are willing to tolerate a higher inter-ping duration as the home-to-city distance
increases as we can reasonably assume that the likelihood of a user making multiple
trips decreases. We formalize these qualitative characterizations of distinct visits in
a two-steps algorithm that we further describe below.

First, we detect sequences of consecutive pings at a visited city. In this first
step, we use a rather conservative criterion and, for any given user 𝑖, we allow
for a maximum inter-ping time 𝜖𝑖

𝑣𝑖𝑠𝑖𝑡
that corresponds to a return trip in straight

line between the considered ping and the home location at a constant speed of
40 km/h. We introduce “home flags” that indicate when a user was observed
back to her home location between two consecutive sequences of pings at a visited

36In Kenya, the top 100 users in the high-confidence set account for 56% of the total number of
pings. In Nigeria and Tanzania, this ratio is estimated at 21% and 32% respectively.

37See Appendix Section 1.B. We calculate city-level population values by overlaying city polygons
with 2018 World Population map and consider the subsets of cities above 50,000 inhabitants.
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city. In fact, here we adopt a looser definition for home that we deem sufficient
to consider that the user returned home between what therefore qualifies as two
distinct visits: (i) the home city for urban residents and (ii) a 5-km buffer centered
in the estimated home location for non-urban users. Second, we allow for some
grouping of consecutive sequences of pings at the same visited city according to
a set of well-defined rules: (i) consecutive sequences of pings at the same visited
city within a single day are grouped to form a unique visit,38 (ii) if the travel time
between the visited city centroid and the home location is less than 2 hours, we
group together sequences of pings that are less than 12 hours apart,39 (iii) if the
travel time between the visited city centroid and the home location is strictly beyond
2 hours, we group together sequences of pings that are less than 36 hours apart.
With criterion (i), we allow for the possibility of commuters being observed early in
the morning and late in the afternoon in their destination city. This is also relevant
for visits to the closest cities where 𝜖𝑖

𝑣𝑖𝑠𝑖𝑡 ,𝑐
is small and potentially leads to separate

sequences of pings to a visited city on a given day when those are most likely part
of the same visit. Criterion (ii) basically allows for users to spend a night in a
nearby city and therefore be unobserved for that period of time. For instance, a
sequence of pings in Nairobi ending at 9pm one night followed by another starting
at 7am the day after from a user residing in Thika (approximately a 1h drive) will
be considered as a single visit to Nairobi. Similarly, criterion (iii) allows for two
nights away to more distant cities without being observed, i.e. it is sufficient to
see the user at the visited city on one night and in the morning two days after to
consider that we are observing the same visit.

Having identified sets of pings belonging to individual visits to cities, we
then provide estimates for their duration. We define the lower-bound estimate
for the duration of the 𝑚𝑡ℎ visit to city 𝑐 for user 𝑖, 𝑣 𝑖𝑚,𝑐 = (𝑎 𝑖

𝑗𝑚,𝑐
, ..., 𝑎 𝑖

𝑗′𝑚,𝑐
), as

the time elapsed between the first and last ping of the identified sequence 𝑣 𝑖𝑚,𝑐 ,
𝑇𝑚𝑖𝑛(𝑣 𝑖𝑚,𝑐) = 𝑡 𝑖𝑗′𝑚,𝑐 − 𝑡

𝑖
𝑗𝑚,𝑐

. The upper-bound estimate is the time elapsed between the
pings preceding and following 𝑣 𝑖𝑚,𝑐 , so 𝑇𝑚𝑎𝑥(𝑣 𝑖𝑚,𝑐) = 𝑡 𝑖𝑗′𝑚,𝑐+1 − 𝑡

𝑖
𝑗𝑚,𝑐−1.

1.A.6 Algorithm to identify places visited within cities

We identify and characterize the places where visitors to cities are seen based on
free and open source data from OpenStreetMap. Geographic elements are defined
using mainly two data types. Nodes are points are typically used to map features

38Note that we still allow for multiple visits to a city in a single day in cases where the user is
effectively observed in the home location vicinity.

39In this second step, we use a more precise estimate of the travel time between visited city
and home location. Driving times are calculated using Google Maps API through the R drive_time
function (placement package). Also, the time elapsed between two consecutive sequences is defined
as the time between the last ping of the first sequence and the first ping of the second sequence.
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considered without a size (e.g. road signs, wells, statues, electric poles). Ways are
ordered lists of nodes that represent either a polyline (e.g. a road) or a polygon if
they form a closed line. Metadata in the form of tags provide attribute information
on map objects such as their type, their name or their unique identifier. OSM
covers a vast array of mapable features, from buildings, to roads, to industrial
or residential zones. For each city, we construct a shapefile of polygons defining
places that we can easily characterize. By overlaying those polygons with visitors’
ping locations, we are able to gain insights into the type of places our users visit
and provide some characterization for the purpose of their trips. In what follows,
we describe in full details the procedure we adopted to construct spatial datasets
of places within cities from raw OSM data.

First, we create a standard categorization of places. Each category can be
thought of as a set of places that reflect a distinguishable purpose. For instance, a
user seen in residential areas is most likely visiting friends or relatives, whereas
pings in commercial or industrial zones are rather indicative of an individual
conducting business activities. Second, we map raw OSM features into those
categories. OSM country extracts are downloaded from Geofabrik website (down-
load.geofabrik.de).40 Each country archive contains a set of files that classify OSM
features into different layers. We primarily used six layers: places of interest, points
of interest, buildings, places of worship, roads, and landuse.41 The procedure used
to process and assign features to our categories varies across layers depending on
the nature of spatial objects (polygons versus points) and attribute information
available. We describe below the method used to categorize raw features for each
individual layer.

Places of interest. This layer contains polygon features with a well-defined
“feature class” attribute with values that can easily be mapped into our categories.

Points of interest. Points of interest are point features (i.e. nodes), also with a
feature class attribute. Many of those points actually define places which were not
delineated and entered in as polygons, but are only associated with unique point
locations that roughly correspond to the center of those hypothetical polygons. We
approximate the extent of those places by simply transforming points to square
polygons of 400𝑚2 (20𝑚×20𝑚) and we incorporate these elements in our database.42

40The country extracts we used reflect the state of the OSM database at the date when the analysis
was conducted, i.e. 21 September, 2021.

41Other layers include natural features, traffic-related objects, railways, waterways and water
bodies. None of those contain features that are relevant to our categories (and which cannot be found
in the layers that we use).

42We acknowledge this is a relatively crude approximation but it allows us to retain as many
elements as possible with a minimal risk of overestimating the extent of places given the conservative
area considered (400𝑚2). The resulting features are then assigned to categories of places based on
the feature class attribute, using the same correspondence matrix as for places of interest.

https://download.geofabrik.de/
https://download.geofabrik.de/
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Buildings. Buildings are polygon features with two useful attributes: “type”
and “name”. They do not have a feature class attribute but can be assigned to our
categories by first using the type attribute;43 However, most building features have
a missing type value and cannot be categorized on that basis.44 For those elements,
we still attempt to assign a category by matching key words to the name attribute.
For instance, one feature of the buildings layer for Nairobi has a missing type but a
name value “Parklands primary school”, which we assign to the education category
based on the presence of the word “school”.

Places of worship. This layer specifically gathers identifiable places of worship
such as cathedrals, chapels, churches, mosques and synagogues. It is comprised
of both polygons and points. Polygons are integrated as such in our dataset as
elements of the “worship” category. As with points of interest, worship points
are converted into squared polygons of 400𝑚2 which are then added to the set of
worship features.

Roads. The roads layer is comprised of a comprehensive set of polylines
describing road networks. We convert those lines into road bands (i.e. road
polygons) by applying a standard 12m buffer. These polygons are useful to identify
pings that fall on major roads and clearly reflect a user moving around the city by
car, bus or any other transport mode. In this respect, we only keep roads classified
as “trunk”, “primary” or “secondary”. We acknowledge that misalignment and
road width smaller than the imposed buffer may lead to mismatches between our
polygons and the actual roads. We therefore label this category as “roads and
roadsides” to account for the fact that our road bands may in fact overlap with
sidewalks.

Landuse. The landuse layer contains features with a “landuse=*” tag in the
OSM database. The value of the landuse tag is reported in a “feature class” attribute
in the Geofabrik landuse layer. Landuse features typically map areas (e.g. an
industrial zone or a residential neighborhood) rather than buildings but allow
to usefully complement our dataset. In fact, other layers provide information
that allow to precisely characterize places at the building-level, but they typically
show large fractions of features with missing attributes that thus remain without a
category assigned. This is especially true of the buildings layer that usually accounts
for the bulk of features found in the Geofabrik archives.45 While we acknowledge

43The type attribute in Geofabrik extracts simply corresponds to the value of the “building=*” tag
in natives OSM elements.

44For instance, for the city of Nairobi in Kenya, the buildings layer has 109,730 features, of which
94% have missing type value. We get comparable proportions of missing values in other cities of our
sample.

45Across the six cities that we consider in our analysis (Lagos, Abuja, Nairobi, Mombasa, Dar es
Salaam, Dodoma), the fraction of features in the buildings layer that have neither a type nor a name
attribute ranges from 76% (Dar es Salaam) to 99% (Mombasa).
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landuse elements are second-best compared to a building-level information, we
argue they still provide a useful characterization of places that users may visit.
More importantly, they significantly increase the coverage of our final dataset and
thus also increase the fraction of ping locations eventually matched to an OSM
feature.

Some features are occasionally assigned several categories46 and we force
each feature to map to a unique category by establishing an order of precedence.
The order of priority that we define follows a logic of ranking categories from
the most general to the more specific. For instance, a user seen in a restaurant
within a university campus is primarily considered as having visited the university;
“education” takes precedence over “food and drinks”. The complete list of categories
(and sub-categories) by decreasing order is as follows: education, administration,
justice, health, mobility, leisure, accommodation, sport, food and drinks, shops,
markets, worship, commercial zone, industrial zone, residential. We acknowledge
that this ranking is to some extent arbitrary although cases of multiple assignment
are altogether fairly rare. For instance, in Lagos, only three such cases are found out
of 8,839 categorized features. Also note some features appear in multiple layers and
we make sure to remove duplicates that we identify via the unique OSM identifier
assigned to each feature.

We then proceed with the characterization of locations visited by users. For
each city, we consider the unique set of visitor-locations over which we superimpose
the constructed OSM-based dataset of categorized places (see Table 1.A.2).

Table 1.A.2: Matching rates between OSM features and visitors’ locations, by city.
City Visitors Visitors matched Visitor-locations Visitor-locations matched

N % N %
Lagos 6,689 6,053 90% 965,076 642,304 66.6%
Abuja 4,086 3,293 80.6% 506,868 275,808 54.4%
Nairobi 1,583 1,090 68.9% 511,531 276,807 54.1%
Mombasa 954 587 61.5% 93,608 41,538 44.4%
Dar es Salaam 2,040 1,391 68.2% 503,085 198,976 39.6%
Dodoma 804 800 99.5% 77,823 77,064 99%
Total 16,156 13,214 81.8% 2,657,991 1,512,497 56.9%

Note: This table shows the matching rates between OSM features, visitors and locations
visited for the cities we considered in our analysis: Lagos, Abuja, Nairobi, Mombasa, Dar
es Salaam and Dodoma. We count 16,156 visitors to those six cities for a total of 2,657,991
unique visitor-locations, of which nearly 57% are matched to an OSM feature. Overall, 82%
of visitors have locations matched to an OSM feature which means that, for 4 visitors out
of 5, we are able to characterize some of the places he visited in the host city.

46For instance, a building feature may be categorized via its name attribute which can be something
like “Somename restaurant & hotel”. The words “restaurant” and “hotel” result in the feature being
classified in both the “food and drinks” and “travel” categories.
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Appendix 1.B Definition of city boundaries and regional
capitals

To define city boundaries, we use urban extents from the Global Rural-Urban
mapping project v1.02 produced by Columbia University Center for International
Earth Science Information Network (CIESIN). The original shapefile consists of
polygons delineating urban settlements based on the point location of settlements,
city-level population counts and 1995 DMSP-OLS nighttime lights to infer urban
extents. Spatial extent for smaller settlements that do not emit detectable light are
simply modelled with a buffer proportional to city size.47 Given that most urban
extents are based 1995 nighttime lights data, we apply a 3km buffer to GRUMP
polygons to account for urban growth and better capture commuting zones. We
overlay 2018 WorldPop population grids with GRUMP city polygons to obtain
city-level population estimates and, for the sake of consistency, total population
counts are also based on 2018 population grids. Cities which have boundaries
less than 3km apart are merged. As a result, we find that there are 6, 39, and
10 cities of at least 200,000 people in Kenya, Nigeria and Tanzania respectively.
Regional capitals are broadly understood as capital cities for subdivisions of the
first administrative level.48

47The full documentation is available on the dedicated webpage
https://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-ext-polygons-rev02.

48More specifically, Kenya has 47 counties, Nigeria has 36 states and a Federal Capital Territory
and there are 31 regions (or mikoa) in Tanzania. For the 19 regional capitals that have no boundaries
defined in the GRUMP product, we overlay the ArcGIS labelled World Imagery basemap with our
users’ home location rasters and evaluate qualitatively whether some users are found within the
built-up areas of the cities considered.

https://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-ext-polygons-rev02
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Appendix 1.C Sample selection: Comparing respondents
by device ownership

Figure 1.C.1: Device ownership by gender.
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Note: This figure shows device ownership rates for female and male respondents. All
figures use the sample weights provided.

Figure 1.C.2: Income and device ownership.
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Note: This figure shows the distribution of income by device ownership. All figures use
the sample weights provided. The figure shows that while there are differences in these
distributions such that those with no mobile phone tend to have the lowest incomes, the
distributions overlap across a large range of monthly incomes. This is particularly the case
for individuals that have any type of mobile phone.

Figure 1.C.3: Education and device ownership.
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Note: This figure shows the distribution of education by device ownership. All figures use
the sample weights provided. The figure highlights that these distributions are not distinct.

To further understand how smartphone users differ from the rest of the popu-
lation and to interpret our data, the sectoral composition of smartphone users is
relevant. The ICT Access and Usage Survey does not ask for the sector of employ-
ment, but does ask for income from different sources.49 We use this information to

49The precise question is “How much income do you have every month in terms of ...?" If incomes
are varying the interviewers are requested to ask for a typical amount.
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Figure 1.C.4: Age and device ownership.
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Note: This figure shows the distribution of age by device ownership. All figures use the
sample weights provided. The figure highlights that these distributions are not distinct.

assign a main income source to each respondent in Table 1.C.1.50

Table 1.C.1: Smartphone ownership and main source of income.

Kenya Nigeria Tanzania
(1) (2) (3) (4) (5) (6)

Rural
Salary or wage 54.9 26.7 24.3 8.4 51.6 15.0
Agricultural produce/farming 9.9 34.0 8.7 25.3 18.6 34.2
Vending/trading 3.8 1.8 11.0 15.2
Work you are doing at home 1.2 5.0 2.4 2.0 0.0 0.5
Income from your business 6.0 8.9 14.4 19.1 20.6 10.7
Property income/letting 0.0 0.1 0.0 0.4 0.0 0.4
Pension, social grant 0.0 1.4 3.3 0.9 1.7 0.6
Allowance 6.3 11.2 33.9 26.9 3.6 37.4
Scholarships 0.8 0.5 0.0 0.1
Investments 6.6 4.5 1.9 0.3
Other income 10.5 6.0 0.0 1.4 3.9 1.2
Urban
Salary or wage 50.7 47.4 23.2 16.8 40.0 29.0
Agricultural produce/farming 1.6 4.1 0.4 2.3 0.8 6.5
Vending/trading 2.1 2.4 6.1 10.3 0.9 0.6
Work you are doing at home 2.7 2.3 0.4 2.6 0.3 0.7
Income from your business 18.3 18.6 29.1 26.5 16.9 18.0
Property income/letting 0.0 0.7 1.9 1.7 0.3 1.1
Pension, social grant 0.3 0.5 3.5 2.3 0.0 1.1
Allowance 21.9 20.5 33.0 34.7 40.3 41.6
Scholarships
Investments 0.9 1.0 1.6 1.0 0.1 0.1
Other income 1.6 2.6 0.7 1.9 0.5 1.3

Note: This table shows the proportion of smartphone owners across different categories in
columns (1), (3) and (5) and we compare this to the sample averages in columns (2), (4) and
(6).

50About 1.7 percent of the sample report no income from any source, and 2.4 percent of the sample
report equal amounts for two sectors. For respondents who reported to receive a pension, social
grant, allowances, scholarships, investments or other income, we use the second source of income
they report. We randomly allocate a main sector for respondents who report equal incomes from all
other sources.
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Figure 1.C.5: App usage of smartphone users.
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Note: This figure shows the fraction of smartphone owners using apps weekly or daily. All
figures use the sample weights provided. The figure illustrates that owners of smartphones
use apps regularly.
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Appendix 1.D Sample selection: Pairing users with DHS
information

We link users’ home locations with data from the most recently available De-
mographic and Health Survey (DHS) data to characterize areas where our users
live: the 2014 standard DHS in Kenya, the 2018 standard DHS in Nigeria and the
2015-2016 standard DHS in Tanzania.51 DHS data are geo-referenced at the cluster
level and cluster coordinates are randomly displaced to maintain respondents’
confidentiality.52

We first classify our users within urban and rural categories based on the overlay
of users’ home location with city polygons.53 We then apply two criteria to associate
each user with a set of DHS clusters. First, we select the set of DHS clusters located
within a given distance from her home location (5km for urban users and 10km for
rural users). This yields a set of DHS clusters that are comparable, in some sense,
to the home location of our user. The number of these comparison clusters will be
either zero or a strictly positive number of clusters. Not all these nearby clusters
will offer valid comparisons, however. For example, a user at the outskirts of Dar
es Salaam might be associated with a nearby rural cluster as well as a number
of urban clusters. To ensure that we do not falsely assign an urban cluster as a
comparison location for a rural user (or vice-versa), we add the second criterion
that the cluster’s average population density (calculated over a 5km buffer) must
be within 25% of the average population density that we have computed for the
user’s home location. If this does not hold, we drop the DHS comparison cluster.

Following that methodology, we pair 70% of our users in the high-confidence
sample with at least one DHS cluster (90% in Kenya, 66% in Nigeria, 72% in
Tanzania). Some clusters are paired to more than one user so the matched DHS
sample contains a number of duplicates. In practice, we construct a weighted
subset of unique respondents within paired clusters, with weights being equal to
the number of users each corresponding cluster is matched to. We call the subset of
respondents within paired clusters the ‘’matched DHS‘’ sample.54 Unsurprisingly,
unmatched users are found in low density areas where the probability of selection
in the DHS is lower by design - the average experienced density for unmatched
users is estimated at 2,496 inh./km2 against 8,835 inh./km2 for users with at least

51More information on sampling design at https://dhsprogram.com/.
52Urban clusters are displaced by up to 2 kilometers and rural clusters by up to 5 kilometers with

1% of rural clusters being displaced up to 10 kilometers. The displacement is restricted such that
clusters stay within the administrative 2 area where the survey was conducted.

53See Appendix Section 1.B for details on the definition of city boundaries.
54Some clusters are paired to more than one user so the matched DHS sample contains a number

of duplicates. It is in fact equivalent to the weighted subset of respondents in clusters paired to at
least one user, with weights being equal to the number of users the corresponding cluster is matched
to.

https://dhsprogram.com/
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one paired cluster. In order to examine potential differences between our users
and the population as a whole, we conduct t-tests for equality of means between
the raw DHS and matched DHS samples on a range of household characteristics.
We produce results for rural and urban sub-samples separately to account for
both the prevalence of urban users in our sample and the lower matching rate in
low density areas, which together may lead to results being mainly driven by the
urban component of the sample. We produce t-tests comparing our two weighted
data streams, with bootstrapped standard errors robust to heteroskedasticity. The
survey weights are used for the reference DHS sample while those of the matched
DHS sample correspond to the number of users each cluster is paired with.
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Appendix 1.E Additional tables and figures

Figure 1.E.1: Fraction of users by population density decile, Landscan.

(a) Kenya (b) Nigeria (c) Tanzania
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Figure 1.E.2: Fraction of users by population density decile, WorldPop.

(a) Kenya - Base (b) Kenya - High (c) Kenya - Medium (d) Kenya - Low

(e) Nigeria - Base (f) Nigeria - High (g) Nigeria - Medium (h) Nigeria - Low

(i) Tanzania - Base (j) Tanzania - High (k) Tanzania - Medium (l) Tanzania - Low

Note: This figure shows the fraction of users by population density decile for the base, low-,
medium, and high-confidence samples. Population data are taken from WorldPop.
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Table 1.E.1: T-tests for equality of means between matched DHS and DHS samples,
Kenya.

Variable DHS Matched DHS Difference SE p-value

All

Household size 3.99 3.08 -0.91 0.02 0.000***
Age of HH head 42.93 37.29 -5.64 0.11 0.000***

Education of HH head 8.00 10.32 2.33 0.03 0.000***
Access to electricity 0.37 0.80 0.43 0.01 0.000***

Radio 0.67 0.74 0.06 0.01 0.000***
Television 0.35 0.64 0.29 0.01 0.000***

Rooms per adult 0.66 0.66 0.00 0.00 0.522
Access to piped water 0.44 0.79 0.35 0.01 0.000***

Constructed floor 0.53 0.90 0.37 0.01 0.000***
Constructed walls 0.64 0.92 0.28 0.01 0.000***
Constructed roof 0.89 0.99 0.10 0.01 0.000***

Urban

Household size 3.28 3.02 -0.26 0.03 0.000***
Age of HH head 38.60 36.82 -1.78 0.17 0.000***

Education of HH head 9.90 10.46 0.56 0.05 0.000***
Access to electricity 0.68 0.83 0.15 0.02 0.000***

Radio 0.74 0.74 0.00 0.01 0.774
Television 0.56 0.65 0.09 0.02 0.000***

Rooms per adult 0.68 0.66 -0.02 0.01 0.001***
Access to piped water 0.71 0.82 0.11 0.02 0.000***

Constructed floor 0.82 0.92 0.10 0.01 0.000***
Constructed walls 0.86 0.94 0.07 0.01 0.000***
Constructed roof 0.98 0.99 0.01 0.00 0.002***

Rural

Household size 4.52 4.33 -0.19 0.02 0.000***
Age of HH head 46.15 46.60 0.45 0.16 0.005***

Education of HH head 6.58 7.58 0.99 0.04 0.000***
Access to electricity 0.13 0.21 0.08 0.01 0.000***

Radio 0.63 0.70 0.07 0.01 0.000***
Television 0.19 0.25 0.07 0.01 0.000***

Rooms per adult 0.64 0.67 0.03 0.00 0.000***
Access to piped water 0.24 0.25 0.01 0.02 0.464

Constructed floor 0.31 0.38 0.07 0.01 0.000***
Constructed walls 0.46 0.46 0.00 0.02 0.949
Constructed roof 0.82 0.93 0.11 0.01 0.000***

Note: This table compares the means between the overall DHS sample and the “Matched
DHS” sample (DHS clusters with which we can match smartphone app users). We show
a t-test that compares the two data sets, with bootstrapped standard errors robust to
heteroskedasticity. Survey weights are used for the reference DHS sample, while those for
the matched DHS sample correspond to the number of users each cluster is paired with.
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Table 1.E.2: T-tests for equality of means between DHS and matched DHS samples,
Nigeria.

Variable DHS Matched DHS Difference SE p-value

All

Household size 4.69 3.83 -0.86 0.02 0.000***
Age of HH head 45.29 45.17 -0.12 0.12 0.344

Education of HH head 7.43 11.52 4.10 0.04 0.000***
Access to electricity 0.60 0.98 0.39 0.01 0.000***

Radio 0.61 0.84 0.24 0.01 0.000***
Television 0.49 0.90 0.41 0.01 0.000***

Rooms per adult 0.74 0.65 -0.09 0.00 0.000***
Access to piped water 0.11 0.14 0.03 0.01 0.003***

Constructed floor 0.74 0.96 0.23 0.01 0.000***
Constructed walls 0.84 1.00 0.16 0.01 0.000***
Constructed roof 0.89 1.00 0.11 0.01 0.000***

Urban

Household size 4.44 3.83 -0.61 0.03 0.000***
Age of HH head 45.21 45.18 -0.02 0.18 0.900

Education of HH head 9.66 11.56 1.91 0.06 0.000***
Access to electricity 0.88 0.99 0.11 0.01 0.000***

Radio 0.72 0.85 0.13 0.01 0.000***
Television 0.73 0.90 0.18 0.01 0.000***

Rooms per adult 0.72 0.65 -0.08 0.01 0.000***
Access to piped water 0.14 0.14 -0.01 0.01 0.572

Constructed floor 0.89 0.96 0.08 0.01 0.000***
Constructed walls 0.95 1.00 0.04 0.01 0.000***
Constructed roof 0.98 1.00 0.02 0.00 0.000***

Rural

Household size 4.85 3.92 -0.93 0.03 0.000***
Age of HH head 45.34 44.77 -0.57 0.16 0.000***

Education of HH head 6.03 10.23 4.20 0.06 0.000***
Access to electricity 0.42 0.84 0.42 0.02 0.000***

Radio 0.54 0.67 0.14 0.01 0.000***
Television 0.35 0.77 0.43 0.01 0.000***

Rooms per adult 0.75 0.75 0.01 0.01 0.503
Access to piped water 0.09 0.14 0.05 0.01 0.000***

Constructed floor 0.64 0.96 0.32 0.01 0.000***
Constructed walls 0.77 0.98 0.21 0.01 0.000***
Constructed roof 0.83 0.99 0.16 0.01 0.000***

Note: This table compares the means between the overall DHS sample and the “Matched
DHS” sample (DHS clusters with which we can match smartphone app users). We show
a t-test that compares the two data sets, with bootstrapped standard errors robust to
heteroskedasticity. Survey weights are used for the reference DHS sample, while those for
the matched DHS sample correspond to the number of users each cluster is paired with.
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Table 1.E.3: T-tests for equality of means between DHS and matched DHS samples,
Tanzania.

Variable DHS Matched DHS Difference SE p-value

All

Household size 5.03 4.33 -0.70 0.04 0.000***
Age of HH head 45.43 41.66 -3.77 0.22 0.000***

Education of HH head 5.90 8.33 2.42 0.05 0.000***
Access to electricity 0.23 0.78 0.55 0.02 0.000***

Radio 0.52 0.66 0.14 0.01 0.000***
Television 0.21 0.65 0.44 0.02 0.000***

Rooms per adult 0.61 0.59 -0.02 0.00 0.000***
Access to piped water 0.38 0.67 0.29 0.02 0.000***

Constructed floor 0.44 0.95 0.51 0.02 0.000***
Constructed walls 0.80 0.98 0.18 0.01 0.000***
Constructed roof 0.75 0.99 0.24 0.01 0.000***

Urban

Household size 4.54 4.30 -0.24 0.07 0.001***
Age of HH head 42.22 41.56 -0.67 0.37 0.073*

Education of HH head 8.01 8.40 0.39 0.10 0.000***
Access to electricity 0.63 0.80 0.17 0.03 0.000***

Radio 0.65 0.66 0.01 0.02 0.462
Television 0.52 0.67 0.14 0.03 0.000***

Rooms per adult 0.62 0.59 -0.03 0.01 0.000***
Access to piped water 0.67 0.67 0.00 0.04 0.980

Constructed floor 0.87 0.96 0.09 0.02 0.000***
Constructed walls 0.96 0.98 0.03 0.01 0.005***
Constructed roof 0.97 0.99 0.02 0.01 0.002***

Rural

Household size 5.21 5.04 -0.16 0.05 0.002***
Age of HH head 46.61 44.40 -2.21 0.27 0.000***

Education of HH head 5.13 6.28 1.14 0.07 0.000***
Access to electricity 0.08 0.31 0.23 0.02 0.000***

Radio 0.47 0.59 0.12 0.01 0.000***
Television 0.09 0.29 0.20 0.02 0.000***

Rooms per adult 0.61 0.63 0.03 0.01 0.000***
Access to piped water 0.27 0.54 0.27 0.03 0.000***

Constructed floor 0.27 0.65 0.37 0.02 0.000***
Constructed walls 0.73 0.85 0.12 0.02 0.000***
Constructed roof 0.67 0.89 0.22 0.02 0.000***

Note: This table compares the means between the overall DHS sample and the “Matched
DHS” sample (DHS clusters with which we can match smartphone app users). We show
a t-test that compares the two data sets, with bootstrapped standard errors robust to
heteroskedasticity. Survey weights are used for the reference DHS sample, while those for
the matched DHS sample correspond to the number of users each cluster is paired with.

Table 1.E.4: Mobility metrics for the high-confidence set and the overall sample.
Kenya Nigeria Tanzania

Overall High-confidence Overall High-confidence Overall High-confidence
Fraction of days with mobility >10km 0.13 0.14 0.11 0.15 0.13 0.12
Mean distance away from home 40.23 37.10 34.65 38.63 55.69 52.17

Note: This table shows the fraction of days with mobility > 10km and mean distance away
from home for different samples.
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Figure 1.E.3: Fraction of days with mobility beyond 10km by density bin, for all
confidence sets.

(a) Kenya - Base (b) Kenya - Low (c) Kenya - Medium (d) Kenya - High

(e) Nigeria - Base (f) Nigeria - Low (g) Nigeria - Medium (h) Nigeria - High

(i) Tanzania - Base (j) Tanzania - Low (k) Tanzania - Medium (l) Tanzania - High

Note: This figure shows the fraction of days on which a user is seen more than 10km away
from their home location by density decile over the period of a year.

Table 1.E.5: Mean fraction of days with mobility at 3 distance thresholds for 3
subsets, by country.

Distance criterion HIGH MED LOW
0 km 39.8% 39.5% 38.8%

Kenya 10 km 13.8% 13.5% 13.2%
20 km 7.2% 7.2% 7.3%
0 km 47% 46.7% 45.9%

Nigeria 10 km 15.2% 14.9% 14.2%
20 km 8.9% 8.7% 8.4%
0 km 42.7% 42.7% 43.1%

Tanzania 10 km 11.8% 11.8% 12%
20 km 7.3% 7.4% 7.8%

Note: This table shows the fraction of days with mobility for different thresholds and
samples.
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Table 1.E.6: Average distribution of pings across visited density bins by home
density bin, transit pings included.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 40.5% 7% 2.1% 1.2% 1.7% 1.4% 1.3% 1.6% 0.6% 0.3%
2 8.5% 28.7% 13.2% 2.4% 1.7% 1.6% 1.3% 1.4% 0.7% 0.5%
3 3.7% 8.5% 16.3% 9.3% 6% 3.1% 3% 2.1% 1.1% 0.6%
4 3.4% 3.9% 13.5% 14.2% 10.7% 6.4% 3.9% 2.1% 1.3% 0.8%
5 6% 4.5% 8.5% 11.1% 12.7% 10.2% 5% 4.2% 1.7% 0.9%
6 3.4% 2.8% 3.9% 6.2% 9.5% 15.9% 8.2% 4.8% 1.9% 1.1%
7 2.4% 1.7% 5.3% 7.3% 7.6% 12% 14.1% 8.5% 3.3% 1.9%
8 7.7% 8.8% 10.2% 10.6% 13.9% 15.1% 19.1% 22.1% 8.5% 4.2%
9 16.8% 23.3% 18.1% 28.1% 25.8% 25.6% 32.8% 39.4% 54% 37.7%
10 7.6% 10.8% 8.9% 9.6% 10.4% 8.9% 11.4% 13.8% 26.8% 52%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 7.2% 2.1% 2% 0.8% 0.4% 0.2% 0.1% 0.1% 0.1% 0.1%
2 7.9% 10.9% 6.6% 1.5% 0.7% 0.4% 0.3% 0.2% 0.2% 0.1%
3 3.2% 7.9% 10% 8.1% 1.6% 1% 0.5% 0.3% 0.2% 0.1%
4 3.4% 4.1% 10.1% 6.5% 5.1% 2.6% 0.9% 0.5% 0.4% 0.3%
5 2.9% 5.1% 8.1% 10.2% 10.8% 5.7% 2.6% 1.4% 1% 0.6%
6 9.5% 4.4% 4.3% 10.7% 14.8% 21.4% 8.4% 3.4% 2% 1.2%
7 6.1% 12.8% 11.4% 12.4% 15.6% 21.8% 26.6% 12% 4.9% 2.3%
8 18.2% 15.6% 11.6% 13.5% 13.7% 13.7% 22.7% 30.5% 14.2% 4.8%
9 29.4% 26% 25% 24.6% 25.5% 20.9% 26.4% 40.2% 56.9% 19.1%
10 12.3% 11.1% 10.8% 11.7% 11.8% 12.4% 11.5% 11.3% 20.2% 71.5%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 41.3% 11.5% 2.3% 1.8% 2.3% 1% 1% 0.5% 0.3% 0.2%
2 3.2% 17.7% 7.3% 5.5% 2.1% 2% 1.2% 0.6% 0.3% 0.1%
3 1.5% 6.3% 12.9% 9% 8% 2% 1.6% 0.7% 0.3% 0.2%
4 2.1% 8.2% 10.4% 12% 10.7% 3.8% 2.4% 0.9% 0.5% 0.3%
5 1.8% 6.1% 9.6% 9.3% 9.8% 8.7% 4.3% 1.7% 0.8% 0.3%
6 3.3% 1.3% 4.2% 11.7% 13.5% 16.9% 9.8% 2.4% 1.3% 0.6%
7 3.2% 9.5% 6% 12.3% 9.6% 16.4% 25.2% 8.4% 3% 1.2%
8 12.8% 12.4% 14.7% 13.1% 13.6% 16.7% 25.1% 40.2% 15% 4.8%
9 13.7% 18.6% 20.4% 14.3% 21.4% 23% 19% 30.5% 50.6% 22.7%
10 17.1% 8.4% 12.2% 11% 8.9% 9.5% 10.5% 14% 27.8% 69.6%

(c) Tanzania

Note: These matrices show the average fraction of non-home pings of users residing in
home density bin i for visited density bin j over the period of a year.
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Table 1.E.7: Average distribution of pings across visited density bin, by home
density bin, transit pings excluded.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 40% 7.1% 2.1% 1.2% 1.5% 1.4% 1.3% 1.5% 0.6% 0.3%
2 8.2% 28.5% 13.2% 2.3% 1.6% 1.5% 1.3% 1.3% 0.7% 0.5%
3 3.5% 8.6% 16.3% 9.1% 5.9% 3% 3% 2% 1.1% 0.6%
4 3.3% 3.9% 13.3% 14.3% 10.8% 6.2% 3.8% 2% 1.2% 0.8%
5 6% 4.5% 8.5% 11.2% 12.3% 10.2% 4.9% 4.1% 1.7% 0.9%
6 3.4% 2.7% 3.7% 6.2% 9.6% 15.8% 8.2% 4.7% 1.9% 1.1%
7 2.8% 1.6% 5.3% 7.2% 7.4% 11.8% 14.1% 8.4% 3.3% 1.9%
8 7.4% 8.7% 10% 10.4% 13.7% 15.1% 18.9% 21.9% 8.5% 4.2%
9 17.2% 23.6% 18.2% 28.5% 26.4% 26% 33.2% 40% 54.3% 37.9%
10 8.1% 10.8% 9.2% 9.7% 10.7% 9% 11.4% 14% 26.9% 52.1%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 7% 2.1% 1.9% 0.8% 0.4% 0.2% 0.1% 0.1% 0.1% 0%
2 8.2% 10.8% 6.7% 1.5% 0.7% 0.4% 0.3% 0.2% 0.1% 0.1%
3 3.3% 7.9% 10.1% 8.2% 1.6% 0.9% 0.5% 0.3% 0.2% 0.1%
4 3.4% 4.1% 10.1% 6.7% 5.1% 2.6% 0.9% 0.5% 0.4% 0.2%
5 2.8% 5.1% 8.1% 9.9% 10.8% 5.6% 2.6% 1.4% 1% 0.5%
6 9.6% 4.4% 4.3% 10.5% 14.8% 21.4% 8.4% 3.4% 2% 1.2%
7 6% 12.7% 11.4% 12.3% 15.5% 21.8% 26.6% 12.1% 4.8% 2.3%
8 18.2% 15.6% 11.6% 13.6% 13.8% 13.8% 22.7% 30.6% 14.2% 4.8%
9 29.3% 26.1% 24.8% 24.8% 25.5% 20.9% 26.4% 40.2% 57% 19.1%
10 12.2% 11.1% 10.9% 11.8% 11.8% 12.4% 11.5% 11.3% 20.2% 71.7%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 41.5% 11.8% 2.3% 1.8% 2.3% 1% 1% 0.5% 0.3% 0.2%
2 3.1% 17.3% 7.3% 5.5% 2.1% 2.1% 1.1% 0.5% 0.2% 0.1%
3 1.5% 6.1% 13% 8.9% 7.9% 1.9% 1.5% 0.6% 0.3% 0.2%
4 2% 8% 10.4% 12% 10.6% 3.8% 2.3% 0.7% 0.4% 0.3%
5 1.7% 6.3% 9.6% 9.4% 9.6% 8.6% 4.2% 1.6% 0.7% 0.3%
6 3.1% 1.1% 4.2% 11.6% 13.3% 16.7% 9.6% 2.2% 1.2% 0.5%
7 3% 9.3% 5.9% 12.4% 9.5% 16.2% 25.1% 8.2% 2.8% 1.2%
8 12.8% 12.8% 14.7% 13.1% 13.8% 16.5% 25.1% 40.3% 15% 4.7%
9 14.1% 17.9% 20.5% 14.3% 22.1% 23.6% 19.3% 30.9% 51% 22.9%
10 17.2% 9.6% 12.2% 11.1% 8.7% 9.6% 10.8% 14.4% 28% 69.8%

(c) Tanzania

Note: These matrices show the average fraction of non-home pings of users residing in
home density bin i for visited density bin j over the period of a year, excluding transit pings.
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Table 1.E.8: Share of users by home bin-visited bin pair, transit pings excluded.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 71.2% 32.9% 14% 11.1% 11.4% 13.2% 12.1% 13.9% 8.7% 5.6%
2 43.2% 60.8% 37.7% 24.9% 18.9% 17.1% 17.2% 19.3% 13.3% 9.6%
3 25.2% 45.6% 55.1% 41.1% 34.9% 28.4% 26.5% 24.1% 17.6% 13.2%
4 34.2% 32.9% 51.3% 56.6% 46.2% 37.7% 33.9% 27.5% 22.1% 16.5%
5 29.7% 25.3% 42.3% 51.5% 52.4% 48.3% 37.5% 34.3% 24.1% 17.8%
6 27% 24.7% 28.7% 46.1% 46.2% 54.6% 46.8% 37.3% 25.5% 18.4%
7 27% 27.8% 34.7% 42.4% 43.8% 55.8% 57.7% 47.5% 34.1% 23.6%
8 42.3% 44.3% 45.3% 55.9% 56.8% 60.8% 68.1% 69.3% 50.3% 35.4%
9 55.9% 53.8% 53.6% 65.3% 65.1% 67.8% 72.1% 79.8% 89.8% 76%
10 32.4% 36.1% 30.2% 41.4% 37.3% 40.1% 45.4% 51.3% 69.9% 88.6%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 35.7% 18.8% 18.8% 6.3% 5.7% 3.5% 2.9% 2.7% 2.2% 1.3%
2 23.8% 31.9% 35% 12.2% 12.1% 8.3% 6.2% 5.5% 4.6% 2.8%
3 26.2% 29% 40.6% 31.6% 18% 12.5% 9.6% 8% 6.5% 4.2%
4 31% 26.1% 44.9% 35% 31.7% 21.7% 14.1% 11.3% 10.4% 6.4%
5 23.8% 33.3% 42.7% 45.3% 50.6% 37.1% 26.2% 20.2% 19.4% 14.6%
6 33.3% 33.3% 36.8% 53% 59.5% 68.6% 45.2% 30.9% 26.2% 17%
7 42.9% 55.8% 49.6% 52.8% 63.6% 69.9% 75.9% 55.9% 39.3% 25.1%
8 71.4% 58% 54.3% 58.4% 61.1% 59.6% 72.5% 81% 63.4% 37.6%
9 76.2% 61.6% 62.8% 62.5% 66.8% 63.9% 68.3% 81.1% 91.4% 64.5%
10 42.9% 44.2% 41.9% 44.5% 49.9% 47.7% 46.7% 46.7% 61.7% 95.3%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 73.6% 33.8% 18.2% 14.3% 13.4% 8.5% 10.2% 7.9% 6.5% 3.6%
2 18.7% 50% 39.1% 27.9% 21.2% 13.1% 13% 9.7% 7.1% 4.1%
3 11% 38.2% 43.6% 38.8% 29% 18.3% 13.9% 11% 8.6% 5.1%
4 13.2% 35.3% 40% 40.1% 37.8% 22.4% 19.3% 13.1% 10% 6.4%
5 16.5% 29.4% 42.7% 39.5% 36.4% 41.4% 25.6% 17.8% 12.2% 7%
6 18.7% 22.1% 35.5% 40.8% 45.2% 49.6% 41.1% 22.4% 15.9% 9.3%
7 29.7% 38.2% 42.7% 46.3% 40.6% 53% 64% 40.8% 25.3% 14.9%
8 42.9% 42.6% 50% 46.9% 50.2% 54.8% 61.9% 82.3% 56.5% 33.2%
9 40.7% 50% 54.5% 48.3% 55.3% 58.9% 55.8% 68.5% 88.4% 66%
10 39.6% 35.3% 30.9% 38.1% 31.8% 38.3% 39.5% 44.7% 64.2% 93.4%

(c) Tanzania

Note: These matrices show the proportion of users residing in home density bin i that are
seen at least once in visited density bin j over the period of a year, transit pings excluded.
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Table 1.E.9: Origin of visitors in top 5 cities.
Kenya

Nairobi Mombasa Nakuru Eldoret Kisumu
(1,699 visitors) (953 visitors) (891 visitors) (448 visitors) (437 visitors)

Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors
Mombasa 20.2% Nairobi 68.4% Nairobi 62.5% Nairobi 51.3% Nairobi 57%

Nakuru 4.9% Nakuru 1.5% Eldoret 3.1% Mombasa 3.3% Mombasa 4.6%
Kisumu 4.1% Kisumu 0.6% Mombasa 2.9% Kisumu 2.9% Eldoret 2.3%
Eldoret 4.1% Eldoret 0.5% Kisumu 2% Nakuru 2.2% Nakuru 1.4%
Garissa 1.1% Garissa 0.1% Garissa 0.1% - - - -

Non-urban 65.6% Non-urban 28.9% Non-urban 29.3% Non-urban 40.2% Non-urban 34.8%
Nigeria

Lagos Kano Ibadan Abuja Kaduna
(5,258 visitors) (807 visitors) (2,916 visitors) (3,232 visitors) (1,296 visitors)

Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors
Abuja 21.9% Abuja 43.5% Lagos 68.7% Lagos 47% Abuja 54.9%

Ibadan 13.1% Lagos 18.5% Abuja 6.6% Kaduna 8.8% Lagos 12%
Abeokuta 7.4% Kaduna 11% Abeokuta 3.8% Port Harc. 5.3% Kano 10.3%
Shagamu 6.4% Maiduguri 2.9% Ilorin 2.9% Kano 5.2% Zaria 5.9%

Port Harc. 6.4% Zaria 2.9% Shagamu 2.7% Jos 3.2% Katsina 1.7%
Other urb. 5.7% Other urb. 2.5% Other urb. 2.4% Other urb. 2.6% Other urb. 1.2%
Non-urban 39.1% Non-urban 18.8% Non-urban 12.9% Non-urban 27.9% Non-urban 13.9%
Tanzania

Dar Es Salaam Zanzibar Mwanza Arusha Mbeya
(1,850 visitors) (743 visitors) (704 visitors) (859 visitors) (395 visitors)

Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors
Arusha 9.7% Dar Es Sa. 53.3% Dar Es Sa. 32.4% Dar Es Sa. 39.5% Dar Es Sa. 38.2%

Zanzibar 8.9% Arusha 4% Arusha 3.1% Moshi 10.4% Mwanza 2.8%
Mwanza 6.7% Mwanza 0.8% Dodoma 1.3% Mwanza 3% Arusha 2.3%

Morogoro 6% Moshi 0.8% Mbeya 0.9% Dodoma 2.3% Dodoma 1.8%
Dodoma 4.3% Dodoma 0.8% Moshi 0.7% Zanzibar 2.2% Morogoro 1.5%

Other urb. 3.5% Other urb. 0.3% Other urb. 0.6% Other urb. 1.6% Other urb. 0.8%
Non-urban 61% Non-urban 40% Non-urban 61.1% Non-urban 41% Non-urban 52.7%

Note: This table shows the origin of visitors for the five most populated cities. Origin and
destination city boundaries are defined using 3km-buffered GRUMP polygons. Visitors
are defined as being seen at least once in a location over the year. "Non-urban" refers to
locations outside boundaries of cities with 200,000 or more residents. "Other urb." refers to
all cities that are not in the top 5 origin cities.

Figure 1.E.4: Differences in flows between locations, Kenya
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Note: This figure shows how the distributions of ln(𝑉𝑘(1, 2)/𝑁𝑘1 ∗ 1000) (dashed line) and
ln(𝑉𝑘(2, 1)/𝑁𝑘2 ∗ 1000) (solid line) vary as we change the ratio of populations at origin
and destination. We multiply the number of visits per resident by 1000 and take logs for
expositional purposes.
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Table 1.E.10: Top 5 destinations of residents from top 5 cities.
Kenya

Nairobi Mombasa Nakuru Eldoret Kisumu
(11,290 residents) (1,683 residents) (413 residents) (340 residents) (258 residents)

Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents
Mombasa 5.8% Nairobi 20.4% Nairobi 20.1% Nairobi 20.3% Nairobi 27.1%

Nakuru 4.9% Nakuru 1.5% Mombasa 3.4% Nakuru 8.2% Nakuru 7%
Kisumu 2.2% Kisumu 1.2% Eldoret 2.4% Kisumu 2.9% Eldoret 5%
Eldoret 2% Eldoret 0.9% Kisumu 1.5% Mombasa 1.5% Mombasa 2.3%
Garissa 0.3% Garissa 0.1% Garissa 0.2% Garissa 0.6% - -

Non-urban 31.4% Non-urban 24.4% Non-urban 37% Non-urban 38.2% Non-urban 51.9%
Nigeria

Lagos Kano Ibadan Abuja Kaduna
(35,957 residents) (1,496 residents) (2,555 residents) (7,988 residents) (1,303 residents)

Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents
Shagamu 5.9% Abuja 11.2% Lagos 26.9% Lagos 14.4% Abuja 21.8%

Ibadan 5.6% Kaduna 9% Shagamu 9.2% Kaduna 8.9% Zaria 10.4%
Abuja 4.2% Lagos 6.7% Abeokuta 3.8% Kano 4.4% Kano 6.8%

Abeokuta 2.8% Zaria 5.9% Oshogbo 3.5% Zaria 3% Lagos 5.8%
Benin City 2.1% Katsina 2.2% Abuja 3.3% Port Harc. 2.7% Katsina 2.2%
Other urb. 14.1% Other urb. 12.1% Other urb. 20.8% Other urb. 33.6% Other urb. 19.1%
Non-urban 20.9% Non-urban 21.9% Non-urban 25.5% Non-urban 32.2% Non-urban 28.2%
Tanzania

Dar Es Salaam Zanzibar Mwanza Arusha Mbeya
(10,370 residents) (832 residents) (963 residents) (1,253 residents) (439 residents)

Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents
Morogoro 4.9% Dar Es Sa. 19.8% Dar Es Sa. 12.9% Moshi 14.9% Dar Es Sa. 14.6%
Zanzibar 3.8% Arusha 2.3% Dodoma 3.6% Dar Es Sa. 14.3% Morogoro 3.4%
Dodoma 3.7% Dodoma 1.4% Arusha 2.7% Dodoma 2.9% Dodoma 3%

Arusha 3.3% Tanga 1.3% Morogoro 1.7% Zanzibar 2.4% Arusha 2.5%
Moshi 2.4% Morogoro 1% Moshi 1.3% Mwanza 1.8% Mwanza 1.4%

Other urb. 5.9% Other urb. 0.7% Other urb. 2.4% Other urb. 3.9% Other urb. 1.1%
Non-urban 26.4% Non-urban 36.5% Non-urban 37.8% Non-urban 42.9% Non-urban 36.4%

Note: This table shows the destinations of residents for the five most populated cities.
Origin and destination city boundaries are defined using 3km-buffered GRUMP polygons.
Visitors are defined as being seen at least once in a location over the year. "Non-urban"
refers to locations outside boundaries of cities with 200,000 or more residents. "Other urb."
refers to all cities that are not in the top 5 origin cities.



Chapter 2

Deriving Granular Temporary
Migration Statistics from Mobile
Phone Data

2.1 Introduction

A growing body of research has highlighted the importance of temporary migration
within developing countries. These flows of internal movements have been found
to be very common and to largely exceed permanent moves (Baker and Aina,
1995; Coffey et al., 2015; Delaunay et al., 2016). They have at first been portrayed
as a sign of failure of rural livelihoods (Findley, 1994; Schareika, 1997) but have
also been described more recently as a structural component within households’
livelihood strategies. For instance, Coffey et al. (2015) identify temporary labor
migration to cities in India as a long-term economic strategy whereby households
enjoy short-term work opportunities during the agricultural off-season. Similarly,
Delaunay et al. (2016) document the prominence of temporary movements and their
role as a complementary source of income used to mitigate risks or cover education
costs in rural Senegal. Additionally, Bryan, Chowdhury, et al. (2014) show that
temporarily migrating to urban areas is an effective way for rural households
to cope with seasonal famine in Bangladesh. Other targeted studies have also
provided key insights into the interaction of temporary migration with informal
insurance networks (Munshi and Rosenzweig, 2016; Meghir et al., 2019; Morten,
2019), and its consequences for origin and destination markets (Akram et al., 2017;
Imbert and Papp, 2020b).

Despite its proven significance in economic decisions, temporary migration is
seldom integrated in national statistical systems in a systematic way. Key studies
cited above such as Bryan, Chowdhury, et al. (2014), Coffey et al. (2015), and
Delaunay et al. (2016) or Imbert and Papp (2020b) rely on targeted surveys with

63
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a limited geographic scope. Temporary migration patterns remain otherwise
poorly documented at national scales – especially in sub-Saharan Africa. As a
matter of fact, short-term movements are intrinsically difficult to measure (e.g.
due to attrition and recall biases) and require specialized – and oftentimes costly
– surveys (Lucas, 1997). More importantly, the rare surveys measuring tempo-
rary migration often adopt standard definitions that do not necessarily allow to
capture relatively short trips, which are nonetheless frequent. For example, the
targeted survey conducted by Coffey et al. (2015) in rural North India reveals
that half of temporary labor migration trips last for less than 30 days. They
conclude that migration surveys such as India’s National Sample Survey (NSS)
that define temporary migration with high minimum duration thresholds – i.e.
greater than one month – would significantly underestimate short-term movements.

In this respect, mobile phone data have emerged as a promising complement to
traditional survey methods for measuring human mobility at larger scales, and with
a spatio-temporal granularity allowing to capture subtler movements (González
et al., 2008; Jurdak et al., 2015). As a result, a relatively recent body of research has
exploited digital traces to infer various types of movements including commuting
(Kreindler and Miyauchi, 2021; Miyauchi et al., 2021), short visits (see Chapter 1),
internal migration (Blumenstock, 2012) and international migration (Ruktanonchai
et al., 2018; Spyratos et al., 2019). The potential offered by these new mobility
measures to deliver powerful ways of investigating a wide range of topics has been
demonstrated in a number of studies. For instance, some have exploited mobile
phone data to quantify the impact of human mobility flows on the transmission of
infectious diseases (Wesolowski, Eagle, Tatem, et al., 2012; Wesolowski, Metcalf,
et al., 2015; Wesolowski, Buckee, et al., 2016). Others have broadly focused on
migration behaviors such as the link between short-term mobility and migration
(Milusheva et al., 2017; Fiorio et al., 2017), the probability of urban migration in a
developing context (Lavelle-hill et al., 2022), or the relationship between mobile
phone activity and migration patterns (Hong et al., 2019). In some cases, Call
Detail Records (CDR) data allow to describe connections between users and have
therefore been employed to study the role of networks in both short-term mobility
(Phithakkitnukoon et al., 2012) and migration decisions (Büchel et al., 2020; Blu-
menstock, Chi, et al., 2022). More recently, a number of studies have availed of the
ever-increasing availability of GPS-accuracy location data from mobile phones to
bring new perspectives on issues that are central for urban economists, such as
agglomeration effects (Atkin, Chen, et al., 2022; Miyauchi et al., 2021), commuting
and location choices (Kreindler and Miyauchi, 2021), connectedness of locations
via short visits (Chapter 1), or segregation (Athey et al., 2020).
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The production of migration statistics with mobile phone data poses several
challenges. Firstly, mobile phone datasets do not result from a well-defined
sampling strategy; the researcher does not have control over which individuals
are observed and when they are observed. This raises critical questions about the
representativeness of phone users of a broader population (Blumenstock and Eagle,
2010; Sinclair et al., 2023; Wesolowski, Eagle, Noor, et al., 2012, 2013) and the biases
in mobility measures induced by irregularities in the frequency with which users
are observed (Lu, Fang, et al., 2017). In this respect, previous studies have typically
used subsets excluding infrequent phone users (Hankaew et al., 2019; Lai et al.,
2019) but this potentially implies further selection given that phone usage is related
to socio-economic characteristics (Blumenstock and Eagle, 2010), an issue that has
been largely overlooked in the literature.

Secondly, migration events must be identified within user-level digital traces.
This requires the definition of migration criteria and algorithmic rules. Other papers
exploiting mobile phone data to measure migration have used ad hoc methods
that are usually divided into two steps. User-level trajectories with heterogeneous
sampling rates are regularized over the time dimension by defining a location for
each user and time period, which is calculated with a frequency-based method as
the modal location over that time period. Then, migration events are identified
as a location change that persists over some number of consecutive time periods
(Blumenstock, 2012; Hankaew et al., 2019; Lai et al., 2019; Zufiria et al., 2018). Those
methods have three main limitations. First, the regularization of user’s trajectories
at a harmonized but coarser temporal resolution – e.g. by calculating monthly
locations – necessarily causes some measurement error on the exact start and end
dates of migration events and, therefore, on their actual duration. It also implies
that relatively short migration events with a duration that is comparable to the time
resolution considered are potentially missed.1 Third, those methods provide a
limited characterization of the direction of migration flows. Since migration events
are simply identified as a location change, it is not possible to distinguish between
a departure from and a return to a primary home location. This can be problematic,
for instance, for the calculation of the number of individuals identified as being in
migration for any given time period (i.e. the migration stock).

Thirdly, the unique granularity of mobile phone data offers the possibility to
precisely describe fluctuations in temporary migration over time – e.g. seasonal

1For instance, an individual can be seen at his home location from the 1st, March to 16th, March
of some year 𝑦, then temporarily migrate for 28 days from the 17th, March to 14th, April, and be back
home from 15th, April to the end of the month. Since the majority of days in March and April are
spent at the home location, a frequency-based method using monthly locations will assign the user
to that location in both months and the migration event will not be detected.
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movements. However, the production of time-disaggregated temporary migration
measures poses a number of methodological issues. Most notably, periods of
inactivity necessarily induce some degree of uncertainty in the timing and duration
of temporary migration events. This in turn creates situations where, for instance,
the assignment of an identified migration departure date to a particular time period
(e.g. a week or a month) can be ambiguous if the user is unobserved for some
period of time before the departure date.

In this paper, I develop a thorough methodological framework that attempts
to address these different challenges, with the objective of deriving granular
temporary migration statistics from mobile phone metadata.

First, I propose systematic ways to characterize such (non-random) data samples
in order to evaluate their degree of representativeness of a broader population. I
make a clear distinction between two categories of complementary measures that
allow to achieve this. Survey-based statistics inferred from secondary sources allow
to compare the characteristics of mobile phone users and non-users. On the other
hand, a set of sample-based metrics provide a characterization of the specific sample
of mobile phone data at hand and allow to assess the magnitude of cross-sectional
biases. Additionally, I analyze sample characteristics on the time dimension – i.e.
the users’ frequency and length of observation – to address two distinct issues; I
evaluate whether these are fit for the purpose of measuring temporary migration
and I investigate the existence of selection biases on the time dimension. In this
respect, I propose a method to quantify the impact of observational parameters (i.e.
the frequency and length of observation of phone users) on the performance of
the proposed migration detection algorithm. Then, I implement an empirical test
to identify potential patterns of non-random observational gaps, i.e. users being
unobserved precisely when they are in migration. Finally, I discuss issues related
to the selection of a subset of users with minimal observational requirements and I
highlight the existing trade-off that must be made between migration measurement
error on one side, and sample size and selection biases on the other.

Second, I build on Chi et al. (2020) to develop a temporary migration event
detection algorithm that identifies migration spells within phone-based trajectories
using a segment-based approach. Their method is based on the identification
of contiguous sets of days at a primary location – called “location segments” –
with a clustering technique, allowing for idiosyncratic deviations such as short
observational gaps or short visits at a different location. Their approach is showed
to out-perform all versions of traditional frequency-based methods. I also use a
segment-based procedure for the detection of temporary migration events in CDR
trajectories. However, an important addition relies on the estimation of a primary
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residence location – which is defined in most cases as the most frequently observed
location at night over a long time horizon – prior to detecting temporary migration
events. This two-step procedure essentially allows to characterize the direction of
migration flows by distinguishing between departures from and returns to a home
location.2

Third, I develop a methodological approach that transforms user-level migration
trajectories derived from mobile phone data into consistent migration statistics at
various spatial and temporal scales. The paper specifically addresses the challenges
posed by sampling irregularities for the disaggregation of migration measures
on the time dimension. In this respect, I construct a set of rules allowing to
optimize the amount of information provided in phone-derived trajectories for the
construction of time-disaggregated flows, stocks and rates of temporary migration
across locations.

Finally, I illustrate the methodology empirically with a large CDR dataset from
Senegal. I present an exhaustive temporary migration profile of Senegal that
exemplifies the detailed level of information that can be obtained on these types of
movements from mobile phone data.

This paper primarily brings a methodological contribution to the literature on
the use of digital traces to measure human mobility. Issues of selection on the
cross-section are well-established in the literature (Blumenstock and Eagle, 2010;
Lai et al., 2019; Wesolowski, Eagle, Noor, et al., 2012, 2013), and I discuss this aspect
at length. However, the paper does not simply document cross-sectional biases and
I propose a rectification method that partially account for those in the calculation
of migration statistics. It is essentially based on a time-varying weighting scheme
that neutralizes differences in the population-to-users ratio across spatial units.
Also, and to the best of my knowledge, the quantitative assessment of observational
requirements on the time dimension for the specific purpose of detecting temporary
migration events is novel, as is the analysis of potential selection issues on the time
dimension. Then, the detection of temporary migration events is largely inspired
from the work of Chi et al. (2020) but an important contribution relies on the
definition of a primary home location that allows to clearly identify the direction of
the movements observed. Moreover, the method proposed for the construction
of time-disaggregated migration statistics from user-level migration trajectories
addresses issues that have been largely overlooked in the literature. Finally, I

2In Chi et al. (2020), migration events are defined as pairs of consecutive segments at distinct
locations, so that a situation where a user moves from a location A to a location B and then from B to
A results in the detection of two “migration events”. A more precise characterization of the trajectory
would be that we observe one migration period which materializes into two consecutive location
changes. The procedure proposed in this paper essentially allows to determine that the user lives in
A, migrates to B and then returns to his home location.
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contribute to the broad strand of literature that aims to better understand migration
phenomena in developing countries by providing a comprehensive temporary
migration profile of Senegal.

The rest of the paper is structured as follows. Section 2.2 provides a brief
description of the CDR dataset used throughout the paper to illustrate the proposed
methods. Section 2.3 furnishes systematic methods, data and metrics to rigorously
assess the degree of representativity of a typically non-random sample of digital
traces. In section 2.4, I describe the algorithmic procedure used to detect temporary
migration events in CDR trajectories and section 2.5 deals with the aggregation
of user-level migration history into meaningful migration statistics disaggregated
through time and space. In section 2.6, I derive a comprehensive temporary
migration profile from CDR data in Senegal and section 2.7 concludes.

2.2 Data description

I use a dataset of anonymized CDR for Senegal that spans the period 2013-2015.3
CDR are collected by telecommunication providers for billing purposes. Each
record of a user 𝑖 corresponds to an instance where a call4 is made or received, and
is associated with a set of attributes that typically includes: the (encrypted) phone
number of the user, the (encrypted) phone number of the counterpart, the starting
time of the call and an identifier of the antenna that processed 𝑖’s call. 5

Distinct pseudonymization procedures were applied for the year 2013 and the
period 2014-2015. As a result, the unique identifier assigned to a single phone
number differs between the two periods and both datasets are processed separately.
The 2013 dataset has 9,386,171 unique identifiers6 and over 28.3 billion records,
while the 2014-2015 dataset is comprised of 12,244,494 unique identifiers7 for over
67 billion observations. With an estimated 5 million unique Sonatel customers

3To ensure privacy, records are in fact pseudonymized with phone numbers being replaced by
unique identifiers.

4A “call” is used as a generic term to denote telecommunication transactions that can be of
different types, typically a phone call or a text message.

5Other attributes are also available but not used in this particular study: the call type (call or
text), the direction of the call (incoming or outgoing), the duration, whether the call is national or
international, and the Type Allocation Code (TAC) of 𝑖’s device, which is a unique 8-digit code that
allows to identify a particular mobile phone model. Note the identifier of the antenna through which
the call was routed for the counterpart is not provided in this dataset.

6To address concerns on the presence of bots and call centers in the sample, 102,313 identifiers
that have over 100 records per day on average are removed – they account for a total of over 3.5 billion
records.

7Similarly, this number excludes the 98,086 unique identifiers with over 100 records per day on
average, which account for 5.4 billion records.
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around that period8, the large number of unique identifiers found in the sample
cannot plausibly map into a unique set of individuals. This can be explained by at
least three factors. First, some users may change their phone plan and purchase a
new SIM card during the period of observation which would result in multiple
identifiers in distinct periods of time being in fact associated with a single customer.
Second, multiple SIM cards ownership is also common in Senegal and some indi-
viduals have several active phone plans.9 In both cases, this may induce systematic
biases in mobility measures to the extent that the timing of decisions to use a
different SIM card may be non-random. More specifically, we may underestimate
migration events if some users switch SIM cards precisely when they travel. I get
back to this issue in more details in section 2.3.3. Third, the presence of foreigners
using local SIM cards in Senegal – e.g. tourists or international migrants– and not
captured by census population counts could virtually increase the number of users
relative to the total population.

The georeferencing of antennas allows to reconstruct users’ trajectories across
space and over time. The spatial density of antennas combined with frequent
phone usage10 typically result in highly granular data that constitute an invaluable
source of information to study human mobility. For the study period, the Sonatel
network was comprised of 2,071 georeferenced Base Transceiver Stations (BTS).11
The set of BTS point coordinates is converted into a set of contiguous cells via a
Voronoi tesselation. Each Voronoi cell coincides with the smallest area containing
the point location of a device pinging at the corresponding BTS. In other words,
it is the approximate area covered by the station. BTS are not evenly distributed
across the country and it is clear that the density of stations is higher in urban
locations such as Dakar, Thiès or Touba (Figure 2.A.1). Since I do not focus on
intra-city movements and to avoid systematic measurement errors12, I group cells
that belong to a single city in order to obtain a more balanced set of locations in
terms of their size.13 The resulting network of 916 cells showed in Figure 2.1 is a
partition of the country extent and corresponds to the locations where users can be
seen in the dataset.

8Source: author’s calculations, see details in section 2.3.1
9In 2014, 44% of mobile phone users owned at least two SIM cards, and this fraction shows

very little variation between Dakar, other urban areas and rural areas. Source: République du
Sénégal, Ministère de l’économie, des finances et du plan, Agence National de la Statistique et de la
Démographie (ANSD), Enquête à l’écoute du Sénégal 2014, 2015.

10In 2013, 76% of users report using their phone at least once a day.(Source: ibid 9)
11A Base Transceiver Station can host multiple antennas at a single location.
12Since movements are essentially captured through consecutive calls at distinct stations, the

likelihood of smaller movements remaining unobserved mechanically decreases with the density
of BTS. In particular, short-distance moves in the more remote locations would be systematically
underestimated compared to urban areas.

13Details are provided in appendix 2.A.
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It is worth noting that those locations are not further aggregated, e.g. at the
level of administrative units, as other papers have typically done (Blumenstock,
2012; Hankaew et al., 2019; Lai et al., 2019; Zufiria et al., 2018). Maintaining the
high level of spatial granularity offered by CDR data allows to also capture short
movements to nearby locations14 and describe movements across a larger set of
heterogeneous locations, e.g. between cities and rural areas with various levels of
population density (see section 2.6). On the other hand, it increases the chances
of erroneously identifying movements between adjacent cells in situations where
users live near the border and connect to both BTS. Later in section 2.6, I make sure
this phenomenon does not induce significant measurement errors by computing
migration estimates that exclude movements between adjacent locations.

Figure 2.1: Voronoi cells defining locations.

2.3 Analyzing the representativeness of a mobile phone
sample

The primary objective of the paper is to derive temporary migration statistics from
digital traces and I therefore start by asking whether mobile phone operator billing
logs provide sufficient information to achieve that goal.

14I later show in section 2.6 that, for instance, most of the rural-rural temporary migration
movements are relatively short and mostly occur within regions.
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First, unlike traditional survey data, mobile phone data do not rely on a
well-defined sampling frame that would normally ensure that the sample is rep-
resentative of a larger population, which usually allows to infer statistics on that
population. In fact, mobile phone users have been found to statistically differ from
the rest of the population along various dimensions such as wealth, age, gender,
education, or the place of residence (Blumenstock and Eagle, 2010; Lai et al., 2019).
To the extent that those likely correlate with migration choices, phone-derived
migration estimates would necessarily differ from true migration flows within
the overall population. A careful characterization of mobile phone data samples
is therefore crucial in order to determine the sub-population they actually repre-
sent. Based on that, it is possible to simply derive statistics from the raw sample
while being able to clearly define the sub-population those statistics refer to, or
to implement sample rectification methods to account for identified patterns of
selection and make the sample plausibly representative of a target population. In
this section, systematic methods allowing to characterize users in mobile phone
datasets are presented.

Second, users are only observed when making or receiving calls and I ask
whether individual CDR trajectories carry enough information to allow for the
identification of temporary migration events. Of course, observational require-
ments will depend on the type of mobility events one seeks to capture. For instance,
measuring commuting requires multiple observations per day at different hours
of the day while temporary migration is less demanding in terms of sampling
frequency but asks for longer periods of observation. In any case, non-random
observational gaps are a prime concern: do people use a different SIM card or
change their phone usage patterns precisely when they migrate? Moreover, filtering
procedures are often applied to select working samples of users with relatively
more observations. This can create a selection issue since patterns of phone usage
vary with individual characteristics (Blumenstock and Eagle, 2010).

Both aspects are discussed in the following sections and a systematic approach
for characterizing a mobile phone data sample and precisely identifying selection
issues and potential biases is provided.

2.3.1 Comparing the set of users with the population

First of all, it is useful to appreciate how the set of users at hand compares with
the overall population. The unique set of users from any given telecommunication
provider is essentially the subset of the population that both owns a phone and is
a customer of that phone provider. This first macro-level characterization allows
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to evaluate the size of the sample relative to the whole population and, most
importantly, to identify specific segments of the population potentially missed in
the data.

Estimates of mobile phone ownership rates at the individual- and household-
level can be obtained from targeted surveys such as the ICT Access Surveys of
Research ICT Africa and partners15, or other surveys that include a question on
mobile phone ownership. For instance, Demographic and Health Surveys (DHS)
are available for almost every developing country worldwide and have a question
on mobile phone ownership.16

Both an ICT Access survey (2017) and DHS data are available in the case of
Senegal, as well as a national survey conducted in 2014 (Enquête à l’écoute du Sénégal
201417, henceforth referred to as the 2014 national survey) that includes a module on
mobile phone ownership and use. Based on the 2014 national survey, mobile phone
ownership was estimated at 72% among the population aged over 18. Consistent
with the increasing trend in phone penetration rates in the region for that period, I
find comparable though slightly higher estimates for the year 2017 based on the ICT
Access Survey and the 2017 continuous DHS, with rates evaluated at 78% and 76%
respectively. Moreover, estimates disaggregated by age from the 2017 DHS reveal
a steep increase in phone ownership within the 15-20 age category, from around
20% to 80% (Figure 2.B.1). Phone ownership can thus be reasonably assumed
negligible for the population under 15, which is then almost entirely missed in
the data although it accounts for 43% of the Senegalese population.18 Migration
measures derived from mobile phone data in Senegal are therefore primarily
informative about movements of people aged 15 and above. The magnitude of
the gap between phone-derived migration statistics and true values for the overall
population will depend on migration behaviors within the missed population
and the type of movements considered. For instance, children under 15 unlikely
take part in seasonal migration movements whereas the prominence of fostering

15The 2017-2018 round covered nine African countries: Ghana, Kenya, Lesotho, Mozambique,
Nigeria, Senegal, South Africa, Tanzania, and Uganda. Surveys were also conducted by RIA sister
networks in six Asian countries (India, Indonesia, Pakistan, Bangladesh, Nepal and Cambodia)
and five Latin American countries (Peru, Guatemala, Colombia, Argentina and Paraguay). A new
round of the survey was conducted in eight African countries during 2022: Burkina Faso, Ethiopia,
Kenya, Nigeria, Senegal, South Africa, Tanzania, and Uganda. More information is available at
https://researchictafrica.net/.

16Both household data sets (since DHS phase IV) and individual data sets (since DHS phase VI)
include a question on mobile phone ownership, allowing to estimate the fraction of households with
at least one mobile phone and the proportion of individuals that own a phone, respectively.

17Source: République du Sénégal, Ministère de l’économie, des finances et du plan, Agence
National de la Statistique et de la Démographie (ANSD), Enquête à l’écoute du Sénégal 2014, 2015

18Source: World Development Indicators, World Bank.
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practices probably results in sizeable flows of mobility within this population.19
I also calculate mobile phone ownership disaggregated along other dimensions
such as sex, education, wealth or residence location. Some disparities in mobile
phone ownership across various groups of individuals are found but no evidence
of other identifiable subsets of the population being clearly missed in the data (see
Figures 2.B.1-2.B.5).

In addition, the unique set of users from a single phone carrier only represents
a subset of the universe of mobile phone users. In Senegal, and for the period
of interest, over 88% of mobile phone users have a Sonatel SIM card and 77%
report Sonatel as their main provider.20 All in all, the unique set of Sonatel users
represented around 36% of the population in 201321, i.e. over 5 million individuals.

2.3.2 Analyzing cross-sectional biases

Compared with traditional survey data sources, mobile phone datasets often
provide information on a large fraction of the population, but their composition
does not rely on a sampling protocol that would otherwise ensure the representa-
tiveness of a well-defined population. A first-order concern for the construction of
phone-derived statistics is that phone users may differ from the general population
along dimensions that possibly correlate with migration behaviors, thus inducing
a selection issue.

In practice, phone logs from a particular provider seldom include personal
information on users and we are usually limited in our ability to directly compare
these particular users with the population as a whole. A second-best strategy
therefore consists in comparing the population of mobile phone users with the
at-large population (Blumenstock and Eagle, 2010) – assuming customers of a
particular provider do not differ wildly from other phone users. To do so, secondary
survey data sources that include information on mobile phone ownership – such
as those mentioned in section 2.3.1 – constitute valuable sources of information.
They allow to quantify differences along a variety of socio-economic dimensions
between phone users and the population. I do this for Senegal using the 2017
DHS22 men and women datasets. Results are showed in Table 2.1 where male

19In 2006-2007, it was estimated that 10% of children under 15 were being fostered and 14% of
adults had been fostered in their childhood (Beck et al., 2015).

20Source: author’s estimations based on micro-data from the 2014 national survey.
21This corresponds to the product of the fraction of the population aged 15 and above (57%) with

the mobile phone ownership rate estimated in the 2014 national survey (72%) and the share of mobile
phone users with a Sonatel SIM card (88%).

222017 is the closest year to the study period for which a DHS with a question on mobile phone
ownership in individual questionnaires is available.
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and female phone users are compared with the overall population of men and
women respectively23, for a few key characteristics: wealth, education, age, and
zone of residence. Modest but statistically significant differences are observed
between those two sub-populations, mainly within the women subset. Female
phone users are found to be typically wealthier, more educated, older and more
urban than the overall population of women. Male phone users, on the other
hand, are slightly older and more urban than the general population of men,
but are not statistically different in terms of wealth or education. Overall, the
results are suggestive of a strong potential for mobile phone data to represent the
(adult) male population – including the poorest – and a moderate tilt towards
wealthier individuals among the female population. Although similar statisti-
cal comparisons cannot be made with respect to gender, I estimate that 54% of
phone users are men whereas men only account for 48% of the population, so
mobile phone data would tend to under-represent women.24 Overall, the observed
patterns of selection broadly corroborate previous findings of studies in Rwanda
(Blumenstock and Eagle, 2010) and Kenya (Wesolowski, Eagle, Noor, et al., 2012)
that documented differences between phone users and non-users with respect to
population density, wealth and gender. Note that observed differences between
phone users and the general population result from a combination of the relative
size of the population of non-users and the magnitude of differences between
users and non-users. As phone ownership rates are already high and keep increas-
ing, the impact of the latter on representativeness becomes more and more minimal.

The barrier costs to owning a phone are a likely source of selection of wealthier
individuals in the sub-population of phone owners. According to the ICT Access
Survey, the high cost is the primary reason for not owning a phone and 65% of
non-users declare not having a phone because they cannot afford one.25 Mobile
phone owners report spending FCFA 4,600 (approximately $9 USD) per month on
voice, SMS and data, which represents 4% of the reported monthly income.

23Note individual-level datasets cover men and women of reproductive age, i.e. men aged between
15 and 59 and women aged between 15 and 49, so that in practice, I compare the characteristics of
mobile phone users with the characteristics of the overall population in those age categories.

24As most DHS samples, the 2017 DHS sample in Senegal is primarily a stratified sample of
households selected in two stages. All women of reproductive age (15-49) are administered an
individual questionnaire and men aged between 15 and 59 are also interviewed for half of selected
households. Normalized sampling weights from the women and men datasets cannot be combined
in practice which prevents statistical inference on the overall population of men and women of
reproductive age. That said, I estimate the share of phone users that are male by calculating
ownership rates for men and women separately that I combine with the share of women in the
general population.

25About 40% report the lack of access to electricity as a reason for not owning a phone and the
third most frequently reported reason is that they do not know how to use a phone (36%).



Chapter 2. Deriving Temporary Migration Statistics from Mobile Phone Data 75

Table 2.1: Comparison of phone users with the general population, 2017.

Phone users All Diff.
(1) (2) (1)-(2)

Women
wealth: Richest dummy 0.285 0.237 0.048∗∗
wealth: Richer dummy 0.236 0.210 0.026∗
wealth: Middle dummy 0.192 0.191 0.001
wealth: Poorer dummy 0.163 0.184 -0.021∗
wealth: Poorest dummy 0.123 0.177 -0.054∗∗∗
Years of education 4.965 4.181 0.783∗∗∗
Age 29.426 28.339 1.087∗∗∗
Urban dummy 0.591 0.497 0.094∗∗∗

Men
wealth: Richest dummy 0.221 0.205 0.016
wealth: Richer dummy 0.208 0.199 0.009
wealth: Middle dummy 0.196 0.199 -0.003
wealth: Poorer dummy 0.205 0.210 -0.005
wealth: Poorest dummy 0.170 0.186 -0.017
Years of education 5.301 5.103 0.198
Age 32.228 30.497 1.73∗∗∗
Urban dummy 0.561 0.531 0.03∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: The first two columns provide mean values of the corresponding variables for the
two groups. p-values are obtained with two-sample t-tests. Comparisons are conducted on
women and men separately since DHS normalized weights from distinct datasets cannot
be combined (ANSD/Sénégal and ICF, 2018). The “wealth” variable corresponds to the
DHS zone-specific wealth index categorized into quintiles.

As mentioned above, the relevance of those comparisons relies on the assump-
tion that phone users from the telecommunication company providing the data do
not differ from the overall population of phone users. This is a minor concern in
the particular case of Senegal given that the mobile telephony market was largely
dominated by Sonatel, but it may matter in more fragmented markets. In any
case, verifying that assumption remains quite difficult in practice as it requires
survey data with information on both mobile phone ownership and the phone
provider used. ICT Access Surveys do provide those information for the set of
countries that they cover. I conduct a comparison exercise of Sonatel users’ key
characteristics with the overall population of users and find that Sonatel users are
broadly comparable with the population of phone users26 (Table 2.B.1).

Even though individual characteristics of users from a particular mobile phone
26The only remarkable difference is that Sonatel users are disproportionately more urban than

other phone users (57.4% against 50.5%).
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dataset cannot be directly compared with the general population, it is however
possible to infer users’ approximate home location and characterize them. Those
characteristics can then be directly compared to those of the population at large.
I propose three simple sample-specific metrics. First, I determine the zone of
residence for each user in the sample (i.e. urban or rural) and define the “urban
bias” as the ratio between the fraction of users living in urban areas with the level
of urbanization in the general population. Second, I evaluate the distribution of
users across space – e.g. across voronoi cells or administrative units – and calculate
the degree of correlation with the population as a whole. This is particularly useful
for appraising the spatial coverage of a sample and identify potential anomalies
such as data sinks or holes. Third, a more granular version of the first metric can
be obtained, similar to the metric proposed in chapter 1 (section 1.3). Locations
can be ordered by population density and grouped into bins, where each group
of locations accounts for a fixed fraction of the population. For instance, we can
form ten bins going from the group of least dense locations to the group of densest
locations, with each bin accounting for one tenth of the population. We can then
assess the degree of selection with respect to population density in a mobile phone
data sample by calculating the distribution of phone users’ home location across
those density categories. In the absence of selection, the fraction of users found
in each bin should be comparable to the share of the population it hosts. To the
extent population density correlates with a number of socio-economic variables
such as poverty, access to basic services, or market access, the latter metric allows
to indirectly appraise the degree of selection with respect to those indicators.

I estimate those three metrics on the 2014-2015 CDR dataset in Senegal.27 , 28 I
find that 68.6% of users live in voronoi cells classified as urban whereas those only
account for 49.3% of the population: the urban bias equal to 1.39 indicates that
urban areas are clearly over-represented in the sample. Of course, this is consistent
with higher phone ownership rates observed in urban areas and with the fact that
Sonatel users are slightly more urban than other phone users.29 Then, I count the
number of users in each voronoi cell that I compare with the total population.30

27I consider a base sample where I impose minimal observational constraints that simply allow
me to estimate a home location for each user. More specifically, I define a unique location for each
night (6pm-8am) as the most frequently observed location during that night and the user’s home
location is then calculated as the most frequent location among all nights observed. Users in the base
sample are those observed on at least 10 distinct nights and with at least half of the nights observed
at the estimated home location.

28Results of those estimations on the 2013 dataset are included in Appendix 2.B and show minimal
differences.

29According to the 2014 national survey, 81% of urban residents own a mobile phone and this
number drops to 62% in rural areas. Note that the urban-rural classification of the 2014 national
survey does not necessarily match the definition of urban areas adopted here.

30Total population at the voronoi-level is obtained by overlaying voronoi polygons with the 2017
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Results are showed in Figure 2.2(a) where a high degree of correlation (0.7) between
the number of users and the population at the cell-level can be observed, although
it may be driven by the most populated urban cells – in particular by Dakar.31
Figure 2.2(b) shows the same result considering the subset of rural cells and the
correlation is imperfect though remains relatively high (0.6). Finally, I estimate
the third metric considering ten groups of voronoi cells ordered by population
density and each accounting for 10% of the total population.32 Results are showed
in Figure 2.3(a) that confirms the existence of a selection pattern towards the
densest locations. Interestingly, the tilt is far from dramatic and largely contained
in the lower categories where fractions of users remain consistently over 7-8%.
The pattern of selection is most likely driven by urban locations and I produce
the same graph in Figure 2.3(b) considering the subset of rural locations to check
whether that pattern also holds outside cities. The main conclusion is that it does
not. The distribution is broadly balanced across the ten density categories so that
the set of non-urban users equally represents individuals from locations of different
densities, including the most remote areas.

Figure 2.2: Distribution of users across voronoi cells in the base sample.

(a) All cells (b) Rural cells

Note: The blue line represents a linear regression line between the (logged) number of users
and the population at the voronoi-level.

100m-resolution gridded population product from the WorldPop Research Group (Qader et al., 2022).
31Figure 2.B.6 in Appendix 2.B shows the same result where the two most populated urban cells

(i.e. Dakar and Touba) are excluded and the coefficient of correlation remains practically unchanged
(0.68).

32I exclude Dakar as it accounts for 22% of the population and thus would itself cover the top two
density bins. I still provide the graph that includes Dakar in Figure 2.B.7 in Appendix 2.B. In any
case, the selection towards Dakar is already clear in the sample: 41% of the users have their estimated
home location in Dakar whereas the corresponding cell only accounts for 22% of the population.
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Figure 2.3: Distribution of users across population density categories in the base
sample.

(a) All cells except Dakar (b) Rural cells

2.3.3 Analyzing representativeness on the time dimension

Here, I examine how the characteristics of individual CDR trajectories on the time
dimension can affect the ability to produce migration statistics. I discuss two
separate aspects. First, I essentially ask whether users’ frequency and length of
observation allow to confidently capture temporary migration events. Then, I
discuss a selection issue per se with the potential implications of non-random
observational gaps.

For both the 2013 and 2014-2015 datasets, a large fraction of users are seen at
least every other day on average and over a period of time spanning almost the
entire year 2013 and the period 2014-2015 respectively. For instance, users in the
2013 (resp. 2014-2015) dataset have a median length of observation of 357 days
(resp. 633 days) and a median fraction of days with at least one observation equal
to 0.67 (resp. 0.59).33 Although data coverage seems relatively high, it is important
to consider the minimal sampling characteristics that are necessary to confidently
identify temporary migration events. I propose to quantitatively assess the impact
of both the length of observation and the fraction of days observed on the accuracy
of the migration detection algorithm. This will allow me to clearly inform the choice
of observational constraints imposed on the subset of users selected in the analysis.34

33Comprehensive summary statistics on sample characteristics for both datasets are provided in
Table 2.B.3 and 2.B.4 in Appendix 2.B.

34Of course, the migration detection algorithm is also sensitive to its hyperparameters – e.g. the
maximum gap between observations at destination within segments or the proportion of days at
destination (see section 2.4). I do not conduct a sensitivity analysis with respect to those as this has
been done in Chi et al. (2020) for an algorithm very similar to the one proposed in this paper.
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To this end, I conduct a sensitivity analysis using a benchmark subset of users in
the 2013 dataset who are seen over a period of at least 360 days and on at least 95%
of days. The strict observational constraints allow me to consider the corresponding
CDR trajectories as perfectly reflecting users’ locations over time. I then simulate
random sub-trajectories with lower length and frequency of observation, re-apply
the migration detection model on those sub-trajectories and compare the outputs
with those obtained on the full trajectories. All details and results are provided
in appendix 2.C. As expected, longer periods of observation are associated with
lower error rates in home location predictions while the level of accuracy in the
detection of temporary migration events is primarily affected by the frequency
of observation. Lengths of observation of at least 300 days allow to sustain rates
of accurate home location predictions beyond 90%, even with low frequencies of
observations. More importantly, the level of accuracy of the migration detection
model starts to deteriorate quite sharply when the fraction of days observed falls
below approximately 0.5. On the other hand, trajectories with fractions of days
observed beyond 0.8 are associated with detection rates above 90%. In the 2013
dataset, over 2.1 million users are seen for a period of at least 300 days and on at
least 80% of days, which suggests that a significant fraction of users meet minimal
sampling requirements for the detection of temporary migration events.

Working with a subset of users satisfying strict observational constraints thus
has the clear advantage of reducing measurement error. However, it obviously
comes at a cost of a lower sample size and, more importantly, it may exacerbate
selection bias on the cross-section since phone usage can vary with individual
characteristics (Blumenstock and Eagle, 2010) that correlate with migration choices.
I discuss those issues in section 2.3.4 where I define a “high-quality” subset of users
from which temporary migration estimates are eventually derived. It is important
to note that the results obtained from the sensitivity analysis conducted on this
particular CDR dataset cannot necessarily be generalized to other contexts. Future
applications of digital traces to research on human mobility should ideally apply
the proposed method to estimate observational requirements in the specific study
context.

The analysis above tends to confirm that a large number of mobile phone
users satisfy sampling requirements for the production of accurate temporary
migration measures. However, the existence for some users of extended periods
of time without calls raises the issue of non-random attrition: people might use
a different SIM card precisely when they travel away from home, e.g. to enjoy a



Chapter 2. Deriving Temporary Migration Statistics from Mobile Phone Data 80

better coverage provided by a different telecommunication company at destination.
In the ICT Access Survey, respondents with multiple SIM cards are asked about the
reasons for switching SIM cards. Reception problems is one of the most frequently
reported causes (40%), along with promotions and cheaper on-net calls. This
potential selection on the time dimension can lead to systematic downward biases
in temporary migration estimates. In the 2013 dataset, 17% of users observed for
at least 300 days on at least 50% of days have an observational gap of 20 days or
more. I propose an empirical test to evaluate whether observational gaps tend
to coincide with migration events. I consider a random subset covering the full
period 2013-2015 and comprised of users who are observed for a period of at least
360 days and on at least 50% of days. The low minimum frequency of observation
allows for the occurrence of relatively long observational gaps that may plausibly
coincide with migration events. For any time period 𝑡, a user can be at home or in
migration, and may or may not be observed, so that the total number of users at
time 𝑡 can be written as:

𝑁 𝑡𝑜𝑡𝑎𝑙
𝑡 = 𝑁 ℎ𝑜𝑚𝑒

𝑡 + 𝑁𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 + �̃� ℎ𝑜𝑚𝑒
𝑡 + �̃�𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 (2.1)

Where 𝑁 ℎ𝑜𝑚𝑒
𝑡 is the number of users observed and at home, 𝑁𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 the number
of users observed and in migration, �̃� ℎ𝑜𝑚𝑒

𝑡 the number of users non-observed and
at their home location at time 𝑡, and �̃�𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 the number of users non-observed
and in migration at time 𝑡.

Assuming that a fraction 𝛼 of the total number of users in migration are
systematically unobserved, I show that the total number of unobserved users at
time 𝑡, �̃�𝑡 , is related to the observed number of migrants 𝑁𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 :35

�̃�𝑡 = 𝛽0 + 𝛽1𝑁
𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 + 𝜖𝑡 (2.2)

where 𝛽1 = 𝛼
1−𝛼 . I estimate equation (2.2) and full results are provided in

appendix 2.D. I find a positive but not statistically significant relationship – in
particular for the rural subset – suggesting that some observational gaps possibly
coincide with migration events, although the extent of this phenomenon cannot
be considered a major concern for the construction of migration statistics. It is
important to note that the method relies on the assumption that migrants who
switch SIM cards when they travel and those who do not both display comparable
migration behaviors over time. Despite the limitations of the proposed method (see
appendix 2.D), this is, to the best of my knowledge, the first attempt to evaluate the
prominence of selection biases on the time dimension in mobile phone data for the
production of migration measures. Nevertheless, the proposed method provides a
valuable starting point for understanding the impact of selection biases on the time

35Demonstration in Appendix 2.D.
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dimension in mobile phone data. Future research should aim to investigate the
prominence of these biases more in depth, and, if need be, develop strategies for
mitigating their effects.

2.3.4 Selecting a “high-quality” subset of users

Previous studies using mobile phone data to measure human mobility have typ-
ically considered subsets of users satisfying minimal observational constraints,
e.g. a minimum number of days with some calls (Blumenstock, 2012; Hankaew
et al., 2019; Lai et al., 2019).36 Filtering out infrequently observed users and/or
those observed for short periods of time has the obvious advantage of eliminating
uncertainty on locations visited by users over time and reduces measurement error.
On the other hand, higher observational constraints are associated with lower
statistical power since they decrease sample size. More importantly, excluding
users based on sampling characteristics may exacerbate selection biases on the
cross-section since phone usage patterns can vary with individual characteristics
(Blumenstock and Eagle, 2010) that potentially correlate with migration decisions.
The choice of filtering parameters should therefore be the result of an informed
trade-off between these costs and benefits.

Other papers have applied observational criteria aligned with their measure-
ment objectives, but have disregarded the impact of those constraints on sample
composition. Here, I propose to quantify both the benefits of higher observational
constraints, i.e. lower measurement errors in migration estimates, as well as
their associated costs, i.e. lower sample sizes and selection biases. The impact of
observational constraints on migration measurement error is examined through
the sensitivity analysis presented in section 2.3.3, which provides an empirical
relationship between the two main filtering parameters, i.e. the length of observa-
tion and the fraction of days observed for a user, and the level of accuracy of the
migration detection model (see Appendix 2.3.3).

To investigate the costs associated with observational constraints, I start by
calculating the number of users left in the sample for different sets of filtering
parameters. I first look at the impact on sample size of a joint constraint on both the
length of observation and the fraction of days observed, varying between 30 and
360 days, and 0.05 and 1 respectively. Figure 2.4(a) represents the sample size as a
function of these two parameters.37 The length of observation has a limited impact

36It is also the method employed in chapter 1 using smartphone app location data (section 1.2).
37Two-dimensional versions of Figures 2.4(a) and 2.4(b) are provided in Appendix 2.B (Figure

2.B.10).
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on sample size compared to the fraction of days observed. Setting high constraints
on the fraction of days observed entails a large cost in terms of sample size: for
a minimum length of observation set to 300 days, sample size decreases from 4.6
million to 1.4 million users when the minimum fraction of days imposed increases
from 0.1 to 0.9. By contrast, setting the minimum fraction of days observed to 0.5
and increasing the minimum length of observation from 50 to 350 days results in a
limited decrease in sample size, from 4.8 million to 3.4 million users. In addition, I
introduce a third filtering parameter: the maximum observational gap tolerated
for users in a subset.38 Controlling for users’ maximum duration of inactivity is
a methodological approach that can be used to limit the presence of users with
multiple SIM cards activated at different times during the period of observation.
However, it is important to acknowledge that this approach does not address the
non-random attrition problem – although it is still a useful approach for producing
lower-bound estimates of temporary migration. I also look at the impact of this
parameter on sample size. Figure 2.4(b) shows the sample size as a function of
the minimum fraction of days observed and the maximum gap allowed. Both
parameters appear to have a non-linear effect on sample size. In particular, the
sample size sharply decreases for values of the maximum gap below 15-20 days.

38More specifically, for each user, I calculate the maximum time elapsed between two consecutive
calls. I find a median maximum observational gap of 12 days in 2013 base sample and 25 days in
2014-2015.
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Figure 2.4: Impact of filtering parameters on sample size, 2013.

(a) Obs. length and fraction of days (b) Maximum gap and fraction of days

Note: Panel (a) represents sample size as a function of minima length of observation and
fraction of days observed imposed on users in the main sample, for a maximum gap
parameter set to 100 days. Panel (b) represents sample size as a function of the minimum
fraction of days and the maximum gap imposed on users in the main sample, for a minimal
length of observation set to 30 days.

Finally, I evaluate the impact of the filtering procedure on selection biases in the
cross-section by estimating the three sample-specific metrics proposed in section
2.3.2 on subsets with various levels of observational constraints. For the sake of
conciseness, results on the sensitivity of sample composition biases39 with respect to
filtering parameters are left in appendix 2.B (Figures 2.B.11(a)-2.B.11(f)). The main
conclusion is that the sample composition is primarily affected by the parameter
setting the minimum frequency of observation. Higher fractions of days observed
tend to exacerbate the pre-existing imbalances in the sample composition: they
increase the bias toward Dakar, leave the bias for other cities practically unchanged,
and markedly decrease the rural bias.

Similarly, I estimate the impact of filtering parameters on the degree of cor-
relation between the number of users and the population across cells and show
the results in Figures 2.B.12(a)-2.B.12(f). The correlation is primarily affected
by the frequency of observation imposed, especially for the subset of rural cells.
The non-linear shapes observed in Figures 2.B.12(e) and 2.B.12(f) indicate that it

39As explained in section 2.3.2, I define the “urban bias” as the ratio between the fraction of
users found in urban cells with the level of urbanization in the general population. This metric is
generalized to other subset of the population. For instance, I also evaluate the rural bias, which is the
ratio of rural users over the rural population.
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seriously deteriorates for values above approximately 0.8.

Finally, I evaluate how the minimum frequency of observation changes the
distribution of users across population density categories. Figure 2.B.13(a) shows
that higher fractions of days observed tend to exacerbate the selection with respect
to population density by shifting the distribution of users toward denser categories.
The pattern persists when considering the subset of rural locations (Figure 2.B.13(b))
but changes remain relatively modest. Filtering out users with less than 90% of days
observed does not result in a dramatic loss of users for the most remote categories.

Overall, results on the costs of filtering parameters in terms of sample size and
selection bias reveal that the frequency of observation is a critical factor. Higher
lengths of observation have a comparatively low cost while they allow to improve
the model accuracy by reducing errors in home location predictions, as seen in
section 2.3.3. Weighing up these costs and the benefit for the model accuracy, I
select a “high-quality” subset of users who are observed for a period covering at
least 330 days on at least 80% of those days, allowing for observational gaps of at
most 15 days. I also construct a “low-quality” subset of users with lower constraints:
they are observed for a period of at least 250 days on at least 50% of days and
have observational gaps of at most 25 days. The low-quality subset is supposedly
less selected but may be associated with higher migration measurement errors. In
section 2.6, I estimate the main migration measures on both subsets, which allows
to evaluate the sensitivity of the results to filtering choices.

2.4 Migration event detection algorithm

By considering an individual’s trajectory over distinct time horizons, three broad
categories of human movements can be qualitatively defined. This is helpful to
contextualize choices made in the construction of the proposed algorithm and
clearly define the object of measurement. First, short-term mobility events such as
daily commutes, short trips to cities or week-ends away are characterized by a short
duration, typically a few days. Second, temporary migration events correspond to
an individual moving from a primary home location to a host area for a period of
time going from a couple of weeks to several months, before returning to his home
location. Third, permanent migration moves imply a long-term change in the usual
place of residence. I refer to those different scales as the “micro”, “meso”, and
“macro” scales, respectively, and to the time interval of the corresponding mobility
events as micro-, meso-, and macro-segments. For any given individual observed
over a long period of time, the sets of micro-, meso- and macro-segments form three
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layers of mobility that necessarily overlap on the time dimension. For instance, an
individual can have his usual place of residence in Dakar, for a period of three years
that defines a macro-segment. Within this macro-segment, he temporarily migrates
to Touba for a period of two months that defines a meso-segment. He spends two
days in Saint-Louis while in Touba (i.e. a micro-segment within a meso-segment)
and otherwise visits family in Thiès every other week-end (i.e. micro-segments
within a macro-segment). Given the length of observation and the frequency with
which phone users are observed, a raw CDR trajectory allows to capture movements
at all three scales. As a result, one of the main challenges of identifying segments
at a higher scale (e.g., at a macro-scale) is to develop algorithmic methods that
smooth out noisy patterns created by movements at lower scales (e.g., at micro-
and meso- scales).

I primarily focus on the detection of movements at a meso-scale, i.e. temporary
migration movements. Empirical criteria on the duration of mobility events are
required to clearly distinguish long micro-segments from short meso-segments,
and long meso-segments from short macro-segments. In this respect, I define
temporary migration events as meso-segments with a duration between 20 days
and 180 days. The relatively low minimum duration threshold allows to capture
short migration events, which are more common40 and typically overlooked in
survey data compared to longer-term migration spells. For instance, Coffey et al.
(2015) conduct a specialized survey on rural-urban temporary migration in India
and find that half of the events reported have a duration below 30 days. By contrast,
the Indian National Sample Survey uses a minimum duration threshold of 30 days
and thus misses a large fraction of short-term labor movements. On the other
hand, the upper-bound duration is mainly constrained by sample characteristics.
More specifically, it represents the longest temporary migration events that can be
detected given the length of time that users are observed. As a simple heuristic,
a migration event of a given duration can be detected in a CDR trajectory if the
total length of observation is at least twice as long as the migration spell.41 Since
I consider users with a minimum length of observation of roughly a year, I thus
define the upper-bound duration of temporary migration as 180 days (i.e. 6 months).

With these definitions in hand, I develop a mixed method that employs both
frequency-based approaches and segment-based migration detection procedures

40Blumenstock (2012) finds a negative relationship between the minimum duration threshold and
the rate of temporary migration estimated on a sample of CDR in Rwanda.

41Indeed, this is the limit over which it is possible to see that the user spent the majority of his
time at a location that can effectively be identified as his primary home location, which then allows
to correctly identify the period of time at a distinct location as a temporary migration event.
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inspired from Chi et al. (2020). Chi et al. (2020) focus on the detection of clusters of
observations reflecting the continuous presence of a user at a particular location,
within which they allow for idiosyncratic deviations corresponding to short-term
trips away from the destination. Migration movements are then defined by the
occurrence of two consecutive segments at distinct locations. I follow this approach
for the detection of meso-segments in CDR trajectories. However, I add to their
methodology by considering the trajectory of users at a macro-scale prior to detect-
ing temporary migration events, which allows me to explicitly determine a primary
residence location. This essentially allows to clearly characterize the direction of
migration flows, from a home location to a destination (i.e. a departure) and from
a destination back to a home location (i.e. a return). This is primarily useful for
descriptive purposes. For instance, the total flow of movements can be decomposed
into departing and returning flows, as I later show in section 2.6. Also, it allows to
construct origin-destination migration matrices from which it is possible to identify
net sending and net receiving areas.42 More importantly, the identification of a
home location in the measure of migration flows is crucial for migration models
that incorporate home bias preferences in their setting to rationalize the patterns of
movements observed (Imbert and Papp, 2020b; Monras, 2018).

For the sake of clarity and conciseness, I outline below the essential components
of the methodology and I provide a more detailed description in Appendix 2.E.

First, hierarchical frequency-based methods are used to calculate the hourly,
daily, and monthly locations43 of users, as in Blumenstock, Chi, et al. (2022).

Then, I identify macro-segments with a segment detection procedure applied
on monthly locations, which allows to define a primary home location for each
user. Note that using monthly locations calculated with a frequency-based method
offers a simple way to smooth out micro-segments. Consecutive months at a single
location are grouped together, allowing for deviations reflecting the occurrence of
temporary migration events. The groups that form periods of time longer than the
specified upper-bound duration of meso-segments (i.e. 6 months) are identified
as macro-segments. For the vast majority of users, this procedure yields only one

42By contrast, failing to account for the direction of observed flows in the description of migration
patterns can be misleading. For instance, let’s assume that ten users temporarily migrate from
location 𝐴 to location 𝐵 while no user residing in 𝐵 migrates to 𝐴. In aggregate terms, and ignoring
the direction of flows, as many movements from 𝐴 to 𝐵 as from 𝐵 to 𝐴 are observed, and one would
conclude that migration from 𝐴 is comparable to migration from 𝐵.

43Details on the calculation of hourly, daily, and monthly locations are in Appendix 2.E. Note that
daily – and therefore monthly – locations are primarily based on observations at night (6pm-8am) to
avoid the influence of daytime movements such as commuting, and capture users’ (temporary or
permanent) places of residence. Filtering out diurnal activities is a standard practice in the literature
(Vanhoof et al., 2018), although it has been showed to have little influence on measures of migration
derived from mobile phone data (Blumenstock, 2012).
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macro-segment that uniquely defines a user’s home location. This corresponds to
the dark thicker frame in Figure 2.5 which provides a schematic illustration of the
overall migration detection procedure.44 In this example, a unique macro-segment
at location 𝐴 defines the home location for the entire period of observation for this
hypothetical user. Note that, when the period of observation of a user is longer than
the maximum duration of meso-segments, multiple macro-segments at distinct
locations may be detected. With the definitions adopted – and that can be flexibly
adjusted – the user is considered as having moved permanently between the two
locations, which implies a change in the primary home location.

Next, a similar segment detection algorithm is applied on daily locations. Meso-
segments are identified as periods of time where a user is continuously seen at a
single location, allowing for short-term idiosyncrasies (i.e., micro-segments). In the
illustrative example of Figure 2.5, those correspond to the red frames. I define the
observed duration of a meso-segment as the time elapsed between the start and
end dates of the segment. Since some days before and after the segment may be
unobserved, the actual duration may differ from the observed duration. Therefore,
I also define the maximum duration of the meso-segment as the time elapsed
between the observation immediately preceding the segment and the observation
directly following the segment.

Finally, temporary migration events are identified by overlaying macro- and
meso-segments: they correspond to meso-segments at non-home locations with
a duration greater than a parameter 𝜏𝑡𝑒𝑚𝑝 which, as aforementioned, I set to 20
days. As in Chi et al. (2020), I further impose a minimum proportion of days 𝜙

at destination in a meso-segment in order to limit cases where a segment would
capture frequent movements between multiple locations rather than a temporary
migration event at a single location.

44Note that the representation of a trajectory extracted from CDR data is inspired from Figure 1 in
Chi et al. (2020).
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Figure 2.5: Illustration of the migration detection procedure.

Note: Black bars represent the illustrative trajectory of a hypothetical user across four
locations: A, B, C and D. The dark thick frame indicates the detection of a macro-segment
covering the entire period of observation, which defines the user’s home location (A). Red
frames describe meso-segments detected with the clustering procedure on daily locations.
The green frame designate the only meso-segment detected at a non-home location (B) and
thus classified as a temporary migration segment.

One important limitation of the methodology is worth highlighting. As
mentioned above, the maximum duration of temporary migration events that can
be identified as such is effectively dictated by the length of observation of users.
Consider a user usually residing in a location 𝐴who decides to temporarily migrate
to a location 𝐵 from February to November of some year 𝑦. If the user is only
observed from January to December in year 𝑦, the algorithm will not be able to
correctly identify the February-November period as a migration spell to location
𝐵. Instead, it will consider that location 𝐵 is the user’s home location over the
period of observation. Of course, this remains consistent with the definition of
temporary migration that I provide since the upper-bound duration is precisely
adjusted for that purpose. But one will have to bear in mind that long-term events
which could still qualify as temporary can only be identified with longer periods of
observation.

2.5 From user-level migration history to migration statistics

2.5.1 Weighting scheme

In section 2.3.2, the analysis of the distribution of users relative to the population
uncovers some degree of selection towards denser locations: urban areas tend to be
over-represented compared to other locations. Moreover, the distribution of users
across rural locations roughly aligns with the population distribution; however,
this association is far from perfect. Such discrepancies pose significant challenges
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in generating accurate aggregate statistics to the extent that migration behaviors
also vary with population density. For instance, Dakar, while conspicuously over-
represented in the sample, is also linked to a comparatively lower propensity to
migrate, as we will see in section 2.6. Consequently, a non-adjusted sample-based
estimation of the national-level migration rate would invariably lead to systematic
underestimation of the actual rate.

To remedy this issue, I implement a simple weighting scheme that neutralizes
differences in the users-to-population ratio across locations and allows to derive
meaningful statistics at national and sub-national levels. The design of the weighting
scheme must be consistent with the targeted granularity of the final migration
statistics. For the migration profile presented in section 2.6, I calculate weights
at the level of individual cities and for rural sub-stratas within each third-level
administrative unit.45 For each weighting unit, the weight corresponds to the
ratio between the population and the number of users observed, i.e. it represents
the number of individuals that any particular user represents in the population.
Weights are therefore lower for relatively over-represented locations (e.g., cities)
and higher for relatively under-represented areas. Moreover, I allow for weights
to vary over time to account for the fact that, in any given location, the number
of users actually observed differs across time units so that the composition of the
sample might slightly vary over time. For any location ℓ and time period 𝑡, the
value of the weight 𝑤ℓ 𝑡 is then:

𝑤ℓ 𝑡 =
𝑝𝑜𝑝ℓ

𝑁𝑢𝑠𝑒𝑟𝑠𝑜𝑏𝑠.
ℓ 𝑡

(2.3)

Where 𝑝𝑜𝑝ℓ is the total population represented in the data46 in location ℓ and
𝑁𝑢𝑠𝑒𝑟𝑠𝑜𝑏𝑠.
ℓ 𝑡

is the total number of users residing in ℓ effectively observed during time
period 𝑡.

It is worth noting that the rectification method operates as if users were randomly
drawn from the population at the level of weighting units. This means that the
weights simply correct for irregularities in the number of users selected relative to
the population. It is important to acknowledge that other forces drive the selection
mechanisms at play, as highlighted in section 2.3.2. For instance, the CDR sample in
Senegal slightly over-represents men and relatively wealthier individuals within the
women subset. A limitation of the rectification method is that it does not account
for these biases. Note that basic information on users’ characteristics (e.g. gender,

45Four categories of rural locations are defined at the country-level based on population density,
as explained in appendix 2.A.

46For instance, the mobile phone dataset used in this paper is assumed to represent at best the
population over 15 (see section 2.3.2).
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wealth) would allow to improve the proposed method by introducing a socio-
demographic component to the weighting scheme. Nevertheless, there is some
evidence to suggest that local mobility patterns do not exhibit significant disparities
between phone users and non-users. For example, Wesolowski, Eagle, Noor, et al.
(2013) use a sample of CDR from Kenya in 2008-2009 and show that correcting
CDR-based mobility estimates to account for phone ownership disparities among
income groups results in only marginal differences when compared to the original,
non-adjusted estimates at a local level. Moreover, the survey data utilized in
section 2.3 do not allow to directly compare the level of mobility of phone users
and non-users, but the observable socio-economic characteristics along which I
compare them do not yield large differences. On the other hand, the notable
disparities observed in the spatial distribution of users within the CDR sample,
particularly between Dakar and other locations, are readily apparent and can be
addressed with relative ease. In any case, many studies in the literature have mostly
bypassed considerations of CDR sample composition when constructing mobility
measures. Therefore, I contend that the introduced weighting scheme offers a
notable enhancement for generating nearly representative migration statistics from
a selectively biased set of digital traces.

To illustrate the significance of the rectification method, I compare migration
rates drawn from both the weighted and unweighted versions of the 2013 high-
quality subset. The raw data suggests that 24.4% of users embarked on at least
one migration during 2013. In contrast, the weighted sample pinpoints a higher
migration rate of 32.6%47, that is an 8.2 p.p. difference. This clearly supports the
notion that migration statistics derived from uncorrected mobile phone datasets
may be prone to inaccuracies.

2.5.2 Regularizing unbalanced user-level trajectories

The migration detection model furnishes individual user location histories in the
form of successive meso-segments. These meso-segments represent heterogeneous
trajectories. To derive migration statistics, these diverse trajectories are aggregated
at a specific spatio-temporal resolution. For any given time unit 𝑡 and pair of
locations 𝑜 and 𝑑, it is possible to calculate migrations flows during 𝑡, i.e. the
number of migration departures from 𝑜 to 𝑑 and returns from 𝑑 back to 𝑜, and the
migration stock which corresponds to the number of users residing in 𝑜 being in
migration at destination 𝑑 during 𝑡.

47These numbers consider migration events of at least 20 days. A user is considered a migrant if
he has at least one migration event during the year 2013.
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The calculation of migration flows may appear straightforward at first glance.
A user 𝑖 residing in 𝑜 is considered to have departed for migration to destination 𝑑
at time 𝑡 if he has a migration meso-segment at 𝑑 that started during 𝑡. Similarly, 𝑖
returned from 𝑑 to 𝑜 at time 𝑡 if a migration segment at 𝑑 ended during 𝑡. However,
the identification of migration departures and returns can be ambiguous because
users are not necessarily observed every day and observational gaps imply some
degree of uncertainty on the start date, end date, and ultimately the duration of
meso-segments. Let us consider two illustrative examples. In Figure 2.6(a), user 𝑖
residing in 𝑜 has a migration segment at destination 𝑑 which starts within period 𝑡.
However, 𝑖 is unobserved in period 𝑡 − 1, making it uncertain on which specific
period the actual migration departure occurred. In Figure 2.6(b), the start date
of the segment at destination 𝑑 certainly falls within period 𝑡, but the observed
duration is lower than 20 days and the segment is not classified as a migration
segment. Yet, the observation gap following the segment indicates that its actual
duration may possibly be greater than 20 days, in which case user 𝑖 should be
considered as having departed for migration at time 𝑡.

Figure 2.6: Uncertainty in the identification of migration departures.

(a) Uncertain start date

(b) Uncertain segment duration

Similarly, the migration status of user 𝑖 for a time period 𝑡 – i.e. whether or not
𝑖 is in migration at time 𝑡 – can be ambiguous. Using the second example above
(Figure 2.6(b)), user 𝑖 may or may not be in migration at destination 𝑑 in period
𝑡, depending on his actual location during the following observation gap. The
possibility exists that the segment may have an actual duration greater than 20
days, in which case 𝑖 should be considered as being in migration at time 𝑡. Also,
defining a migration status for a time period 𝑡 relies on a normative and somehow
arbitrary choice: the extent of overlap required between a migration segment and
the time period 𝑡 to consider the corresponding user as being in migration during
that specific time window.
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I consider all possible configurations in the trajectory of users that give rise to
ambiguous cases such as those presented in the examples of Figure 2.6. I implement
an exhaustive set of algorithmic rules that resolve them. In Appendix 2.F, I provide
details on each of those configurations along with illustrative diagrams similar to
those of Figure 2.6.

Some of the key parameters used in the aggregation algorithm are worth
highlighting. For the identification of migration departures and returns, I introduce
a tolerance parameter 𝜖𝑡𝑜𝑙 . Considering again the example in Figure 2.6(a), 𝜖𝑡𝑜𝑙

represents the maximum time unobserved before the start of period 𝑡 that we are
willing to tolerate to still consider that user 𝑖 departed for migration at 𝑑 during
period 𝑡. Additionally, I use a “certainty” parameter Σ to denote the minimum
overlap required between a migration segment and a time period 𝑡 to define the
corresponding user as being in migration at time 𝑡. In the migration statistics
disaggregated by half-month that I present in section 2.6, I set 𝜖𝑡𝑜𝑙 and Σ equal to
7 days and 8 days respectively.48 Finally, I define two sets of migration estimates
associated with different levels of confidence with respect to the duration of meso-
segments detected. High-confidence migration events correspond to migration
segments with an observed duration greater than the minimum duration 𝜏𝑡𝑒𝑚𝑝 ,
which is set to 20 days. On the other hand, low-confidence migration events also
include segments with an observed duration lower than 20 days but a maximum
duration greater than 20 days. Comparing high- and low-confidence estimates
allows to appreciate the impact of observational gaps on the degree of uncertainty
in time-disaggregated migration measures derived from CDR data.

Finally, estimating time-disaggregated migration rates requires some measures
of the actual number of users observed at any given time period 𝑡, i.e. the
denominator of such rates. As for the measure of migration flows and stock, the
existence of observational gaps may imply some variations in the number of users
actually observed over time. Broadly speaking, a user 𝑖 is defined as observed
at time 𝑡 for a given migration measure (i.e. departures, returns, or stock) if
the amount of information on the user’s location during and around 𝑡 allows to
determine with certainty his migration status at time 𝑡 for that migration measure
– e.g. 𝑖 departed for migration during 𝑡 or did not depart for migration during 𝑡.
Again, I consider all possible configurations in the trajectory of users and identify
all cases where users are considered as unobserved for measures of migration

48By setting Σ = 8 𝑑𝑎𝑦𝑠, I simply impose that the overlap represents at least half the time unit
since half-months have a duration of at most 16 days.
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departures, returns and stock. In Appendix 2.G, I provide details on each of
those cases along with illustrative diagrams that facilitate the understanding of
algorithmic rules implemented. It is important to note that the conditions defining
the observational status of a user for a time period 𝑡 depend on the migration
measure considered, as well as the minimum migration duration threshold 𝜏𝑡𝑒𝑚𝑝 ,
the tolerance parameter 𝜖𝑡𝑜𝑙 and the certainty parameter Σ.

2.6 Senegal temporary migration profile

In this section, a comprehensive set of phone-derived migration measures based on
the methodology described in sections 2.4 and 2.5 are presented. Unless otherwise
specified, results showed correspond to the high-confidence migration estimates
derived from the high-quality weighted sample; they are therefore scaled to the
population above 15.

First of all, the data reveal that temporary migration is very common in Senegal.
I estimate that 4.3 million migration events of at least 20 days occurred over the year
2013. Of course, this number decreases with the duration threshold considered: 2.9
million events of at least 30 days, 1.2 million events of at least 60 days and 0.5 million
events of at least 90 days. This trend is consistent with the findings of Blumenstock
(2012). At the extensive margin, 33% of the adult population – approximately 2.6
million individuals – engage in one or more migrations of at least 20 days in 2013.
Similarly, the migration rate decreases with the migration duration considered, from
26% for events of 30 days or more to 7% when considering events of at least 90 days.49

To illustrate the impact of the weighting scheme on migration estimates, I derive
the same results from the raw (i.e. unweighted) sample and show the results in Table
2.H.1 in Appendix 2.H. I find substantial discrepancies in the estimated migration
rates. In the raw dataset, 24.4% of users have a migration events of at least 20 days,
which is 8.2 p.p. below the weighted estimate. Differences persist when considering
other migration duration values; e.g. 10% of users have a migration events of at
least 60 days whereas the weighted estimate is nearly 40% higher (13.9%). This is
simply due to the fact that urban users are generally both over-represented in the
sample and show a relatively lower propensity to migrate. Correcting the sample

49The construction of similar aggregate statistics for the period 2014-2015 is subject to some
important limitations. In the 2014-2015 high-quality subset, not all users are observed over the entire
two-year period, which creates a missing data bias; some users are seen over only one year and
may not be classified as migrants although they migrated outside their period of observation. This
necessarily induces a systematic downward bias in migration estimates. However, it is still possible to
recover the total number of events over the period 2014-2015 by aggregating the number of migration
departures estimated by half-month.
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Table 2.2: Migration statistics at the national level, 2013.

Migration events Migrants Migration rate

≥ 20 days 4,276,706 2,568,976 32.6%
≥ 30 days 2,874,507 2,037,406 25.8%
≥ 60 days 1,200,775 1,092,802 13.9%
≥ 90 days 528,388 520,205 6.6%

Note: Aggregate statistics for the year 2013 are based on a weighted sample where weights
are equal to the ratio of the (adult) population over the total number of users observed in
2013 for each weighting unit.

so it reflects more closely the actual composition of the population has a major
impact on phone-derived migration estimates. Statistics derived from uncorrected
samples can be largely misleading when the degree of selection is high; they should
thus be treated with caution. Moreover, I compare low- and high-confidence
migration estimations in Table 2.H.2 and find only marginal differences in both
the number of migration events and the migration rates. However, I reproduce
the results in Table 2.H.3 using the low-quality subset and intervals between low-
and high-confidence estimates are in that case larger. This is consistent with the
fact that relaxing observational constraints leads to higher uncertainty in migration
estimates (see section 2.3.3).

Then, I describe the characteristics of temporary migration events at the inten-
sive margin in Senegal, i.e. the the frequency with which individuals engage in
temporary migration moves and their duration. First, the majority of those who
migrate only migrate once per year. Figure 2.7 shows the distribution of migrants
according to their observed number of migration episodes over the entire year
2013. Considering events of at least 20 days, 57% of temporary migrants engage
in only one migration during the year. This number naturally increases with the
minimum duration considered. For instance, considering events of 60 days and
more only, I find that 90% of migrants are seen migrating only once. Second, the
median duration of temporary migration episodes calculated on the full universe of
events detected over the period 2013-2015 is estimated at 38 days.50 The distribution
of the duration of migration events is clearly skewed to the right; the average
duration is estimated at 50 days for the period 2013-2015. A non-negligible fraction
of migration episodes last for several months: 28% have a duration of at least 2

50More specifically, this is the weighted median of the observed duration of detected events based
on the weighted sample as described in section 2.5.1. I also calculate the weighted median maximum
duration and the result is practically unchanged (39 days). Similarly, I derive the same statistic from
the 2013 and 2014-2015 datasets separately and numbers obtained are almost identical (i.e. 39 days
and 38 days respectively), indicating that the final result is not driven by one period or the other.
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months and 12% have a duration greater than 3 months. Overall, variations in
the observed duration of temporary moves remain relatively modest; over 70% of
migration spells last for less than 2 months.

Figure 2.7: Number of migration events conditional on being a migrant, 2013.

Next, I harness the fine-grained detail of the phone-derived migration estimates
to characterize the spatial patterns of temporary migration movements in Senegal.
The map of Figure 2.8 represents total migration flows for all pairs of locations
over the year 2013. Overall, migration flows are largely widespread across the
territory and the data reveal a remarkable level of mobility. Unsurprisingly, big
cities such as Dakar, Touba, Ziguinchor, Thiès or Kaolack seem to be sending
and/or receiving large numbers of migrants to and from all around the country.
More specifically, important flows are observed between Dakar and those cities.
However, a remarkable number of migration flows also involve rural locations.

Then, I aggregate the movements observed in the map of Figure 2.8 across
relevant groups of locations. In Figure 2.9, I consider three sub-urban (Dakar,
primary cities, secondary cities) and four sub-rural categories (very dense, dense,
remote, very remote) and aggregate migration flows by pair of origin-destination
category.51 Unsurprisingly, urban locations appear as net receivers of temporary
migrations while rural locations are net senders. In particular, Dakar alone attracts
a relatively large fraction of temporary migration flows from all categories (25%).
On the other hand, a clear majority of migration flows originate from rural areas as
these account for 65% of the total flow. Interestingly, and perhaps at odds with the
common narrative, a significant fraction of the rural-out flow is actually directed
to other rural areas; rural-to-rural movements account for one third of the total
flow. Importantly, I find that those movements are primarily local. The median

51Details on the construction of urban and rural categories are provided in appendix 2.A.
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Figure 2.8: Total migration flows by origin-destination pair, 2013.

Note: Each white segment on the map represents the total number of migration events of
at least 20 days between locations 𝐴 and 𝐵 at both ends of the segment, i.e. the number
of migrations from 𝐴 to 𝐵 and from 𝐵 and 𝐴. The brightness and width of the segments
represents the magnitude of pairwise flows.

distance travelled by rural residents to other rural locations is 39km.52 By contrast,
the median distance travelled to migrate to urban locations is 214km, and is even
larger in the case of Dakar (340km). Urban residents do not exhibit such differences
and travel comparable median distances to migrate to rural and urban locations –
172km and 178 km respectively.

Figure 2.8 and 2.9 allow to describe the spatial distribution of temporary
migration flows in absolute terms. I also investigate how the propensity to migrate
varies across the categories considered in Figure 2.9. For each of these categories, I
estimate the fraction of individuals with at least one migration event of 20 days
or more to any destination, to a rural location and to a city. The results, shown
in Figure 2.10, indicate that the propensity to migrate increases as we move to
categories representing more remote locations. Only 15% of Dakar residents engage
in a temporary migration of at least 20 days whereas this number consistently
remains above 40% in all rural sub-categories. The observed trend seems driven by

52Distances between locations correspond to the distance travelled by car based on the Open
Source Routing Machine (OSRM) tool(http://project-osrm.org/) that uses OpenStreetMap data.
First, I calculate for each rural migrant the median distance travelled across all migration events with
a rural destination. Then, I calculate the (weighted) median of this user-level metric across all rural
users with at least one migration event to another rural location. Therefore, the estimated median is
in fact a “median of a median”. This measure is overall less sensitive to extreme values than a simple
average.
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Figure 2.9: Migration flows between urban and rural areas, 2013.

Note: Migration departures by origin-destination zones are aggregated over the period
February-November 2013, considering migration events of 20 days or more. Those counts
are based on the weighted high-quality subset. Origin zones are on the left-hand side of
the graph and destination zones are on the right. Then, for each origin-destination pair,
the grey bar represents the total number of temporary migration departures from origin to
destination. The definition of rural and urban sub-classes is given in Appendix 2.A.

migrations to rural areas. The propensity to migrate to a rural destination gradually
increases from 8% in Dakar to 29% for the category comprised of the most remote
rural locations. On the other hand, the migration rate to urban locations peaks
at 26% for secondary cities and then slightly decreases as we move along rural
sub-categories, although it remains high at around 20-25%.

As illustrated above, phone-based migration estimates allow to precisely char-
acterize the spatial distribution of temporary migration flows across origin and
destination locations that can be flexibly defined. Mobile phone data can also
uncover the temporal distribution of short-term moves at a level of granularity that
could hardly be achieved with traditional survey instruments. For instance, Figure
2.11 shows the evolution of the stock of migrants (black line) over time for the
period 2013-2015, as well as the underlying departing (green line) and returning
(red line) flows. First of all, seasonal patterns clearly emerge. For all three years,
a very steep increase in the stock of migrants is consistently observed, starting in
June until reaching a peak in August-September. The magnitude of this increase is
striking; e.g. the number of migrants more than doubles between the lowest (first
half of June) and highest (second half of September) points in 2013. In absolute
terms, this roughly represents an additional 470,000 migrants.



Chapter 2. Deriving Temporary Migration Statistics from Mobile Phone Data 98

Figure 2.10: Migration rate by origin zone, 2013.

Note: The graph represents the rate of temporary migration by sub-zone of origin and by
destination zone. Origin zones are represented as categories on the x-axis while bars are
associated with colors each reflecting a particular destination category (all destinations in
grey, rural in yellow, urban in blue). For each origin category, each bar gives the fraction
of users with at least one temporary migration event to the corresponding destination
category over the period February-November 2013. Estimates are based on the weighted
high-quality subset.

Interestingly, the seasonal trend observed goes against the common perception
that short-term movements predominantly occur during the off-season (January
to June). However, it is consistent with the study of Delaunay et al. (2016) who
highlight that significant increases in school attendance rates have mechanically
induced a concentration of the temporary migration moves of the youngest around
the main holiday period (June-September). Boys exempted from agricultural tasks
typically leave for a few weeks to find an informal job or work in a factory, whereas
girls usually work as domestic employees. Extra revenues earned allow to cover
school expenses for the migrant but also those of his or her siblings. Note that
large returning flows around the end of September exactly coincide with the
back-to-school period.

To investigate further the composition of the stock of migrants overtime, I
disaggregate it by both origin and destination zone and present the results in Figure
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2.11(b). Consistent with findings in Figure 2.9, migrants originating from rural
areas dominate the stock of migrants over the study period (yellow and orange
lines). Interestingly, the increasing pattern from June to September observed at the
national-level holds across all sub-categories of the total stock, but seems largely
driven by the rural-to-urban component. The latter is systematically followed by
a sharp decline in October. By contrast, the rural-to-rural stock of migrants also
increases from the start of the rainy season but is usually sustained at a relatively
high level in October-November.

Even though the motives behind the observed movements cannot be unequiv-
ocally identified, the patterns are suggestive of some interpretations. Broadly
speaking, the systematic temporary reallocation of labour from the rural sector
to the urban sector during the rainy season (June-October) points to the existence
of income diversification strategies. Excess labor in the agricultural sector may
push some households to send temporary migrants to urban areas where their
marginal productivity is higher. Note that a further disaggregation of the rural-out
stock of migrants by zone of destination reveals that the rural-to-urban flow during
the rainy season is primarily directed toward Dakar, and to some extent to other
primary cities (see Figure 2.H.1). Moreover, the sustained levels of migration to
rural areas in October-November support the idea that people – including from
urban locations (magenta line in Figure 2.11(b)) – temporarily move to agricultural
areas to enjoy harvest job opportunities at that time of year.
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Figure 2.11: Temporary migration patterns over the period 2013-2015.

(a) Stock, departures and returns at the national-level

(b) Stock by origin and destination zone

Note: All migration measures consider events of 20 days or more and are calculated on the
weighted high-quality subset. Panel (a) represents the total stock of temporary migrants at
the national-level (black line) by half-month over the period 2013-2015. The underlying
flows of departures (green line) and returns (red line) from which the stock dynamic results
are also showed. In panel (b), the migration stock is decomposed by origin-destination
zones. The definition of rural and urban zones corresponds to the definition given in
Appendix 2.A.
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2.7 Conclusion

In this study, I provide a methodological framework for deriving temporary
migration statistics from digital traces data such as Call Detail Records. Cross-
sectional biases in mobile phone data are a well-known issue and I start with
a careful analysis of the degree of representativity. I demonstrate that useful
statistical comparisons of mobile phone owners with the population at large can be
derived from nationally representative surveys containing a question on mobile
phone ownership. Demographic and Health Surveys are a prime example of a
secondary data source that can be tapped into for this exercise, and the proposed
analysis could easily be replicated in other contexts given the DHS program covers
almost the entire developing world. Conclusions in the context of Senegal are in
line with previous research (e.g. Blumenstock and Eagle (2010)): mobile phone
users are more predominantly male, more urban, and tend to be wealthier –
although this is exclusively true for female users. I also construct a series of metrics
allowing to evaluate cross-sectional biases in a specific mobile phone dataset. Such
metrics primarily rely on the estimation of a home location and compare the spatial
distribution of users with the population as a whole.

The paper also addresses the question of minimum sampling requirements
at the user-level for the detection of temporary migration events. A sensitivity
analysis suggests that shorter lengths of observation are associated with a lower
accuracy in home location prediction, while the level of accuracy in the detection
of migration events is primarily affected by the frequency of observation. Period of
observation greater than 300 days with over 80% of days observed are associated
with a 90% accuracy in home location predictions and a 90% rate of detection of
migration events. Although the external validity of these results cannot be assumed,
the proposed methodology could easily be applied on other mobile phone data
samples and for other types of movements (e.g. short visits or commuting) to
generate context-specific sampling requirements.

Moreover, the possibility exists that individuals use a different SIM card
when migrating to a different location and the paper investigates this potential
issue of non-random attrition. Selection biases on the time dimension at the
user-level has been largely overlooked in the literature, although they may lead
to systematic downward biases in phone-derived mobility measures. A simple
statistical test applied to the three-year CDR dataset in Senegal does not support
the existence of non-random attrition. However, the proposed method relies on
strong assumptions about aggregate phone usage behaviors and future work could
focus on investigating this issue more closely.

The migration detection algorithm presented in this paper is clearly inspired
from the approach developed in Chi et al. (2020), where it is proved to outperform
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previous ad hoc methods. An important addition is the estimation of a primary
residence location prior to detecting location changes classified as migratory
movements. This allows to clearly identify the direction of these flows that may
either be departures from or returns to the primary residence. A central contribution
of the paper is then to aggregate the user-level migration trajectories obtained from
this procedure into regularized migration statistics disaggregated across space
and time. I show how sampling irregularities imply some degree of uncertainty
around the start date, end date and duration of detected migration events and
complicate this aggregation exercise. The proposed algorithm treats the dozens of
configurations that can be encountered when attempting to classify an observed
segment start date as a migration departure during a given time unit, an end date
as a migration return, or when trying to determine the migration status of a user
for a given time period.

The weighting scheme forms another crucial component in the construction of
meaningful aggregate statistics. The representativeness analysis highlights selection
biases that make the sample composition clearly distinct from the population at
large. As is typical with CDR data, denser areas are found to be systematically
over-represented compared with more remote locations. The proposed weighting
scheme therefore allows to neutralize differences in the population-to-users ratio
across locations. In addition, its time-varying feature accounts for the fact that
the actual number of users observed at each location may change over time; some
users exit the sample while others are simply temporarily unobserved. I find
large differences between weighted and non-weighted migration estimates, which
I explain by the fact that over-represented groups are usually associated with a
lower propensity to migrate. Since weights allow to mimic a sample composition
that is comparable to the at-large population, weighted estimates plausibly depict
a more realistic picture of actual temporary migration patterns. Nonetheless, a
validation exercise with ground truth survey data would be useful to confirm this
fact. Additionally, an important limitation of this weighting scheme is that it does
not correct for biases along socio-economic dimensions such as wealth, age, or
gender.

The application of the proposed methodology to three years of mobile phone
data brings new insights into temporary migration patterns in Senegal. Mobile
phone data unveil the ubiquity of temporary migration movements in the country.
In 2013, one third of the population engaged in a migration episode of at least
20 days. A large majority of this flow originates from rural areas while urban
areas – in particular Dakar – appear as net receivers of temporary migrants.
Perhaps surprisingly, the phone-derived migration measures shed light on relatively
important and short-distance rural-to-rural flows. In relative terms, the propensity
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to engage in temporary migration increases as we move to more remote locales.
For the year 2013, rural categories showcase migration rates consistently above 40%
while only 15% of Dakar residents engaged in a temporary migration. Finally, time-
disaggregated estimates reveal marked seasonal trends. While common narratives
usually highlight the importance of off-season (January-June) movements, phone-
derived migration measures rather suggest that the bulk of temporary moves occur
during the rainy season (June-October).

The potential of mobile phone data as a complement to traditional surveys for
the measure of subtler human movements is now well established. Applications
in the fields of epidemiology, disaster risk management, or urban development
have paved the road to an integrated use of such big data sources to support
decision-making. However, a number of technical challenges remain and the lack
of systematic approaches to construct robust mobility indicators constitutes an
important barrier to a wider use of mobile phone data for policy making. This
paper gathers a set of methodological tools that will hopefully support future
research efforts involving the derivation of meaningful migration statistics from
digital traces.
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Appendix 2.A Voronoi tesselation

A Base Transceiver Station (BTS) describes an equipment that is responsible for the
reception and transmission of radio signals from mobile phones. Each CDR reports
the BTS that processed the corresponding user’s call – in the form of a unique BTS
identifier –, which is almost always the closest BTS in the network. This means that
the exact location of the user is contained in the polygon formed by the set of points
that are closer to that BTS than to any other station. The geometric transformation
that converts a network of point coordinates to a set of contiguous such polygons is
called a Voronoi tesselation. We apply a tesselation on the SONATEL network of
BTS in order to define two-dimensional locations visited by users that we can then
characterize in terms of population, weather conditions and so on. For the period
2013-2015, the SONATEL network had 2,071 BTS covering the entire country of
Senegal (Figure 2.A.1). In what follows, we describe the three-step tesselation proce-
dure that we apply to obtain the final set of Voronoi cells used throughout the paper.

Figure 2.A.1: Base transceiver stations.

Step 1: Simple Voronoi tesselation

We first proceed with a Voronoi tesselation on the raw network of BTS. Re-
sults are showed in Figure 2.A.2. Telecommunications providers make network
infrastructure deployment choices consistent with expected demand for mobile
phone services. Of course, this results in an uneven distribution of BTS that is
broadly in line with the population distribution. For instance, the density of BTS
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is markedly higher in the main cities compared to the rest of the country. The
variation in Voronoi cell sizes is consequently high; the 10% smallest cells are less
than 0.23km2 while the 10% largest cells are more than 291km2. This means that
measurement errors in users’ location decrease with the density of stations, as
well as the likelihood of small movements remaining unobserved. To achieve a
better balance in cell sizes and because we do not focus on intra-city mobility, we
implement a procedure that allows to group (small) Voronoi cells within what we
identify as urban locations.

Figure 2.A.2: Simple Voronoi tesselation.

Step 2: Group cells within cities

City polygons are defined based on the GHS Settlement Model 2015 product
(GHS-SMOD) from the Joint Research Center (JRC). The GHS-SMOD layers classify
1km2 grid cells into settlement typologies ranging from rural to urban centre via a
logic of cell clusters population size, population and built-up area densities.53 The
GHS-SMOD data package also comes with a vector global dataset of urban centre
boundaries that we use to delineate 33 Senegalese cities.

Voronoi cells intersecting a city polygon are assigned the corresponding city
identifier. All cells assigned to a given city are grouped together to form a set of 33
city cells.54. We illustrate this procedure in Figure 2.A.3 for the case of Dakar. As a
result of step 2, the number cells decreases from 1,666 to 919. The corresponding

53For more details, see the corresponding JRC webpage.
54The cell corresponding to the Gorée Island is manually aggregated to Dakar polygon, and

another cell clearly overlapping Touba urban extent is assigned to that city.
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adjusted Voronoi diagram for the entire country is provided in Figure 2.A.4 where
urban cells are showed in orange.

Figure 2.A.3: Grouping of urban cells, Dakar.

(a) Initial Voronoi diagram (b) Adjusted Voronoi diagram (1)

Figure 2.A.4: Adjusted Voronoi diagram (1), Senegal.

Step 3: Group cells within secondary urban areas

Some secondary urban areas are not captured by the GHS-SMOD product and
clusters of small cells still remain after step 2. We thus detect clusters of BTS that are
less than 2km apart and merge the corresponding Voronoi cells. We illustrate this
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in Figure 2.A.5 for the city of Bakel. The final adjusted Voronoi diagram showed in
Figure 2.A.6 has a total 916 cells.

Figure 2.A.5: Grouping cells within secondary urban areas, Bakel.

(a) Adjusted Voronoi diagram (1) (b) Adjusted Voronoi diagram (2)

Figure 2.A.6: Final voronoi diagram, Senegal.

Finally, we classify those 916 cells into urban and rural locations with population-
based criteria. The population of each cell is determined by overlaying the final
voronoi diagram with a 100m-resolution gridded population product from the
WorldPop Research Group (Qader et al., 2022). We define 6 categories:

• “urban centers” correspond to cells with over 100,000 inhabitants.
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• “Secondary cities” have a population between 25,000 and 100,000 and a
population density of at least 300 inh./km2

• Other cells are categorized as “rural” and we further divide those into 4
groups of equal size based on population density. We label those groups as
“Very dense rural”, “Dense rural”, “Remote rural” and “Very remote rural”
respectively.

Urban centres (11 cells) and secondary cities (28 cells) together form the sub-
group of urban cells while the remaining 877 cells form the rural sub-group. A
map representation of this classification is provided in the map of Figure 2.A.7.

Figure 2.A.7: Urban-rural classification of voronoi cells.
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Appendix 2.B Sample representativeness: additional
material

Figure 2.B.1: Mobile phone ownership by age and gender.

Note: Author’s estimations based on the 2017 continuous DHS.

Figure 2.B.2: Mobile phone ownership by zone and gender.

Note: Author’s estimations based on the 2017 continuous DHS.



Chapter 2. Deriving Temporary Migration Statistics from Mobile Phone Data 110

Figure 2.B.3: Mobile phone ownership by years of education and gender.

Note: Author’s estimations based on the 2017 continuous DHS.

Figure 2.B.4: Mobile phone ownership by wealth category.

Note: Author’s estimations based on the 2017 continuous DHS. The wealth classification is
based on the DHS rural- and urban-specific wealth indices, which are composite measures
of a household’s cumulative living standards.
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Figure 2.B.5: Mobile phone ownership by region and zone.

Note: Author’s estimations based on the 2017 continuous DHS.

Table 2.B.1: Comparison of Sonatel users with the overall population of phone
users.

Sonatel users All users Diff.
Male dummy 0.559 0.554 0.005
Age 37.237 36.975 0.262
Years of education 6.785 6.101 0.685∗∗∗
Urban dummy 0.574 0.505 0.07∗∗∗
Has electricity 0.910 0.897 0.013
Has piped water 0.869 0.847 0.022
Has a fridge 0.447 0.415 0.033∗∗
Has a radio 0.710 0.726 -0.016
Has a TV 0.761 0.743 0.018
Richest quintile dummy 0.170 0.170 0
Poorest quintile dummy 0.178 0.196 -0.019

Table 2.B.2: Rural-urban composition of the base
CDR sample.

Urban (%) Rural (%)

Population 49.3% 50.7%
CDR- 2013 70.5% 29.5%

CDR - 2014/2015 68.6% 31.4%
Note: The definition of urban and rural locations is
consistent with that provided in Appendix 2.A.
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Figure 2.B.6: Distribution of users across voronoi
cells in the base sample excluding Dakar and
Touba, 2014-2015.

Note: The blue line represents a linear regression line
between the (logged) number of users and the popula-
tion.

Table 2.B.3: Summary statistics on the base sample characteristics, 2013.
mean sd min q10 q20 q30 q40 q50 q60 q70 q80 q90 max

Length of obs. (in days) 283.3 111.4 9 85 168 251 320 357 364 365 365 365 365
Distinct days obs. 184.3 119.6 7 30 53 84 126 176 230 280 322 351 365
Fraction of days obs. 0.63 0.28 0.02 0.22 0.34 0.46 0.57 0.67 0.77 0.85 0.92 0.98 1
Number of records 3165 4488 13 242 444 716 1077 1554 2200 3129 4639 7856 36496
Records/days ratio 14.7 13.7 1 4.8 6.1 7.3 8.5 10.1 12.1 14.9 19.7 29.9 100
Maximum time unobs. (in days) 30.4 45.6 0.3 2.3 3.8 5.6 8.1 12.1 18.5 28.9 46.2 80.9 356.9
Number of nights obs. 142.6 106.5 10 20 35 56 85 120 160 205 254 308 366
Fraction of nights obs. 0.49 0.27 0.03 0.13 0.22 0.3 0.38 0.47 0.56 0.66 0.77 0.88 1.11

Table 2.B.4: Summary statistics on the base sample characteristics, 20142-2015.
mean sd min q10 q20 q30 q40 q50 q60 q70 q80 q90 max

Length of obs. (in days) 525.4 233.1 9 140 272 402 526 633 712 729 730 730 730
Distinct days obs. 306.3 234.5 7 38 71 113 168 243 345 465 581 671 723
Fraction of days obs. 0.57 0.29 0.01 0.15 0.25 0.36 0.48 0.59 0.69 0.79 0.88 0.95 1
Number of records 5733.48428.3 12 361 699 1156 1778 2628 3821 5584 8491 14618 72297
Records/days ratio 15.9 13.4 1 5.7 7 8.4 9.8 11.5 13.7 16.8 21.6 31.4 100
Maximum time unobs. (in days) 81.9 127.7 0.2 4 6.9 10.7 16.1 25.1 39.9 66 115 280.3 720.3
Number of nights obs. 232.4 200.3 10 25 47 76 114 166 236 323 429 557 729
Fraction of nights obs. 0.43 0.27 0.01 0.09 0.16 0.23 0.31 0.4 0.49 0.59 0.7 0.83 1.11
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Figure 2.B.7: Distribution of users across population density
categories in the base sample including Dakar, 2014-2015.
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Figure 2.B.8: Distribution of users across voronoi cells in the base sample, 2013.

(a) All cells (b) Excluding Dakar and Touba

(c) Rural cells

Note: The blue line represents a linear regression line between the number of users and the
population at the voronoi-level.



Chapter 2. Deriving Temporary Migration Statistics from Mobile Phone Data 115

Figure 2.B.9: Distribution of users across population density categories in the base
sample, 2013.

(a) All cells except Dakar (b) Rural cells

Figure 2.B.10: Impact of filtering parameters on sample size, 2013.

(a) Obs. length and fraction of days (b) Maximum gap and fraction of days

Note:Panel (a) represents sample size as a function of the fraction of days observed imposed
on users in the main sample, for a maximum gap parameter set to 100 days and different
values for the minimum length of observation. Panel (b) represents sample size as a
function of the minimum fraction of days, for a minimal length of observation set to 30
days and different values for the maximum observational gap allowed.
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Figure 2.B.11: Impact of filtering parameters on urban and rural biases, 2013.

(a) Urban bias (b) Urban bias

(c) Urban bias excluding Dakar (d) Urban bias excluding Dakar

(e) Rural bias (f) Rural bias

Note: Panel (a) represents the urban bias as a function of the fraction of days observed
imposed on users in the main sample, for a maximum gap parameter set to 100 days and
different values for the minimum length of observation. Panel (b) represents the urban bias
as a function of the minimum fraction of days, for a minimal length of observation set to 30
days and different values for the maximum observational gap allowed. Panel (c) and (d)
show the same results excluding Dakar, and panel (e) and panel (f) represent the rural bias.
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Figure 2.B.12: Impact of filtering parameters on the correlation between users and
population across locations, 2013.

(a) All locations (b) All locations

(c) Excluding Dakar (d) Excluding Dakar

(e) Rural cells (f) Rural cells

Note: Panel (a) represents the correlation between population and users across cell locations
as a function of the fraction of days observed imposed on users in the main sample, for
a maximum gap parameter set to 100 days and different values for the minimum length
of observation. Panel (b) represents the same correlation as a function of the minimum
fraction of days, for a minimal length of observation set to 30 days and different values
for the maximum observational gap allowed. Panel (c) and (d) show the same results
excluding Dakar, and panel (e) and panel (f) represent the correlation between population
and users across the subset of rural cells.
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Figure 2.B.13: Impact of the minimal fraction of days observed on the distribution
of users across population density categories.

(a) All cells except Dakar

(b) Rural cells

Note: Panel (a) represents the distribution of users across density categories for different
values of the minimal fraction of days observed imposed on users, and setting the minimal
observation length to 310 days and the maximum observational gap to 100 days. Density
categories correspond to groups of locations that account for 10% of the population,
excluding Dakar. Panel (b) presents the same results considering the subset of rural cells.
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Appendix 2.C Sensitivity analysis of temporary migration
detection accuracy to observational
characteristics

As illustrated in summary statistics in Tables 2.B.3 and 2.B.4, sampling characteris-
tics vary significantly across users. Digital traces are oftentimes characterized by
high levels of attrition – users leaving (and entering) the sample over the period
covered – and irregular sampling issues; mobile phone users do not necessarily
make and/or receive calls on a regular basis. Observational requirements for
the measure of human mobility necessarily depend on the type of movements
one seeks to identify. For instance, measuring long-term changes in the place of
residence requires long periods of observation (e.g. several years) with modest
sampling frequencies, whereas capturing commuting movements asks for high
sampling frequencies (e.g. multiple observations per day) with observation periods
that can be relatively short. Minimal sampling characteristics for the measure of
temporary migration movements is qualitatively somewhere in between. The pro-
posed migration detection algorithm essentially requires that users are seen often
enough during a sufficiently long period of time in order to be able to (i) identify a
home location and (ii) detect temporary changes in the usual place of residence. I
investigate this issue in quantitative terms by conducting a sensitivity analysis of
the proposed migration detection algorithm with respect to users’ observational
characteristics. More specifically, I evaluate the impact of the length of time a
user is observed and the fraction of days with observations (i.e. the frequency of
observation) on the level of accuracy associated with both the prediction of home
locations and the detection of temporary migration events.

To do this, I consider a benchmark subset of users in the 2013 dataset that meet
stringent observational constraints: they are observed for at least 360 days and
on at least 95% of days.55 Moreover, I select users with a unique home location
identified and with at least one migration event of at least 20 days detected. I
randomly select 10,000 users that meet those criteria.56 The strict observational
constraints imposed on this subset allow to reasonably consider the migration
detection outputs as reflecting (i) the actual home locations of users and (ii) their
actual temporary migration moves. To test the sensitivity of the model accuracy
with respect to users’ sampling characteristics, I consider random sub-trajectories of
users in this benchmark sample satisfying different sets of observational constraints

55The definition of daily locations from raw CDR trajectories is provided in section 2.E. It essentially
corresponds to the modal location at night (6pm-8pm) when observations at night are available, and
to the daytime modal location otherwise.

56I find a total of 195,070 users satisfying those constraints.
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and I re-estimate the detection model and compare the outputs with those obtained
with the full trajectories.

First, I evaluate the impact of the length of observation Δ and frequency of
observation Ω (henceforth also referred to as the “density” of the trajectory) on
the accuracy of home location predictions.57 For each set of parameters (Δ,Ω), I
simply define the model accuracy as the fraction of users with a correctly predicted
home location. Figure 2.C.1 shows estimates of the model accuracy for length of
observation ranging between 30 and 360 days and for different values of Ω. It is
clear that the density of trajectories Ω has little incidence on the accuracy of home
location predictions; e.g. even with only 10% of days observed, the level of accuracy
continues to exceed 90% for lengths of observation of at least 290 days. More
generally, for any given length of observation, the level of accuracy only varies by
a few percentage points with values of Ω ranging from 0.1 to 0.9. On the other
hand, accuracy seems to increase almost linearly with the length of observation.
For Ω = 0.9, it increases from 73% to 99% when considering lengths of observation
of 30 and 360 days respectively.

Figure 2.C.1: Model accuracy for home location predictions.

Second, I focus on the impact of Ω on the accuracy of the migration detection
model, holding Δ fixed.58 Here, I define the model accuracy for any given value of
Ω as the fraction of real migration segments (i.e. those detected in the benchmark
subset) that are effectively identified in sub-trajectories of density Ω. Removing

57Since I consider users with a unique home location, the latter is simply defined as the modal
daily location over the period of observation.

58Looking at the impact of Δ on the ability of the algorithm to detect migration events is not
particularly relevant. Shorter lengths of observation simply imply missing migration events occurring
during the period unobserved.
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observations from a full trajectory can lead to migration events being still detected
although with slightly different start and end dates. I therefore consider that a
real migration segment is identified in a sub-trajectory of density Ω if a migration
segment overlapping at least half real migration segment is detected in this sub-
trajectory. Results for Δ set to 360 days and Ω varying from 0.1 to 0.95 are provided
in Figure 2.C.2. Unsurprisingly, the frequency of observation has a significant
impact on the accuracy of the migration detection model: from 95% with a density
of 0.9, it decreases to as low as 1% when the fraction of days observed is equal to
0.1. The convex shape of the relationship indicates that the level of accuracy starts
to deteriorates sharply when Ω falls below approximately 0.5, and drops below
50% for values of Ω that are less than 0.35. On the other hand, densities greater
than 0.8 allow to sustain a high level of accuracy, i.e. beyond 90%.

Figure 2.C.2: Model accuracy for migration event detection.
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Appendix 2.D An empirical test for non-random attrition

Non-random observational gaps correspond to extended periods of time during
which a user is in migration but use a different SIM card and is thus not observed in
the data. This potential phenomenon is problematic for two reasons. First, working
with subsets of users with high sampling frequencies de facto tends to exclude
those with significant observational gaps. To the extent that observational gaps
may coincide with migration events, the resulting subset is mechanically biased
on the cross-section via the exclusion of a relatively more mobile segment of the
population. Second, when such users are still maintained in the sample, they
tend to bias migration rates downward by inflating the denominator while being
wrongly classified as non-migrants.

To test for the existence of non-random observational gaps, I assume that, for
any time period 𝑡, a constant fraction 𝛼 of the total number of users in migration is
systematically unobserved:

�̃�
𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡

𝑁
𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 + �̃�𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡

= 𝛼 (2.4)

Where �̃�𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 is the number of users in migration not observed at time 𝑡 and
𝑁
𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 the number of users observed in migration, so that 𝑁𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 + �̃�𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡

is the total number of users in migration. Re-arranging terms in equation 2.4,
�̃�
𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 can be expressed as:

�̃�
𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 =
𝛼

1 − 𝛼
𝑁
𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 (2.5)

I further assume that the number of users not observed and not in migration,
�̃� ℎ𝑜𝑚𝑒
𝑡 , is orthogonal to the observed number of migrants and can be written as

�̃� ℎ𝑜𝑚𝑒
𝑡 = 𝛽0 + 𝜖𝑡 , where 𝜖𝑡 is a random error term. Adding �̃� ℎ𝑜𝑚𝑒

𝑡 on both sides of
equation 2.5:

�̃�𝑡 = 𝛽0 + 𝛽1𝑁
𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 + 𝜖𝑡 (2.6)

Where �̃�𝑡 = �̃� ℎ𝑜𝑚𝑒
𝑡 + �̃�𝑚𝑖𝑔𝑟𝑎𝑛𝑡

𝑡 is the total number of users not observed at time 𝑡
and 𝛽1 = 𝛼

1−𝛼 .

I empirically estimate equation 2.6 using a subset of users with relatively low
observational constraints that naturally allow for some users to showcase periods of
inactivity. I select 10,000 users in the 2013 dataset and 10,000 users in the 2014-2015
dataset, who are seen for a period of at least 360 days and on at least 50% of days.
Users are randomly selected in third-level administrative units and within urban
and rural strata, so that the distribution of this subset is broadly in line with the
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population. The migration detection algorithm is applied to infer the number of
migrants by half-month over the period 2013-2015. Next, I calculate the number
of users “not observed” by half-month. I define a user as being not observed
during half-month ℎ if an observation gap of at least 20 days – i.e. equivalent
to the minimum duration imposed for my definition of temporary migration –
within the user’s period of observation overlaps ℎ on at least 8 days. I exploit
temporal variations in the number of users in migration and users unobserved to
estimate equation 2.6 with OLS. Regression results are presented in Table 2.D.1 and
illustrated graphically with scatter plots in Figure 2.D.1(a) and 2.D.1(b). Column (1)
shows the results of the OLS estimation considering the total number of users not
observed at the national-level as a dependent variable. The coefficient is positive
but not statistically significant. Columns (3) and (5) show estimates that consider
the subset of rural and urban users respectively. Neither coefficients are statistically
significant but both are again positive, with the magnitude of the rural coefficient
being roughly ten times larger than the urban coefficient. Columns (2), (4) and (6)
show the same results introducing the squared number of migrants observed as an
independent variable, in an attempt to relax the assumption of a constant fraction of
users in migration being unobserved (parameter 𝛼). Estimated coefficients remain
statistically non-significant.

These results support the idea that non-random observational gaps are most
likely not a major concern for the construction of migration statistics with CDR
data. Even though results are not statistically significant, if anything, they are
still suggestive of the existence of a positive relationship between the number of
observed migrants and users unobserved in the rural subset. They do not exclude
the possibility that some observational gaps effectively coincide with some users
being in migration at a destination where they use a different SIM card. They
simply indicate that the extent of this phenomenon does not constitute a clear
impediment to the construction of migration statistics. It is important to highlight
that conclusions drawn from the analysis above rest on the assumption that users
who switch their SIM card when they travel and those who do not are somehow
comparable. More specifically, it is implicitly assumed that the probabilities of
being in migration within these two sub-populations follow comparable trends
over time. Yet, it may well be that users in migration at specific times of the year
are, for instance, more likely to switch SIM cards when they travel. As it does not
constitute the core of this paper, I leave it to future research to investigate this issue
more in depth.
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Table 2.D.1: Regression testing the existence of non-random observational gaps.

Total Rural Urban
(1) (2) (3) (4) (5) (6)

No. of migrants obs. 0.086 −0.067 0.121 −0.629 0.016 0.572
(0.101) (1.401) (0.108) (1.234) (0.080) (1.038)

No. of migrants obs.2 0.0001 0.001 −0.001
(0.001) (0.001) (0.002)

Observations 72 72 72 72 72 72
R2 0.008 0.009 0.017 0.027 0.0004 0.008
Adjusted R2 −0.006 −0.020 0.003 −0.002 −0.014 −0.021

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Each observation represents a half-month over the period 2013-2015. Each column
shows results of a regression of the number of users not observed on the number of
observed migrants. In columns (1) and (2), I consider the total numbers at the national-level
while columns (3)-(4) and and columns (5)-(6) show estimations that consider sub-totals
for rural and urban locations respectively. Standard errors in parentheses are robust to
heteroskedasticity and autocorrelation. They are derived from the Newey-West HAC
estimator of the variance-covariance matrix.

Figure 2.D.1: Number of users not observed against the number of migrants
observed.

(a) National (b) By origin zone

Note: Each point represents a couple (number of migrants observed,number of users not
observed) for a half-month of the period 2013-2015.
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Appendix 2.E Migration detection algorithm

The temporary migration detection algorithm proceeds in three stages. First, imple-
ment an algorithm that smooths out short-term events and temporary migrations
from estimated monthly locations in order to detect macro-segments of home
locations. Those represent periods of time of at least 6 months during which a user
is consistently seen at a single location that we consider his usual place of residence
(i.e. his home location), and within which short-term movements and temporary
migrations can occur. Second, we identify meso-segments within daily location
trajectories by smoothing out short-term mobility events only. They correspond
to periods of time over which a user is primarily observed at a single location
that may or may not be his home location, allowing for short-term movements.
We eventually overlay the corresponding macro- and meso-trajectories to find
temporary migration events, which are defined as meso-segments of at least 20
days at non-home locations. We provide below full methodological details on each
of those stages.

2.E.1 First stage: macro-segment detection

First, some useful notations and definitions are in order. The studied area is
partitioned into contiguous, non-overlapping spatial units that define the full set of
potential locations where users can be observed, which I denote by ℒ = (ℓ𝑘)𝑘∈[1;𝐿],
with 𝐿 the total number of locations. In the present case, ℒ is the set of voronoi
cells introduced in section 2.2. The raw CDR trajectory of a user 𝑖 is denoted by
(𝑥 𝑖𝑡1 , 𝑥

𝑖
𝑡2
, ..., 𝑥 𝑖𝑡𝑇𝑖

), where each 𝑥 𝑖𝑡 ∈ ℒ represents 𝑖’s observed location at timestamp 𝑡.
𝑇𝑖 is 𝑖’s total number of CDR.

I implement a hierarchical frequency-based method as in Blumenstock, Chi,
et al. (2022) to determine monthly locations. For a user 𝑖, the hourly location 𝑥 𝑖

ℎ,𝑑

for an hour ℎ of day 𝑑 is defined as the most frequently visited location during that
one-hour time interval, which I denote ℎ𝑑:

𝑥 𝑖
ℎ,𝑑

= 𝑚𝑜𝑑𝑒
{
𝑥 𝑖𝑡

�� 𝑡 ∈ (𝑡1 , ..., 𝑡𝑇𝑖 ), 𝑡 ∈ ℎ𝑑
}

(2.7)

Hourly locations are then aggregated up to daily locations, which are calculated
as the most frequent hourly location. As is customary in the literature, night
hours between 6pm and 8am are preferred to determine daily locations in order to
mitigate the influence of daytime location shifts (e.g. commuting) and maximize
the likelihood that the inferred location effectively coincides with the location
where the corresponding user spends the night. To limit the loss of information
induced by this filtering procedure, I also calculate daily locations based on daytime
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hourly location between 8am and 6pm and assign those values to those user-days
that do not have observations at night.59 I denote the set of night hours for day 𝑑
as 𝒩𝑑 =

{
(ℎ, 𝑑)

�� (ℎ, 𝑑) ∈ {(18, 𝑑 − 1), ..., (23, 𝑑 − 1)} ∪ {(0, 𝑑), ..., (7, 𝑑)}
}

and the set
of daytime hours is 𝒩𝑑. Then, 𝒟𝑖 = {𝑑𝑖1 , ..., 𝑑

𝑖
𝐷𝑖
} is the set of 𝐷𝑖 observed days for

user 𝑖 so that the daily location of user 𝑖 on any day 𝑑 ∈ 𝒟𝑖 is given by:

𝑥 𝑖
𝑑
=


𝑚𝑜𝑑𝑒

{
𝑥 𝑖
ℎ,𝑑

�� (ℎ, 𝑑) ∈ 𝒩𝑑

}
, if

{
𝑥 𝑖
ℎ,𝑑

�� (ℎ, 𝑑) ∈ 𝒩𝑑

}
≠ ∅

𝑚𝑜𝑑𝑒
{
𝑥 𝑖
ℎ,𝑑

�� (ℎ, 𝑑) ∈ 𝒩𝑑

}
, otherwise

(2.8)

Finally. monthly locations are calculated as the modal daily location over a
month, with a minimum of 10 days observed imposed in order to guarantee some
degree of confidence in the estimated monthly location60. Note that frequency-
based monthly location estimates naturally smooth out short-term mobility events.

Then, a segment detection algorithm is applied to the monthly location dataset
to identify macro-segments of home locations. The algorithm proceeds in four
steps:

i. Preliminary unique home location estimation:
In a preliminary step, a default unique home location ℎ𝑜𝑚𝑒𝑖 is estimated for
each user 𝑖. It corresponds to the most frequently observed daily location over
𝑖’s period of observation:

ℎ𝑜𝑚𝑒𝑖 = 𝑚𝑜𝑑𝑒
{
𝑥 𝑖
𝑑

�� 𝑑 ∈ 𝒟𝑖

}
(2.9)

ii. Detect contiguous monthly locations:
Consecutive months at the same location are grouped together, allowing for
within-group observation gaps of at most 𝜖𝑚𝑎𝑐𝑟𝑜𝑔𝑎𝑝 months. 𝜖𝑚𝑎𝑐𝑟𝑜𝑔𝑎𝑝 is set such that
no permanent change in the home location could occur during unobserved
periods. I define a permanent change in the place of residence as a migration
of at least 𝜏ℎ𝑜𝑚𝑒 , which I set to 6 months, and I therefore choose 𝜖𝑚𝑎𝑐𝑟𝑜𝑔𝑎𝑝 also
equal to 6 months.61

iii. Merge monthly location groups:
Groups of months at a single location are then merged when they are separated
by other groups that account for a total duration that is strictly less than 𝜖𝑚𝑎𝑐𝑟𝑜𝑔𝑎𝑝

59Blumenstock (2012) shows that restricting the sample to locations at night as virtually no impact
on the temporary migration measures he derives from CDR data in Rwanda.

60The monthly location for user-months with 9 days observed or less thus show up as missing in
the final dataset.

61Note that, in practice, observation gaps are generally much shorter given the observational
constraints considered.
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months. This step essentially allows to group home stays that are separated by
potential temporary migration spells.

iv. Resolve overlap:
Next, the overlap between merged groups that may result from the previous
step (Chi et al., 2020) is resolved. First, merged groups with a duration strictly
lower than 𝜏ℎ𝑜𝑚𝑒 months are removed: as per the definition adopted, they
cannot be home macro-segments. For two consecutive overlapping groups,
overlapping months are simply assigned to the longest group. Start and end
dates of merged groups are updated accordingly and merged groups with
a duration strictly lower than 𝜏ℎ𝑜𝑚𝑒 months are removed. To address rare
cases of multiple overlaps, this procedure is iterated until no overlapping
groups are left. For each user, the merged groups left form his set of detected
macro-segments.

Given relatively low rates of permanent migration and limitations due to the
length of observation relative to 𝜏ℎ𝑜𝑚𝑒 , the vast majority of users ends up with only
one macro-segment detected. Those users are assigned the default unique home
location determined in the first step of the macro-segment detection procedure. For
other users with at least two macro-segments detected, a monthly home location
dataset is produced.

2.E.2 Second stage: meso-segment detection

A comparable approach is used to detect meso-segments. The procedure can be
decomposed in three steps:

i. Detect contiguous daily locations:
Consecutive days at a single location are grouped together, allowing for
observation gaps of at most 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 days. Small values of 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 may fail to
smooth out short-mobility events while larger values are associated with
potentially large overlap between segments. I rely on Chi et al. (2020) to
determine a reasonable value for 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 and set it to the optimal value of 7 days
they infer from a cross-validation exercise.

ii. Merge daily location groups:
Groups of daily locations are then merged when they are less than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 days
apart. For each user, we obtain a set of intermediary meso-segments. As in Chi
et al. (2020), I filter out meso-segments with a proportion of days at destination
lower than some parameter 𝜙, that I set equal to 0.5.62

62This value is roughly in line with the optimal value found in Chi et al. (2020).



Chapter 2. Deriving Temporary Migration Statistics from Mobile Phone Data 128

iii. Resolve overlap:
As in the macro-segment detection procedure, merging groups of days at a
single location can lead to some overlap between intermediary meso-segments.
The overlap between pairs of consecutive segments is resolved by taking the
middle of the overlap as the end date of the first segment and the following
day as the start date of the second one. This process is iterated until no overlap
is left.

2.E.3 Identification of temporary migration events

Temporary migration events are defined as meso-segments of at least 𝜏𝑡𝑒𝑚𝑝 days, at
a destination that is not the user’s home location. Three attributes are therefore
required for a meso-segment to be classified as a temporary migration episode, a
home stay or a visit to a non-home location: location, duration and home location
for the period covered by the segment.

Meso-segment locations are directly obtained as an output of the meso-segment
detection procedure. Then, for most users that have a unique home location (i.e.
no permanent migration detected), the definition of a home location at the level of
meso-segments is straightforward. For other users with multiple home locations
across the period of observation, each meso-segment is assigned a home location by
overlaying the macro- and meso- trajectories. If a meso-segment is entirely covered
by a macro-segment, it is assigned the corresponding home location. If a meso-
segment overlaps between two macro-segments, it is assigned the home location of
the macro-segment with the largest overlap. Finally, we calculate lower-bound and
upper-bound estimates for a meso-segment duration. For any segment 𝑆𝑖 of user 𝑖,
the lower-bound duration 𝑚𝑖𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆𝑖), that is referred to as the “observed
duration”, corresponds to the time elapsed between the start and end dates of
the segment. The upper-bound duration 𝑚𝑎𝑥𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆𝑖), referred to as the
“maximum duration”, is the time elapsed between the observed day just preceding
the segment and the observed day directly following 𝑆𝑖 . The relative gap between
the lower- and upper-bound duration estimates represents the uncertainty in the
meso-segment duration measure. For instance, a set of contiguous meso-segments
will result in observed duration estimates being exactly equal to maximum duration
estimates, so that the level of uncertainty will be null. In general terms, users with a
higher frequency of observation are associated with lower uncertainty in the actual
start and end dates of location meso-segments, and therefore in the estimation of
their duration.
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Appendix 2.F Algorithmic rules to aggregate user-level
trajectories

The following diagrams illustrate the algorithmic rules used to identify migration
departures, migration returns and the status of migration for a given time unit, for
both high- and low-confidence estimates. An explanatory note below each diagram
provides a description of the corresponding configuration and the criteria applied.
Thick segments along the time arrow reflect meso-segments for a hypothetical
user while empty spaces correspond to observational gaps. Segment locations are
indicated at the top left of segments, using some common notations throughout all
diagrams. “H” denotes the home location, “!H” any non-home location and “not
!H” simply means “any location that is not !H”. When no location is specified, it is
assumed that the corresponding segment could be at any location.

It is important to note that some configurations are somehow redundant from a
logical perspective, but need to be treated separately in the algorithm. All cases are
still presented in this appendix with the intent to facilitate the understanding of
the code for anyone wishing to reproduce or simply use it.

2.F.1 Identifying migration departures: high-confidence

Diagram 2.F.1: High-confidence migration departure: case 1

Note: The green segment is a migration segment with a start date within the time unit. The
observation gap between the time unit start date and the observation preceding the green
segment is lower than the tolerance parameter 𝜖𝑡𝑜𝑙. As a result, the start date of the green
segment is counted as a migration departure in the high-confidence estimation.

Diagram 2.F.2: High-confidence migration departure: case 2

Note: This is the same configuration as in diagram 2.F.1, but the user exits the sample at the
end of the green segment.
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2.F.2 Identifying migration departures: low-confidence

Diagram 2.F.3: Low-confidence migration departure: case 1

Note: The green segment at !H does not necessarily have an observed duration greater
than 𝜏𝑡𝑒𝑚𝑝 . The maximum duration possible to consider the segment started during the
time unit is the time elapsed between the time unit start date and the day preceding the
start of the following segment. When this is greater than 𝜏𝑡𝑒𝑚𝑝 and the tolerance criterion
is not exceeded, this configuration results in one additional migration departure in the
low-confidence estimate.

Diagram 2.F.4: Low-confidence migration departure: case 2

Note: This is the same configuration as in diagram 2.F.3, although the user exits the sample
at the end of the green segment. The maximum duration possible to consider the segment
started during the time unit is the time elapsed between the time unit start date and the
observed end date of the segment. If this is greater than 𝜏𝑡 𝑒𝑚𝑝 and the tolerance criterion
is not exceeded, this configuration results in one additional migration departure in the
low-confidence estimate.

Diagram 2.F.5: Low-confidence migration departure: case 3

Note: This is the same configuration as in diagram 2.F.3, although the segment preceding
the green segment is at the same location !H. In this case, the green segment cannot have
started less than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days after that segment. The diagram presents a situation where
the gap between the end of the preceding segment and the first day of the time unit is
strictly larger than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 , so that the green segment may have started on the first day of the
time unit. The situation is then equivalent to that described in diagram 2.F.3.
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Diagram 2.F.6: Low-confidence migration departure: case 4

Note: This is the same configuration as in diagram 2.F.5, but the user exits the sample at the
end of the green segment. The maximum duration is therefore lower as the maximum end
date coincides with the observed end date.

Diagram 2.F.7: Low-confidence migration departure: case 5

Note: This is the same configuration as in diagram 2.F.5, although the date corresponding
to 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days after the end of the preceding segment falls within the time unit. The
maximum duration of the green segment is therefore slightly lower because the minimum
start date possible for the green segment is greater than the first day of the time unit.

Diagram 2.F.8: Low-confidence migration departure: case 6

Note: This is the same configuration as in diagram 2.F.7, but the user exits the sample at the
end of the green segment. The maximum duration is therefore lower as the maximum end
date coincides with the observed end date.
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2.F.3 Identifying migration returns: high-confidence

Diagram 2.F.9: High-confidence migration return: case 1

Note: The green segment is at a non-home location and has a duration greater than 𝜏𝑡𝑒𝑚𝑝 : it
is a migration segment. The observed end date falls within the time unit but the observation
gap following the segment indicates that the user may have actually returned after the time
unit. Since the time elapsed between the end of the time unit and the day preceding the
following segment is less than the tolerance criterion 𝜖𝑡𝑜𝑙 , the user is considered to have
returned during the time unit in the high-confidence estimate.

Diagram 2.F.10: High-confidence migration return: case 2

Note: This is the same configuration as in diagram 2.F.9, but the user is never observed
before the green segment.

2.F.4 Identifying migration returns: low-confidence

Diagram 2.F.11: Low-confidence migration return: case 1

Note: The green segment at !H does not necessarily have an observed duration greater
than 𝜏𝑡𝑒𝑚𝑝 . The maximum duration possible to consider the segment ended during
the time unit is the time elapsed between day following the end date of the preceding
segment and the time unit end date. When this is greater than 𝜏𝑡𝑒𝑚𝑝 and the tolerance
criterion is not exceeded, this configuration results in one additional migration return in
the low-confidence estimate.
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Diagram 2.F.12: Low-confidence migration return: case 2

Note: This is the same configuration as in diagram 2.F.11, although the user is never
observed before the green segment. The maximum duration possible to consider the
segment ended during the time unit is the time elapsed between the observed start date
of the green segment and the time unit end date. If this is greater than 𝜏𝑡 𝑒𝑚𝑝 and the
tolerance criterion is not exceeded, this configuration results in one additional migration
return in the low-confidence estimate.

Diagram 2.F.13: Low-confidence migration return: case 3

Note: This is the same configuration as in diagram 2.F.11, although the segment following
the green segment is at the same location !H. In this case, the green segment cannot have
ended less than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 +1 days before that segment. The diagram presents a situation where
the gap between the start of the following segment and the last day of the time unit is
strictly larger than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 , so that the green segment may have lasted up until the very last
day of the time unit. The situation is then equivalent to that described in diagram 2.F.11.

Diagram 2.F.14: Low-confidence migration return: case 4

Note: This is the same configuration as in diagram 2.F.13, but the user is never observed
before the green segment. The maximum duration is therefore lower as the minimum start
date coincides with the observed start date. The situation is otherwise equivalent to that of
diagram 2.F.13.
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Diagram 2.F.15: Low-confidence migration return: case 5

Note: This is the same configuration as in diagram 2.F.13, although the date corresponding
to 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days before the start of the following segment falls within the time unit. The
maximum duration of the green segment is therefore slightly lower because the maximum
end date possible for the green segment precedes the last day of the time unit. The situation
is otherwise equivalent to that of diagram 2.F.13.

Diagram 2.F.16: Low-confidence migration return: case 6

Note: This is the same configuration as in diagram 2.F.15, but the user is never observed
before the green segment. The maximum duration is slightly lower because the minimum
start date coincides with the observed start date. The situation is otherwise equivalent to
that of diagram 2.F.15.

2.F.5 Identifying migration status: high-confidence

Diagram 2.F.17: High-confidence migration status: case 1

Note: The green segment is at a non-home location and has a duration greater than 𝜏𝑡𝑒𝑚𝑝 :
it is a migration segment. It overlaps on the right of the time unit for a duration of at least
Σ days. The user is therefore considered as being in migration during the time unit in the
high-confidence estimate.
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Diagram 2.F.18: High-confidence migration status: case 2

Note: This is the same configuration as in diagram 2.F.17, but the user exits the sample at
the end of the green segment. The situation is otherwise equivalent to that of diagram
2.F.17.

Diagram 2.F.19: High-confidence migration status: case 3

Note: This is the same configuration as in diagram 2.F.17, but the user is never observed
before the green segment. The situation is otherwise equivalent to that of diagram 2.F.17.

Diagram 2.F.20: High-confidence migration status: case 4

Note: The green segment is at a non-home location and has a duration greater than 𝜏𝑡𝑒𝑚𝑝 :
it is a migration segment. It overlaps on the left of the time unit for a duration of at least Σ
days. The user is therefore considered as being in migration during the time unit in the
high-confidence estimate.

Diagram 2.F.21: High-confidence migration status: case 5

Note: This is the same configuration as in diagram 2.F.20, but the user is never observed
before the green segment. The situation is otherwise equivalent to that of diagram 2.F.20.
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Diagram 2.F.22: High-confidence migration status: case 6

Note: This is the same configuration as in diagram 2.F.20, but the user exits the sample at
the end of the green segment. The situation is otherwise equivalent to that of diagram
2.F.20.

Diagram 2.F.23: High-confidence migration status: case 7

Note: The green segment is at a non-home location and has a duration greater than 𝜏𝑡𝑒𝑚𝑝 :
it is a migration segment. It covers the entire time unit so the user is considered as being in
migration during the time unit in the high-confidence estimate. Note that Σ is necessarily
set at a value that is lower than the duration of time units considered.

Diagram 2.F.24: High-confidence migration status: case 8

Note: This is the same configuration as in diagram 2.F.23, but the user exits the sample at
the end of the green segment. The situation is otherwise equivalent to that of diagram
2.F.23.

Diagram 2.F.25: High-confidence migration status: case 9

Note: This is the same configuration as in diagram 2.F.23, but the user is never observed
before the green segment. The situation is otherwise equivalent to that of diagram 2.F.23.
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2.F.6 Identifying migration status: low-confidence

Diagram 2.F.26: Low-confidence migration status: case 1

Note: The green segment at !H does not necessarily have an observed duration greater than
𝜏𝑡𝑒𝑚𝑝 . The maximum duration is the time elapsed between the day following the previous
segment and the date preceding the following segment. When this is greater than 𝜏𝑡𝑒𝑚𝑝

and the green segment overlaps with the time unit on the right for at least Σ days, the user
is considered as being in migration during the time unit in the low-confidence estimate.

Diagram 2.F.27: Low-confidence migration status: case 2

Note: This is the same configuration as in diagram 2.F.26, but the user exits the sample at
the end of the green segment. In the absence of information about the user’s location after
the green segment, the maximum duration is limited to the time elapsed between the day
following the previous segment and the observed end date. The situation is otherwise
equivalent to that of diagram 2.F.26.

Diagram 2.F.28: Low-confidence migration status: case 3

Note: This is the same configuration as in diagram 2.F.26, but the user is never observed
before the green segment. In the absence of information about the user’s location before
the green segment, the maximum duration is limited to the time elapsed between the
observed start date and the day preceding the following segment. The situation is otherwise
equivalent to that of diagram 2.F.26.
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Diagram 2.F.29: Low-confidence migration status: case 4

Note: This is the same configuration as in diagram 2.F.26, but the segment preceding the
green segment is at the same location !H. In this case, the green segment cannot have
started less than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days after that segment. The maximum duration is then the time
elapsed between the minimum start date of the green segment (i.e. 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days after
the end of the preceding segment) and the day preceding the first day of the following
segment. When this is larger than 𝜏𝑡𝑒𝑚𝑝 and the green segment overlaps with the time unit
on the right on at least Σ days, the user is considered as being in migration during the time
unit in the low-confidence estimate.

Diagram 2.F.30: Low-confidence migration status: case 5

Note: This is the same configuration as in diagram 2.F.29, but the user exits the sample
after the green segment. In the absence of information about the user’s location after the
end of the green segment, the maximum end date possible is considered to coincide with
the observed end date. The maximum duration is then the time elapsed between the
minimum start date of the green segment (i.e. 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days after the end of the preceding
segment) and the observed end date. When this is larger than 𝜏𝑡𝑒𝑚𝑝 and the green segment
overlaps with the time unit on the right on at least Σ days, the user is considered as being
in migration during the time unit in the low-confidence estimate.

Diagram 2.F.31: Low-confidence migration status: case 6

Note: This is the same configuration as in diagram 2.F.26, but the segment following the
green segment is at the same location !H. In this case, the green segment cannot have ended
less than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days before that segment. The maximum duration is then the time
elapsed between the day following the last day of the preceding segment and the maximum
end date of the green segment (i.e. 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days before the start of the following segment).
When this is larger than 𝜏𝑡𝑒𝑚𝑝 and the green segment overlaps with the time unit on the
right on at least Σ days, the user is considered as being in migration during the time unit in
the low-confidence estimate.
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Diagram 2.F.32: Low-confidence migration status: case 7

Note: This is the same configuration as in diagram 2.F.31, but the user is never seen before
the green segment. In the absence of information about the user’s location before the
green segment started, the minimum start date possible is considered to coincide with the
observed start date. The maximum duration is then the time elapsed between the observed
start date and the maximum end date of the green segment (i.e. 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days before the
start of the following segment). When this is larger than 𝜏𝑡𝑒𝑚𝑝 and the green segment
overlaps with the time unit on the right on at least Σ days, the user is considered as being
in migration during the time unit in the low-confidence estimate.

Diagram 2.F.33: Low-confidence migration status: case 8

Note: This configuration is exactly equivalent to diagram 2.F.26 with the green segment
overlapping on the left of the time unit.

Diagram 2.F.34: Low-confidence migration status: case 9

Note: This configuration is exactly equivalent to diagram 2.F.28 with the green segment
overlapping on the left of the time unit.

Diagram 2.F.35: Low-confidence migration status: case 10

Note: This configuration is exactly equivalent to diagram 2.F.27 with the green segment
overlapping on the left of the time unit.
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Diagram 2.F.36: Low-confidence migration status: case 11

Note: This configuration is exactly equivalent to diagram 2.F.31 with the green segment
overlapping on the left of the time unit.

Diagram 2.F.37: Low-confidence migration status: case 12

Note: This configuration is exactly equivalent to diagram 2.F.32 with the green segment
overlapping on the left of the time unit.

Diagram 2.F.38: Low-confidence migration status: case 13

Note: This configuration is exactly equivalent to diagram 2.F.29 with the green segment
overlapping on the left of the time unit.

Diagram 2.F.39: Low-confidence migration status: case 14

Note: This configuration is exactly equivalent to diagram 2.F.30 with the green segment
overlapping on the left of the time unit.
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Appendix 2.G Algorithmic rules to count the observation
status of users by time unit

2.G.1 Identifying observation status for migration departure

Diagram 2.G.1: Observation status for migration departure: case 1

Note: An observation gap overlaps with the time unit on the left and is followed by a home
segment. If the gap between the time unit start date and the home segment start date is
larger than the parameter 𝜏𝑡𝑒𝑚𝑝 , a migration segment may have started during the time unit
without being observed. The user is considered as being not observed when calculating
the number of migration departures during that time unit.

Diagram 2.G.2: Observation status for migration departure: case 2

Note: An observation gap overlaps with the time unit on the left and is assumed to be
strictly smaller than 𝜏𝑡𝑒𝑚𝑝 – we are back to case 1 of diagram 2.G.1 otherwise. It is followed
by a non-home segment at location !H, and preceded by a segment at a location that is
not !H. The non-home segment may be a migration segment with a start date within the
time unit if the time elapsed between the time unit start date and the day preceding the
following segment is greater than 𝜏𝑡𝑒𝑚𝑝 . When the tolerance criterion is exceeded, i.e. the
time elapsed between the start of the observation gap and the day preceding the start of
the time unit exceeds the parameter 𝜖𝑡𝑜𝑙, the uncertainty around the actual start date of the
segment at the non-home location is considered as too large and the user is not counted as
being observed for the calculation of migration departures during that time unit. Note that
if the time elapsed between the time unit start date and the day preceding the following
segment is strictly less than 𝜏𝑡𝑒𝑚𝑝 , the non-home segment cannot be a migration segment
and the user is then considered as observed and not having departed for migration during
the time unit.
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Diagram 2.G.3: Observation status for migration departure: case 3

Note: This configuration is the same as in diagram 2.G.2, but the segment preceding
the observation gap is at the same location !H as the segment following the gap. The
observation gap is necessarily strictly larger than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 , otherwise both segments would
be have been merged in the migration detection procedure. In this case, the non-home
segment overlapping with the time unit cannot have started earlier than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days
after the previous segment. When this minimum start date falls outside the time unit, the
maximum possible duration of that non-home segment to still be considered as having
potentially started during the time unit is the time elapsed between the time unit start date
and the day preceding the first day of the following segment. When this is larger than 𝜏𝑡𝑒𝑚𝑝 ,
the possibility exists that a migration event started during the time unit. However, if the
tolerance criterion is exceeded, i.e. the time elapsed between the start of the observation gap
and the day preceding the start of the time unit exceeds the parameter 𝜖𝑡𝑜𝑙 , the uncertainty
around the actual start date of the segment at the non-home location is considered as
too large and the user is not counted as being observed for the calculation of migration
departures during that time unit.

Diagram 2.G.4: Observation status for migration departure: case 4

Note: This configuration is the same as in diagram 2.G.3 for the case when the date
corresponding to 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days after the previous segment falls within the time unit. The
maximum possible duration of the non-home segment to still be considered as having
potentially started during the time unit is now the time elapsed between this date – instead
of the time unit start date– and the day preceding the first day of the following segment.
The situation is then the same as in diagram 2.G.3.
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Diagram 2.G.5: Observation status for migration departure: case 5

Note: This configuration is the same as in diagrams 2.G.2-2.G.4, but the user is never
observed before the non-home segment overlapping with the time unit. In the absence of
further information about the user’s location, it is assumed that the minimum start date
of the non-home segment to consider it started during the time unit coincides with the
first day of the time unit. When the maximum duration, i.e the time elapsed between this
minimum start date and the day preceding the following segment, is greater than 𝜏𝑡𝑒𝑚𝑝 ,
the possibility exists that a migration occurred and started during the time unit. Since the
user is not observed before the non-home segment, the uncertainty around the actual start
date is virtually infinite and the user is not counted as being observed for the calculation of
migration departures during that time unit.

Diagram 2.G.6: Observation status for migration departure: case 6

Note: An observation gap overlaps with the time unit on the right. Regardless of the
locations of the preceding and following segments, if the gap is greater than 𝜏𝑡𝑒𝑚𝑝 then
a migration event could have started during the time unit without being observed. The
user is thus considered as being not observed when calculating the number of migration
departures during that time unit.

Diagram 2.G.7: Observation status for migration departure: case 7

Note: An observation gap overlaps with the time unit on the right and is assumed to be
strictly smaller than 𝜏𝑡𝑒𝑚𝑝 – we are back to case 6 of diagram 2.G.6 otherwise. It is followed
by a non-home segment at location !H, and preceded by a segment at a location that is not
!H. The non-home segment may be a migration segment with a start date within the time
unit if the time elapsed between the observation gap start date and the day preceding the
following segment is greater than 𝜏𝑡𝑒𝑚𝑝 . In that case, it is impossible to determine whether
the user effectively departed for migration during the time unit or not. The user is thus
considered as being not observed when calculating the number of migration departures
during that time unit. Conversely, if this maximum duration was strictly less than 𝜏𝑡𝑒𝑚𝑝 ,
the observation gaps could not be concealing a migration event starting during the time
unit and the user would be considered as effectively observed and not having departed for
migration.
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Diagram 2.G.8: Observation status for migration departure: case 8

Note: This is the same configuration as in diagram 2.G.7, although the segment preceding
the observation gap is at the same location !H as the segment following the gap. Two
conditions allow for the possibility that the segment following the gap started during the
time unit without being observed. First, the minimum start date has to fall within the time
unit; the minimum start date is 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 2 days after the preceding segment. Second, the
maximum duration, defined as the time elapsed between the minimum start date and the
day preceding the following segment, has to be greater than 𝜏𝑡𝑒𝑚𝑝 . When both conditions
are met, the degree of uncertainty is such that the user is considered as being not observed
when calculating the number of migration departures during that time unit.

Diagram 2.G.9: Observation status for migration departure: case 9

Note: An unbounded observation gap overlaps with the time unit on the right; the user
exits the sample. The possibility exists that the user departed for migration during the
unobserved period on the right of the time unit. Without further information on the user’s
location after that, the user is considered as being not observed when calculating the
number of migration departures during that time unit.

Diagram 2.G.10: Observation status for migration departure: case 10

Note: An observation gap fully covers the time unit. Regardless of the locations of the
preceding and following segments, if the time elapsed between the time unit start date
and the end of the observation gap is greater than 𝜏𝑡𝑒𝑚𝑝 then a migration event could have
started during the time unit without being observed. The user is thus considered as being
not observed when calculating the number of migration departures during that time unit.
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Diagram 2.G.11: Observation status for migration departure: case 11

Note: An observation gap fully covers the time unit and the fraction of the gap that starts
on the first day of the time unit is assumed strictly smaller than 𝜏𝑡𝑒𝑚𝑝 – we are back to
case 10 of diagram 2.G.10 otherwise. It is followed by a non-home segment at location !H,
and preceded by a segment at a location that is not !H. The non-home segment may be
a migration segment with a start date within the time unit if the time elapsed between
the time unit start date and the day preceding the following segment is greater than
𝜏𝑡𝑒𝑚𝑝 . In that case, it is impossible to determine whether the user effectively departed for
migration during the time unit or not. The user is thus considered as being not observed
when calculating the number of migration departures during that time unit. Conversely,
if this maximum duration was strictly less than 𝜏𝑡𝑒𝑚𝑝 , the observation gaps could not
be concealing a migration event starting during the time unit and the user would be
considered as effectively observed and not having departed for migration.

Diagram 2.G.12: Observation status for migration departure: case 12

Note: This is the same configuration as in diagram 2.G.11, although the segment preceding
the observation gap is at the same location !H as the segment following the gap. Two
conditions allow for the possibility that the segment following the gap started during the
time unit without being observed. First, the minimum start date cannot fall after the end of
the time unit; the minimum start date is 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 2 days after the preceding segment. This
diagram shows the case when the minimum start date falls within the time unit. Second,
the maximum duration, defined as the time elapsed between the minimum start date
and the day preceding the following segment, has to be greater than 𝜏𝑡𝑒𝑚𝑝 . When both
conditions are met, the degree of uncertainty is such that the user is considered as being
not observed when calculating the number of migration departures during that time unit.
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Diagram 2.G.13: Observation status for migration departure: case 13

Note: This is the same configuration as in diagram 2.G.12 above, for the case where the
minimum start strictly precedes the start of the time unit. In this case, the maximum
duration that allows for the possibility that the non-home segment actually conceals a
migration event that started during the time unit is the time elapsed between the time
unit start date and the day preceding the following segment. Again, when this is greater
than 𝜏𝑡𝑒𝑚𝑝 , the user is considered as being not observed when calculating the number of
migration departures during that time unit.

Diagram 2.G.14: Observation status for migration departure: case 14

Note: This is the same configuration as in case 10 described in diagram 2.G.10, for the case
where the user is never observed before the time unit. The criterion to classify the user
as not being observed for migration departure for that time unit remains unchanged: the
time elapsed between the time unit start date and the day preceding the first segment is
greater than 𝜏𝑡𝑒𝑚𝑝 .

Diagram 2.G.15: Observation status for migration departure: case 15

Note: This is the same configuration as in case 14 and where it is implicitly assumed
that the time elapsed between the time unit start date and the day preceding the first
segment is strictly less than 𝜏𝑡𝑒𝑚𝑝 . The first segment is at a non-home location !H. When the
time elapsed between the time unit start date and the day preceding the start date of the
segment following the non-home segment is greater than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that a
migration departure effectively occurred during the time unit without being observed. The
user is thus considered as being not observed when calculating the number of migration
departures during that time unit.
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Diagram 2.G.16: Observation status for migration departure: case 16

Note: The configuration is the same as in case 9 described in diagram 2.G.9, but the
observation gap fully covers the time unit. The criterion remains unchanged and in this
situation, the user is considered as being not observed when calculating the number of
migration departures during that time unit.

2.G.2 Identifying observation status for migration return

Diagram 2.G.17: Observation status for migration returns: case 1

Note: An observation gap overlaps with the time unit on the left. Regardless of the locations
of the preceding and following segments, if the gap is greater than 𝜏𝑡𝑒𝑚𝑝 then a migration
event could have ended during the time unit without being observed. The user is thus
considered as being not observed when calculating the number of migration returns during
that time unit.

Diagram 2.G.18: Observation status for migration returns: case 2

Note: An observation gap overlaps with the time unit on the left and is assumed to be strictly
smaller than 𝜏𝑡𝑒𝑚𝑝 – we are back to case 1 of diagram 2.G.17 otherwise. It is preceded by
a non-home segment at location !H, and followed by a segment at a location that is not
!H. The non-home segment may be a migration segment with an end date within the time
unit if the time elapsed between the day following the preceding segment and the end
of the observation gap is greater than 𝜏𝑡𝑒𝑚𝑝 . In that case, it is impossible to determine
whether the user effectively returned from migration during the time unit or not. The user
is thus considered as being not observed when calculating the number of migration returns
during that time unit. Conversely, if this maximum duration was strictly less than 𝜏𝑡𝑒𝑚𝑝 ,
the observation gaps could not be concealing a migration event ending during the time
unit and the user would be considered as effectively observed and not having returned
from migration.
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Diagram 2.G.19: Observation status for migration returns: case 3

Note: This is the same configuration as in diagram 2.G.18, although the segment following
the observation gap is at the same location !H as the segment preceding the gap. Two
conditions allow for the possibility that the non-home segment preceding the gap reflects
a migration event that ended during the time unit without being observed. First, the
maximum end date has to fall within the time unit; the maximum end date is 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 2
days before the following segment. Second, the maximum duration, defined as the time
elapsed between the day following the preceding segment and the maximum end date,
has to be greater than 𝜏𝑡𝑒𝑚𝑝 . When both conditions are met, the degree of uncertainty is
such that the user is considered as being not observed when calculating the number of
migration returns during that time unit.

Diagram 2.G.20: Observation status for migration returns: case 4

Note: An unbounded observation gap overlaps with the time unit on the left; the user
enters the sample during the time unit. The possibility exists that the user returned from
migration during the unobserved period on the left of the time unit. Without further
information on the user’s location before the first segment observed, the user is considered
as being not observed when calculating the number of migration returns during that time
unit.

Diagram 2.G.21: Observation status for migration returns: case 5

Note: An observation gap overlaps with the time unit on the right and is preceded by a
home segment. If the gap between the observation gap start date and the time unit end
date is larger than the parameter 𝜏𝑡𝑒𝑚𝑝 , a migration segment may have occurred and ended
during this portion of the time unit, without being observed. The user is considered as
being not observed when calculating the number of migration returns during that time
unit.
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Diagram 2.G.22: Observation status for migration returns: case 6

Note: An observation gap overlaps with the time unit on the right and the fraction of the
gap ending at the end of the time unit is assumed strictly smaller than 𝜏𝑡𝑒𝑚𝑝 – we are back
to case 5 of diagram 2.G.21 otherwise. It is preceded by a non-home segment at location
!H, and followed by a segment at a location that is not !H. The non-home segment may
be a migration segment ending within the time unit if the time elapsed between the day
following the preceding segment and the time unit end date is greater than 𝜏𝑡𝑒𝑚𝑝 . When
the tolerance criterion is exceeded, i.e. the time elapsed between the day following the time
unit end date and the day preceding the first day of the following segment exceeds the
parameter 𝜖𝑡𝑜𝑙, the uncertainty around the actual end date of the segment at the non-home
location is considered as too large and the user is not counted as being observed for the
calculation of migration returns during that time unit. Note that if the maximum duration
considered is strictly less than 𝜏𝑡𝑒𝑚𝑝 , the non-home segment cannot be a migration segment
and the user is then considered as observed and not having returned from migration
during the time unit.

Diagram 2.G.23: Observation status for migration returns: case 7

Note: This is the same configuration as in case 6 described in diagram 2.G.22, although the
segment following the observation gap is at the same location !H as the segment preceding
the gap. The non-home segment preceding the gap cannot have ended later than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 2
days before the following non-home segment started – they would have been merged by the
detection algorithm otherwise. This maximum end date falls either within or after the time
unit. Case 7 deals with the latter configuration whereas case 8 in the following diagram
(2.G.24) considers the former. In this case, the maximum end date possible for the first
non-home segment to consider it ended during the time unit coincides with the time unit
end date. Two conditions allow for the possibility that the non-home segment preceding
the gap reflects a migration event that ended during the time unit without being observed.
First, the maximum duration, i.e. the time elapsed between the day following the last day
of the previous segment and the maximum end date, is greater than 𝜏𝑡𝑒𝑚𝑝 . Second, the
tolerance criterion is exceeded: the time elapsed between the maximum end date and the
day preceding the first day of the following segment is strictly greater than 𝜖𝑡𝑜𝑙 . When both
conditions are met, the degree of uncertainty is such that the user is considered as being
not observed when calculating the number of migration returns during that time unit.
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Diagram 2.G.24: Observation status for migration returns: case 8

Note: This is the same configuration as in case 7 above, for the case where the maximum
end date falls within the time unit. In this case the maximum duration is the time elapsed
between the day following the last day of the previous segment and the maximum end
date, which is strictly lower than the time unit end date. The criteria to define the user as
not being observed are then equivalent.

Diagram 2.G.25: Observation status for migration returns: case 9

Note: This configuration is the same as in diagrams 2.G.22-2.G.24, but the user exits the
sample after the non-home segment overlapping with the time unit. In the absence of
further information about the user’s location, it is assumed that the maximum end date of
the non-home segment to consider it ended during the time unit coincides with the last
day of the time unit. When the maximum duration, i.e the time elapsed between the day
following the preceding segment and this maximum end date, is greater than 𝜏𝑡𝑒𝑚𝑝 , the
possibility exists that the observation gaps conceal a migration event that ended during
the time unit. Since the user is not observed after the non-home segment, the uncertainty
around the actual end date is virtually infinite (i.e. the tolerance criterion is exceeded) and
the user is not counted as being observed for the calculation of migration returns during
that time unit.

Diagram 2.G.26: Observation status for migration returns: case 10

Note: An observation gap fully covers the time unit. Regardless of the locations of the
preceding and following segments, if the time elapsed between the observation gap start
date and the time unit end date is greater than 𝜏𝑡𝑒𝑚𝑝 , then a migration event could have
occurred and ended during the time unit without being observed. The user is thus
considered as being not observed when calculating the number of migration returns during
that time unit.



Chapter 2. Deriving Temporary Migration Statistics from Mobile Phone Data 151

Diagram 2.G.27: Observation status for migration returns: case 11

Note: An observation gap fully covers the time unit and the left-hand side portion of the
gap that ends on the last day of the time unit is assumed strictly smaller than 𝜏𝑡𝑒𝑚𝑝 – we
are back to case 10 of diagram 2.G.26 otherwise. It is preceded by a non-home segment at
location !H, and followed by a segment at a location that is not !H. The non-home segment
may be a migration segment with an end date within the time unit if the time elapsed
between the day following the preceding segment and the time unit end date is greater than
𝜏𝑡𝑒𝑚𝑝 . In that case, it is impossible to determine whether the user effectively returned from
migration during the time unit or not. The user is thus considered as being not observed
when calculating the number of migration returns during that time unit. Conversely, if
this maximum duration was strictly less than 𝜏𝑡𝑒𝑚𝑝 , the observation gaps could not be
concealing a migration event ending during the time unit and the user would be considered
as effectively observed and not having returned from migration.

Diagram 2.G.28: Observation status for migration returns: case 12

Note: This is the same configuration as in diagram 2.G.27, although the segment following
the observation gap is at the same location !H as the segment preceding the gap. Two
conditions allow for the possibility that the segment preceding the gap ended during the
time unit without being observed. First, the maximum end date cannot fall before the start
of the time unit; the maximum end date is 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 2 days before the following segment.
In other words, and as showed on the diagram, the gap between the time unit start date
and the end of the observation gap has to be strictly lower than 𝜖𝑚𝑒𝑠𝑜𝑔𝑎𝑝 + 1 days. Then, the
maximum end date falls either within or strictly after the time unit. The present case treats
the former while case 13 below considers the latter. In this case, the maximum duration
is defined as the time elapsed between the day following the preceding segment and the
maximum end date. The second condition then implies that this duration has to be greater
than 𝜏𝑡𝑒𝑚𝑝 . When both conditions are met, the degree of uncertainty is such that the user
is considered as being not observed when calculating the number of migration returns
during that time unit.
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Diagram 2.G.29: Observation status for migration returns: case 13

Note: This is the same configuration as in case 12 above, for the case where the maximum
end date falls after the time unit. In this case the maximum duration considered is the time
elapsed between the day following the last day of the previous segment and the last day of
the time unit. The criteria to define the user as not being observed are then equivalent.

Diagram 2.G.30: Observation status for migration returns: case 14

Note: An unbounded observation gap fully covers the time unit; the user is never observed
before and during the time unit. This is the most straightforward case where a user is
considered as being not observed for the calculation of migration returns during that time
unit.

Diagram 2.G.31: Observation status for migration returns: case 15

Note: The user exits the sample before the time unit start date. Regardless of the last
segment location, when the time elapsed between the day following the last day observed
and the end of time unit is greater than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that a migration event
ending within the time unit occurred without being observed. The user is thus considered
as being not observed for the calculation of migration returns during that time unit.
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Diagram 2.G.32: Observation status for migration returns: case 16

Note: This is the same configuration as in case 15, but it is implicitly assumed that the time
elapsed between the day following the last day observed and the end of time unit is strictly
less than 𝜏𝑡𝑒𝑚𝑝 – we are back to case 15 of diagram 2.G.31 otherwise. The last segment is
at a non-home location !H. It may have ended during the time unit if the time elapsed
between the day following the last day of the preceding segment and the end of the time
unit is greater than 𝜏𝑡𝑒𝑚𝑝 . Since the user is not observed after the non-home segment, the
uncertainty around the actual end date is virtually infinite (i.e. the tolerance criterion is
exceeded) and the user is not counted as being observed for the calculation of migration
returns during that time unit.

2.G.3 Identifying observation status for migration status

Diagram 2.G.33: Observation status for migration status: case 1

Note: An observation gap overlaps with the time unit on the left. The segment following
the gap overlaps with the gap for a duration that is strictly lower than Σ days: the certainty
criterion is not satisfied with respect to the only segment overlapping with the time unit.
If the observation gap is greater than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that a migration event
overlapping with the time unit on at least Σ days occurred during the observation gap. The
user is thus considered as being not observed for the calculation of the migration stock
during that time unit. Note that when the observation gap is strictly less than 𝜏𝑡𝑒𝑚𝑝 , the
non-observation conditions depend on the characteristics of the preceding and following
segments. The corresponding configurations are considered in the following diagrams.
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Diagram 2.G.34: Observation status for migration status: case 2

Note: This case is equivalent to case 1 described in diagram 2.G.33 but implicitly assumes
that the observation gap is strictly less than 𝜏𝑡𝑒𝑚𝑝 – otherwise we are back to case 1. The
segment following the gap is at a non-home location !H and overlaps with the time unit for
a duration strictly lower than Σ days. If the time elapsed between the first day of the time
unit and the day preceding the first day of the following segment is greater than 𝜏𝑡𝑒𝑚𝑝 , the
possibility exists that the observed segment conceals a migration episode overlapping with
the time unit on at least Σ days. Given this uncertainty, the user is considered as being
not observed for the calculation of the migration stock during that time unit. Note that,
conversely, if the duration considered is strictly lower than 𝜏𝑡𝑒𝑚𝑝 , then we are certain that
no migration event overlapping with the time unit occurred, and the user is considered as
observed and not in migration.

Diagram 2.G.35: Observation status for migration status: case 3

Note: This is the same configuration as in case 2 above, where the non-observation conditions
with respect to the characteristics of the segment preceding the gap are considered. Similarly,
the preceding segment is at a non-home location !H and the following segment still overlaps
with the time unit for less than Σ days. If the time elapsed between the day following
the last day of the preceding segment and the observation gap end date is greater than
𝜏𝑡 𝑒𝑚𝑝, the possibility exists that the observed non-home segments conceals a migration
episode overlapping with the time unit on at least Σ days. Given this uncertainty, the user
is considered as being not observed for the calculation of the migration stock during that
time unit.

Diagram 2.G.36: Observation status for migration status: case 4

Note: The user enters the sample during the time unit. If the entry date is such that the first
segment overlaps with the time unit on strictly less than Σ days, the possibility exists that a
migration event overlapping with at least the first Σ days of the time unit occurred without
being observed. The user is thus considered as being not observed for the calculation of
the migration stock during that time unit.
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Diagram 2.G.37: Observation status for migration status: case 5

Note: An observation gap overlaps with the time unit on the right. The segment preceding
the gap overlaps with the gap for a duration that is strictly lower than Σ days: the certainty
criterion is not satisfied with respect to the only segment overlapping with the time unit.
If the observation gap is greater than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that a migration event
overlapping with at least the last Σ days of the time unit occurred during the observation
gap. The user is thus considered as being not observed for the calculation of the migration
stock during that time unit. Note that when the observation gap is strictly less than
𝜏𝑡𝑒𝑚𝑝 , the non-observation conditions depend on the characteristics of the preceding and
following segments. The corresponding configurations are considered in the following
diagrams.

Diagram 2.G.38: Observation status for migration status: case 6

Note: This case is equivalent to case 5 described in diagram 2.G.37 but implicitly assumes
that the observation gap is strictly less than 𝜏𝑡𝑒𝑚𝑝 – otherwise we are back to case 5. The
segment preceding the gap is at a non-home location !H and overlaps with the time unit
for a duration strictly lower than Σ days. If the time elapsed between the day following
the last day of the preceding segment and the time unit end date is greater than 𝜏𝑡𝑒𝑚𝑝 , the
possibility exists that the observed segment conceals a migration episode overlapping with
the time unit on at least Σ days. Given this uncertainty, the user is considered as being
not observed for the calculation of the migration stock during that time unit. Note that,
conversely, if the duration considered is strictly lower than 𝜏𝑡𝑒𝑚𝑝 , then we are certain that
no migration event overlapping with the time unit occurred, and the user is considered as
observed and not in migration.
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Diagram 2.G.39: Observation status for migration status: case 7

Note: This is the same configuration as in case 6 above, where the non-observation conditions
with respect to the characteristics of the segment following the gap are considered. Similarly,
the following segment is at a non-home location !H and the preceding segment still overlaps
with the time unit for less than Σ days. If the time elapsed between the observation gap
start date and the day preceding the first day of the following segment is greater than
𝜏𝑡 𝑒𝑚𝑝, the possibility exists that the observed non-home segments conceals a migration
episode overlapping with the time unit on at least Σ days. Given this uncertainty, the user
is considered as being not observed for the calculation of the migration stock during that
time unit.

Diagram 2.G.40: Observation status for migration status: case 8

Note: The user exits the sample during the time unit. If the exit date is such that the last
segment overlaps with the time unit on strictly less than Σ days, the possibility exists that a
migration event overlapping with at least the first Σ days of the time unit occurred without
being observed. The user is thus considered as being not observed for the calculation of
the migration stock during that time unit.

Diagram 2.G.41: Observation status for migration status: case 9

Note: An observation gap fully covers the time unit. When this gap is larger than 𝜏𝑡𝑒𝑚𝑝

days, the possibility exists that a migration event overlapping with the time unit on at least
Σ days occurred during the observation gap. The user is thus considered as being not
observed for the calculation of the migration stock during that time unit. Note that when
the observation gap is strictly less than 𝜏𝑡𝑒𝑚𝑝 , the non-observation conditions depend on the
characteristics of the preceding and following segments. The corresponding configurations
are considered in the following diagrams.
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Diagram 2.G.42: Observation status for migration status: case 10

Note: This case is equivalent to case 9 described in diagram 2.G.41 but implicitly assumes
that the observation gap is strictly less than 𝜏𝑡𝑒𝑚𝑝 – otherwise we are back to case 9. The
segment preceding the gap is at a non-home location !H – and does not overlap with the
time unit. If the time elapsed between the day following the last day of the preceding
segment and the time unit end date is greater than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that the
observed segment conceals a migration episode overlapping with the time unit on at
least Σ days. Given this uncertainty, the user is considered as being not observed for
the calculation of the migration stock during that time unit. Note that, conversely, if the
duration considered is strictly lower than 𝜏𝑡𝑒𝑚𝑝 , then we are certain that no migration event
overlapping with the time unit occurred, and the user is considered as observed and not in
migration.

Diagram 2.G.43: Observation status for migration status: case 11

Note: This is the same configuration as in case 10 above, where the non-observation
conditions with respect to the characteristics of the segment following the gap are considered.
Similarly, the following segment is at a non-home location !H and the preceding segment
does not overlap with the time unit. If the time elapsed between the time unit start date
and the day preceding the first day of the following segment is greater than 𝜏𝑡 𝑒𝑚𝑝, the
possibility exists that the observed non-home segments conceals a migration episode
overlapping with the time unit on at least Σ days. Given this uncertainty, the user is
considered as being not observed for the calculation of the migration stock during that
time unit.

Diagram 2.G.44: Observation status for migration status: case 12

Note: The user exits the sample before the time unit. There is complete uncertainty about
the user’s migration status for that time unit and he is considered as no observed.
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Diagram 2.G.45: Observation status for migration status: case 13

Note: The user enters the sample only after the time unit. There is complete uncertainty
about the user’s migration status for that time unit and he is considered as no observed.

Diagram 2.G.46: Observation status for migration status: case 14

Note: The observation gap is strictly within the time unit. Both the preceding and following
segments overlap with the time unit on strictly less than Σ days. In this case, the following
segment is at a non-home location !H. If the maximum duration of that segment is greater
than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that it conceals a migration event overlapping with the
time unit on at least Σ days. Given this uncertainty, the user is considered as being not
observed for the calculation of the migration stock during that time unit.

Diagram 2.G.47: Observation status for migration status: case 15

Note: The observation gap is strictly within the time unit. Both the preceding and following
segments overlap with the time unit on strictly less than Σ days. In this case, the preceding
segment is at a non-home location !H. If the maximum duration of that segment is greater
than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that it conceals a migration event overlapping with the
time unit on at least Σ days. Given this uncertainty, the user is considered as being not
observed for the calculation of the migration stock during that time unit..
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Diagram 2.G.48: Observation status for migration status: case 16

Note: The observation gap is strictly within the time unit. Both the preceding and following
segments overlap with the time unit on strictly less than Σ days. In this case, the following
segment is at a non-home location !H and the user exits the sample at the end of this
segment. Compared with case 14, the maximum end date is therefore considered to
coincide with the segment end date and the maximum duration is shorter. Similarly, if it is
greater than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that it conceals a migration event overlapping with
the time unit on at least Σ days. Given this uncertainty, the user is considered as being not
observed for the calculation of the migration stock during that time unit.

Diagram 2.G.49: Observation status for migration status: case 17

Note: The observation gap is strictly within the time unit. Both the preceding and following
segments overlap with the time unit on strictly less than Σ days. In this case, the preceding
segment is at a non-home location !H and the user actually enters the sample on the
start date of this segment. Compared with case 15, the minimum start date is therefore
considered to coincide with the segment start date and the maximum duration is shorter.
If the maximum duration of that segment is greater than 𝜏𝑡𝑒𝑚𝑝 , the possibility exists that
it conceals a migration event overlapping with the time unit on at least Σ days. Given
this uncertainty, the user is considered as being not observed for the calculation of the
migration stock during that time unit..
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Appendix 2.H Senegal temporary migration profile:
additional material

Table 2.H.1: Migration statistics at the national level derived from the unweighted
sample, 2013.

Migration events Migrants Migration rate

≥ 20 days 782,296 487,300 24.4%
≥ 30 days 527,382 381,031 19.1%
≥ 60 days 217,501 199,237 10.0%
≥ 90 days 91,729 90,910 4.6%

Note: Numbers showed in the table are based on the raw high-quality subset for the year
2013.

Table 2.H.2: Comparison of low- and high-confidence migration estimates at the
national-level, high-quality subset.

Migration events Migrants Migration rate
High-conf. Low-conf. High-conf. Low-conf. High-conf. Low-conf.

≥ 20 days 4,276,706 4,406,711 2,568,976 2,607,922 32.6% 33.1%
≥ 30 days 2,874,507 2,929,497 2,037,406 2,058,398 25.8% 26.1%
≥ 60 days 1,200,775 1,218,813 1,092,802 1,105,612 13.9% 14.0%
≥ 90 days 528,388 534,849 520,205 526,268 6.6% 6.7%

Note: The table shows aggregated statistics at the national-level for the year 2013 based on
the 2013 high-quality weighted sample. Two estimates are compared for each migration
metric: one considers all high-confidence migration events and the other is based on
the low-confidence migration events. High-confidence events have an observed duration
greater than the minimum duration considered (i.e. 20, 30, 60 or 90 days) whereas low-
confidence events only have their maximum duration exceeding the minimum duration
threshold.
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Table 2.H.3: Comparison of low- and high-confidence migration estimates at the
national-level, low-quality subset.

Migration events Migrants Migration rate
High-conf. Low-conf. High-conf. Low-conf. High-conf. Low-conf.

≥ 20 days 4,270,546 5,178,167 2,612,010 2,847,314 33.1% 36.1%
≥ 30 days 2,826,887 3,189,877 2,047,743 2,172,571 26.0% 27.5%
≥ 60 days 1,101,779 1,178,350 1,020,863 1,079,132 12.9% 13.7%
≥ 90 days 456,429 481,924 452,060 476,911 5.7% 6.0%

Note: The table shows aggregated statistics at the national-level for the year 2013 based on
the 2013 low-quality weighted sample. Two estimates are compared for each migration
metric: one considers all high-confidence migration events and the other is based on
the low-confidence migration events. High-confidence events have an observed duration
greater than the minimum duration considered (i.e. 20, 30, 60 or 90 days) whereas low-
confidence events only have their maximum duration exceeding the minimum duration
threshold.

Figure 2.H.1: Rural-out migration stock disaggregated by destination zone, 2013-
2015.
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3.1 Introduction

Within the Sahel region, rural livelihoods are largely dominated by agropastoral
activities that are profoundly reliant on rainfall. Specifically, in the context of
Senegal, which is the focus of this chapter, a significant 74% of rural households
engage in some form of agriculture. Of this segment, 86% rely on rainfed agriculture,
while a mere 5% have access to irrigation. As a result, rural households face
significant year-on-year volatility in production and income. To navigate these
uncertainties, rural households implement a range of coping mechanisms. These
strategies encompass the adoption of modern agricultural technologies (Dercon
and Christiaensen, 2011), consumption smoothing via savings and credit markets
(Basu and Wong, 2015), the use of buffer stocks (Fafchamps, Udry, et al., 1998;
Chaudhuri and Paxson, 2021) or the reliance on risk-sharing networks (Fafchamps
and Gubert, 2007; Morten, 2019). Alternatively, individuals might opt to offer their
labor in different markets by engaging in temporary migration strategies. Yet, this
phenomenon has received less scholarly attention, largely due to the scarcity of
data on such short-term movements.
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Over the past two decades, Senegal has faced four major drought episodes,
including three that occurred after 2010 (specifically in 2011, 2014, 2018). Taken
together, these recent events have reportedly impacted over 1.8 million individuals.1
Yet, it remains ambiguous whether, and to what extent, the income disruptions
stemming from these climatic shocks influenced individuals’ choices to temporarily
relocate. Temporary migration may be used as an ex post response to compensate
for income losses caused by a negative shock, effectively acting as a push factor.
Nonetheless, migration comes with its inherent costs, and these income setbacks
can also inhibit migration by intensifying liquidity constraints. In parallel, various
frictions and market imperfections could hinder an efficient short-term reallocation
of labor across locations, particularly from areas impacted by the shock to those that
remain unaffected. On the other hand, temporary migration might be proactively
incorporated ex ante within livelihood strategies, as a means to diversify income
sources and mitigate potential risks. Under this perspective, adverse shocks would
not directly influence migration choices, given that such movements are conceived
precisely as a long-term strategy to manage income fluctuations. Lastly, adverse
climatic events might diminish the temporary migration of individuals who are not
directly impacted, due to decreased productivity in potential destination locations.

In other contexts, empirical research has mostly pointed towards a positive
relationship between environmental shocks and migration. More specifically, slow
onset weather events such as drought conditions or heat waves have been found to
significantly increase migration movements in Asia and South America (Gray and
Mueller, 2012b; Dallmann and Millock, 2016; Thiede et al., 2016; Call et al., 2017),
but also in African contexts (Henry et al., 2004; Gray and Mueller, 2012a; Mastrorillo
et al., 2016; Mueller et al., 2020). However, only a handful of quantitative studies
have focused on drought-induced migrations in the Sahel. Findley (1994) showed
that the 1980’s drought in Mali caused a doubling of short-term internal migrations,
with a more pronounced effect for the poorest households. More recently, Defrance
et al. (2023) combined census data and high-resolution drought indices and found
that drought conditions were associated with positive net flows of rural-to-urban
migrants over the 1987-2009 period in Mali. Similarly, Henry et al. (2004) show that
men are more likely to migrate domestically in response to drought conditions in
Burkina Faso.

Empirical findings nonetheless reveal that the climate-migration relation is
complex, multidimensional, and inherently context-specific and therefore at odds
with the monolithic narrative positing that climate variability unambiguously leads
to more migration for the most vulnerable. Weather shocks typically decrease the
utility of staying for affected households – for instance, through crop failure or land

1EM-DAT, CRED / UCLouvain, Brussels, Belgium – www.emdat.be
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degradation – and effectively create an incentive to use temporary migration as
a coping strategy. But they also strengthen liquidity constraints to a point where
investing in migration strategies may no longer be a feasible option. Some studies
thus showed that climatic events can hamper migration in specific contexts and
for particular population sub-groups (e.g. women, poorest) (Gray and Mueller,
2012a; Henry et al., 2004; Hirvonen, 2016; Mueller et al., 2020). Moreover, most
longitudinal studies shed light on the heterogeneity of the effect of climatic events
on migration with respect to household and individual characteristics such as
wealth, land ownership, gender, but also across countries.

A major impediment to advancing the understanding of short-term migration
responses to climate variability in sub-Saharan Africa has been the lack of detailed
and reliable data. First, standard survey instruments imply measurement errors
such as recall bias and attrition. More importantly, they are limited in their ability
to capture finer mobility patterns such as seasonal, circular, temporary or high-
frequency migrations that nonetheless often prevail (Coffey et al., 2015). In this
respect, exploiting mobile phone data has emerged as a promising alternative to
study these subtler human movements in developing contexts (Blumenstock, 2012;
Hong et al., 2019; Lai et al., 2019; Demissie et al., 2019). However, a limited number
of studies have used mobile phone data sources to track environmentally-induced
human mobility. Lu, Wrathall, et al. (2016) focus on mobility patterns in the
aftermath of 2013 Cyclone Mahasen in Bangladesh while Lu, Bengtsson, et al.
(2012) unveiled population movements after the 2010 earthquake in Haiti. No
empirical research using mobile phone data has been conducted for the study of
human mobility triggered by slow onset events, or even more broadly to investigate
environmentally-induced migrations in sub-Saharan Africa. As the penetration
rate of mobile phone subscriptions has significantly progressed since the 2010’s
with coverage beyond 100% in most Sahelian countries2, so has the relevance of
using mobile phone data for the study of internal migrations in the region.

In this study, we delve into the influence of rainy season conditions on temporary
migration decisions in Senegal. Harnessing three years of mobile phone metadata,
we capture temporary migration movements at a national scale with a degree of
spatial and temporal detail unattainable with conventional datasets. This enables us
to precisely characterize the timing, duration and direction of temporary migration
flows across a set of over 900 locations, which is roughly equivalent to twice the
number of administrative divisions at the highest level in Senegal.3 We use the
migration estimates produced in chapter 2, which provides a rich benchmark

2Source: World Development Indicators, The World Bank.
3There are 433 communes in Senegal (fourth administrative level).



Chapter 3. Temporary migration response to climate variability 165

description of temporary migration patterns in Senegal. Temporary migration is
ubiquitous in the country: our data allow to identify over 4 million events estimated
in 2013, involving a third of the adult population. Two thirds of migration flows
originate from rural areas and are primarily directed to cities. Rural-to-rural
movements still represents a significant fraction of the total flow and are mostly
local. Moreover, the unique temporal granularity of the data allows to unveil clear
seasonal patterns: the stock of temporary migrants typically doubles between June
and September and sharply decreases in October.

We develop a simple temporary migration model in which a single sector
produces using labor and precipitations. Production functions are location-specific
which allows to account for spatial differences in the sensitivity of local economies
to rainfall conditions. Location choices are modelled within a nested logit structure
in which individuals have home bias preferences. In this model, rainy season
conditions are viewed as a local annual agricultural productivity draw that deter-
mines the trajectory of local wages over the agricultural year. Differences in the
spatio-temporal distribution of rainfall across locations in distinct years is expected
to induce some level of labor reallocation to places that are temporarily relatively
more productive. Within-year reallocation dynamics are also possible given the
differences in the agricultural calendar and economic structure that exist across
locations. The temporal granularity of our data ultimately facilitates a meticulous
exploration of these dynamics. We derive a simplified version of the model that
provides some intuitions on the dynamics of short-term labor reallocation with
climate variability, and lays the foundation for the ensuing empirical analysis.

We combine a granular phone-derived pseudo-panel of temporary migration
estimates with satellite-based measures of the quality of rainy seasons. The dataset
covers the period 2013-2015, during which a succession of good and bad rainy
seasons is observed. In a first approach, we aggregate migration across destinations
for each origin location and we estimate a conventional migration regression.
Namely, we focus on the identification of the effect of rainy season conditions at
origin on the probability of out-migration to any destination during the agricultural
year. In essence, this is comparable to other identification exercises that have been
conducted on this topic using survey data that usually do not include information
on migration destinations. We find that relatively poorer conditions immediately
lead to lower temporary migration in relative terms during the harvest season
(October-November), and that the effect persists until the month of April the
following year.

As underscored in Borusyak, Dix-Carneiro, et al. (2022), this kind of estimation
suffers from an omitted-variable bias, especially when conditions in potential
destinations correlate with those in the origin. Our observations affirm this phe-
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nomenon in our context. Consequently, we estimate dyadic regressions, focusing
on bilateral temporary migration rates across origin-destination pairs. This enables
us to incorporate the role of rainfall conditions at destination in shaping migration
decisions. With this identification strategy, and consistent with our first approach,
we find a positive effect of precipitations on temporary migration during harvest.
Yet, factoring in conditions at the destination reshapes our understanding of the
effect of rainy season conditions at the origin on migration patterns during the
following off-season (January-June). Relatively poorer conditions at origin lead
to a higher propensity to temporarily migrate during that period. On the other
hand, conditions at destination are found to be positively linked to their level of
attractiveness. Finally, a heterogeneity analysis reveals that the observed negative
effect of precipitations at origin on temporary migration during the off-season
is more pronounced in locations with lower standards of living, suggesting that
poorer households are more likely to resort to temporary migration as a coping
strategy in times of hardship.

This study is primarily connected to a large strand of literature that has
investigated the mechanisms by which individuals cope with high income variability
in developing countries (Basu and Wong, 2015; Chaudhuri and Paxson, 2021; Dercon
and Christiaensen, 2011; Fafchamps, Udry, et al., 1998; Fafchamps and Gubert,
2007; Morten, 2019; Townsend, 1994; Udry, 1994). It adds to this literature by
studying temporary migration in a West African country characterized by a high
vulnerability to frequent rainfall shocks. It further contributes to the climate
migration literature, which focuses on the influence of environmental factors on
migration decisions. Most studies have offered important insights into the long-term
migration responses to weather anomalies in various developing contexts. Notable
examples include Defrance et al. (2023) who use multiple census waves in Mali to
investigate permanent migration responses to drought conditions, Dallmann and
Millock (2016) who conduct a similar study in India, or Marchiori et al. (2012) who
study the impact of weather anomalies on rural-urban migration in sub-Saharan
Africa. This research augments the existing body of work by shedding light on
the immediate temporary migration reactions to climate shocks, a temporal scale
that has often been neglected due to the challenges associated with tracking such
movements. Further, it complements a set of studies that investigated the benefits
and barriers to temporary migration in the face of income seasonality (Bryan,
Chowdhury, et al., 2014; Imbert and Papp, 2020a). Finally, it enriches a collection
of studies, including Lu, Bengtsson, et al. (2012) and Lu, Wrathall, et al. (2016),
which have combined mobile phone data with environmental signals to advance
our understanding of mobility responses to environmental shocks. To the best of
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our knowledge, this is the first study to exploit mobile phone data to identify the
impact of slow onset events on temporary migration decisions within a developing
setting.

In section 3.2, we present a simple model of temporary migration with climate
variability, understood empirically as inter-year variations in the quality of rainy
seasons. In section 3.3, we describe the sample of mobile phone data and we
summarize the method used to produce measures of temporary migration in
Senegal for the period 2013-2015. Section 3.4 shows the results of the empirical
analysis on the effect of rainy season conditions on temporary migration and section
3.5 concludes.

3.2 Simple model of temporary migration with climate
variability

3.2.1 Framework

The economy is comprised of 𝑁 individuals that inelastically provide one unit of
labor in each time period 𝑡. At the beginning of each period 𝑡, each individual 𝑖
chooses a location 𝑚𝑖 ,𝑡 ∈ ℳ = {𝑚1 , ..., 𝑚𝑀} where he provides labor for a wage
𝑤𝑚,𝑡 . The home location of individual 𝑖 is denoted by ℎ𝑖 ∈ ℳ, and is fixed
throughout the entire period of study. This means that we consider any choice
𝑚𝑖 ,𝑡 ≠ ℎ𝑖 as a temporary relocation for individual 𝑖 that does not affect the definition
of his usual place of residence ℎ𝑖 .

3.2.2 Production function

We assume a one-sector economy in which firms produce using natural capital
available at time 𝑡, 𝐾𝑚,𝑡 , and labor 𝑁𝑚,𝑡 at each location 𝑚. In our context, 𝐾𝑚,𝑡
represents the amount of accumulated precipitations since the start of the rainy
season and is provided exogenously at no cost. The production process is equivalent
to a representative firm producing according to a Constant Returns to Scale (CRS)
Cobb-Douglas production function:

𝑄𝑚,𝑡 = Γ𝑚,𝑠(𝑡)𝐾
𝛼𝑚
𝑚,𝑡𝑁

1−𝛼𝑚
𝑚,𝑡 (3.1)

𝑠(𝑡) is a season index that represents the time of the year at time 𝑡. For instance,
when 𝑡 represents periods of time corresponding to half-months, 𝑠(𝑡) can take on
24 values to denote the first half of January, the second half of January, the first
half of February, and so on. Γ𝑚,𝑠(𝑡) is thus a location- and season-specific TFP that
allows to capture differences in the temporal trajectories of local productivity across
locations. In other words, it captures seasonal patterns in the production and allows



Chapter 3. Temporary migration response to climate variability 168

for those to differ across locations. For instance, rural locations that primarily rely
on rainfed agriculture will be productive from the start of the rainy season (June)
to the harvest season (October-December); the demand for agricultural labor will
be relatively high. On the other hand, urban locations generally experience lower
levels of seasonality and Γ𝑚,𝑠(𝑡) is expected to exhibit lower variations over a typical
year.

3.2.3 Labor market

We assume that the labor market is perfectly competitive and for each period 𝑡 and
location 𝑚, the representative firm observes 𝐾𝑚,𝑡 and chooses 𝑁𝑚,𝑡 that maximizes
profits. This allows to determine an expression of 𝑤𝑚,𝑡 that defines the inverse
labor demand curve:

𝑤𝑚,𝑡 = (1 − 𝛼𝑚)Γ𝑚,𝑠(𝑡)
(
𝐾𝑚,𝑡

𝑁𝑚,𝑡

)𝛼𝑚
(3.2)

The inverse labor demand elasticity from the labor demand curve is thus given
by:

𝜕 ln𝑤𝑚,𝑡
𝜕 ln𝑁𝑚,𝑡

= −𝛼𝑚 (3.3)

Since −𝛼𝑚 < 0, the labor market is a source of congestion: an increase in labor
is associated with lower wages, which in turn decreases the value of location 𝑚.

Similarly, the elasticity of wages with respect to precipitations 𝐾𝑚,𝑡 is 𝛼𝑚 > 0,
so that higher precipitations lead to higher wages that make locations relatively
more attractive.

3.2.4 Utility maximization

Individuals’ preferences are Cobb-Douglas over a tradable good 𝑐1 and housing
𝑐2. Utility also depends on the level of amenities 𝐴𝑚′ at the chosen location 𝑚′,
and we assume iceberg migrations costs 𝜏𝑚,𝑚′ for an individual that moved from
𝑚 to 𝑚′ (𝜏𝑚,𝑚 = 1). We assume free trade so that the price of 𝑐1 is homogeneous
and normalized to 1. The price of housing at location 𝑚′ is denoted by 𝑝𝑚′ and we
assume that the sector is non-competitive, e.g. 𝑝𝑚′ is fixed and does not vary with
𝑁𝑚′,𝑡 .4 This allows to simplify the environment with preferences that depend only

4Competition in the housing sector would imply additional congestion forces on the housing
market, which is not the focus of our paper. In fact, we assume sticky local prices given the short
duration of the movements considered. Namely, local markets do not adjust to short-term changes
in local demand. However, future work could consider a version of the model that relaxes this
assumption.
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on the consumption of the tradable good:

𝑢𝑚,𝑚′(𝑐1) =
𝐴𝑚′𝑐1
𝜏𝑚,𝑚′

(3.4)

Conditional on moving from location 𝑚 to location 𝑚′ at time 𝑡 and assuming
no savings, individual 𝑖 maximizes utility subject to the budget constraint 𝑤𝑚,𝑡 . So
the indirect utility associated with choosing 𝑚′ can be directly expressed as:

𝑉𝑚,𝑚′,𝑡 =
𝐴𝑚′𝑤𝑚′,𝑡

𝜏𝑚,𝑚′
(3.5)

3.2.5 Location choice

We assume that, for any individual 𝑖 residing in location ℎ, location choices
are consistent with a random utility model that depends on the indirect utility
associated with the location choice and an idiosyncratic taste shock:

𝑣 𝑖𝑚,𝑚′,𝑡 = ln 𝑉𝑚,𝑚′,𝑡 + 𝜖𝑖𝑚′,𝑡 (3.6)

The idiosyncratic taste shock follows a nested logit structure. The choice of
location is modelled as a two-step decision process where the individual first
decides whether to be at home or in migration (i.e. at a non-home location) in
the upper nest, and then picks a specific location in the lower nest conditional
on choosing to be away from home. As in Monras (2018) and Imbert and Papp
(2020b), among others, this structure allows to account for home biased preferences.
Namely, it allows to make the home location a special place that individuals dis-
proportionately prefer. The absence of home biased preferences would otherwise
describe a world in which migration rates would be substantially higher that what
is observed in practice (Imbert and Papp, 2020b).

The inverse of the scale parameters associated with the upper and lower nests
are denoted by 𝜃 and �̄�. ℳ = {𝑚1 , ..., 𝑚𝑀} is the universal choice set and we
define ℳ 𝑖 = {𝑚1 , ..., 𝑚𝑀}\{ℎ𝑖}, the choice set in the lower nest corresponding to
the set of non-home locations for individual 𝑖. With this structure, the probability
of choosing a location 𝑚 𝑗 ∈ ℳ 𝑖 can be expressed as the product of the marginal
probability of choosingℳ 𝑖 (i.e. being in migration) with the conditional probability
of choosing 𝑚 𝑗 ∈ ℳ 𝑖 .

In the lower model, the conditional probability of choosing a location 𝑚 𝑗 ∈ ℳ 𝑖

takes the form of a logit model:

𝑃𝑟(𝑚𝑖 ,𝑡 = 𝑚 𝑗 |ℳ 𝑖 , 𝑚𝑖 ,𝑡−1) =
𝑉

1/�̄�
𝑚𝑖 ,𝑡−1 ,𝑚𝑗 ,𝑡∑

𝑘∈ℳ 𝑖 𝑉
1/�̄�
𝑚𝑖 ,𝑡−1 ,𝑚𝑘 ,𝑡

(3.7)
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In the upper model, the marginal probability of choosing to be away from home
also follows a logit model:

𝑃𝑟(ℳ 𝑖 |𝑚𝑖 ,𝑡−1) =
𝑉

1/𝜃
ℎ̄

𝑉
1/𝜃
𝑚𝑖 ,𝑡−1 ,ℎ,𝑡

+𝑉 1/𝜃
ℎ̄

(3.8)

Where ln𝑉ℎ̄ = �̄� ln
∑
𝑘∈ℳ 𝑖 𝑉

1/�̄�
𝑚𝑖 ,𝑡−1 ,𝑚𝑘 ,𝑡

.

The probability of being in migration at destination 𝑚 𝑗 conditional on the
location at 𝑡 − 1, 𝑚𝑖 ,𝑡−1, is therefore given by:5

𝑃𝑟(𝑚𝑖 ,𝑡 = 𝑚 𝑗 |𝑚𝑖 ,𝑡−1) =
𝑉

1/𝜃
ℎ̄

𝑉
1/𝜃
𝑚𝑖 ,𝑡−1 ,ℎ,𝑡

+𝑉 1/𝜃
ℎ̄

𝑉
1/�̄�
𝑚𝑖 ,𝑡−1 ,𝑚𝑗 ,𝑡∑

𝑘∈ℳ 𝑖 𝑉
1/�̄�
𝑚𝑖 ,𝑡−1 ,𝑚𝑘 ,𝑡

(3.10)

We make further assumptions allowing to arrive at a simplified version of (3.10)
that supports the empirical analysis of section 3.4, while retaining the relevant
features allowing to rationalize the mechanisms at play. In particular, we assume
no mobility frictions and no congestion on the labor market, which allows to obtain
a closed-form expression for the log probability of being in migration at location
𝑚 𝑗 at time 𝑡 for an individual residing in ℎ (see proof in appendix 3.A):

ln𝑃𝑟(𝑚𝑖 ,𝑡 = 𝑚 𝑗) =
𝛼𝑚𝑗

�̄�
ln𝐾𝑚𝑗 ,𝑡 −

𝛼ℎ
𝜃

ln𝐾ℎ,𝑡 +
1
�̄�

ln Γ̃𝑚𝑗 ,𝑠(𝑡) −
1
𝜃

ln Γ̃ℎ,𝑠(𝑡) + 𝐶 (3.11)

Equation (3.11) provides simple intuitions about labor reallocation dynamics
in the presence of inter-year differences in rainy season conditions. Conditional
on a particular time of year 𝑠(𝑡), the elasticity of the bilateral stock of temporary
migrants between an origin 𝑜 and a destination 𝑑 at time 𝑡 with respect to conditions
at origin 𝐾𝑜,𝑡 is − 𝛼𝑜

𝜃 ≤ 0. The elasticity with respect to conditions at destination is
𝛼𝑑
�̄�

≥ 0. The magnitude of the elasticity with respect to conditions at origin (resp.
at destination) thus depends on the sensitivity of the production at origin (resp.
at destination) to rainfall conditions. Higher values of 𝛼𝑜 (resp. 𝛼𝑑) imply larger
effects on local wages at origin (resp. destination), which in turn affect the value
of the origin (resp. destination) location. For instance, all else equal, rural areas
with a dominant agricultural sector using a larger share of natural capital will
show a stronger sensitivity of the propensity to out-migrate with respect to local

5The probability of being at the home location ℎ is simply:

𝑃𝑟(𝑚𝑖 ,𝑡 = ℎ |𝑚𝑖 ,𝑡−1) =
𝑉

1/𝜃
𝑚𝑖 ,𝑡−1 ,ℎ,𝑡

𝑉
1/𝜃
𝑚𝑖 ,𝑡−1 ,ℎ,𝑡

+𝑉1/𝜃
ℎ̄

(3.9)
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conditions. On the other hand, the elasticity of the bilateral stock with respect to
local conditions at origin (resp. destination) also naturally depends on the elasticity
of substitution in the upper (resp. lower) model, 1

𝜃 (resp. 1
�̄�

). This parameter
defines the elasticity between staying at the home location or moving to a different
place and lower values of 𝜃 therefore increase the elasticity of the bilateral stock
with respect to local conditions at origin. Similarly, lower values of �̄� result in
individuals being more sensitive to conditions at destination.

3.3 Data description

3.3.1 Phone-derived temporary migration estimates

The temporary migration measures utilized in this chapter rely on the work of
chapter 2. As a reminder, CDR are mobile phone metadata containing information
on phone transactions such as calls and text messages. Each user is associated
with a unique identifier6 and billing logs provide the timestamp and approximate
location of each call made or received by the user, which allows to reconstruct
trajectories through space and time. Then, a two-step algorithm is applied to
identify temporary migration events in raw user-level CDR trajectories. First,
each user is assigned a home location. Second, “meso-segments” are defined as
continuous periods of time over which a user is consistently seen at a single location
and are detected with a clustering technique. Temporary migration events are then
identified as meso-segments at a non-home location with a duration of at least 20
days.

In this chapter, we construct a pseudo-panel of temporary migration estimates
at the (origin ∗ destination ∗ time) level. The spatial unit of analysis is the voronoi
cell, considering the set of 916 cells constructed in chapter 2.7 Each time unit
corresponds to a “half-month”, which is defined as the periods going from the
1st to the 15th, and from the 16th to the end of each month. Each year is thus
comprised of 24 half-months. The final dataset covers the period 2013-2015 and
therefore has a total of 60,412,032 observations. The main outcome of interest is
the migration stock rate, which we define for each origin 𝑜, destination 𝑑 and time
period 𝑡 as the fraction of users residing in 𝑜 who are in temporary migration
at destination 𝑑 during 𝑡. By the law of large number, this corresponds to an
estimator for the probability that an individual 𝑖 residing in 𝑜 chooses to be in

6More precisely, each unique identifier in the CDR data represents a SIM card.
7As a reminder, cells are defined in a way that tends to balance their size across the sample. Also,

each city corresponds to a unique cell and 39 cells are effectively classified as urban.
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location 𝑑 at time 𝑡, i.e. the left-hand side of equation (3.11) presented in section 3.2.5.

Several features make this phone-derived migration matrix particularly germane
to the purpose of the present study.

First, CDR-based measures from previous studies have focused on migration
flows, i.e. on movements from one location to another over some periods of time.8
By contrast, the methodology of chapter 2 defines a home location for each user
and departing flows can thus be distinguished from returning flows. At any given
time, we are able to unambiguously characterize the observed location of a user
as his home location or a non-home location. This is an essential point in the
environment of the model presented in section 3.2, where home bias preferences
embedded in the idiosyncratic taste shock make the home location a special place
that individuals disproportionately prefer.

Second, the high level of spatial disaggregation allows to define rainy season
conditions at a local level, which better reflects the conditions effectively experienced
by individuals. On the other hand, the spatial resolution of survey-based migration
measures is usually limited to administrative levels. Moreover, the available
spatial granularity allows to capture short movements that are missed in migration
estimates considering larger spatial units, although they may be far from negligible.
For instance, as seen in chapter 2, rural-to-rural movements represent a large
fraction of the total rural-out flow observed and they predominantly occur within
regions.

Third, the ability to precisely capture migration destinations is a major ad-
vantage over survey measures. This allows us to characterize the conditions at
destination locations and investigate their impact on the decision to out-migrate.
As later explained in section 3.4.2, failing to account for rainy season conditions
at destinations would actually induce a serious threat to the identification of the
effect of conditions at origin.

Fourth, the high temporal resolution of migration estimates and the multi-year
period of observation allow to identify the effect of rainy season conditions while
controlling for seasonality. In other words, we are able to exploit variations in
rainy season conditions within locations and for specific periods of the year – more
specifically, within half-months. This is particularly crucial for two reasons. Firstly,
temporary migration patterns in Senegal are highly seasonal (see chapter 2) so
that any effect caused by climate variability would be difficult to identify using
intra-year variations. Moreover, using within-location variations over time rather
than cross-sectional variations is more suitable for the identification of the effect
of rainy season conditions which typically vary more over time than across space

8See, for instance, Blumenstock (2012), Chi et al. (2020), and Lai et al. (2019).
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(Blanchard et al., 2023; Hill and Porter, 2017).

3.3.2 Rainy season conditions

We quantify the quality of rainy seasons based on precipitations received locally.
We use the Climate Hazard Center’s CHIRPS-2.0 gridded precipitations product,
which provides daily precipitations at a 0.05◦ spatial resolution for the period
1981 to present (Funk et al., 2015). Cell-level rainfall values are calculated with
interpolation techniques allowing to blend gauge station data with high-resolution
satellite-based precipitation estimates.9 The performance of CHIRPS for monitoring
drought conditions has been demonstrated in a variety of contexts (Aadhar and
Mishra, 2017; Guo et al., 2017; Mianabadi et al., 2022; Najjuma et al., 2021; Pandey
et al., 2021; Sandeep et al., 2021).

For each voronoi cell, precipitations are aggregated spatially in a 10km buffer
centered on the cell centroid. This allows to obtain a homogeneous geographic
basis for the definition of rainy season conditions across cells, despite differences
in their shape and size. Daily cell-level precipitations are then aggregated over
relevant time windows to define the observed quality of the rainy season for any
given time period 𝑡. We get back to this in more details in section 3.4.

Important variations in the quality of rainy seasons are observed over the study
period (2013-2015). For descriptive purposes, we quantify the quality of rainy
seasons over the period of interest with precipitation anomalies based on the
Standardized Precipitation Index (SPI), which measures the normalized distance of
local precipitation estimates to long-term means (McKee et al., 1993). The SPI has
the advantage of providing comparable measures across areas with distinct rainfall
regimes. We show maps of precipitation anomalies calculated over the entire rainy
season (June-October) for the years 2012 to 201510 in Figure 3.1. Only localized
rainfall deficits were observed in 2013, while 2014 was clearly a drought year where
the vast majority of locations experienced lower-than-average precipitations. In
2012 and 2015, however, precipitations were in excess almost everywhere in the
country. The 2014 drought is of particular interest in our empirical setting as it
provides an opportunity to observe migration behaviors for a realization of rainfall

9The number of gauge stations available varies significantly over time. Monthly
maps of stations used in CHIRPS estimates in Senegal can be consulted us-
ing the following link:http://data.chc.ucsb.edu/products/CHIRPS-2.0/diagnostics/chirps-n-
stations_byCountry/Senegal/

10We also show a map for the 2012 season since the model assumes that migration choices
observed in early 2013 before the 2013 rainy season are influenced by the quality of the most recent
rainy season, i.e. 2012.
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conditions at the lower end of the distribution.

Figure 3.1: 5-month precipitation anomalies over the rainy season, 2012-2015.

(a) 2012: good season (b) 2013: mixed season

(c) 2014: drought (d) 2015: good season

Note: Historical precipitation values at the voronoi-level are estimated with gridded
precipitation data from the CHIRPS2.0 product of the Climate Hazard Group. SPI values
are calculated based on historical values of accumulated precipitations for the June-October
period since 1981.
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3.4 The effect of rainy season conditions on temporary
migration

3.4.1 Context and empirical setting

More than half of the population in Senegal resides in rural areas where livelihood
means mainly rely on subsistence agriculture and livestock. Economic activities
are therefore highly dependent on precipitations received during the rainy season,
between June and October. Agricultural productivity is also characterized by pro-
nounced seasonal fluctuations as a result, especially since irrigation access remains
marginal. Indeed, 87% of agricultural households practice rainfed agriculture11

and the few irrigated lands concentrate in the northern part of the country along
the Senegal River Valley (see map of Figure 3.B.2 in Appendix 3.B). The annual
aggregate demand for agricultural labor peaks around the period going from
June to August for soil preparation, sowing and planting, and from September to
December for the main harvesting season. Off-season agricultural activities during
the January-May period are limited and mostly confined to the Senegal River Valley
zone. In that area, access to irrigation is more widespread and households also
practice flood recession agriculture (see maps of Figures 3.B.2-3.B.4), which allows
to grow crops outside of the usual rainy season period.

As a result, for locations dominated by rainfed agriculture, rainy season condi-
tions affect agricultural productivity from the start of the agricultural campaign
in June to the end of the main harvesting period in December. On the other
hand, locations with higher access to irrigation and counter-season production
are more likely affected during the off-season, between January and May. By
contrast, the quality of rainy seasons is expected to have only a limited impact on
the level of productivity in urban areas where agricultural activities are typically
marginal. Overall, spatial disparities in the rainy season quality, differences in
the prominence and resilience of the agricultural sector, and distinct agricultural
calendars across locations constitute the key forces driving dynamic differences in
labor productivity across areas and over time, creating incentives for individuals to
temporarily relocate where they are most productive.

As outlined in the model of section 3.2, migration decisions are also dampened
by the existence of movement costs and idiosyncratic preferences for the home loca-
tion. Also, labor reallocation at the equilibrium is potentially shaped by congestion
forces. For instance, the labor market can be a source of congestion: an increase in

11Source: RGPHAE 2013, Agence Nationale de la Statistique et de la Démographie (ANSD) de la
République du Sénégal, www.ansd.sn
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labor via migration to a particular location is associated with lower wages, which
in turn decrease the value of that location. Similarly, congestion effects on a broadly
defined housing market can increase the cost of staying at a particular destination.
We do not explicitly investigate those in this paper and rather focus the scope of
our empirical analysis on the direct effect of rainy season conditions on temporary
migration choices. Whether local population dynamics induced by temporary
migration movements lead to market adjustments remains an open question that
we leave for future research.

Over the medium term, we observe important inter-year variations in the
amount and spatio-temporal distribution of rainfalls, with the occasional occur-
rence of very good years (i.e. higher-than-average precipitations) and drought
years with significant rainfall deficits that can be localized or more extensive. Our
empirical analysis exploits the exogenous variations in the quality of rainy seasons
within locations and over the period 2012-2015. The temporal granularity of the
data allows to precisely investigate the timing of the effect of rainy season conditions
on temporary migration choices.

The use of temporary migration as a strategy to cope with variations in the
quality of rainy seasons is likely mediated by the availability of other coping
mechanisms. These include, for instance, efforts to reduce the level of risk – for
instance, through technology adoption (Dercon and Christiaensen, 2011) – or
consumption smoothing strategies via savings/credit markets (Basu and Wong,
2015), buffer stocks (Fafchamps, Udry, et al., 1998; Chaudhuri and Paxson, 2021) or
risk-sharing networks (Fafchamps and Gubert, 2007). Of course, a key limitation in
the use of mobile phone data is that they do not provide this type of information
about users. We are therefore not in a position to study the interaction effect of the
availability of alternative coping strategies at the individual-level with the rainy
season quality on temporary migration choices. Similarly, our data do not offer the
possibility to control for individual-level characteristics known as key determinants
of the propensity to migrate such age, sex or income sources. As a second-best
strategy, we match the origin and destination locations of our temporary migration
estimates with spatially disaggregated information from secondary data sources,
which allows us to perform some heterogeneity analyses.

3.4.2 Conventional migration equation

We start by naively estimating the conventional migration equation that generally
relates a local change in population to a local shock. As pointed out in Borusyak,
Dix-Carneiro, et al. (2022), a plethora of studies have considered this equation to
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investigate the impact of local shocks on labor reallocation dynamics and have
arrived at varying, and sometimes puzzling conclusions. Local shocks are found to
be associated with significant effects on economic outcomes such as wage or em-
ployment, but imply only limited migratory responses.12 This has led researchers to
conclude that migration costs are simply prohibitive and individuals unresponsive
to local shocks. Instead, Borusyak, Dix-Carneiro, et al. (2022) suggest that most
interpretations of the conventional migration equation are flawed since conditions
at relevant alternatives are simply ignored. In situations where shocks at potential
destinations are correlated with the local shock at origin, this creates a problematic
case of omitted variable bias. This is clearly the case in our empirical setting where
the spatial correlation in local rainy season conditions is obvious in the maps of
Figure 3.1. Therefore, this setting offers the opportunity to evaluate the seriousness
of this issue, since the granularity of our migration estimates allows to incorporate
rainy season conditions at destination in our specifications. Also, this is a natural
starting point in the analysis and similar estimations have been conducted in
other studies investigating migration responses to drought conditions using survey
data (Defrance et al., 2023; Henry et al., 2004). In practice, those surveys provide
information on the location of sending areas but are usually more limited in their
ability to capture destination locations.

Our identification strategy uses within-location variations in the quality of
rainy seasons over the multiple years observed in our sample in order to identify
their marginal effect on the rate of temporary out-migration. More specifically, we
observe at each time period 𝑡 and for each origin 𝑜 the fraction of users from 𝑜 that
are in migration during 𝑡. We use granular units of analysis on the time dimension,
i.e. half-months. For each origin location 𝑜, we are thus able to observe variations
in the quality of rainy seasons over multiple years for each half-month of the year.
This allows to disaggregate the effect of rainy season conditions on temporary
migration over the agricultural year at a relatively fine temporal scale. Any given
time unit 𝑡 is uniquely defined by a year 𝑦 and the half-month of the year within
which 𝑡 falls, indexed by a parameter 𝑠. The index 𝑠 thus takes on values ranging
from 1 (the first half of January) to 24 (the second half of December).

Consistent with the model presented in section 3.2, location choices at time 𝑡
are based on the information on the quality of the rainy season available when the
decision is made. We denote this treatment variable by 𝑥𝑜,𝑡 or, equivalently, 𝑥𝑜,𝑠,𝑦 .
In practice, and consistent with equation (3.11), this corresponds to the logged
precipitations accumulated between the start of the most recent rainy season and

12See Borusyak, Dix-Carneiro, et al. (2022) for a review.
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𝑡 − 1. The start of the rainy season is set to the first half of June and ends on the
second half of October and therefore lasts for 5 months, i.e. 10 half-months. We
formally define 𝑥𝑜,𝑠,𝑦 as a function of the precipitations variable 𝑟𝑎𝑖𝑛Δ𝑜,𝑠,𝑦 , which
represents the amount of precipitations accumulated in location 𝑜 at time 𝑡 = (𝑠, 𝑦)
over the past Δ half-months. For instance, 𝑟𝑎𝑖𝑛2

𝑜,12,2013 denotes the precipitations
accumulated over a period of 2 half-months ending at the 12th half-month of 2013
(the second half of June), i.e. the total precipitations received in June 2013 at location
𝑜. With these notations, 𝑥𝑜,𝑠,𝑦 can be expressed as13:

𝑥𝑜,𝑠,𝑦 =


ln 𝑟𝑎𝑖𝑛10

𝑜,20,𝑦−1 𝑖 𝑓 1 ≤ 𝑠 ≤ 11
ln 𝑟𝑎𝑖𝑛𝑠−11

𝑜,𝑠−1,𝑦 𝑖 𝑓 12 ≤ 𝑠 ≤ 20
ln 𝑟𝑎𝑖𝑛10

𝑜,20,𝑦 𝑖 𝑓 21 ≤ 𝑠 ≤ 24
(3.12)

For each time period 𝑡 = (𝑠, 𝑦) and origin 𝑜, we observe the fraction of users
residing in 𝑜 who are in temporary migration – to any destination. We thus estimate
a simplified version of equation (3.8) with a Poisson Pseudo-Maximum Likelihood
(PPML) estimator:

𝑃𝑜,𝑠,𝑦 = 𝑒𝑥𝑝(𝛽0 +
24∑
𝑘=1

(𝛽𝑘𝑥𝑜,𝑠,𝑦 × 𝛼𝑘𝑠 ) + 𝛾𝑜,𝑠 + 𝜂𝑜,𝑠,𝑦) (3.13)

𝑃𝑜,𝑠,𝑦 is the total out-migration rate from origin 𝑜 in half-month 𝑠 of year 𝑦.
𝑥𝑜,𝑠,𝑦 is the observed rainy season quality in 𝑜 for half-month 𝑠 of year 𝑦, as
defined by equation (3.12). Each coefficient of interest 𝛽𝑘 represents the elasticity
of out-migration with respect to precipitations at the origin location.14 𝛼𝑘𝑠 is a
dummy equal to 1 when 𝑘 = 𝑠. 𝛾𝑜,𝑠 is an (origin∗half-month) fixed effect that acts
as a location-specific control for seasonality. The panel structure with three years
of observation together with the granularity of our migration matrix on both the

13For the first 11 half-months of a year 𝑦, the treatment corresponds to precipitations accumulated
over the most recent rainy season, which is the 10-half-month period that ended on the second half
of October (𝑠 = 20) in year 𝑦 − 1. Similarly, in November and December of year 𝑦 (21 ≤ 𝑠 ≤ 24), 𝑥𝑜,𝑠,𝑦
is the precipitations accumulated over the rainy season that just ended, which is the 10-half-month
period that ended on the second half of October (𝑠 = 20) in year 𝑦. Finally, for any half-month between
the second half-month of the rainy season (𝑠 = 12) and the last one (𝑠 = 20), 𝑥𝑜,𝑠,𝑦 corresponds to the
precipitations accumulated from the start of the rainy season (𝑠 = 11) to the preceding time unit. The
length of the period over which the anomaly is calculated therefore varies from 1 half-month to 10
half-months.

14An alternative definition for 𝑥𝑜,𝑠,𝑦 could be used based on the precipitation anomaly defined by
the SPI, using the time windows considered in equation (3.12). More specifically, we can replace
the logged precipitations by the (non-logged) SPI-based rainfall anomalies and interpret 𝛽𝑘 as a
semi-elasticity. We prefer to use the logged precipitations since it simplifies the interpretation of
estimated coefficients. However, we occasionally consider an SPI-based definition of 𝑥𝑜,𝑠,𝑦 because it
enters linearly in our specification which turns out more convenient in some cases, for instance when
testing the existence of non-linearities.
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space and time dimensions allow to consider this restrictive set of fixed effects.15
Note that in this general specification the coefficient of interest varies by half-month
of the year but is fixed across locations. We later explore the heterogeneity of the
effect across locations by interacting the treatment 𝑥𝑜,𝑠,𝑦 with categorical variables
defining different groups of cells, e.g. rural and urban locations.

Results are presented in Figure 3.2.16 Standard errors are clustered at the
(origin∗half-month)-level and error bars on the graph show the 95% confidence
intervals. We observe a positive and significant effect for the September-November
period, that corresponds to the start of the harvest season. A 10% increase in
precipitations at a location is associated with an increase in the out-migration
rate from that location of between 3% (in September) and 7% (in November)
on average. The effect seems to persist until the month of March the following
year before fading away at the end of the agricultural year. Figure 3.C.1 shows
results of the same estimation including an urban dummy interaction that allows
for heterogeneous effects for rural and urban locations respectively. Given that
they dominate the set of locations considered (877 out of 916), rural locations
are unsurprisingly found to be largely driving the patterns observed in Figure
3.2. Urban areas seem to also be responding in a similar way over the September-
November period, and coefficients for the rest of the agricultural year are positive
but imprecisely estimated. The positive relationship between the rainy season
quality at origin and the out-migration rate contradicts the predictions of our
model. Poorer rainfall conditions are expected to act as a push factor for temporary
migration via a decrease in the local productivity but are found to deter migration
instead. However, the results could be supporting a liquidity constraint narra-
tive in which people directly affected by poor agricultural outcomes are not able
to bear the cost of migration – or cannot hedge against the risk of migration failure.17

As mentioned above, a critical limitation of this estimation is that it fails to
15We essentially work with 916 locations observed over 3 years that we decompose into 72 time

periods. This represents a matrix of over 60 million observations. Aggregating over destinations to
get total migration rates by origin and half-month still leaves us with nearly 66,000 observations.

16Note that no coefficients are estimated for the months of December and January. This is because
temporary migration estimates in January 2013, December 2013, January 2014 and December 2015 are
associated with large measurement errors and considered as missing in the final dataset. Indeed, the
2013-2015 raw CDR dataset is split into two sub-periods: 2013 and 2014-2015. This means that users
observed in the 2013 subset cannot be identified in the 2014-2015 subset, and conversely. This creates
censoring effects at each end of both subsets. As a result, we are not able to infer an approximate
duration for mobility events that start before, or end after the period of observation. For instance, if a
user migrates for 30 days from December 15, 2012 to January 14, 2013, we will only be able to observe
that he is at a non-home location for at least 14 days from January 1, 2013 to January 14, 2013, which
is insufficient to classify this mobility event as a temporary migration move.

17Note that a more elaborate migration cost structure would be required to include this feature in
the conceptual framework proposed in section 3.2.
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account for characteristics on the supply side of the migration market. More
specifically, it ignores rainy season conditions at potential destinations. An alter-
native explanation of the results of Figure 3.2 therefore relies on the high degree
of spatial correlation in the quality of the rainy season. The destinations where
individuals usually migrate to find agricultural employment were most likely also
affected by poor rainfall conditions, so that our measures of conditions at origin
may incidentally capture conditions at relevant destinations. It thus becomes
unclear whether our results describe a situation in which poorer conditions lead
to a lower propensity to migrate through tighter liquidity constraints at origin or
lower productivity at destinations that decrease their value.

Figure 3.2: Elasticity of out-migration estimated by half-month over the agricultural
year.

Note: Each point estimate represents the average elasticity of out-migration with respect to
precipitations at origin. Vertical bars represent 95% confidence intervals based on standard
errors clustered at the (origin∗half-month)-level.

3.4.3 Effect of rainy season conditions at origin and destination on
bilateral temporary migration rates

Here, we use the bilateral migration estimates, 𝑃𝑜,𝑑,𝑠,𝑦 , to estimate the model
described by equation (3.11). The richness of our data allows to precisely identify
the locations of origin and destination of the temporary migration movements
observed. As a result, we are able to estimate the effect of rainy season conditions at
destination on bilateral rates of temporary migration to that particular destination.
In other words, we can identify the impact of the quality of the rainy season on the
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level of attractiveness of locations to potential temporary migrants. We estimate
the following model with a PPML estimator:

𝑃𝑜,𝑑,𝑠,𝑦 = 𝑒𝑥𝑝(𝛽0 +
24∑
𝑘=1

(𝛽1,𝑘𝑥𝑜,𝑠,𝑦 × 𝛼𝑘𝑠 + 𝛽2,𝑘𝑥𝑑,𝑠,𝑦 × 𝛼𝑘𝑠 ) + 𝛾𝑜,𝑑,𝑠 + 𝜂𝑜,𝑑,𝑠,𝑦) (3.14)

𝑃𝑜,𝑑,𝑠,𝑦 is the fraction of residents in 𝑜 that are in migration at destination 𝑑 during
half-month 𝑠 of year 𝑦. 𝛾𝑜,𝑑,𝑠 is an (origin∗destination∗half-month) fixed effect. Note
this is a more restrictive specification compared to equation (3.11) derived from the
model, where fixed effects at the (origin∗half-month)- and (destination∗half-month)-
level enter the expression separately. Here, we use the variations within each pair
of origin-destination locations over multiple years to identify the effects of rainy
season conditions at origin and destination on the bilateral migration rate, for each
half-month of the year. Although mobility frictions were ignored in section 3.2 in
order to simplify the algebra, it is important to note that the fixed effect term that we
consider actually absorbs any gravity effect related to the distance between 𝑜 and 𝑑.18

We estimate equation (3.14) allowing for heterogeneous effects of the rainy
season quality at origin and destination on the bilateral migration stock, for rural
and urban locations. More specifically, we interact 𝑥𝑜,𝑠,𝑦 with a categorical variable
indicating whether 𝑜 is a rural or an urban location and, similarly, 𝑥𝑑,𝑠,𝑦 is interacted
with a variable indicating whether 𝑑 is classified as rural or urban. Four coefficients
are thus estimated for each half-month 𝑘: 𝛽𝑟𝑢𝑟𝑎𝑙1,𝑘 , 𝛽𝑢𝑟𝑏𝑎𝑛1,𝑘 , 𝛽𝑟𝑢𝑟𝑎𝑙2,𝑘 and 𝛽𝑢𝑟𝑏𝑎𝑛2,𝑘 . We focus
first on the effect of rainy season conditions at origin and destination for rural
locations, i.e. on the coefficients 𝛽𝑟𝑢𝑟𝑎𝑙1,𝑘 and 𝛽𝑟𝑢𝑟𝑎𝑙2,𝑘 . Results are shown in Figure 3.3
where light dots represent the effect of conditions at origin (𝛽𝑟𝑢𝑟𝑎𝑙1,𝑘 ) on the bilateral
stock of temporary migration, and dark dots the effect of conditions at destination
(𝛽𝑟𝑢𝑟𝑎𝑙2,𝑘 ). Rainy season conditions at origin have a positive and significant effect
over the period September-November (i.e., the harvest period), with an elasticity
reaching 0.4 in November. This is consistent with the results from the estimation of
the conventional migration equation (Figure 3.2) in the previous section, although
the magnitude of the effect is roughly halved. The effect of conditions at destination
over the same period is also found to be positive and significant. On average, a
10% increase in precipitations at a rural location is associated with an increase
in bilateral stocks of temporary migrants from other locations to that destination

18We also estimate a different version of equation (3.14) which is closer to the expression yielded
by the model in equation (3.11), where we keep separate (origin∗half-month) and (destination∗half-
month) fixed effects but explicitly control for the cost of distance between origin and destination. To
do this, we calculate the travel time by car between each pair of cell centroids, 𝜏𝑜,𝑑 , via the Open
Source Routing Machine (OSRM) project(http://project-osrm.org/) that uses OpenStreetMap data.
We provide the results of the main estimation for rural locations in Figure 3.C.2 in Appendix 3.C.2,
and find that they are qualitatively unchanged compared to the results shown in 3.3.
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by 2 to 4%. Overall, these results suggest that part of the effect of rainy season
conditions at origin on the out-migration rate during the harvest season that is
captured in the conventional migration equation is in fact biased by the effect of
rainy season conditions at destinations. Interestingly, effects of conditions at origin
and destination for that period of the year are comparable in size.

Figure 3.3: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, rural locations.

Note: Each point estimate represents an average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots) in
rural locations. All coefficients are obtained with a PPML estimation in a single regression
of the bilateral stock of temporary migrants between an origin location and a destination,
against the logged precipitations at origin interacted with an urban origin dummy and
a half-month indicator, and the logged precipitations at destination interacted with an
urban destination dummy and a half-month indicator. This graph shows the coefficients
associated with urban origin and urban destination dummy interaction values equal to 0
(i.e. rural). Temporary migration bilateral rates are based on migration events of at least 20
days. Vertical bars represent 95% confidence intervals based on standard errors clustered
at the (origin∗destination∗half-month)-level.

This important finding supports the idea introduced in our model: both local
conditions at origin and destination participate in shaping temporary migration
decisions during the harvest period. The direction of the effect of conditions at
destination is consistent with our model. Relatively poorer rainfall conditions at a
given rural location are associated with a decrease in its level of attractiveness as a
migration destination. This supports the mechanism whereby lower precipitations
cause a decrease in local productivity, which implies lower wages and eventually
a decrease in the value of that destination. This effect persists for the rest of the
period: the degree of attractiveness of locations between February and June is
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positively linked with the quality of the most recent rainy season, with an elasticity
that stabilizes at around 0.4-0.5.

However, similar to the conventional migration equation, the estimated effect of
conditions at origin over the September-November period remains rather puzzling.
Even considering bilateral migration measures and controlling for rainy season
conditions at destination, rainfall conditions at origin are found to be positively
associated with the bilateral out-migration rate, although our model predicts an
effect in the opposite direction. Instead, the results could be suggestive of the
existence of an increase in liquidity constraints with the worsening of rainfall
conditions, rendering migration options temporarily unfeasible. In fact, several
empirical studies have found evidence supporting the notion that climatic events
could effectively decrease migration movements (Gray and Mueller, 2012b; Henry
et al., 2004; Hirvonen, 2016; Mueller et al., 2020). An alternative explanation could
rely on the existence of non-linear effects of precipitations on local productivity.
More specifically, excess rainfall could in fact have a negative impact on agricul-
tural production and thus act as a push factor. We find evidence supporting
this hypothesis in robustness checks that further investigate non-linearities in the
precipitation-migration relationship and that we present later in this section.

On the other hand, the pattern of results observed during the off-season,
from February to early June, are more in line with expectations derived from the
conceptual framework. From the second half of February onward, the effect of rainy
season conditions at origin is negative and precisely estimated: on average, for a
rural origin location, a 10% increase in precipitations accumulated over the past
rainy season leads to a decrease in bilateral out-migration stock rates of between
4% and 6% during the March-June period. To investigate this effect further, we
adopt a distinct specification where precipitations at the origin are interacted with
both an urban indicator that signifies if the origin 𝑜 is an urban or a rural location,
and another urban indicator determining if the destination 𝑑 is urban or rural. This
enables us to inspect whether the observed effects of rainy season conditions at a
rural origin are driven by temporary migration movements specifically directed
to other rural destinations or, conversely, to urban areas. Results are presented
in Figure 3.4. Perhaps surprisingly, the effect seems entirely driven by temporary
migration movements to other rural locations and we find no response of temporary
migration choices from rural locations to cities. Since rural-to-rural movements
were previously identified as primarily short-distance, we test whether these
dynamics could explain the observed patterns of results. We thus re-estimate our
model excluding pairs of adjacent locations, but the coefficients remain practically
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unchanged (see Figure 3.C.11 in appendix).

Figure 3.4: Elasticity of the bilateral migration stock over time with respect to
conditions at a rural origin, by zone of destination.

Note: Each point estimate represents an average elasticity of the bilateral out-migration
stock with respect to precipitations at a rural origin. Light dots represent the effect on
the movements toward urban locations, whereas dark dots show the effect on temporary
migration to other rural areas. All coefficients are obtained with a PPML estimation in a
single regression of the bilateral stock of temporary migrants between an origin location
and a destination, against the logged precipitations at origin interacted with an urban
origin dummy, an urban destination dummy, and a half-month indicator, and the logged
precipitations at destination interacted with an urban destination dummy and a half-month
indicator. This graph shows the coefficients associated with the urban origin dummy
interaction value equal to 0 (i.e. rural). Temporary migration bilateral rates are based on
migration events of at least 20 days. Vertical bars represent 95% confidence intervals based
on standard errors clustered at the (origin∗destination∗half-month)-level.

Moreover, the effect of conditions at destination observed for the harvest period
persists during the off-season: the degree of attractiveness of locations between
February and June is positively linked with the quality of the most recent rainy
season, with an elasticity that stabilizes at around 0.4-0.5. Consistent with the model
predictions, rainy season conditions at origin and destination create opposite forces
for the decision to temporarily migrate during the off-season: poorer conditions
at origin act as a push factor while similar conditions at destination decrease the
value of migrating to that destination. This result clearly highlights the value
of phone-derived, highly granular, migration estimates to identify the effects of
interest. The ability to control for conditions at destination changes the conclusion
on the effect of rainy season conditions at origin on the propensity to out-migrate
compared to the results of section 3.4.2. This indicates that we should be cautious
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in interpreting results from conventional migration regression estimations that
ignore conditions at destination.

In the same vein, Figure 3.5 shows the effect of rainy season conditions at
origin and destination on the bilateral stock of temporary migrants for urban
locations. Conditions at origin have a positive and significant effect on the bilat-
eral out-migration rate over the September-November period, and the pattern is
surprisingly similar to the one observed for rural locations in Figure 3.3. This
is rather unexpected given that the urban sector is generally marked by lower
agricultural activities, making urban residents less sensitive to local rainfall condi-
tions compared to their rural counterparts. However, and perhaps reassuringly,
estimated coefficients are statistically non-significant for the rest of the agricultural
year. On the other hand, we find a positive, significant and persistent effect of the
rainy season quality at urban destinations, from the first-half of October and until
the month of June the following year. The result is again quite surprising: it is
indicative of urban areas being relatively more attractive to temporary migrants
following a relatively good rainy season. We do not have a clear-cut explanation for
this finding but we propose at least two assumptions. The first one somehow relates
to a measurement problem. Most of the cells classified as urban strictly include the
city extent and also encompass the outskirts of that city where agricultural land
may in fact dominate – this is especially true of smaller, secondary cities. In short,
we do not exclude the possibility that a fraction of temporary migrants seen at
urban destinations actually find employment in the agricultural sector. The second
assumption has to do with home and work location choices of temporary migrants.
The algorithm used to determine daily locations is primarily based on observations
at night so that migration destinations are representative of where individuals stay,
but not necessarily where they work. It may well be that temporary migrants spend
nights in a city where they more likely have connections, and commute to some
locations at the periphery during the day to supply labor in the agricultural sector.
Future work could examine those mechanisms more closely.
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Figure 3.5: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, urban locations.

Note: Each point estimate represents an average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots) in
urban locations. All coefficients are obtained with a PPML estimation in a single regression
of the bilateral stock of temporary migrants between an origin location and a destination,
against the logged precipitations at origin interacted with an urban origin dummy and
a half-month indicator, and the logged precipitations at destination interacted with an
urban destination dummy and a half-month indicator. This graphs shows the coefficients
associated with urban origin and urban destination dummy interaction values equal to
1 (i.e. urban). Temporary migration bilateral rates are based on migration events of at
least 20 days. Vertical bars represent 95% confidence intervals based on standard errors
clustered at the (origin∗destination∗half-month)-level.

We perform a variety of robustness checks. First, we replicate the results of
Figure 3.3 and Figure 3.5 considering higher minimum duration thresholds for
the definition of temporary migration events: 30, 60 and 90 days, respectively. We
show the results in Figures 3.C.3-3.C.8 in Appendix 3.C.3. The patterns of results
remain largely consistent across the board, which suggests that the main results in
Figures 3.3 and 3.5 are not driven by migration events of very short duration.

Second, the movements between pairs of adjacent locations may be subject to
measurement errors. Users residing close to the border between two locations can
be erroneously identified has having moved although calls were simply re-routed by
the network from one antenna to the other in order to load balance. Consequently,
we re-estimate equation (3.14) excluding all adjacent pairs of locations from the
dataset. Assuming that identified movements between adjacent pairs of locations
do occur in reality, this estimation concurrently allows to verify whether our results
are driven by short-haul movements. We show the results in Figures 3.C.9-3.C.10 in
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Appendix 3.C.4 and find practically no difference with the results obtained when
adjacent cells are included.19

Third, PPML estimators of the parameters of interest, 𝛽1,𝑘 and 𝛽2,𝑘 , correspond to
an average elasticity of the bilateral out-migration stock across all origin-destination
pairs in the sample. Since all pairs of locations enter the estimation with the
same weight, the estimated effect could actually differ from the overall population
average effect because origin locations vary in population size. For instance, the
population average effect could be non-significant in a situation where our results
are exclusively driven by the most sparsely populated cells. We provide evidence
against this hypothesis by estimating our model with heterogeneous effects across
groups of origin-destination pairs with different population size at origin. Figure
3.C.12 in Appendix 3.C.5 shows the results of the estimation on rural locations,
considering five groups of origin locations of equal size based on population quin-
tiles. Reassuringly, each rural group exhibits a pattern of results that is comparable
with the one obtained in Figure 3.3. In any case, there is no indication that the
magnitude of the estimated coefficients correlates with the population at origin.

Lastly, in Appendix 3.C.6, we provide a complementary analysis investigating
the existence of non-linearities in the relationship between precipitations at origin
and destination rural locations, and the bilateral out-migration rate. In particular,
we consider the possibility that excess rainfall may have a negative impact on the
agricultural sector, which could distort the interpretation of the linear models
estimated above. More generally, we check whether estimated effects could be
particularly driven by precipitation values at the lower or higher end of the
distribution. We find that conditions of excess rainfall are a strong determinant
for the estimated positive effect of precipitations at origin on temporary migration
during the harvest period, compared to drought conditions. In short, considering
the median precipitations as a reference scenario, excess precipitations at origin
lead to a large increase in out-migration, whereas the decrease in out-migration
induced by a rainfall deficit of the equivalent magnitude is comparatively small.
We find no evidence of non-linearities in the effect of rainy season conditions at
origin on migration during the off-season. On the other hand, the positive effect of
precipitations at destination on the bilateral migration rate during harvest observed
in Figure 3.3 seems to be majorly driven by drought conditions. Rainfall deficits
at a rural destination are associated with a decrease in out-migration rate to that
destination whereas excess precipitations do not imply significant differences in
migratory movements compared to a scenario of normal conditions. Similar to the

19One exception is worth noting: the magnitude of the positive elasticity of temporary migration
during the off-season with respect to precipitations at rural destinations is nearly halved.
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effect of conditions at origin, we do not find evidence of non-linearities in the effect
of rainy season conditions at destination on the bilateral migration rate during the
off-season.

3.4.4 Heterogeneity across rural locations

In this section, we exclusively focus on rural areas and we further explore the
heterogeneity of the effect of rainy season conditions at origin and destination
across different groups of rural locations.

The literature suggests that poverty may well play a key role in prompting
migration movements. For instance, Findley (1994) found that the 1983-1985
drought episode in Mali induced an increase in short-cycle migrants from poorer
families characterized by lower incomes and fewer remittances. Indeed, poorer
households that are closer to the subsistence level and with fewer coping strategies
available to them could be more likely to resort to migration in times of hardship.
Although our mobile phone data do not provide socio-economic information about
users, we manage to explore this idea in our context by using secondary data
sources allowing to characterize the large set of rural locations in our sample.

First, we overlay our rural cells with the 100m-resolution gridded population
product from the WorldPop Research Group (Qader et al., 2022) to estimate the
population density of each location. We use population density as a crude proxy
measure of the local standards of living and we investigate whether the effect of
rainy season conditions at origin is indeed more pronounced in rural locations of
lower density. We divide the set of rural locations into four groups of equal size,
ranging from the set of the most sparsely populated rural cells to the most densely
populated cells. We estimate equation (3.14) interacting the rainy season conditions
variable 𝑥𝑜,𝑠,𝑦 with a rural group indicator. Results are presented in Figure 3.6.
The pattern of results is similar across the four groups and no clear difference can
be observed for the first part of the agricultural year (June-December). However,
and in line with the assumption outlined above, the negative effect during the
off-season is clearly more pronounced for the group of least densely populated
cells from the second half of March onward.
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Figure 3.6: Elasticity of the bilateral migration stock over time with respect to
conditions at origin, rural locations, by population density.

Note: Each point estimate represents an average elasticity of the bilateral out-migration
stock with respect to precipitations at origin. Rural cells are overlaid with the 2017 100m-
resolution gridded population product from the WorldPop Research Group (Qader et al.,
2022) to determine the cell-level population density. Cells are grouped by population
density quartile, e.g. the first quartile represents the 25% least densely populated rural
cells. The effect of conditions at origin is allowed to vary across these groups and estimated
coefficients for each group are represented on the graph with a distinct color. Lighter colors
correspond to groups of cells with a lower population density. Temporary migration rates
are based on migration events of at least 20 days. Vertical bars represent 95% confidence
intervals based on standard errors clustered at the (origin∗destination∗half-month)-level.

To confirm this result, we also consider an alternative, survey-based, proxy
measure of the local standards of living. We estimate the local rate of access to
electricity based on a 10% extract of the 2013 census retrieved from the Integrated
Public Use Microdata Series (IPUMS) database (Minnesota Population Center, 2020).
We form three groups of rural cells based on the fraction of households which have
access to electricity: less than 20%, between 20% and 50%, and above 50%.20 We
again estimate the same regression interacting the rainy season conditions variable
𝑥𝑜,𝑠,𝑦 with a categorical variable indicating the group of electricity access. The
results are shown in Figure 3.7 and corroborate the findings based on population
density. The effect of rainy season conditions at origin on the bilateral temporary
migration stock is markedly more pronounced for the groups of rural cells with a
lower access to electricity.

20These groups represent 45%, 45% and 10% of the total set of rural cells. A map of the estimated
electricity rate by third-level administrative unit is provided in Figure 3.B.6.
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Figure 3.7: Elasticity of the bilateral migration stock over time with respect to
conditions at origin, rural locations, by level of access to electricity.

Note: Each point estimate represents an average elasticity of the bilateral out-migration
stock with respect to precipitations at origin. Rural cells are categorized in three groups
based on the fraction of households with access to electricity: less than 20%, between
20% and 50%, and above 50%. The effect of conditions at origin is allowed to vary across
these groups and estimated coefficients for each group are represented on the graph
with a distinct color. Lighter colors correspond to groups of cells with a higher rate of
electricity access. Temporary migration rates are based on migration events of at least 20
days. Vertical bars represent 95% confidence intervals based on standard errors clustered
at the (origin∗destination∗half-month)-level.

3.5 Conclusion

In this study, we develop a simple model of temporary migration in the context
of year-on-year variations in the quality of rainy seasons. The simplified version
of the model points to a simple intuition. Relatively poorer conditions at origin
decrease local wages and act as a push factor. On the other hand, poorer conditions
at destination decrease wages at destination and affect the value of that location,
thus creating a disincentive to temporarily migrate to that destination.

By combining granular temporary migration estimates derived from a multi-
year mobile phone dataset with satellite-based measures of the quality of the
rainy season, we are able to identify and characterize the effect of rainy season
conditions at origin and destination on the bilateral temporary migration rate. Our
results depict a rather complex story that goes beyond a simple narrative where
climate stresses would increase or decrease temporary migration. Our regression
estimations clearly reveal that both rainy season conditions at origin and destination
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contribute to shaping temporary migration decisions between any two locations.
First, precipitations levels at a rural destination over a rainy season have a positive
effect on bilateral stocks of temporary migrants headed that destination, both during
the harvest season and the off-season. In other terms, a negative rainfall shock at a
destination diminishes its attractiveness to potential temporary migrants for the
remaining agricultural year, consistent with the predictions of our model. However,
rainfall during the rainy season at the origin exhibits divergent effect across the
harvest season and the off-season. In the immediate aftermath of the negative
rainfall shock, i.e. during the rainy season, individuals show a lower propensity
to out-migrate (factoring in conditions at destination). Yet, in the subsequent
off-season, notably between March and June, they exhibit a higher inclination to
out-migrate. Interestingly, this effect is entirely driven by rural-to-rural temporary
migration dynamics, and we do not find evidence supporting the idea that affected
rural households would react to a negative income shock by sending temporary
migrants to cities during the off-season. Lastly, the heterogeneity analysis tends
to show that the result is particularly driven by locations with lower standards of
living, and arguably higher levels of poverty.

The paper undeniably sheds new light on the temporary migration responses
to the year-on-year variability in rainfall conditions. However, along with these
findings arise several questions, hopefully setting the stage for further research
endeavors. Firstly, the contrasting impact of conditions at the origin during the
harvest and off-season remains puzzling. One plausible explanation is the presence
of a liquidity constraint hindering temporary migration immediately following a
poor rainy season. Under this premise, individuals might need several months
to gather the necessary resources enabling them to undertake migration during
the subsequent off-season. Moreover, the fact that the off-season response is
predominantly steered by rural-to-rural movements is also quite surprising. One
would not typically anticipate rural destinations to offer alternative employment
prospects, particularly during that specific period. Future research could investigate
the motivations behind those movements. A plausible hypothesis is that these
rural-to-rural migrants might be reaching out for short-term assistance from kin in
neighboring villages, thereby alleviating the burden on their originating households
and leveraging communal support and resource sharing at their destinations. Note
that this idea could be further explored with the CDR data, by examining whether
these migrants specifically move to locations in times of hardship where they
already maintain a robust social network. Finally, while our empirical analysis
provides average elasticities of bilateral temporary migration with respect to
rainfall conditions at origin and destination, it does not quantify the overarching
net aggregate impact of rainy season conditions. We leave such quantification
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exercise to future work.
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Appendix 3.A Model simplification

First, the dependence of 𝑃𝑟(𝑚𝑖 ,𝑡 = 𝑚 𝑗 |𝑚𝑖 ,𝑡−1) on the previous location 𝑚𝑖 ,𝑡−1

is induced by mobility frictions, which are governed by 𝜏𝑚𝑖 ,𝑡−1 ,𝑚𝑡 . We assume
that distance between origin and destination does not play a role (𝜏𝑚𝑖 ,𝑡−1 ,𝑚𝑡 = 1).
While including this feature is relevant for the prediction of bilateral flows at the
equilibrium, it plays only a limited role in determining the response of temporary
migration to inter-year variations in local precipitations (Monras, 2018).

ln𝑃𝑟(𝑚𝑖 ,𝑡 = 𝑚 𝑗) =
1
�̄�

[
ln Γ̃𝑚𝑗 ,𝑠(𝑡) + 𝛼𝑚𝑗

ln𝐾𝑚𝑗 ,𝑡 − 𝛼𝑚𝑗
ln𝑁𝑚𝑗 ,𝑡

]
− ln


(
Γ̃ℎ,𝑠(𝑡)

(
𝐾ℎ,𝑡

𝑁ℎ,𝑡

)𝛼ℎ ) 1/𝜃
+ ©«

∑
𝑘∈ℳ 𝑖

Γ̃𝑚𝑘 ,𝑠(𝑡)

(
𝐾𝑚𝑘 ,𝑡

𝑁𝑚𝑘 ,𝑡

)𝛼𝑚𝑘 ª®¬
�̄�/𝜃

+
(
�̄�
𝜃
− 1

)
ln


∑
𝑘∈ℳ 𝑖

(
Γ̃𝑚𝑘 ,𝑠(𝑡)

(
𝐾𝑚𝑘 ,𝑡

𝑁𝑚𝑘 ,𝑡

)𝛼𝑚𝑘 ) 1/�̄�
(3.15)

Where Γ̃𝑚,𝑠(𝑡) = 𝐴𝑚Γ𝑚,𝑠(𝑡).

Second, we assume that 1
𝜃 ≈ 021 which allows to simplify the second term of

(3.15):
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Then, the third term imply second-order effects of the values of non-home
locations on the probability to be in 𝑚 𝑗 at time 𝑡 and is assumed constant, so that
equation (3.16) becomes:
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21This hypothesis is verified in Monras (2018) in a setting similar to ours.
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In the simplified version of the model presented in this paper, we ignore
congestion effects on the labor market at origin and destination, i.e. 𝜕 ln𝑃𝑟(𝑚𝑖 ,𝑡=𝑚𝑗)

𝜕 ln𝑁𝑚𝑗 ,𝑡
≈ 0

and 𝜕 ln𝑃𝑟(𝑚𝑖 ,𝑡=𝑚𝑗)
𝜕 ln𝑁ℎ,𝑡

≈ 0. We thus obtain the following simplified reduced form:
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Appendix 3.B Spatial distribution of agricultural activities

All the maps below are based on a 10% extract of the 2013 census in Senegal retrieved
from the Integrated Public Use Microdata Series (IPUMS) database (Minnesota
Population Center, 2020). The authors wish to acknowledge the statistical office
that provided the underlying data making this research possible: National Agency
of Statistics and Demography, Senegal.

Figure 3.B.1: Fraction of households with at least one member practicing agriculture,
by arrondissement.

Note: Estimates are based on a 10% extract of the 2013 census retrieved from the Integrated
Public Use Microdata Series (IPUMS) database.
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Figure 3.B.2: Fraction of households with at least one member practicing irrigated
agriculture, by arrondissement.

Note: Estimates are based on a 10% extract of the 2013 census retrieved from the Integrated
Public Use Microdata Series (IPUMS) database.

Figure 3.B.3: Fraction of households with at least one member practicing flood
recession agriculture, by arrondissement.

Note: Estimates are based on a 10% extract of the 2013 census retrieved from the Integrated
Public Use Microdata Series (IPUMS) database.
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Figure 3.B.4: Fraction of households with at least one member practicing irrigated
or flood recession agriculture, by arrondissement.

Note: Estimates are based on a 10% extract of the 2013 census retrieved from the Integrated
Public Use Microdata Series (IPUMS) database.

Figure 3.B.5: Fraction of households with at least one member practicing rainfed
agriculture, by arrondissement.

Note: Estimates are based on a 10% extract of the 2013 census retrieved from the Integrated
Public Use Microdata Series (IPUMS) database.
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Figure 3.B.6: Fraction of households with electricity access, by arrondissement.

Note: Estimates are based on a 10% extract of the 2013 census retrieved from the Integrated
Public Use Microdata Series (IPUMS) database.

Appendix 3.C The effect of rainy season conditions on
temporary migration: additional results

3.C.1 Conventional migration equation, effect by zone of origin

Figure 3.C.1: Elasticity of out-migration estimated by half-month over the agricul-
tural year, by zone of origin.

Note: Each point estimate represents the average elasticity of out-migration with respect to
precipitations at origin. The set of estimated elasticities for the subsets of rural and urban
cells are shown in different colors. Vertical bars represent 95% confidence intervals based
on standard errors clustered at the (origin∗half-month)-level.
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3.C.2 Dyadic regression estimations with origin and destination fixed
effects, controlling for distance

Figure 3.C.2: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, rural locations.

Note: Each point estimate represents an average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots) in
rural locations. All coefficients are obtained with a PPML estimation in a single regression
of the bilateral stock of temporary migrants between an origin location and a destination,
against the logged precipitations at origin interacted with an urban origin dummy and a
half-month indicator, and the logged precipitations at destination interacted with an urban
destination dummy and a half-month indicator. Contrary to results showed in Figure
3.3, this specification considers separate fixed effect terms at the origin- and destination-
level, and concurrently controls for the travel time between origin and destination. This
graph shows the coefficients associated with urban origin and urban destination dummy
interaction values equal to 0 (i.e. rural). Temporary migration bilateral rates are based on
migration events of at least 20 days. Vertical bars represent 95% confidence intervals based
on standard errors clustered at the (origin∗destination∗half-month)-level.
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3.C.3 Dyadic regression estimations with different migration duration
thresholds

Figure 3.C.3: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, rural locations, migration events of at least 30
days.

Note: Each point estimate represents the average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots).
Vertical bars represent 95% confidence intervals based on standard errors clustered at the
(origin∗destination∗half-month)-level.
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Figure 3.C.4: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, urban locations, migration events of at least
30 days.

Note: Each point estimate represents the average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots).
Vertical bars represent 95% confidence intervals based on standard errors clustered at the
(origin∗destination∗half-month)-level.
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Figure 3.C.5: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, rural locations, migration events of at least 60
days.

Note: Each point estimate represents the average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots).
Vertical bars represent 95% confidence intervals based on standard errors clustered at the
(origin∗destination∗half-month)-level.
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Figure 3.C.6: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, urban locations, migration events of at least
60 days.

Note: Each point estimate represents the average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots).
Vertical bars represent 95% confidence intervals based on standard errors clustered at the
(origin∗destination∗half-month)-level.
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Figure 3.C.7: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, rural locations, migration events of at least 90
days.

Note: Each point estimate represents the average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots).
Vertical bars represent 95% confidence intervals based on standard errors clustered at the
(origin∗destination∗half-month)-level.
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Figure 3.C.8: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, urban locations, migration events of at least
30 days.

Note: Each point estimate represents the average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots).
Vertical bars represent 95% confidence intervals based on standard errors clustered at the
(origin∗destination∗half-month)-level.
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3.C.4 Dyadic regression estimations, excluding pairs of adjacent cells

Figure 3.C.9: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, rural locations, excluding pairs of adjacent
cells.

Note: Each point estimate represents the average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots). A total
of 5,998 pairs of adjacent cells are excluded from the dataset. Temporary migration rates
are based on migration events of at least 20 days. Vertical bars represent 95% confidence
intervals based on standard errors clustered at the (origin∗destination∗half-month)-level.
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Figure 3.C.10: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, urban locations, excluding pairs of adjacent
cells.

Note: Each point estimate represents the average elasticity of the bilateral out-migration
stock with respect to precipitations at origin (light dots) and destination (dark dots). A total
of 5,998 pairs of adjacent cells are excluded from the dataset. Temporary migration rates
are based on migration events of at least 20 days. Vertical bars represent 95% confidence
intervals based on standard errors clustered at the (origin∗destination∗half-month)-level.
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Figure 3.C.11: Elasticity of the bilateral migration stock over time with respect to
conditions at origin and destination, urban locations, excluding pairs of adjacent
cells.

Note: Each point estimate represents an average elasticity of the bilateral out-migration
stock with respect to precipitations at a rural origin. Red dots represent the effect on the
movements toward urban locations, whereas green dots show the effect on temporary
migration to other rural areas. All coefficients are obtained with a PPML estimation in a
single regression of the bilateral stock of temporary migrants between an origin location
and a destination, against the logged precipitations at origin interacted with an urban
origin dummy, an urban destination dummy, and a half-month indicator, and the logged
precipitations at destination interacted with an urban destination dummy and a half-month
indicator. This graph shows the coefficients associated with the urban origin dummy
interaction value equal to 0 (i.e. rural). A total of 5,998 pairs of adjacent cells are excluded
from the dataset. Temporary migration bilateral rates are based on migration events of at
least 20 days. Vertical bars represent 95% confidence intervals based on standard errors
clustered at the (origin∗destination∗half-month)-level..
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3.C.5 Dyadic regression estimation with heterogeneity by cell
population size

Figure 3.C.12: Elasticity of the bilateral migration stock over time with respect to
conditions at origin, rural locations, by cell population size.

Note: Each point estimate represents an average elasticity of the bilateral out-migration
stock with respect to precipitations at origin. Rural cells are overlaid with the 2017 100m-
resolution gridded population product from the WorldPop Research Group (Qader et al.,
2022) to determine the cell-level population. Cells are grouped by population quintile, e.g.
the first quintile represents the 20% least populated rural cells. The effect of conditions at
origin is allowed to vary across these groups and estimated coefficients for each group are
represented on the graph with a distinct color. Darker colors correspond to groups of cells
with a lower population. Temporary migration rates are based on migration events of at
least 20 days. Vertical bars represent 95% confidence intervals based on standard errors
clustered at the (origin∗destination∗half-month)-level.

3.C.6 Dyadic regression estimation, non-linearities

As a complement to the results presented in Figure 3.3, we consider an alternative
specification that allows to investigate the existence of non-linearities in the relation-
ships between the bilateral out-migration rate between an origin and a destination
location, and the rainfall conditions at origin and destination respectively. As
explained in footnote 14, an alternative definition for the rainy season variables
𝑥𝑜,𝑠,𝑦 and 𝑥𝑑,𝑠,𝑦 in equation (3.14) can use the anomaly of precipitations as defined
by the Standardized Precipitation Index (see section 3.3.2). The main advantage of
the SPI is that it provides measures of precipitation anomalies that are comparable
across locations characterized by distinct rainfall regimes. As a result, the SPI
represents a relative measure of local precipitations and can thus enter linearly in
the definition of 𝑥𝑜,𝑠,𝑦 , i.e. in a non-logged form. Then, we can simply evaluate the
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existence of non-linear patterns by considering discrete versions of 𝑥𝑜,𝑠,𝑦 and 𝑥𝑑,𝑠,𝑦
for the estimation of equation (3.14).

Therefore, we define 𝑥𝑜,𝑠,𝑦 and 𝑥𝑑,𝑠,𝑦 as SPI values over time windows consistent
with those described in section 3.4.2. Positive values indicate above-median
precipitation values and, conversely, negative values reflect a level of precipitations
that is below the historical median for the location considered. We define a
categorical variable 𝑥𝑐𝑎𝑡𝑜,𝑠,𝑦 with five categories (and similarly for 𝑥𝑑,𝑠,𝑦):

𝑥𝑐𝑎𝑡𝑜,𝑠,𝑦 =



1 𝑖 𝑓 𝑥𝑜,𝑠,𝑦 < −1.5
2 𝑖 𝑓 −1.5 ≤ 𝑥𝑜,𝑠,𝑦 ≤ −0.5
3 𝑖 𝑓 −0.5 ≤ 𝑥𝑜,𝑠,𝑦 ≤ 0.5
4 𝑖 𝑓 0.5 ≤ 𝑥𝑜,𝑠,𝑦 ≤ 1.5
5 𝑖 𝑓 𝑥𝑜,𝑠,𝑦 > 1.5

(3.19)

We estimate equation (3.14) with a PPML estimator, replacing 𝑥𝑜,𝑠,𝑦 and 𝑥𝑑,𝑠,𝑦
by the categorical variables 𝑥𝑐𝑎𝑡𝑜,𝑠,𝑦 and 𝑥𝑐𝑎𝑡

𝑑,𝑠,𝑦
and taking the third category (i.e.

precipitation conditions close to normal) as reference. We again focus on the
effect of conditions at rural origin and rural destination locations. Figure 3.C.13
presents the estimated effects of conditions at origin. Each estimated coefficient
represents the difference between the average outcome for SPI values in a given SPI
category and the average outcome in normal conditions (i.e. 𝑥𝑐𝑎𝑡𝑜,𝑠,𝑦 = 3). During
the harvest period, in October and November, estimated coefficients for the higher
categories (4 and 5) are positive and those associated with the lower categories
(1 and 2) are negative. This is consistent with the positive linear relationship
found in Figure 3.3. However, the coefficients associated with the highest category
(𝑠𝑝𝑖 > 1.5) are close to 0.5 in November, and thus particularly large in absolute
terms compared to coefficients associated with the lowest category which remain
around -0.1. This indicates that the positive relationship observed in Figure 3.3 is
particularly driven by above-median precipitations at origin acting as a push factor
for out-migration, rather than drought conditions being an impeding factor. For the
rest of the agricultural year, no clear evidence of non-linearities can be distinguished.

Similarly, Figure 3.C.14 show the estimated effects of rainy season conditions
at destination on the bilateral stock of temporary migrants. Looking first at the
harvest period, it seems clear that above-median precipitations do not lead to
higher migration compared to a scenario of median precipitations (i.e. “normal
conditions”). If anything, the coefficients associated with the highest SPI category
are negative (but non-significant at 5% percent level) in November, indicating that
excess rainfall could have a negative effect on the degree of attractiveness of rural
locations. However, the positive relationship identified in 3.3 is clearly driven
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by rainfall deficits at a destination leading to lower bilateral rates of migration to
that destination. The results do not show evidence of non-linear patterns for the
February-to-June off-season period.

Figure 3.C.13: Effect of the categorized SPI at origin on the bilateral migration stock
over time, rural locations.

Note: The dependent variable is the bilateral stock of temporary migrants between an origin
and a destination at some half-month period. Each point estimate represents the difference
between the average outcome for SPI values in a given SPI category compared to the
average outcome in normal conditions (i.e. 𝑥𝑐𝑎𝑡𝑜,𝑠,𝑦 = 3). Each color represents a distinct SPI
category, with darker colors corresponding to lower SPI values. Temporary migration rates
are based on migration events of at least 20 days. Vertical bars represent 95% confidence
intervals based on standard errors clustered at the (origin∗destination∗half-month)-level.
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Figure 3.C.14: Effect of the categorized SPI at destination on the bilateral migration
stock over time, rural locations.

Note: The dependent variable is the bilateral stock of temporary migrants between an origin
and a destination at some half-month period. Each point estimate represents the difference
between the average outcome for SPI values in a given SPI category compared to the
average outcome in normal conditions (i.e. 𝑥𝑐𝑎𝑡𝑜,𝑠,𝑦 = 3). Each color represents a distinct SPI
category, with darker colors corresponding to lower SPI values. Temporary migration rates
are based on migration events of at least 20 days. Vertical bars represent 95% confidence
intervals based on standard errors clustered at the (origin∗destination∗half-month)-level.



Chapter 4

Short visits and temporary
migration to cities in Senegal

4.1 Introduction

In the developing world, individuals move across space and away from their
primary residence location in pursuit of better employment prospects or access
goods, services and amenities that their home location may not offer. Urban centers
emerge as particularly enticing destinations, attributed to their diverse array of
amenities, higher levels of productivity, and the well-documented advantages
conferred by agglomeration economies (Duranton and Puga, 2004; Duranton, 2015;
Henderson, 2010; Rosenthal and Strange, 2004). Permanent migration has received
considerable scholarly attention: rural-to-urban movements are recognized as
integral to structural transformation processes in developing countries (Beegle
et al., 2011; Brauw et al., 2014; Young, 2013; Munshi and Rosenzweig, 2016; Hamory
et al., 2020; Garriga et al., 2023). However, they have been found to be surprisingly
low in view of the persistent sectoral and spatial gaps in productivity and wealth
(Gollin, Lagakos, et al., 2014). On the other hand, non-permanent forms of mobility
occupy a seminal position in delineating spatial equilibria, offering the possibility
to access non-home markets without incurring the cost of a permanent relocation.
Such movements are particularly common in developing countries, where they are
often incorporated into livelihood strategies. For instance, temporary migration
is typically used as a way to diversify income sources or respond to fluctuations
in local productivity1 (Bryan, Chowdhury, et al., 2014; Coffey et al., 2015; Morten,
2019; Imbert and Papp, 2020b,a). Moreover, recent advances in the use of big
data have enabled researchers to uncover new and subtler patterns of human
movements (Blumenstock, 2012; Williams et al., 2015; Demissie et al., 2019). In
this respect, in Chapter 1, we leverage smartphone app location data in three

1We provide another example in Chapter 3, where we study temporary migration responses to
variations in the quality of rainy seasons in Senegal.
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African countries to highlight the prominence of short and relatively frequent
“visits” to large agglomerations. Such movements distinctly diverge from both
daily commuting patterns and migratory behaviors, but their exact nature and
purpose are still largely unknown. In particular, the role of visits relative to other
forms of non-permanent movements aiming at accessing urban markets is yet to be
ascertained.

Building upon the novel perspectives on human mobility delineated in Chapter
1, this chapter further delves into the study of visits to cities and examines the
distinctions and interconnections with other transient mobility patterns in Sene-
gal, focusing specifically on temporary migration. To achieve this, I harness the
potential of mobile phone metadata, specifically Call Detail Records (CDR). These
records allow to reconstruct individuals’ trajectories across space and over time
at a highly granular level. The uniqueness of CDR data lies in its amalgamation
of high-frequency observations with extensive activity periods. This allows for a
concurrent examination of both visits and temporary migration decisions at an
individual level, spanning multiple years, and encompassing a vast demographic of
phone users on a national scale. I draw on Chapter 2 to construct user-level metrics
of temporary migration movements to cities, characterizing such movements as
continuous periods ranging from 20 to 180 days wherein a user is continuously
seen at a location distinct from his primary residence. Then, I devise measures
of visits to urban locales, conceptualized as concise temporal intervals, generally
spanning a few days and not exceeding a 20-day duration, at locations other than
the user’s home location. The fine spatial resolution afforded by the CDR data
facilitates the observation of movements spanning across over 900 locations in
Senegal, including 39 cities of varied magnitudes.2

Transient mobility patterns can conceivably encapsulate a myriad of endeavors
ranging from the consumption of goods, services or leisure activities, to the produc-
tion processes, business operations, or even participation in cultural or religious
events. The mobile phone data utilized in this research do not proffer a direct
glimpse into the activities pursued by individuals when they either visit or engage
in temporary migration to cities. Nonetheless, I postulate that a simultaneous exam-
ination of individual choices pertaining to visits and temporary migration can shed
light on the comparative roles of these two mobility patterns. In this context, the
diverse activities from which both visitors and migrants derive utility in urban set-
tings are collectively designated under the umbrella term of "amenity consumption".

2See Appendix 2.A in Chapter 2 for more details on the delineation of locations and urban locales
from Base Transceiver Stations (BTS).
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Admittedly, this term may appear broad in its scope,3 yet it offers a pertinent concept
to elucidate the observed interplay between visits and temporary migration to cities.

One possibility is that the motivations behind visits and temporary migration
are fundamentally distinct, so that the demand for visits is simply unrelated to
the demand for longer-term temporary movements. In short, amenities accessed
through visits might be mutually exclusive with those sought via temporary migra-
tion. However, the existence of some overlap in visit-based and migration-based
amenities would raise the possibility that visits represent a hitherto disregarded
alternative technology to longer-term movements. The choice of one mode of
transient mobility over another could subsequently hinge on differentials in the
encompassing costs associated with each movement. Conversely, visits and tempo-
rary migrations might operate synergistically if the underlying amenities they seek
to access are complementary. For instance, visits could be a precursor to migration,
enabling individuals to acquire insights regarding potential employment opportu-
nities and facilitate requisite preparations ahead of a more sustained migration.

The detection of temporary migration episodes in CDR trajectories is based on
the methodology developed in Chapter 2. A segment-based approach akin to a
clustering procedure allows to first determine a home location for each user, and
then to identify continuous periods of at least 20 days during which a user is per-
sistently observed at a non-home location. Such time intervals denote instances of
temporary migration episodes. On the other hand, visits are defined as short stays,
not exceeding 19 days, at a location that differs from the current place of residence.4
In practice, I use a simple frequency-based method5 to determine the trajectory of
successive daytime and nighttime locations for each user. Then, I identify clusters
of consecutive observations at a single location – which I call “micro-segments”
– allowing for some observational gaps.6 I define visits as micro-segments of at
most 19 days at a location that differs from the current place of residence.7 I apply

3Moreover, aggregating heterogeneous activities that may or may not have a direct monetary
valuation is notoriously challenging (Su, 2022).

4The current place of residence can either be the primary home location or a temporary residence
location if a user is in migration at some destination. This means that the primary home location can
be a visit destination if a user is seen visiting his home location for a short period of time while in
migration.

5A frequency-based method defines a user’s location over some period of time by the most
frequently observed location over that period.

6Some degree of tolerance toward missing data is required in order to avoid overestimating the
number of visits.

7For the sake of consistency, the maximum duration defining visits is set just below the minimum
duration parameter used to define temporary migration events. In other terms, a visit exceeding the
maximum duration threshold is in fact identified as a temporary migration event in the migration
detection procedure. Empirically, the preponderance of visits discerned in the dataset spans merely
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this method to a large sample of CDR in Senegal to construct a dataset of observed
visits and temporary migration choices at the individual-destination-time level,
which can be flexibly aggregated at different spatio-temporal scales.

Similar to Chapter 1, I start by documenting the visiting patterns in Senegal
inferred from CDR data. Owing to the expansive rural coverage provided by CDR
data and the extended observation spans of phone users,8 in contrast to smartphone
app location data, I can better elucidate visiting flows across a diverse array of
locales, encompassing rural-to-urban movements, and capture visits occurring on
a less frequent basis. This arguably serves to augment the analysis of Chapter 1,
which predominantly concentrates on visits between cities. Consistent with the
findings of Chapter 1, the CDR data reveal a significant degree of mobility toward
cities in Senegal. Over an observational window of approximately one year, an
overwhelming majority – almost nine in ten users – register a visit to a city at least
once. The median visitor makes one visit to a city every 1.3 months and each visit
lasts for 1.5 days on average. While the propensity to visit cities exhibits a marginal
decline with population density, it consistently remains elevated across various
origin zones. Notably, there exist pronounced disparities in the frequency of visits
to cities: a median visitor from Dakar undertakes an inter-city visit roughly every
86 days, in stark contrast to their counterparts from the most sparsely populated
rural zones, who are observed in a city approximately every 18 days. Consequently,
the cumulative duration dedicated to city visits diverges considerably based on the
zone of origin: while Dakar residents average 12 days annually, those originating
from the remotest rural precincts spend an average of 33 days per year.

Then, a comparison of the pervasiveness of visits and temporary migration
to cities helps to fully appreciate the significance of short-term movements. Con-
sidering a large sample of users observed over an entire year, I estimate that 17%
temporarily migrate to a city whereas 82% are seen visiting a city. Moreover,
despite migration events being much longer than visits by definition, the aggregate
time spent by individuals visiting cities is notably higher than the time spent
migrating to cities: on average, phone users spend 17 days per year visiting cities
against 11 days on temporary migration. Of course, this results from the striking
prominence of visiting behaviors compared to migration, combined with the high
frequency with which they effectively visit cities. Still, in aggregate terms, the data
paint a picture of a situation in which visits, rather than longer-term movements,

a few days, with only an inconsequential proportion of prolonged visits potentially subject to
ambiguous classification.

8See section 2.3 in Chapter 2 for a thorough description of the coverage and representativeness of
the Senegal CDR dataset utilized in this chapter.
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constitute the primary medium through which individuals experience non-home
urban locations first hand.

The first part of the empirical analysis concentrates on deciphering the interre-
lation between visits and temporary migration. I discuss how this exploration can
shed light on the relationship between amenities consumed during those distinct
mobility events: are they acting as substitutes, complements, or are they wholly
independent? Holding the cost of distance fixed, I probe whether an individual’s
visiting choices bears any association with their decision to temporarily migrate:
ceteris paribus, do temporary migrants visit cities more or less than their counter-
parts? In practical terms, I analyze mobility decisions of users aggregated over a
one-year period and I estimate regression models that relate visiting to migration
choices, with the inclusion of origin fixed effects. First, I show that, for individuals
facing comparable costs related to the distance to potential destinations, a positive
association exists between visits and temporary migration to cities. Simply put,
users who temporarily migrate to one or more cities also make more visits and,
overall, spend more time in cities. Second, I consider more restrictive fixed effects
at the origin-destination level to show that this observed relationship is predomi-
nantly propelled by temporary migrants visiting their migration destinations more
abundantly.

These results do not have a clear causal interpretation and I discuss the various
mechanisms that would be consistent with them. Notably, the results challenge
the rudimentary hypothesis postulating visits as potential substitutes for extended
temporary relocations. However, they lend credence to the idea of an inherent
complementarity between those two types of mobility. To test that assumption,
I consider the temporal dimension of visiting choices with respect to the timing
of temporary migration events. A pivotal conclusion from this analysis is the
non-random nature of visits to migration destinations with respect to the departure
and return dates of temporary migration episodes. On average, and relative to
other time periods when they are observed, prospective migrants exhibit a higher
propensity to visit their imminent migration destinations in the weeks leading up
to their departure. This could be reflecting the existence of prospective behaviors,
wherein individuals willingly shoulder the cost of short visits in order to gain
information about the destination, thereby mitigating the risk of migration failure.
Furthermore, the analysis also highlights an increased likelihood of these migrants
visiting their previous migration destinations in the weeks immediately following
their return, in comparison to other periods within the observation timeline. While
this finding presents a more enigmatic narrative, it potentially underscores follow-
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up behaviors. Such behaviors may entail individuals revisiting cities where they
had previously migrated to conclude pending tasks, procure pending payments,
or engage with acquaintances established during their migration, among other
conceivable motivations.

In the second part of the empirical analysis, I capitalize on the simultaneous
observation of visits and temporary migration to cities with the objective of elu-
cidating differentials in the costs intrinsic to each mobility modality. I develop a
simple conceptual framework wherein a temporary move to a city, be it a visit or a
temporary migration, is underpinned by a cost structure akin to that posited in
the theoretical environment presented in Chapter 1. Each mobility event entails a
fixed cost that is specific to the mobility modality, a movement cost implied by the
distance between origin and destination, and a destination-specific cost associated
with the duration of stay. In contrast to Chapter 1, which ultimately centers solely
on the cost of movement related to distance to derive, for example, a gravity-style
relation between visits and the geographical span between origin and destination,
I retain the comprehensive cost framework. I derive expressions governing the
frequency, duration and aggregate time allocation for both visiting cities and
temporarily migrating to urban locales. The model elucidates that the distance
elasticity of these mobility indicators, which can be inferred from observed mobility
choices, is not simply related to the marginal cost of distance (i.e. the bus fare).
Instead, it exhibits a negative relationship with the fixed cost of mobility. I estimate
gravity regressions using the metrics of visits and temporary migration derived
from the CDR data in Senegal. The results are reassuringly consistent with the basic
predictions of the model: both for visits and temporary migrations, the frequency
and cumulative time allocation to a destination exhibit a negative relationship with
the distance from the origin, while the duration depends positively on the same.
More importantly, the observed patterns of visits and temporary migration yield
significant differences in the magnitude of the estimated distance elasticities. These
disparities align with the assertion that the fixed costs associated with temporary
migration exceed those affiliated with visits.

The paper contributes to the literature focusing on the causes, consequences
and barriers to accessing urban markets in developing countries through temporary
movements (Bryan, Chowdhury, et al., 2014; Morten, 2019; Imbert and Papp,
2020b,a), including in the context of Senegal (Delaunay et al., 2016; Lalou and
Delaunay, 2017). It is, for instance, connected to Bryan, Chowdhury, et al. (2014)
which studies the impact of an intervention subsidizing bus tickets to the city for
rural villagers in Bangladesh. The authors argue that the lack of information and the
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risk of unemployment at destination prevent rural workers from taking advantage
of the large benefits of seasonal migration. The large inflows of visits to cities
observed in the data presented in this paper – especially from rural zones – suggests
that individuals do not completely ignore the characteristics of urban markets:
they experience them first hand and on a regular basis. However, the existence
of a risk premium associated with the uncertainty of employment is consistent
with the relatively high fixed costs of temporary migration identified in this study.
More generally, this finding is more in line with Imbert and Papp (2020a) and
Lagakos et al. (2023) where harsh living conditions at destination, uncertainty and
non-monetary fixed costs are identified as the main barrier to temporary migration,
as opposed to the cost of living at destination or the pure cost of movement (i.e.
the bus fare). Furthermore, Blumenstock, Chi, et al. (2022) harness mobile phone
data to study the relationship between the migratory decisions and the typology of
social networks. Their findings suggest an augmented propensity to migrate to
locations where one’s social network is larger and more interconnected. This study
complements such findings, highlighting that individuals also undertake prelimi-
nary visits to potential migration destinations. Moreover, the paper contributes to
the burgeoning literature that employs digital footprints to study human mobility
(Blumenstock, 2012; Williams et al., 2015; Demissie et al., 2019). While other papers
have usually focused on a single type of mobility, I underscore the potential of
CDR data in concurrently gauging individual mobility decisions across varied time
horizons, and I explore interconnections between visits and temporary migration
to cities in a devleoping context.

The rest of the paper is organized as follows. Section 4.2 provides a brief
description of the mobile phone data and outlines the methodology employed
to quantify visits utilizing CDR data. Section 4.3 documents visiting patterns in
Senegal with phone-derived mobility measures, and compares these with observed
temporary migration movements. Section 4.4 examines the interplay between visits
and temporary migration via regression analyses. In section 4.5, gravity regressions
are used to uncover differences in the various costs tied to visits versus temporary
migration. Limitations and avenues for future research are explored in Section 4.6,
while Section 4.7 provides concluding remarks.

4.2 Data and mobility measurement

4.2.1 Data description

Digital traces constitute a powerful source of information, enabling the quantifica-
tion of human movements across diverse temporal scales. Each movement type
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inherently demands specific observational prerequisites, encompassing factors
such as frequency and duration of observation, as well as spatial granularity. For
instance, the detection of long-term movements, like permanent migration, may not
necessitate a high observational frequency, but require observations over several
years. Conversely, capturing daily commuting patterns mandates multiple obser-
vations per day at distinct hours of the day. Within this framework, CDR emerge as
a versatile tool. They combine high frequencies of observation with long periods
of observation that can go up to multiple years. On the other hand, the spatial
resolution obtained from CDR data typically surpasses that associated with high
administrative levels, rendering them apt for capturing long-distance movements
as well as short-haul trips. Of course, coverage is confined to specific countries and
CDR data are therefore best suited for delineating internal movements.9

I utilize three years of CDR data in Senegal, spanning the period 2013-2015,
to quantify visits and temporary migration to cities. The characteristics of the
dataset are extensively described in Chapter 2 (section 2.2). For the purpose of
this study, I consider the same “high-quality” subset of users as in Chapter 2, who
are observed for at least 330 days, on at least 80% of days, and with a maximum
period unobserved of at most 15 days. Note that these observational constraints
result from a trade-off between the accuracy of temporary migration measures
and the reduced sample size and degree of selection that they induce. While the
measurement of visits might technically mandate even more stringent observational
criteria, for the sake of consistency and to mitigate further selection biases, I employ
the high-quality subset for gauging both visits and temporary migrations. The
presence of days without observations in users’ trajectories unequivocally implies
that individual-level measures of visits aggregated over time serve as lower-bound
estimates.

Mobile phone users in the CDR dataset form a non-random sample of the
Senegalese population. In Chapter 2, I discussed at length the various issues of
representativeness inherent to the use of mobile phone data in general, and of this
dataset in particular. As a reminder, I found that the population of mobile phone
users with an active subscription to the telecommunication company providing
the data (Sonatel) covers a large fraction of the population above 15 (63%). Mobile
phone users are identified as being relatively more urban, predominantly more
male and wealthier, even though the magnitude of these biases is generally small.
Lastly, the comparison of the spatial distribution of users in the dataset with

9Other types of digital traces have been used to capture movements across countries. See, for
instance, the work of Spyratos et al. (2019) or Ruktanonchai et al. (2018).
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the population at large shows a pattern of selection to urban areas. However, it
is largely driven by Dakar alone, and the distribution of the rest of the sample
is broadly in line with the whole population, including for the most remote locations.

I observe the movements of users across 916 locations, of which 39 are identified
as cities. In some analyses throughout the paper, I distinguish between large urban
centers with a population above 100,000, i.e. primary cities, and other smaller,
secondary cities. I also consider four groups of rural locations based on population
density, which are labelled as very dense, dense, remote and very remote rural
locations.10

Overall, the use of CDR data appears as particularly germane to the purpose of
this study. They allow to observe the locations of a large number of individuals
over relatively long periods of time, and with a frequency conducive to discerning
both short-term visits and protracted temporary migration moves. Temporary
migration events are identified based on the methodology outlined in Chapter 2,
considering a minimum duration of 20 days (see section 2.4). The methodology for
pinpointing visits is delineated in the subsequent section.

4.2.2 Measuring visits with CDR

Consistent with the terminologies introduced in Chapter 2, I define a user’s meso-
location at time 𝑡 as the temporary migration destination if the user is in migration
at time 𝑡, and as the place of residence otherwise. Then, visits are defined as short
continuous blocks of time at a location that does not coincide with the prevailing
meso-segment location.11

The detection of visits is based on a simple algorithmic procedure applied to the
trajectory of consecutive daytime (8am-6pm) and nighttime (6pm-8am) locations.12
The algorithm identifies clusters of consecutive half-days at a single location, which
I refer to as “micro-segments”. I permit some degree of tolerance towards missing
data by allowing for observational gaps of at most 𝜖𝑚𝑖𝑐𝑟𝑜𝑔𝑎𝑝 within micro-segments.
This consideration is pivotal to preclude the algorithm from inflated estimations
of visits, which could result from misinterpreting a single stay punctuated with

10Appendix section 2.A in Chapter 2 provide details on the construction of those locations
from georeferenced phone towers, and the definition of primary and secondary cities and rural
sub-categories.

11Note that since the meso-segment location can be a temporary migration destination, the home
location can be a visit destination if a user is seen visiting his home location while in migration.

12Daytime and nighttime locations are calculated as the modal hourly locations within the
corresponding half-day, themselves defined as the modal observed location for the corresponding
hour.
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missing data points as multiple, distinct visits. The parameter 𝜖𝑚𝑖𝑐𝑟𝑜𝑔𝑎𝑝 essentially
represents the unobserved duration under which it is deemed highly unlikely
for the user to have visited an alternative location. Here, 𝜖𝑚𝑖𝑐𝑟𝑜𝑔𝑎𝑝 is set to two
observations, i.e. one day and one night unobserved.

Some illustrative examples are provided in Figure 4.1 where four users have
location 𝐴 as meso-location and are observed at daytime and nighttime over
four consecutive days. All red frames represent the micro-segments detected
in those illustrative trajectories. 𝑈𝑠𝑒𝑟 1 has five micro-segments, among which
three are at the meso-location 𝐴 (dashed frames). The other two are at a distinct
location 𝐵 (plain frames) and are effectively identified as visits. 𝑈𝑠𝑒𝑟 2 has two
consecutive missing observations (nighttime of day 3 and daytime of day 4), which
creates an observational gap that is still below the tolerance threshold 𝜖𝑚𝑖𝑐𝑟𝑜𝑔𝑎𝑝 so
that observations at location 𝐵 at daytime of day 3 and nighttime of day 4 are
still grouped within a single micro-segment. On the other hand, 𝑢𝑠𝑒𝑟 3 has three
consecutive missing observations, which results in an observational gap larger
than 𝜖𝑚𝑖𝑐𝑟𝑜𝑔𝑎𝑝 so that the observation at location 𝐵 at daytime of day 2 and those at
the same location on day 4 form two distinct visits.

Figure 4.1: Illustrative example of visit detection.

In Figure 4.1, the trajectory of 𝑢𝑠𝑒𝑟 4 is that of a typical commuter: he is
systematically seen at his current primary location (𝐴) at nighttime but at a distinct
location 𝐵 during daytime. Such mobility behaviors are theoretically captured by
the algorithm and eventually qualified as (frequent) visits to location 𝐵, although
visits and commuting remain conceptually distinct. Commuting movements can
be considered a sub-type of visits characterized by systematic backwards and
forwards movements between two locations – especially on week days – that
typically reflect work (daytime) and home (nighttime) location choices. On the
other hand, visits are understood as intermittent – but potentially frequent – stays
of one or more days that serve a purpose that may or may not be work-related.
Since this paper focuses exclusively on visits, the ability to distinguish commuting
patterns from the rest of detected visits is essential. Two elements can help address
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concerns about the contamination of the resulting measure of visits by commuting
trips. First, commuting is primarily an urban phenomenon and the city polygons I
construct from voronoi urban cells are qualitatively larger than actual city extents
and plausibly encompass commuting zones (see, for example, the maps of Figure
4.2). Commuting patterns within a city or between a city and its periphery are
therefore likely invisible to the detection algorithm since they take place within
a single location. Second, commuting is relatively less common in developing
countries, as outlined in Chapter 1 of this dissertation.

Figure 4.2: Examples of city polygons derived from phone tower locations.

(a) Diourbel (b) Thiès

4.3 Patterns of visits and temporary migration to cities in
Senegal

This section provides a descriptive overview of visiting patterns to cities in Senegal.
Unless stated otherwise, all statistics reported are based on a large sample of phone
users observed over the one-year period going from February 2014 to January 2015.
Details on the construction of this subset of users, labelled as Subset 1, are provided
in appendix 4.A.1. It is only worth noting that the spatial distribution of the sample
reflects the distribution of the population as a whole. Consequently, even though
selection may exist at a local level, aggregate statistics inferred from this subset are
at least unaffected by biases that typically result from the overrepresentation of
some areas in the initial CDR dataset. Additionally, since visiting patterns could be
influenced by the occurrence of events that were specific to that period of time (e.g.
floods, conflicts, economic downturn...), I reproduce the results presented in this
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section though with a different subset of users in the 2013 dataset.13 Results are
provided in appendix 4.C and, reassuringly, show very similar patterns.

First, I calculate simple mobility metrics to describe the propensity to visit
cities, and the frequency and duration of visits over the course of one year. The
overwhelming majority of users are seen visiting a city at least once; 83.4% of users
visit at least one city. More specifically, 32% visit Dakar, 67% are seen in other
primary cities with a population above 100,00014, and 57% visit secondary cities.15
On average, visitors travel to 3.4 distinct cities and nearly four out of five visitors are
seen in more than one city over their period of observation. Moreover, disparities
across zones of origin are limited and, for instance, 85% of rural residents are seen
visiting a city with a comparable fraction of urban dwellers visiting at least one city
(82%). Full results showing the fraction of users visiting urban destinations broken
down by zone of origin are provided in Table 4.B.1.

For each visitor, I define the frequency of visits as a return period that represents
the average length of time between two consecutive visits. I calculate the return
period of visits as the total number of days observed divided by the number of visits.
The median visitor makes one visit to a city every 1.3 months (40 days). However,
the frequency of visits varies greatly across individuals and the population of
visitors is comprised of both highly mobile individuals and occasional visitors.
For instance, a quarter of visitors travel to a city at least every 15 days while at
the other end of the distribution, 10% of visitors make at most 1.6 visits per year.
Then, I calculate the median frequency of visits across distinct zones of origin
representing groups of locations with different levels of urbanization. I form seven
zones that include three urban zones (Dakar, primary cities, secondary cities)
and four rural sub-categories each comprised of one quarter of rural locations
and going from the most dense to the least dense rural areas. Interestingly, the
median frequency of visits clearly increases as we move to more remote loca-
tions. The median visitor from Dakar makes one visit every 88 days on average,
while users residing in primary and secondary cities show a higher frequency
of visits with medians of 59 days and 34 days respectively. The median rural
visitor makes one visit every 24 days on average and the return period decreases

13This subset corresponds to the dataset labelled as Subset 3, which construction is detailed in
Appendix section 4.A.3.

14A total of 10 cities are classified as primary cities: Touba, Thiès, Mbour, Kaolack, Ziguinchor,
Saint-Louis, Diourbel, Louga, Tambacounda, Kolda.

15The relatively low propensity to visit Dakar could be driven by the large fraction of users
who actually live in Dakar and do not visit that city – by definition. I thus calculate the fraction of
non-Dakar residents who visit Dakar and find a higher proportion of 47%.
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from 31 days for the most dense rural zone to 18 days for the least dense rural zone.16

I then calculate the observed duration of a visit as the time elapsed between
the start and end dates of the visit, and derive statistics from the universe of visits
detected in the sample. Results are reported in Table 4.B.4. On average, visits to
cities last for 1.5 days and rarely exceed a few days (the 9th decile is equal to 3
days). The mean duration of visits is more extended when Dakar is the destination,
averaging 2.7 days. In contrast, visits to primary cities average 1.4 days, and
those to secondary cities are relatively shorter, averaging 0.9 days. Note that the
observed duration of a visit is considered a lower-bound estimate since users are
not necessarily observed right before and after the observed start and end dates.
Therefore, I also define a maximum duration of visits as the time elapsed between
the observation immediately preceding the visit start date and the observation
following the visit end date. As expected, statistics on the maximum duration
of visits yield higher numbers but differences remain small (see Table 4.B.5). For
instance, the average maximum duration is estimated at 1.9 days – against an
average observed duration of 1.5 days.

Next, I estimate for each visitor the total number of days spent visiting urban
locations over the course of a year.17 This allows to appraise the aggregate time
allocation to cities that results from the frequency of visits and the time spent at
destination during each visit. On average, visitors accumulate 23 days of visits to
(non-home) cities per year. For a significant share of users, the total number of days
spent visiting cities over a year is qualitatively comparable to the typical duration
of temporary migration events detected in the data. For instance, 25% of users
accumulate a total of at least 30 days of visits to cities per year. Consistent with the
spatial disparities observed in the frequency of visits, I find that the average total
number of days of visits per year varies significantly by zone of origin, from 12.6
days for Dakar residents to 33 days for visitors residing in the most remote rural
locations.18

Finally, I estimate the total number of visits to cities disaggregated over time
in order to gain new insights into the dynamics of visiting patterns over a typical

16Full tables of summary statistics on the frequency of visits to urban destinations at the national-
level and by zone of origin are provided in Tables 4.B.2-4.B.3.

17To account for differences in the total number of days observed across users, I normalize the
observed number of days of visits to cities to the number of days of visits per year by multiplying it
by 365 divided by the total number of days observed. Note that such adjustments are only marginal
given that all users are observed throughout almost the whole period under consideration.

18Full results on the total number of days of visits to urban destinations at the national-level and
by zone of origin are provided in Tables 4.B.6-4.B.7.
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year. Because the mobile phone dataset at hand covers multiple years (2013-2015),
it is possible to investigate the existence of seasonal and other forms of systematic
patterns. I therefore use another large sample of users that spans the entire period
2013-2015.19 Figure 4.3(a) shows the total number of visits by dekad – i.e. for
each period of ten days – for the period 2013-2015. The trajectory of visits over
the three-year period does not showcase any obvious time trend and variations
around the long-term average are generally modest. Religious events usually go
hand in hand with pilgrimages towards specific locations where festivities are
held, or short-term visits of individuals joining their family for celebrations. They
could therefore be a potential driver of the short-term movements observed in the
data. In Figure 4.3(a), vertical dashed lines indicate the dates of the main religious
events in Senegal and are found to often coincide with visiting peaks. The two most
important religious festivals – the Grand Magal of Touba and Maouloud (or Mawlid) –
traditionally imply pilgrimages to specific places of celebration and are effectively
associated with marked increase in the flow of visits. Figure 4.3(b) shows visits
over time to these particular destinations and allows to confirm that visits to places
of celebration largely drive the observed significant deviations from the long-term
average. The city of Touba, which hosts the annual Grand Magal pilgrimage of the
Senegalese Mouride order, experiences a significant increase in the amount of visits
received during the event, with nearly 2 million visits compared to about 300,000
per dekad the rest of the time. This corroborates anecdotal evidence asserting that
the Grand Magal is the most unmissable religious event in Senegal where millions
of individuals travel to Touba to join the celebration. Similarly, Tivaouane and
Kaolack are the two main pilgrimage destinations for the Maouloud festival which
celebrates the day when the prophet Muhammad was born. Both cities show clear
visiting peaks every year at the date of the event. Major religious events therefore
drive punctual increases in visits. However, they certainly do not account for the
overall sustained level of visiting flows observed throughout the period.

19Details on the construction of this sample is provided in appendix 4.A.
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Figure 4.3: Visits to cities by ten-day time interval, 2013-2015.

(a) Total and by origin zone

(b) By destination city

Note: in Figure (a), the black line represents the total number of visits made by all users
to all cities per dekad for the period January 2013-December 2015. The yellow and blue
lines give the sub-totals for visitors originating from rural and urban areas, respectively.
Numbers are scaled up to the total population above 15 through weights defined at the
third administrative level and for each sub-rural category and individual city as the
population-to-users ratio. Similarly, Figure (b) provides the total number of visits made per
dekad to specific cities. The vertical dashed lines represent the dates of the main religious
events in Senegal for the period considered.

Next, I abstain from furnishing a similarly exhaustive description of temporary
migration movements in Senegal, given that such a detailed account is already
presented in Chapter 2 (section 2.6). Rather, I provide key indicators allowing
to appreciate the magnitude and characteristics of temporary migration to cities
relative to visiting flows. Employing the identical dataset that spans from February
2014 to January 2015 (Subset 1), the proportion of users who engaged in a temporary
migration event to a city is estimated at 17%. While this percentage pales in
comparison to the proportion of users making visits to cities (82%), it is evident
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that both modalities of transient mobility concurrently manifest within the studied
population.

Furthermore, within the observed sample, mobile phone users register an
average of 17 days of visits annually, contrasted with 11 days of temporary migration.
At a cursory glance, this suggests that visits are predominantly the mechanism
through which individuals engage with cities outside their home locales. Notably,
a substantial segment of these visitors commit an amount of time to city visits
comparable to the typical durations exhibited by temporary migration episodes as
recorded in the data. Figure 4.4 depicts the density distribution of total days visitors
spend in cities annually versus the cumulative days temporary migrants allocate
to migrations. A significant overlap between these two distributions emerges,
indicating that a notable fraction of visitors allocate as much time to city visits as
certain migrants do for their migration stints to analogous destinations.

Figure 4.4: Density of users’ total time spent visiting and migrating to cities.

Note: The red curve represents the density of individuals’ total time spent visiting cities
over a year, excluding non-visitors. The blue curve is the density of the total time spent
in migration to cities over a year, excluding non-migrants. Both variables are logged-
transformed for presentational purposes. Calculations are based on the sample of 100,000
users observed over the period February 2014-January 2015.

Thus, what reasons could explain the decision of certain individuals to distribute
their time in cities across multiple short visits, while others opt for extended stays
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amounting to a similar duration? One plausible rationale could be inherent
distinctions in the activities undertaken by individuals when they either visit or
temporarily migrate to urban areas. In essence, visit-based and migration-based
urban amenities could be fundamentally divergent. Alternatively, shorter visits
might serve as feasible substitutes for more extended stays, and the disparate
cost structures associated with each mobility mode could elucidate the observed
movement patterns.

4.4 The empirical relationship between visits and
temporary migration to cities

As previously illustrated, individuals spend time in (non-home) cities via regular
visits as well as through episodes of temporary migration. The simultaneous pres-
ence of these two mobility modalities prompts inquiries concerning the relationship
between the amenities accessed during visits and those sought during temporary
migrations. Specifically, do these amenities function as substitutes, complements,
or operate independently of one another?

Urban amenities consumed via visits and temporary migration are substitutes
if the consumption of one competes against the other. In that case, the intrinsic
attributes of the visit-based and migration-based urban amenities would have
considerable overlaps. For example, some producers in the agricultural sector may
choose to frequently visit relatively small urban markets for their sales, while others
may find it preferable to travel for several weeks to a larger city with a bulkier stock.

Visit-based and migration-based urban amenities are perceived as complements
if they are used in conjunction with one another. For instance, people contemplating
a temporary relocation to a city may choose to visit that city in order to gather
information and acquaint themselves with prospective opportunities. This specific
hypothesis is delved into with greater detail in section 4.4.2.

Finally, urban amenities consumed via visits and temporary migration are
independent if they are neither substitutes nor complements: the demand for one
has no incidence on the demand for the other. In that scenario, amenities consumed
via visits and temporary migration address clearly distinct needs. For instance,
individuals may visit urban locations for the sole purpose of consuming amenities
which are unavailable at home, such as health and administrative services, or to
source or sell products. On the other hand, they migrate to cities to find employ-
ment in the non-agricultural sector where they temporarily enjoy a higher marginal
productivity (e.g. due to seasonal fluctuations in agricultural productivity), or as a
way to diversify income sources.
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The actual nature of the interplay between visits and temporary migration is
most likely a combination of those scenarios. In this section, drawing upon the
concurrent observation of individual-level visit and temporary migration choices
derived from CDR data, I aim to discern which scenario aligns more closely with
the observed mobility behaviors.

4.4.1 Do temporary migrants make more visits to cities?

I start by examining visits and temporary migration aggregated over a year and
across all cities for the identical sample of users considered in section 4.3 (i.e. Subset
1), and I investigate the direction of the relationship between them. In simple
terms, I ask whether users who are seen temporarily migrating to a city make
comparatively more or less visits to cities. To that end, I estimate the following
regression model:

𝑉𝑖𝑜 = 𝛽1,0 + 𝛽1,11(𝑀𝑖𝑜 > 0) + 𝛿𝑜 + 𝜖𝑖𝑜 (4.1)

where 𝑉𝑖𝑜 represents some measure of visits to cities made over a year for
individual 𝑖 residing in location 𝑜, which I define as either the total number of
visits to cities, or the total number of days of visits to cities. Similarly, 𝑀𝑖𝑜 is the
total number of temporary migration episodes or the total number of days spent in
migration to cities, so that 1(𝑀𝑖𝑜 > 0) is a dummy equal to 1 if individual 𝑖 engages
in at least one temporary migration to a city over the period considered. 𝛿𝑜 controls
for the time-invariant unobserved characteristics of location 𝑜 that influence the
amount of visits to cities. In particular, it captures the movement costs related to
the distance to cities shared by all residents in 𝑜.

The estimation of the parameter of interest 𝛽1,1 relies on within-location varia-
tions in mobility choices among individuals, where users face the same geographic
costs of movement to cities.The primary objective of this estimation is discerning
the direction of the relationship between visits and temporary migration , rather
than positing a causal linkage – it does not assert that a migration occurrence
directly spurs an increase or decrease in visits. Variations in temporary migration
choices across individuals cannot be considered as exogenous a priori; confounders
may influence both the propensity to visit and to temporarily migrate to cities.
Nonetheless, the sign of 𝛽1,1 is still informative about the relation between visits and
temporary migration, and by extension, between the intrinsic amenities associated
with these mobility events.

It is important to note that drawing conclusions about the nature of the rela-
tionship between visit- and migration-based urban amenities via equation (4.1)
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supposes some important assumptions about the functional relation between
observed mobility events and urban amenity consumption. Here, the proposed
mobility measures are simply viewed as a proxy for the consumption of an urban
amenity. The amount of amenity consumed is proportional to the number of visits
(resp. migration episodes) or the total time spent visiting (resp. migrating to)
cities. Moreover, the amenity consumed per mobility event or per unit of time
spent at destination is independent of the destination city. In other words, for each
individual, I aggregate all the visits made to cities during the study period without
assigning weights to the various cities visited. While a reasonable starting point
in the analysis, I acknowledge this may only be a coarse approximation for the
actual value derived from those trips. For example, one day of visit to Dakar likely
provides a higher amenity than one day of visit to the small and landlocked city of
Matam. I get back to the issue of quantifying the heterogeneous “value of cities”
in section 4.5 but, for now, keeping those limitations in mind, I proceed with the
estimation of equation (4.1).

Equation (4.1) is estimated with OLS and results are presented in Table 4.1.
Aggregate visits and temporary migration are found to be positively related. All
else equal, temporary migrants are associated with 6.5 additional visits per year
on average compared to non-migrants, as showcased in column (1). The result
still holds when considering the total time spent visiting cities as a dependent
variable (column (3)). On average, temporary migrants spend an extra 17.5 days
visiting cities compared to non-migrants. This is equivalent to the average time
spent by users on visits to cities and is thus considered as quantitatively large.
In Appendix 4.D, I explore the heterogeneity of this relationship across groups
of origin locations. The coefficient of interest remains positive and statistically
significant when considering rural and urban categories, primary cities, secondary
cities and sub-rural zones of different density, but also across regions (Tables
4.D.1-4.D.3).20

As mentioned above, the positive association between aggregate visits and
temporary migration cannot be causally interpreted. In fact, at least three distinct
mechanisms could be consistent with a positive relationship between visits and
temporary migration, and entail different interpretations about the substitutability,
complementarity or independence of visit- and migration-based urban amenities.

First, temporary migration could cause an increase in visits to the migration
destination in a situation where individuals make short trips to the future migration

20It should only be noted that the magnitude of the coefficient is found to be slightly larger for
urban compared to rural areas. There are also differences across regions and the estimated average
additional number of visits made by temporary migrants varies from 3.9 (in Matam) to 9.9 (Dakar).
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destination, for instance, to expand their social network or obtain information
about potential work opportunities. Consequently, and to be more specific, it is
the intention to migrate that leads to more visits. In that case, urban amenities
associated with visits and temporary migration can be at least considered as
“one-way” complements; temporary migration is used in conjunction with visits
but the converse is not necessarily true. Alternatively, migration episodes could
entail a learning process about the characteristics of the destination, making it
a desirable location that is subsequently visited as a result. In this scenario, the
implication for the relation between the two types of urban amenities is less clear.
They may be independent if visits simply result from gaining information about
the location while in migration. As in the interpretation above, they may also be
one-way complements although in the opposite direction; individuals may need to
use post-migration visits in order to complete an unfinished task in relation to the
activity carried out during the migration episode. I explore these ideas more in
depth in section 4.4.2 where I look at migrants’ distribution of visits over time with
respect to the timing of migration.

Conversely, visits could be considered as causing migration if some exogenous
factor induces visits during which individuals learn about the destination. They
then decide to temporarily migrate to that location precisely because they hold
information about that place. In that case, the amenities underlying visits and
temporary migration would most likely be independent. For instance, people
may visit locations to visit friends and relatives and opportunistically learn about
temporary work opportunities. This would imply an alternative interpretation on
the role of individuals’ social network in determining migration choices compared
to previous studies, in which network members actively and specifically support
migration processes by providing relevant information about the destination, or
acting as a safety net for migrant (Munshi, 2003, 2014; Blumenstock, Chi, et al.,
2022). Furthermore, religious festivals could also be seen as exogenously causing
occasional visits during which individuals gain information about the host city, and
which in turn could increase the propensity to migrate to that specific destination.
For example, the Grand Magal that takes place in the city of Touba attracts millions
of visitors each year (see section 4.3). If the proposed mechanism is true, then
Touba should appear as a particularly attractive location for temporary migrants,
ceteris paribus.

Thirdly, a confounding factor could be positively related to the demand for both
visits and migration, leading to a spurious association. For instance, individuals’
income could be a primary determinant of mobility choices, with stronger liquidity
constraints impeding the demand for both types of mobility. Moreover, the size
and topology of an individual’s social network at destination could influence
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both the decisions to visit and temporarily migrate, without visits having any
causal impact on migration – and vice versa. If visits and temporary migration
are entirely determined by confounding factors, then the demand for one has no
incidence on the demand for the other and the underlying amenities are considered
as independent.

In any case, the positive correlation between visits and temporary movements
contradicts the idea that these two types of mobility could substitute for each other
within a set of individuals sharing comparable costs of movement.

Table 4.1: Relationship between aggregate visits and temporary migration, control-
ling for origin fixed effects.

No. of visits No. of visit-days
(1) (2)

Migrant dummy 6.545∗∗∗ 17.48∗∗∗
(0.4586) (0.4960)

Observations 113,452 113,452
Pseudo R2 0.03049 0.02718

Origin FE ✓ ✓

Note: Each observation represents a user with mobility measures aggregated over the
period of observation and across all destination cities. Column (1) shows the PPML
estimation of a regression of the total number of visits to cities on a migration dummy
equal to 1 if the user has at least one temporary migration event to any city. Column (2)
shows the same estimation considering the total time spent visiting cities as a dependent
variable. Standard errors are clustered by origin location.

The estimation of equation (4.1) highlights that, on average, temporary migrants
make more visits to cities – and also spend more time visiting cities. However, it
does not allow to say anything about the specific destinations which are marginally
more visited. For that reason, I also estimate a version of equation (4.1) allowing
to investigate the link between visits and temporary migration to a particular
destination. I simply consider individual-level mobility measures disaggregated
by destination city, and I replace origin fixed effects with origin-destination fixed
effects:

𝑉𝑖𝑜𝑑 = 𝛽2,0 + 𝛽2,11(𝑀𝑖𝑜𝑑 > 0) + 𝛿𝑜𝑑 + 𝜖𝑖𝑜𝑑 (4.2)
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where𝑉𝑖𝑜𝑑 is the total of visits made over a year to destination 𝑑, by individual 𝑖
residing in location 𝑜. 1(𝑀𝑖𝑜𝑑 > 0) is a dummy equal to 1 if individual 𝑖 engages in
at least one temporary migration to city 𝑑. 𝛿𝑜𝑑 represents origin-destination fixed
effects that absorb time-invariant characteristics of the origin-destination pair 𝑜 − 𝑑
that influence the level of mobility between 𝑜 and 𝑑. In particular, it controls for
the cost associated with the geographic distance between 𝑜 and 𝑑.

I estimate equation (4.2) with OLS and show the results in Table 4.2. The
coefficient associated with the temporary migration dummy is again positive and
statistically significant. On average, individuals who temporarily migrate to a
city make 5.8 additional visits and spend 14.5 extra days to that particular city,
compared to those who do not temporarily migrate to that destination but reside
in the same origin location. Again, I dig into the heterogeneity of the results across
groups of origin locations and find remarkably similar effects, except across regions
where some differences appear – although all coefficients remain positive and
significant (Tables 4.D.4-4.D.6).

Table 4.2: Relationship between visits and temporary migration controlling for
origin-destination fixed effects.

No. of visits No. of visit-days
(1) (2)

Migration dummy 5.841∗∗∗ 14.49∗∗∗
(0.2303) (0.3303)

Observations 4,424,628 4,424,628
Pseudo R2 0.07478 0.06605

Origin-destination FE ✓ ✓

Note: Each observation represents a user-destination couple with mobility measures
aggregated over the period of observation. Column (1) shows the PPML estimation of a
regression of the total number of visits to a destination on a migration dummy equal to
1 if the user has at least one temporary migration event to that destination. Column (2)
shows the same estimation considering the total time spent visiting the destination as a
dependent variable. Standard errors are clustered by origin-destination pair.

Interestingly, the magnitude of the estimated coefficients is slightly smaller
though largely comparable to those obtained in the estimation of equation (4.1).
This strongly indicates that the extra visits made by temporary migrants to their
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migration destination account for a large fraction of the total additional visits
to any city that the estimation of equation (4.1) suggests they make. I test that
assumption formally by comparing the aggregate visits that migrants make to cities
other than their migration destination to the aggregate visits that non-migrants
make to those cities, i.e. also excluding the visits to that migration destination.
To do so, for each pair of origin location 𝑜 and migration destination 𝑑, I form a
group of users comprised of all non-migrants residing in 𝑜 and all users with a
temporary migration event to destination 𝑑.21 Then, for each user, I aggregate visits
across all cities except 𝑑 and I estimate a regression model similar to equation (4.1)
with OLS, although with fixed effects at the level of (origin ∗ migration destination)
groups and considering the constructed measure of visits that excludes the visits
made to a migration destination. Results are showed in Table 4.3. In column (1),
the regression of the number of visits on the migrant dummy yields a positive
but non-significant coefficient. Column (2) indicates a positive and significant
association between the total time spent visiting cities and being a migrant, but
the coefficient is quantitatively small (1.4) compared to the one obtained in the
estimation of equation (4.2) (14.5). Those results tend to suggest that visiting
patterns of temporary migrants do not differ from those of non-migrants when
considering the subset of cities that excludes the migration destination.

21Note that non-migrants residing in 𝑜 therefore appear in as many groups as the number of
migration destinations observed among temporary migrants from 𝑜. Also, for simplicity, I consider
only migrants with a unique migration destination, which account for 90% of all temporary migrants
in my sample.
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Table 4.3: Relationship between temporary migration and aggregate visits to
non-migration destinations

No. of visits No. of visit-days
(1) (2)

Migrant dummy 0.1043 1.426∗∗∗
(0.3028) (0.2107)

Observations 1,708,926 1,708,926
Pseudo R2 0.01857 0.01067
Adjusted R2 0.14587 0.08544

Origin-destination group FE ✓ ✓

Note: Each observation represents a user. A group of user is formed for each origin-
destination pair that has at least one temporary migrant to the destination, and is comprised
of all temporary migrants to that destination (and that destination only) and non-migrants.
Mobility measures are then aggregated over the period of observation and across cities,
excluding the destination. Column (1) shows the PPML estimation of a regression of the
total number of visits to cities on a migration dummy identifies temporary migrants in
each origin-destination group. Column (2) shows the same estimation considering the
total time spent visiting cities as a dependent variable. Standard errors are clustered by
origin-destination group.

Moreover, the origin-destination fixed effect term in equation (4.2) effectively
allows to absorb the expected impact of the cost of distance on the level of visits,
but it is expected that distance also mediates the magnitude of the coefficient of
interest itself. All else equal, increasing the distance between origin and destination
locations should decrease the average additional visits made by temporary migrants.
I estimate a model that includes an interaction between the migration dummy
and the logged distance between origin and destination. I also interact the
migration dummy with a categorical variable that allows for heterogeneity across
three destination classes: Dakar, primary cities and secondary cities. Results are
provided in Table 4.4. Reassuringly, the coefficients associated with the interaction
term between the migration dummy and distance is negative and statistically
significant; the average extra number of visits to the migration destination – or
time spent visiting the destination – decreases with the travel distance between
origin and destination. Still, an alternative estimation considering a categorized
version of the distance variable reveals that the effect persists even when origin
and destination locations are more than 200km apart (see Table 4.D.7). Then, net
of the interaction effect of distance, the estimated coefficients associated with the
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interaction between the migration dummy and the destination category show only
small differences. If anything, the relationship between visits and migration is
slightly stronger when the destination is a secondary city and the lowest coefficients
are obtained for Dakar.

Table 4.4: Relationship between visits and temporary migration controlling for
origin-destination fixed effects, heterogeneity with respect to destination.

No. of visits No. of visit-days
(1) (2)

Migration dummy × To Dakar 24.93∗∗∗ 36.67∗∗∗
(1.367) (1.411)

Migration dummy × To primary cities 26.36∗∗∗ 39.35∗∗∗
(1.266) (1.391)

Migration dummy × To sec. cities 29.85∗∗∗ 40.49∗∗∗
(1.294) (1.289)

Migration dummy × log(distance) -4.117∗∗∗ -4.793∗∗∗
(0.2376) (0.2512)

Observations 4,369,673 4,369,673
Pseudo R2 0.07674 0.06834

Origin-destination FE ✓ ✓

Note: Each observation represents a user-destination couple with mobility measures
aggregated over the period of observation. Column (1) shows the PPML estimation of a
regression of the total number of visits to a destination on a migration dummy equal to 1 if
the user has at least one temporary migration event to that destination, interacted with
the logged travel distance by road between origin and destination, and another interaction
with the urban category to which the destination belongs (Dakar, other primary cities,
or secondary cities). Column (2) shows the same estimation considering the total time
spent visiting the destination as a dependent variable.Standard errors are clustered by
origin-destination pair.

4.4.2 The dynamics of visits before and after migration events

The empirical analyses of section 4.4.1 underline the existence of a strong positive
relationship between visits and temporary migration. On average, individuals who
are seen temporarily migrating to a city over a year also make more visits to cities
during that period of time compared to non-migrants. This relationship is almost
entirely driven by additional visits made to the migration destination alone. I have
presented a number of underlying mechanisms that could be consistent with this
result, with some innately suggesting a temporal pattern for these supplementary
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visits. For example, the idea that visits could be a precursor to migration would
naturally imply a surge in visits shortly before migration commences, ceteris
paribus. In this section, I aim to delve deeper into the temporal patterns of visits
made by temporary migrants surrounding their migration events to discern which
proposed mechanisms carry more empirical weight.

To do this, I consider temporary migrants from the Subset 5 defined in Appendix
4.A.5, in which users have observations spanning at least from February 1, 2014,
to September 30, 2015. I build an individual-destination-time panel that provides
measures of visits as well as dummy variables indicating the occurrence of a
migration departure or return. The extended observation period facilitates the
observation of temporary migration events occurring over an entire year (from
June 2014 to May 2015), as well as the visiting decisions both in the four months
leading up to migration departures and in the four months following the returns
from migration. This ensures that the subsequent analysis of visits dynamics
before and after migration events is not influenced by seasonal factors. Utilizing
the detailed temporal insights afforded by CDR data, I derive mobility metrics
in ten-day intervals, or dekads. Then, I investigate whether within-individual
variations in visits over time to a particular destination are related to the timing of
the migration departure and return to that destination. Formally, I estimate the
following regression model:

1(𝑉𝑖𝑜𝑑𝑡 > 0) =
𝑇−1∑
𝜏=2

𝛼𝜏𝑚
𝑑𝑒𝑝𝑎𝑟𝑡

𝑖,𝑜,𝑑,𝑡+𝜏 + 𝛼𝑇+𝑚
𝑑𝑒𝑝𝑎𝑟𝑡

𝑖,𝑜,𝑑,𝑇+ +
𝑇−1∑
𝜏=1

𝛽𝜏𝑚
𝑟𝑒𝑡𝑢𝑟𝑛
𝑖,𝑜,𝑑,𝑡−𝜏 + 𝛽𝑇−𝑚𝑟𝑒𝑡𝑢𝑟𝑛

𝑖,𝑜,𝑑,𝑇−

+ Δ𝑖𝑑 + Γ𝑑𝑡 + 𝑢𝑖𝑜𝑑𝑡

(4.3)

where 1(𝑉𝑖𝑜𝑑𝑡 > 0) is a dummy equal to 1 if individual 𝑖 residing in 𝑜 visits
destination 𝑑 during time period 𝑡. 𝑚𝑑𝑒𝑝𝑎𝑟𝑡

𝑖,𝑜,𝑑,𝑡
is a dummy equal to 1 if 𝑖 migrates

to 𝑑 at time 𝑡 so that the first term on the right-hand side represents leads of the
migration departure up to𝑇−1 time periods after 𝑡. Note that the first lead𝑚𝑑𝑒𝑝𝑎𝑟𝑡

𝑖,𝑜,𝑑,𝑡+1
is omitted as it is used as the base category. The time periods beyond 𝑡 + 𝑇 − 1 are
binned and the variable 𝑚𝑑𝑒𝑝𝑎𝑟𝑡

𝑖,𝑜,𝑑,𝑇+ is thus a dummy equal to 1 if 𝑖 moves to 𝑑 on 𝑡 +𝑇
or any period after that. Similarly, 𝑚𝑟𝑒𝑡𝑢𝑟𝑛

𝑖,𝑜,𝑑,𝑡
is a dummy equal to 1 if 𝑖 migrates to

𝑑 at time 𝑡 and the third term corresponds to lags of the migration return up to
𝑇 − 1 time periods before 𝑡. The time periods preceding time 𝑡 − (𝑇 − 1) are binned
and 𝑚𝑟𝑒𝑡𝑢𝑟𝑛

𝑖,𝑜,𝑑,𝑇− is defined as a dummy equal to 1 if 𝑖 returns from migration on 𝑡 − 𝑇
or any period before that. Δ𝑖𝑑 represents individual-destination fixed effects and
Γ𝑑𝑡 controls for destination-time-specific unobservable factors that influence the
likelihood of visits in the same way for all individuals. For instance, Γ𝑑𝑡 absorbs the
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impact of religious festivals which can induce large influxes of visits to some cities.

For any given 𝜏, the coefficient 𝛼𝜏 (resp. 𝛽𝜏) is interpreted as the expected
deviation from the individual-level average of the probability of visit to the
migration destination 𝜏 periods before (resp. after) a migration departure (resp.
return), compared to the deviation one period before departure, and net of
destination-time fixed effects. Thus, as specified, the model does not allow for a
straightforward interpretation in absolute terms of the differential in the probability
of visit 𝜏 periods before a migration departure.22 However, it is sufficient to simply
test whether the timing of visits to a migration destination is non-random with
respect to the timing of the migration event itself.

I estimate equation (4.3) as a linear probability model with OLS on the sample
of temporary migrants from Subset 5,23 considering 𝑇 = 9 dekads. Results are
presented in Figure 4.5. I also estimate a logit model and the results are qualitatively
unchanged (see Figure 4.E.1 in Appendix 4.E). Some interesting patterns emerge.
First, there is a clear increase in the mean probability of visit at the future destina-
tion two and three dekads before departure, relative to the dekad just preceding
departure. Second, the average probability of visit for time periods beyond 3
months (i.e. 9 dekads) prior to departure is relatively lower – it is actually the lowest
estimate. Third, a symmetrical effect is observed two and three dekads following
the return from migration: temporary migrants have a relatively higher propensity
to re-visit the location where they migrated. The effect decays over time but persists
on the fourth and fifth dekads after the return. Finally, the probability of visit
during time periods that are beyond 3 months after the return is also relatively
lower on average.

The central lesson of the results is that, from a statistical perspective, the
timing of temporary migrants’ visits to their migration destination is non-random
with respect to the migration departure and return dates. Putting these results
together with those of section 4.4 provides evidence that the additional visits
that temporary migrants make to their migration destination compared to non-

22The event study design that would potentially allow to do so would substantially complicate the
estimation. It would essentially imply a difference-in-differences setting with staggered treatments
where traditional two-way fixed effects estimators have been showed to exhibit serious biases
(Goodman-Bacon, 2021; Chaisemartin and D’Haultfœuille, 2020), including for event studies (Sun
and Abraham, 2021). The various remedies described in the literature such as those proposed by Sun
and Abraham (2021) or Borusyak, Jaravel, et al. (2021) are difficult – if not impossible – to apply in
the present setting, most notably because treated individuals (i.e. migrants) do not have untreated
observations. This is because visits are a priori related to temporary migration events for both periods
pre-departure and post-return; in fact, results from the estimation of the model I propose do not
allow to reject these hypotheses. This, for instance, makes the “imputation” method proposed by
Borusyak, Jaravel, et al. (2021) impractical.

23See details in Appendix section 4.A.5
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migrants are primarily undertaken in the month preceding departure and the
month following return.

A plausible interpretation of the relatively higher propensity to visit the future
destination in the dekads preceding a migration departure is that individuals adopt
prospective behaviors. They are willing to bear the costs of visits in order to get
more information about a potential destination and perhaps with the objective of
reducing the risk of migration failure (Harris and Todaro, 1970), e.g. by learning
about work opportunities, negotiating contracts, and so on. Visits could then
be viewed as a potential technology allowing to reduce spatial frictions caused
by imperfect information. Moreover, this result could complement the existing
evidence on the role of social networks in shaping migration decisions. Individuals
do not only need contacts at destination to provide for social capital and information,
they also exhibit some demand for experiencing the destination first-hand via
short trips before migrating. Then, a natural follow-up analysis would look at
the possible link between pre-migration visits and social network dynamics. Do
prospective migrants effectively make new contacts at destination during visits?
Although this could be investigated with the mobile phone data employed in this
study, I leave it to future work to potentially tackle this question.

The relative increase in the probability of visits in the dekads following a migra-
tion return is less easily interpreted. Broadly speaking, it points to the existence of
follow-up behaviors according to which individuals re-visit the destination where
they migrated, although the possible reasons behind such movements are arguably
unclear. The possibility exists that temporary migrants tend to return to their
migration destination to finish unfinished business, to collect a payment, or simply
to visit the new connections they made while in migration.
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Figure 4.5: Relative distribution of migrants’ visits to destination before and after a
migration event, linear model.

Note: The two vertical dashed red lines in the center of the graph represent the migration
departure (left) and return (right). The x-axis represents the relative time with respect
to the migration departure and return. Note that the gap between migration departure
and return theoretically coincides with the migration duration but is normalized to one
dekad for representation purposes. Red dots on the left-hand side correspond to OLS
estimates of 𝛼2 , ..., 𝛼8 , 𝛼9+ and those on the right-hand side are estimates of 𝛽1 , ..., 𝛽8 , 𝛽9− .
Coefficients are estimated on a sample of 30,523 unique temporary migrants observed
over the period 2014-2015, resulting in a grand total of 1,358,184 observations. The error
bars show the 95% confidence intervals based on two-way clustered standard errors at the
individual-destination and dekad-destination levels.

4.5 Comparative gravity estimates for visits and temporary
migration

The empirical analyses in section 4.4 essentially probe to understand the relationship
between visits and temporary migration choices of individuals facing comparable
mobility costs. In this section, I focus more specifically on the role of movement
costs in shaping these distinct mobility decisions.

4.5.1 A simple conceptual framework

I start by introducing a simplified conceptual framework that considers a mobility
cost structure and essentially models an individual’s endogenous mobility decision
in terms of the frequency and duration of movements over some period of time. I
derive expressions relating measurable choices of visits or temporary migration –
i.e. the frequency of movements, the duration of mobility events and the total time
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spent at destination – with the corresponding cost parameters. This allows me to
provide useful intuitions about the role of unobserved fixed costs of mobility in
shaping the observable relationship between distance and mobility decisions.

Assume a two-location environment in which individuals residing in a location
𝑜 are endowed with some budget 𝑤, which they use to visit or temporarily migrate
to a location 𝑑. The distance between 𝑜 and 𝑑 is denoted by 𝐷𝑜𝑑. Spending some
amount of time 𝜃 at destination 𝑑 – either visiting or in migration – is associated
with the consumption of an amenity, which value corresponds to the product of
𝜃 with a location-specific parameter equal to 𝐴𝑣(𝑑) if the individual visits 𝑑, and
𝐴𝑚(𝑑) if he is in migration to 𝑑.

The movement cost structure is similar to the one introduced in Chapter 1. It is
the sum of a fixed cost, denoted as𝜆, which differs between visits (𝜆𝑣) and temporary
migration (𝜆𝑚), a distance-related variable cost scaled by 𝐷𝑜𝑑 and parametrized by
𝛾, and a duration-associated cost dictated by the destination-specific parameter 𝜅𝑑:
𝜆 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑𝜃𝛼, where 𝛼 > 1.24 The parameter 𝜅𝑑 primarily reflects the marginal
costs of living and accommodation at the destination 𝑑. Therefore, the cost of
a visit lasting 𝜃𝑣 is given by 𝜆𝑣 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑𝜃𝛼

𝑣 , whereas the cost of a temporary
migration of duration 𝜃𝑚 is 𝜆𝑚 + 𝛾𝐷𝑜𝑑 +𝜅𝑑𝜃𝛼

𝑚 . The differential costs between visits
and temporary migrations are primarily anchored in the fixed costs of movement,
which encompass a spectrum of both monetary and intangible considerations
linked to relocating from one’s home location. For instance, this might encapsulate
the psychological implications of detachment from one’s social circle, the degree of
strategic planning ensuring sustained economic activity at home, or the potential
costs imposed on relatives at destination. Moreover, this cost paradigm can also
be perceived as reflecting the apprehension or perceived risk associated with a
suboptimal outcome from a mobility event – an aspect that is conceivably magnified
in the context of temporary migration.

Note that, similar to lemma 1 in Chapter 1, given a total amount of time spent
visiting or migrating to destination 𝑑 through 𝜈 mobility events, the imposed cost
structure implies that a cost-minimizing behavior will result in all events having
the same duration.

The utility derived from an individual mobility event is assumed to be a function
of the overall amenity consumption, exhibiting diminishing returns governed by a
parameter 𝛽 < 1.25 For instance, the utility stemming from a visit of duration 𝜃𝑣 to

24As noted in Chapter 1, the increasing marginal duration-associated cost of mobility is introduced
to motivate the possibility that an individual might make multiple visits to a single destination.

25Note that the principle of diminishing returns to the consumption of amenities accessed through
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a designated destination 𝑑 is expressed as (𝜃𝑣𝐴𝑣(𝑑))𝛽, and similarly, a temporary
migration spanning a duration 𝜃𝑚 is associated with a utility (𝜃𝑚𝐴𝑚(𝑑))𝛽. I do
not include the consumption of other items, such as a tradable and/or a non-
tradable good. This is arguably a strong assumption but one that allows to focus
entirely on mobility choices that can be captured with CDR data, with respect
to distance 𝐷𝑜𝑑 and cost parameters. Other types of consumption would greatly
complicate the algebra and also call for strong assumptions about the functional
form for the utility function. Yet, they would not influence the shape of the
relationship of interest between mobility choices and the distance between origin
and destination. For simplicity, I also ignore the potential interactions between visits
and migration choices and the model is silent about the degree of substitutability or
complementarity between amenities consumed via visits and migration. This is an
issue that I explored empirically in section 4.4 but which is not tackled conceptually
by the present model. In short, I do not consider a unifying utility function that
allows for the joint consumption of amenities via both visits and migration. Instead,
I solve a utility maximization problem considering two distinct scenarios. First, I
consider a situation in which an individual can only visit destination 𝑑 and I solve
the utility maximization problem that optimizes the number 𝜈𝑣 and duration 𝜃𝑣 of
visits to 𝑑:

arg max
𝜈𝑣 ,𝜃𝑣

𝜈𝑣[𝜃𝑣𝐴𝑣(𝑑)]𝛽

s.t. 𝜈𝑣(𝜆𝑣 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑𝜃
𝛼
𝑣 ) ≤ 𝑤

(4.4)

A necessary condition for the existence of some mobility immediately follows
from the budget constraint by considering the cost of one visit of some minimum
duration. For instance, 𝜃𝑣 is expressed in days and the duration of visits is measured
in blocks of time equivalent to one day, so that the minimum value for 𝜃𝑣 is equal
to 1. Then, the individual makes at least one visit if he can at least afford one visit
of one day, i.e. if 𝑤 ≥ 𝜆𝑣 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑.

Second, I examine the utility maximization problem of an individual who can
only consume amenities in 𝑑 by temporarily migrating to 𝑑:

arg max
𝜈𝑚 ,𝜃𝑚

𝜈𝑚[𝜃𝑚𝐴𝑚(𝑑)]𝛽

s.t. 𝜈𝑚(𝜆𝑚 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑𝜃
𝛼
𝑚) ≤ 𝑤

(4.5)

where 𝜈𝑚 is the number of migration events and 𝜃𝑚 their duration. Here, the
condition for movement depends on the minimum duration defining a temporary
migration event 𝜏𝑡𝑒𝑚𝑝 : 𝑤 ≥ 𝜆𝑚 + 𝛾𝑜𝑑 + 𝜅𝑑[𝜏𝑡𝑒𝑚𝑝]𝛼.

visits (or temporary migrations) serves as an auxiliary hypothesis to rationalize the phenomenon of
individuals undertaking multiple excursions to an identical destination. In the conceptual framework
elucidated in Chapter 1, this dimension is addressed through the duration-linked cost parameter, 𝛼.
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A simple intuition already emerges from the movement conditions derived
from this simple framework. The condition for seeing any migration is rendered
more stringent by the fact that it imposes a larger cost associated with the minimum
duration 𝜏𝑡𝑒𝑚𝑝 . More importantly, the distinct fixed costs 𝜆𝑚 and 𝜆𝑣 may imply
significant differences in the propensity to visit versus migrate to 𝑑. Interestingly,
the data are consistent with a scenario in which 𝜆𝑚 is greater than 𝜆𝑣 since the
fraction of individuals visiting cities is found to be much larger than the proportion
of individuals migrating to cities.

Conditional on movement conditions being satisfied, solving the utility maxi-
mization problems above yields some expressions for the optimal number of visits
𝜈∗𝑣 and duration 𝜃∗

𝑣 (proof in Appendix 4.F):

𝜈∗𝑣 =

(
1 − 𝛽

𝛼

)
𝑤

𝜆𝑣 + 𝛾𝐷𝑜𝑑
(4.6)

𝜃∗
𝑣 =

©«
𝜆𝑣 + 𝛾𝐷𝑜𝑑

𝜅𝑑
(
𝛼
𝛽 − 1

) ª®®¬
1
𝛼

(4.7)

Equivalent expressions are obtained for temporary migration choices 𝜈∗𝑚 and
𝜃∗
𝑚 , simply replacing 𝜆𝑣 by 𝜆𝑚 :

𝜈∗𝑚 =

(
1 −

𝛽

𝛼

)
𝑤

𝜆𝑚 + 𝛾𝐷𝑜𝑑
(4.8)

𝜃∗
𝑚 =

©«
𝜆𝑚 + 𝛾𝐷𝑜𝑑

𝜅𝑑
(
𝛼
𝛽 − 1

) ª®®¬
1
𝛼

(4.9)

Taking logs on equations (4.6) to (4.9) and deriving with respect to the log of
distance allows to obtain expressions for the distance elasticity of the frequency
and duration of visits and temporary migrations, as well as of the total time spent
on visits and temporary migration:
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𝜕 ln 𝜈∗𝑣
𝜕 ln𝐷𝑜𝑑

= − 𝛾𝐷𝑜𝑑

𝜆𝑣 + 𝛾𝐷𝑜𝑑
(4.10)

𝜕 ln𝜃∗
𝑣

𝜕 ln𝐷𝑜𝑑
=

𝛾𝐷𝑜𝑑

𝛼(𝜆𝑣 + 𝛾𝐷𝑜𝑑)
(4.11)

𝜕 ln 𝜈∗𝑣𝜃
∗
𝑣

𝜕 ln𝐷𝑜𝑑
= −

(
1 − 1

𝛼

)
𝛾𝐷𝑜𝑑

𝜆𝑣 + 𝛾𝐷𝑜𝑑
(4.12)

𝜕 ln 𝜈∗𝑚
𝜕 ln𝐷𝑜𝑑

= − 𝛾𝐷𝑜𝑑

𝜆𝑚 + 𝛾𝐷𝑜𝑑
(4.13)

𝜕 ln𝜃∗
𝑚

𝜕 ln𝐷𝑜𝑑
=

𝛾𝐷𝑜𝑑

𝛼(𝜆𝑚 + 𝛾𝐷𝑜𝑑)
(4.14)

𝜕 ln 𝜈∗𝑚𝜃
∗
𝑚

𝜕 ln𝐷𝑜𝑑
= −

(
1 − 1

𝛼

)
𝛾𝐷𝑜𝑑

𝜆𝑚 + 𝛾𝐷𝑜𝑑
(4.15)

Equations (4.10) and (4.13) indicate that the number of visits and migration
events is negatively related to the distance to destination. On the other hand,
equations (4.11) and (4.14) show that the duration of visits and migration events
is positively related to distance. Individuals will thus tend to make fewer but
longer visits to more distant cities. The net effect on the total time on mobility
is determined by equations (4.12) and (4.15): with 𝛼 > 1, the total time spent
visiting or migrating to the destination decreases with distance. Therefore, the
increased duration is not expected to compensate for the lower frequency with
which individuals travel to more distant locales.

The expressions for the frequency and duration of visits and temporary migra-
tion in equations (4.6) to (4.9) do not necessarily provide convenient closed-form
relations, but serve to highlight the importance of fixed costs in determining the
sensitivity of mobility choices to the distance between origin and destination. Im-
portantly, the distance elasticity of mobility does not merely appear as proportional
to the marginal cost of distance. The various elasticities established in equations
(4.10) to (4.15) depend negatively on the fixed costs 𝜆𝑣 and 𝜆𝑚 . This implies that
the discernable distance elasticity of a given type of mobility, as perceived through
CDR-based mobility measures, also carries information about the associated fixed
costs, which cannot be directly observed. More specifically, the model anticipates
that should temporary migration be characterized by elevated fixed costs relative
to visits (i.e. 𝜆𝑚 > 𝜆𝑣), then its distance elasticity will be lower than that of visits in
absolute terms.
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Contrary to the model introduced in Chapter 1, the conceptual framework
presented here does not aim at rationalizing the observed mobility levels. Rather,
it employs the same cost structure for both visits and temporary migration, within
a streamlined environment, to highlight the relation between observable distance
elasticities for visits and temporary migration to the intrinsic fixed costs of each
mobility type. While the analysis in Chapter 1 ultimately focuses on the distance
cost of mobility, neglecting other costs to derive tractable relationships between
inter-city visiting flows and distance or city size, the model considered in this
chapter upholds the comprehensive cost framework. This approach allows to
relate the distance elasticity of mobility with the underlying fixed costs of mobility,
offering an indirect way to uncovering differences in the fixed costs associated with
visits and temporary migration.

4.5.2 Gravity estimates

As in section 4.4, I consider the mobility choices aggregated over a year for a large
sample of users observed over the period going from February 2014 To January
2015 (Subset 1). I estimate standard gravity equations in order to test the main
predictions implied by the conceptual framework of section 4.5.1. First, I run a
Poisson Pseudo-Maximum likelihood (PPML) estimation of a gravity equation
relating an individual 𝑖’s frequency of visits or temporary migration to a destination
𝑑 over a year, to the distance between 𝑖’s residence location 𝑜 and 𝑑, denoted 𝐷𝑜𝑑:

𝜈𝑖𝑜𝑑 = 𝑒𝑥𝑝(𝑎1 ln𝐷𝑜𝑑 + 𝛿𝑜 + 𝜓𝑑 + 𝜖𝑖𝑜𝑑) (4.16)

where 𝜈𝑖𝑜𝑑 is either the total number visits or the number of temporary mi-
grations made by 𝑖 to 𝑑 over the course of one year. 𝛿𝑜 and 𝜓𝑑 are origin and
destination fixed effects respectively.

Then, a similar log-log model relating the mean duration of visits or temporary
migration, 𝜃𝑖𝑜𝑑, to the distance 𝐷𝑜𝑑 is estimated with OLS on the subset of visitors
and migrants to destination 𝑑 respectively:

ln𝜃𝑖𝑜𝑑 = 𝑎2 ln𝐷𝑜𝑑 + 𝛿𝑜 + 𝜓𝑑 + 𝜖𝑖𝑜𝑑 (4.17)

Finally, I run a PPML estimation of a gravity equation considering the total time
spent visiting or migrating as a dependent variable, i.e. the product of 𝜈𝑖𝑜𝑑 and
𝜃𝑖𝑜𝑑:

𝜈𝑖𝑜𝑑𝜃𝑖𝑜𝑑 = 𝑒𝑥𝑝(𝑎3 ln𝐷𝑜𝑑 + 𝛿𝑜 + 𝜓𝑑 + 𝜖𝑖𝑜𝑑) (4.18)

Results are presented in Table 4.5. Note that the distance between origin
and destination locations corresponds to the actual travel distance calculated via
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the Open Source Routing Machine (OSRM) project26 that uses OpenStreetMap
data.27 Column (1) and (2) show the results of the PPML estimation of equation
(4.16) considering the frequency of visits and temporary migration respectively.
Consistent with the model prediction, both coefficients are negative and statistically
significant. Moreover, the magnitude of the distance elasticity of the frequency of
visits is practically twice as large as the elasticity of the frequency of temporary
migration, in absolute terms. According to the conclusions drawn from the
conceptual framework in section 4.5.1, this is consistent with the fixed cost of
temporary migration being larger than the fixed cost associated with visits (i.e.
𝜆𝑚 > 𝜆𝑣).

Estimations of equation (4.17) for the duration of visits and temporary migration
events are reported in columns (3) and (4). As expected, the distance elasticity of
visits’ duration is positive and statistically significant, and suggests that a doubling
in distance is associated with a 14% increase in the mean duration of visits on
average. The distance elasticity of temporary migration duration is also positive
and significant. The size of the estimated effect is much smaller in the temporary
migration case, which again supports the hypothesis of a higher fixed cost for
temporary migration compared to visits.

Finally, the estimated distance elasticities of the total time spent visiting and
migrating are also consistent with expectations (columns (5) and (6)). Both coef-
ficients are negative and significant and the elasticity of visits is larger than the
elasticity of temporary migration in absolute terms. Consistent with the results
of columns (1) and (3), the magnitude of the impact of distance on the total time
spent on visits is marginally lower than the effect on the frequency of visits: when
distance increases, the time loss induced by a reduction in the number of visits is
partially compensated by longer visits. In the same vein, the distance elasticity of
the time spent migrating is reduced compared to the elasticity with respect to the
frequency of temporary migrations, although by a small margin given the relatively
low impact of distance on the duration of migration events.

26Details can be found at http://project-osrm.org/. Note that I access the OSRM API via the osrm
R package.

27Robustness checks considering other distance metrics are provided in appendix 4.G and show
comparable results (Table 4.G.1).
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Table 4.5: Gravity estimates for the frequency, duration and total time of visits and
temporary migration.

Frequency Duration Total days
Visits Migration Visits Migration Visits Migration

(1) (2) (3) (4) (5) (6)
PPML PPML OLS OLS PPML PPML

log(distance) -2.147∗∗∗ -1.199∗∗∗ 0.1434∗∗∗ 0.0333∗∗∗ -1.844∗∗∗ -1.180∗∗∗
(0.0845) (0.1150) (0.0230) (0.0090) (0.0966) (0.1140)

Observations 4,360,430 4,341,983 319,382 20,723 4,360,430 4,341,983
Pseudo R2 0.51911 0.26740 0.13265 0.03170 0.44319 0.30160

Origin FE ✓ ✓ ✓ ✓ ✓ ✓
Destination FE ✓ ✓ ✓ ✓ ✓ ✓

Note: Estimations are based on a subset of 100,000 users from the high-quality sample,
observed over the period February 2014-January 2015. Each observation corresponds to a
user-destination couple and the mobility metrics are aggregated over the entire one-year
period. Each column indicates a separate regression considering a distinct dependent
variable. Columns (1) and (2) show PPML estimates from a regression of the number of
visits and the number of temporary migration events observed over a year. Columns (3)
and (4) present OLS estimates from a regression of the logged mean duration of visits
and the logged mean duration of temporary migration events, considering the subset of
user-destination pairs with at least one visit and one migration respectively. Columns (5)
and (6) show PPML estimates from a regression of the time spent visiting and migrating
over a year. The distance used corresponds to the travel distance by road. Standard errors
are two-way clustered by origin and destination. ∗𝑝 < 0.1; ∗∗𝑝 < 0.05; ∗∗∗𝑝 < 0.01.

Some additional tests allow to appreciate the robustness of the results to the
distance metric used and the time window considered. I reproduce the results of
Table 4.5 using the great circle distance as well as the travel time by car28 between
origin and destination, and find that the results are practically unchanged (see
Table 4.G.1 in Appendix 4.G). Also, I estimate the gravity equations considering
mobility choices aggregated over distinct time windows, i.e. a window covering
the one-year period going from October 2014 to September 2015 and another span-
ning the period February 2013 to November 2013. Results are again remarkably
comparable to those obtained in Table 4.5 (see Table 4.G.2). Finally, I address
potential concerns about the influence of high-frequency visitors originating from
the outskirts of cities (i.e. commuters) on the results by considering another set of
estimations where pairs of adjacent locations are excluded from the sample. The re-
sults are again largely consistent with estimations that include pairs of adjacent cells.

Finally, the destination fixed effects included in gravity estimations of Table 4.5
28The travel time by car is also calculated via the OSRM project.
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have a useful interpretation that allows to complement the analyses of section 4.4.
For instance, considering the estimation in column (5), each destination-specific
coefficient represents the average time spent visiting the corresponding city, net
of the effect of movement costs and of the average propensity to spend time in
cities specific to each origin location. In other words, destination fixed effects
reflect the level of attractiveness of cities for visitors from other locations ceteris
paribus. Similarly, destination fixed effects from the estimation in column (6)
give the relative level of attractiveness of cities for temporary migrants. As a
result, the comparison of destination fixed effects derived from these estimations is
informative about potential differences between urban amenities consumed via
visits and temporary migration. Do some cities specifically attract visitors while
others attract temporary migrants? This would indicate that visits are motivated by
the consumption of amenities that some cities have and others do not, and likewise
for temporary migration. Figure 4.6 plots the migration destination fixed effects
against the visits destination fixed effects and tends to suggest this is not the case.
All else equal, cities that attract visitors attract temporary migrants in the same
proportions, compared to other cities. I find no evidence of some cities exhibiting a
high destination fixed effect for visits and a relatively low destination fixed effect
for migration, or conversely.
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Figure 4.6: Attractiveness of cities to visitors and temporary
migrants.

Note: Each observation represents a destination city. Destination
fixed effects for visits are extracted from the regression given in
column (5) of Table 4.5 where the total days on visits is regressed
on the logged distance between origin and destination, origin fixed
effects, and destination fixed effects. Destination fixed effects for
temporary migration are likewise extracted from the estimation
showed in column (6) of Table 4.5. The blue line represents a
linear regression line between destination fixed effects for visits and
migration, with the grey area showing the 95% confidence interval.

4.6 Discussion

The use of highly granular mobility measures derived from mobile phone data
proves itself insightful to better understand the interplay between various types
of temporary movements. The analyses of section 4.4 do not provide evidence in
support of the hypothesis that frequent visits to cities could be used in substitution
of longer-term but more costly movements that only some individuals could afford.
Instead, the results suggest that a positive relationship exists between visits and
temporary migration and is driven by temporary migrants making prospective and
follow-up visits before and after a migration spell. The phone-derived mobility
measures also allow to gain new insights into the differential costs associated with
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visits and temporary migration, respectively. However, a number of limitations
that could motivate future research are worth highlighting.

Observing patterns of movements only represents an indirect method for the
characterization of urban amenities consumed during visits and temporary mi-
gration episodes. An undeniable advantage with the use of mobile phone data is
the granularity with which human mobility can be measured, but it comes at a
cost of a very limited amount of other information about users. In particular, it
is not possible to clearly identify what individuals actually do when they travel
to a city, the type of activities they conduct, or the type of goods and services
they consume. Thus, the mobile phone data used in the analysis allow to identify
novel questions about human mobility behaviors – such as the possible existence
of prospective visiting behaviors among temporary migrants – but complementary
survey-based data would be crucially needed to unequivocally confirm the actual
motives underlying those movements.

As emphasized in section 4.4, the absence of further socio-economic information
on users seriously complicates the elaboration of compelling causal claims about
the relationship between visits and temporary migration. Yet, analyzing within-
individual variations of visits over time with respect to the timing of migration
provides evidence in support of the assumption that visits could be a precursor
to migration. In this respect, a complementary analysis using mobile phone data
could be envisaged to further explore this mechanism. Given that CDR records
also indicate the identifier of the counterpart of the call, it is possible to examine
whether users’ social network is affected by observed visits at destination in a
way that would confirm the prospective behavior hypothesis. For instance, do fu-
ture migrants get new contacts at destination when they visit it prior to migrating?29

4.7 Conclusion

The paper explores the interplay between two distinct forms of temporary move-
ments to cities: visits and temporary migration. I exploit a unique mobile phone
dataset in Senegal that allows to capture both types of mobility for a large sample
of users and at a high level of granularity. Visiting flows to cities are strikingly high
and 80-90% of users are seen visiting at least one city over a year. Their significance

29In their study about the role of social network typology on migration, Blumenstock, Chi, et al.
(2022) find no evidence of such anticipatory behaviors in the context of Rwanda over the period
2005-2009. However, one would be inclined to revisit this result in the context of Senegal given the
observed patterns of visits around migration events.
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raises questions about the role they play as a way to access urban amenities, relative
to other types of movements. By comparing visiting and temporary migration
choices of phone users, I am able to identify plausible ways in which those types
of movements are interrelated and I discuss implications for the nexus between
amenities consumed during visits versus temporary migration. I find no evidence
supporting the idea that visits could substitute for longer-term temporary move-
ments. The data do not allow to conclude that the nature of urban amenities
consumed during visits and temporary migration somewhat overlap. Instead, the
empirical analysis uncovers a positive relationship between visits and temporary
migration to cities. This relationship is almost entirely driven by the additional
visits that temporary migrants make at their migration destination. The paper
shows that the user-level distribution of these visits over time are non-random
with respect to the timing of migration. In particular, the results point to the
possibility that visits could be a precursor to migration. Then, I analyze differences
between visits and temporary migration from the perspective of movement costs
associated with each type of mobility. A simple conceptual framework underlines
the role of fixed costs in determining observed elasticities of visits and temporary
migration with respect to distance. The estimation of gravity regressions show
patterns supporting the idea that the fixed cost of visits is low compared to the
fixed cost of migration.
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Appendix 4.A Construction of subsets of phone users

I construct various subsets of phone users utilized throughout the paper, with
the objective of streamlining individual-level data analysis and expediting com-
putational procedures, while preserving a substantial sample size and ensuring
comprehensive coverage. In what follows, I provide details about the construction
of each of those datasets. While Subset 1 serves as the principal dataset for the
majority of this paper’s analyses, Subset 2 and Subset 3 are principally curated
to facilitate robustness tests. Meanwhile, Subset 4 is designed to cover the entire
2013-2015 period and produce a complete time series of visits indicators over that
period (see section 4.3).

4.A.1 Subset 1: 100,000 users from February 2014 to January 2015

First, users of the high-quality subset, which is defined in Chapter 2 (section
2.3.4), are selected from the raw 2014-2015 dataset. As a reminder, these users
are characterized by their presence over a minimum duration of 330 days, with
observations on at least 80% of those days and a maximal observational gap not
exceeding 15 days.

Second, from the high-quality subset, users whose observation span encom-
passes the one-year period from February 1, 2014, to January 31, 2015, are selected.

Thirdly, from this refined subset, a sample of 100,000 users is randomly selected,
according to a sampling scheme that follows the idea of the weighting scheme
developed in Chapter 2 (section 2.5.1). Each of the 916 voronoi locations is
associated with a third-level administrative unit based on a maximum population
criterion.30 On the other hand, voronoi cells are categorized into five distinct
strata, consisting of one urban category and four rural sub-categories. The urban
classification encompasses the 39 cells identified as city cells. The four rural
divisions are delineated based on population density, spanning from the most
sparsely populated rural cells to the densest rural locations, as detailed in Chapter
2 (section 2.A). Each urban cell serves as an individual sampling unit, while
the rural sampling units are demarcated by a specific rural stratum within each
administrative unit, resulting in a total of 329 defined sampling units. Within each
sampling unit, the number of users selected is proportional to its population. It is
worth noting that the population values for each cell are ascertained by juxtaposing
the 2017 WorldPop population grid with the voronoi cells. A minimum of 100
users is imposed in each sampling unit. However, in instances where the total users
within a sampling unit fall short of the number determined by the sampling scheme,

30Essentially, in instances where voronoi cells overlap multiple administrative units, the unit with
the maximum population within the overlapping areas is selected.
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all users from that particular unit are incorporated. Given these two adjustments,
the final subset does not precisely encompass 100,000 users; instead, it comprises a
total of 103,704 users.

4.A.2 Subset 2: 100,000 users from October 2014 to September 2015

This subset is defined based on the same criteria presented above, considering
users from the 2014-2015 high-quality subset whose period of observation spans
the one-year period from October 1, 2014, to September 30, 2015.

4.A.3 Subset 3: 100,000 users from January 2013 to December 2013

Similarly, a subset comprising 100,000 users is extracted from the 2013 high-quality
subset, adhering to the same sampling scheme exposed above. Given that the 2013
subset spans precisely a year, no additional filters related to the users’ observation
duration are implemented.

4.A.4 Subset 4: 300,000 users from January 2013 to December 2015

Subset 4 is tailored to encompass data from the entire 2013-2015 span, with the aim
of calculating a temporal series of visits indicators throughout this period. I simply
use Subset 3 to cover the year 2013, and I select a random sample of 200,000 users in
the 2014-2015 dataset, following again the sampling scheme delineated above in
section 4.A.1.

4.A.5 Subset 5: 200,000 users from February 2013 to September 2015

Subset 5 is tailored for the analysis conducted in section 4.4.2. It consists of a
random selection of 200,000 users from the 2014-2015 high-quality subset, in line
with the sampling framework detailed in section 4.A.1. A stringent observational
span criterion is imposed, including only users with records spanning at least
from February 1, 2014, to September 30, 2015. This expansive timeframe allows to
observe temporary migration events over an entire year, from June 2014 to May 2015,
along with the visiting choices both in the four months leading up to migration
departures and in the four months subsequent to returns from migration.
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Appendix 4.B Tables of summary statistics on visits over
the period February 2014-January 2015

Table 4.B.1: Fraction of users visiting urban destinations, by zone of origin.

Origin zone To any city To Dakar To Primary
cities

To secondary
cities

Urban 81.7% 32.4% 66.9% 57.2%
Dakar 77.6% 0.0% 67.9% 54.5%

Primary cities 84.3% 59.2% 61.7% 59.9%
Secondary cities 86.5% 56.7% 77.3% 57.8%

Rural 85.1% 40.1% 70.5% 65.6%
Very dense rural 81.9% 39.6% 66.8% 61.7%

Dense rural 86.4% 40.4% 73.2% 64.4%
Remote rural 88.6% 43.3% 75.5% 69.0%

Very remote rural 84.5% 35.5% 66.6% 71.1%
Total 83.4% 36.3% 68.7% 61.4%

Note: The table shows the fractions of users with at least one visit to any city (column (1)),
to Dakar (column (2)), to a primary city (column (3)) and to a secondary city (column (4)),
broken down by zone of origin. Estimations are based on a random sample of 100,000
users in the high-quality subset observed over the period February 2014-January 2015 (see
details in appendix 4.A).

Table 4.B.2: Return period of visits to urban destinations (in days).

mean 25%
quantile

median 75%
quantile

90%
quantile

To any city 84 15 40 105 224
To Dakar 165 56 122 309 361

To primary cities 133 32 83 186 357
To secondary cities 153 37 107 282 368

Note: For each user-destination, the frequency of visits is calculated as a return period
that corresponds to the number of days observed divided by the number of visits, i.e. the
average length of time between consecutive visits to that destination. The table shows
the mean and quantiles of the frequency of visits, broken down by urban destination.
Estimations are based on a random sample of 100,000 users in the high-quality subset
observed over the period February 2014-January 2015 (see details in appendix 4.A).
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Table 4.B.3: Median frequency of visits to urban destinations, by zone of origin.

Origin zone To any city To Dakar To Primary
cities

To secondary
cities

Urban 64 115 119 163
Dakar 88 - 128 178

Primary cities 59 122 133 161
Secondary cities 34 90 73 117

Rural 24 128 56 70
Very dense rural 31 137 68 78

Dense rural 24 130 51 82
Remote rural 20 120 48 64

Very remote rural 18 145 52 45
National 40 122 83 107

Note: For each user-destination, the frequency of visits is calculated as a return period
that corresponds to the number of days observed divided by the number of visits, i.e. the
average length of time between consecutive visits to that destination. The table shows the
median frequency of visits among users identified as visitors, broken down by origin zone
and urban destination. Estimations are based on a random sample of 100,000 users in the
high-quality subset observed over the period February 2014-January 2015 (see details in
appendix 4.A).

Table 4.B.4: Observed duration of visits to urban destinations (in days).

mean 1st
quartile

median 3rd
quartile

90%
quantile

To any city 1.47 0.64 1.00 1.75 2.97
To Dakar 2.71 0.75 1.67 3.50 6.25

To primary cities 1.41 0.50 0.90 1.67 3.00
To secondary cities 0.92 0.50 0.56 1.00 1.67

Note: The observed duration of a visit is defined as the time elapsed between the start
and end dates of the visit. For each user, I calculate the average observed duration of
visits to each urban destination category. The table shows the mean and quantiles of the
user-level average duration, broken down by destination category. Estimations are based
on a random sample of 100,000 users in the high-quality subset observed over the period
February 2014-January 2015 (see details in appendix 4.A).
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Table 4.B.5: Maximum duration of visits to urban destinations (in days).

mean 1st
quartile

median 3rd
quartile

90%
quantile

To any city 1.93 0.97 1.45 2.35 3.75
To Dakar 3.28 1.00 2.20 4.50 7.50

To primary cities 1.84 0.81 1.28 2.25 3.75
To secondary cities 1.30 0.58 1.00 1.50 2.50

Note: The maximum duration of a visit is defined as the time elapsed between the
observation preceding the visit start date and the observation following the visit end
date. For each user, I calculate the average maximum duration of visits to each urban
destination category. The table shows the mean and quantiles of the user-level average
duration, broken down by destination category. Estimations are based on a random sample
of 100,000 users in the high-quality subset observed over the period February 2014-January
2015 (see details in appendix 4.A).

Table 4.B.6: Statistics on the number of days of visit to urban destinations.

mean 25%
quantile

median 75%
quantile

90%
quantile

To any city 23.4 3.9 11.9 30.8 61.7
To Dakar 13.1 2.1 6.4 16.4 33.3

To primary cities 13.2 1.8 5.0 14.8 35.8
To secondary cities 9.2 1.0 2.6 8.6 25.2

Note: For each user, the total number of days of visit to a city is calculated as the sum
across the distinct visits to that city of the observed duration of those visits. Then, the total
number of visit-days by city is summed across all cities, all primary cities, and all secondary
cities. The table shows the mean and quantiles across all users of the total number of
visit-days to all cities, to Dakar, to primary cities, and to secondary cities. Note that since
those measures utilize the observed duration rather than the maximum duration, they
shall be considered lower-bound estimates for the total number of visit-days. Estimations
are based on a random sample of 100,000 users in the high-quality subset observed over
the period February 2014-January 2015 (see details in appendix 4.A).
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Table 4.B.7: Average number of days of visits to urban destinations, by zone of
origin.

Origin zone To any city To Dakar To Primary
cities

To secondary
cities

Urban 17.1 12.5 9.6 6.2
Dakar 12.6 - 9.8 5.7

Primary cities 18.4 11.8 8.1 5.8
Secondary cities 25.5 14.2 12.0 8.3

Rural 29.3 13.6 16.6 11.8
Very dense rural 26.1 13.2 13.8 11.4

Dense rural 29.4 13.2 18.1 10.6
Remote rural 31.1 14.5 17.8 11.3

Very remote rural 33.1 13.7 18.3 15.4
National 23.4 13.1 13.2 9.2

Note: For each user, the total number of days of visit to a city is calculated as the sum
across the distinct visits to that city of the observed duration of those visits. Then, the
total number of visit-days is summed across all cities, all primary cities, and all secondary
cities. The table shows the average across users of the total number of visit-days to all
cities, to Dakar, to primary cities, and to secondary cities, broken down by zone of origin.
Note that since those measures utilize the observed duration rather than the maximum
duration, they shall be considered lower-bound estimates for the total number of visit-days.
Estimations are based on a random sample of 100,000 users in the high-quality subset
observed over the period February 2014-January 2015 (see details in appendix 4.A).

Appendix 4.C Tables of summary statistics on visits in 2013

Table 4.C.1: Fraction of users visiting urban destinations, by zone of origin.

Origin zone To any city To Dakar To Primary
cities

To secondary
cities

Urban 84.7% 35.2% 69.8% 59.6%
Dakar 79.9% 0.0% 70.0% 56.2%

Primary cities 88.0% 64.2% 64.8% 63.2%
Secondary cities 90.3% 62.0% 81.9% 60.6%

Rural 89.3% 46.1% 74.5% 69.5%
Very dense rural 85.4% 44.5% 70.0% 64.8%

Dense rural 90.1% 46.3% 76.0% 67.6%
Remote rural 93.1% 49.5% 80.8% 73.4%

Very remote rural 91.3% 44.6% 72.9% 77.5%
Total 87.1% 40.7% 72.2% 64.6%

Note: The table shows the fractions of users with at least one visit to any city (column (1)),
to Dakar (column (2)), to a primary city (column (3)) and to a secondary city (column (4)),
broken down by zone of origin. Estimations are based on a random sample of 100,000
users in the 2013 high-quality subset (see details in appendix 4.A).
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Table 4.C.2: Return period of visits to urban destinations (in days).

mean 25%
quantile

median 75%
quantile

90%
quantile

To any city 81 15 40 105 183
To Dakar 164 56 120 317 353

To primary cities 128 32 84 178 345
To secondary cities 150 39 111 310 354

Note: For each user-destination, the frequency of visits is calculated as a return period
that corresponds to the number of days observed divided by the number of visits, i.e. the
average length of time between consecutive visits to that destination. The table shows
the mean and quantiles of the frequency of visits, broken down by urban destination.
Estimations are based on a random sample of 100,000 users in the 2013 high-quality subset
(see details in appendix 4.A).

Table 4.C.3: Median frequency of visits to urban destinations, by zone of origin.

Origin zone To any city To Dakar To Primary
cities

To secondary
cities

Urban 61 115 116 166
Dakar 86 - 120 176

Primary cities 55 118 121 163
Secondary cities 34 106 70 117

Rural 24 150 56 72
Very dense rural 32 158 70 83

Dense rural 25 150 52 84
Remote rural 21 121 47 68

Very remote rural 18 121 52 49
National 40 120 84 111

Note: For each user-destination, the frequency of visits is calculated as a return period
that corresponds to the number of days observed divided by the number of visits, i.e. the
average length of time between consecutive visits to that destination. The table shows the
median frequency of visits among users identified as visitors, broken down by origin zone
and urban destination. Estimations are based on a random sample of 100,000 users in the
2013 high-quality subset (see details in appendix 4.A).

Table 4.C.4: Observed duration of visits to urban destinations (in days).

mean 1st
quartile

median 3rd
quartile

90%
quantile

To any city 1.45 0.64 1.00 1.74 2.89
To Dakar 2.62 0.70 1.50 3.43 6.17

To primary cities 1.39 0.50 0.88 1.62 2.92
To secondary cities 0.92 0.50 0.56 1.00 1.67

Note: The observed duration of a visit is defined as the time elapsed between the start and
end dates of the visit. For each user, I calculate the average observed duration of visits to
each urban destination category. The table shows the mean and quantiles of the user-level
average duration, broken down by destination category. Estimations are based on a random
sample of 100,000 users in the 2013 high-quality subset (see details in appendix 4.A).
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Table 4.C.5: Maximum duration of visits to urban destinations (in days).

mean 1st
quartile

median 3rd
quartile

90%
quantile

To any city 1.84 0.94 1.38 2.23 3.50
To Dakar 3.03 1.00 2.00 4.00 7.00

To primary cities 1.76 0.78 1.25 2.10 3.50
To secondary cities 1.27 0.56 0.97 1.50 2.47

Note: The maximum duration of a visit is defined as the time elapsed between the
observation preceding the visit start date and the observation following the visit end
date. For each user, I calculate the average maximum duration of visits to each urban
destination category. The table shows the mean and quantiles of the user-level average
duration, broken down by destination category. Estimations are based on a random sample
of 100,000 users in the 2013 high-quality subset (see details in appendix 4.A).

Table 4.C.6: Statistics on the number of days of visit to urban destinations.

mean 25%
quantile

median 75%
quantile

90%
quantile

To any city 23.0 4.0 12.0 30.4 60.0
To Dakar 12.3 2.1 6.0 15.5 30.9

To primary cities 12.9 1.8 5.1 14.6 34.9
To secondary cities 8.8 1.0 2.6 8.3 23.9

Note: For each user, the total number of days of visit to a city is calculated as the sum
across the distinct visits to that city of the observed duration of those visits. Then, the total
number of visit-days by city is summed across all cities, all primary cities, and all secondary
cities. The table shows the mean and quantiles across all users of the total number of
visit-days to all cities, to Dakar, to primary cities, and to secondary cities. Note that since
those measures utilize the observed duration rather than the maximum duration, they
shall be considered lower-bound estimates for the total number of visit-days. Estimations
are based on a random sample of 100,000 users in the 2013 high-quality subset (see details
in appendix 4.A).
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Table 4.C.7: Average number of days of visits to urban destinations, by zone of
origin.

Origin zone To any city To Dakar To Primary
cities

To secondary
cities

Urban 16.9 12.0 9.4 6.0
Dakar 11.8 - 9.2 5.3

Primary cities 18.2 11.4 7.8 5.7
Secondary cities 26.8 13.5 13.2 8.3

Rural 28.6 12.5 16.0 11.3
Very dense rural 25.2 12.2 13.3 10.5

Dense rural 28.5 12.0 17.4 10.2
Remote rural 30.6 13.3 17.3 10.8

Very remote rural 32.8 12.6 17.5 14.9
National 23.0 12.3 12.9 8.8

Note: For each user, the total number of days of visit to a city is calculated as the sum
across the distinct visits to that city of the observed duration of those visits. Then, the
total number of visit-days is summed across all cities, all primary cities, and all secondary
cities. The table shows the average across users of the total number of visit-days to all
cities, to Dakar, to primary cities, and to secondary cities, broken down by zone of origin.
Note that since those measures utilize the observed duration rather than the maximum
duration, they shall be considered lower-bound estimates for the total number of visit-days.
Estimations are based on a random sample of 100,000 users in the 2013 high-quality subset
(see details in appendix 4.A).
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Appendix 4.D The empirical relationship between visits
and temporary migration to cities:
additional results

Table 4.D.1: Relationship between aggregate visits and temporary migration
controlling for origin fixed effects, with heterogeneity by zone of origin.

No. of visits No. of visit-days
(1) (2)

Migration dummy × rural origin 5.422∗∗∗ 16.61∗∗∗
(0.3287) (0.3933)

Migration dummy × urban origin 8.213∗∗∗ 18.76∗∗∗
(0.5786) (0.7799)

Observations 113,452 113,452
Pseudo R2 0.03054 0.02721

Origin FE ✓ ✓

Note: Each observation represents a user with mobility measures aggregated over the
period of observation and across all destination cities. Column (1) shows the PPML
estimation of a regression of the total number of visits to cities on a migration dummy
equal to 1 if the user has at least one temporary migration event to any city, interacted with
categorical variable indicating the zone to which the origin location belongs. Column (2)
shows the same estimation considering the total time spent visiting cities as a dependent
variable. Standard errors are clustered by origin location.
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Table 4.D.2: Relationship between aggregate visits and temporary migration
controlling for origin fixed effects, with heterogeneity by sub-zone of origin.

No. of visits No. of visit-days
(1) (2)

Migration dummy × Primary cities 8.125∗∗∗ 18.69∗∗∗
(0.6864) (0.9654)

Migration dummy × Sec. cities 8.520∗∗∗ 19.02∗∗∗
(1.188) (1.164)

Migration dummy × V. dense rural 5.087∗∗∗ 15.04∗∗∗
(0.5696) (0.7514)

Migration dummy × Dense rural 5.638∗∗∗ 16.91∗∗∗
(0.5606) (0.7249)

Migration dummy × V. remote rural 5.318∗∗∗ 17.79∗∗∗
(0.7571) (0.7472)

Migration dummy × Remote rural 5.967∗∗∗ 17.88∗∗∗
(0.8029) (0.8381)

Observations 113,452 113,452
Pseudo R2 0.03054 0.02724

Origin FE ✓ ✓

Note: Each observation represents a user with mobility measures aggregated over the
period of observation and across all destination cities. Column (1) shows the PPML
estimation of a regression of the total number of visits to cities on a migration dummy
equal to 1 if the user has at least one temporary migration event to any city, interacted with
categorical variable indicating the sub-zone to which the origin location belongs. Column
(2) shows the same estimation considering the total time spent visiting cities as a dependent
variable. Standard errors are clustered by origin location.
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Table 4.D.3: Relationship between aggregate visits and temporary migration
controlling for origin fixed effects, with heterogeneity by region of origin.

No. of visits No. of visit-days
(1) (2)

Migration dummy × Dakar 9.877∗∗∗ 20.25∗∗∗
(0.3943) (0.2452)

Migration dummy × Diourbel 4.672∗∗ 17.51∗∗∗
(1.938) (1.288)

Migration dummy × Fatick 3.982∗∗∗ 14.99∗∗∗
(1.017) (1.324)

Migration dummy × Kaffrine 7.424∗∗∗ 19.59∗∗∗
(0.8975) (1.152)

Migration dummy × Kaolack 4.099∗∗∗ 15.48∗∗∗
(0.7078) (0.8895)

Migration dummy × Kédougou 7.934∗∗∗ 22.32∗∗∗
(1.117) (1.611)

Migration dummy × Kolda 6.938∗∗∗ 21.12∗∗∗
(0.7068) (1.508)

Migration dummy × Louga 6.689∗∗∗ 18.57∗∗∗
(0.8547) (0.9332)

Migration dummy × Matam 3.893∗∗∗ 9.844∗∗∗
(0.5322) (1.056)

Migration dummy × Saint-Louis 5.468∗∗∗ 15.28∗∗∗
(0.9408) (1.237)

Migration dummy × Sédhiou 4.548∗∗∗ 13.43∗∗∗
(0.4336) (0.7188)

Migration dummy × Tambacounda 6.830∗∗∗ 17.30∗∗∗
(0.6786) (1.071)

Migration dummy × Thiès 9.579∗∗∗ 20.71∗∗∗
(0.9912) (0.8259)

Migration dummy × Ziguinchor 4.789∗∗∗ 13.25∗∗∗
(0.5817) (1.203)

Observations 113,452 113,452
Pseudo R2 0.03063 0.02747
Origin FE ✓ ✓

Note: Each observation represents a user with mobility measures aggregated over the
period of observation and across all destination cities. Column (1) shows the PPML
estimation of a regression of the total number of visits to cities on a migration dummy
equal to 1 if the user has at least one temporary migration event to any city, interacted with
categorical variable indicating the region to which the origin location belongs. Column (2)
shows the same estimation considering the total time spent visiting cities as a dependent
variable. Standard errors are clustered by origin location.
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Table 4.D.4: Relationship between visits and temporary migration controlling for
origin-destination fixed effects, with heterogeneity by zone of origin.

No. of visits No. of visit-days
(1) (2)

Migration dummy × rural origin 5.754∗∗∗ 14.07∗∗∗
(0.2275) (0.2723)

Migration dummy × urban origin 5.981∗∗∗ 15.17∗∗∗
(0.4828) (0.7400)

Observations 4,424,628 4,424,628
Pseudo R2 0.07478 0.06607

Origin-destination FE ✓ ✓

Note: Each observation represents a user-destination couple with mobility measures
aggregated over the period of observation. Column (1) shows the PPML estimation of a
regression of the total number of visits to a destination on a migration dummy equal to 1 if
the user has at least one temporary migration event to that destination, interacted with
categorical variable indicating the zone to which the origin location belongs. Column (2)
shows the same estimation considering the total time spent visiting the destination as a
dependent variable. Standard errors are clustered by origin-destination pair.
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Table 4.D.5: Relationship between visits and temporary migration controlling for
origin-destination fixed effects, with heterogeneity by sub-zone of origin.

No. of visits No. of visit-days
(1) (2)

Migration dummy × Primary cities 5.655∗∗∗ 15.11∗∗∗
(0.6914) (1.171)

Migration dummy × Sec. cities 7.024∗∗∗ 15.34∗∗∗
(0.9365) (0.9019)

Migration dummy × V. dense rural 5.257∗∗∗ 12.77∗∗∗
(0.4106) (0.5381)

Migration dummy × Dense rural 5.322∗∗∗ 13.53∗∗∗
(0.3965) (0.5404)

Migration dummy × V. remote rural 6.410∗∗∗ 15.80∗∗∗
(0.4653) (0.6007)

Migration dummy × Remote rural 6.661∗∗∗ 15.30∗∗∗
(0.5240) (0.5579)

Observations 4,424,628 4,424,628
Pseudo R2 0.07481 0.06615

Origin-destination FE ✓ ✓

Note: Each observation represents a user-destination couple with mobility measures
aggregated over the period of observation. Column (1) shows the PPML estimation of a
regression of the total number of visits to a destination on a migration dummy equal to 1 if
the user has at least one temporary migration event to that destination, interacted with
categorical variable indicating the sub-zone to which the origin location belongs. Column
(2) shows the same estimation considering the total time spent visiting the destination as a
dependent variable. Standard errors are clustered by origin-destination pair.
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Table 4.D.6: Relationship between visits and temporary migration controlling for
origin-destination fixed effects, with heterogeneity by region of origin.

No. of visits No. of visit-days
(1) (2)

Migration dummy × Dakar 7.842∗∗∗ 17.87∗∗∗
(0.9771) (1.657)

Migration dummy × Diourbel 6.045∗∗∗ 15.46∗∗∗
(0.8971) (0.7413)

Migration dummy × Fatick 5.153∗∗∗ 14.14∗∗∗
(0.4879) (0.7397)

Migration dummy × Kaffrine 5.808∗∗∗ 14.88∗∗∗
(0.6615) (0.7665)

Migration dummy × Kaolack 5.131∗∗∗ 13.41∗∗∗
(0.6689) (0.8321)

Migration dummy × Kédougou 5.373∗∗∗ 17.04∗∗∗
(0.5903) (1.215)

Migration dummy × Kolda 4.132∗∗∗ 14.02∗∗∗
(0.5445) (0.9514)

Migration dummy × Louga 6.609∗∗∗ 15.63∗∗∗
(0.8033) (0.8394)

Migration dummy × Matam 2.224∗∗∗ 7.808∗∗∗
(0.3982) (0.6521)

Migration dummy × Saint-Louis 5.197∗∗∗ 13.84∗∗∗
(0.6756) (0.7846)

Migration dummy × Sédhiou 3.069∗∗∗ 9.332∗∗∗
(0.3507) (0.6592)

Migration dummy × Tambacounda 3.940∗∗∗ 12.30∗∗∗
(0.4923) (0.7584)

Migration dummy × Thiès 9.758∗∗∗ 18.26∗∗∗
(0.8568) (0.6271)

Migration dummy × Ziguinchor 3.412∗∗∗ 9.866∗∗∗
(0.6612) (1.115)

Observations 4,424,628 4,424,628
Pseudo R2 0.07518 0.06678
Origin-destination FE ✓ ✓

Note: Each observation represents a user-destination couple with mobility measures
aggregated over the period of observation. Column (1) shows the PPML estimation of a
regression of the total number of visits to a destination on a migration dummy equal to 1 if
the user has at least one temporary migration event to that destination, interacted with
categorical variable indicating the region to which the origin location belongs. Column (2)
shows the same estimation considering the total time spent visiting the destination as a
dependent variable. Standard errors are clustered by origin-destination pair.
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Table 4.D.7: Relationship between visits and temporary migration controlling for
origin-destination fixed effects, with heterogeneity according to the distance to
destination.

No. of visits No. of visit-days
(1) (2)

Migration dummy × distance≤50 15.95∗∗∗ 23.81∗∗∗
(0.7553) (0.6322)

Migration dummy × distance≤100 7.966∗∗∗ 19.28∗∗∗
(0.5222) (0.8100)

Migration dummy × distance≤200 4.511∗∗∗ 14.19∗∗∗
(0.2838) (0.4316)

Migration dummy × distance>200 2.469∗∗∗ 9.592∗∗∗
(0.1012) (0.2771)

Observations 4,424,628 4,424,628
Pseudo R2 0.07657 0.06816

Origin-destination FE ✓ ✓

Note: Each observation represents a user-destination couple with mobility measures
aggregated over the period of observation. Column (1) shows the PPML estimation of a
regression of the total number of visits to a destination on a migration dummy equal to 1 if
the user has at least one temporary migration event to that destination, interacted with a
categorized distance variable. Column (2) shows the same estimation considering the total
time spent visiting the destination as a dependent variable. Standard errors are clustered
by origin-destination pair.
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Appendix 4.E The dynamics of visits around migration
events: additional results

Figure 4.E.1: Relative distribution of migrants’ visits to destination before and after
a migration event, logit model.

Note: The two vertical dashed red lines in the center of the graph represent the migration
departure (left) and return (right). The x-axis represents the relative time with respect
to the migration departure and return. Note that the gap between migration departure
and return theoretically coincides with the migration duration but is normalized to one
dekad for representation purposes. Red dots on the left-hand side correspond to estimates
of 𝛼2 , ..., 𝛼8 , 𝛼9+ from a logit model, and those on the right-hand side are estimates of
𝛽1 , ..., 𝛽8 , 𝛽9− . Coefficients are estimated on a sample of 30,523 unique temporary migrants
observed over the period 2014-2015, resulting in a grand total of 1,358,184 observations.
The error bars show the 95% confidence intervals based on two-way clustered standard
errors at the individual-destination and dekad-destination levels.

Appendix 4.F Conceptual framework: proofs

I first consider the utility maximization problem associated with visits choices to a
destination 𝑑 for an individual residing in location 𝑜:

arg max
𝜈𝑣 ,𝜃𝑣

𝜈𝑣[𝜃𝑣𝐴𝑣(𝑑)]𝛽

s.t. 𝜈𝑣(𝜆𝑣 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑𝜃
𝛼
𝑣 ) ≤ 𝑤

(4.19)

If the condition for movement is not satisfied (i.e. 𝑤 < 𝜆𝑣 +𝛾𝐷𝑜𝑑+𝜅𝑑), it follows
trivially that 𝜈𝑣 = 𝜃𝑣 = 0. Otherwise, with the Lagrange multiplier denoted as 𝐿,
the Lagrangian optimization problem can be written as:

ℒ(𝜈𝑣 , 𝜃𝑣) = 𝜈𝑣[𝜃𝑣𝐴𝑣(𝑑)]𝛽 + 𝐿[𝑤 − 𝜈𝑣(𝜆𝑣 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑𝜃
𝛼
𝑣 )] (4.20)
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To simplify the derivation, I treat 𝜈𝑣 as a real number and I then calculate the
partial derivatives of ℒ(𝜈𝑣 , 𝜃𝑣) with respect to 𝜈𝑣 and 𝜃𝑣 :

𝜕ℒ
𝜕𝜃𝑣

= 𝛽𝜈𝑣𝐴𝑣(𝑑)𝛽𝜃𝛽−1
𝑣 − 𝐿𝜈𝑣𝜅𝑑𝛼𝜃𝛼−1

𝑣 (4.21)

𝜕ℒ
𝜕𝜈𝑣

= [𝜃𝑣𝐴𝑣(𝑑)]𝛽 − 𝐿(𝜆𝑣 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑𝜃
𝛼
𝑣 ) (4.22)

The optimal choice (𝜈∗𝑣 , 𝜃∗
𝑣) satisfies the condition:

𝛽𝜈∗𝑣𝐴𝑣(𝑑)𝛽𝜃∗
𝑣
𝛽−1 − 𝐿𝜈∗𝑣𝜅𝑑𝛼𝜃∗

𝑣
𝛼−1

= 0 (4.23)

[𝜃∗
𝑣𝐴𝑣(𝑑)]𝛽 − 𝐿(𝜆𝑣 + 𝛾𝐷𝑜𝑑 + 𝜅𝑑𝜃

∗
𝑣
𝛼) = 0 (4.24)

Multiplying (4.23) by 𝜃∗
𝑣 , dividing by 𝜈∗𝑣 , and rearranging terms yields an

expression that depends only on 𝜃∗
𝑣 and exogenous parameters:

𝜃∗
𝑣
𝛽
=

𝐿𝜅𝑑𝛼

𝛽𝐴𝑣(𝑑)𝛽
(4.25)

Plugging in (4.25) into (4.24) allows to obtain the following expression for :

𝜃∗
𝑣 =

©«
𝜆𝑣 + 𝛾𝐷𝑜𝑑

𝜅𝑑
(
𝛼
𝛽 − 1

) ª®®¬
1
𝛼

(4.26)

Then, plugging in (4.26) into the budget constraint yields an expression for 𝜈∗𝑣 :31

𝜈∗𝑣 =

(
1 − 𝛽

𝛼

)
𝑤

𝜆𝑣 + 𝛾𝐷𝑜𝑑
(4.27)

Then, the accumulated time of visits 𝜈∗𝑣𝜃∗
𝑣 is obtained by multiplying (4.26) and

(4.27):

𝜈∗𝑣𝜃
∗
𝑣 =

1

𝜅
1
𝛼

𝑑

𝛽

𝛼

(
𝛼
𝛽
− 1

)1− 1
𝛼 𝑤

(𝜆𝑣 + 𝛾𝐷𝑜𝑑)1−
1
𝛼

(4.28)

31The budget constraint is satisfied with equality since an individual can always keep the number
of visits fixed and adjust the duration 𝜃𝑣 .
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Appendix 4.G Gravity estimates: robustness checks

Table 4.G.1: Gravity estimations for the period February 2014-January 2015, different
distance metrics.

Frequency Duration Total days
Visits Migration Visits Migration Visits Migration

(1) (2) (3) (4) (5) (6)
PPML PPML OLS OLS PPML PPML

Panel A: Great circle distance

log(distance) -2.195∗∗∗ -1.221∗∗∗ 0.1443∗∗∗ 0.0346∗∗∗ -1.879∗∗∗ -1.201∗∗∗
(0.0937) (0.1166) (0.0242) (0.0091) (0.1053) (0.1151)

Observations 4,360,430 4,341,983 319,382 20,723 4,360,430 4,341,983
Pseudo R2 0.51712 0.26651 0.13239 0.03172 0.44095 0.30060

Panel B: Travel distance

log(distance) -2.147∗∗∗ -1.199∗∗∗ 0.1434∗∗∗ 0.0333∗∗∗ -1.844∗∗∗ -1.180∗∗∗
(0.0845) (0.1150) (0.0230) (0.0090) (0.0966) (0.1140)

Observations 4,360,430 4,341,983 319,382 20,723 4,360,430 4,341,983
Pseudo R2 0.51911 0.26740 0.13265 0.03170 0.44319 0.30160

Panel C: Travel time

log(travel time) -2.375∗∗∗ -1.254∗∗∗ 0.1630∗∗∗ 0.0340∗∗∗ -1.990∗∗∗ -1.234∗∗∗
(0.1186) (0.1369) (0.0263) (0.0095) (0.1284) (0.1372)

Observations 4,360,430 4,341,983 319,382 20,723 4,360,430 4,341,983
Pseudo R2 0.50777 0.26458 0.13348 0.03164 0.43282 0.29862

Origin FE ✓ ✓ ✓ ✓ ✓ ✓
Destination FE ✓ ✓ ✓ ✓ ✓ ✓

Note: Estimations are based on a subset of 100,000 users from the high-quality sample,
observed over the period February 2014-January 2015. Each observation corresponds to a
user-destination couple and mobility metrics are aggregated over the entire period. Each
column in each panel indicates a separate regression. Columns (1) and (2) show PPML
estimates from a regression of the number of visits and the number of temporary migration
events observed over a year. Columns (3) and (4) present OLS estimates from a regression
of the logged mean duration of visits and the logged mean duration of temporary migration
events, considering the subset of user-destination pairs with at least one visit and one
migration respectively. Columns (5) and (6) show PPML estimates from a regression of the
time spent visiting and migrating over a year. Panel A, B and C show results considering
different measures of distance between origin and destination: the great circle, the travel
distance by road and the travel time by car, respectively. Standard errors are two-way
clustered by origin and destination. ∗𝑝 < 0.1; ∗∗𝑝 < 0.05; ∗∗∗𝑝 < 0.01.
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Table 4.G.2: Gravity equations estimated on different time windows.

Frequency Duration Total days
Visits Migration Visits Migration Visits Migration

(1) (2) (3) (4) (5) (6)
PPML PPML OLS OLS PPML PPML

Panel A: February 2013 - November 2013

log(Travel distance) -2.133∗∗∗ -1.250∗∗∗ 0.1339∗∗∗ 0.0330∗∗∗ -1.848∗∗∗ -1.219∗∗∗
(0.0808) (0.1046) (0.0211) (0.0077) (0.0936) (0.1058)

Observations 3,986,201 3,978,557 263,847 21,240 3,986,201 3,978,557
Pseudo R2 0.52039 0.28357 0.11645 0.03232 0.44756 0.33047

Panel B: February 2014 - January 2015

log(Travel distance) -2.147∗∗∗ -1.199∗∗∗ 0.1434∗∗∗ 0.0333∗∗∗ -1.844∗∗∗ -1.180∗∗∗
(0.0845) (0.1150) (0.0230) (0.0090) (0.0966) (0.1140)

Observations 4,360,430 4,341,983 319,382 20,723 4,360,430 4,341,983
Pseudo R2 0.51911 0.26740 0.13265 0.03170 0.44319 0.30160

Panel C: October 2014 - September 2015

log(Travel distance) -2.145∗∗∗ -1.155∗∗∗ 0.1493∗∗∗ -0.0174∗ -1.829∗∗∗ -1.210∗∗∗
(0.0826) (0.1180) (0.0243) (0.0100) (0.0958) (0.1232)

Observations 4,364,473 4,351,642 322,625 21,282 4,364,473 4,351,642
Pseudo R2 0.51682 0.26470 0.13397 0.02370 0.43634 0.29746

Origin FE ✓ ✓ ✓ ✓ ✓ ✓
Destination FE ✓ ✓ ✓ ✓ ✓ ✓

Note: Estimations are based on subsets of 100,000 users from the high-quality sample, for
different time periods. Each observation corresponds to a user-destination couple and
mobility metrics are aggregated over the entire period considered. Each column in each
panel indicates a separate regression. Columns (1) and (2) show PPML estimates from a
regression of the number of visits and the number of temporary migration events observed
over a year. Columns (3) and (4) present OLS estimates from a regression of the logged
mean duration of visits and the logged mean duration of temporary migration events,
considering the subset of user-destination pairs with at least one visit and one migration
respectively. Columns (5) and (6) show PPML estimates from a regression of the time
spent visiting and migrating over a year. Panel A shows results for the period February
2013 - November 2013, panel B considers the period February 2014 - January 2015 and
panel C presents results with users observed over the period October 2014 - September
2015. Standard errors are two-way clustered by origin and destination. ∗𝑝 < 0.1; ∗∗𝑝 < 0.05;
∗∗∗𝑝 < 0.01.
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Table 4.G.3: Gravity equations estimated on the period February 2014-January 2015,
excluding pairs of adjacent locations.

Frequency Duration Total days
Visits Migration Visits Migration Visits Migration

(1) (2) (3) (4) (5) (6)
PPML PPML OLS OLS PPML PPML

log(distance) -2.054∗∗∗ -1.114∗∗∗ 0.1664∗∗∗ 0.0423∗∗∗ -1.732∗∗∗ -1.073∗∗∗
(0.1008) (0.1260) (0.0272) (0.0103) (0.1087) (0.1215)

Observations 4,340,190 4,318,346 303,812 19,674 4,340,190 4,318,346
Pseudo R2 0.43149 0.26612 0.12992 0.03286 0.39569 0.29976

Origin FE ✓ ✓ ✓ ✓ ✓ ✓
Destination FE ✓ ✓ ✓ ✓ ✓ ✓

Note: Estimations are based on a subset of 100,000 users from the high-quality sample,
observed over the period February 2014-January 2015. Each observation corresponds to a
user-destination couple and mobility metrics are aggregated over the entire period. Each
column indicates a separate regression. Columns (1) and (2) show PPML estimates from a
regression of the number of visits and the number of temporary migration events observed
over a year. Columns (3) and (4) present OLS estimates from a regression of the logged
mean duration of visits and the logged mean duration of temporary migration events,
considering the subset of user-destination pairs with at least one visit and one migration
respectively. Columns (5) and (6) show PPML estimates from a regression of the time spent
visiting and migrating over a year. User-destination pairs where the residence location
of the user is adjacent to the destination city are excluded. Standard errors are two-way
clustered by origin and destination. ∗𝑝 < 0.1; ∗∗𝑝 < 0.05; ∗∗∗𝑝 < 0.01.



Conclusion

This thesis presented four distinct chapters, each delving into different facets of
human mobility within developing countries, utilizing mobile phone data as a
foundational source of information. The data demonstrated significant potential
in identifying previously overlooked short-term mobility and offering enhanced
granularity for better-known migratory movements. In the concluding chapter, I
summarize the main findings of each chapter and suggest some avenues for future
research.

Chapter 1 tapped into smartphone app location data in three African countries
to unveil insights on distinctive short-term movements, which we labelled as
“visits”. These movements stand apart from daily commutes and more prolonged
migration events, and are ubiquitous in the three countries studied. Smartphone
users are frequently seen more than 10km away from their estimated home location,
on about 10-15% of the days when they are observed. When these individuals
venture out, they travel fairly significant distances and explore a diverse array
of locales, spanning various population densities. The data’s precision notably
spotlights individual trips to urban areas. Large urban centers appear especially
appealing, attracting visitors from across the nation. Furthermore, a substantial
portion of these urban visitors come from areas categorized as non-urban. By
juxtaposing the smartphone ping locations of urban visitors with data from Open
Street Map, we were also able to characterize the specific locations that these
visitors frequent in the destination cities. Their presence spans across a myriad of
locations, from travel-associated venues like airports and hotels to administrative
establishments, shopping areas, markets, and commercial districts. We then
developed a conceptual framework aimed at rationalizing the patterns of visits
observed in the data. In this model, individuals make visits to cities where they
consume a broadly defined urban amenity. The model yields a number of testable
predictions that are consistent with the movements captured by our smartphone
data. For instance, the number of visits per person made from a smaller settlement
to a larger one will exceed the number made in the opposite direction. Also,
the fraction of days users spend visiting a city follows a gravity-style equation.

273



Conclusion 274

Lastly, given a choice between visiting two equidistant locations, individuals more
frequently visit the more populous destination.

The significant patterns of visits to urban areas observed in our data suggest
that cities offer benefits to a broader demographic than merely their inhabitants
and daily commuters. Crucially, the substantial volume of visits emanating from
non-urban areas calls into question the conventional notion of a rigid rural-urban
dichotomy. Instead, visits could represent a potential conduit for individuals to
achieve partial urbanization.

Future research might explore the role of visiting flows as a determining factor
for spatial equilibria. An unresolved question is whether the consumption of
urban amenities through visits can explain a portion of the observed spatial gaps.
Moreover, while we characterized the specific places frequented by urban visitors,
a clear limitation of the mobile phone data we exploit is its lack of insight into the
underlying motives for these visits. Through these transient city visits, rural and
small-town residents may address administrative matters, avail of consumption
options otherwise inaccessible in their locales, and potentially even access market
goods and services, sidestepping additional costs often imposed by intermediaries
or traders. To truly unpack the characteristics of these identified movements,
integrating survey data would be invaluable.

Chapter 2 presented a set of methodological tools to derive temporary migration
statistics from mobile phone data. First, the chapter focused on systematic methods
and data for the characterization of mobile phone data samples, with the overarching
objective of generating migration statistics. I addressed well-known issues of cross-
sectional selection, relying upon both secondary survey data and simple metrics
directly derived from a mobile phone sample. Results on a sample of CDR data
from Senegal reveal modest differences between mobile phone users and the
overall population. Mobile phone users tend to be predominantly male and urban.
However, there are virtually no disparities in phone ownership rates across income
brackets among males, and only minor variances within the female sub-population.
Moreover, I also shed light on potential measurement and selection issues linked to
temporal sample characteristics. Crucially, I quantified the impact of the frequency
and length of observation of users on the accuracy of the subsequent temporary
migration detection algorithm. The length of observation primarily influences the
home detection process, while the detection rate of migration episodes starts to
decline notably when users are observed on less than 50% of days within their
observation span. The results provide guidance on observational requirements for
capturing temporary migration events with mobile phone data. They also inform
the choice of filtering parameters when selecting working subsets of users for the
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production of mobility metrics. In this respect, I also evaluated the implications
of stringent filtering parameters, considering both the reduction in sample size
and the exacerbation of selection biases. As a result, I highlighted the existing
trade-off that must be made between migration measurement error on one side,
and sample size and selection biases on the other. With this in mind, I constructed
a high-quality subset of users with observational characteristics deemed necessary
and sufficient for the measure of temporary migration.

Second, the chapter built upon previous work to develop a temporary migra-
tion detection algorithm adopting a segment-based approach. While previous
approaches have focused on identifying flows of migration through persistent
location changes, I incorporated the identification of a primary home location to
facilitate a clearer characterization of movement direction, distinguishing between
departures and returns.

Third, the chapter navigated the complexities of generating time-specific tem-
porary migration statistics from individual migration trajectories, and introduced
specific rules to streamline this process. Additionally, a weighting scheme was
designed to neutralize the observed differences in the users-to-population ratio
across locations. This approach was demonstrated to attenuate sample composition
biases, such as when the less mobile but disproportionately represented urban
phone users might artificially reduce migration estimates.

Finally, I applied this methodology to the CDR dataset from Senegal and
presented a comprehensive temporary migration profile. The granularity of the
CDR-based migration measures offered new insights into the temporary migration
movements in Senegal. Considering migration episodes of at least 20 days, it
is estimated that over a third of the adult population engages in at least one
migration per year. Two-thirds of migration events originate from rural areas,
and approximately half of the temporary migration inflow is directed to rural
locations. In particular, the data uncover a large proportion of short-distance
rural-to-rural movements. Moreover, the data provides a unique temporal insight
into the dynamics of temporary migration. While common narratives usually
highlight the importance of off-season (January-June) movements, CDR-derived
migration measures rather suggest that the bulk of temporary moves occur during
the rainy season (June-October).

Future research could conceivably enhance this study by conducting validation
exercises against survey-based temporary migration estimations. A crucial aspect
of this validation would involve assessing the efficacy of the weighting scheme in
addressing sample composition biases. In this respect, future work could focus on
utilizing data from a population observatory recording the short-term movements
of the local population in the community of Niakhar in the Fatick region to carry
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out a validation exercise, at least at a local scale.

Chapter 3 delved into the temporary migration responses to climate variability in
Senegal. It drew on the methodology introduced in Chapter 2 to construct a granular
pseudo-panel of temporary migration estimates. This dataset was combined with
satellite-based precipitation estimations, allowing to observe temporary migration
choices across an extensive array of locations under diverse rainfall scenarios.
We developed a simple temporary migration model in which precipitations are
incorporated in location-specific production functions. The location choices of
individuals at each time period are modelled within a nested logit structure in
which individuals have home bias preferences. The expression derived from this
conceptual framework points to a simple intuition. Poorer rainfall conditions at
origin have a negative impact on local production, decreasing wages and thus
increasing the propensity to out-migrate. Similarly, a poorer rainy season quality at
a destination is likewise associated with a negative productivity shock leading to a
decline in wages and, therefore, a lower propensity to migrate to that destination.

The empirical analysis focused first on a well-known puzzle in the literature
studying migration responses to local shocks. Several studies have found a
negative effect of adverse shocks on local economic outcomes. However, these
impacts often do not often translate into migratory responses, and researchers
have responded to these findings by assuming that migration costs are high
and individuals unresponsive to local shocks. Recent work has suggested that
the conventional migration regression used to investigate these issues is in fact
misspecified, due to the bilateral nature of location choices. Individuals opt for
a location change based not only on conditions at their current location but also
on conditions at potential alternative locations, which are omitted in conventional
estimations. Taking advantage of our empirical setting, we estimated a conventional
migration regression of the out-migration rate from a location on the rainy season
quality observed at that location of origin. We compared the results to a dyadic
regression relating the bilateral stock of temporary migrants between an origin and a
destination, and the rainfall conditions at origin and destination. The findings show
important disparities, confirming that traditional migration regressions could yield
misleading results. In particular, poorer rainfall conditions are found to decrease the
propensity to out-migrate during the off-season within the conventional regression
setting, while the opposite effect is found using a dyadic regression that accounts
for rainfall conditions at destination.

The rest of the chapter analyzed results from dyadic regressions, focusing
particularly on rural locations. Poorer rainfall conditions at origin during the
rainy season were found to have opposite effects on temporary migration during
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the harvest season (September-November) and the off-season (February-May the
following year). A 10% decrease in precipitations at the origin is associated with an
average 2-4% decrease in a bilateral stock of temporary migrants originating from
that location during harvest. Conversely, this decline in local precipitations during
the rainy season leads to a 4-6% surge in the temporary migration stock during
the following off-season. One possible explanation is the presence of a prevailing
liquidity constraint hindering temporary migration immediately following a poor
rainy season. Then, individuals might require several months to accumulate
the necessary resources allowing them to initiate migration during the following
off-season. Moreover, and perhaps surprisingly, our findings indicate that these
effects were largely driven by rural-to-rural movements. In particular, we found no
evidence of drought conditions triggering notable outflows of individuals from
affected areas. Finally, our heterogeneity analysis revealed that the effects identified
seem exacerbated in locations associated with lower standards of living.

The model, although relatively simple, provides a clear framework to integrate
climate variability into temporary migration decisions. Future research endeavor
could expand on this foundation, incorporating elements that better mirror the
climate migration responses observed in the data. One such potential enhancement
could involve the integration of a more sophisticated cost structure, enabling
the depiction of stringent liquidity constraints. However, to validate this causal
mechanism, one would need socio-economic information about users, which is
notably absent in CDR data. One potential avenue could then be to draw on
previous research that has demonstrated the possibility to infer an approximate
socio-economic status directly from individuals’ observable phone usage patterns.
In the same vein, further exploration of CDR data could delve into understanding
the influence of social networks on temporary migration decisions following a
climate shocks. It would be insightful to examine whether a temporary migrant’s
choice of destination is influenced not just by the rainfall conditions at that destina-
tion, but also by the presence of a strong social network.

Chapter 4 expanded upon the novel insights on human mobility provided in
Chapter 1. Specifically, it examined the interplay between visits and temporary
migration decisions. I relied upon the uniqueness of CDR data that combine high-
frequency observations and extensive activity periods, allowing to simultaneously
observe the visits and temporary migration choices for a large sample of phone
users in Senegal.

I started by documenting the visiting patterns toward cities in Senegal. The
results highlighted a striking degree of mobility, with an estimated 83% of phone
users having visited a city over the course of a year. Moreover, the data demonstrated
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a distinct gradient where individuals from the most sparsely populated areas exhibit
a higher propensity to undertake urban visits compared to those from denser areas.
The median visitor makes one visit to a city every 1.3 months and each visit lasts for
1.5 days on average. Individuals originating from the remotest locations spend an
average of 33 days per year on urban visits, while at the other end of the distribution,
Dakar residents average 12 days of visits to other cities annually. The CDR data
employed for this analysis arguably augment the results presented in Chapter 1 by
providing measures of visits for a larger rural base, over longer observation spans,
and based on a higher frequency of observation. The results broadly corroborate
the conclusions of Chapter 1, highlighting the ubiquity of short-term movements
to cities which are distinct from commuting and migration. On the other hand,
drawing upon the method developed in Chapter 2, I estimated that 17% of phone
users in the sample undertake a temporary migration. Interestingly, a notable
fraction of visitors allocate as much time to city visits as certain migrants do for
their migration spells to analogous destinations.

Regression analyses revealed a positive relationship between visits and tempo-
rary migration choices, among individuals facing comparable mobility costs. On
average, over a period of one year and controlling for origin fixed effects, those
undertaking a temporary migration spell to a city make 17.5 additional days of
urban visits. Furthermore, I showed that this association is predominantly driven
by temporary migrants visiting their migration destinations more abundantly than
their non-migrant counterparts. I further investigated the temporal dimension of
these supplemental visits with respect to the timing of temporary migration events.
The results hint at the existence of anticipatory behaviors. Temporary migrants
exhibit a higher probability of visit to their prospective migration destination in the
weeks preceding departure, relative to other time periods where they are observed.
This is interpreted as suggestive evidence that temporary migrants accept to bear
the cost of visits in order to gain information about a destination and mitigate
the risks of migration failure. Similarly, those individuals revisit their migration
destination after returning to their home location, possibly to conclude pending
tasks, procure pending payments, or engage with acquaintances established during
their migration.

The second part of the chapter capitalize on the simultaneous observation of
visits and temporary migration choices to investigate cost differentials between
these two mobility types. A simple conceptual framework introduces a mobility
cost structure that comprises a fixed cost specific to each mobility type (i.e. visits
or temporary migration), the cost related to the distance between an origin and a
destination (i.e. the bus fare), and a destination-specific cost associated with the
stay duration. Within this framework, I derived expressions for the frequency and



Conclusion 279

duration of both visits and temporary migration for an individual. I demonstrated
that retaining the full cost structure – contrary to Chapter 1 which ultimately
considers the sole distance-related cost – implies that the distance elasticity of
mobility choices is not straightforwardly related to the marginal cost of distance.
Rather, it shows a negative relationship with the fixed cost of mobility. The
model laid the foundations for the estimation of gravity regressions yielding
distance elasticities of the frequency, duration, and accumulated time spent in
cities, through visits and temporary migration respectively. Reassuringly, the sign
of these elasticities were found to be coherent with the model predictions. More
importantly, the set of estimated elasticities for visits showed notable disparities
with those obtained from observed temporary migration movements. The results
support the idea that the fixed costs associated with temporary migration exceed
those affiliated with visits.
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