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1 Introduction

Recently, Dutta and Yadav (2021) reported on the effects of gypsum treatment — 
considering gypsum content (defined as the gypsum-to-soil dry mass ratio with 
G = 0, 2, 4, 6, 8, and 10%) and curing period (with CP = 0, 1, 7, and 28 days) — 
on the consistency limits, compactability, and unconfined compressive strength 
(UCS) of a calcium bentonite soil. In their investigation, test specimens were pre-
pared at three different water content levels or compaction states of wopt − 3%, wopt, 
and wopt + 3% (where wopt = optimum water content (OWC)) for each of the benton-
ite–gypsum mixtures using a mini-compaction test/device developed by Sridharan 
and Sivapullaiah (2005) and then tested for UCS. A notable portion of the Dutta 
and Yadav (2021) paper is dedicated to the development (and validation) of multi-
variable regression models for the UCS of the investigated bentonite–gypsum mix-
tures mobilized at the imparted compaction energy level. For the three water content 
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levels of wopt − 3%, wopt, and wopt + 3% they investigated, the following models were 
proposed:

where G = gypsum content, defined as the gypsum-to-bentonite dry mass ratio (in 
%); CP = curing period (in days); IL = liquidity index, defined by Dutta and Yadav 
(2021) based on the OWC of the bentonite–gypsum mixture as IL = (wopt − wP)/
(wL − wP) (with wP and wL denoting the plastic and liquid limits for each benton-
ite–gypsum mixture, respectively); and γdmax = maximum dry unit weight (MDUW) 
of the bentonite–gypsum mixture (in kN/m3). Note: From the authors’ reanalysis of 
modeling experimental data presented in the Dutta and Yadav (2021) paper, a typo 
was discovered in the UCS equation for wopt − 3%; the correct version of this rela-
tionship being shown as Eq. 1 in the present discussion article (i.e., the coefficient 
on γdmax was reported as 0.0468 in the Dutta and Yadav (2021) paper).

In the present discussion article, some apparent shortcomings and limitations associ-
ated with the regression models (presented above as Eqs. 1–3) proposed by Dutta and 
Yadav (2021), as well as some noted inconsistencies in their experimental results and 
data interpretations, are scrutinized. For instance, the models given by Eqs.  1–3 are 
counterintuitive from the viewpoint that the UCS correlates positively with (i.e., being 
directly proportional to) IL; the opposite being the case in soil mechanics practice. Also, 
while Eq. 1 considers the gypsum content G, the models given by Eqs. 2 and 3 do not 
include gypsum content as an input, explained by Dutta and Yadav (2021) as attributed 
to the tratio values (which were not reported in their Table 5) not being greater than the 
corresponding tcritical values. This seems unusual from the viewpoint that one is modeling 
the improvement in UCS arising from G = 0–10% gypsum additive for curing periods of 
CP = 1–28 days. As a way forward, new and improved multivariable regression models 
are introduced (and validated) by the authors of the present article to complement the 
original experimental results reported by Dutta and Yadav (2021).

2  Reappraisal of the Dutta and Yadav (2021) Regression Models

This section discusses the shortcomings associated with the regression models 
(Eqs. 1–3) proposed by Dutta and Yadav (2021), taking into consideration the suitabil-
ity of their selected input/independent variables, the practicality of their proposed mod-
els, and, most importantly, the accuracy of the UCS predictions made by their models.

(1)
��� w ���−�% ∶ UCS = exp

(

0.0239 × G + 0.0662 × CP + 0.4680 × �dmax + 3.4319 × IL

)

(2)��� w ��� ∶ UCS = exp
(

0.07872 × CP + 0.49212 × �dmax + 7.4790 × IL

)

(3)
��� w ���+�% ∶ UCS = exp

(

0.08746 × CP + 0.47952 × �dmax + 8.6403 × IL

)
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2.1  Suitability of the Selected Input/Independent Variables

Deriving a multivariable regression model that accounts for all variables governing a 
physical problem, the UCS of compacted bentonite–gypsum mixtures in this case, is 
a formidable task. In general, a suitable input/independent variable is characterized as 
one that is not only statistically significant (by exhibiting a high degree of correlation 
with the output/dependent variable), but also, more importantly, holds physical mean-
ing. Referring to Eqs. 1–3, Dutta and Yadav (2021) employ the gypsum content G, cur-
ing period CP, MDUW γdmax, and liquidity index IL as their input variables. While these 
parameters all appear to be strongly correlated with the UCS, in their currently defined 
forms, the γdmax and IL parameters are not physically meaningful.

In other words, if the IL parameter is to be used as a UCS predictor, it should be 
defined based on the actual molding water content of the bentonite–gypsum sam-
ple. However, Dutta and Yadav (2021) state that “for the determination of IL, the 
wopt of mixtures were taken as natural water content.” Clearly, this IL definition — 
inferred as IL = (wopt − wP)/(wL − wP) — is valid/applicable only for those benton-
ite–gypsum blends compacted at their respective OWC (as is the case in the deriva-
tion of Eq. 2). In other words, for the IL parameter to be a physically meaningful 
input variable for Eqs. 1 and 3, it needs to be redefined based on the actual water 
content states of wopt − 3% and wopt + 3% as IL = [(wopt − 3%) − wP]/(wL − wP) and 
IL = [(wopt + 3%) − wP]/(wL − wP), respectively.

Dutta and Yadav (2021) state that “the cylinder specimens of 76-mm height and 
38-mm diameter of bentonite–gypsum mixtures were prepared at three different 
water content (wopt − 3%, wopt, and wopt + 3%) as per IS 2720 (Part 10) (IS 2720–10 
1991) to determine the UCS.” While this description does not provide a clear pic-
ture of the samples’ compaction state in terms of their dry unit weight, it would 
appear that each bentonite–gypsum mixture has been compacted to a dry unit weight 
corresponding to either wopt − 3%, wopt, or wopt + 3% (i.e., γd(−3%), γdmax, and γd(+3%)) 
deduced from its respective compaction curve. This is evidenced by the fact that the 
(wopt + 3%, γdmax) molding state would produce an impossible (physically meaning-
less) compaction condition exceeding the zero-air-voids (ZAV) saturation line (see 
Fig. 1 of this discussion article). Furthermore, as demonstrated in Fig. 1, it is noted 
that the compaction states (wopt, γdmax) and (wopt − 3%, γdmax) also exceed the ZAV 
line; it would be appreciated if the (original) authors can provide some clarification 
on these inconsistencies. In view of the above observations, the use of γdmax as a 
UCS predictor is valid/applicable only for those bentonite–gypsum mixtures com-
pacted at their respective OWC (i.e., Eq. 2). In other words, for Eqs. 1 and 3, γdmax 
has no physical meaning, as it does not represent the actual compaction states (or 
dry unit weights) of the samples. If dry unit weight is to be considered a physically 
meaningful predictor for Eqs. 1 and 3, it needs to be redefined as (wopt − 3%, γd(−3%)) 
and (wopt + 3%, γd(+3%)), respectively.

Note that, in determining the specific gravity magnitude of each bentonite–gyp-
sum mixture (necessary for calculation of the degree of saturation SR values pre-
sented in Fig. 1), the weighted averaging technique was adopted as follows (Mir and 
Sridharan 2013; Soltani et al. 2021):
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where GBG

s
 = specific gravity of the bentonite–gypsum mixture; GB

s
 and GG

s
 = spe-

cific gravity of bentonite (reported as 2.30) and gypsum (reported as 2.41), respec-
tively; and G = gypsum content (i.e., gypsum-to-bentonite dry mass ratio). Note: 
Considering the possibility of GB

s
 = 2.41 and GG

s
 = 2.30 being instead the correct 

specific gravity values, the compaction state (wopt, γdmax) still exceeds the ZAV line.

2.2  Practicality of the Proposed Regression Models

A practical regression model can be defined as one that involves a minimal number 
of readily measurable “independent” variables (as inputs) linked together by a sim-
ple functional expression containing a limited number of fitting/model parameters 
(Zhang et al. 2019; Soltani et al. 2020). In its current form, Eq. 1 contains a total 
of four fitting parameters; as such, having established the compaction curves (and 
hence the OWC and MDUW parameters) of the desired bentonite–gypsum mix-
tures, a minimum of four UCS, four wL, and four wP measurements (for four differ-
ent G–CP levels) would be required for its calibration. Similarly, calibrating Eqs. 2 
and 3, each having three fitting parameters, would involve a minimum of three UCS, 
three wL, and three wP measurements. In the authors’ view, the proposed regression 
models suffer from sophisticated calibration procedures, and thus they would not be 
trivial to implement in practice.

Furthermore, to avoid potential “multicollinearity” issues, it is critical that the 
input variables selected for model development remain “independent” — that is, 
the input variables should (generally) not be strongly correlated with each other 

(4)GBG

s
=

GB

s
GG

s
(1 + G)

GB

s
G + GG

s

Fig. 1  Variations of degree of 
saturation SR against gypsum 
content G for various compac-
tion states. Note: The OWC 
and MDUW values used for 
deducing the SR parameter were 
taken from Fig. 3b of Dutta and 
Yadav (2021)
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(Farrar and Glauber 1967; McClendon 2002). Given that the γdmax and IL param-
eters themselves are functions of the gypsum content and curing period, as dem-
onstrated in Figs. 3 and 4 of the Dutta and Yadav (2021) paper (i.e., γdmax = f1(G) 
and IL = f2(G,CP)), their inclusion in the regression analysis may likely lead to 
multicollinearity issues, producing misleading R2 and p-value parameters likely 
unable to reflect the (true) accuracy of the predictions (Daoud 2017). If a suit-
able functional expression is considered for UCS = f(G,CP), the gypsum content 
and curing period should be able to effectively capture the UCS variations (for 
each of the three compaction states investigated by Dutta and Yadav (2021)); this 
aspect is further explored in Sect. 3.

2.3  The Need to Critically Examine the Prediction Residuals

It is well established that the sole use of the R2 statistic, despite being close to unity 
as demonstrated from reported values in Tables  4 and 6 of the Dutta and Yadav 
(2021) paper, is not sufficient (nor a reliable basis) to derive firm conclusions about 
the predictive performance of a multivariable regression model (Vardanega and 
Haigh 2014; O’Kelly and Soltani 2021; Soltani and O’Kelly 2021a). In other words, 
for the predictions to be considered reliable, the regression model needs to maintain 
a certain balance between its goodness-of-fit and its prediction error (Soltani et al. 
2020; Soltani and O’Kelly 2022). The goodness-of-fit is routinely evaluated by the 
R2 statistic. The prediction error, which has not been taken into consideration in the 
modeling by Dutta and Yadav (2021), is often examined by means of dimensionless 
error-related statistics, including the normalized root-mean-squared error (NRMSE) 
and the mean absolute percentage error (MAPE), with values closer to 0 indicative 
of a lower average deviation between the predicted and measured data.

While high R2 (close to unity) and low NRMSE or MAPE values (close to 0) 
would normally lead to confirming a model’s predictive capability, a critical exami-
nation of the model’s prediction residuals should also be performed to (at least) bet-
ter understand the true implications of its predictions for practical geoengineering 
applications (Soltani et al. 2021). This aspect becomes particularly important for the 
Dutta and Yadav (2021) investigation, since the R2, NRMSE, and MAPE parameters 
are average metrics, which, by definition, are strongly dependent on the database 
size used for performing the regression analysis. In other words, these fit-measure 
indices can be strongly biased when dealing with datasets that have been artificially 
enlarged by inclusion of replicates in the analysis (as practiced by Dutta and Yadav 
(2021)), often producing misleadingly high R2 and/or low NRMSE/MAPE values, 
even though such results do not necessarily reflect the (true) accuracy of the predic-
tions. To ensure that the UCS predictions made by Eqs. 1–3 are indeed acceptable, 
it is necessary that the upper and lower “statistical limits of agreement” between the 
predicted and measured UCS values be determined and critically examined; this can 
be achieved by the Bland–Altman (BA) analysis (e.g., Rehman et al. 2020; Soltani 
and O’Kelly 2021b). Given that the critical requirements (for the prediction error) 
mentioned above have not been taken into consideration in the Dutta and Yadav 
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(2021) investigation, an attempt is made by the authors of this discussion article to 
assess the prediction errors of the proposed UCS models given by Eqs. 1–3. For the 
problem at hand, the NRMSE and MAPE (both dimensionless parameters expressed 
in percentage) can be defined as follows (Soltani and O’Kelly 2022):

where RMSE = root-mean-squared error (in the same unit as the UCS);  UCSM and 
 UCSP = measured and predicted UCS, respectively; n = index of summation; and 
N = total number of observations/predictions.

Following the BA method, the 95% upper and lower statistical limits of agree-
ment between the predicted and measured UCS values can be obtained as follows 
(Bland and Altman 1999):

where  UAL95% and  LAL95% = 95% upper and lower statistical limits of agree-
ment, respectively, between the predicted and measured UCS values (in the same 
unit as the UCS); and μD and σD = arithmetic mean and standard deviation of the 
 (UCSP −  UCSM) data, respectively.

Making use of the UCS data presented in Fig. 6a (for wopt − 3%), Fig. 6b (for 
wopt), and Fig.  6c (for wopt + 3%) of the Dutta and Yadav (2021) paper, along 
with the γdmax and IL values reported in their Figs.  3b and 4c, the respective 
values of the NRMSE and MAPE parameters can be calculated as 64.8% and 
48.2% for Eq. 1, 146.0% and 47.4% for Eq. 2, and 132.0% and 32.1% for Eq. 3. 
These values, which are significantly higher than the (usual) allowable 5–10% 
reference limit, indicate an average offset of 32.1–146.0% associated with the 

(5)NRMSE =
RMSE
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UCS predictions. The 95% upper and lower agreement limits between the pre-
dicted and measured UCS values can be calculated as  UAL95% =  + 1.22, + 3.76, 
and + 4.03 MPa and  LAL95% =  − 0.69, − 2.40, and − 2.80 MPa for Eqs. 1, 2, and 
3, respectively, indicating that the errors associated with 95% of the predictions 
made by these equations lie between these two extraordinarily wide stress (UCS) 
limits. In other words, these wide stress limits cannot be deemed acceptable for 
UCS prediction purposes.

In the authors’ view, given that the variations of the UCS with increasing G and/
or CP (for a given compaction state) are strongly monotonic, as demonstrated in 
Figs. 6a–c of the Dutta and Yadav (2021) paper, along with the fact that the datasets 
to be used for developing each regression model are rather small in size (N = 24), 
low NRMSE, MAPE,  UAL95%, and  LAL95% values should be easily accomplishable; 
this is demonstrated in the next section.

3  Proposed Regression Models

In view of the discussions in Sect. 2, for a given compaction state, either wopt − 3%, 
wopt, or wopt + 3%, the UCS of compacted bentonite–gypsum mixtures can be 
expressed as follows:

where f = an unknown multivariable functional expression (to be obtained through 
trial-and-error).

While an ad hoc solution to f is non-existent, the multivariable quadratic func-
tion, as given in Eq.  13, has been widely reported as a suitable starting point to 
initiate the trial-and-error investigation, allowing one to identify statistically sig-
nificant/meaningful functional terms capable of constructing a practical regression 
model that is both simple in structure and fairly accurate in terms of its predictions 
(e.g., Sivakumar Babu et al. 2008; Ahmed 2012; Güllü and Fedakar 2017; Shahbazi 
et al. 2017; Tran et al. 2018; Soltani and Mirzababaei 2019; Zhang et al. 2019, 2021; 
Almajed et al. 2021).

where β0–β5 = fitting/model parameters; and β0 = UCS of the unamended, uncured 
compacted bentonite soil, since setting G = 0 and CP = 0 results in UCS = β0. Note 
that the second-degree terms G2 and CP

2 intend to capture potential nonlinearities 
between the UCS and the independent variables G and CP, while the term G × CP 
captures the combined effects of gypsum content and the enacted curing duration.

The proposed regression model given in Eq. 13 was fitted to the measured UCS 
data (presented in Figs. 6a–c of the Dutta and Yadav (2021) paper) using the con-
ventional least-squares optimization technique. Fisher’s F-test was then performed 
(at α = 5% significance level) to confirm the models’ overall statistical significance, 
while Student’s t-test was conducted (also at α = 5%) to check the statistical signif-
icance of the independent regressor terms — that is, G, CP, G2, CP

2, and G × CP. 

(12)UCS = f
(

G,C
P

)

(13)UCS = �
0
+ �

1
G + �

2
C
P
+ �

3
G2

+ �
4
C
P

2
+ �

5
GC

P
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Moreover, the R2, NRMSE, MAPE,  UAL95%, and  LAL95% parameters were calcu-
lated to critically examine the new models’ predictive capabilities.

The regression analysis results with respect to Eq. 13 are presented in Table 1. 
For the three compaction states of wopt − 3%, wopt, and wopt + 3%, the high R2 
(= 0.998, 0.999, and 0.993) and low NRMSE (= 4.81%, 4.13%, and 10.85%) and/
or MAPE (= 6.78%, 9.40%, and 16.47%) values confirm the strong agreement 
between the measured and predicted UCS data, both in terms of correlation and 
forecast error. While the p-values associated with Fisher’s F-test were all less than 
5% (hence confirming the models’ overall statistical significance), for all three com-
paction states the regressor terms G and G2 produced p-values (for Student’s t-test) 
greater than 5%, indicating that these two terms are not statistically significant and 
hence they may have no or little contribution towards the UCS predictions. Insig-
nificant regressor terms are normally eliminated to accommodate the development 
of a more simplified model (with possibly improved predictions); however, remov-
ing both G and G2 implies that, for CP = 0, changes in the gypsum content would 
consistently produce the same UCS of β0, even though the experimental data clearly 
indicate that the UCS increases with increasing gypsum content. This inconsistency 
can be attributed to the relative impacts of G and CP on the UCS parameter, with 
the curing period having a significantly higher impact (or contribution) compared to 
that of the gypsum content for the 28-day curing period investigated in the Dutta and 
Yadav (2021) study. In such cases, maintaining physically meaningful predictions 
takes precedence over statistical significance. Accordingly, to ensure the production 
of physically meaningful UCS predictions for CP = 0, either G or G2 should be main-
tained. Given that the p-values for G2 are mainly lower than those obtained for G 
(refer to Table 1), it was decided to eliminate G, thereby leading to the following 
simplified models:

Like Eqs. 1–3 developed by Dutta and Yadav (2021), the improved Eqs. 14–16 
are strictly valid only for the particular calcium bentonite–gypsum mixtures inves-
tigated in the domain of G = 0–10% and CP = 0–28 days, and also for the compac-
tive energy level (computed as ~ 1487 kJ/m3 from the details of the compaction test 
reported in Dutta and Yadav (2021)) employed in preparing the test specimens for 
UCS testing.

In terms of graphical representation, Eqs.  14–16 resemble curved surfaces in the 
three-dimensional space of UCS:G:CP (see Fig. 2). As for their predictive performance, 
the NRMSE and MAPE were calculated as 4.84% and 7.14% for Eq. 14 (wopt − 3%), 
4.18% and 8.56% for Eq.  15 (wopt), and 10.85% and 9.69% for Eq.  16 (wopt + 3%), 
respectively, all of which strongly outperform those deduced for Eqs.  1–3 pro-
posed by Dutta and Yadav (2021). Furthermore, for Eqs. 14–16, the 95% upper and 

(14)
��� w ���−�% ∶ UCS = 171.201 + 73.881 × C

P
− 0.154 × G

2
− 0.782 × C

P

2
+ 3.801 × GC

P

(15)
��� w ��� ∶ UCS = 155.584 + 80.863 × C

P
+ 0.614 × G

2
+ 0.545 × C

P

2
+ 2.956 × GC

P

(16)
��� w ���+�% ∶ UCS = 189.440 + 62.409 × C

P
− 0.171 × G

2
+ 1.471 × C

P

2
+ 7.145 × GC

P
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lower agreement limits between the predicted and measured UCS data were found 
to be symmetrical (see Fig. 3) and they were calculated as  UAL95% =  + 0.08, + 0.10, 
and + 0.30 MPa, and  LAL95% =  − 0.08, − 0.10, and − 0.30 MPa for Eqs. 14, 15, and 16, 
respectively, indicating that the errors associated with 95% of the predictions made by 
these new equations lie between these relatively small (and hence acceptable) upper and 
lower stress (UCS) limits. In terms of practicality, having established the UCS of the 
unamended, uncured compacted bentonite soil (G = 0 and CP = 0) for wopt − 3%, wopt, 
and wopt + 3%, each of the newly proposed equations (Eqs. 14–16) can be calibrated 
by conducting a total of four additional UCS tests (for four arbitrary G–CP levels). For 
a detailed discussion on selecting appropriate mix designs for model calibration (the 
four G–CP levels in this case), the reader is referred to the papers by Mirzababaei et al. 
(2018) and Soltani et al. (2020).

Having confirmed the accuracy of the predictions, Eqs. 14–16 can now be used to 
perform sensitivity analyses to quantify the relative impacts of the independent vari-
ables G and CP on the UCS, thereby complementing the experimental results reported 
in the Dutta and Yadav (2021) paper. The relative impact of an independent variable 
xm = G or CP on the dependent variable y = UCS can be expressed as follows (Gandomi 
et al. 2013; Estabragh et al. 2016; Tran et al. 2018):

Fig. 2  Graphical representation of the newly proposed Eqs.  14–16 in the three-dimensional space of 
UCS:G:CP considering (a) wopt − 3%, (b) wopt, and (c) wopt + 3%

Fig. 3  Bland–Altman plots for the predictions made by (a) Eq. 14 (wopt − 3%), (b) Eq. 15 (wopt), and (c) 
Eq.  16 (wopt + 3%). Note:  UAL95% and  LAL95% denote the 95% upper and lower statistical agreement 
limits, respectively
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where d(xm) = overall relative impact of xm = G or CP on y = UCS (in the same unit 
as the UCS); S(xm) = percentage contribution provided by xm = G or CP towards the 
y = UCS development (in %); and ymax(xm) and ymin(xm) = maximum and minimum 
y (= UCS) over the mth input domain, calculated by Eqs.  14–16, where the other 
input variable is kept constant by setting it equal to its mean value — that is, either 
(G = 0–10% and C

P
 = 9 days) or (G = 5% and CP = 0–28 days).

The sensitivity analysis results with respect to Eqs.  14–16 are summarized in 
Table 2. In line with the experimental results, for all three compaction states, the 
contribution to UCS development provided by the curing period (i.e., S(CP) = 86%, 
90%, and 86%) was found to be significantly greater than that provided by the gyp-
sum content (i.e., S(G) = 14%, 10%, and 14%). The individual sensitivities were cal-
culated as d(G) = 326.68, 327.42, and 625.89  kPa, and d(CP) = 1987.69, 3105.18, 
and 3900.87 kPa for Eqs. 14, 15, and 16, respectively. These results imply that the 
greater the molding water content (increasing from wopt − 3% to wopt + 3%), the 
higher the contributions of both G and CP towards the UCS development.
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