
School of Business

Selling Online Display Advertising
via Guaranteed Contracts and the

Real-time Bidding Auctions

Junchi Ye

Supervisor: Dr. Yufei Huang

Cosupervisor: Dr. Xiaoning Liang

A dissertation submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy

2024

https://www.tcd.ie/business/


Declaration

I hereby declare that this dissertation is entirely my own work and that it has not
been submitted as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regula-
tions of the University Calendar for the current year, found at http://www.tcd.ie/
calendar.

I have completed the Online Tutorial on avoiding plagiarism ‘Ready Steady
Write’, located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

I consent to the examiner retaining a copy of the thesis beyond the examining
period, should they so wish (EU GDPR May 2018).

I agree that this thesis will not be publicly available, but will be available to
TCD staff and students in the University’s open access institutional repository on
the Trinity domain only, subject to Irish Copyright Legislation and Trinity College
Library conditions of use and acknowledgement.

Signed: Date:

i

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write


ii



Abstract

Online display advertising has become a principal revenue stream for a multitude
of online publishers and content providers. This form of advertising involves sell-
ing ’impressions’ or views of display advertisements to advertisers, which are then
shown to internet users visiting the publisher’s website or platform. One primary
selling mechanism for online display ads is guaranteed contracts. These contracts
specify the quantity, timing, and characteristics of impressions to be delivered to
advertisers, agreed upon before the impressions are actually realised. However, the
development of Real-Time Bidding (RTB) has introduced a novel and dynamic way
of selling impressions. RTB allows advertisers to place bids for each individual im-
pression in real time as a user visits a webpage hosted by the publisher. This mech-
anism introduces competition among advertisers and allows for the price of each
impression to be determined by their bids at the moment a webpage is loaded. Both
guaranteed contracts and RTB have their unique strengths and trade-offs. Guaran-
teed contracts provide certainty and planning capabilities for advertisers, allowing
them to secure a certain amount of impressions in advance. On the other hand, RTB
allows for more granular targeting and pricing based on real-time user data, offering
the potential for improved advertising effectiveness. However, relying on a single
selling channel for ad impressions, either guaranteed contracts or RTB, is insufficient
due to the vast supply and diverse preferences of both publishers and advertisers.
To address this, this thesis analyses publishers’ optimal decisions and advertisers’
strategic behaviour in different scenarios involving both guaranteed contracts and
RTB.

The thesis comprises three research problems. First, it investigates the optimal
pricing of guaranteed contracts in the presence of RTB to maximise publisher rev-
enue. Second, it explores the recruiting strategy for additional advertisers and their
impact on publishers’ decisions and original advertisers’ behaviour under differ-
ent information settings. Finally, it examines the allocation strategy for impressions
among dual channels, considering impression quality and different types of guar-
anteed contracts. Overall, the thesis makes several significant contributions to the
literature on online advertising markets by developing novel models and provid-
ing comprehensive analyses of interactions between guaranteed contracts and RTB
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under various scenarios, information settings, and impression quality levels. The
results provide valuable insights for publishers and advertisers in optimising their
strategies within dual-channel online advertising markets.
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1 Introduction

In this chapter, we commence by providing a succinct overview of the online ad-
vertising industry, followed by a focused discussion of online display advertising
markets. Before delving into the three principal research questions embedded in
online display advertising markets, we outline the key participants and primary
selling channels in these markets. Subsequently, we introduce the main contents
of the three studies and the connections between them, summarising their collec-
tive contributions to both academia and practice. Finally, we present the structural
framework of this thesis.

1.1 Background of Online Advertising Markets

The emergence of online advertising markets can be traced back to the early days
of the Internet in the mid-1990s. The growth of the World Wide Web led to new op-
portunities for businesses to reach consumers, giving birth to the online advertising
industry. One of the earliest and most well-known examples of online advertising is
the banner ad, which was introduced by HotWired (now Wired.com) in 1994. AT&T
was the first company to purchase a banner ad on HotWired, which was essentially
a clickable image linking to the advertiser’s website (Evans 2009). This marked the
beginning of display advertising as a prominent form of online advertising.

The global spending on online advertising has experienced rapid and stable
growth since its emergence. According to the report from Insider Intelligence (2023),
global online advertising spending amounted to approximately $80 billion in 2011,
with the majority of spending allocated to search and display advertising. By 2015,
the market had nearly doubled in size, reaching $160 billion, driven primarily by
the rapid growth of mobile advertising and the expanding reach of social media
platforms. This report also indicates that the online advertising market has contin-
ued to experience robust growth in recent years, with global spending surpassing
$325 billion in 2019 and accounting for more than half of all advertising expendi-
tures worldwide for the first time. Despite the negative influence of the Covid-19
pandemic on the global economy, the rising trend of this market persisted through
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2021, with global online advertising spending reaching over $500 billion, further
emphasising the importance of digital marketing in contemporary business strate-
gies.

Search engine advertising, such as Google Ads, emerged in the early 2000s as
a way for businesses to target specific keywords and reach users who were actively
searching for information related to their products or services. This form of advertis-
ing, also known as pay-per-click (PPC), allows advertisers to bid on keywords and
only pay when a user clicks on their ad. Another significant development in online
advertising was the rise of social media platforms like Facebook and Twitter. Social
media advertising enables businesses to target specific demographics and interests,
allowing for more personalised and engaging ad experiences (Laroche et al. 2013,
Tuten and Solomon 2017). The combination of display, search, and social media ad-
vertising has resulted in a highly competitive and diverse online advertising market.
As technology advanced, programmatic advertising and real-time bidding (RTB)
systems emerged, automating the buying and selling of online ad space and mak-
ing the process more efficient (Busch 2016). Additionally, native advertising, video
advertising, and influencer marketing have also gained traction, further expanding
the range of opportunities for businesses to reach their target audience.

Online advertising offers several advantages over traditional advertising, wh-
ich have also contributed to its rapid growth and adoption by marketers worldwide.
Firstly, online advertising provides businesses with unprecedented targeting capa-
bilities, enabling them to reach specific demographics and geographic regions with
greater precision (Goldfarb and Tucker 2011). This targeting efficiency, facilitated
by the wealth of user data available on digital platforms, allows advertisers to de-
liver highly relevant and personalised content to their target audience, resulting in
higher engagement and conversion rates (Li and Kannan 2014). Secondly, online
advertising is highly cost-effective compared to traditional advertising mediums,
such as television, radio, and print (Busch 2016). The pay-per-click (PPC) and pay-
per-impression (PPI) models employed by digital advertising platforms ensure that
advertisers only incur costs when users interact with their ads, leading to more effi-
cient allocation of marketing budgets (Liu and Chao 2020). Lastly, online advertising
enables both publishers and advertisers to access comprehensive analytics and per-
formance data, which is not readily available with traditional advertising channels.
This data-driven approach allows marketers to optimise their campaigns, measure
the effectiveness of their strategies, and make informed decisions about future mar-
keting investments (Busch 2016). Consequently, the advantages of online advertis-
ing over traditional advertising have driven its exponential growth and integration
into contemporary marketing strategies.
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Figure 1.1: An example of sponsored search: In this example, the keywords are asso-
ciated with "Digital", "Ads", and "Report" according to the search input. Therefore,
at the top of the list of search outcomes are advertisements related to these keywords
(Accessed: 9 May 2023).

1.2 Major Types of Online Advertising

There are numerous ways to classify the diverse range of online advertising formats.
Focusing on the mechanisms employed, two primary categories emerge: sponsored
search and display advertising (Zhang 2016). In 2022, sponsored search constituted
40.2% of the total online advertising revenue in the United States, while display
advertising accounted for 30.0% (IAB 2022).

Sponsored search, also known as keywords search advertising, is a method
where advertisers bid on specific keywords relevant to their products or services,
to have their ads appear alongside search engine results when users search for
those keywords (Ghose and Yang 2009). This form of advertising enables adver-
tisers to target their audience based on search queries, leading to highly relevant
and timely ad placements. Sponsored search has been popularised by platforms
such as Google Ads and Microsoft Advertising, which dominate the search engine
market (Jansen and Mullen 2008). Figure 1.1 illustrates an example of a sponsored
search on Google.

Display advertising, on the other hand, encompasses a variety of ad formats,
including banner ads, rich media, and video ads, which are typically placed on
websites, mobile apps, and social media platforms (Li et al. 2002). These ads aim
to generate brand awareness and engagement through visually appealing content,

3



Figure 1.2: An example of display advertising: This is a banner advertisement on the
website of Fox News. This advertisement is about promoting gifts for the coming
Mother’s Day, which is not related to the content on the current page, but is targeted
by the time (Accessed: 9 May 2023).

capturing users’ attention as they browse the Internet (Drèze and Hussherr 2003).
Display advertising leverages targeting techniques, such as contextual targeting and
behavioural targeting, to ensure that ads are shown to relevant audiences, enhanc-
ing the overall effectiveness of campaigns (Yan et al. 2009). An example of a display
advertisement on Fox News is provided in Figure 1.2.

We choose online display advertising as the subject of this research. Focusing
on online display advertising is essential for several reasons. Firstly, display ad-
vertising not only offers a wide range of creative formats, including banner ads,
rich media, and video ads, but also can be deployed across different types of digital
devices, such as computers, phones and tablets. This excellent flexibility can effec-
tively convey brand messages and engage users through visually appealing content
(Drèze and Hussherr 2003). Secondly, display advertising provides sophisticated
targeting options, such as contextual and behavioural targeting, that allow adver-
tisers to reach their desired audience with greater precision, thereby enhancing the
overall effectiveness of campaigns (Yan et al. 2009). Lastly, the continuous growth
and popularity of social media platforms, which serve as primary channels for dis-
play advertising, ensure that marketers can achieve extensive reach and visibility
among diverse audiences (Hilde A. M. Voorveld and Bronner 2018).
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1.3 Online Display Advertising Markets

1.3.1 Participants

The key participants in the online display advertising market can be categorised
into three main groups - advertisers, publishers, and intermediaries. Advertisers are
companies or individuals that create and pay for ads to promote their products or
services. Publishers are the owners of websites or mobile applications where ads are
displayed to reach their audience. Intermediaries facilitate the buying and selling of
online display advertising inventory, connecting advertisers and publishers (Evans
2009).

Among intermediaries, there are several types of entities, including ad net-
works, demand-side platforms (DSPs), supply-side platforms (SSPs), ad exchanges,
and data management platforms (DMPs) (Alaimo and Kallinikos 2018). Ad net-
works aggregate ad inventory from multiple publishers and sell it to advertisers,
often targeting specific audiences or content categories. DSPs enable advertisers to
purchase display ad inventory across multiple ad exchanges through a single inter-
face, while SSPs help publishers manage and sell their ad inventory to the highest
bidder, typically using RTB mechanisms. Ad exchanges act as marketplaces for buy-
ing and selling display ad inventory, also employing RTB technology. Lastly, DMPs
collect, analyse, and manage data from various sources to support the targeting and
optimisation of advertising campaigns.

In this thesis, we mainly focus on the interplay of decisions between sellers and
buyers in this market, neglecting the support functions of intermediaries. Therefore,
we take publishers and advertisers as the main research objects in our studies.

1.3.2 Selling Channels for Online Display Advertising

The selling unit of online display advertising is usually impressions, which are the
page views of users on the Internet. Publishers make profits by selling impressions
to advertisers. There are two primary selling channels in the markets: guaranteed
and non-guaranteed channels. A guaranteed channel often refers to advanced sell-
ing at a fixed price through guaranteed contracts, while the main mechanism in the
non-guaranteed channel is RTB auctions (Choi et al. 2020).

Guaranteed Channel

The history of guaranteed advertising contracts dates back to the early days of
online advertising, when publishers and advertisers would negotiate fixed-price
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agreements for specific ad placements (Liu and Chao 2020). In these early days,
the online advertising market was relatively small and fragmented, and it was dif-
ficult for advertisers to measure the effectiveness of their campaigns. Guaranteed
advertising contracts provided a way for advertisers to get a guaranteed number
of impressions or clicks, which helped them measure the effectiveness of their cam-
paigns. As the industry evolved, advertisers sought more efficient and automated
methods to purchase ad inventory, giving rise to the development of programmatic
guaranteed contracts. Programmatic guaranteed, also known as automated guar-
anteed or programmatic direct, combines the advantages of traditional guaranteed
contracts with the automation and efficiency of programmatic advertising (Chen
et al. 2020).

In a programmatic guaranteed contract, advertisers and publishers agree on a
fixed price and volume of ad impressions, with the actual purchasing and delivery
of the ad inventory being automated through a demand-side platform (DSP) and
supply-side platform (SSP). This streamlined process minimises manual interven-
tion and allows for more efficient and precise ad delivery, while still offering the
premium placements and brand safety associated with traditional guaranteed con-
tracts (Chen 2016).

The advantages of guaranteed advertising channels include greater control over
ad placements, brand safety, and campaign visibility, as well as the opportunity to
negotiate customised packages and exclusive partnerships with high-quality pub-
lishers (Dukes and Gal–Or 2003). However, these benefits come with some dis-
advantages, such as potentially higher costs compared to non-guaranteed chan-
nels, and a less flexible approach to ad inventory purchasing and targeting (Chen
2015).

Non-guaranteed channel

The development of RTB can be traced back to the mid-2000s, with the advent of
ad exchanges and the growing need for more efficient and scalable methods to buy
and sell online ad inventory. RTB is an auction-based system that automates the
buying and selling of ad inventory on a per-impression basis. Advertisers submit
bids for individual ad impressions with the highest bidder winning the opportunity
to display their ad to a specific user (Yuan et al. 2013). The payment of the winner
depends on the format of RTB. The most widely implemented one is the second
price auction, which has the most potential for incentive compatibility compared
with other formats of auctions (Wang et al. 2017). Therefore, we also only consider
the second price auction in RTB in our three studies. Under the second price auction,
the payment of the winner is the bidding price of the second highest bidder.
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Usually, the conduct of RTB is technically supported by ad intermediaries, for
example, ad exchange. Advertisers involved in an ad exchange first set their bids
for impressions under specific targeting criteria. In practice, advertisers may only
need to set their daily/weekly/monthly budgets and goal-oriented bidding strate-
gies. For example, Google Ads proposes a series of strategies with different goals to
advertisers (Google Ads Help 2023). An RTB auction is triggered by a visit from a
user to the websites held by a publisher. Once the user clicks the URL, an ad request
is sent to cooperated ad exchanges. Ad exchange automatically pulls this request
to matched advertisers. Then, advertisers’ preset bidding prices are returned and
consequently, the winner is determined by the rule of auctions. Finally, the win-
ner’s advertisement is delivered to the website and exposed to the user. This whole
process is completed in less than milliseconds (Sayedi 2018).

RTB enables advertisers to leverage advanced targeting techniques, such as be-
havioural and demographic targeting, as well as granular performance data to op-
timise their campaigns and maximise return on investment (Ghose and Yang 2009).
The advantages of non-guaranteed advertising channels include increased scalabil-
ity, efficiency, and cost-effectiveness, as well as the ability to continually refine tar-
geting strategies, creative assets, and bidding strategies. However, there are also dis-
advantages to non-guaranteed channels, such as potential concerns regarding brand
safety and ad view ability due to the automated nature of ad placements. Addition-
ally, the auction-based system can lead to fluctuations in ad inventory availability
and pricing, making it more challenging for advertisers to predict and manage their
advertising budgets (Choi et al. 2020).

1.4 Research Questions and Contributions

The reliance on a single selling channel for ad impressions is insufficient to accom-
modate the vast supply generated by the ever-growing population of Internet users.
Furthermore, it may not adequately address the diverse preferences and require-
ments of both publishers and advertisers in different scenarios. The advantages of
guaranteed advertising channels, such as greater control over ad placements, brand
safety, and campaign visibility, cater to the needs of advertisers seeking premium
placements and exclusive partnerships with high-quality publishers. On the other
hand, non-guaranteed channels, namely RTB, offer increased scalability, efficiency,
and cost-effectiveness, making them suitable for advertisers seeking a more flexible
and data-driven approach to purchasing ad inventory. Therefore, a selling mech-
anism that incorporates both guaranteed and non-guaranteed selling channels can
help address these challenges and leverage their positive aspects effectively.
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1.4.1 Three Research Questions and Their Connections

In this thesis, we focus on the analysis of both publishers’ optimal decisions and
advertisers’ strategic behaviour in different scenarios, with the two selling channels
activated exclusively. Specifically, guaranteed contracts for future impressions are
available in advance, and RTB is triggered when these impressions are generated by
user visits.

Figure 1.3 illustrates a general process of a publisher selling impressions to ad-
vertising through dual channels over the selling horizon. Before the opening of the
guaranteed channel, the publisher first sets prices for guaranteed contracts and then
announces them to advertisers. While guaranteed contracts are available, advertis-
ers decide whether to buy them or wait until the opening of RTB. After the close
of guaranteed contracts and before the start of RTB, the publisher considers the re-
cruitment of extra advertisers to the RTB. During the RTB, each auction is triggered
by a user visit. The publisher needs to allocate each impression to different buy-
ers strategically. The figure also illustrates where our research problems are located
and the connections between them. With the combination of the three studies, we
are able to construct a comprehensive answer to our research problems.

Figure 1.3: The overview of research problems in this thesis and their links: Re-
search 1: Optimal pricing of guaranteed contracts under dual selling channels with
the RTB. Research 2: Whether and how the publishers should advertise for their ad-
vertising slots? Research 3: Allocation of impressions among dual selling channels
in online display advertising markets
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In this thesis, the first research problem lays the groundwork for the subse-
quent inquiries, focusing on a publisher’s optimal pricing strategy for guaranteed
contracts in the presence of real-time bidding (RTB). We model a scenario where a
publisher aims to sell a fixed number of homogenous impressions to multiple ad-
vertisers across two distinct periods. The first period is exclusively for guaranteed
contracts, while the second period is reserved for RTB. Advertisers must decide be-
tween these two channels to maximise their utility, and their choices are influenced
by the publisher’s pricing of the guaranteed contracts. We approach this problem
as a sequential game and explore equilibrium outcomes under varying parameters.
Note that we can simplify the allocation of impressions between these two channels
because of the assumption of homogenous impressions.

Building on this foundation, the second research problem delves into a more
complex environment where additional advertisers may enter the campaign be-
tween the guaranteed and non-guaranteed channels. These advertisers could ei-
ther join spontaneously or be actively recruited by the publisher at a certain unit
cost. This addition introduces a new layer of complexity, affecting both the pub-
lisher’s decisions and the behaviour of the original advertisers if they are aware
of the potential for new entrants. We examine this scenario across a three-period
selling horizon, considering different information structures to understand how the
original advertisers might react to the publisher’s plans for the middle period.

Finally, our third research problem extends the initial model by incorporating
the allocation of impressions among different buyers. Here, the focus is on how
a publisher can optimally allocate heterogenous impressions between guaranteed
contracts and RTB, while also considering the strategic behaviour of advertisers. We
introduce a model that accounts for the quality of impressions, reflecting the varied
user information behind different page views. Advertisers’ valuations are modelled
as a function of the quality of impressions and their compatibility with each impres-
sion. We also explore two types of guaranteed contracts: quantity-guaranteed and
quality-guaranteed contracts, each with its implications for the publisher’s alloca-
tion policy and revenue.

Through these interconnected research problems, We aim to offer a comprehen-
sive understanding of the complexities involved in managing online advertising
inventory within a dual-channel selling environment.

1.4.2 Overall Contributions

This thesis offers a comprehensive investigation into the intricacies of online display
advertising, with a specific focus on the dual channels of guaranteed contracts and
real-time bidding (RTB). One of the most vital contributions is in the inclusion of
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advertisers’ strategic behaviour in the three research questions, which is neglected in
the previous literature (e.g. Balseiro et al. 2014, Chen 2017, Shen 2018, Rhuggenaath
et al. 2019, Wu et al. 2021 and Wang et al. 2022). It demonstrates how publishers’
and advertisers’ decisions interact mutually through sequential game frameworks,
explaining when and why advertisers prefer one channel over the other.

Another major theme is the influence of guaranteed contracts on both advertis-
ers and publishers. This thesis shows that the presence of guaranteed contracts can
disrupt the conventional truth-telling rule among rational advertisers. This insight
extends the current discourse on bidding strategies in second-price RTB (Menezes
and Monteiro 2004, Balseiro et al. 2015, Balseiro and Gur 2019). Additionally, based
on this finding, we explore the effect on publishers’ various decisions (including
pricing of guaranteed contracts, investing in attracting additional advertisers, and
allocation strategy of impressions).

Revenue optimisation for publishers is another critical area that my thesis ad-
dresses. Our research indicates that publishers can maximise their revenues by judi-
ciously combining guaranteed contracts and RTB, particularly under specific market
conditions. These results widen the understanding of the online display markets, in
which dual channels are made available. To guide publishers in attracting more ad-
vertisers, a cost-benefit indicator was introduced to provide a measurable feature
for publishers. Furthermore, we emphasise the importance of balancing the supply
and demand for guaranteed contracts when making an allocation strategy between
two channels, offering new managerial insights that could control the cost of under-
delivery.

Lastly, this thesis has practical implications that extend beyond the academia.
We offer actionable insights for publishers in terms of setting prices of guaranteed
contracts, investing in attracting additional advertisers and determining the alloca-
tion strategy of impressions. We also highlight the importance of the application of
dual selling channels, which stands to benefit both publishers and advertisers.

In summary, this thesis advances our understanding of online advertising mar-
kets by developing and analysing models that capture the interactions between
guaranteed contracts and RTB within various environments, incorporating various
factors such as scarcity of impressions, different information settings, and heteroge-
neous impressions quality.

1.5 Structure of the Thesis

The rest of this thesis is organised as follows. In Chapter 2, we study the publisher’s
optimal pricing of guaranteed contracts in a selling horizon with dual channels in-
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volved. Advertisers’ strategic behaviour is considered and equilibrium outcomes
are solved. We also discussed some extensions. Chapter 3 extends the publisher’s
problem by introducing additional advertisers between the dual selling channels.
We discuss cases under different market settings and information structures. Chap-
ter 4 concentrates on the allocation strategy of impressions among the two channels.
To capture the allocation detail, we model the heterogenous both for advertisers and
the quality of impressions. We examine the performance of two clusters of allocation
policies under two types of guaranteed contracts through algorithms based on back-
ward induction. Chapter 5 summarises the conclusion of this thesis and proposes
some future research directions.
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2 Study 1: Optimal Pricing of Guar-
anteed Contracts for Online Display
Advertising Facing Dual Channels

Abstract

Online display advertising produces substantial revenue for thousands of online
publishers and content providers by selling impressions of display ads to adver-
tisers. The main selling channels are guaranteed contracts and real-time bidding
(RTB). Guaranteed contracts regulate what, when and how impressions should be
delivered to advertisers before these impressions are realised, while RTB allows ad-
vertisers to bid for an impression only at the time when a user comes to visit the
webpage hosted by the publisher. This paper investigates a problem where a pub-
lisher sells impressions to advertisers with unit demand during two periods, with
guaranteed contracts and RTB exclusively activated in the first period and the sec-
ond period. Impressions are generated in the second period. We consider discount
factors of yields from the second period for both the publisher and advertisers. Ad-
vertisers make decisions about whether to buy guaranteed contracts or to join RTB.
The publisher sets an optimal price for contracts to obtain maximum revenue. We
find the Mixed Truth-telling Strategy for advertisers in RTB and then obtain the
optimal pricing of guaranteed contracts for the publisher. We show that the im-
plementation of both guaranteed contracts and RTB is more flexible and profitable
than only one of them exists. Under different cases of parameters (i.e., the scarcity
of impressions, discount factors), the publisher’s optimal pricing for guaranteed
contracts can either make all impressions consumed by advertisers through guaran-
teed contracts or RTB or both coexist. Besides, we further consider the case of the
uncertain number of impressions, customer segmentation decisions, and different
valuation distributions in extensions.

Keywords: online display advertising, strategic behaviours, guaranteed con-
tracts, real-time bidding, mixed truth-telling
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2.1 Introduction

The value of online advertising markets and their rising trends have been widely
witnessed in recent years. The PwC IAB Internet Advertising Revenue Report (2022)
states that the overall full-year revenue of online advertising in the United States
achieved a 10.8% increase. As a main sub-category of online advertising, online
display advertising refers to formats including banners, rich media and sponsorship
etc. Revenue generated from online display advertising consisted of 30.3% of the
total revenue and reached 63.5 billion dollars (IAB 2022). In general, the selling unit
of online display advertising is an impression, which means page views of online
users to an advertisement.

Online display ad impressions are mainly sold through guaranteed contracts and
the real-time bidding (RTB) (Balseiro et al. 2014, Chen 2017, Chen et al. 2020, Liu and
Chao 2020). Selling online display advertising has traditionally been conducted
through guaranteed contracts after negotiations between the supply side (e.g., on-
line media websites) and the demand side (i.e., advertisers). However, with the
rapid growth of the internet and the consequent increase in demand for online ad-
vertising, the traditional negotiation-based approach became inefficient. To address
this, a standardised automatic selling system was developed. This system allows
publishers to post standardised contracts with pre-set rules (e.g., pricing, realisation
periods), enabling advertisers to purchase contracts without personal negotiations
with the publisher. In this paper, we refer to guaranteed contracts as automatic
guaranteed contracts. RTB is another mechanism designed specifically for online
advertising markets. An RTB auction completes in milliseconds, triggered when
a user clicks a publisher’s webpage. Advertisers’ bidding prices are pre-set (as per
advertisers’ private valuations to the auctioned impression), and the winner is deter-
mined according to an auction rule, typically a second-price auction. The winning
advertisement is then displayed on the clicked webpage.

Guaranteed contracts allow advertisers to secure future impressions, thereby
providing publishers with a stable cash flow. However, such stability inevitably
compromises flexibility. High-value impressions, for instance, might be undersold,
whereas they could have been sold at premium prices to advertisers seeking to
cherry-pick impressions in RTB (Choi et al. 2020). Furthermore, the unpredictable
outcomes from RTB pose risks for both publishers and advertisers. The combination
of these two channels could capitalise on their respective benefits while effectively
mitigating their shortcomings (Balseiro et al. 2014, Chen et al. 2020). However, this
approach gives rise to two novel challenges: a) why and under what conditions
advertisers will opt for one channel over the other, and b) how publishers should
price the guaranteed contracts to maximise their revenue while taking into account

14



advertisers’ strategic choices between the two channels. In practice, these two sell-
ing channels are typically managed independently by distinct roles (Balseiro et al.
2014). Moreover, existing literature primarily focuses on either guaranteed contracts
or RTB exclusively (will be discussed in the next section in detail). This research in-
tends to fill these gaps by providing valuable insights into the two challenges.

In this paper, we propose a new selling mechanism that combines both guaran-
teed contracts and RTB, and allow advertisers to choose between these two channels
strategically. More specifically, we consider a publisher selling a limited number
of homogeneous impressions during two periods. The advertisers can choose to
pay a fixed price to secure an impression in the first period before impressions are
realised, or they can wait to participate in real-time second-price auctions in the
second period. The setting of homogeneity among impressions enhances the fixed-
price assumption for contracts. In reality, when the publisher groups advertisers
according to different combinations of attributes, then impressions within a group
can be treated as homogeneous approximately.

Our model is unique, because advertisers’ rational expectation equilibrium de-
cisions on whether to choose guaranteed contracts in period 1 have to account for
the outcome from RTB in period 2, which is also an equilibrium emerging from all
other advertisers’ bids in RTB. Despite the complexity due to the advertisers’ strate-
gic behaviours and the auctions, we are able to obtain the closed-form solution and
show that combining guaranteed contracts and RTB in selling online display adver-
tisements can generate more revenue for the publishers in some specific scenarios,
compared to the case when only RTB or guaranteed contracts is used. We further
extend our model to examine the following questions to obtain more insights and
check the robustness of the results. 1) The impact of uncertainty on the impression
supply. When facing supply uncertainty, the publisher is more willing to combine
both guaranteed contracts and RTB to sell the impressions. 2) Advertiser segmenta-
tion. Segmenting advertisers based on their valuations can improve the publisher’s
revenue when the supply of impressions is less scarce. The competition level of
the selling campaign is intense enough when the impression scarcity is high, under
which case the segmentation strategy is not necessary. 3) Different distributions for
advertisers’ valuation. Our main results hold when advertisers’ valuation follows
different types of distributions. We then utilise an RTB dataset from a UK SSP to
conduct the counterfactual analysis and validate the proposed model and its exten-
sions.

This paper contributes to the limited literature that studies selling impressions
to strategic advertisers via both guaranteed contracts and RTB (which will be shown
in Literature Review §2.2). Firstly, this research offers a novel perspective on adver-
tisers’ decision-making processes, revealing a threshold-type strategy that enriches
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the current understanding of advertiser behaviour in dual channels. This strategy
implies that advertisers with higher valuations would prefer buying guaranteed
contracts in the initial period, while those with lower valuations would participate
in RTB. Secondly, our research delves into the interplay between guaranteed con-
tracts and RTB in the context of second-price auctions. Contrary to widely accepted
conclusions drawn from existing literature on second-price auctions (Menezes and
Monteiro 2004, Narahari 2014), we demonstrate that the presence of guaranteed con-
tracts could potentially disrupt the conventional truth-telling rule among rational
advertisers. We observe a truncation phenomenon, where an advertiser’s bid may
be determined not solely by its valuation, but rather limited by the price of the guar-
anteed contract. This revelation extends the current discourse on bidding strategy
in second-price RTB with the presence of a fixed price channel. Lastly, our research
posits that publishers could achieve higher revenues by judiciously combining guar-
anteed contracts and RTB. This strategy proves especially advantageous under con-
ditions of lower scarcity in impressions (i.e. when the supply-to-demand ratio is
high) and lower discount factors for both the publisher and advertisers (i.e., when
the publisher’s focus is on net present value and the advertisers show a greater
propensity to secure impressions to circumvent RTB). By unearthing these condi-
tions for optimal revenue, this study not only refines the academic understanding
of revenue management in online advertising but also provides practical guidance
for publishers aiming to optimise their revenue streams.

The rest of this paper is organised as follows. §2.2 reviews the related literature.
§2.3-§2.4 demonstrates our basic model along with the closed-form equilibrium re-
sults under different cases. §2.5-§2.7 discuss extensions of the basic model and also
experimental results from practical data. §2.8 concludes this paper and provides
some future directions. Proofs are available in Appendix A1.

2.2 Literature Review

This research is mainly related to two research streams and the combination of them.
The first stream is about operations management in the field of online display ad-
vertising. In this stream, we investigated them according to the different selling
channels they considered. We first focused on literature about guaranteed contracts
and RTB, respectively. Then we reviewed papers that covered these two channels
together. The second stream is revenue management with strategic consumers fac-
ing multiple buying channels. At last, we especially discussed two papers that were
closely related to this study.

Before the popularity of auctions in online advertising markets, guaranteed
contracts were the main approach to sell impressions of online display advertis-
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ing to advertisers (Liu and Chao 2020). Among various pricing schemes, i.e. CPM,
CPC, CPA (cost per action) etc. (e.g. Mangani 2004, Fjell 2009, Asdemir et al. 2012
and Najafi-Asadolahi and Fridgeirsdottir 2014), of guaranteed contracts, the most
popular one is CPM (Choi et al. 2020), which is also the scheme we assumed in this
research. There are mainly two ways when impressions are sold through guaranteed
contracts under the CPM scheme. First, advertisers proposed their willingness-to-
pay and demand for impressions and publishers decided whether to accept them
or not. Besides, the cancellation of promised contracts was allowed (Babaioff et al.
2009, Constantin et al. 2009, Roels and Fridgeirsdottir 2009). Second, the price of
guaranteed contracts was determined by publishers according to advertisers’ de-
mands (Fridgeirsdottir and Najafi-Asadolahi 2018) or users’ attributes (Bharadwaj
et al. 2010). In our paper, we take the latter approach and assume a fixed price for
guaranteed contracts to explore the effect of the combination of it with RTB.

In contrast to the scarce research on guaranteed contracts, there are plenty of
studies focusing on RTB in online display advertising markets both from the sides
of publishers and advertisers. From advertisers’ perspective, the optimal bidding
strategy for online display advertising is the most relevant topic to our study. Al-
though truth-telling is commonly known as the weakly dominant strategy in the
private-value second-price auction of a single object in theory (Menezes and Mon-
teiro 2004), this may not always be the case due to various practical factors in the
online display advertising markets. For example, the budget constraint of adver-
tisers makes them intend to shade their true valuations in repeated bidding cam-
paigns (Balseiro et al. 2015, Balseiro and Gur 2019). In other cases, advertisers may
not know other advertisers’ valuations, even their own valuations. Advertisers can
post different bids in repeated auctions to learn others and their valuations through
analysis of outcomes over time (Pin and Key 2011, Perlich et al. 2012, Iyer et al. 2014,
Zhang et al. 2014, Cai et al. 2017). In terms of publishers, there are mainly three
aspects of problems with their optimal pricing policies. Similar to the channel of
guaranteed contracts, the first is the choice among different pricing schemes. Hu
(2004), Dellarocas (2012) and Hu et al. (2016) studied the impact of different fac-
tors, including information asymmetry and double marginalisation, on the setting
of CPM, CPC or CPA auctions. Their studies implied that different schemes were
optimal under different conditions. Another popular direction is the optimisation
(Balseiro et al. 2015, Paes Leme et al. 2016, Choi and Mela 2018) or learning (Amin
et al. 2013, Cesa-Bianchi et al. 2014, Mohri and Medina 2014) of reserve price in auc-
tions. Unlike previous studies that consider only one available channel, either guar-
anteed contracts or RTB, our study focuses on advertisers’ bidding strategy in the
RTB period, considering the impact of the presence of guaranteed contracts.

There are few research discussing selling display advertising impressions thro-
ugh dual channels, and most of them merely focused on the problem of impression
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allocation between guaranteed contracts and real-time bidding from the perspec-
tive of publishers. Roels and Fridgeirsdottir (2009), Bharadwaj et al. (2010), Salo-
matin et al. (2012), Wu et al. (2021), Li et al. (2016) and Rhuggenaath et al. (2019)
discussed the allocation solutions or policies through designed algorithms. Balseiro
et al. (2014) and Chen (2017) constructed stochastic control models to solve the opti-
mal allocation problem by the dynamic programming approach. Chen et al. (2014),
Chen (2016) and Chen et al. (2020) focused on the pricing problem of guaranteed
contracts under the scenario of selling display advertising through the dual chan-
nel. These papers only concentrated on one channel and treated another as input for
their models, and they also did not take advertisers’ strategic behaviours into con-
sideration. Therefore, they fail to explain when and why one selling channel should
be chosen over the other from the perspective of advertisers.

Since we take the advertisers’ strategic decisions between guaranteed contracts
and RTB into consideration, our paper is related to the literature on revenue man-
agement problems with strategic consumers involved. One stream of these liter-
ature investigated the timing of purchase decisions for strategic consumers when
facing publisher’s dynamic pricing policies in a multi-period selling horizon (Su
2007, Aviv and Pazgal 2008, Levin et al. 2009, Yin et al. 2009, Osadchiy and Vulcano
2010, Mersereau and Zhang 2012, Correa et al. 2016, Kremer et al. 2017). Another
stream focused on problems about the strategic choices of consumers between dif-
ferent channels, i.e. online and offline channels or omnichannel, simultaneously
(Ofek et al. 2011, Gao and Su 2017, 2019, Nageswaran et al. 2020, Gao et al. 2022).
Regardless of the focus, existing studies assumed that the payments are set by the
seller. In our study, advertisers’ payments in RTB are decided by their opponents’
bidding prices, which distinguishes our paper from the existing studies.

Furthermore, Sayedi (2018) and Cohen et al. (2023) share similar settings with
ours. We all consider fixed-price guaranteed contracts and RTB simultaneously.
However, both studies simplify RTB differently, which makes advertisers’ bidding
strategy unclear under their scenario. Sayedi (2018) simplified the analysis of the
outcomes of the auctions in three aspects. a) There are only two advertisers in the
campaign. b) With the assumptions of consumers located on a Hotelling line inter-
val and the two advertisers located at the two endpoints of that interval, the two
advertisers’ valuations to an impression are not only known to each other but also
complementary. This means that the outcomes of auctions are determinate to each
other once the valuations of impressions are realised. c) His results promise a high
reserve price in auctions such that the payments from auctions are always the value
of that reserve price. Cohen et al. (2023) proposed two assumptions so that the
payment from each auctioned unit is made the same. First, they assume that the
distribution of vI+1 is known to all buyers, in which I is the number of homoge-
neous goods and vI+1 is the valuation of the (I + 1)th highest value. Second, they
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demonstrate that the payment of each unit from the auction is vI+1 under the VCG
mechanism in a large market. Furthermore, the value of vI+1 is known to all buy-
ers right before the start of auctions. However, in our settings, there are a large
number of advertisers involved and their valuations to an impression is private in-
formation, which is more allied with reality. These settings make our study more
applicable in practice than theirs. Our paper also demonstrates that the presence
of guaranteed contracts truncates advertisers’ bidding price from their true valua-
tion for impressions by the price of guaranteed contracts, which is contrary to the
well-known truth-telling strategy when only the second-price auction exists.

2.3 Model Setup

Consider a market with one publisher and N advertisers (assume that N is suffi-
ciently large). The publisher owns a website with a display advertising slot that
can generate Q impressions. We assume that all impressions are homogeneous
(Caldentey and Vulcano 2007, Cohen et al. 2023) and N > Q. Advertisers have unit
demand for the impressions and their valuations on an impression follow a uniform
distribution U(0, v). The publisher can sell these impressions to advertisers through
two channels. It can either sell the impressions in advance via a guaranteed contract
with a fixed price p (referred to as selling period 1), or via RTB when these impres-
sions are triggered by website users’ visits (selling period 2). The auction for each
impression in period 2 is organised as a second-price auction.

Facing the two channels, each advertiser needs to decide from which channel
to buy the impression to maximise its utility. If an advertiser i buys an impression
in advance via a guaranteed contract in period 1, the utility is ui,1 = vi − p, and if
it waits for period 2 to attend the real-time bidding and wins the impression, the
utility is ui,2 = δa(vi − p(r)i ). Here, p(r)i represents advertiser i’s payment in the real-
time bidding, which is an equilibrium outcome depending on the bids from other
advertisers who participate in the second-price auction. And δa is the discount factor
for advertisers’ utilities in period 2, which captures the disutility of the uncertainty
and hassle of attending RTB1. For advertisers who do not buy in period 1 nor win
in the auction in period 2, their utility is zero. We also assume a discount factor, δp,
for the publisher to represent the disutility of receiving the payment later in period
2.

Figure 2.1 shows the sequence of events. In period 1, the publisher decides

1Existing literature also considers the uncertainty and hassle of attending RTB by assuming that
advertisers are risk averse, thus captures disutility of the uncertainty as a subtracted term in ad-
vertises’ expected utility expression (Chen et al. 2020, Cohen et al. 2023). In our paper, for ease of
exposition, we use the advertisers’ discount factor to capture such disutility in the form of a multi-
plier.
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the price of a guaranteed contract for one impression. Observing the price of a
guaranteed contract, advertisers decide whether to buy a guaranteed contract or join
RTB in period 2. In period 2, advertisers who participate in RTB, decide and submit
their bidding price, and then impressions are distributed to the winners based on
the rule of second-price auction.

Publisher announces the 
guaranteed contract 

price 𝑝

Advertisers decide whether to 
buy a guaranteed contract in 

period  1 or wait to attend RTB 
in period 2

Remaining advertisers 
place bid in RTB, 𝑏௜

Period 1 Period 2

Impressions are displayed for 
advertisers buying guaranteed 
contracts and winning in RTB

Figure 2.1: The sequence of events.

Our unique model setup captures the intricate dynamics between the pub-
lisher’s pricing on the guaranteed contracts and advertisers’ strategic deliberation
over buying the guaranteed contracts or attending RTB. Such dynamics are com-
plex because advertisers’ rational expectation equilibrium decisions on whether to
choose guaranteed contracts in period 1 have to account for the outcome from RTB
in period 2. This outcome in RTB is also an equilibrium emerging from all other ad-
vertisers’ decisions on buying the guaranteed contracts and their bids in auctions.
In the following sections, we will show how to obtain the closed-form solution in
equilibrium using backward induction.

2.4 Equilibrium Analysis and Results

2.4.1 Analysis on Advertisers’ Decisions

Advertisers make decisions by comparing their expected utility from each channel.
Namely, advertiser i will buy a guaranteed contract in period 1 if

ui,1 > max{ui,2, 0}. (2.1)
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Otherwise, advertiser i will join RTB in period 2 if

ui,2 ≥ max{ui,1, 0}. (2.2)

Before the analysis of advertisers’ behaviours under the coexistence of dual
channels, we first consider how advertisers bid when only RTB exists, and the auc-
tions are organised under the second-price rule.

Lemma 2.1. In RTB, if every advertiser only has a unit demand of these homogeneous im-
pressions, and all these impressions are merely sold through the multiple second-price auc-
tions, then truth-telling is a dominant strategy for each advertiser when they are bidding.

Lemma 2.1 indicates that advertisers should bid by their willingness-to-pay
once they decide to join RTB. However, the presence of guaranteed contracts has
different effects on different advertisers about their willingness-to-pay in RTB. The
following analysis will explain these effects in detail.

We categorise advertisers into two groups based on their valuations relative to
the price of a guaranteed contract p. The first group consists of advertisers whose
valuations vi are less than or equal to p. These advertisers will opt for RTB and bid
truthfully according to their valuations. This is because their payback will not ex-
ceed zero from guaranteed contracts, while in RTB they can obtain a positive return
or at least zero if they bid by their valuations according to Lemma 2.1.

The second group includes advertisers with valuations vi > p. Their motivation
to participate in RTB rather than buying a contract is that they can win an impression
in RTB. Their payments should not exceed an upper bound shown in the following
inequation:

p(r)i <
p − (1 − δa)vi

δa
, (2.3)

such that ui,2 > ui,1 > 0. Inequation (2.3) also naturally defines a new willingness-
to-pay (i.e. p−(1−δa)vi

δa
) for these advertisers, instead of vi when they decide to at-

tend RTB. Furthermore, according to Lemma 2.1, their bidding prices will also be
p−(1−δa)vi

δa
, which is subject to their altered willingness-to-pay.

This phenomenon is interesting. Because compared with their original valua-
tions vi, these advertisers seem to bid untruthfully. Essentially, the reason for this
untruthful bidding behaviour is that the presence of guaranteed contracts truncates
their valuations in RTB, and they bid "truthfully" according to their truncated valu-
ations in these auctions.

From the above, we summarise a Mixed Truth-telling bidding Strategy in terms
of their original valuations for advertisers joining RTB.
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Proposition 2.2 (Mixed Truth-telling Strategy). Advertisers with lower valuations bid
truthfully in RTB, while those with higher valuations bid based on a truncated valuation.
The strategy can be uniformly formulated as:

b(v) =
(v ∧ p)− (1 − δa)v

δa
(2.4)

where (v ∧ p) := min{v, p}.

The bidding function b(v) captures all advertisers’ mixed truth-telling bidding
strategy for b(v) = v when v ≤ p, and b(v) = p−(1−δa)v

δa
when v > p. In the latter

case, b(v) is also decreasing as v increases. Therefore, the upper bound of adver-
tisers’ bids in RTB is always p. This property is important to induce equilibrium
outcomes.

Note that this proposition of mixed truth-telling is implemented by advertisers
only after they decide to join RTB in period 2. Their motivation to devote themselves
to RTB is that they can win an impression following this bidding strategy from the
perspective of expectation. However, whether they can win an impression following
this bidding strategy is dependent on the equilibrium outcome of all advertisers’
decisions.

Proposition 2.3. In the equilibrium states, if advertisers decide to buy impressions both
through guaranteed contracts and RTB, then there must exist a threshold of valuation, de-
noted by v′, such that advertisers with v > v′ purchase guaranteed contracts in the first
period, while those with v ≤ v′ choose to attend RTB in the second period.

Proposition 2.3 reveals a threshold-type pattern for advertisers’ behaviours, al-
though we do not need to know the specific value of v′ in the current stage. Similar
threshold-like behaviours patterns are also obtained in other revenue management
research with strategic consumers involved (Caldentey and Vulcano 2007, Aviv and
Pazgal 2008, Yin et al. 2009, Osadchiy and Vulcano 2010, Papanastasiou and Savva
2017). This purchase pattern indicates that advertisers with higher valuations more
intend to secure impressions through guaranteed contracts than advertisers with
lower valuations. The latter are more likely to take risks for a greater surplus in
RTB.

2.4.2 Analysis on the Publisher’s Decisions

The publisher’s goal is to determine the price of guaranteed contracts to maximise
its revenue based on advertisers’ strategic behaviours. We denote the revenue of the
publisher as Π. The feasible strategy space for the publisher is that p ∈ [0,+∞).
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Proposition 2.4. When the publisher chooses prices of guaranteed contracts in different
pricing segments, advertisers’ behaviours will show different modes.

1. If the publisher sets the price of guaranteed contracts less than N−Q
N v, all impressions

will be sold to advertisers buying guaranteed contracts in period 1.

2. If the publisher chooses the price between N−Q
N v and N−δaQ

N v, consumers of these im-
pressions consist of three groups: advertisers with v ∈ (v′, v] will buy guaranteed
contracts in period 1; advertisers with v ∈ (p, v′] will join RTB in period 2 and bid
untruthfully; advertisers with v ∈ [0, p] will also join RTB in period 2 and bid truth-
fully. Advertisers who join RTB will follow the bidding strategy b(v) summarised in
equation (2.4). The threshold value

v′ =
Np − δa(N − Q)v

(1 − δa)N
. (2.5)

3. If the publisher picks a price above N−δaQ
N v, all advertisers will join the real-time

bidding and also follow the bidding strategy b(v) in equation (2.4).

To obtain the publisher’s revenue when the price of guaranteed contracts varies,
we need to understand how the Q impressions are consumed by advertisers. Propo-
sition 2.4 demonstrates three different cases that how impressions are delivered to
advertisers through the two channels. The next is to clarify the payment from each
unit impression.

The yield from a unit selling in the guaranteed channel is fixed and easy to
capture. While in the non-guaranteed channel, each auctioned impression is paid
by the winner with the second highest bid, which varies across different auctions.
To address this complexity, we assume that there is a large number of advertisers.
The detail is demonstrated in Lemma 2.5.

Lemma 2.5. When the number of advertisers is very large, mathematically N → +∞,
bidders’ payments under the multiple second-price auctions approach those under a first-
price mechanism, i.e., winners pay as the number of their own bids.

From Proposition 2.4 and Lemma 2.5, we can obtain the revenue of the pub-
lisher when it chooses different prices, which is shown in equation (2.6):

Π(p) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Qp, p ∈ [0, N−Q
N v)

v − v′

v
Np +

δp

2
ψ(v′), p ∈ [N−Q

N v, N−δaQ
N v)

δp

2
ψ(v), p ∈ [N−δaQ

N v, v)

δp

2
·
(2N − Q)Q

N
v, p ∈ [v,+∞)

, (2.6)

23



in which ψ(x) = (p + b(x)) (x−p)N
v +

󰀓
p + N−Q

N v
󰀔

Np−(N−Q)v
v . Also note that Π(p)

is continuous on the domain of [0,+∞) although it is piece-wise on {0}∪ R+. From
the top to the bottom piece in equation (2.6), advertisers move gradually from the
guaranteed channel to the RTB channel. When p ≤ N−Q

N v, Π(p) is linearly increas-
ing as p increases. While p > v, Π(p) is constant because all advertisers join RTB
with truthful bids. Cases under p ∈ (N−Q

N v, v] are quadratic, which will be illus-
trated in the following Figure 2.2.

For convenience, we let s = N
Q to denote the scarcity of impressions. Figure

2.2 shows the tendency of the publisher’s revenue under different cases of discount
factors and the scarcity of impressions. Different colours on the different parts of a
line represent different segments in the revenue function (2.6). This figure intuitively
shows the concavity of the revenue function when p ∈ (N−Q

N v, N−δaQ
N v] and p ∈

(N−δaQ
N v, v] and also its continuity on the whole domain. As discount factors and

the scarcity of impressions vary, the optimal price can be located on any piece of
the function, which implies that the two channels have their own advantage under
different cases. In theory 2.6, the detail of the optimal solution is demonstrated in
closed-form.

Figure 2.2: The publisher’s revenue function of guaranteed contracts price

Theorem 2.6. The optimality of the publisher’s revenue depends on its discount factor, the
advertisers’ discount factor, the number of advertisers and the scarcity of impressions.

1. When 1 < s < 2, if
󰀓

δa ∈ (2− s, s
2s−1 ] & δp ∈ [0, δa+s−2

s−1 ]
󰀔
|
󰀓

δa ∈ ( s
2s−1 , 1] & δp ∈

[0, 2(s−1)
2s−1 ]

󰀔
; when s ≥ 2, if

󰀓
δa ∈ (0, s

2s−1 ] & δp ∈ [0, δa+s−2
s−1 ]

󰀔
|
󰀓

δa ∈ ( s
2s−1 , 1] &
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δp ∈ [0, 2(s−1)
2s−1 ]

󰀔
, the optimal solution is

p∗ =
N − Q

N
v;

the corresponding maximum revenue is

Π(p∗) =
(N − Q)Q

N
v.

In this case, all impressions are consumed by contract buyers in period 1.

2. When s = 1, if δp ∈ [0, 1 −
√

δa]; when 1 < s < 2, if
󰀓

δa ∈ [0, 2 − s] & δp ∈

[0, 1 −
󰁴

δa(1−δa)
s2−2δas+δa

]
󰀔
|
󰀓

δa ∈ (2 − s, s
2s−1 ] & δp ∈ ( δa+s−2

s−1 , 1 −
󰁴

δa(1−δa)
s2−2δas+δa

]
󰀔

;

when s ≥ 2, if
󰀓

δa ∈ [0, s
2s−1 ] & δp ∈ ( δa+s−2

s−1 , 1 −
󰁴

δa(1−δa)
s2−2δas+δa

]
󰀔

, the optimal
solution is

p =
N − δaQ
(2 − δp)N

v;

the corresponding maximum revenue is

Π(p∗) =
(1 − δp)2N2 − (2δ2

p − 4δp + 2δa)NQ + (δ2
a + δ2

p − 2δp)Q2

2(1 − δa)(2 − δp)N
v.

In this case, there exists a threshold value

v′ =
(1 + δaδp − 2δa)N + δa(1 − δp)Q

(1 − δa)(2 − δp)N
v ∈ (p, v),

advertisers with vi ∈ (v′, v] will buy guaranteed contracts in period 1. Advertisers
with vi ∈ [0, v′] will follow the mixed truth-telling bidding strategy in period 2.

3. When s = 1, if δp ∈ (1 −
√

δa, 1]; when s > 1, if
󰀓

δa ∈ (0, s
2s−1 ] & δp ∈ (1 −

󰁴
δa(1−δa)

s2−2δas+δa
, 1]

󰀔
|
󰀓

δa ∈ ( s
2s−1 , 1] & δp ∈ (2(s−1)

2s−1 , 1]
󰀔

, the optimal solution is

p∗ = v;

the corresponding maximum revenue is

Π(p∗) =
δp

2
·
(2N − Q)Q

N
v.

In this case, all advertisers participate in RTB and bid truthfully.

Theorem 2.6 indicates three different types of equilibrium, with impressions
consumed by advertisers through different channels. Each of them depends on the
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Figure 2.3: The composition of consumers for impressions in equilibrium under
different cases

scarcity of impressions and the relationships between the scarcity and discount fac-
tors of both advertisers and the publisher. This theorem implies that the publisher
needs to make a pricing strategy after a careful evaluation of key parameters men-
tioned above. The effectiveness of different channels is maximised under different
parameter settings. According to results from Theorem 2.6, the publisher obtains a
guideline for the optimal pricing scheme when both guaranteed contracts and RTB
are available in the markets.

Figure 2.3 provides an intuitive understanding of results from Theorem 2.6, by
illustrating the varying composition for consumers of impressions under the pub-
lisher’s optimal pricing strategy, and taking into account different values of δa and
δp in specific cases of s. The figure is segmented into three distinct zones, each rep-
resenting a unique type of equilibrium outcome in Theorem 2.6:

• Type I: If the pair (δa, δp) resides in this field, the publisher’s most advan-
tageous decision is to establish a guaranteed contract price that induces ad-
vertisers to acquire all impressions through guaranteed contracts in the initial
period. In this region, RTB is not engaged, and the entire inventory is sold
through guaranteed contracts.

• Type II: In this region, the combination of discount factors leads the publisher
to set a price for guaranteed contracts that compels all advertisers to join the
real-time bidding (RTB) process. This means that under these specific combi-
nations of δa and δp, the publisher sets a high price such that no impressions
are sold through guaranteed contracts, and the entire inventory is directed to-
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wards RTB.

• Type III: When parameters fall within this area, the publisher’s optimal guar-
anteed contract price results in mixed channels. Some impressions are deliv-
ered through guaranteed contracts, while the remaining impressions are sold
in RTB. This zone represents scenarios where both channels are utilised, re-
flecting a more nuanced strategy that takes advantage of both guaranteed con-
tracts and RTB.

The figure provides a comprehensive visualisation of how the publisher’s optimal
pricing strategy is influenced by the interplay of the discount factors δa and δp.
Along with Theorem 2.6, this figure reveals some interesting insights: First, nei-
ther single channel, guaranteed contracts nor RTB, can dominate the other one in
all scenarios. The price of guaranteed contracts acts as an adaptor for the publisher
to control the choices of advertisers between the two channels. Therefore, the pub-
lisher needs to carefully evaluate the parameters of discount factors and the scarcity
of impressions to set a proper price to get optimal revenue. Second, the channel of
guaranteed contracts is more profitable than RTB when impressions are abundant,
and especially when the publisher prefers instant revenue in the first period rather
than waiting for RTB (i.e. δp is not that large). When the scarcity of impressions
is small and δa and δp are located in the Type II in Figure 2.3, the usage of both
channels yields the most revenue. At last, when RTB is dominant over guaranteed
contracts, the publisher’s optimal decision is to set a relatively higher price for guar-
anteed contracts, such that all advertisers bid truthfully in RTB. There is no case in
equilibrium outcomes where all advertisers participate in RTB but some of them bid
untruthfully.

2.5 Extension 1: Uncertain Supply of Impressions

In the basic model, we assume that the number of impressions is constant. However,
in practice, publishers can only estimate the number of impressions based on his-
torical visiting data or other methods, and they cannot predict with 100% certainty
how many visitors will come to their website when they begin to sell guaranteed
contracts for future impressions. Therefore, it is meaningful to consider the supply
uncertainty of impressions in our model.

In this section, we extend our model to the case where both the risk-neutral pub-
lisher and advertisers face an uncertain number of impressions. More specifically,
we hypothesise that the number of impressions can be either QL or QH (0 < QL <
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QH < N), each with probability 1
2 . For computational convenience, we define:

󰀫
QL = α1N,
QH = α2N,

where 0 < α1 < α2 < 1.

In scenarios where the supply is limited, if the publisher fails to deliver an im-
pression to guaranteed contract buyers, the payment for that impression in period 1
would be returned to the buyers. In other words, we assume that the penalty cost for
an undelivered impression equals the price of a guaranteed contract. Additionally,
we assume that when the supply of impressions is less than the number required
by contract buyers, impressions are allocated in descending order of advertisers’
valuations, from higher to lower.

Since both the publisher and advertisers are risk-neutral, they make decisions to
maximise their expected utilities, taking into account the uncertainty in the supply
of impressions.

2.5.1 Analysis on Advertisers’ Incentives

Advertisers aim to maximise their expected utilities either from period 1 or from
period 2. In period 1, different from what we know in the basic model, advertisers
are not guaranteed an impression after buying a contract due to supply uncertainty.
By denoting the probability for advertiser i of successfully receiving an impression
after buying a guaranteed contract in period 1 as P

i,1
win, advertiser i’s expected utility

in period 1 can be given as

E(ui,1) = P
i,1
win · (vi − p). (2.7)

a) For advertisers with valuations in ((1 − α1)v, v], if they buy guaranteed con-
tracts in period 1, they can get an impression no matter the supply of impressions is
QL or QH. Thus, we have P

i,1
win = P

󰀃
q > v−vi

v N
󰀄
= 1. Then their expected utilities

in period 1 are E(ui,1) = vi − p.

b) For advertisers with valuations in [(1 − α2)v, (1 − α1)v], only when the num-
ber of impressions is QH can they get an impression through guaranteed contracts.
Thus, for them, P

i,1
win = P

󰀃
q > v−vi

v N
󰀄
= 1

2 . And their expected utilities in period 1
are E(ui,1) =

1
2(vi − p).

c) For advertisers with valuations in [0, (1− α2)v), they have no chance to get an
impression through guaranteed contracts in both cases. Thus, their winning proba-
bility in period 1 is P

i,1
win = P

󰀃
q > v−vi

v
󰀄
= 0. Their expected utilities in period 1 are
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E(ui,1) = 0.

Similar to the analysis in the basic model, we take bn(vi) as advertiser i’s bid-
ding price in period 2. According to Lemma 2.5, advertiser i’s payment in period
2 will be very close to its bidding price. So if advertiser i can win an impression in
period 2 by bidding with bn(vi), its utility is

E(ui,2) = δa(vi − bn(vi)). (2.8)

As demonstrated in the basic model, an advertiser’s incentive to participate in
RTB rather than purchasing a guaranteed contract is driven by the possibility of
winning an impression in RTB at a price that yields a profit not less than buying a
contract at price p. Consequently, advertisers’ bidding strategy is dependent on the
price of guaranteed contracts.

At the commencement of the selling horizon, advertisers are aware of their val-
uations for an impression and observe the price p. For those advertisers with valua-
tions less than p, their utilities would be negative if they were to purchase a contract
in period 1. As a result, they will opt for RTB and bid truthfully, as outlined in
Lemma 2.1.

For the remaining advertisers, their decisions are contingent on the pricing of
guaranteed contracts. Therefore, we explore their behavioural patterns under vari-
ous pricing segments, which are encapsulated in the following proposition.

Proposition 2.7. Let v′1 = p−δa(1−α2)v
1−δa

, v′2 = 2p−δa(1−α2)v
2−δa

, v′3 = p−δa(1−α1)v
1−δa

, for advertis-
ers with vi > p, their behavioural modes contingent on the pricing of guaranteed contracts
are:

1. If p ∈
󰁫
0, (1 − α2)v

󰁬
:

(a) When vi ∈
󰀓

p, v
󰁬
, advertiser i will buy guaranteed contracts.

2. If p ∈
󰀓
(1 − α2)v, [1 − α1 − δa

2 (α2 − α1)]v
󰁬
:

(a) When vi ∈
󰀓

p, v′1 ∨ (1 − α1)v
󰁬
, advertiser i will join RTB and bn(vi) =

p−(1−δa)vi
δa

.

(b) When vi ∈
󰀓

v′1 ∨ (1 − α1)v, v
󰁬
, advertiser i will buy guaranteed contracts.

3. If p ∈
󰀓
[1 − α1 − δa

2 (α2 − α1)]v, (1 − δaα1)v
󰁬
:

(a) If α1 ≤ α2
2 ,

i. When vi ∈
󰀓

p, v′3 ∨ (1 − α1)v
󰁬
, advertiser i will join RTB and bn(vi) =

p−(1−δa)vi
δa

.
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ii. When vi ∈
󰀓

v′3 ∨ (1− α1)v, v′2 ∧ v
󰁬
, advertiser i will join RTB and bn(vi)=

2p−(2−δa)vi
δa

.

iii. When vi ∈
󰀓

v′2, v
󰁬

if v′2 ∧ v = v′2, advertiser i will buy guaranteed con-
tracts.

(b) If α1 > α2
2 ,

i. If p ∈
󰀓
[1 − α1 − δa

2 (α2 − α1)]v, [1 − α1 + (1 − δa)(α2 − α1)]v
󰁬
:

A. When vi ∈
󰀓

p, v′3 ∨ (1 − α1)v
󰁬
, advertiser i will join RTB and bn(vi)

= p−(1−δa)vi
δa

.

B. When vi ∈
󰀓

v′3 ∨ (1 − α1)v, v′2
󰁬
, advertiser i will join RTB and bn(vi)

= 2p−(2−δa)vi
δa

.

C. When vi ∈
󰀓

v′2, v
󰁬
, advertiser i will buy guaranteed contracts.

ii. If p ∈
󰀓
[1 − α1 + (1 − δa)(α2 − α1)]v, (1 − δaα1)v

󰁬
:

A. When vi ∈
󰀓

p, v′3
󰁬
, advertiser i will join RTB and bn(vi) =

p−(1−δa)vi
δa

.

B. When vi ∈
󰀓

v′3, v
󰁬
, advertiser i will join RTB and bn(vi) =

2p−(2−δa)vi
δa

.

4. If p ∈
󰀓
(1 − δaα1)v, v

󰁬
:

(a) When vi ∈
󰀓

p, v
󰁬
, advertiser i will join RTB and bn(vi) =

p−(1−δa)vi
δa

.

Proposition 2.7 reveals that the uncertain supply of impressions increases the
complexity of advertisers’ behaviours compared with Proposition 2.4 in the ba-
sic model. The pricing segments also depend on the variance between QL and
QH. Different advertisers follow different truncated bidding functions (2p−(2−δa)vi

δa

and p−(1−δa)vi
δa

) when the price of contracts is locating in specific segments. Adver-

tisers with higher valuations tend to explore a lower bidding price 2p−(2−δa)vi
δa

(<
p−(1−δa)vi

δa
) to seek a higher expected payback than that from guaranteed contracts

under some specific scenarios. However, a small part of top-valued advertisers still
want to secure impressions through guaranteed contracts when the price of guaran-
teed contracts is not too expensive.

2.5.2 The Publisher’s Optimal Decision Analysis

In theory, it is possible to derive the publisher’s optimal decision regarding the pric-
ing of guaranteed contracts, as well as its maximum revenue, in accordance with
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Proposition 2.7. However, the formulation of this solution would be overly cumber-
some to present explicitly. Instead, we provide a graphical illustration that depicts
the varying composition of consumers for impressions under the publisher’s opti-
mal pricing strategy for guaranteed contracts. This illustration takes into account
variations in the parameters, namely α1, α2, δ1, δ2.

Figure 2.4: Composition for consumers of impressions in different cases under un-
certain supply

In Figure 2.4, the subplots are organised to represent different scenarios. The
first row of subplots shares the same standard deviation of α1, α2, with increasing
means. The second row maintains the same mean for α1, α2, but with decreasing
standard deviations. In the last row, both the means and standard deviations are in-
creasing across the subplots. The figure is segmented into three distinct zones:

• Type I: This region represents scenarios where all impressions are sold to ad-
vertisers through guaranteed contracts.

• Type II: This zone signifies that some impressions are consumed through guar-
anteed contracts, while the remaining impressions are sold in RTB.
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• Type III: In this area, all advertisers join the real-time bidding (RTB), and no
impressions are sold through guaranteed contracts.

The figure reveals interesting dynamics in the publisher’s optimal pricing strat-
egy. When both α1, α2 are small, a wide range of δa and δp leads to all impressions
being sold through guaranteed contracts (Type I). As the mean of α1, α2 increases,
the Type I zone shrinks, and the Type II zone expands, revealing that the publisher
leverages the RTB when the mean scarcity of impressions decreases. If the mean
is held constant and the standard deviation decreases, the Type I zone shifts to the
left, becoming longer and narrower. This implies that advertisers prefer guaranteed
contracts more when the variance of the number of impressions increases.

This visualisation provides valuable insights into how the publisher’s pricing
strategy adapts to different levels of uncertainty and market conditions. When com-
pared with Figure 2.3, the purple zone diminishes when the mean scarcity of impres-
sions aligns with that in the basic model, while the green zone is more expansive in
nearly all scenarios. This phenomenon indicates the efficacy of the dual-channel ap-
proach, as it enables the publisher to mitigate the negative effects of supply uncer-
tainty. This strategy dominates scenarios where only one single channel is occupied,
reflecting a more resilient and adaptive response to market fluctuations.

2.6 Extension 2: Advertiser Segmentation

Publishers who sell impressions via dual channels seek more revenue by imple-
menting various strategies. One such strategy is customer segmentation, which is
a strategic approach that involves dividing a business’s customer base into distinct
groups based on their specific characteristics, preferences, or behaviours. The pri-
mary goal of customer segmentation is to optimise revenue by tailoring pricing,
marketing, and customer service strategies to better target and serve each segment
(Sari et al. 2016).

This extension aims to investigate the effects of customer segmentation on a
publisher’s decision-making process and subsequent revenue generation. By ex-
amining the effect of the division of advertisers and impressions into two or more
segments evenly, we aim to provide insights into the optimal pricing strategies and
the conditions under which customer segmentation is most beneficial. Additionally,
the impact of the scarcity of impressions and discount factors on the publisher’s
optimal revenue will be explored. The results derived from this extension serve as
a valuable resource for publishers seeking to maximise their revenue through the
effective implementation of customer segmentation strategies in the online adver-
tising landscape.
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2.6.1 Two Segments

At first, we explore the effect of dividing advertisers and impressions into two seg-
ments. In the first segment, there are N

2 advertisers with valuations in [0, v
2 ]. The left

N
2 advertisers are in the second segment. Their valuations are from v

2 to v. Q impres-
sions are assigned to these two segments evenly, i.e., Q

2 impressions to each segment.
Other settings and parameters are kept the same as that in the basic model. In order
to get the general form of the publisher’s revenue in each segment, we first pro-
vide the publisher’s revenue function when advertisers’ valuations are uniformly
distributed in [vl, vh].

Lemma 2.8. If there are N advertisers with valuation uniformly distributed in [vl, vh].
There are Q̂ impressions available. The discount factors for advertisers’ utilities in period 2
is δa, for the publisher’s revenue from period 2 is δp. Denote the price of guaranteed contracts
as p. The publisher’s revenue can be given as:

Π(p) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Q̂p, p ∈ [vl , vt1)

(N − δaQ̂)vh + δaQ̂vl − Np
(1 − δa)(vh − vl)

p +
δp

2

p2 − v2
t1

(1 − δa)(vh − vl)
N, p ∈ [vt1, vt2)

δp

2

󰀻
󰀿

󰀽

󰀳

󰁃 p − (1 − δa)vh

δa
+ p

󰀴

󰁄 vh − p
vh − vl

N +
p2 − v2

t1

vh − vl
N

󰀼
󰁀

󰀾 , p ∈ [vt2, vh)

δp

2

v2
h − v2

t1

vh − vl
N, p ∈ [vh,+∞)

, (2.9)

in which vt1 =
N − Q̂

N
vh +

Q̂
N

vl, vt2 =
N − δaQ̂

N
vh +

δaQ̂
N

vl.

By substituting Q̂ = Q
2 , vl = 0, vh = v

2 and Q̂ = Q
2 , vl =

v
2 , vh = v into (2.9), re-

spectively, we can get the publisher’s revenue function in both two segments. Con-
sequently, the publisher’s optimal pricing and maximum revenue in each segment
can be obtained.

Accordingly, we can summarise the publisher’s optimal revenue when dividing
advertisers and impressions into two segments evenly.

Proposition 2.9. When advertisers and impressions are evenly grouped into two subsets,
the publisher’s optimal decisions and revenue are shown in the following:

1. When 1 < s < 2, if
󰀓

δa ∈ (2− s, s
2s−1 ] & δp ∈ [0, δa+s−2

s−1 ]
󰀔
|
󰀓

δa ∈ ( s
2s−1 , 1] & δp ∈

[0, 2(s−1)
2s−1 ]

󰀔
; when s ≥ 2, if

󰀓
δa ∈ (0, s

2s−1 ] & δp ∈ [0, δa+s−2
s−1 ]

󰀔
|
󰀓

δa ∈ ( s
2s−1 , 1] &

δp ∈ [0, 2(s−1)
2s−1 ]

󰀔
, the optimal solution is

p∗1 =
N − Q

2N
v, p∗2 =

2N − Q
2N

v;

33



the corresponding maximum revenue is

Π(p∗) =
3NQ − 2Q2

4N
v.

2. When s = 1, if δp ∈ [0, 1 −
√

δa]; when 1 < s < 2, if
󰀓

δa ∈ [0, 2 − s] & δp ∈

[0, 1 −
󰁴

δa(1−δa)
s2−2δas+δa

]
󰀔
|
󰀓

δa ∈ (2 − s, s
2s−1 ] & δp ∈ ( δa+s−2

s−1 , 1 −
󰁴

δa(1−δa)
s2−2δas+δa

]
󰀔

;

when s ≥ 2, if
󰀓

δa ∈ [0, s
2s−1 ] & δp ∈ ( δa+s−2

s−1 , 1 −
󰁴

δa(1−δa)
s2−2δas+δa

]
󰀔

, the optimal
solution is

p∗1 =
N − δaQ

2(2 − δp)N
v, p∗2 =

2N − δaQ
2(2 − δp)N

v;

the corresponding maximum revenue is

Π(p∗) =
5(1 − δa)2N2 − 3(2δ2

p − 4δp + 2δa)NQ + 2(δ2
a + δ2

p − 2δp)Q2

8(1 − δa)(2 − δp)

v
N

.

3. When s = 1, if δp ∈ (1 −
√

δa, 1]; when s > 1, if
󰀓

δa ∈ (0, s
2s−1 ] & δp ∈ (1 −

󰁴
δa(1−δa)

s2−2δas+δa
, 1]

󰀔
|
󰀓

δa ∈ ( s
2s−1 , 1] & δp ∈ (2(s−1)

2s−1 , 1]
󰀔

, the optimal solution is

p∗1 =
v
2

, p∗2 = v;

the corresponding maximum revenue is

Π(p∗) =
δp

2
·
(3N − Q)Q

2N
v.

There are three cases of equilibrium results in Proposition 2.9. The conditions of
parameters in every case are the same in the two different segments. Moreover, un-
der certain combinations of parameters, the equilibrium modes from both segments
are the same. Specifically, when p∗1 = N−Q

2N v and p∗2 = 2N−Q
2N v, then impressions in

both segments are consumed by guaranteed contracts buyers. When p∗1 = N−δaQ
2(2−δp)N v

and p∗2 = 2N−δaQ
2(2−δp)N v, publisher allocate impressions not only to guaranteed contracts

but also to RTB. When p∗1 = v
2 and p∗2 = v, all advertisers in these two segments join

RTB and bid truthfully. Besides, the conditions of parameters in each case are the
same as that in Theorem 2.6, which makes it convenient to compare the results to
that in Theorem 2.6.

Corollary 2.10. Comparing results from two segmentation solution from Proposition 2.9
and the no segmentation solution from Theorem 2.6 in the basic model, we have:

1. When s ≥ 2, the publisher does not need to implement customer segmentation.
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2. When s < 2:

(a) If 2δa + δp ≥ 2:

i. if s >
2 − δp

2(1 − δp)
, the publisher should take the two segmentation solution.

ii. if s ≤
2 − δp

2(1 − δp)
, the publisher should not divide advertisers and impres-

sions.

(b) If 2δa + δp < 2:

i. if s >
2 − δa − δp

1 − δp
, the publisher should take the two segmentation solution.

ii. if s ≤
2 − δa − δp

1 − δp
,

A. if δa > (1 − δp)2 and (δa +

√
δaδp(1−δa)(2−δp)

1−δp
) < s ≤

2 − δa − δp

1 − δp
or

if δa ≤ (1 − δp)2, and if

5(1 − δa)2N2 − 3(2δ2
p − 4δp + 2δa)NQ + 2(δ2

a + δ2
p − 2δp)Q2

8(1 − δa)(2 − δp)

v
N

>
(1 − δa)2N2 − (2δ2

p − 4δp + 2δa)NQ + (δ2
a + δ2

p − 2δp)Q2

2(1 − δa)(2 − δp)

v
N

the publisher should take customer segmentation.

B. if δa > (1 − δp)2 and s ≤ (δa +

√
δaδp(1−δa)(2−δp)

1−δp
), the publisher

should not divide advertisers and impressions.

Figure 2.5 visualises the comparison results in this Corollary. The lower part
represents scenarios where it is more optimal to group advertisers into two seg-
ments, depending on the location of δa and δp. Conversely, the upper zone indicates
that no segmentation is preferable under corresponding discount factors. As Figure
2.5 illustrates, when s ≥ 2 (i.e., the demand for impressions is strong), the publisher
does not need to implement a two-segmentation strategy. Only when s < 2 and the
discount factor of the publisher does not roughly exceed a variable upper bound
does the two-segmentation strategy outperform the basic one. Furthermore, this
boundary shifts downward as the scarcity of impressions increases.
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Figure 2.5: Two segmentation or no segmentation under different cases

2.6.2 More Segments

Due to the complexity of obtaining closed-form results under multiple segments,
we numerically compare the basic model to models involving more segments. Fig-
ure 2.6 illustrates how the optimal revenue for the publisher changes as the scarcity
of impressions increases. From this figure, it is evident that the maximum revenue
obtained from customer segmentation surpasses that of the basic model when s is
sufficiently close to one. As s increases, the solution that pools all advertisers and
impressions together becomes more profitable than solutions of implementing a seg-
mentation strategy.

Figure 2.7 demonstrates how the publisher’s optimal choice of segmentation
varies when δa and δp change. When s is close to one, and δp is also close to one,
the publisher should opt for the non-segmentation solution to maximise its revenue.
For the cases in the leftmost region of δa and δp, the solution involving the most seg-
ments generates the highest revenue, as evident from the plots in the first row. If s
is two or greater, the non-segmentation solution is applicable to all cases of δa and
δp. These observations are similar to what is revealed in Figure 2.5. By further look-
ing into the differences between Figure 2.5 and Figure 2.7, there are two interesting
findings:

1. In our experiments, the optimal strategies are either the no-segmentation or
the most-segmentation scheme (i.e., the scheme where the number of segments
is eight). This phenomenon may indicate that the publisher only needs to com-
pare unified pricing (i.e., no segmentation) and totally personalised pricing
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Figure 2.6: The effect of customer segmentation on the publisher’s optimal revenue

when implementing the advertiser segmentation strategy. However, the lim-
itation of this extension is that we cannot obtain the results of personalised
pricing due to the calculation complexity.

2. The boundaries in Figure 2.7 that divide the two strategies in the former five
subplots climb upward slightly compared with those in Figure 2.5. This means
that the strategy containing eight segments dominates the no-segmentation
strategy in some cases where the no-segmentation strategy was better than the
strategy of two-segmentation.

This extension offers crucial insights for publishers when considering adopt-
ing customer segmentation. It reveals that this strategy can significantly enhance
revenue when the number of impressions closely approaches the number of ad-
vertisers. In such scenarios, implementing a customer segmentation strategy can
lead to a more effective allocation of impressions and optimised revenue genera-
tion. However, when the scarcity of impressions is high, the benefits of customer
segmentation become less pronounced. In these cases, it may not be advantageous
to implement segmentation, as the valuations of advertisers that can win an impres-
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Figure 2.7: The optimal segmentation strategy under different cases

sion concentrate at the top. Moreover, the research underscores the importance of
considering δa and δp values when determining optimal solutions, as they can influ-
ence the efficacy of different strategies. Besides, the limitation of this extension also
inspires future research about exploring the personalised pricing of guaranteed con-
tracts in online display advertising markets. In summary, these findings can guide
publishers in making informed decisions about customer (advertiser) segmentation
to maximise revenue potential.

2.7 Extension 3: Different Valuation Distributions

To derive the closed-form solution of the basic model, we simplify the distribution of
advertisers’ valuations to impressions as uniform. However, this assumption may
not fully capture the complexities of real-world scenarios, where the distribution of
advertisers’ valuations is often diverse. Recognising this limitation, we extend our
analysis to more general cases to ensure the robustness and applicability of our re-
sults. In this extension, we check the robustness of our findings derived from the
basic model by considering general distributions of advertisers’ valuations on both
bounded and unbounded support. We then numerically demonstrate the compo-
sition for consumers of impressions under different valuation distributions. These
numerical experiments further validate our theoretical findings and provide con-
crete examples of how our model can be applied in various market settings.
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2.7.1 Models under General Distributions

In this section, we present the formulation of the publisher’s revenue function with-
out specifying the distribution of advertisers’ valuations for homogeneous impres-
sions. We use f (·) and F(·) to denote the probability density function (p.d. f .) and
cumulative distribution function (c.d. f .) of the distribution, respectively. To capture
the feature that there are always some advertisers who are not interested in a specific
impression, especially when there is a large basis of advertisers, we set the support
of the distribution starting from 0.

Bounded support distribution

In this case, the range of advertisers’ potential valuation for an impression ranges
from [0, v]. Thus, we have

F(0) = 0, F(v) = 1.

Similar to Proposition 2.4, we can give the publisher’s revenue function as fol-
lows:

Π(p) =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

Qp, p ∈ [0, v(1))󰁕 v
v′ Np f (v)dv + δpψ(v′), p ∈ [v(1), v(2))

δpψ(v), p ∈ [v(2), v)
δp

󰁕 v
v(1)

Nv f (v)dv, p ∈ [v,+∞)

, (2.10)

in which we define

ψ(τ) =
󰁝 p

v(1)
Nb(v) f (v)dv +

󰁝 τ

p
Nb(v) f (v)dv, b(v) =

(v ∧ p)− (1 − δa)v
δa

,

and

v′ =
p − δav(1)

1 − δa
, v(1) = F−1

󰀕
N − Q

N

󰀖
, v(2) = (1 − δa)v + δav(1).

Unbounded support distribution

Because the distribution of advertisers’ valuation to impressions is unbounded, for
any large price pL of guaranteed contracts, there will be some advertisers with val-

uations greater than
pL − δaF−1

󰀓
N−Q

N

󰀔

1 − δa
will buy guaranteed contracts. Therefore,

the cases in which all advertisers participate in RTB will not exist.
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Consequently, if v ∈ [0,+∞), we have the publisher’s revenue function be-
low:

Π(p) =

󰀫
Qp, p ∈ [0, v(1))󰁕 +∞

v′ Np f (v)dv + δpψ(v′), p ∈ [v(1),+∞)
. (2.11)

2.7.2 Results on Different Distributions

We test our results under different distributions, including truncated log-normal
and practical distributions derived from industrial data. The industrial data for dis-
play advertising are obtained from an ad platform in the U.K. These data include
various details such as the ID of advertisers, publisher’s ID, the time of bidding, the
bidding price, the final payment of the advertiser, and other related information.
All the data were generated from real-time bidding under the second-price auction.
Thus, we extract advertisers’ bidding prices as their valuations for the auctioned
impressions. This approximately aligns with our assumption of homogeneous im-
pressions. To maintain consistency with this assumption, we filtered bidding prices
to the same advertising slot within a half-hour time interval.

Figure 2.8 illustrates the histogram of advertisers’ valuations extracted from a
specified segment of this dataset. The histogram demonstrates a practical distribu-
tion of advertisers’ valuations that cannot be well captured by elementary functions.
However, this distribution still exhibits a widely observed approximate reverse U-
shape with a slight right skew. This pattern illustrates that most advertisers par-
ticipating in this campaign have high to medium valuations for impressions. Fur-
thermore, we introduce a truncated log-normal distribution to our test, which is
typically left-skewed, to compare equilibrium outcomes with those under uniform
distribution in the basic model.

Figure 2.9 represents these comparisons, with each column in the subplots rep-
resenting a type of distribution. The scarcity of impressions s = 1.5 in the upper
row and s = 2 in the lower row of the subplots.

Figure 2.9 uncovers some interesting insights. On one hand, the pattern of equi-
librium outcomes is similar across different distributions. Specifically:

• When both δa and δp are close to one, the optimal prices under different distri-
butions are high, leading all advertisers to RTB.

• When δa is small and δp is high, especially when the scarcity of impressions is
also high, the publisher should set prices to engage advertisers in both chan-
nels.
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Figure 2.8: Histogram of advertisers’ valuations from industrial data

• When δp is small and the scarcity is high, the publisher is more likely to set a
lower guaranteed contract price to ensure that all impressions are consumed
by contract buyers.

On the other hand, under the same scarcity level of impressions, equilibrium out-
comes in both truncated log-normal and the practical distributions of valuations are
more likely to lead to all impressions being consumed by guaranteed contracts than
that in the uniform distribution.

These observations not only indicate the robustness of our results across differ-
ent distributions of advertisers’ valuations but also contribute to the understanding
of the distribution of advertisers’ valuations and the corresponding pricing strate-
gies. Consequently, these insights provide valuable guidance for publishers seek-
ing to optimise their revenue across various market conditions. By recognising the
nuances in advertisers’ valuation distributions and adapting pricing strategies ac-
cordingly, publishers can make more informed decisions that align with the spe-
cific characteristics of their market, thereby enhancing their ability to maximise rev-
enue.

2.8 Conclusion

In this study, we investigate the impact of guaranteed contracts on advertisers’ be-
haviours, advertisers’ choices across dual channels, and their bidding strategy in
the Real-Time Bidding (RTB) system. We discovered a threshold property of adver-
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Figure 2.9: Composition for consumers of impressions in different cases

tisers’ choice and found that the truth-telling strategy is not universally applicable
to all advertisers in RTB. Instead, a mixed truth-telling strategy is more representa-
tive of advertisers’ bidding behaviours. We also found that customer segmentation
is not always beneficial and that the publisher tends to leverage the combination
of dual channels to mitigate uncertainty in the supply of impressions. Finally, we
show the robustness of our results under different distributions of advertisers’ val-
uations.

This study contributes to the literature in three significant ways. First, it intro-
duces a new perspective on advertisers’ decision-making in dual channels, revealing
a threshold-type strategy that deepens our understanding of strategic purchasing
decisions in online display advertising (e.g. Chen et al. 2020 and Cohen et al. 2023).
Second, it explores the interaction between guaranteed contracts and RTB in second-
price auctions, showing that the presence of guaranteed contracts can influence an
advertiser’s bid limited to the price of the contract. This finding challenges the con-
ventional wisdom on bidding strategy in second-price RTB with a fixed price chan-
nel (e.g. Sayedi 2018 and Cohen et al. 2023). Finally, the study suggests that pub-
lishers can increase their revenues by strategically combining guaranteed contracts
and RTB, particularly in situations with a high supply-to-demand ratio and lower
discount factors for both the publisher and advertisers. These insights not only en-
hance academic knowledge of revenue management in online advertising but also
offer practical advice for publishers seeking to maximise their revenues.

There are still several limitations in this study and hence some valuable future
topics. First, we assume that advertisers have a unit demand of impressions. Future
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research can relax this constraint and then introduce budgets of advertisers. Specif-
ically, it is worthwhile to investigate how the budget constraints affect advertisers’
strategic behaviours across the dual channels. Second, we do not cover the allo-
cation of specific impressions to advertisers because of the assumption of homoge-
neous impressions. When the differences in advertisers’ preferences for impressions
are captured, the allocation process becomes critical. Future work can also study the
timing problem of deciding the interval between the dual channels, which may have
an influence on the discount factors for both the publisher and advertisers.
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3 Study 2: Impact of Additional Ad-
vertisers’ Arrivals on Selling Impres-
sions via Dual Channels

Abstract

In the online display advertising market, publishers host and sell advertising im-
pressions to advertisers for revenue. The primary selling channels are guaranteed
contracts and real-time bidding (RTB), with the former providing a fixed revenue
stream through pre-sold impressions, and the latter is triggered by the realisation
of impressions. In this study, we consider a scenario in which publishers have an
option to introduce more advertisers between the two selling channels. Specifically,
the selling horizon consists of three periods. In the first and third periods, the guar-
anteed contracts and RTB channels are exclusively activated, respectively. In the
second period, the publisher decides whether or not to recruit more advertisers to
RTB. There is an original batch of advertisers who enter this campaign at the begin-
ning who are unaware of the second period and must choose between the guaran-
teed and non-guaranteed channels because of unit demand. Next, we extend our
basic model to an information transparency setting, under which the publisher’s
plan of attracting more advertisers becomes known to the original advertisers. This
paper aims to understand the interaction and impact of the additional advertisers
and dual-selling channels on the decisions of both the publisher and the original
advertisers (under the information transparency setting) in online advertising mar-
kets. The study finds that the optimal strategy for recruiting additional advertisers
is influenced by various market parameters such as impression scarcity, discount
factors, and recruitment costs. When the original advertisers are aware of the pub-
lisher’s plans, the applicability of dual selling channels expands to cover a broader
range of scenarios, although other strategic considerations almost remain consis-
tent. These findings offer publishers nuanced strategies for navigating the complex
online advertising landscape.
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Keywords: additional arrival advertisers, strategic behaviour, guaranteed con-
tracts, real-time bidding

3.1 Introduction

The online display advertising market has experienced exponential growth in recent
years, becoming an indispensable component of the contemporary digital economy
(IAB 2022). The ecosystem of this market comprises various entities, including pub-
lishers, advertisers, and ad intermediaries such as Supply Side Platforms (SSPs), ad
networks, ad exchanges, and Demand Side Platforms (DSPs) (Liu and Chao 2020).
These intermediaries play a pivotal role in bridging the gap between publishers and
advertisers while providing them with essential technological services.

The emergence of intermediaries in the online display advertising market has
significantly expanded the range of options available to publishers, enhancing their
ability to manage and monetise ad inventory. This expansion manifests in two key
aspects: diverse selling channels and access to a broader pool of advertisers. On one
hand, publishers can strategically allocate their ad inventory across multiple chan-
nels, such as guaranteed contracts and Real-Time Bidding (RTB), to maximise rev-
enue and optimise campaign performance. For instance, certain ad exchanges, like
Google AdX, allow publishers to employ both guaranteed contracts and RTB simul-
taneously (Google Ad Manager Help 2023a). Guaranteed contracts enable publish-
ers to secure a fixed revenue stream by selling a predetermined number of impres-
sions at a fixed price before the impressions are realised. Conversely, RTB auctions
facilitate dynamic pricing of impressions based on real-time demand, potentially
yielding higher revenue for publishers’ ad inventory. On another hand, the wide
array of SSPs, ad networks, and ad exchanges available in the market provides pub-
lishers with the flexibility to reach a larger pool of advertisers, thereby enhancing the
competitiveness of their selling campaigns. For example, SSPs like Rubicon Project
or PubMatic offer automated tools that help publishers manage their ad inventory
and maximise revenue by connecting them with a vast network of potential adver-
tisers (Sharethrough 2015). Google Ad Manager promotes Open Bidding to help
publishers facilitate with other third-party exchanges to compete for publishers’ in-
ventory (Google Ad Manager Help 2023b). By strategically investing in additional
traffic through these platforms, publishers can increase the reach and effectiveness
of their campaigns, leading to higher revenue (Choi et al. 2020). This ability to lever-
age the potential of advertising slots and adapt to the dynamic online advertising
landscape marks a significant evolution in the industry.

However, the introduction of a broader advertiser base between the selling of
guaranteed contracts and RTB introduces new complexities. Publishers must now
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navigate the interplay between the two channels (i.e., guaranteed contracts and
RTB) while considering the dynamic behaviours of both the original advertisers and
the additional arrival advertisers. Such complexities not only pose operational chal-
lenges but also open up new avenues for academic inquiry. Therefore, this research
is motivated by two pressing questions: a) Should publishers attract additional ad-
vertisers between the guaranteed and RTB channels, and if so, how? b) How does
the influx of new advertisers influence the bidding and contract buying behaviours
of the original advertisers, and whether such influence varies in scenarios when the
original advertisers are aware or unaware of the new entrants? Addressing these
questions is crucial for both industry practitioners aiming for more effective mon-
etisation strategies and academics seeking to enrich the current understanding of
online advertising ecosystems.

In this study, we develop models that capture the interplay of advertisers’ de-
cisions between guaranteed contracts and RTB, with the publisher’s problem of in-
troducing additional advertisers to RTB after the close of guaranteed contracts. Our
model assumes that a publisher sells homogeneous impressions over a three-period
selling horizon. In the first and third periods, the channels of guaranteed contracts
and RTB are activated exclusively. In the second period, the publisher considers
whether to invest in attracting more advertisers. Therefore, our model involves two
batches of advertisers: the original batch of advertisers in period 1 and the extra
batch of advertisers in period 2. For revenue and utility from RTB in the third pe-
riod, we introduce discount factors for both the publisher and the original batch of
advertisers. We assume that the additional advertisers enter this campaign closely
before the start of RTB. Thus, there is no discount effect for the additional advertis-
ers’ utility from RTB. We also incorporate different information availability in this
paper, namely whether the original advertisers know the plan of the publisher in
period 2 or not. In the basic model, we consider information opacity where the orig-
inal advertisers are unaware that the publisher will attract advertisers in period 2.
The closed-form solution of equilibrium under these settings is obtained. Accord-
ing to the equilibrium solutions, we analyse how different parameters (e.g. scarcity
of impressions and discount factors) affect the publisher’s decisions of investing in
more advertisers. Subsequently, we explore the case where the original advertisers
know that the publisher may introduce more advertisers in period 2 with a fixed
unit cost. This cost is known to both publishers and advertisers. However, they do
not know the exact number of the additional advertisers that the publisher intends
to hire. We show the impact of the additional advertisers on the original advertisers’
behaviours and numerically demonstrate the equilibrium results under different pa-
rameters.

The results reveal that the optimal strategy for the recruitment of additional ad-
vertisers is highly contingent on several market parameters, including the scarcity
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of impressions, both the publisher’s and the original advertisers’ discount factors
of yields from RTB, and the unit cost of recruiting additional advertisers. When the
original batch of advertisers is unaware of the publisher’s recruitment plans for the
second period, the findings suggest that if the scarcity of impressions is high, the
publisher should set the price of guaranteed contracts such that all impressions are
sold through guaranteed contracts, irrespective of other market conditions. How-
ever, if the publisher is contemplating recruiting additional advertisers, a careful
cost-benefit analysis is imperative. Specifically, recruiting additional advertisers be-
comes profitable only when both the scarcity of impressions and the cost of attract-
ing these advertisers are not prohibitively high. Moreover, the utility of employing
dual selling channels—guaranteed contracts and RTB—becomes particularly signif-
icant when both discount factors are low. Interestingly, when the original batch of
advertisers is aware of the publisher’s recruitment plans, the applicability of dual
selling channels expands to cover a broader range of scenarios compared to when
they are unaware. Aside from this, the other strategic considerations almost re-
main consistent with the case where there is information opacity regarding the pub-
lisher’s recruitment plans. These insights offer nuanced guidance for publishers
navigating the complex landscape of online advertising. They highlight the need
for strategic flexibility and the importance of considering multiple market parame-
ters in decision-making.

Our research contributes to the existing literature by providing a comprehen-
sive analysis of the seller’s strategic investment in importing more demands during
the interval of dual channels. Firstly, our models fill the gap in research on publish-
ers’ optimal decision of attracting more advertisers to existing selling campaigns
with dual channels available (Sayedi 2018, Cohen et al. 2023). Theoretically, we ex-
tract a cost-benefit indicator to evaluate the value of one potential additional adver-
tiser through the closed-form solution. Along with other parameters, this indicator
can guide the publisher’s decision of introducing additional advertisers under var-
ious scenarios. Secondly, we further complement the understanding of advertisers’
strategic behaviour in online display markets by uncovering the impact of the addi-
tional arrival advertisers on their strategic choices between dual channels, and also
their bids in RTB. As far as we know, no studies focus on former arrival advertis-
ers taking the behaviour of future arrival advertisers into consideration. However,
contrary to private marketplaces in which merely priority advertisers participate,
advertisers not only need to consider existing opponent advertisers’ actions, but
also need to have fair expectations for the additional arrival advertisers. Lastly, our
research indicates publishers need to consider not only the cost and revenue from
new arrival advertisers, but also the alteration of the original advertisers’ decisions.
It provides publishers with new managerial insights when considering recruiting
new advertisers between different selling periods.
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The remainder of this paper is organised as follows. Section §3.2 provides a lit-
erature review related to this research. Section §3.3 discusses the model and closed-
form solutions when the original advertisers do not know that the publisher will
recruit extra advertisers in period 2. Section §3.4 demonstrates the model and nu-
merical results under the case that the original advertisers know there will be extra
advertisers in period 2. The conclusion and some future directions are stated in the
last section. Proofs are available in Appendix A2.

3.2 Literature Review

This study intersects with three main research streams: dual-channel selling of on-
line display advertising, strategic consumer (advertiser) behaviour, and the impact
of marketing investment on a seller’s revenue. While each stream has been exten-
sively explored, their confluence presents blank that this research aims to navigate.
To the best of our knowledge, no existing research has simultaneously considered
these settings, presenting a unique opportunity for this study to contribute novel
insights.

A growing body of research has emerged to investigate selling display adver-
tising impressions through dual channels. This stream primarily focuses on the
problem of impression allocation between guaranteed contracts (GC) and real-time
bidding (RTB) from the publisher’s perspective. Various allocation solutions and
policies have been proposed through algorithm design (Li et al. 2016, Shen 2018,
Rhuggenaath et al. 2019, Wu et al. 2021), and stochastic control models using dy-
namic programming approaches (Roels and Fridgeirsdottir 2009, Salomatin et al.
2012, Balseiro et al. 2014, Chen 2017). Other researchers have centred on the pric-
ing problem of guaranteed contracts under the dual-channel selling scenario (Chen
et al. 2014, Chen 2016, Chen et al. 2020). However, these studies have not fully ad-
dressed why or under what conditions one selling channel should be chosen over
the other, as they did not consider advertisers’ strategic behaviour.

There is extensive research on strategic consumer behaviour, especially in the
field of revenue management. However, most of these studies focus on the inter-
play of decisions between sellers and consumers, neglecting the mutual effect of
consumers’ actions on each other. For example, Su (2007), Aviv and Pazgal (2008)
and Papanastasiou and Savva (2017) modelled consumers’ utilities in terms of the
arrival time. Liu and Van Ryzin (2008), Prasad et al. (2011) and Du et al. (2015)
considered risk preference in consumers’ utilities. Under the setting of stochastic
arrival consumers, few papers add the effect of future arrival consumers’ behaviour
to former arrival consumers’ utilities in case of a scarce supply of selling objects. El-
maghraby et al. (2009) assumed one single object sold to Poisson arrival consumers

49



with the same valuation. The selling horizon consists of two periods, with an ad-
vance selling period and a spot selling period. Consumers who arrive earlier in the
advance period evaluate whether they can get this object in the spot period. They
must consider the behaviour of subsequent customers who may arrive later. Cor-
rea et al. (2016) and Zhang et al. (2021) also add a factor that reflects the advanced
buyer’s probability to get an object into their utility functions. Nevertheless, the sig-
nificant difference between our research and these papers is that the arrival of the
additional buyers is exogenous in their settings. Specifically, in this study, the seller
needs to pay a unit cost to attract one additional buyer, which is related to papers
about marketing efforts.

Literature on marketing efforts mainly focuses on the investments and perfor-
mances of generic advertising and brand advertising in the duopoly and oligopoly
competition markets. They proposed a differential game theory approach and statis-
tical model to capture the dynamics and to address the problems under both infor-
mation transparency and opacity settings (Bass et al. 2005, Isariyawongse et al. 2007,
Qi et al. 2008, Tchumtchoua and Cotterill 2010, Ma et al. 2021). Mukhopadhyay et al.
(2009) examined a contract design problem from the perspective of a manufacturer
who relies on a sales agent for selling the product, to inspire the agent’s motivation
for marketing efforts. This type of advertising is called cooperative advertising (Do-
raiswamy et al. 1979, Bergen and John 1997). Ma et al. (2013) focused on a two-stage
supply chain model and examined the players’ different investments in cooperative
advertising and the corresponding consequences on marketing performance. Fur-
ther, they considered three different supply chain structures from the angle of game
theory: manufacturer Stackelberg, retailer Stackelberg, and vertical Nash. Karray
et al. (2022) investigated the manufacturer’s problem of optimising the investments
in cooperative advertising and own (brand) advertising. They characterised equi-
librium solutions for four advertising scenarios for the manufacturer, ranging from
no investment in any advertising activity to undertaking their own advertising and
supporting cooperative advertising simultaneously. However, these studies often
overlook the influence of marketing efforts on existing consumers’ choices and the
resultant effects on seller’s revenue. Our research seeks to bridge this gap by exam-
ining how marketing investments to attract new advertisers influence the behaviour
of existing advertisers and the overall revenue dynamics.

In this study, we aim to bridge this gap by providing a comprehensive analy-
sis of selling online display advertising to strategic consumers (advertisers) through
two selling channels respectively available in two periods, with the flexibility for the
seller (publisher) to attract additional advertisers between the two selling channels.
Unlike existing literature, we not only take future arrival advertisers’ behaviour into
account when considering the original advertisers’ strategic decisions, but also the
trade-off between revenue and cost for the publisher of attracting additional de-
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mands, and its impact on the original advertisers’ behaviours. These complex dy-
namics are not explored by existing studies.

3.3 Information Opacity with Additional Advertisers

3.3.1 Model Settings

Similar to study 1, we consider a scenario where a publisher sells Q homogeneous
impressions to advertisers via two channels: guaranteed contracts and RTB. The
homogeneity of impressions can be approximated in reality by focusing on a spe-
cific group of advertisers with similar attributes. Guaranteed contracts are sold at
a fixed price before impressions are realised, i.e., before visitors browse the pub-
lisher’s webpage. In contrast, each RTB event is triggered when a visitor clicks on
the website. With the aid of statistical learning, the publisher can accurately esti-
mate the number of future impressions during a given horizon. Therefore, we take
the number of Q impressions as given in this study.

The selling horizon comprises three periods, named as period 1, 2, and 3, re-
spectively. Period 1 and 2 are planned before the impressions are realised, and pe-
riod 3 is the interval that these impressions are generated. Specifically, the selling of
guaranteed contracts for future impressions occurs in period 1. At the beginning of
this period, the publisher announces the price p of a contract for one impression to
N advertisers. These advertisers decide whether to buy a guaranteed contract in this
period or join RTB in period 3 to maximise their expected utilities. These advertisers
are committed to the campaign and will not leave without securing an impression
until the end of the selling horizon. For instance, advertisers who have previously
achieved good advertising performance through this publisher’s webpage may fol-
low the release of impressions from this page. Alternatively, some advertisers may
be attracted by the targeting attributes of potential visitors from these impressions.
At the end of period 1, the guaranteed contracts channel closes. To simplify the
problem, we avoid allocating impressions between contracts and RTB by randomly
and firstly assigning impressions to guaranteed contract buyers, with the remaining
impressions being released to the spot markets.

In period 2, the publisher can recruit more advertisers to join RTB by broad-
casting its advertising opportunities to various intermediaries. For convenience, we
refer to the N advertisers from period 1 as the original batch of advertisers and the
advertisers introduced in period 2 as the extra/additional advertisers. We assume
that every c cost will attract one extra advertiser. Thus, if the publisher decides to
introduce x extra advertisers in this period, it incurs cx fee. Finally, advertisers from
the original batch who did not buy a contract in period 1 and extra advertisers from
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period 2 will join RTB to compete for the remaining impressions in period 3. RTBs
in period 3 are organised under the widely used second-price rule.

We assume that for advertisers either from period 1 or period 2, their valuations
for all homogeneous impressions are the same and are uniformly independently
identically distributed on [0, v]. All advertisers have a unit demand for impressions.
Then, advertisers who joined in period 1 should decide whether to buy a guaranteed
contract or to participate in RTB later by comparing the expected utilities from the
two channels. Note that the publisher does not have to inform advertisers in the first
period that they may introduce more advertisers in period 2. Then we maintain the
information opacity that the original batch of advertisers have no knowledge about
the publisher’s advertising plan in period 2.

The publisher’s revenue from guaranteed contracts is obtained instantly and
can be controlled by the pricing. However, they need to wait until period 3 to get
the revenue from RTB. And there also contains more uncertainty of revenue from
auctions. Because the payments of advertisers in these second-price auctions are
dependent on other advertisers’ bidding prices, which is out of the publisher’s con-
trol. Thus, we introduce a discount factor, δp, for the revenue derived from RTB to
address the effect of waiting time and uncertainty on it. Advertisers who arrive in
period 1 also face a similar problem caused by the gap between period 1 and period
3. For example, if they buy a guaranteed contract in period 1, then they can leave
this campaign to do other work. Otherwise, they need to wait until period 3 and
bid in each auction unless they successfully get an impression. Besides, through a
guaranteed contract, they can definitely get an impression while the outcomes of
RTB are uncertain. Therefore, we similarly introduce δa to capture the discount of
advertisers’ expected utilities from RTB.

The information of N, Q, δa, δp, v ∼ U(0, v) are common knowledge for all
parties in this model. Besides, the publisher also knows the cost of introducing an
extra advertiser, c.

The sequence of events illustrated in Figure 3.1 is stated as follows:

1. Before the start of period 1, N advertisers (the original batch) enter the cam-
paign. The publisher announces the price of guaranteed contracts p and the
number of selling impressions Q to them.

2. In period 1, the original advertisers must decide whether to buy a guaranteed
contract in this period or participate in RTB when the impressions are realised.
It’s important to note that they are unaware that the publisher may attract
more advertisers later.

3. In period 2, the guaranteed contracts selling channel closes, and RTB has not
yet begun. The publisher decides whether to recruit more advertisers (the
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Figure 3.1: The sequence of events

extra batch) or not.

4. In period 3, advertisers from the original batch who decided to join RTB and
advertisers who arrived in period 2 bid for impressions that are being released.

3.3.2 Analysis on Advertisers’ Incentives

For advertiser i from the original batch, we denote their valuation as vi. As it does
not make decisions in period 2, we discuss their utility in period 1, denoted by u1

i ,
and in period 3, denoted by u3

i .

Observing the price of guaranteed contracts, p, its utility of buying a guaranteed
contract in period 1 is expressed as u1

i = vi − p. Otherwise, if it decides to join RTB
in period 3, considering the discount factor, its utility of winning an impression is
u3

i = δa(vi − pr
i ), in which, pr

i denotes advertiser i’s payment in the auctions, which
is dependent on other advertiser’s bidding price. If it fails to get an impression at
last, then u3

i = 0.

For these N advertisers, their utilities and behavioural modes are the same as
that in the basic model in Chapter 2 since they do not know the publisher will re-
cruit more advertisers in period 2. According to Proposition 2.2 in Chapter 2, if
they decide to join RTB, their bidding strategy following bidding function shown in
equation (2.4), i.e. b(v) = (v∧p)−(1−δa)v

δa
, are subject to a mixed truth-telling scheme to

maximise their utilities.

For extra advertisers from period 2, their choices are only to participate in
RTB. Referring to Proposition 2.1, they bid under the truth-telling strategy in pe-
riod 3.

3.3.3 Analysis on the Publisher’s Revenue Function

The publisher should price the guaranteed contracts p and announce it to N orig-
inal advertisers at the beginning of period 1. Then advertisers who decide to buy
guaranteed contracts will pay p to the publisher. Other advertisers wait for RTB
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in period 3. In period 2, the publisher will decide whether to recruit x additional
advertisers to RTB with the unit cost of c.

For a given price p, we can obtain the behavioural pattern of these N advertisers
from Proposition 2.4 in Chapter 2. Since all extra advertisers go to RTB and bid
truthfully according to their valuations, we need to evaluate the bids of these two
groups of advertisers together, and to determine the outcomes of repeated auctions
in RTB. Also, we should consider the remaining impressions in RTB after the selling
of guaranteed contracts in period 1.

Specifically, if advertisers from the original batch buy all impressions through
guaranteed contracts in period 1, then the publisher will not hire any extra adver-
tisers. If some impressions are left after period 1, then according to the bidding
strategy shown in equation (2.4), we know that the upper bound of the original ad-
vertisers’ bidding price is p. Therefore, if the publisher hires the extra advertisers
such that the number of them with valuations larger than p exceeds the number of
left impressions, then advertisers from the original batch cannot win a single im-
pression in period 3. Consequently, with the increasing number of extra advertisers,
the source of revenue will transfer from the original advertisers to the extra adver-
tisers. On the other hand, recruiting more extra advertisers will incur more costs.
So the publisher’s problem is to set a proper price p to adjust the consumption of
guaranteed contracts and then introduce an optimal number of x extra advertisers
in period 2.

The publisher’s revenue function on the whole map of its domain of p and x
can be expressed as the following:

Π(p, x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Π1, x ∈ [0,+∞) , p ∈
󰀓

0, N−Q
N v

󰁬
;

Π1
2, x ∈

󰁫
Np−(N−Q)v
(1−δa)(v−p) ,+∞

󰀔
,

Π2
2, x ∈

󰁫
0, Np−(N−Q)v

(1−δa)(v−p)

󰀔
,

p ∈
󰀓

N−Q
N v, N−δaQ

N

󰁬
;

Π1
3, x ∈

󰁫
Qv

v−p ,+∞
󰀔

,

Π2
3, x ∈

󰁫
Np−(N−δaQ)v

v−p , Qv
v−p

󰀔
, p ∈

󰀓
N−δaQ

N v, v
󰁬

.

Π3
3, x ∈

󰁫
0, Np−(N−δaQ)v

v−p

󰀔
,

(3.1)

in which Πj
i denotes the formulation of the jth segment of x under the ith segment

of p. And Π1 = Qp − cx,
Π1

2 = N1
2 p + δp

󰁕 v
x−N2

2
x v

xv 1
v dv − cx,

Π2
2 = N1

2 p + δp

󰁱󰁕 b−1(v′′)
p Nb(v) 1

v dv +
󰁕 p

v′′ Nv 1
v dv +

󰁕 v
v′′ xv 1

v dv
󰁲
− cx,
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Π1
3 = δp

󰁕 v
x−Q

x v xv 1
v dv − cx,

Π2
3 = δp

󰀝󰁕 b−1(v(3))
p Nb(v) 1

v dv +
󰁕 p

v(3)
Nv 1

v dv +
󰁕 v

v(3) xv 1
v dv

󰀞
− cx,

Π3
3 = δp

󰁱 󰁕 v
p Nb(v) 1

v dv +
󰁕 p

v(4)
Nv 1

v dv +
󰁕 v

v(4) xv 1
v dv

󰁲
− cx.

For a given price of guaranteed contracts, p, the publisher’s revenue have dif-
ferent formulations depending on the segment in which it lies. The sequence of
decisions about p and x behind this problem guarantees the implementation of the
backward induction method. Initially, we fix the price p and identify the extremum
points of x in different segments. Then, we compare the corresponding extremum
values in different x segments to determine the global optimal x under the current
p. Next, we find the extremum point of p in the current segment of p. Finally, we
compare the extremum values in different segments to identify the global optimal
p. This approach allows us to systematically explore the solution space and identify
the optimal pricing strategy.

Lemma 3.1. There exists a cost-benefit indicator (CBI, ≡
󰁴

2c
δpv ) to describe the value of

introducing an extra advertiser in period 2, we denote it as q. Only when q ≤ 1 is it possible
for the publisher to yield positive revenue from extra arrival advertisers. Otherwise, they
should never recruit extra advertisers in period 2.

Lemma 3.1 implies a profitable threshold of the introducing cost for extra ad-
vertisers. Although the value of CBI can be any positive number, we only discuss
cases in which CBI is not larger than one, as this paper is to figure out when to in-
vest in extra advertising. Interestingly, q = 1 means c = δp

v
2 , in which v

2 equals to
the expectation of extra arrival advertisers’ valuations (since we assume that their
valuations are subject to uniformly independent identically distribution on [0, v].)
Thus, δp

v
2 reveals an expected revenue from a unit advertiser’s payment from RTB

along with the discount factor of revenue from this period. If the unit cost c is larger
than the expected unit revenue, which means q > 1, then it’s not wise to recruit any
more advertisers.

Besides the CBI (denoted by q, and q ∈ (0, 1]), the equilibrium outcomes are also
dependent on other indicators, N

Q and δa, δp. The larger N
Q is, the more intense the

demand for impressions is. Thus, we call the indicator N
Q as the scarcity of the sup-

ply of impressions, denoted by s. As for δa, δp, they affect the introducing decision
through influencing the publisher’s revenue and advertisers’ utilities from period
2.

Theorem 3.2. The possible optimal solutions are shown in the following (the definition
of D, q̄, qh1 , qh2 , qh3 and S1(q), S2(q), S3(q), S4(q), S5(q), S6(q), S7(q) are attached in the
proof in Appendix A2):
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1. When 2δa + δp ≥ 2, if
󰀓

q ∈ (0, qh1 ] & s ∈ (0, S5(q)]
󰀔
|
󰀓

q ∈ (qh1 , 2(1−δp)
2−δp
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󰀓
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󰀔

, the optimal solution is

󰀫
p∗ = v
x∗ = Q

q − N
;

the corresponding maximum revenue is

Πmax = δpq̄Qv +
δpq2

2
Nv.

2. When 2δa + δp ≥ 2, if
󰀓
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󰀔
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󰀓
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|
󰀓
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󰀔
,

the optimal solution is 󰀻
󰀿

󰀽
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2N v

x∗ = (2−δa)Q−(1−δp q̄)N
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;

the corresponding maximum revenue is
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a Q2

4(1 − δa)N
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3. When 2δa + δp < 2 & δa ≥ (1− δp)2, if
󰀓
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2−δa−δp
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󰀔
|

󰀓
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󰀔
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󰀓
q ∈ (
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|
󰀓
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󰀔
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optimal solution is 󰀻

󰀿
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a Q2
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4. When 2δa + δp ≥ 2, if q ∈ (
2(1−δp)

2−δp
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2(1−δp)

] ; when 2δa + δp <
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2 & δa ≥ (1 − δp)2, if q ∈ (qh3 , 1]&s ∈ (S1(q), S1(qh3)], the optimal solution is

󰀫
p∗ = v
x∗ = 0

;

the corresponding maximum revenue is

Πmax =
δp

2
(2N − Q)Q

N
v.
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,
the optimal solution is 󰀫

p∗ = N−Q
N v

x∗ = 0
;

the corresponding maximum revenue is

Πmax =
(N − Q)Q

N
v.

This theorem outlines various scenarios for determining optimal solutions in
Equation (3.1), depending on parameters including δa, δp, q, s, to define conditions
under which different optimal solutions exist. There are six types of equilibrium
when certain conditions are met. The theorem provides specific formulas for p∗, x∗,
and Πmax under each type of equilibria. These formulas offer a comprehensive
guide for finding optimal solutions under various scenarios.

Theorem 3.2 demonstrates that there is no single optimal strategy for all situ-
ations. Publishers must adapt their strategies to the specific conditions they face

57



Figure 3.2: Different types of equilibria under different cases

in order to maximise their returns. Figure 3.2 illustrates the optimal strategies for
different parameter combinations, with the horizontal and vertical axes of each sub-
plot representing q and s, respectively. The term ’Extra’ in the legend indicates that
in the corresponding area, the strategy involves recruiting extra advertisers. The
number of types in the legend corresponds to the case order in Theorem 3.2, For ex-
ample, TypeVI in these subplots represents that the optimal solution is p∗ = N−Q

N v
and x∗ = 0 when parameters are located in corresponding zones. This solution is
demonstrated in the case of No.6 in Theorem 3.2.

Each subplot represents different combinations of δa and δp, with subplots at
each column representing a set of boundary conditions that δa and δp satisfy accord-
ing to Theorem 3.2. The two subplots at the left column corresponds to 2δa + δp ≥ 2,
subplots at the middle column to 2δa + δp < 2 and δa ≥ (1 − δp)2, and subplots at
the right column to 2δa + δp < 2 and δa < (1 − δp)2.

Within each subgraph, cases in which no additional advertisers are introduced
are concentrated on the left upside, divided by the thick black line (TypeIV , TypeV

and TypeVI). This implies that the publisher does not have incentives to import
additional advertisers, if both the scarcity of impressions s and CBI q are not small.
Furthermore, when the scarcity of impressions s is high enough, it is always optimal
to sell all impressions via guaranteed contracts (TypeVI). For moderate s, a lower
CBI encourages publishers to maximise revenue by selling through two channels
and recruiting extra advertisers (TypeI I and TypeI I I). As δa and δp decrease (moving
from left to right across the columns), this strategy becomes applicable to a wider
range of s and q values.
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In the left column, δa and δp are large, publishers will set higher contract prices
p for low scarcity (i.e. when s is close to one), and all impressions will be sold in RTB
(TypeI and TypeIV). Publishers will not recruit any additional advertisers if the CBI
q is too high. Subplots at the middle and right columns show that when δa and δp are
small, publishers do not set high contract prices. Instead, they sell some impressions
through contracts when scarcity is low and recruit additional advertisers for RTB if
the CBI is low.

These observations uncover several managerial insights for publishers to make
a proper investment strategy for introducing more advertisers between the activa-
tion of two selling channels:

• There is no one-size-fits-all strategy for publishers. The optimal approach is
contingent on a variety of parameters, such as the scarcity of impressions and
the CBI. Publishers must tailor their strategies to these specific conditions to
maximise revenue.

• When impressions are scarce, selling them all via guaranteed contracts is the
most profitable strategy. This is particularly true when both δa and δp are low.
For moderate levels of impression scarcity, a lower CBI encourages publishers
to diversify their selling channels by offering some guaranteed contracts and
recruiting additional advertisers for RTB.

• The setting of contract prices and the decision to recruit additional advertis-
ers for RTB are influenced by the interplay between impression scarcity, the
two discount factors, and CBI. Two high discount factors favour higher con-
tract prices and less recruitment for RTB, while two low discount factors make
it advantageous to set moderate contract prices and actively recruit for RTB
when scarcity is low and CBI does not exceed one.

These observations provide insights for publishers to wisely manipulate demands
for impressions based on the specific market conditions they face. These findings
also highlight the importance of continually reassessing and adapting strategies in
response to changes in key parameters like impression scarcity, both publishers’ and
advertisers’ discount factors, and the CBI.

3.4 Information Transparency with Additional Adver-

tisers

In section 3.3, it is assumed that the advertiser is unaware of the publisher’s plans
to recruit additional advertisers in the second period. In practice, however, even if
the publisher is not obliged to inform the advertiser of its plans, the original adver-

59



tisers can still learn their opponents’ strategy through auction results and their pay-
ments after a series of campaigns (Balseiro and Gur 2019). Then, it’s possible for the
original advertisers to become aware of the entry of extra competitors by analysing
historical data. Consequently, their awareness brings out behavioural adjustment,
which leads to a new problem for the publisher: how to secure the maximum rev-
enue under advertisers’ new bidding behavioural modes? We thus, examine how
the original advertisers will take action if they know that there will be additional
advertisers coming in period 2, and how the publisher will adjust its strategy in this
extension.

3.4.1 Voluntary Arrival of Additional Advertisers

In reality, extra advertisers may come from different sources. For example, Google
has integrated many advertisers from different buying tools into its advertising sales
platform as Figure 3.3 shows. Among these tools, Display&Video 360 and Google
Ads are under the control of Google, while others are from third parties.

Figure 3.3: Demand Side Platforms (DSPs) in Google Ads ecosystem. Source: An-
titrust Complaint against Google, Third Amended Edition. (2022)

In this case, we check the circumstance where extra advertisers are all from
outside buying tools. This means that the extra advertisers are not attracted by the
publisher with extra cost. We assume that the number of these advertisers is M,
their valuations are also i.i.d. subject to U(0, v). The publisher and the original
advertisers know the information of these additional advertisers.

For the advertisers from the original batch, their incentives to choose between
buying guaranteed contracts or joining RTB are still gaining better utilities by com-
paring u1

i = vi − p and u3
i = δa(vi − pr

i ). Thus, if they decide to join RTB, their
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bidding strategy b(v) retains the same as shown in equation (2.4). Similarly, adver-
tisers’ behavioural modes depend on the price of guaranteed contracts.

Proposition 3.3. The behavioural modes of advertisers from the original batch depend on
the prices of guaranteed contracts:

1. p ∈ [0, N−Q
N v]

All advertisers with valuations v > p will buy guaranteed contracts and the number
of them exceeds the supply of impressions. Thus, no impressions were left in RTB.

2. p ∈ (N−Q
N v, N+M−Q

N+M v]

Although all advertisers with valuations v > p will also buy guaranteed contracts in
this case, there are still Q − v−p

v N impressions left in RTB. Because p ≤ N+M−Q
N+M v,

then Q − v−p
v N ≤ v−p

v M. The left impressions will be won by extra advertisers.

3. p ∈ (N+M−Q
N+M v, N+M−δaQ

N+M v]

In this case, there exists a threshold value v′M = (N+M)p−δa(N+M−Q)v
(1−δa)(N+M)

locates in
(p, v]. Therefore, if the valuations of advertisers from the original batch satisfy v ∈
(v′M, v], they will buy guaranteed contracts in period 1. If v ∈ (p, v′M], these adver-
tisers will join RTB and bid untruthfully. And for advertisers from the original batch
with v ∈ (0, p] and for all extra advertisers, they will join RTB with truthful bidding.
Note that only advertisers with bids larger than N+M−Q

N+M v can win an impression in
RTB.

4. p ∈ (N+M−δaQ
N+M v,+∞)

In this case, all advertisers, no matter which batch they are from, will join RTB. The
original batch of advertisers follows the bidding strategy in equation (2.4). The addi-
tional batch of advertisers bid truthfully.

Proposition 3.3 demonstrates how the original advertisers behave when there
are extra M advertisers participating in period 2. Compared with results in Proposi-
tion 2.4, there is one more pricing segment. The threshold valuation is greater than
the case where there is no additional advertiser involved. Based on Proposition 3.3,
the publisher’s revenue function can also be obtained segmentally.

Π(p) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Π1, p ∈ [0, N−Q
N v]

Π2, p ∈ (N−Q
N v, N+M−Q

N+M v]
Π3, p ∈ (N+M−Q

N+M v, N+M−δaQ
N+M v]

Π4, p ∈ (N+M−δaQ
N+M v, v]

Π5, p ∈ (v,+∞)

, (3.2)
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in which Πi denote the publisher’s revenue function under the ith pricing seg-
ment. And Π1 = Qp,
Π2 = v−p

v Np +
󰁕 v

M−(Q− v−p
v N)

M v
Mv 1

v dv,

Π3 =
v−v′M

v Np +
󰁕 v′M

p Nb(v) 1
v dv +

󰁕 p
N+M−Q

M v
Nv 1

v dv +
󰁕 v

N+M−Q
M v Mv 1

v dv,

Π4 =
󰁕 v

p Nb(v) 1
v dv +

󰁕 p
N+M−Q

M v
Nv 1

v dv +
󰁕 v

N+M−Q
M v Mv 1

v dv,

Π5 =
󰁕 v

N+M−Q
M v Nv 1

v dv +
󰁕 v

N+M−Q
M v Mv 1

v dv.

We can solve the publisher’s optimal pricing by 1) finding the local extremum
in each segment, and 2) comparing them to get the optimal price.

Theorem 3.4. The effect of M extra advertisers on the publisher’s revenue acts along with
the size of the original batch. For convenience we let sM = N+M

Q (sM > 1).

1. When sM < 2, if
󰀓

δa ∈ (2− sM, sM
2sM−1 ] & δp ∈ [0, δa+sM−2

sM−1 ]
󰀔
|
󰀓

δa ∈ ( sM
2sM−1 , 1] & δp ∈

[0, 2(sM−1)
2sM−1 ]

󰀔
; when sM ≥ 2, if

󰀓
δa ∈ (0, sM

2sM−1 ] & δp ∈ [0, δa+sM−2
sM−1 ]

󰀔
|
󰀓

δa ∈

( sM
2sM−1 , 1] & δp ∈ [0, 2(sM−1)

2sM−1 ]
󰀔

, the optimal price of guaranteed contracts is

p∗ =
N + M − Q

N + M
v,

and the corresponding maximum revenue is

Π(p∗) =
2Q(N + M − Q)(N + δpM) + δpMQ2

2(N + M)2 v.

2. When sM < 2, if
󰀓

δa ∈ [0, 2 − sM] & δp ∈ [0, 1 −
󰁵

δa(1−δa)
s2

M−2δasM+δa
]
󰀔
|
󰀓

δa ∈

(2 − sM, sM
2sM−1 ] & δp ∈ ( δa+sM−2

sM−1 , 1 −
󰁵

δa(1−δa)
s2

M−2δasM+δa
]
󰀔

; when sM ≥ 2, if
󰀓

δa ∈

[0, sM
2sM−1 ] & δp ∈ ( δa+sM−2

sM−1 , 1 −
󰁵

δa(1−δa)
s2

M−2δasM+δa
]
󰀔

, the optimal price of guaranteed

contracts is

p∗ =
N + M − δaQ

(2 − δp)(N + M)
v,

and the corresponding maximum revenue is

Π(p∗) =

(1 − δp)
2N(N + M)2 − (2δ2

p − 4δp + 2δa)NQ(N + M)+

2(1 − δa)δp(2 − δp)MQ(N + M)− (1 − δa)δp(2 − δp)Q2(N + M)

+ δa[δa − δp(2 − δp)]NQ2

2(1 − δa)(2 − δp)(N + M)2 v.
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In this case, there exists a threshold

v′M =
(1 + δaδp − 2δa)(N + M) + δa(1 − δp)Q

(1 − δa)(2 − δp)(N + M)
v ∈ (p, v].

3. If
󰀓

δa ∈ (0, sM
2sM−1 ] & δp ∈ (1 −

󰁵
δa(1−δa)

s2
M−2δasM+δa

, 1]
󰀔
|
󰀓

δa ∈ ( sM
2sM−1 , 1] & δp ∈

(2(sM−1)
2sM−1 , 1]

󰀔
, the optimal solution is

p∗ = v;

the correspond maximum revenue is

Π(p∗) =
δp

2
·
[2(N + M)− Q]Q

N + M
v.

Theorem 3.4 reveals the publisher’s optimal pricing strategy when there are M
extra advertisers entering in period 2. There are three types of equilibria depend-
ing on different levels of impression scarcity and both the publisher’ and the origi-
nal advertisers’ discount factors. In the former two equilibria, impressions are sold
through both guaranteed contracts and RTB. In the last equilibrium, all advertisers
participate in RTB.

To compare the result with what we get in the basic model in the information
opacity setting, we set q → 0 and M → +∞. The reason is that we do not consider
the cost of introducing M advertisers in this extension. And if we set q → 0 in the
basic model, then the publisher would recruit a very large number, mathematically
infinity, of advertisers. So we should then let M → +∞. By comparing the results
under these two settings, we get the conclusion in Corollary 3.5.

Corollary 3.5. By introducing adequate additional advertisers without cost, the publisher
makes more revenue if the original advertisers are unaware of the existence of the additional
arrival advertisers.

It is intuitive to expect the results from Corollary 3.5 because the advantage of
information benefits the publisher when there is no additional cost to attract more
advertisers. What if the publisher can decide how many extra advertisers to hire
with a fixed unit cost? We discuss it in the next section.

3.4.2 Attracting Additional Advertisers with Variable Cost

As we mentioned in the example of Google in the last section, the publisher may
have the power to decide whether and how many advertisers it wants to include
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in the campaign if the advertiser buying tools are under control. To explore how
the extra advertisers affect the original advertisers’ behavioural modes and the pub-
lisher’s decision, we explore the case that original advertisers know the publisher
will decide to hire extra advertisers in period 2. The cost of hiring a unit extra ad-
vertiser, denoted by c, is also common knowledge. The distribution of valuations
of all advertisers involved in this campaign is i.i.d. on U(0, v), which is also known
to both of them. However, the original advertisers do not know how many extra
advertisers the publisher will introduce in the future.

The sequence of events flows is similar to what is under the information opacity
setting and is explained as follows. In period 1, the publisher announces the price
of guaranteed contracts p to these N original advertisers. These advertisers know
the publisher may introduce extra advertisers in period 2, which is a time window
after the close of the guaranteed contracts selling channel and before the start of
RTB. They also have the acknowledgement of the information about the cost c for
the publisher to addict one extra advertiser in period 2. After analysing, the original
advertisers should make decisions of buying a guaranteed contract in period 1 or
attending RTB in period 3. In period 2, the channel of guaranteed contracts closes.
The publisher observes the number of sold contracts and the remaining impressions.
If there still are impressions left, it decides the number of extra advertisers to hire
by evaluating the cost and benefit of introducing extra advertisers. In period 3, RTB
opens. The original advertisers that have not bought guaranteed contracts and extra
advertisers imported in period 2 go to the competition of RTB together.

The bidding strategy of the original advertisers in RTB will remain the same
as shown in equation (2.4) in Chapter 2. Because the motivation they participate in
RTB is still u3

i > u1
i > 0. The critical differences are their decisions about whether to

acquire a guaranteed contract or join RTB later as they know there will be additional
advertisers entering this campaign in period 2.

After receiving the price information of guaranteed contracts in period 1, adver-
tisers consider their strategy based on the import cost for the publisher. Roughly, if
c is very close to 0, the publisher can introduce a very large number of advertisers in
period 2. If the number of extra advertisers is large enough, any original advertisers
with valuations v > p cannot win an impression in RTB by bidding b(v). Thus, they
will purchase a contract to secure their interests. On the other hand, if c is too high
(for example, higher than v), the publisher will not introduce any extra advertiser.
Then the original advertisers’ behavioural modes are the same in the case of no extra
advertisers existing. Namely, some advertisers with valuations v > p will go to RTB
to seek more utilities than that from guaranteed contracts by bidding b(v). Thus,
the original advertisers know that the higher cost leads to a lower number of extra
advertisers.
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Because the extra advertisers’ bidding strategy is truth-telling, the expected
payment of an extra advertiser is v

2 . Then, if c > δp
v
2 , the publisher’s expected

payoff from an extra advertiser would always be negative. Thus, like in the basic
model, we also can introduce the CBI q and only discuss cases that q ≤ 1.

Proposition 3.6. We denoted the number of extra advertisers as x. For a given price p, the
equilibria x∗(p) should satisfy a) v = N+x−Q

N+x v is the least valuation among the original
advertisers that can get an impression in the campaign; b) the publisher’s revenue under
x∗(p) is greater than any other x.

According to condition a) in Proposition 3.6, we can get the behavioural modes
of the original advertisers when condition a) holds. We can then build up the rev-
enue function of the publisher by assuming current x satisfying condition a). At
last, we find a x that can maximise the publisher’s revenue under the current p, and
condition b) is satisfied naturally. From condition a), the revenue function of the
publisher is shown below:

Π(p, x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Π1, x ∈ [0,+∞) , p ∈
󰀓

0, N−Q
N v

󰁬
;

Π1
2, x ∈

󰁫
Np−(N−Q)v

v−p ,+∞
󰀔

,

Π2
2, x ∈

󰁫
0, Np−(N−Q)v

v−p

󰀔
,

p ∈
󰀓

N−Q
N v, N−δaQ

N

󰁬
;

Π1
3, x ∈

󰁫
Np−(N−Q)v

v−p ,+∞
󰀔

,

Π2
3, x ∈

󰁫
Np−(N−δaQ)v

v−p , Np−(N−Q)v
v−p

󰀔
, p ∈

󰀓
N−δaQ

N v, v
󰁬

;

Π3
3, x ∈

󰁫
0, Np−(N−δaQ)v

v−p

󰀔
,

Π4, x ∈ [0,+∞) , p ∈ (v,+∞) .

,

(3.3)
in which Πj

i denotes the formulation of the jth segment of x under the ith segment
of p. And Π1 = Qp − cx,
Π1

2 = v−p
v Np + δp

󰁕 v
(N+x−Q)v−Np

x
xv 1

v dv − cx,

Π2
2 = v−v′x

v Np + δp

󰁱󰁕 v′x
p Nb(v) 1

v dv +
󰁕 p

b(v′x)
Nv 1

v dv +
󰁕 v

b(v′x)
xv 1

v dv
󰁲
− cx,

Π1
3 = v−p

v Np + δp
󰁕 v

(N+x−Q)v−Np
x

xv 1
v dv − cx,

Π2
3 = v−v′x

v Np + δp

󰁱󰁕 v′x
p Nb(v) 1

v dv +
󰁕 p

b(v′x)
Nv 1

v dv +
󰁕 v

b(v′x)
xv 1

v dv
󰁲
− cx,

Π3
3 = δp

󰀝󰁕 v
p Nb(v) 1

v dv +
󰁕 p

N+x−Q
N+x v

Nv 1
v dv +

󰁕 v
N+x−Q

N+x v xv 1
v dv

󰀞
− cx,

Π4 = δp

󰁱󰁕 v
N+x−Q

N+x v Nv 1
v dv +

󰁕 v
N+x−Q

N+x v xv 1
v dv

󰁲
− cx.

As the decisions of the publisher of p and x are made in a sequence, we solve it

65



by the backward induction method. The first step is to treat Π(p, x) as Πp(x), which
is a function of x with p as a parameter. After getting the local extremum solutions of
x, which would be dependent on p, we substitute solutions of x into Πp(x) to reduce
it as Π(p). The next step is to find local extremums of p and compare them to get
the global optimal p∗. Finally, we find the corresponding extremum x of current
optimal p∗, then substitute p∗ to the x to get the optimal x∗.

Figure 3.4: The publisher’s revenue function of x under different segments of p

Figure 3.4 shows the tendency of Πp(x) when p is located in different segments.
We set Q = 100, s = 1.5, q = 0.5, v = 10. Different subplots reveal how the revenue
functions vary under different cases of δa and δp. When p < N−Q

N v and p ≥ v, Πp(x)
is monotone decreasing. Furthermore, when p ∈ [N−Q

N v, v), we also can compute
the closed-form of local optimal x in [0, Np−(N−δaQ)v

v−p ] and (Np−(N−Q)v
v−p ,+∞) by first-

order condition. But for Πp(x) when x ∈ (Np−(N−δaQ)v
v−p , Np−(N−Q)v

v−p ], it’s redundant
to find the closed-form of local optimal solution. However, its concavity can be
guaranteed, as shown in the following lemma.

Lemma 3.7. When x ∈ (Np−(N−δaQ)v
v−p , Np−(N−Q)v

v−p ], Πp(x) is concave on x.

Next, we illustrate the publisher’s revenue function of p in Figure 3.5 after op-
timal x is solved numerically with the settings of Q = 100, v = 10. Different sub-
plots reflect the variation of δa and δp. From subplots in the left column to the right
column, we witness the growth of the max revenue and also the increase in the
corresponding optimal price when δp gets larger. Note that the segment where the
optimal price is located also moves right, such that all contract buyers transfer to
RTB. While comparing subplots from up and bottom in one column, the increase of
δa does not have much effect on the value of max revenue.
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Figure 3.5: The publisher’s revenue function of p under different combinations of q
& s

In each subplot, different cases of the revenue function under q : {0.5, 0.7, 0.9}×
s : {1.5, 3} are displayed. These lines are grouped into two clusters by different
scarcity levels. When s = 1.5, the optimal price locates in (N−Q

N v, N−δaQ
N v] under the

chosen CBIs. While s increases into 3, the optimal price slides to N−Q
N v, such that

all impressions consumed by the original advertisers in period 1. When impression
scarcity remains unchanged, a lower CBI leads to no less revenue than a higher CBI
under the same price.

The equilibrium results of this problem are shown in Figure 3.6. The meaning
of the legends in this figure is similar to that in Figure 3.2. The settings of δa and δp

are allied with that in Figure 3.2. Therefore, comparing the results under the infor-
mation opacity setting with that under the information transparency setting, there
are more cases (of different combinations of δa and δp) that the publisher tends to
choose a moderate price of guaranteed contracts such that the impressions are sold
to both contracts buyers and winners in auctions, with extra advertisers involved.
The area of the region that represents all impressions sold to guaranteed contract
buyers in Figure 3.6 reduces compared with that in Figure 3.2. The region that rep-
resents all advertisers participating in RTB also shrinks. The reason is that more
original advertisers turn to guaranteed contracts instead of participating in RTB af-
ter knowing there may be more competitors, leading to their failure of winning an
impression.
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Figure 3.6: Different types of equilibria under different cases under info trans-
parency

3.5 Conclusion

The prosperous online advertising markets provide publishers with abundant ways
to reach advertisers by interfacing with various ad intermediaries. However, the
strategic investment in attracting more advertisers, especially in the context of two
different selling channels, has been largely unexplored. This paper addresses the
question of whether a publisher should attract more advertisers to a selling cam-
paign that includes both guaranteed contracts and real-time bidding (RTB), with an
initial batch of advertisers participating from the start. Two scenarios are investi-
gated, depending on whether the original advertisers are aware of the arrival of the
additional advertisers or not.

This study serves as a first attempt to fill the blank of understanding the pub-
lishers’ problem of attracting additional advertisers to the selling campaign between
periods of guaranteed contracts and RTB. Existing literature on advertisers’ strategic
behaviour in dual-channel markets only considered the scenario that all advertisers
enter the campaign at the beginning (e.g. Sayedi 2018 and Cohen et al. 2023). Our
findings reveal several intriguing insights and offer practical guidance for publish-
ers in attracting additional advertisers after the closure of the guaranteed contracts
channel. First, we identify a cost-benefit indicator that serves as a threshold for the
unit advertising cost of attracting more advertisers. If this indicator exceeds one,
recruiting more advertisers is never beneficial. The decision also depends on the
original scarcity of impressions and discount factors. When impressions are abun-
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dant and discount factors are high, attracting more advertisers becomes more viable.
Second, the awareness of the additional advertisers may prompt the original adver-
tisers to purchase guaranteed contracts immediately rather than wait for RTB, un-
less there is an ample supply of impressions and a high cost-benefit indicator. This
insight widens the understanding of advertisers’ strategic behaviours from merely
considering the publishers’ decisions. Finally, publishers should be cautious about
revealing their intention to recruit more advertisers after the guaranteed contracts
close, as it may negatively affect their revenue.

There are still some valuable future directions contained in this problem. First,
we assume that the extra advertisers are introduced in a single period, but the
stochastic arrival of additional advertisers during the selling of guaranteed con-
tracts is worth investigating in future research. Second, we make the hypothesis
that both the original and additional advertisers’ valuations for an impression are
independent and identically distributed on the same uniform distribution due to the
complexity. Future research can extend our study by considering the distribution of
additional advertisers’ valuations is different from that of the original advertisers.
Besides, the heterogenous of impressions, the specific allocation strategy of impres-
sions can also be included in future endeavours.

69



70



4 Study 3: Allocation of Impressions
to Strategic Advertisers among Dual
Selling Channels

Abstract

Publishers making allocations among the dual channels–guaranteed contracts and
real-time bidding (RTB)–face two challenges. First, the regulations in guaranteed
contracts about whether under-delivery is allowed can influence the future alloca-
tion process. Second, publishers’ allocation policy and advertisers’ purchase deci-
sions among the dual channels are mutually affected. To address the challenges, this
paper introduces a sequential game theory model in which a publisher who sells
heterogenous quality impressions to two advertisers across two periods. In the first
period, only guaranteed contracts are available, while RTB is activated in the sec-
ond period. There are two types of contracts: quantity-guaranteed contracts, where
under-delivery is not permitted but quality is not assured, and quality-guaranteed
contracts, which mandate specific quality levels and incur compensation costs for
any under-delivery. The study delves into the subsequent decisions made by both
the publisher and advertisers, depending on the chosen contract type. Due to the
complexity of this problem, we propose two sets of threshold-type allocation poli-
cies in period 2: guaranteed contracts prior policy and RTB prior policy. The for-
mer allocates high-quality impressions preferentially to guaranteed contract hold-
ers, while the latter releases such impressions to auctions first. Utilising a numerical
algorithm based on backward induction, the study evaluates the performance of
these policies under both types of guaranteed contracts. The analysis reveals two
salient points: firstly, quality-guaranteed contracts tend to generate more revenue
for publishers, attributed to the compensatory incentives for advertisers; secondly,
an RTB prior policy is generally more beneficial across both contract types, espe-
cially when maintaining long-term advertiser relationships is not a central objective
for publishers.
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4.1 Introduction

The online advertising sector remains the most dominant and fastest-growing seg-
ment within the digital marketing industry, amassing an impressive revenue of ap-
proximately $476.46 billion in 2022 (Astute Analytica 2023). Online display adver-
tising, a critical subset of this sector, accounts for approximately 32% of the online
advertising market share in 2022. The revenue of online display advertising pri-
marily comes from user visits to a multitude of websites managed by various pub-
lishers. Visits of online users to a webpage generate what is known as ’impressions’,
which provides advertisers an opportunity to show their ads to users. Publishers
and advertisers can assess the quality of these impressions based on a range of user
information, such as demographics, geographical location, device types, operating
systems, past behaviour, and even click-through rates (CTR) through cookies (Bal-
seiro et al. 2014). Advertisers can then purchase these impressions to display their
ads to users.

Typically, publishers have two primary channels for selling these impressions to
advertisers in online display advertising markets: the guaranteed channel of guar-
anteed contracts and the non-guaranteed channel of real-time bidding (RTB). Guar-
anteed contracts are pre-negotiated agreements between publishers and advertisers
that delineate the quantity, price, and quality of impressions to be delivered. This
guaranteed channel offers certainty and stability for both publishers and advertis-
ers. However, since the selling of guaranteed contracts occurs before the realisation
of impressions, both publishers and advertisers are uncertain about the quality of
future impressions at this stage. Therefore, these prespecified contracts sacrifice the
flexibility of both parties to dynamically adjust strategies according to real-time sit-
uations.

Unlike guaranteed contracts, RTB is an auction-based system triggered by a
user’s click on a webpage with an ad slot. Advertisers instantly receive user data, by
which they can assess the quality of the impression, and submit bids based on preset
strategies and the winner’s ad is displayed. The entire process is completed within
milliseconds while the loading of this webpage after the click. RTB offers greater
flexibility and transparency, allowing advertisers to make real-time decisions on
bidding for specific impressions. This also enables publishers to maximise revenue
for high-quality impressions. However, the auction-based nature introduces uncer-
tainty and volatility for both parties (Choi et al. 2020).
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Previously, the channel of RTB was usually utilised by publishers to sell rem-
nant impressions only after fulfilling all the demands of guaranteed contracts in
the online display advertising markets. The advent of header bidding technology
has altered this situation(Morrisroe 2023). Header bidding enables publishers to si-
multaneously offer their ad inventory to RTB campaigns before delivering them to
contract buyers (Sayedi 2018). Therefore, this technology makes it possible for pub-
lishers to strategically allocate impressions between guaranteed contracts and RTB
according to the quality of these impressions, to leverage advantages and mitigate
disadvantages across these two channels. Nevertheless, these changes also give rise
to two interesting research questions.

First, how to choose a proper type of guaranteed contract allied with an im-
pression allocation strategy? Since publishers can release impressions to RTB before
totally fulfilling guaranteed contracts after the implementation of header bidding,
the problem of under-delivery comes to the surface. Existing literature handles this
issue by modelling the types of contracts in two different ways. Balseiro et al. (2014),
Sayedi (2018) and Cohen et al. (2023) assumed a strict contract rule that neither
under-delivery nor over-delivery is allowed. Some other papers (e.g. Chen et al.
2014, Chen 2016, Chen 2017 and Chen et al. 2020) permitted the undelivered con-
tracts with compensation to advertisers. It remains unclear which type of guaran-
teed contract is more effective.

Second, how to find the optimal impression allocation strategy across the dual
channels while considering advertisers’ strategic behaviour? Facing dual channels
in the markets, advertisers also make strategic decisions about which channel to buy
impressions from and how much they want to bid in RTB. Although the allocation
of impressions across dual channels has attracted considerable interest, most of the
extant literature neglected advertisers’ strategic behaviour in this campaign (for de-
tails please refer to §3.2). In practice, advertisers’ strategic decisions of purchasing
guaranteed contracts and participation in RTB can be influenced by the publisher’s
allocation strategy, and in return affect the effectiveness of the allocation scheme
subsequently. For instance, if publishers keep delivering high-quality impressions
to RTB to seek more profit, advertisers’ incentives to buy guaranteed contracts will
decrease. However, guaranteed contracts can be beneficial for publishers who want
to maintain long-term relationships with advertisers. Numerous studies also have
explored optimal contract purchases (e.g. Ahmed et al. 2011, Pandey et al. 2011,
Trusov et al. 2016 and Athey et al. 2018) and bidding strategies (e.g. Ghosh et al.
2009, Iyer et al. 2014, Balseiro et al. 2015 and Balseiro and Gur 2019) from the adver-
tisers’ perspective. This research highlights the importance of advertisers’ strategic
behaviour in the two channels. Therefore, it’s necessary and significant for publish-
ers to take advertisers’ strategic behaviour into account when making the allocation
strategy.
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This study aims to answer these two questions by exploring optimal impres-
sion allocation strategies between different types of guaranteed contracts and RTB,
and also taking advertisers’ strategic behaviour into account. More specifically, we
construct a model in which a publisher aims to sell Q impressions to two distinct
advertisers across two periods: the first for guaranteed contracts and the second
for RTB. The model incorporates different quality of impressions. In practice, the
quality of impressions varies and can be mapped from the distinct user information
and historical behavioural data behind page views. Then, advertisers’ valuations
of impressions are modelled as functions of both impression quality and their com-
patibility with each impression. This method can both capture the relevance of ad-
vertisers’ valuations to the quality of impressions and advertisers’ different tastes to
the same impression.

Next, we propose two alternative options for guaranteed contracts in period
1: a) quantity-guaranteed contracts, specifying only the compulsory number of im-
pressions without quality constraints; and b) quality-guaranteed contracts, mandat-
ing a certain quality scope for a certain number of impressions delivered and re-
quiring compensation for non-compliance. The publisher needs to decide the price,
available number of guaranteed contracts in cases of both types and also the com-
pensation cost for under-delivery contracts in quality-guaranteed contracts. Adver-
tisers’ decisions include their demands for guaranteed contracts and their bidding
price in RTB. Because the sequences of events and allocation processes of impres-
sions are different when choosing different types of contracts in the first period,
we examine the publisher’s allocation strategy under each type of them, respec-
tively.

Furthermore, we focus on two sets of threshold-type allocation policies, i.e.
guaranteed contract prior and RTB prior, when considering the allocation problem
in period 2. The quality of impressions is the criterion in these allocation policies.
Specifically, following a threshold-type guaranteed contracts prior policy, the pub-
lisher allocates impressions with quality exceeding a predetermined threshold to
guaranteed contract buyers and releases others to RTB. While in a threshold-type
RTB prior policy, impressions with quality over the threshold are released to RTB
and the left are assigned to guaranteed contracts. Therefore, the problem of impres-
sion allocation is reduced to solving an optimal threshold in each set of allocation
policies. The effectiveness of the two sets of policies is explored under the setting of
two types of guaranteed contracts, respectively.

The complexity of our model arises from three key factors. First, the two peri-
ods in the model are heterogeneous, with different decision spaces and state spaces.
Second, the decision space includes both continuous and discrete variables, which
adds to the complexity of the analysis. Finally, the second period’s dynamics add
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complexity due to ongoing allocation decisions related to unfulfilled guaranteed
contracts, leading to large state and action spaces and the potential for the curse of
dimensionality. To overcome these difficulties, we develop an algorithm based on
the backward induction approach and obtain several key findings. First, quality-
guaranteed contracts generate higher revenue for publishers due to their flexibility
and the incentivising effect of compensation clauses. Second, RTB prior policy dom-
inates guaranteed contracts prior policy under two types of guaranteed contracts.
Therefore, publishers are inclined to choose quality-guaranteed contracts and imple-
ment an RTB prior allocation strategy to maximise revenue, particularly when long-
term relationships with advertisers are not a consideration. This result is contrary to
the traditional way of allocating impressions with good quality to contract buyers
first, which is widely implemented in the industry (Balseiro et al. 2014, Sayedi 2018,
Morrisroe 2023). Furthermore, publishers should also carefully calibrate the supply
of impressions allocated to the guaranteed channel to minimise the risk of under-
delivery and associated penalties. Moreover, our results indicate that both channels
are activated and most impressions are sold through RTB in equilibrium.

This study makes several contributions. From a methodological standpoint,
this study contributes to existing literature by developing a sequential game theory
framework that captures both the publisher’s allocation process and advertisers’
strategic decisions across dual channels (e.g. Balseiro et al. 2014, Li et al. 2016 and
Chen 2017). This model is extensible and can be adapted to various scenarios, such
as when impression quality distribution is empirically derived or when more com-
plex allocation policies are considered. From a practical perspective, the research
offers managerial insights for publishers. Specifically, our research provides pub-
lishers with valuable suggestions not only for designing the regulations for guar-
anteed contracts but also for making allocation policies of impressions across dual
channels. Moreover, the balance of supply and demand for guaranteed contracts
is emphasised in reducing the cost of under-delivery. Lastly, this study also high-
lights the importance of the application of dual selling channels, which benefits both
publishers and advertisers.

The remainder of this study is structured as follows: Section §4.2 reviews the
relevant literature; Section §4.3 introduces our model setup and the two types of
guaranteed contracts we explore, and proposes two sets of allocation policies; Sec-
tion §4.4 and Section §4.5 analyse the publisher’s and advertisers decisions and
solve their objectives under two types of guaranteed contracts, respectively; Section
§4.6 concludes the paper, offering discussions and directions for future research.
Proofs are available in Appendix A3.
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4.2 Literature Review

While there is extensive literature on online display advertising, in this paper we fo-
cus on the literature discussing the allocation of online display advertising impres-
sions between the guaranteed channel and RTB. There are primarily two streams,
revenue management and data-driven perspective.

In the revenue management scope, researchers solved allocation problems by
developing mathematical models to abstract practical scenarios. While handling the
complexity of modelling revenue and cost (if applicable) from two distinct channels,
the existing literature suggested three approaches. The first way was to develop a
unified framework by modelling RTB as a contract without penalty cost (Roels and
Fridgeirsdottir 2009, Rhuggenaath et al. 2019)). In Roels and Fridgeirsdottir (2009),
revenue from RTB was fixed and set to be lower than payments from guaranteed
contracts. The allocation process was oversimplified by merely setting RTB to con-
sume remnant inventory after fulfilling guaranteed contracts in their model. While
Rhuggenaath et al. (2019) accounted for uncertainty from spot markets by dividing
Supply Side Platforms (platform providers for RTB) into two distinct groups, with
uncertainty results (learnt from historical data) from the risky group and known
results from the safe group. They further solved this problem by stochastic pro-
gramming. However, their study failed to capture the different revenue of different
auctions in RTB. The second way was to conversely set a bid price for each con-
tract to participate in RTB (Jauvion and Grislain 2018) or set an opportunity cost
of joining RTB instead of delivering current impression to contract buyers (Balseiro
et al. 2014). They solved this problem by mixed integer programming or dynamic
programming. Balseiro et al. (2014) also took the quality for advertisers from the
guaranteed campaign into consideration. The highest and the second-highest bids
from RTB were assumed to be known in their papers, neglecting advertisers’ strate-
gic bidding behaviours. But in our model, the bids are decided by advertisers’
valuations of every impression. The last way was to handle guaranteed contracts
and RTB separately and model the problem through bi-objective or multi-objective
programming (Yang et al. 2012, Chen 2017, Shen 2018). Nevertheless, all of them
regarded revenue from one or two channels as the input of their models. Yang et al.
(2012) considered three objectives including revenue from non-guaranteed chan-
nels, brand awareness, and conversion rates for guaranteed contract buyers. Then
they proposed several approaches to deal with the multi-objective programming
problem depending on the data available in practice. Chen (2017) and Shen (2018)
combined objectives through weighted sum methods. Different from these papers,
we model the objectives of the publishers as revenue from both channels in this
study. The revenue is obtained in detail by advertisers’ payments and their bids in
RTB, rather than merely assuming a parameterised revenue from any channel. This
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makes our model closer to reality than theirs.

There are very limited papers studying the allocation of impressions with data-
driven approaches. Li et al. (2016) and Zhang et al. (2022) developed efficient al-
gorithms on practical data for programming models of the allocation problem be-
tween dual channels. Li et al. (2016) utilised the penalty cost of under-delivery
guaranteed contracts and the reserve price in RTB as the decision variables to train
their model. Zhang et al. (2022) proposed a unified guaranteed contracts allocation
(UGA) framework, which consists of feature transform and differential sorting net-
work modules, to solve a non-convex quadratically constrained quadratic program-
ming(QCQP) problem. But both papers take the supply and demand of impressions
as determinate, which is impossible in practice. In our research, the demands of im-
pressions from different channels are determined by the equilibrium between the
publisher and advertisers, which is closer to reality. Wu et al. (2021) and Wang et al.
(2022) implemented machine learning techniques to solve this allocation problem.
Wu et al. (2021) posted a unique bid for each guaranteed contract to RTB by solving a
primary programming model, and then they implemented a multi-agent reinforce-
ment learning (MARL) approach to enhance the cooperation between all contracts
in the guaranteed campaign to increase the total revenue for the publisher. Wang
et al. (2022) developed a cascade distillation-based framework called CONFLUX.
The training of CONFLUX is first supervised by a linear programming model. Then
a cumbersome network distils such paradigm by precisely modelling the competi-
tion at a request level and further transfers the generalisation ability to a lightweight
student via knowledge distillation (Wang et al. 2022, p. 4070). Hence these studies
are mainly driven by accessed data and solved by machine learning techniques, so
it is hard to explain the optimality of their results.

In summary, almost all of these studies did not take advertisers’ strategic de-
cisions into account, particularly their purchase of guaranteed contracts and bid-
ding behaviour in RTB as well as their influence on impressions allocation. Instead,
these studies often assume related information, such as the demand for guaranteed
contracts and the revenue from RTB, as the inputs of their models. Understanding
advertisers’ willingness to pay and their bidding strategies is crucial as it directly af-
fects the pricing dynamics in both guaranteed and RTB channels, thereby affecting
the publisher’s revenue streams. Additionally, advertisers’ choices between guar-
anteed contracts and RTB can significantly influence how publishers allocate their
advertising slots between the two channels. To address this gap, this research fo-
cuses on the optimal allocation of impressions between guaranteed contracts and
RTB while taking into consideration advertisers’ strategic behaviour through dual
channels.
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4.3 Model Setup

In our model, a publisher sells Q impressions to two advertisers, denoted as adver-
tiser i (i ∈ {1, 2}). In practice, publishers can get fairly good estimates of page
views during a certain interval with the help of forecasting techniques. So we take
the number of impressions, Q, as fixed and known in our model. For simplicity and
without loss of generality, we assume that there is one advertising slot on the pub-
lisher’s website, such that one user visit generates one impression. Therefore, the Q
impressions are generated by Q visits to the webpage.

When a user visits the webpage, an advertising request is triggered and sent
to the publisher along with the user’s attributes (e.g. demographics, geographical
location, device types, operating systems, past behaviour etc.). We assume that the
publisher has the ability to infer the potential value from the user’s information, i.e.,
impression quality, through historical data.

In practice, advertisers have heterogeneous valuations on the impression. More
specifically, their valuations for an impression not only depend on the quality of
this impression, but are also related to how this impression matches their interests
(Balseiro et al. 2014, Sayedi 2018). For instance, an impression from a user with
a high historical CTR in the age group of 25-34 may be identified as a good quality
one by a publisher. However, advertisers selling eco-friendly products may evaluate
this impression higher than advertisers selling luxury watches.

To capture this feature, we introduce a random parameter Θ to represent the
quality of these impressions and another random parameter A to represent the
matching degree between advertisers and an impression. While we do not spec-
ify a particular distribution for Θ and A at this stage, we assume that they have
well-defined probability density function f (θ) and g(α), which are integrable and
differentiable on their supports. This allows our model to be adapted to a vari-
ety of distributions, which can be determined based on empirical data or specific
cases. For simplicity, we assume that advertiser i’s valuation for an impression t is
vi = αi,tθt, in which, θt is a realisation of Θ, αi,t is a realisation of A. We implement
this formulation of their valuations to address these two advertisers’ personal pref-
erences and the relevance between their valuations and impression quality.

Two channels are activated exclusively in two periods of the entire selling hori-
zon, i.e., guaranteed contracts in period 1 and RTB in period 2. In period 1, the
publisher sells guaranteed contracts of future impressions to two advertisers in ad-
vance. Every contract is identical and contains only one impression. The supply of
Q impressions is produced in period 2. When one impression is generated, the pub-
lisher decides the allocation of it. If this impression is released to RTB, advertiser i
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bids bi for it. The rule of RTB is the second-price auction. Besides, we assume that
the distribution of A and Θ are both common knowledge. We also do not consider
advertisers’ budget constraints in this problem. Because our focus is the effect of
heterogenous of impression quality on both advertisers’ strategic choices and the
publisher’s allocation strategy between two channels. Considering the budget con-
straints will increase the complexity and distract the focus of this problem.

At the beginning, the publisher should decide the types of guaranteed contracts
sold in period 1. Specifically, we consider two types of guaranteed contracts, namely
quantity-guaranteed and quality-guaranteed contracts. In quantity-guaranteed con-
tracts, publishers accomplish the agreed number of contracts to advertisers, without
commitment to the quality of impressions delivered. While in quality-guaranteed
contracts, publishers promise a specific number and quality of impressions to con-
tract buyers. The quality of impressions assigned to advertisers must meet the
requirements specified in contracts and the under-delivery incur penalty cost for
publishers. Note that although the publisher does not promise the quality of im-
pressions delivered to quantity-guaranteed contracts, the quality of impressions still
serves as the criterion for the publisher when making the allocation scheme. Both
the sequence of events and the allocation process are different after choosing differ-
ent types of guaranteed contracts. To explore how these differences affect advertis-
ers’ decisions, the publisher’s allocation process, and also the publisher’s revenue,
we discuss them in §4.4 and §4.5, respectively.

After choosing a type of guaranteed contract, the publisher needs to make an
allocation scheme. However, finding a perfect allocation strategy is not a trivial task
in practice for several reasons (Balseiro et al. 2014, Shamsi 2015, Wu et al. 2021):
a) The severe time request. Once an impression is produced, the publisher should
decide to assign it to contract buyers or release it to RTB in several milliseconds,
which requires a high-efficiency decision method. b) The balance of revenue from
dual channels. Revenue from guaranteed contracts and RTB are contradictory. The
publisher should make decisions to maximise the total revenue from both channels,
which makes it more complex than the traditional DP problem. c) Incentive com-
patibility. The publisher’s revenue also depends on advertisers’ decisions. Thus, it
should design an allocation strategy aligned with advertisers’ incentives.

The challenge of our model is three-fold. First, the heterogeneity between the
two periods poses a significant challenge, as both the decision and state spaces for
players differ in each period. The initial state in the second period is the outcome
of the subgame in the first period. Second, the decision space types in our prob-
lem encompass both continuous (e.g. price of guaranteed contracts) and discrete
(e.g. demands for guaranteed contracts) variables, which makes analysing potential
solutions more difficult. Lastly, the dynamics of the problem in the second period
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exacerbate its complexity, as the publisher must make allocation decisions as long
as unfulfilled guaranteed contracts remain. Consequently, the action space scale is
at least O(2U) (U denotes the number of guaranteed contracts), which might invoke
the curse of dimensionality (Powell 2007).

To address these challenges, we propose a policy-based allocation strategy in-
spired by the policy function approximation in approximate dynamic programming
(ADP). A policy in ADP is usually parameterised. In our model, we focus on a series
of policies structured by θ, the quality of impressions. Specifically, for an impression
with quality denoted by θ. If θ ∈ ΘGC, (ΘGC ⊆ Θ), the publisher assigns this impres-
sion to guaranteed contracts, otherwise releases it to RTB. The publisher’s problem
is to decide a proper ΘGC to maximise its revenue. Since the publisher’s allocation
policy can be learned by advertisers as the selling campaign lasts and repeats in
practice, we assume the policy the common knowledge among the publisher and
advertisers. Based on this policy-based allocation scheme, we formulate our model
under the two types of guaranteed contracts in §4.4.3 and §4.5.3, respectively.

When solving this problem, finding an optimal ΘGC on Θ is still intricate be-
cause 1. ΘGC is not necessary to be continuous, it may include several discrete inter-
vals; 2. each interval contains two sides to be determined. Therefore, we only focus
on two special sets of allocation policies: guaranteed contracts prior policy and RTB
prior policy. Both policies are threshold-based and characterised by a threshold
value, θ′, which signifies the minimum acceptable quality level for an impression.
In the guaranteed contracts prior policy, the publisher allocates an impression to a
guaranteed contract if its quality θ surpasses the threshold value θ′. If θ is less than
or equal to θ′, the impression is released to RTB for auction. Conversely, under RTB
prior policy, the publisher releases an impression to RTB for auction if its quality θ is
greater than or equal to the threshold value θ′. If the quality of this impression falls
below θ′, the impression is allocated to the guaranteed contracts. Consequently, the
decision of allocation policy is reduced to finding a single optimal threshold value
to maximise its revenue. This type of policy is also understandable and acceptable,
hence operable for the publisher in practice. We further examine the performances
of the two sets of policies both under quantity-guaranteed contracts (§4.4.4) and
quality-guaranteed contracts (§4.5.4), respectively. We summarise key notations in
this game in Table A3.1 in Appendix A3.

4.4 Quantity-Guaranteed Contract

In quantity-guaranteed contracts, the publisher does not give a promise about the
quality of delivered impressions. Instead, it makes sure that all contracts are fulfilled
before impressions are sold out. Any under-delivery is not allowed in quantity-
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guaranteed contracts. In this section, we first illustrate the sequence of events in the
case that the publisher chooses this type of contract to sell. Then the allocation of
impressions in period 2 is analysed. Following this analysis, we can obtain the pub-
lisher’s expected revenue and advertisers’ expected utilities. Finally, we develop a
numerical algorithm to solve this problem.

4.4.1 Sequence of Events

As stated before, the impressions selling horizon consists of two periods. Figure
4.1 illustrates the sequence of events around the selling horizon under quantity-
guaranteed contracts:

1. Before period 1 starts, the publisher announces the price for a one-impression
contract, denoted by p, and the total available number of contracts, U. Note
that U should not exceed the total number of impressions Q.

2. When period 1 begins, these two advertisers observe the price for guaran-
teed contracts and also the available number of contracts. Then they make
decisions about how many guaranteed contracts they claim to the publisher.
Advertisers’ demands for guaranteed contracts are denoted by x1 and x2, re-
spectively.

3. The publisher receives x1, x2 and compares them with U. If x1 + x2 ≤ U,
advertisers are ensured to get x1 and x2 contracts. If x1 + x2 > U, adver-
tisers’ demand will be truncated by the proportion they post, i.e., advertiser
i (i ∈ {1, 2}) will only get xi

x1+x2
U contracts. We denote the agreed number of

guaranteed contracts as U′ = min{x1 + x2, U}.

4. Before period 2 starts, the publisher makes the allocation policy according to
U′. This policy is also known to advertisers.

5. In period 2, there will be Q impressions to sell in total. We use t ∈ {t|t =

1, 2, ..., Q} to denote the tth user that visits the webpage, and t = 0 to mark
the start of period 2. While the tth user comes, the publisher can acquire the
quality of this impression, denoted by θt. Then, the publisher decides whether
to assign this impression to contract buyers or release it to RTB. When one
impression is released to RTB, the publisher should also share the quality of
this impression with advertisers such that they can accordingly analyse their
matching degree to this impression and then obtain their valuations, which
are expressed as follows 󰀫

v1,t = α1,tθt

v2,t = α2,tθt
. (4.1)

Subsequently, they post their bids bi and the winner gets this impression and
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pays the other one’s bidding price to the publisher. If one impression is as-
signed to guaranteed contracts, the publisher will deliver it to these two ad-
vertisers by the probability structured from their demands (i.e., advertiser i
will get a contract with the probability of xi

x1+x2
).

Figure 4.1: The sequence of events

4.4.2 Allocation Process

The allocation of quantity-guaranteed contracts needs continuous monitoring of the
state of contract fulfilment (denote the number of unfulfilled contracts as Uunmet)
and available impressions. To ensure that all guaranteed contracts are delivered,
upon the arrival of the tth user, the publisher must assess whether the remaining
number of impressions (Q − t + 1) is sufficient to meet the unfulfilled demand from
guaranteed contracts.

• If Uunmet = 0, all remaining impressions can be released to RTB.

• If Q − t + 1 = Uunmet > 0, all incoming impressions, including the tth one,
must be allocated to fulfil guaranteed contracts.

• If Q − t + 1 > Uunmet > 0, the publisher has the discretion to allocate the
incoming impression either to guaranteed contracts or to RTB. We denote the
quality of the tth impression as θt. If θt ∈ ΘGC, (ΘGC ⊆ Θ), the publisher
assigns this impression to guaranteed contracts, otherwise releases it to RTB.

The allocation process for the publisher under this θ-based allocation policy
can be summarised in Figure 4.2. Following this process, we can group all possible
allocation outcomes into two categories, depending on whether all impressions that
are allocated to guaranteed contracts satisfy θ ∈ ΘGC or not.

In the first category, not all impressions assigned to contracts satisfy the condi-
tion θ ∈ ΘGC because there exists a time point t such that Q − t + 1 = Uunmet > 0
during the allocation process. Then all the left Q − t + 1 impressions need to be

82



Figure 4.2: The publisher’s allocation process in period 2 under quantity-
guaranteed contracts

delivered to guaranteed contracts without checking their qualities. For ease of mod-
elling, we introduce y (y ∈ [0, U′ − 1]) to represent y guaranteed contracts are
fulfilled when only U′ − y impressions remain before the arrival of the tth (t =

Q − U′ + y + 1) impression1. The quality of the last impression, (Q − U′ + y)th,
should be in ΘGC (ΘGC = {θ | θ ∈ Θ and θ /∈ ΘGC}) and be allocated to RTB2.
Therefore, the probability of this case y is

h(y) = (Q−U′+y−1
y )

󰀕󰁝

ΘGC

f (θ)dθ

󰀖y 󰀕󰁝

ΘGC

f (θ)dθ

󰀖Q−U′

, (4.2)

where (Q−U′+y−1
y ) means there are y impressions among the former Q − U′ + y − 1

impressions that meet the condition θ ∈ ΘGC,
󰁕

ΘGC
f (θ)dθ and

󰁕
ΘGC

f (θ)dθ are the
probabilities that the quality of an impression is located in ΘGC and ΘGC, respec-
tively. The schematic diagram for outcomes in the first category is shown in Figure
4.3.

Figure 4.3: The schematic diagram for possible outcomes in the first category

1y = 0 corresponds to the case that the quality of all the former Q − U′ impressions are not meet
θ ∈ ΘGC, then the remain U′ impressions need to be delivered to guaranteed contracts. y = U′ − 1
corresponds to the case that there is still one guaranteed contract unfulfilled when only one last
impression is left.

2The reason the quality of (Q − U′ + y)th impression should be in ΘGC is that if this impression
satisfies θ ∈ ΘGC, then the remaining U′ − y impressions along with this impression should be
delivered to guaranteed contracts buyers. Therefore, this scenario should be categorised to the case
that y − 1 guaranteed contracts are fulfilled when only U′ − y + 1 impressions are left.
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In the second category, the quality of all impressions assigned to guaranteed
contracts is located in ΘGC because there exists a time point t (t < Q) such that
Uunmet = 0. We implement z (z ∈ [U′, Q − 1]) to denote that the zth impression
comes with θz ∈ ΘGC and is assigned to the guaranteed contracts, then all guar-
anteed contracts are fulfilled before the arrival of the tth (t = z + 1) impression3.
This means U′ − 1 guaranteed contracts have been fulfilled before the coming of zth

impression. The probability of this case z is

k(z) = ( z−1
U′−1)

󰀕󰁝

ΘGC

f (θ)dθ

󰀖U′ 󰀕󰁝

ΘGC

f (θ)dθ

󰀖z−U′

. (4.3)

The schematic diagram for outcomes in the second category is shown in Figure
4.4.

Figure 4.4: The schematic diagram for possible outcomes in the second category

4.4.3 Objectives of Advertisers and the Publisher

Incentive of advertisers Advertisers decide how many guaranteed contracts they
claim in period 1 and how much they bid for every impression released to RTB in
period 2. For the channel of guaranteed contracts, advertiser i has the probability of

xi
x1+x2

to get an impression. If an impression with quality θt is assigned to advertiser
i, its utility is αi,tθt − p.

In RTB, since we do not consider the budget constraints for advertisers, it’s
a typical second-price auction scenario for each auction. Then, following auction
theory (Menezes and Monteiro 2004, Narahari 2014), we know that the truth-telling
bidding is the weakly dominant strategy for both two advertisers. For a specific
impression with quality θt released to RTB, if the matching degree for advertisers are
α1,t, α2,t, respectively. We take advertiser 1 for an instance, its utility from bidding
for this impression is max{α1,t − α2,t, 0}θt, i.e., getting (α1,t − α2,t)θt if winning this
impression otherwise 0.

Incentive of the publisher The publisher’s problem is to decide the price of guar-
anteed contracts p, the total number of available impressions U, and the range of

3z = U′ represents the former U′ impressions are eligible for the criteria of guaranteed contracts.
z = Q − 1 represents that all guaranteed contracts are fulfilled when only one impression remains.
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ΘGC. Then, the publisher’s revenue from guaranteed contracts is always U′p. As
for the revenue from RTB, the publisher gets min{α1,t, α2,t}θt from the auction of an
impression with quality θt.

Objectives Advertisers’ total expected utilities and the publisher’s total revenue
are both generated from guaranteed contracts and RTB. How impressions are sold
between the two channels depends on expected allocation outcomes. As we stated
before, there are two categories of possible outcomes. Both the publisher’s revenue
and advertisers’ utilities come from three segments of impressions in each cate-
gory.

Let E(α) =
󰁕

αg(α)dα, E(θ) =
󰁕

θ f (θ)dθ, EGC(θ) =
󰁕

ΘGC
θ f (θ)|ΘGC dθ, ERTB(θ) =󰁕

ΘGC
θ f (θ)|ΘGC

dθ, in which, f (θ)|ΘGC , f (θ)|ΘGC
are the conditional p.d. f of θ on the

interval ΘGC and ΘGC.

In the first category, impressions delivered to guaranteed contracts consist of
two segments. One segment is the former y impressions with quality distributed on
ΘGC. Another segment is the remaining U′ − y impressions being assigned without
checking their qualities. Thus, the quality of these impressions is expected to be dis-
tributed on Θ. In RTB, all Q − U′ impressions are released after meet the condition
θ ∈ ΘGC.

Therefore, advertisers’ expected utility from these impressions under outcomes
in the first category is

Π(i)
1 (xi) =

xi

x1 + x2

󰀅
y (E(α)EGC(θ)− p) +

󰀃
U′ − y

󰀄
(E(α)E(θ)− p)

󰀆

󰁿 󰁾󰁽 󰂀
Expected utility from GC

+
󰀃
Q − U′󰀄 τERTB(θ)󰁿 󰁾󰁽 󰂀

Expected utility from RTB

,

(4.4)

in which τ = E(max{αi − αj, 0}).

The publisher’s expected revenue can also be obtained as

Πpub
1 (p, U′, ΘGC) = U′p +

󰀅
(Q − U′)ξERTB(θ)

󰀆
󰁿 󰁾󰁽 󰂀
Expected revenue from RTB

, (4.5)

in which ξ = E(min{α1, α2}).

In the second category, impressions delivered to all U′ guaranteed contracts
meet θ ∈ ΘGC with expected quality EGC(θ). While there are two segments of im-
pressions released to RTB. The first segment is z − U′ impressions assigned before
the zth impression comes. The quality of these impressions is distributed on ΘGC.
The other segment is the remaining Q− z impressions that are released to RTB with-
out checking their qualities.
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Consequently, advertisers’ expected utility from these impressions under out-
comes in the second category is

Π(i)
2 (xi) =

xi

x1 + x2

󰀅
U′ (E(α)EGC(θ)− p)

󰀆

󰁿 󰁾󰁽 󰂀
Expected utility from GC

+
󰀃
z − U′󰀄 τERTB(θ) + (Q − z) τE(θ)
󰁿 󰁾󰁽 󰂀

Expected utility from RTB

. (4.6)

We also get the publisher’s expected revenue as follows:

Πpub
2 (p, U′, ΘGC) = U′p + ξ

󰀅󰀃
z − U′󰀄ERTB(θ) + (Q − z)E(θ)

󰀆
󰁿 󰁾󰁽 󰂀

Expected revenue from RTB

. (4.7)

Table 4.1 summarises the advertisers’ utility and the publisher’s revenue of a
unit impression from each segment under the two categories.

Table 4.1: The unit utility and revenue of impressions from different parts under
cases of the two categories

Category 1 Guaranteed Contracts Real-time Bidding

h(y) y U′ − y Q − U′

Advertisers’ Utilities E(α)EGC(θ)− p E(α)E(θ)− p E(max{αi − αj, 0})ERTB(θ)

Publisher’s Revenue p p E(min{α1, α2})ERTB(θ)

Category 2 Guaranteed Contracts Real-time Bidding

k(z) U′ z − U′ Q − z

Advertisers’ Utilities E(α)EGC(θ)− p E(max{αi − αj, 0})ERTB(θ) E(max{αi − αj, 0})E(θ)

Publisher’s Revenue p E(min{α1, α2})ERTB(θ) E(min{α1, α2})E(θ)

In summary, advertiser i’s expected utility can be expressed as:

Π(i)(xi) =
U′−1

∑
y=0

h(y)Π(i)
1 (xi) +

Q−1

∑
z=U′

k(z)Π(i)
2 (xi). (4.8)

The publisher’s expected revenue is:

Πpub(p, U′, ΘGC) =
U′−1

∑
y=0

h(y)Πpub
1 (p, U′, ΘGC) +

Q−1

∑
z=U′

k(z)Πpub
2 (p, U′, ΘGC). (4.9)

The decisions of both the publisher and advertisers have complex effects on
their revenue or utilities. For example, if the publisher sets a low price for guar-
anteed contracts, then advertisers tend to post a high demand for it. However, the
publisher does not want to sell too many contracts to them at a low price, which
will reduce the potential revenue from RTB. So this publisher may only release a
limited number of available contracts to advertisers. If the publisher sets a high
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price for guaranteed contracts, then it would like to sell many contracts to gain sta-
ble revenue. However, advertisers would rather join RTB to take their chances than
buy expensive contracts. Thus, the publisher needs to consider the advertisers’ in-
centives when it sets the price and the available amount of guaranteed contracts at
the start. For advertisers, when they decide their demands of guaranteed contracts,
they should consider their expected utilities from RTB by analysing the publisher’s
allocation policy in the future.

Proposition 4.1. At least one of these two advertisers’ equilibrium demands for guaranteed
contracts is the same, i.e., x∗1 = x∗2 = x∗.

From Proposition 4.1, we can rewrite the agreed amount of guaranteed con-
tracts as U′ = min{2x∗, U}. Furthermore, advertisers now can optimise U′ instead
of xi. And the probability that an impression assigned to guaranteed contracts
can be delivered to one of the advertisers is 1/2 when they post equilibrium de-
mand. Therefore, we can also update advertisers’ utility function by substituting
x1 = x2 = x∗ into xi

x1+x2
:

Π(i)(U′) =
U′−1

∑
y=0

h(y)

󰀫
1
2
󰀅
y (E(α)EGC(θ)− p) +

󰀃
U′ − y

󰀄
(E(α)E(θ)− p)

󰀆
+

󰀃
Q − U′󰀄 τERTB(θ)

󰀬

+
Q−1

∑
z=U′

k(z)

󰀫
1
2
󰀅
U′ (E(α)EGC(θ)− p)

󰀆
+

󰀃
z − U′󰀄 τERTB(θ) + (Q − z) τE(θ)

󰀬

(4.10)

4.4.4 Algorithm and Numerical Experiment

In this section, we design an algorithm to solve our model when both the qual-
ity of impressions and the matching degree between advertisers and impressions
are uniformly distributed, i.e., A ∼ U(0, α), Θ ∼ U(0, θ). Then, we compare the
performance of the two sets of threshold-type policies through a numerical exper-
iment. Specifically, we have ΘGC = [θ′, θ] under guaranteed contracts prior policy
and ΘGC = [0, θ′) under RTB prior policy. The publisher’s revenue (Equation (4.9))
and advertisers’ utility function (Equation (4.10)) can be specified according to the
allocation policy given the distribution of A and Θ. Table 4.2 summarised the details
about both parties’ objective functions in this case.

Algorithm We develop a numerical algorithm to solve this problem through the
backward induction approach. Recall the sequences of events in Figure 4.1, the back-
ward order of both parties’ decisions in this game is:bi, θ′, U′(= min{2x∗, U}), U, p.
Note that the advertisers’ bidding strategy is truth-telling due to the absence of bud-
get limitations. Therefore, we summarise three stages starting from solving optimal
θ′.
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Table 4.2: The details of objectives under the two policies given uniform distribu-
tions of A, Θ

Guaranteed Contracts Prior Policy

EGC(θ) =
θ + θ′

2
ERTB(θ) =

θ′

2

h(y) = (Q−U′+y−1
y )

󰀣
θ − θ′

θ

󰀤y 󰀣
θ′

θ

󰀤Q−U′

k(z) = ( z−1
U′−1)

󰀣
θ − θ′

θ

󰀤U′ 󰀣
θ′

θ

󰀤z−U′

Πpub(p, U′, θ′) = U′p +
αθ′

6

U′−1

∑
y=0

h(y)(Q − U′)

+
α

6

Q−1

∑
z=U′

k(z)
󰀅
(z − U′)θ′ + (Q − z)θ

󰀆

Π(i) =
U′−1

∑
y=0

h(y)

󰀫
1
2

󰀥
y

󰀣
α(θ + θ′)

4
− p

󰀤
+

󰀃
U′ − y

󰀄
󰀣

αθ

4
− p

󰀤󰀦
+

󰀃
Q − U′󰀄 αθ′

12

󰀬

+
Q−1

∑
z=U′

k(z)

󰀫
1
2

󰀥
U′

󰀣
α(θ + θ′)

4
− p

󰀤󰀦
+

󰀃
z − U′󰀄 αθ′

12
+ (Q − z)

αθ

12

󰀬

Real-time Bidding Prior Policy

EGC(θ) =
θ′

2
ERTB(θ) =

θ + θ′

2

h(y) = (Q−U′+y−1
y )

󰀣
θ′

θ

󰀤y 󰀣
θ − θ′

θ

󰀤Q−U′

k(z) = ( z−1
U′−1)

󰀣
θ′

θ

󰀤U′ 󰀣
θ − θ′

θ

󰀤z−U′

Πpub(p, U′, θ′) = U′p +
α(θ + θ′)

6

U′−1

∑
y=0

h(y)(Q − U′)

+
α

6

Q−1

∑
z=U′

k(z)
󰀅
(z − U′)(θ + θ′) + (Q − z)θ

󰀆

Π(i) =
U′−1

∑
y=0

h(y)

󰀫
1
2

󰀥
y

󰀣
αθ′

4
− p

󰀤
+

󰀃
U′ − y

󰀄
󰀣

αθ

4
− p

󰀤󰀦
+

󰀃
Q − U′󰀄 α(θ + θ′)

12

󰀬

+
Q−1

∑
z=U′

k(z)

󰀫
1
2

󰀥
U′

󰀣
αθ′

4
− p

󰀤󰀦
+

󰀃
z − U′󰀄 α(θ + θ′)

12
+ (Q − z)

αθ

12

󰀬
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Stage 1 In this stage, the publisher determines the threshold θ′ in an allocation
policy given p, U′.

Lemma 4.2. The publisher’s revenue function Πpub(p, U′, θ′) on θ′ only contains infinite
extrema on [0, θ] under both guaranteed contract prior policy and RTB prior policy.

Lemma 4.2 guarantees that we can get the local maximum in a quadratic con-
vergence rate by implementing Newton’s method if there is a good starting point.
Theoretically, the optimal threshold can be expressed by p, U′ and other state pa-
rameters. Therefore, we denote it as θ′∗(p, U′).

Stage 2 The agreed number of guaranteed contracts is decided in this stage. Be-
cause the final knockdown amount is determined by advertisers after observing the
total available number posted by the publisher. Hence, we first find the advertisers’
best choice U′∗ under the range of [0, U] to maximise their utilities by substituting
θ′∗(p, U′) in Π(i), in which U is posted by the publisher. Then we get the optimal
U∗ for the publisher to maximise its best revenue. Note that the complexity in this
stage is O(Q).

Stage 3 Finally, the publisher decides an optimal price p∗ to maximise its rev-
enue, Πpub(p, U′, θ′). Unfortunately, we cannot find a good way to accelerate the
computation at this stage because the closed-form of U′ is not accessible.

Lemma 4.3. At least one optimal price of guaranteed contracts is no greater than αθ.

However, according to Lemma 4.3, at least we can find a numerical solution of

the price iteratively in |
αθ

σ
| times by setting a step-size σ. And the gap between the

optimal price between the numerical one will not excess
σ

αθ
. The procedure of this

algorithm is shown below.

Numerical experiments We conducted numerical experiments to compare the per-
formance of two distinct policies. Setting Q = 50, A ∼ U(0, 1), and Θ ∼ U(0, 10),
Figure 4.5 demonstrates the results of the guaranteed contracts prior policy, while
Figure 4.6 presents those of RTB prior policy. In the left subplot, the blue dotted line
represents the optimal θ′ at the current price. In the right subplot, the blue and or-
ange dotted lines depict the optimal number of guaranteed contracts for advertisers
and the publisher as the price varies. The green line in both subplots illustrates the
publisher’s revenue.

Figure 4.5 reveals that the agreed number of guaranteed contracts between the
publisher and advertisers is consistently zero under guaranteed contracts prior pol-
icy, resulting in all impressions being sold through RTB (Πpub ≈ 83.3). At low
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Algorithm 1: quantity-guaranteed Contracts
Input: Q, Θ, A, σ

1 Initialisation;
2 while p ≤ θ ∗ α do
3 for U’ in [0, U] do
4 Use quasi-Newton’s Method to get the optimal θ′∗(p, U′) to maximise

the publisher’s revenue Πpub(p, U′, θ′) under given p, U′;
5 Calculate Πpub

θ′∗ (p, U′) and Π(i)
θ′∗(p, U′), respectively.

6 if Πpub
θ′∗ (p, U′) > Πpub

θ′∗ (p, U′ − 1) and Π(i)
θ′∗(p, U′) > Π(i)

θ′∗(p, U′ − 1)
then

7 Update U′∗ = U′

8 end
9 end

10 Get the best choice of U′∗ to maximise Πpub
θ′∗,U′∗(p,U)

(p, U′);

11 p ← p + σ.
12 end
13 Get the final results of

󰀃
p∗, U′∗, θ′

󰀄

Figure 4.5: Numerical results in Guaranteed Contracts prior policy under quantity-
guaranteed contracts
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Figure 4.6: Numerical results in RTB prior policy under quantity-guaranteed con-
tracts

prices, advertisers seek a high number of guaranteed contracts, while the publisher
prefers selling all impressions via RTB. As the price increases, both advertisers’ and
the publisher’s preferences shift entirely. In this scenario, the publisher’s revenue
solely originates from RTB. A potential explanation for this phenomenon is that
both the publisher’s revenue and advertisers’ utilities are convex functions of the
number of guaranteed contracts. The maximum is achieved either when U = 0
or when U = Q. For low prices, Π(i)

p (U = 0) > Π(i)
p (U = Q) and Πpub

p (U =

0) < Πpub
p (U = Q). Conversely, for high prices, Π(i)

p (U = 0) < Π(i)
p (U = Q) and

Πpub
p (U = 0) > Πpub

p (U = Q). This leads to the result that the publisher and the
two advertisers cannot arrive an agreed number of guaranteed contracts.

Figure 4.6 demonstrates that, in RTB priority policy, the optimal numerical solu-
tion is p∗ = 0.8, θ′∗ ≈ 2.5, U′∗ = 10, and the corresponding revenue is approximate
86.5. The most notable difference compared to the guaranteed contracts priority
policy is that the publisher’s optimal choice of the number of guaranteed contracts
gradually increases as the price of guaranteed contracts rises. This results in an
intermediate intersection between the advertisers’ demands and the publisher’s of-
ferings. As the price increases, the optimal threshold of impressions quality θ′ also
grows, signifying that a greater number of high-quality impressions will be allo-
cated to guaranteed contracts. However, even though the quality of impressions
assigned to guaranteed contracts improves as prices increase, advertisers will re-
frain from purchasing impressions if the price surpasses a certain value. Numerical
results also indicate that the expected number of impressions satisfying ΘGC is ap-
proximately 25, which is greater than the agreed number of guaranteed contracts.
This observation suggests that when formulating an allocation policy, the publisher
aims to establish a θ′ such that the number of impressions allocated to guaranteed
contracts aligns with the expected number of impressions with quality located on
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ΘGC.

In conclusion, RTB prior policy generates higher revenue for the publisher com-
pared to the guaranteed contracts prior policy in the context of quantity-guaranteed
contracts. This best revenue is achieved via selling impressions through dual chan-
nels.

4.5 Quality-Guaranteed Contracts

Unlike quantity-guaranteed contracts, each impression delivered to contract buyers
under this setting must strictly meet prespecified quality requirements. We assume
that the quality criteria (θ ∈ ΘGC) contained in the requirements of guaranteed con-
tracts align with what is in the allocation strategy. In other words, if the publisher
promises that advertisers will receive impressions with quality satisfying θ ∈ ΘGC,
then they will deliver impressions to contract buyers as long as a) the quality of
these impressions are in ΘGC and b) there are still unmet contracts. Proper ΘGC

may depend on the price of guaranteed contracts. Therefore, we assume that the
publisher first sets the price and then decides the scope of ΘGC.

In this section, we first illustrate the sequence of events and allocation process
under the setting of quality-guaranteed contracts. Then we discuss advertisers and
the publisher’s objectives. Finally, we demonstrate a numerical algorithm to solve
this model and a numerical experiment has been conducted.

4.5.1 Sequence of Events

The sequence of events under quality-guaranteed contracts is shown in Figure 4.7.

1. At first, the publisher announces the price for a one-impression contract p, the
scope of quality of impressions delivered to contracts buyers ΘGC, the unit
compensation for one unfulfilled contract h, and the total available number of
contracts U.

2. When selling of guaranteed contracts starts in period 1, advertiser i claims
demand for guaranteed contracts xi to the publisher.

3. Receiving x1 and x2, the publisher returns quota of guaranteed contracts, i.e.
min{xi,

xi
x1+x2

U}, to advertiser i.

4. In period 2, these Q impressions come one by one. We let t = 0 to mark the
start of period 2 and t ∈ {t|t = 1, 2, ..., Q} to denote the tth impression with
quality θt. Then, the publisher makes allocation decisions. If this impression is
released to RTB, advertisers can get their valuations denoted as αi,tθt and bid
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for it. Otherwise, if it is assigned to guaranteed contracts, advertiser i will get
it with the probability of xi

x1+x2
.

Figure 4.7: The sequence of events under the quality-guaranteed contracts setting

Compared with the sequence under quantity-guaranteed contracts, there are
two main differences. First, the allocation strategy-making procedure is merged
ahead into the quality requirements-making in guaranteed contracts. Second, the
publisher needs to decide on one more variable, the compensation cost for unful-
filled contracts. Besides, the policy-based allocation process is also different from
what is under the setting of quantity-guaranteed contracts, which is demonstrated
next.

4.5.2 Allocation Process

Since under-delivery is permitted in this case, the publisher only needs to check
whether there are unfulfilled contracts or not during the allocation process. Unlike
in the quantity-guaranteed contract setting, the publisher does not need to monitor
whether the remaining impressions are enough to fulfil contracts or not.

We implement Uunmet to represent the number of unfulfilled contracts. At t = 0,
we set Uunmet = U′. Upon the arrival of the tth impression, the publisher checks if
Uunmet > 0. If so, they decide whether to assign this impression to guaranteed
contracts or to RTB by comparing θt with ΘGC. Once Uunmet = 0 and the selling
horizon has not yet ended, the publisher releases all remaining impressions to RTB.
However, if there are still unfulfilled guaranteed contracts when all Q impressions
have been depleted, then the publisher must pay additional hUunmet to advertisers.
The allocation process is illustrated in Figure 4.8. This process is simpler than that
in Figure 4.2. Different possible allocation outcomes may occur because of various
realisations of the quality of impressions. Depending on whether all contracts are
successfully fulfilled or not, we can categorise these possible allocation outcomes
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into two categories. For convenience, let z denotes the number of impressions that
satisfy θt ∈ ΘGC.

Figure 4.8: The publisher’s allocation process in period 2 under quality-guaranteed
contracts

In the first category, z ∈ [0, U′], the publisher delivers these eligible z impres-
sions to contract buyers. The other Q − z impressions are released to RTB. Besides,
there are U′ − z unfulfilled contracts after the end of allocation.

In the second category, z ∈ (U′, Q]. Then among the z eligible impressions, the
former U′ impressions are delivered to fulfil all guaranteed contracts. The other z −
U′ impressions with quality in ΘGC together with the remaining Q − z impressions
with quality in ΘRTB are released to RTB.

The probability that there are z out of Q impressions fulfilling the requirement
of guaranteed contracts is given by:

l(z) = (Q
z )

󰀕󰁝

ΘGC

f (θ)dθ

󰀖z 󰀕󰁝

ΘGC

f (θ)dθ

󰀖Q−z
(4.11)

4.5.3 Objectives of Advertisers and the Publisher

Incentive of advertisers Advertisers have two decisions to make: how many guar-
anteed contracts they want to buy in period 1 and how much they want to bid in
RTB in period 2. In period 1, due to symmetry, both advertisers demand the same
number of guaranteed contracts x∗ (Proposition 4.1). The agreed number of con-
tracts is U′(U′ = min{2x∗, U} ≤ U). Hence the probability that advertiser i gets an
impression assigned to guaranteed contracts is 1/2. If advertiser i successfully gets
an impression with quality θt, its utility will be αi,tθt − p. However, some contracts
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may not be fulfilled by the end of the campaign. In that case, advertisers receive
h − p for each unfulfilled contract.

Their bidding incentives are the same as in the quantity-guaranteed setting:
truth-telling is a weakly dominant strategy for each auction. Therefore, for an im-
pression with quality θt that is released to RTB, advertiser i’s utility is max{αi,t −
α3−i,t, 0}θt.

Incentive of the publisher The publisher’s revenue comes from two sources: ad-
vertisers’ payments for guaranteed contracts in period 1 and their payments in auc-
tions in period 2. Additionally, the publisher also needs to clear the compensation
for unmet contracts at the end of this campaign. Once the number of contracts U′ is
agreed upon, the publisher receives the payment of U′p immediately. In period 2,
for an impression with quality θt that is released to RTB, it obtains min{α1,t, α2,t}θt

after this auction. Finally, it pays h back to advertisers for each unfulfilled con-
tract.

Objectives Similar to quantity-guaranteed contracts, advertisers’ utilities and the
publisher’s revenue yield by different segments of impressions in each category we
stated before.

In the first category, z impressions are delivered to guaranteed contracts with
their quality distributed on ΘGC. The other Q − z impressions that are distributed
on ΘGC are sent to RTB. Besides, for each unfulfilled contract, the publisher needs
to pay h and advertisers then can get h − p back.

Therefore, advertiser i’s expected utility on possible comes in the first category
can be expressed as:

Π(i)
1 (U′) =

1
2
󰀅
z (E(α)EGC(θ)− p) +

󰀃
U′ − z

󰀄
(h − p)

󰀆

󰁿 󰁾󰁽 󰂀
Expected utility from GC

+ (Q − z)τERTB(θ)󰁿 󰁾󰁽 󰂀
Expected utility from RTB

,

(4.12)
in which τ = E(max{αi − αj, 0}).

Because the publisher makes revenue from advertisers’ payments, we can also
get its revenue as follows:

Π(pub)
1 (p, h, ΘGC, U′) = zp + (U′ − z)(p − h)󰁿 󰁾󰁽 󰂀

Net expected revenue from GC

+ (Q − z)ξERTB(θ)󰁿 󰁾󰁽 󰂀
Expected revenue from RTB

, (4.13)

in which ξ = E(min{α1, α2}).

In the second category, the former U′ impression among z impressions with
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quality in ΘGC are delivered to guaranteed contracts. The other z − U′ impressions
together with the remaining Q − z impressions with quality in ΘRTB are released to
RTB.

Accordingly, we can get advertiser i’s expected utility as:

Π(i)
2 (U′) =

1
2
U′ (E(α)EGC(θ)− p)

󰁿 󰁾󰁽 󰂀
Expected utility from GC

+ τ
󰀅
(Q − z)ERTB(θ) +

󰀃
z − U′󰀄EGC(θ)

󰀆
󰁿 󰁾󰁽 󰂀

Expected utility from RTB

.

(4.14)

The publisher’s expected revenue is:

Π(pub)
2 (p, h, ΘGC, U′) = U′p + ξ

󰀅
(Q − z)ERTB(θ) + (z − U′)EGC(θ)

󰀆
󰁿 󰁾󰁽 󰂀

Expected revenue from RTB

(4.15)

Table 4.3: The unit utility and revenue of impressions from different parts under
cases of the two categories

Category 1 Guaranteed Contracts Real-time Bidding

z ≤ U′ z(Fulfilled) U′ − z(Unfulfilled) Q − z

Advertisers’ Utilities E(α)EGC(θ)− p h − p E(max{αi − αj, 0})ERTB(θ)

Publisher’s Revenue p p − h E(min{α1, α2})ERTB(θ)

Category 2 Guaranteed Contracts Real-time Bidding

z > U′ U′ z − U′ Q − z

Advertisers’ Utilities E(α)EGC(θ)− p E(max{αi − αj, 0})EGC(θ) E(max{αi − αj, 0})ERTB(θ)

Publisher’s Revenue p E(min{α1, α2})EGC(θ) E(min{α1, α2})ERTB(θ)

Table 4.3 summarises both the publisher’s revenue and advertisers’ expected
utilities from a unit of impression from different segments under two categories.
Accordingly, advertiser i’s expected utility is:

Π(i)(U′) =
U′

∑
z=0

l(z)Π(i)
1 (U′) +

Q

∑
z=U′+1

l(z)Π(i)
2 (U′). (4.16)

The publisher’s expected revenue is:

Πpub(p, h, ΘGC, U′) =
U′

∑
z=0

l(z)Πpub
1 (p, h, ΘGC, U′) +

Q

∑
z=U′+1

l(z)Πpub
2 (p, h, ΘGC, U′). (4.17)

The additional decision h for the publisher makes the analysis more complex
than in the case of the quantity-guaranteed contract. Both the low price p and
the high compensation h encourage advertisers to buy more guaranteed contracts.
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However, their purchase willingness of guaranteed contracts is unclear when p and
h are both small or large.

4.5.4 Algorithm and Numerical Experiment

Similar with what we did in §4.4.4, we can specialise the publisher’s revenue (Equa-
tion (4.17)) and advertisers’ utility function (Equation (4.16)) by assuming A ∼
U(0, α), Θ ∼ U(0, θ) and implementing the two types of policies. The objective
functions for advertisers and the publisher are shown in Table 4.4.

Table 4.4: The details of objectives under the two policies given uniform distribu-
tions of A, Θ

Guaranteed Contracts Prior Policy

EGC(θ) =
θ + θ′

2
ERTB(θ) =

θ′

2

l(z) = (Q
z )

󰀣
θ − θ′

θ

󰀤z 󰀣
θ′

θ

󰀤Q−z

Πpub(p, h, U′, θ′) =U′p +
U′

∑
z=0

󰀝
l(z)

󰁫
− h(U′ − z) + (Q − z)

αθ′

6

󰁬󰀞

+
Q

∑
z=U′+1

󰀝
l(z)

󰁱α

6
󰀅
(Q − z)θ′ + (z − U′)(θ + θ′)

󰀆󰁲󰀞

Π(i) =
U′

∑
z=0

l(z)

󰀫
1
2

󰀥
z

󰀣
α(θ + θ′)

4
− p

󰀤
+

󰀃
U′ − z

󰀄
(h − p)

󰀦
+

αθ′

12
(Q − z)

󰀬

+
Q

∑
z=U′+1

l(z)

󰀫
1
2
U′

󰀣
α(θ + θ′)

4
− p

󰀤
+

α

12
󰀅
(Q − z) θ′ + (z − U) (θ + θ′)

󰀆
󰀬

Real-time Bidding Prior Policy

EGC(θ) =
θ′

2
ERTB(θ) =

θ + θ′

2

l(z) = (Q
z )

󰀣
θ′

θ

󰀤z 󰀣
θ − θ′

θ

󰀤Q−z

Πpub(p, h, U′, θ′) =U′p +
U′

∑
z=0

󰀝
l(z)

󰁫
− h(U′ − z) + (Q − z)

α(θ + θ′)

6

󰁬󰀞

+
Q

∑
z=U′+1

󰀝
l(z)

󰁱α

6
󰀅
(Q − z)(θ + θ′) + (z − U′)θ′

󰀆󰁲󰀞

Π(i) =
U′

∑
z=0

l(z)

󰀫
1
2

󰀥
z

󰀣
αθ′

4
− p

󰀤
+

󰀃
U′ − z

󰀄
(h − p)

󰀦
+

α(θ + θ′)

12
(Q − z)

󰀬

+
Q

∑
z=U′+1

l(z)

󰀫
1
2
U′

󰀣
αθ′

4
− p

󰀤
+

α

12
󰀅
(Q − z) (θ + θ′) + (z − U) θ′

󰀆
󰀬
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Algorithm In the current setting of quality-guaranteed contracts, the decision of
θ′ follows after the decision of the price for contracts. Therefore, the stages in the
backward induction method for this case differ from those for quantity-guaranteed
contracts. To simplify this problem, we sequentialise the publisher’s decisions in
the following order: p, h, θ′, U′.

stage 1 In this stage, advertisers and the publisher achieve the agreed number
of contracts. Advertisers observe the price p, compensation h for a guaranteed con-
tract, the criteria of impressions ΘGC, and the total available number U posted by
the publisher. They aim to find the desired number U′∗( U′ ∈ [0, U]) that max-
imises their utilities Π(i)(U′). Subsequently, the publisher identifies an optimal
U∗ that maximises its revenue at Πpub(p, h, θ′, U′∗). The complexity of this stage
is O(Q).

stage 2 In this stage, the publisher makes the allocation policy, which is also
the criteria regulated in the guaranteed contracts. For given p and h, the publisher
determines a θ′ to maximise Πpub

U′∗ (p, h, θ′).

stage 3 In the final stage, the publisher decides the penalty cost h and then the
price p for a guaranteed contract to sequentially maximise the revenue function
Πpub

U′∗,θ′∗(p, h).

Since we cannot obtain the closed-form of the optimal guaranteed contracts,
later decisions can only be assessed numerically. The algorithm is presented upside.
The limitations of this algorithm are twofold: Firstly, we are unaware of the prop-
erties of the numerical results, such as the potential gap compared to the theoretical
optimal results. Secondly, the algorithm’s efficiency is low, restricting its application
to small-scale problems.

Numerical experiments The settings (Q = 50, A ∼ U(0, 1), Θ ∼ U(0, 10)) are
identical to those in the context of quantity-guaranteed contracts, enabling a com-
parison between the results. Figure 4.9 and Figure 4.10 depict the numerical out-
comes under the guaranteed contracts priority policy and the RTB priority policy,
respectively. The relationship between these decisions and the final revenue is ex-
plored in various subplots. In the upper left subplot, the blue dash-dot line repre-
sents the optimal θ′ under the current p. The upper right and lower right subplots
feature blue and orange dashed lines, showcasing the number of guaranteed con-
tracts posted by advertisers and the publisher, respectively. The red line in the lower
subplots indicates the optimal compensation cost h under the p. Green lines in all
subplots represent the publisher’s revenue under p.

Under the guaranteed contracts priority policy, the numerically optimal rev-
enue is Πpub ≈ 172.84 and is attained at p∗ = 6.67, h∗ = 12.2, U′∗ = 24, θ′∗ = 5.05.
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Algorithm 2: quality-guaranteed Contracts
Input: Q, Θ, A, {σi|i = p, h, θ}

1 Initialisation: p = 0, h = 0, θ′ = 0;
2 while p ≤ θ ∗ α do
3 while Πpub

U′∗,θ′∗(p, h) not converge do
4 while θ′ ≤ θ do
5 for U′ in [0, U] do
6 Calculate Πpub(p, h, θ′, U′) and Π(i)(p, h, θ′, U′) under given

(p, h, θ′), respectively.
7 if Πpub(p, h, θ′, U′) > Πpub(p, h, θ′, U′ − 1) and

Π(i)(p, h, θ′, U′) > Π(i)(p, h, θ′, U′ − 1) then
8 Update U′∗ = U′

9 end
10 end
11 Get the U′∗;
12 θ′ ← θ′ + σθ.
13 end
14 Get the current best θ′∗ that max Πpub

U′∗ (p, h, θ′);
15 h ← h + σh.
16 end
17 Get the current best p∗ that max Πpub

U′∗,θ′∗(p, h);
18 p ← p + σp.
19 end
20 Get the final results of

󰀃
p∗, h∗, θ′, U′∗󰀄.
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Figure 4.9: Numerical results in Guaranteed Contracts prior policy under quality-
guaranteed contracts

From Figure 4.9, it is evident that neither advertisers nor the publisher wishes to
trade via guaranteed contracts when p < 2, resulting in all impressions being sold in
RTB. As the price exceeds 2, the publisher can entice advertisers to purchase guaran-
teed contracts by offering substantial compensation, which also generates increased
revenue. Simultaneously, the publisher must provide impressions of higher qual-
ity as the price escalates. At the onset of price increases beyond 2, both the quality
threshold θ′∗ and compensation h experience sharp growth. The agreed number of
contracts diminishes due to the rising compensation cost.

Figure 4.10 displays results under RTB priority policy. The optimal revenue
(Πpub ≈ 189.45) is achieved at p∗ = 5.96, h∗ = 11, U′∗ = 23, θ′∗ = 4.65. Unlike
the guaranteed contracts priority policy cases, all decisions and revenue change as
the price of guaranteed contracts increases. The high compensation incentivises ad-
vertisers to buy contracts. Consequently, the publisher’s strategy is to adjust the
criteria in the policy to prevent excessive compensation payments, as evidenced by
the similar trends of θ′∗ and the number of contracts posted by the publisher. An-
other intriguing observation is that when the price of guaranteed contracts is suffi-
ciently high, the publisher prefers to reduce the quota of guaranteed contracts. This
is because higher prices demand higher quality, and the number of high-quality
impressions is limited. If the publisher allocates a large quota to expensive guaran-
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Figure 4.10: Numerical results in RTB prior policy under quality-guaranteed con-
tracts

teed contracts, the probability of incurring prohibitive compensation payments also
increases.

Comparing the performance of the two policies we find that, the RTB prior pol-
icy derives more expected revenue than guaranteed contracts prior policy. Since
both the price and the final agreed number of guaranteed contracts are very close
among the two policies, the contribution of the difference among the total revenue
mainly comes from RTB. Impressions with better quality are allocated to RTB un-
der the RTB prior policy, which generates more revenue. The results collectively
reveal that the offer of compensation inspires advertisers’ demands for guaranteed
contracts.

4.5.5 Comparison of Results under Two Types of Guaranteed Con-

tracts

Benchmarks For a comprehensive understanding of the publisher’s revenue dy-
namics, we establish two benchmark scenarios: one where only guaranteed con-
tracts are available, and another where only RTB is in operation.

In the first benchmark, we assume that there is no RTB channel in this market
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and that the publisher sells all impressions through guaranteed contracts. Since
advertisers’ expected valuation of these impressions is E(α)E(θ), the publisher can
set the price of guaranteed contracts also as E(α)E(θ) to extract the two advertisers’
surplus. If we set Q = 50, A ∼ U(0, 1), Θ ∼ U(0, 10), then the publisher’s expected
revenue is 125.

When the publisher only implements RTB when selling these Q impressions,
advertisers bid truthfully in each auction. Under the rule of second-price, the pub-
lisher gets the minimum of the two advertiser’s bids. Therefore, the publisher’s ex-
pected revenue from these impressions can be expressed as QE(min{α1, α2})E(θ).
Under the setting of Q = 50, A ∼ U(0, 1), Θ ∼ U(0, 10), its revenue is approxi-
mately 83.3.

Comparison Discussion We compare the results under two types of guaranteed
contracts - quantity-guaranteed contracts and quality-guaranteed contracts - in con-
junction with two allocation policies: guaranteed contracts prior and RTB prior. The
publisher’s revenue under these four cases is illustrated in Figure 4.11. When the
price of guaranteed contracts starts from zero, its revenue under the same policy
remains very similar across both types of guaranteed contracts. However, as the
prices exceed a certain threshold, its revenue under quality-guaranteed contracts
continues to increase, while that under quantity-guaranteed contracts drops down.
Furthermore, the adoption of the RTB prior policy with quantity-guaranteed con-
tracts outperforms the exclusive RTB benchmark but falls short when compared to
the guaranteed contracts-only benchmark. In contrast, the optimal revenue derived
from quality-guaranteed contracts elevates the publisher’s revenue potential, sur-
passing both benchmarks.

This finding suggests that quality-guaranteed contracts are more effective than
quantity-guaranteed contracts from a revenue generation perspective. Compared to
quantity-guaranteed contracts, quality-guaranteed contracts offer more flexibility to
the publisher by incorporating a compensation mechanism. This feature allows the
publisher to benefit more from RTB opportunities. RTB prior policy outperforms the
guaranteed contracts prior policy as it can capitalise on the variable value inherent
in high-quality impressions. This is due to the fact that the price of guaranteed
contracts has already determined their value, allowing the RTB prior policy to focus
on maximising the revenue from high-quality impressions.
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Figure 4.11: Publisher’s revenue under different types of guaranteed contracts and
allocation policies

4.6 Conclusion

Because guaranteed contracts and RTB are the main selling channels in the online
display advertising markets, how to allocate impressions between them becomes a
significant topic in the interests of publishers. This paper focuses on this problem
while taking advertisers’ strategic choice between these two channels into consid-
eration. It contributes to the understanding of impressions allocation between two
channels in online display advertising markets (e.g. Roels and Fridgeirsdottir 2009,
Yang et al. 2012, Balseiro et al. 2014, Li et al. 2016, Chen 2017, Jauvion and Grislain
2018, Shen 2018, Rhuggenaath et al. 2019, Wu et al. 2021, Wang et al. 2022 and Zhang
et al. 2022). By introducing the quality of every impression decided by distinct users’
information behind, we are able to model the heterogeneous of different impres-
sions. Furthermore, we check the performance of two different types of guaranteed
contracts, namely quantity-guaranteed contracts and quality-guaranteed contracts,
respectively. Under each type of guaranteed contracts, we also examine two kinds
of threshold-like allocation policies based on the quality of impressions.

This research provides some interesting managerial insights. Firstly, from the
perspective of generating more revenue for the publisher, quality-guaranteed con-
tracts are better than quantity-guaranteed contracts, and the RTB prior policy dom-
inates the guaranteed contracts prior policy. Consequently, the RTB prior policy
under the quality-guaranteed contracts is the best choice for the publisher in this
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setting. Secondly, the mechanism of compensation contained in quality-guaranteed
contracts is significant for inspiring advertisers’ demand for contracts, which cre-
ates a more flexible space for the publisher to make decisions. Due to the expensive
penalty cost, the publisher should try to match the agreed number of guaranteed
contracts with the number of impressions that are eligible for regulations in con-
tracts, to decrease the probability of under-delivery. Lastly, the equilibrium results
reveal the benefit of the combination of the dual channels.

This paper is among the first to understand the impact of advertisers’ strategic
behaviour on publishers’ allocation strategy, which leaves several valuable future
directions. Firstly, we only considered two advertisers in this campaign due to the
complexity of this problem. This inevitably narrows the application of our model
to oligopoly markets. Expanding to markets with a broader advertiser base could
yield different allocation strategies. Second, we neglect the budget constraints for
advertisers. In practice, advertisers usually have limited budgets when investing in
the markets. Some research has explored how the budget limitation affects advertis-
ers’ bidding strategy in single RTB markets (e.g., Balseiro et al. 2015, Lu et al. 2015,
Shin 2015 and Balseiro and Gur 2019). However, its effect in the dual-channel mar-
kets still remains unclear. As such, we recommend that future research to consider
advertisers’ strategic behaviours with limited budgets, when addressing the alloca-
tion of impressions between two channels. Finally, we only explored two types of
threshold-like allocation policy. It’s worthwhile for future research to find a global
optimal allocation strategy, instead of optimising allocation strategy under limited
types of policies.
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5 Conclusion

The digital era has ushered in a complex and multi-faceted advertising landscape,
presenting both challenges and opportunities for publishers and advertisers alike.
This thesis has taken a deep dive into the world of online display advertising, with
a particular focus on the strategic behaviours that both publishers and advertisers
exhibit across dual selling channels, namely guaranteed contracts and RTB. Through
three meticulously designed studies, this research sheds light on the optimal pricing
of guaranteed contracts, the strategy for attracting additional advertisers between
the two channels and the allocation policy of impressions among the guaranteed
contracts and RTB.

5.1 Summary of Key Findings and Contributions

The first study in this series was instrumental in exploring the nuanced impact of
guaranteed contracts on advertisers’ behaviour, as well as their strategic choices
across dual channels. It broke new ground by revealing that advertisers often em-
ploy a mixed truth-telling strategy in RTB, thereby challenging conventional wis-
dom. Moreover, the study found that publishers are increasingly leveraging the
synergies between dual channels to mitigate the uncertainties associated with the
supply of impressions. Following this, the second study turned the spotlight onto
the publisher’s strategic considerations, particularly in terms of attracting addi-
tional advertisers. It introduced a novel cost-benefit indicator that serves as a critical
threshold for determining the unit advertising cost of attracting more advertisers.
This study also enriched our understanding of how the arrival of additional adver-
tisers can influence the behaviours and strategies of the original advertisers. The
third study took the analysis a step further by examining optimal impression alloca-
tion strategies between guaranteed contracts and RTB, all while accounting for the
strategic behaviours of advertisers. It emerged that quality guaranteed contracts,
coupled with an RTB prior policy, offer the most lucrative revenue generation op-
portunities for publishers.

From a theoretical standpoint, this research has made several significant con-
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tributions. The first study introduced a fresh perspective on advertisers’ decision-
making processes in dual channels, thereby deepening our understanding of strate-
gic purchasing decisions in online display advertising. The second study filled an
existing gap in the literature by offering a comprehensive analysis of the publisher’s
strategic investment in attracting more advertisers between the guaranteed con-
tracts and RTB channels. The third study developed a sequential game framework
that captures both the publisher’s allocation process and advertisers’ strategic deci-
sions across dual channels, thereby adding a new layer of complexity and realism to
existing models. On the managerial front, the findings from these studies offer ac-
tionable insights for publishers. For instance, the research suggests that publishers
can maximise their revenues by strategically combining guaranteed contracts and
RTB, particularly in situations characterised by a high supply-to-demand ratio and
lower discount factors for both the publisher and advertisers. Moreover, publish-
ers need to consider not just the cost and revenue implications of attracting new
advertisers but also how such actions could alter the behaviours and strategies of
the original advertisers. Specifically, publishers are advised to opt for quality guar-
anteed contracts and to implement an RTB prior allocation strategy to maximise
revenue.

5.2 Limitations and Future Research

While this thesis has made significant strides in understanding the complexities of
online display advertising, it is important to acknowledge its limitations, which in
turn offer fertile ground for future research.

The first study assumed a unit demand for impressions from advertisers to
highlight advertisers’ choices between two channels. Similar literature that con-
siders problems of a seller selling objects to consumers both through fixed-price
channel (corresponding to guaranteed contracts) and auctions channel (correspond-
ing to RTB in our study) also made unit demand assumption for consumers (e.g.
Caldentey and Vulcano 2007, Chen et al. 2020, Cohen et al. 2023). This simplifica-
tion may not capture the full range of advertisers’ behaviours and strategies. Future
research could relax this constraint to include variable demand, thereby providing
a more realistic portrayal of market dynamics. The second study considered the
arrival of additional advertisers in a single period. This static approach does not
account for the stochastic nature of advertiser arrivals, which is more reflective of
real-world scenarios. Future research could employ stochastic models to investigate
how random arrivals of advertisers impact both publishers’ and original advertis-
ers’ strategies. The third study was constrained by its focus on just two advertis-
ers, primarily due to the computational complexity involved in solving the model.
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This limitation narrows the applicability of the model to oligopoly markets. Future
work could explore how the dynamics change with a larger pool of advertisers, po-
tentially employing machine learning algorithms or other advanced computational
methods to handle the increased complexity. The third study examined only two
kinds of threshold-like allocation policies based on the quality of impressions. While
these policies offer valuable insights, they may not represent the global optimum.
Future research could explore a broader range of allocation strategies, potentially
identifying more effective approaches through optimisation techniques.

Across all studies, the budget constraints that advertisers often face in real-
world scenarios were not considered. Previous research has explored how budget
limitations affect bidding strategies in single RTB markets (e.g., Balseiro et al. 2015,
Lu et al. 2015, Shin 2015 and Balseiro and Gur 2019), but its impact in dual-channel
markets remains an open question. Future studies could incorporate budget con-
straints to provide a more comprehensive view of advertisers’ strategic choices. The
studies primarily focused on single-period interactions between publishers and ad-
vertisers. In practice, these entities often engage in long-term relationships, which
could significantly influence their strategies. Future research could extend the mod-
els to multi-period settings to capture the dynamics of long-term interactions. While
the studies are grounded in robust theoretical models, empirical validation through
real-world data could enhance their practical relevance. Future work could involve
collaborating with industry partners to test the model’s predictions against actual
market behaviours. By addressing these limitations, future research can build upon
the foundational insights provided by this thesis, offering a more comprehensive
and nuanced understanding of online display advertising markets.

107



Bibliography

Ahmed, A., Low, Y., Aly, M., Josifovski, V. and Smola, A. J. (2011), Scalable distributed

inference of dynamic user interests for behavioral targeting, in ‘Proceedings of the 17th

ACM SIGKDD international conference on Knowledge discovery and data mining’,

pp. 114–122.

Alaimo, C. and Kallinikos, J. (2018), Objects, metrics and practices: An inquiry into the

programmatic advertising ecosystem, in ‘Living with Monsters? Social Implications of

Algorithmic Phenomena, Hybrid Agency, and the Performativity of Technology: IFIP

WG 8.2 Working Conference on the Interaction of Information Systems and the Or-

ganization, IS&O 2018, San Francisco, CA, USA, December 11-12, 2018, Proceedings’,

Springer, pp. 110–123.

Amin, K., Rostamizadeh, A. and Syed, U. (2013), Learning prices for repeated auctions with

strategic buyers, in C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Weinberger,

eds, ‘Advances in Neural Information Processing Systems’, Vol. 26, Curran Associates,

Inc.

Antitrust Complaint against Google, Third Amended Edition. (2022), ‘Complaint against

google for illegally maintaining monopolies in internet search and search advertising

services, third amended edition’. Accessed: 20 July 2022.

URL: https://www.texasattorneygeneral.gov/news/releases/filings-related-google

Asdemir, K., Kumar, N. and Jacob, V. S. (2012), ‘Pricing models for online advertising: Cpm

vs. cpc’, Information Systems Research 23(3-part-1), 804–822.

URL: https://doi.org/10.1287/isre.1110.0391

Astute Analytica (2023), ‘Internet advertising market size, trends, growth, forecast to 2031’.

Accessed: 29 July 2023.

URL: https://www.astuteanalytica.com/industry-report/internet-advertising-market

Athey, S., Calvano, E. and Gans, J. S. (2018), ‘The impact of consumer multi-homing on

advertising markets and media competition’, Management Science 64(4), 1574–1590.

Aviv, Y. and Pazgal, A. (2008), ‘Optimal pricing of seasonal products in the pres-

ence of forward-looking consumers’, Manufacturing & Service Operations Management
10(3), 339–359.

Babaioff, M., Hartline, J. D. and Kleinberg, R. D. (2009), Selling ad campaigns: online algo-

rithms with cancellations, in ‘Proceedings of the 10th ACM conference on Electronic

commerce’, pp. 61–70.

Balseiro, S. R., Besbes, O. and Weintraub, G. Y. (2015), ‘Repeated auctions with budgets in

ad exchanges: Approximations and design’, Management Science 61(4), 864–884.

Balseiro, S. R., Feldman, J., Mirrokni, V. and Muthukrishnan, S. (2014), ‘Yield optimization

of display advertising with ad exchange’, Management Science 60(12), 2886–2907.

Balseiro, S. R. and Gur, Y. (2019), ‘Learning in repeated auctions with budgets: Regret mini-

mization and equilibrium’, Management Science 65(9), 3952–3968.

108



Bass, F. M., Krishnamoorthy, A., Prasad, A. and Sethi, S. P. (2005), ‘Generic and brand ad-

vertising strategies in a dynamic duopoly’, Marketing Science 24(4), 556–568.

Bergen, M. and John, G. (1997), ‘Understanding cooperative advertising participation rates

in conventional channels’, Journal of Marketing Research 34(3), 357–369.

Bharadwaj, V., Ma, W., Schwarz, M., Shanmugasundaram, J., Vee, E., Xie, J. and Yang, J.

(2010), Pricing guaranteed contracts in online display advertising, in ‘Proceedings of

the 19th ACM international conference on Information and knowledge management’,

pp. 399–408.

Busch, O., ed. (2016), Programmatic advertising:The Successful Transformation to Automated,
Data-Driven Marketing in Real-Time, Springer, Berlin. Accessed: 29 April 2023.

URL: https://doi.org/10.1007/978-3-319-25023-6

Cai, H., Ren, K., Zhang, W., Malialis, K., Wang, J., Yu, Y. and Guo, D. (2017), Real-time

bidding by reinforcement learning in display advertising, in ‘Proceedings of the tenth

ACM international conference on web search and data mining’, pp. 661–670.

Caldentey, R. and Vulcano, G. (2007), ‘Online auction and list price revenue management’,

Management Science 53(5), 795–813.

Cesa-Bianchi, N., Gentile, C. and Mansour, Y. (2014), ‘Regret minimization for reserve prices

in second-price auctions’, IEEE Transactions on Information Theory 61(1), 549–564.

Chen, B. (2015), Financial Methods for Online Advertising, PhD thesis, UCL (University

College London).

Chen, B. (2016), Risk-aware dynamic reserve prices of programmatic guarantee in display

advertising, in ‘2016 IEEE 16th International Conference on Data Mining Workshops

(ICDMW)’, IEEE, pp. 511–518.

Chen, B., Huang, J., Huang, Y., Kollias, S. and Yue, S. (2020), ‘Combining guaranteed and

spot markets in display advertising: Selling guaranteed page views with stochastic

demand’, European Journal of Operational Research 280(3), 1144–1159.

Chen, B., Yuan, S. and Wang, J. (2014), A dynamic pricing model for unifying programmatic

guarantee and real-time bidding in display advertising, in ‘Proceedings of the Eighth

International Workshop on Data Mining for Online Advertising’, pp. 1–9.

Chen, Y.-J. (2017), ‘Optimal dynamic auctions for display advertising’, Operations Research
65(4), 897–913.

Choi, H. and Mela, C. F. (2018), Optimizing reserve prices in display advertising auctions.

Working paper, University of Rochester, Rochester.

Choi, H., Mela, C. F., Balseiro, S. R. and Leary, A. (2020), ‘Online display advertising markets:

A literature review and future directions’, Information Systems Research 31(2), 556–575.

Cohen, M. C., Désir, A., Korula, N. and Sivan, B. (2023), ‘Best of both worlds ad contracts:

Guaranteed allocation and price with programmatic efficiency’, Management Science
69(7), 4027–4050.

URL: https://doi.org/10.1287/mnsc.2022.4542

Constantin, F., Feldman, J., Muthukrishnan, S. and Pál, M. (2009), An online mechanism for

109



ad slot reservations with cancellations, in ‘Proceedings of the twentieth annual ACM-

SIAM symposium on discrete algorithms’, SIAM, pp. 1265–1274.

Correa, J., Montoya, R. and Thraves, C. (2016), ‘Contingent preannounced pricing policies

with strategic consumers’, Operations Research 64(1), 251–272.

Dellarocas, C. (2012), ‘Double marginalization in performance-based advertising: Implica-

tions and solutions’, Management Science 58(6), 1178–1195.

Doraiswamy, K., McGuire, T. W. and Staelin, R. (1979), An analysis of alternative advertising

strategies in a competitive franchise framework, in ‘Educators’ Conference Proceed-

ings, American Marketing Association’, pp. 105–126.

Drèze, X. and Hussherr, F.-X. (2003), ‘Internet advertising: Is anybody watching?’, Journal of
Interactive Marketing 17(4), 8–23.

Du, J., Zhang, J. and Hua, G. (2015), ‘Pricing and inventory management in the presence of

strategic customers with risk preference and decreasing value’, International Journal of
Production Economics 164, 160–166.

Dukes, A. and Gal–Or, E. (2003), ‘Negotiations and exclusivity contracts for advertising’,

Marketing Science 22(2), 222–245.

URL: https://doi.org/10.1287/mksc.22.2.222.16036

Elmaghraby, W., Lippman, S. A., Tang, C. S. and Yin, R. (2009), ‘Will more purchasing op-

tions benefit customers?’, Production and Operations Management 18(4), 381–401.

Evans, D. S. (2009), ‘The online advertising industry: Economics, evolution, and privacy’,

Journal of Economic Perspectives 23(3), 37–60.

Fjell, K. (2009), ‘Online advertising: Pay-per-view versus pay-per-click—a comment’, Journal
of Revenue and Pricing Management 8(2-3), 200–206.

Fridgeirsdottir, K. and Najafi-Asadolahi, S. (2018), ‘Cost-per-impression pricing for display

advertising’, Operations Research 66(3), 653–672.

Gao, F., Agrawal, V. V. and Cui, S. (2022), ‘The effect of multichannel and omnichannel

retailing on physical stores’, Management Science 68(2), 809–826.

Gao, F. and Su, X. (2017), ‘Online and offline information for omnichannel retailing’, Manu-
facturing & Service Operations Management 19(1), 84–98.

Gao, F. and Su, X. (2019), ‘New functions of physical stores in the age of omnichannel retail-

ing’, Operations in an Omnichannel World pp. 35–50.

Ghose, A. and Yang, S. (2009), ‘An empirical analysis of search engine advertising: Spon-

sored search in electronic markets’, Management Science 55(10), 1605–1622.

Ghosh, A., Rubinstein, B. I., Vassilvitskii, S. and Zinkevich, M. (2009), Adaptive bidding for

display advertising, in ‘Proceedings of the 18th international conference on World wide

web’, pp. 251–260.

Goldfarb, A. and Tucker, C. (2011), ‘Online display advertising: Targeting and obtrusive-

ness’, Marketing Science 30(3), 389–404.

Google Ad Manager Help (2023a), ‘Ad exchange in google ad manager’. Accessed: 29 July

2023.

URL: https://support.google.com/admanager/answer/6321605?hl=en

110



Google Ad Manager Help (2023b), ‘Introduction to open bidding’. Accessed: 29 July 2023.

URL: https://support.google.com/admanager/answer/7128453?hl=en

Google Ads Help (2023), ‘Determine a bid strategy based on your goals’. Accessed: 29 July

2023.

URL: https://support.google.com/google-ads/answer/2472725?hl=en

Hilde A. M. Voorveld, Guda van Noort, D. G. M. and Bronner, F. (2018), ‘Engagement with

social media and social media advertising: The differentiating role of platform type’,

Journal of Advertising 47(1), 38–54.

URL: https://doi.org/10.1080/00913367.2017.1405754

Hu, Y. J. (2004), Performance-based pricing models in online advertising. Available at SSRN

501082.

Hu, Y., Shin, J. and Tang, Z. (2016), ‘Incentive problems in performance-based online adver-

tising pricing: cost per click vs. cost per action’, Management Science 62(7), 2022–2038.

IAB (2022), ‘Internet advertising revenue report: Full year 2022’. Accessed: 29 July 2023.

URL: https://www.iab.com/insights/internet-advertising-revenue-report-full-year-2022/

Insider Intelligence (2023), ‘Worldwide ad spending 2022’. Accessed: 29 July 2023.

URL: https://www.insiderintelligence.com/content/worldwide-ad-spending-2022

Isariyawongse, K., Kudo, Y. and Tremblay, V. J. (2007), ‘Generic and brand advertising in

markets with product differentiation’, Journal of Agricultural & Food Industrial Organiza-
tion 5(1).

URL: https://doi.org/10.2202/1542-0485.1179

Iyer, K., Johari, R. and Sundararajan, M. (2014), ‘Mean field equilibria of dynamic auctions

with learning’, Management Science 60(12), 2949–2970.

Jansen, B. J. and Mullen, T. (2008), ‘Sponsored search: an overview of the concept, history,

and technology’, International Journal of Electronic Business 6(2), 114–131.

Jauvion, G. and Grislain, N. (2018), Optimal allocation of real-time-bidding and direct cam-

paigns, in ‘Proceedings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining’, pp. 416–424.

Karray, S., Martín-Herrán, G. and Sigué, S. P. (2022), ‘Managing advertising investments in

marketing channels’, Journal of Retailing and Consumer Services 65, 102852.

Kremer, M., Mantin, B. and Ovchinnikov, A. (2017), ‘Dynamic pricing in the presence of

myopic and strategic consumers: Theory and experiment’, Production and Operations
Management 26(1), 116–133.

Laroche, M., Habibi, M. R. and Richard, M.-O. (2013), ‘To be or not to be in social media:

How brand loyalty is affected by social media?’, International Journal of Information Man-
agement 33(1), 76–82.

Levin, Y., McGill, J. and Nediak, M. (2009), ‘Dynamic pricing in the presence of strategic

consumers and oligopolistic competition’, Management Science 55(1), 32–46.

Li, H., Edwards, S. M. and Lee, J.-H. (2002), ‘Measuring the intrusiveness of advertisements:

Scale development and validation’, Journal of Advertising 31(2), 37–47.

111



Li, H. and Kannan, P. (2014), ‘Attributing conversions in a multichannel online marketing

environment: An empirical model and a field experiment’, Journal of Marketing Research
51(1), 40–56.

Li, J., Ni, X., Yuan, Y., Qin, R. and Wang, F.-Y. (2016), Optimal allocation of ad inventory

in real-time bidding advertising markets, in ‘2016 IEEE International Conference on

Systems, Man, and Cybernetics (SMC)’, IEEE, pp. 003021–003026.

Liu, P. and Chao, W. (2020), Computational Advertising: Market and Technologies for Internet
Commercial Monetization, CRC Press.

Liu, Q. and Van Ryzin, G. J. (2008), ‘Strategic capacity rationing to induce early purchases’,

Management Science 54(6), 1115–1131.

Lu, S., Zhu, Y. and Dukes, A. (2015), ‘Position auctions with budget constraints: Implications

for advertisers and publishers’, Marketing Science 34(6), 897–905.

Ma, P., Wang, H. and Shang, J. (2013), ‘Supply chain channel strategies with quality

and marketing effort-dependent demand’, International Journal of Production Economics
144(2), 572–581.

Ma, S., He, Y. and Gu, R. (2021), ‘Dynamic generic and brand advertising decisions under

supply disruption’, International Journal of Production Research 59(1), 188–212.

Mangani, A. (2004), ‘Online advertising: Pay-per-view versus pay-per-click’, Journal of Rev-
enue and Pricing Management 2, 295–302.

Menezes, F. M. and Monteiro, P. K. (2004), An introduction to auction theory, OUP Oxford.

Mersereau, A. J. and Zhang, D. (2012), ‘Markdown pricing with unknown fraction of strate-

gic customers’, Manufacturing & Service Operations Management 14(3), 355–370.

Mohri, M. and Medina, A. M. (2014), Learning theory and algorithms for revenue opti-

mization in second price auctions with reserve, in ‘International conference on machine

learning’, PMLR, pp. 262–270.

Morrisroe, B. (2023), ‘What is header bidding? everything publishers need to know’. Ac-

cessed: 29 July 2023.

URL: https://www.publift.com/adteach/what-is-header-bidding-and-why-should-you-care

Mukhopadhyay, S. K., Su, X. and Ghose, S. (2009), ‘Motivating retail marketing effort: Opti-

mal contract design’, Production and Operations Management 18(2), 197–211.

Nageswaran, L., Cho, S.-H. and Scheller-Wolf, A. (2020), ‘Consumer return policies in om-

nichannel operations’, Management Science 66(12), 5558–5575.

Najafi-Asadolahi, S. and Fridgeirsdottir, K. (2014), ‘Cost-per-click pricing for display adver-

tising’, Manufacturing & Service Operations Management 16(4), 482–497.

Narahari, Y. (2014), Game theory and mechanism design, Vol. 4, World Scientific.

Ofek, E., Katona, Z. and Sarvary, M. (2011), ‘“bricks and clicks”: The impact of product

returns on the strategies of multichannel retailers’, Marketing Science 30(1), 42–60.

Osadchiy, N. and Vulcano, G. (2010), ‘Selling with binding reservations in the presence of

strategic consumers’, Management Science 56(12), 2173–2190.

Paes Leme, R., Pal, M. and Vassilvitskii, S. (2016), A field guide to personalized reserve

112



prices, in ‘Proceedings of the 25th international conference on world wide web’,

pp. 1093–1102.

Pandey, S., Aly, M., Bagherjeiran, A., Hatch, A., Ciccolo, P., Ratnaparkhi, A. and Zinkevich,

M. (2011), Learning to target: what works for behavioral targeting, in ‘Proceedings of

the 20th ACM international conference on Information and knowledge management’,

pp. 1805–1814.

Papanastasiou, Y. and Savva, N. (2017), ‘Dynamic pricing in the presence of social learning

and strategic consumers’, Management Science 63(4), 919–939.

Perlich, C., Dalessandro, B., Hook, R., Stitelman, O., Raeder, T. and Provost, F. (2012), Bid

optimizing and inventory scoring in targeted online advertising, in ‘Proceedings of

the 18th ACM SIGKDD international conference on Knowledge discovery and data

mining’, pp. 804–812.

Pin, F. and Key, P. (2011), Stochastic variability in sponsored search auctions: observations

and models, in ‘Proceedings of the 12th ACM conference on Electronic commerce’,

pp. 61–70.

Powell, W. B. (2007), Approximate Dynamic Programming: Solving the curses of dimensionality,

Vol. 703, John Wiley & Sons.

Prasad, A., Stecke, K. E. and Zhao, X. (2011), ‘Advance selling by a newsvendor retailer’,

Production and Operations Management 20(1), 129–142.

Qi, J., Ding, Y. and Chen, L. (2008), ‘Complex dynamics of the generic and brand advertising

strategies in duopoly’, Chaos, Solitons & Fractals 36(2), 354–358.

Rhuggenaath, J., Akcay, A., Zhang, Y. and Kaymak, U. (2019), ‘Optimal display-ad allo-

cation with guaranteed contracts and supply side platforms’, Computers & Industrial
Engineering 137, 106071.

Roels, G. and Fridgeirsdottir, K. (2009), ‘Dynamic revenue management for online display

advertising’, Journal of Revenue and Pricing Management 8(5), 452–466.

Salomatin, K., Liu, T.-Y. and Yang, Y. (2012), A unified optimization framework for auction

and guaranteed delivery in online advertising, in ‘Proceedings of the 21st ACM inter-

national conference on Information and knowledge management’, pp. 2005–2009.

Sari, J. N., Nugroho, L. E., Ferdiana, R. and Santosa, P. I. (2016), ‘Review on customer seg-

mentation technique on ecommerce’, Advanced Science Letters 22(10), 3018–3022.

Sayedi, A. (2018), ‘Real-time bidding in online display advertising’, Marketing Science
37(4), 553–568.

Shamsi, D. (2015), Online Allocation Rules for Display Advertising, PhD thesis, Stanford

University.

Sharethrough (2015), ‘The evolution of the supply side platform’. Accessed: 29 July 2023.

URL: https://www.sharethrough.com/blog/the-evolution-of-the-supply-side-platform

Shen, Y. (2018), ‘Pricing contracts and planning stochastic resources in brand display adver-

tising’, Omega 81, 183–194.

Shin, W. (2015), ‘Keyword search advertising and limited budgets’, Marketing Science
34(6), 882–896.

113



Su, X. (2007), ‘Intertemporal pricing with strategic customer behavior’, Management Science
53(5), 726–741.

Tchumtchoua, S. and Cotterill, R. (2010), Optimal brand and generic advertising policies in

a dynamic differentiated product oligopoly, Technical report.

Trusov, M., Ma, L. and Jamal, Z. (2016), ‘Crumbs of the cookie: User profiling in customer-

base analysis and behavioral targeting’, Marketing Science 35(3), 405–426.

Tuten, T. L. and Solomon, M. R. (2017), Social media marketing, Sage, New Jersey.

Wang, J., Zhang, W., Yuan, S. et al. (2017), ‘Display advertising with real-time bidding

(rtb) and behavioural targeting’, Foundations and Trends R© in Information Retrieval 11(4-

5), 297–435.

Wang, X., Tan, B., Guo, Y., Yang, T., Huang, D., Xu, L., Freris, N. M., Zhou, H. and Li, X.-Y.

(2022), Conflux: A request-level fusion framework for impression allocation via cas-

cade distillation, in ‘Proceedings of the 28th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining’, pp. 4070–4078.

Wu, D., Chen, C., Chen, X., Pan, J., Yang, X., Tan, Q., Xu, J. and Lee, K.-C. (2021), Impression

allocation and policy search in display advertising, in ‘2021 IEEE International Confer-

ence on Data Mining (ICDM)’, IEEE, pp. 749–756.

Yan, J., Liu, N., Wang, G., Zhang, W., Jiang, Y. and Chen, Z. (2009), How much can behavioral

targeting help online advertising?, in ‘Proceedings of the 18th international conference

on World wide web’, pp. 261–270.

Yang, J., Vee, E., Vassilvitskii, S., Tomlin, J. A., Shanmugasundaram, J., Anastasakos, T. and

Kennedy, O. (2012), ‘Inventory allocation for online graphical display advertising using

multi-objective optimization.’, ICORES 12, 293–304.

Yin, R., Aviv, Y., Pazgal, A. and Tang, C. S. (2009), ‘Optimal markdown pricing: Implica-

tions of inventory display formats in the presence of strategic customers’, Management
Science 55(8), 1391–1408.

Yuan, S., Wang, J. and Zhao, X. (2013), Real-time bidding for online advertising: measure-

ment and analysis, in ‘Proceedings of the seventh international workshop on data min-

ing for online advertising’, pp. 1–8.

Zhang, H., Zhang, L., Huang, J., Li, A., Cheng, H., Huang, D. and Xu, L. (2022), A unified

guaranteed impression allocation framework for online display advertising, in ‘2022

IEEE International Conference on Data Mining (ICDM)’, IEEE, pp. 686–694.

Zhang, W. (2016), Optimal real-time bidding for display advertising, PhD thesis, UCL (Uni-

versity College London).

Zhang, W., Yuan, S. and Wang, J. (2014), Optimal real-time bidding for display advertis-

ing, in ‘Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining’, pp. 1077–1086.

Zhang, Z., Lim, W., Cui, H. and Wang, Z. (2021), ‘Partial refunds as a strategic price com-

mitment device in advance selling in a service industry’, European Journal of Operational
Research 291(3), 1062–1074.

114



A1 Appendix for Study 1

A1.1 Proof of Lemma 2.1.

Proof. Proof of Lemma 2.1

Since all impressions are homogenous and advertisers have unit demand for
them, the repeated RTB can be regarded as a one-shot "generalised second-price" auc-
tion with Q homogenous auctioned objects. Referring to the derivation process of
truth-telling bidding strategy in single object second-price auction in An Introduction
to Auction Theory (Menezes and Monteiro 2004), we start from the perspective of one
of the advertisers, say Advertiser 1. Suppose this advertiser has a valuation V = v
and believes that other advertisers follow a bidding strategy b(·). b(·) is increasing
in their valuations. Knowing its value, the distribution for valuations of other ad-
vertisers, the total number of advertisers N, and the total supply of impressions Q,
Advertiser 1 has to figure out what is its best reply. If we denote Advertiser 1’s reply
is reporting a signal x and its bid is b(x), thus its expected profits are given by:

π(x) =
󰁝 x

0
(v − b(v′)) f (v′)(N − Q)F(v′)N−Q−1dv′.

Because there are Q homogeneous impressions, Advertiser 1 only needs to report a
signal x that makes it ranked from 1 to Q. Thus, when formulating the probability
that it ranks from 1 to Q among N advertisers, we only need its reported signal x to
be larger than at least N − Q advertisers’ valuation. More specifically, first picking
one advertiser from the N − Q advertisers randomly, denoted by Advertiser 2, with
valuation v′. Then the left N − Q − 1 advertisers’ valuations are less than v′. Finally,
Advertiser 2’s valuation v′ should be less than Advertiser 1’s signal x.

In a symmetric equilibrium, the expected profit is maximised at x = v (Menezes
and Monteiro, 2005). Thus, π′(v) = 0. Because

π′(x) = (v − b(x)) f (x)(N − Q)F(x)N−Q−1,

π′(v) = (v − b(v)) f (v)(N − Q)F(v)N−Q−1.
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From π′(v) = 0 we can obtain that b(v) = v because of f (v)(N − Q)F(v)N−Q−1 is
always positive. That is to say, telling the truth valuation is the dominant strategy
in this special multiple second-price auctions with homogeneous objects.

A1.2 Proof of Proposition 2.3.

Proof. Proof of Proposition 2.3

We give proof by contradiction. Assume that there exist two advertisers de-
noted by i, j with valuations vi > vj > p. In the equilibrium, advertiser i decides to
join the real-time bidding in period 2 while advertiser j chooses to buy guaranteed
contracts in period 1 to maximise their own utilities.

Advertiser i chooses to join the real-time bidding in period 2 means that it can
win an impression by bidding with b(vi), which makes it earn not less than buying
a guaranteed contract in period 1. Because vi > vj > p, through applying equation
(2.4), we have b(vi) < b(vj) < p. As advertiser i can win an impression in period 2
by bidding with b(vi), advertiser j also can win an impression in period 2 by bidding
with b(vj), which yields not less utility for it than buying a guaranteed contract.
Thus, advertiser j will also join the real-time bidding in period 2, which contradicts
our assumption at first.

A1.3 Proof of Proposition 2.4.

Proof. Proof of Proposition 2.4

We prove this proposition by analysing advertisers’ utilities.

1. When p ∈ [0,
N − Q

N
v), for advertisers with v ≥ p, if they buy guaranteed

contracts, we have
u1 = v − p > 0,

while if they go to join the real-time bidding in period 2, their bidding prices
are subject to b(v). According to Proposition 2.3, if there exists a threshold
valuation v′(v′ > p) such that advertisers with valuation v < v′ join the real-
time bidding in period 2 and advertisers with v ≥ v′ buy guaranteed contracts
in period 1. For an advertiser i with vi = v′, its bidding price is

b(vi) =
p − (1 − δa)v′

δa
.
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We have b(vi) < b(v), in which v ∈ (
p − (1 − δa)v′

δa
, v′). Advertiser i’s incen-

tive to join the real-time bidding instead of buying a guaranteed contract is
that it believes it can obtain an impression in period 2 by bidding with b(v′).
However, in this case, there are advertisers with valuations

v ∈ (
p − (1 − δa)v′

δa
, v′) bid more than advertiser i, and advertisers with valu-

ations v ∈ (v′, v) have bought guaranteed contracts in period 1. These adver-
tisers are prior to advertiser i in this market. The number of these advertisers
are

v′ −
p − (1 − δa)v′

δa
v

N +
v − v′

v
N. (A1.1)

Because p <
N − Q

N
v and v′ > p, we have (A1.1) is larger than Q in this case,

so ui,2 = 0 < ui,1. Thus, advertiser i won’t join the real-time bidding and
there doesn’t exist a threshold value in (p, v) such that (A1.1) is less than Q.

Furthermore, because
v − p

v
N > Q, all impressions will be sold in the first

period.

2. When p ∈ [
N − Q

N
v,

N − δaQ
N

v), we also assume a threshold value v′ first.
Advertisers with valuations v < v′ join the real-time bidding in period 2 and
advertisers with v ≥ v′ buy guaranteed contracts in period 1. If there is an
advertiser i with valuation vi = v′, it will be the last one that can win an
impression in period 2. Thus,

v − b(v′)
v

N = Q.

We can solve this equation and get

v′ =
p

1 − δa
−

δa

1 − δa

N − Q
N

v > p.

Because
N − Q

N
v ≤ p <

N − δaQ
N

v, we have p ≤ v′ < v. Thus, this assumption
of existence of v′ is reasonable in this case. It means that, for advertisers with
v ∈ (v′, v], 0 = u2 < u1. For advertisers with v ∈ (p, v′], 0 < u1 < u2.
For advertiser with v ∈ [0, p], u1 ≤ 0 ≤ u2. Accordingly, advertisers with
v ∈ (v′, v] will buy guaranteed contracts. Advertisers with v ∈ (p, v′] will

join the real-time bidding by bidding by
p − (1 − δa)v

δa
and advertisers with

v ∈ [0, p] will go to the real-time bidding and bid truthfully. Note that only
part of the advertisers can win an impression in the last group.
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3. When p ∈ [
N − δaQ

N
v,+∞), we discuss two sub-cases as below.

(a) When p ∈ [
N − δaQ

N
v, v], following the bidding strategy b(v), even ad-

vertisers with v = v can win an impression in period 2. The reason is
that

v −
p − (1 − δa)v

δa
v

N < Q.

This indicates that for advertisers with v ∈ (p, v], 0 < u1 < u2. For
advertisers with v ∈ [0, p], u1 ≤ 0 ≤ u2. So all advertisers will join the
real-time bidding in period 2 and bid by b(v).

(b) When p ∈ (v,+∞), for all advertisers, we have u1 < 0 ≤ u2. Thus, all
advertisers will join the real-time bidding and bid truthfully.

A1.4 Proof of Lemma 2.5.

Proof. Proof of Lemma 2.5

If there are N advertisers in total, and all advertisers’ bids are subject to an i.i.d.
described by a p.d.f f (·) and the corresponding cumulative distribution function is
F(·). Focus on an advertiser called by advertiser 1. We implement ϕ(b) as advertiser
1’s position if it bids by b. Thus, we have

P(ϕ(b) = k) =
󰀕

N − 1
k − 1

󰀖
F(b)N−k(1 − F(b))k−1.

We use p(b) as advertiser 1’s payment under bidding price b. Then,

P[(p(b) = x) · (ϕ(b) = k)] =
󰀕

N − 1
k − 1

󰀖󰀕
N − k

1

󰀖
f (x)F(x)N−k−1(1 − F(b))k−1.

Accordingly, we can get advertiser 1’s expected payment under the condition that it
ranks kth position by bidding b.

E(p(b)|ϕ(b) = k) =
󰁝 b

0
x · P[(p(b) = x)|(ϕ(b) = k)]dx

= b −
󰁝 b

0

F(x)N−k

F(b)N−k dx.
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Thus, its expected payment when bidding by b in this auction is

E(p(b)) =
N

∑
k=1

󰀣
b −

󰁝 b

0

F(x)N−k

F(b)N−k dx

󰀤󰀗󰀕
N − 1
k − 1

󰀖
F(b)N−k(1 − F(b))k−1

󰀘

= b −
󰁝 b

0
[F(x) + (1 − F(b))]N−1 dx.

Because F(x) is less than F(b), [F(x) + (1 − F(b))] < 1. Thus, when the number of
advertisers gets larger, advertiser 1’s payment becomes closer to its bid.

A1.5 Proof of Equation (2.6)

Proof. Proof of Equation (2.6)

We use Πj
i(p) to denote the revenue of the publisher obtained from the jth

group of advertisers when pricing during the ith segment. N j
i denotes the num-

ber of advertisers from the jth group when the publisher sets the price in the ith
segment.

1. If p ∈ [0, N−Q
N v], because all impressions are sold through period 1, we have

the publisher’s revenue in this interval is

Π1(p) = Qp.

Note that there are more than Q advertisers who want to buy guaranteed con-
tracts, but we don’t consider the allocation of impressions among advertis-
ers in our problem. Instead, we assume that the publisher randomly chooses

Q advertisers to sell these impressions when p <
N − Q

N
v. Besides, we will

show that the publisher will not choose a price less than
N − Q

N
v to maximise

its revenue later.

2. If p ∈ [
N − Q

N
v,

N − δaQ
N

v), the number of advertisers that buy guaranteed
contracts in period 1 is

N1
2 =

v − v′

v
N.

Thus, the publisher’s revenue for this part is

Π1
2(p) =

󰁝 v

v′
Np

1
v

dv =
v−v′

v
Np.

Advertisers with valuations v ∈ (p, v′) will join the real-time bidding in period

119



2 and can win impressions. The number of them is

N2
2 =

v′ − p
v

N.

According to Lemma 2.5, advertisers’ payments in RTB can be approximately
regarded as their own bids. Thus, we can get the revenue of the publisher from
these advertisers is

Π2
2(p) =

󰁝 v′

p
N

p − (1 − δa)v
δa

1
v

dv =
1
2
󰀃

p+b(v′)
󰀄 v′−p

v
N.

Advertisers with valuation v ∈ (b(v′), p] also can win impressions in period 2
by bidding truthfully. The number of them is

N3
2 =

p − b(v′)
v

N.

We also can get the publisher’s revenue from them is

Π3
2(p) =

󰁝 p

b(v′)
Nv

1
v

dv =
1
2
󰀃

p+b(v′)
󰀄 p−b(v′)

v
N.

Considering the discount factor of the publisher’s revenue in period 2, we
summarise its revenue in this price segment,

Π2(p) =
v−v′

v
Np+

δp

2

󰀥
󰀃

p+b(v′)
󰀄 v′−p

v
N+

󰀃
p+b(v′)

󰀄 p−b(v′)
v

N

󰀦
.

3. If p ∈ [
N − δaQ

N
v, v], all advertisers will join the real-time bidding in period

2. Following the bidding strategy, advertisers with v ∈ (p, v] will bidding by
p − (1 − δa)v

δa
. The number of these advertisers is

N1
3 =

v − p
v

N.

The publisher’s revenue from this part is

Π1
3(p) =

󰁝 v

p
N

p − (1 − δa)x
δa

1
v

dv =
1
2
· (p + b(v))

v − p
v

N.

Advertisers with v ∈ [0, p] will also join the real-time bidding and bid truth-
fully. The number of advertisers and win impressions among advertisers with
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v ∈ [0, p] is

N2
3 =

p −
N − Q

N
v

v
N.

The revenue that the publisher can get from this part is

Π2
3(p) =

󰁝 p

N − Q
N

v

Nv
1
v

dv =
1
2
· (p +

N − Q
N

v)
p −

N − Q
N

v

v
N.

From the above, we know the publisher’s revenue in this pricing interval is

Π3(p) =
δp

2

󰀵

󰀹󰀹󰀹󰀷(
p + b(v))

v − p
v

N +

󰀣
p +

N − Q
N

v

󰀤
p −

N − Q
N

v

v
N

󰀶

󰀺󰀺󰀺󰀸
.

4. If p ∈ (v,+∞), all advertisers will join real-time bidding in period 2 and bid
truthfully. So the publisher’s revenue is

Π4(p) =
󰁝 v

N − Q
N

v
Nv

1
v

dv =
δp

2
·
(2N − Q)Q

N
v.

Summarise the analysis above we can get the publisher’s revenue function.

A1.6 Proof of Theorem 2.6.

Proof. Proof of Theorem 2.6

The publisher’s revenue is increasing at the first segment, i.e., p ∈ [0,
N − Q

N
v).

Thus, it is obvious that the maximum of

max Π1(p) =
(N − Q)Q

N
v.

In the third segment, the publisher’s revenue is increasing because the function
is concave and we can see that Π′

3(v) = 0, and its maximum at this segment is equal

to its constant value at the last segment, i.e.,
δp

2
·
(2N − Q)Q

N
v.

For the second segment, the revenue function Π2(p) is also concave. Let Π′
2(p) =
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0, we have

p(∗) =
N − δaQ
(2 − δp)N

v.

However, the range of p in this segment is [
N − Q

N
v,

N − δaQ
N

v).

1. If N <
2 − δa − δp

1 − δp
Q, p(∗) ∈ [

N − Q
N

v,
N − δaQ

N
v). Note that Π(p) is continu-

ous on [0,+∞), so

max Π1(p) = Π2(
N − Q

N
v) < Π2(p(∗)) = max Π2(p);

Then we explore the relationship between Π2(p(∗)) and max Π3(p) to decide
the global maximum of Π(p).

Π2(p(∗))−max Π3(p) =
(1 − δp)2N2 − 2δa(1 − δp)2NQ + (δ2

a − 2δaδp + δaδ2
p)Q2

2(1 − δa)(2 − δp)

v
N

Because δa ∈ (0, 1), δp ∈ (0, 1), thus, (1 − δa)(2 − δp) > 0. Let

A = (1 − δp)
2N2 − 2δa(1 − δp)

2NQ + (δ2
a − 2δaδp + δaδ2

p)Q
2,

We have

A = [(1 − δp)N − δa(1 − δp)Q]2 − δaδp(1 − δa)(2 − δp)Q2

=
1

Q2{[(1 − δp)
N
Q

− δa(1 − δp)]
2 − δaδp(1 − δa)(2 − δp)}

(A1.2)

Let N
Q = k, (k > 1), and

B = [(1 − δp)k − δa(1 − δp)]
2 − δaδp(1 − δa)(2 − δp)

If B = 0, we can get the roots of this equation:

k1 = δa +

󰁴
δaδp(1 − δa)(2 − δp)

1 − δp

k2 = δa −

󰁴
δaδp(1 − δa)(2 − δp)

1 − δp

Because k ∈ (1,+∞), k2 should be eliminated. Then the key is to compare k1
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and 1.

k1 − 1 =

󰁴
δaδp(1 − δa)(2 − δp)− (1 − δa)(1 − δp)

(1 − δp)

=
(1 − δa)[δa − (1 − δp)2]

(1 − δp)(
󰁴

δaδp(1 − δa)(2 − δp) + (1 − δa)(1 − δp))

(A1.3)

Thus, if δa > (1 − δp)2, then k1 > 1. a. It means, when k > k1, B > 0, i.e.,
when N

Q > k1, Π2(p(∗)) > max Π3(p), and max Π(p) = Π2(p(∗)). b. When
1 < k ≤ k1, B ≤ 0, i.e., when 1 < N

Q ≤ k1, Π2(p(∗)) ≤ max Π3(p), and
max Π(p) = max Π3(p).

If δa ≤ (1 − δp)2, then k1 ≤ 1. It means that, we always have k > 1 > k1, then
B > 0, then Π2(p(∗)) > max Π3(p), and max Π(p) = Π2(p(∗)).

2. If N ≥
2 − δa − δp

1 − δp
Q, p(∗) ≤

N − Q
N

v. In this case, we have

max Π1(p) = max Π2(p) = Π2(
N − Q

N
v).

Then we compare max Π1(p) and max Π3(p) to decide the global maximum
of Π(p).

max Π1(p)− max Π3(p) =
󰁫
2(1 − δp)NQ − (2 − δp)Q2

󰁬 v
2N

.

Thus, if N
Q ≥

2 − δp

2(1 − δp)
, max Π1(p) ≥ max Π3(p), else max Π1(p) < max Π3(p).

From the analysis above, we know that there are three key threshold values of the
N
Q

,i.e.,
2 − δa − δp

1 − δp
, δa +

√
δaδp(1−δa)(2−δp)

1−δp
,

2 − δp

2(1 − δp)
. For convenience, we let

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

2 − δa − δp

1 − δp
= C1

δa +

√
δaδp(1−δa)(2−δp)

1−δp
= C2

2 − δp

2(1 − δp)
= C3

C1 is the threshold value to decide whether p(∗) is in the second segment or not.
If so, the max{Π1(p), Π2(p)} is Π2(p(∗)), otherwise it will be max Π1(p). C2 is for
comparing Π2(p(∗)) and max Π3(p). C3 is to compare max Π1(p) and max Π3(p).
Besides, C1 > 1 and C3 > 1, and we should care about the relationship between C2
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and 1.

When 2δa + δp ≥ 2, we have:

󰀫
C1 ≤ C2

C1 ≤ C3

and when 2δa + δp < 2, we have:

󰀫
C1 > C2

C1 > C3

Thus,

1. if 2δa + δp ≥ 2,

(a) when
N
Q

≥ C1, we have max{Π1(p), Π2(p)} = max Π1(p), then the next

is to compare max Π1(p) and max Π3(p). Because C1 ≤ C3, we have

i. if
N
Q

≥ C3, max Π(p) = max Π1(p), and

p∗ =
N − Q

N
v

ii. if C1 ≤
N
Q

< C3, max Π(p) = max Π3(p), and

p∗ = v

(b) when
N
Q

< C1, we have max{Π1(p), Π2(p)} = Π2(p(∗)), then the next is

to compare Π2(p(∗)) and max Π3(p). Because C1 ≤ C2 and C1 > 1, so we

have 1 <
N
Q

< C2 under this case. Thus,

p∗ = v

2. if 2δa + δp < 2,

(a) when
N
Q

≥ C1, we have max{Π1(p), Π2(p)} = max Π1(p), then the next

is to compare max Π1(p) and max Π3(p). Because C1 > C3,
N
Q

> C3.
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Thus,

p∗ =
N − Q

N
v

(b) when
N
Q

< C1, we have max{Π1(p), Π2(p)} = Π2(p(∗)), then the next is

to compare Π2(p(∗)) and max Π3(p). Because C2 < C1, we should then
discuss the relationship between C2 and 1. So,

i. when δa > (1 − δp)2, C2 > 1,

A. if C2 ≤
N
Q

< C1, we have

p∗ =
N − δaQ
(2 − δp)N

v

B. if 1 <
N
Q

< C2, we have

p∗ = v

ii. when δa ≤ (1 − δp)2, C2 ≤ 1. Thus we have
N
Q

> C2. So,

p∗ =
N − δaQ
(2 − δp)N

v
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A2 Appendix for Study 2

A2.1 Proof of Equation (3.1)

Proof. Proof of Equation (3.1)

We discuss the publisher’s total revenue with different decisions of x under a
given p in period 2 in the following. Because the revenue function is piece-wise
liked, we use Πj

i to denote the formulation of the jth segment of x under the ith
segment of p.

1. If p ∈ [0,
N − Q

N
v], all impressions should be delivered to guaranteed contracts

buyers, so there is no need to hire more advertisers in period 2. The publisher’s
revenue is

Π1 = Qp − cx

2. If p ∈ (
N − Q

N
v,

N − δaQ
N

v], from Proposition 2.4, the number of advertisers
that buy guaranteed contracts is

N1
2 =

v − v′

v
N =

(N − δaQ)v − Np
(1 − δa)v

.

Then, the left impressions that are available in period 3 is

N2
2 = Q − N1

2 =
Np − (N − Q)v

(1 − δa)v
.

According to b(v), the upper bound of the original batch of advertisers’ bid-
ding price is p.

(a) When
v − p

v
x ≥ N2

2 , i.e. x ≥
Np − (N − Q)v
(1 − δa)(v − p)

, the expected number of

extra arrival advertisers with v ≥ p is larger than the number of left
impressions. Thus, all the left impressions will be won by extra arrival
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advertisers from period 2. In this case, the publisher’s revenue is

Π1
2 = N1

2 p + δp

󰁝 v

x − N2
2

x
v

xv
1
v

dv − cx

(b) When
v − p

v
x < N2

2 , i.e. x <
Np − (N − Q)v
(1 − δa)(v − p)

, the left impressions will be

shared both by advertisers from the period 1 and period 2. Let v′′ be the
lowest valuation of advertisers that can win an impression in the RTB, we
have

b−1(v′′)− v′′

v
N +

v − v′′

v
x = N2

2 ,

so, we get

v′′ = (1 −
Q

N + (1 − δa)x
)v

In this case, the publisher’s revenue comes from four parts: payments of
guaranteed contracts buyers, payments of advertisers from the original
batch with v ∈ (p, b−1(v′′)] bidding by b(v), payments of advertisers from
the original batch with v ∈ (v′′, p] bidding truthfully, payments of extra
advertisers from period 2 with v ∈ (v′′, v]. So, the publisher’s revenue is

Π2
2 = N1

2 p + δp

󰀫󰁝 b−1(v′′)

p
Nb(v)

1
v

dv +
󰁝 p

v′′
Nv

1
v

dv +
󰁝 v

v′′
xv

1
v

dv

󰀬
− cx

3. If p ∈ (
N − δaQ

N
v, v], from Proposition 2.4, all advertisers from the original

batch will join the RTB in period 3. Specifically, the bids of advertisers with

v ∈ (p, v] are located in [
p − (1 − δa)v

δa
, p); advertisers with v ∈ [0, p] will bid

truthfully.

(a) When
v − p

v
x ≥ Q, i.e., x ≥

Qv
v − p

, all impressions will be won by extra

arrival advertisers. The publisher’s revenue is

Π1
3 = δp

󰁝 v

x − Q
x

v
xv

1
v

dv − cx

(b) When
v − p

v
x < Q and

v − b(v)
v

(N + x) ≥ Q, i.e.,
Np − (N − δaQ)v

v − p
≤

x <
Qv

v − p
, there exists a least valuation, denoted as v(3) ∈ [

p − (1 − δa)v
δa

, p),
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such that the Q impressions are won by advertisers from the original
batch with v ∈ [v(3), b−1(v(3))] and extra advertisers with v ∈ [v(3), v].
Thus, we have v(3) satisfy:

v − v(3)

v
x +

b−1(v(3))− v(3)

v
N = Q,

by solving this we get

v(3) = v −
(1 − δa)Qv + (v − p)N

N + (1 − δa)x
.

Then the publisher’s revenue is

Π2
3 = δp

󰀫󰁝 b−1(v(3))

p
Nb(v)

1
v

dv +
󰁝 p

v(3)
Nv

1
v

dv +
󰁝 v

v(3)
xv

1
v

dv

󰀬
− cx

(c) When
v − b(v)

v
(N + x) < Q, i.e., x <

Np − (N − δaQ)v
v − p

, let v(4)
󰀓

v(4) ∈

󰀃N − Q
N

v, b(v)
󰀄󰀔

be the least valuation of the advertisers that can won an
impression in the RTB, we have

v − v(4)

v
(N + x) = Q,

so we get

v(4) =
N + x − Q

N + x
v.

Thus, the publisher’s revenue is

Π3
3 = δp

󰀫󰁝 v

p
Nb(v)

1
v

dv +
󰁝 p

v(4)
Nv

1
v

dv +
󰁝 v

v(4)
xv

1
v

dv

󰀬
− cx

In summary, we can obtain the publisher’s revenue function on the whole map of
its domain of p and x.

A2.2 Proof of Lemma 3.1.

Proof. Proof of Lemma 3.1
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Let q ≡

󰁹󰁸󰁸󰁷 2c
δpv

≥ 1, we check the publisher’s revenue function in terms of x in

each segment.

1. when p ∈ (0, N−Q
N v]:

Π1: The optimal x in this stage is always 0.

2. when p ∈ (N−Q
N v, N−δaQ

N v],

(a) Π1
2: when (x1

2)
∗ = Np−(N−Q)v

(1−δa)qv , we have Π1
2
′
((x1

2)
∗) = 0. Because q ≥ 1,

then p > 0 ≥ (1− q)v. so (x1
2)

∗ < Np−(N−Q)v
(1−δa)(v−p) . Therefore, Π1

2 is decreasing

on
󰁫

Np−(N−Q)v
(1−δa)(v−p) ,+∞

󰀔
;

(b) Π2
2: when (x2

2)
∗ = Q−qN

(1−δa)q
, we have Π2

2
′
((x2

2)
∗) = 0. Because q ≥ 1 and

N > Q, then (x2
2)

∗ < 0. So Π2
2 is decreasing on

󰁫
0, Np−(N−Q)v

(1−δa)(v−p)

󰀔
.

Note that Π1
2 and Π2

2 are continuous on x, so the global optimal point of x on
[0,+∞) is 0.

3. when p ∈
󰀓

N−δaQ
N v, v

󰁬
:

Similarly, it’s easy to show that Π1
3, Π2

3, Π3
3 are continuous on x and when q ≥ 1

they are all decreasing on their domain. So, the global optimal point of x on
[0,+∞) is still 0.

Therefore, when the cost-benefit indicator q ≥ 1, the publisher’s optimal deci-
sion is not to introduce extra advertisers in period 2.

A2.3 Proof of Theorem 3.2.

Proof. Proof of Theorem 3.2

Let’s first discuss this problem in different price segments. Then compare the
local optimal revenue in different segments to get the global optimal results. Be-
cause the publisher first decides the price of guaranteed contracts, then the number
of extra advertisers, from the backward induction, we first optimise x, then p in each
piecewise function.

Finding Local extremum revenue under different price segments

1. p ∈ (0,
N − Q

N
v]
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The optimal solutions are obviously (p∗, x∗) = (
N − Q

N
v, 0), and the corre-

spond maximum revenue is
(N − Q)Q

N
v.

2. p ∈ (
N − Q

N
v,

N − δaQ
N

v]

The theoretical optimal x of Π1
2 and Π2

2 are (x1
2)

∗ =
Np − (N − Q)v

(1 − δa)qv
, (x2

2)
∗ =

Q − qN
(1 − δa)q

, respectively.

If p < q̄v, (x1
2)

∗ ∈
󰁫

Np−(N−Q)v
(1−δa)(v−p) ,+∞

󰀔
and (x2

2)
∗ > Np−(N−Q)v

(1−δa)(v−p) ,

then Π2
2max(x) = Π2

2(
Np−(N−Q)v
(1−δa)(v−p) ) < Π1

2((x1
2)

∗).

If p ≥ q̄v, (x1
2)

∗ ≤ Np−(N−Q)v
(1−δa)(v−p) and (x2

2)
∗ ≤ Np−(N−Q)v

(1−δa)(v−p) ,

then Π1
2max(x) = Π1

2(
Np−(N−Q)v
(1−δa)(v−p) ) < Π2

2(x).

From the analysis above we can infer that the optimal x depends on the com-

parison of p and q̄v. Because p ∈ (
N − Q

N
v,

N − δaQ
N

v], we should discuss

different cases of the interaction of q̄v and the interval (
N − Q

N
v,

N − δaQ
N

v].

(a) If q̄v ≤
N − Q

N
v, i.e., s ≥

1
q

Then p > q̄v, so
max

x
Π2(p, x) = max

x
Π2

2(p, x)

And s >
1
q
,

(x2
2)

∗ =
Q − qN
(1 − δa)q

< 0,

then
max

x
Π2

2(p, x) = Π2
2(p, 0)

As dΠ2
2(

N − δaQ
(2 − δp)N

v, 0)/dp = 0,
N − δaQ
(2 − δp)N

v is naturally less than
N − δaQ

N
v.

i. if s <
2 − δa − δp

1 − δp

N − δaQ
(2 − δp)N

v >
N − Q

N
v
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The optimal solutions are (p∗2 , x∗2) = (
N − δaQ
(2 − δp)N

v, 0);

ii. if s ≥
2 − δa − δp

1 − δp

The function of Π2
2(p, 0) on p is decreasing on (

N − Q
N

v,
N − δaQ

N
v],

thus The optimal solutions are (p∗2 , x∗2) = (
N − Q

N
v, 0).

(b) If q̄v ∈ (
N − Q

N
v,

N − δaQ
N

v], i.e., s ∈ [
δa

q
,

1
q
)

i. When p ∈ (
N − Q

N
v, q̄v], p ≤ q̄v.

max
x

Π2(p, x) = max
x

Π1
2(p, (x1

2)
∗)

By solving dΠ1
2(p, (x1

2)
∗)/dp = 0, we get

(p1
2)

∗ =
(1 + δpq̄)N − δaQ

2N
v.

Naturally, the next is to discuss whether (p1
2)

∗ is located in (
N − Q

N
v, q̄v]

or not.

A. If s >
2 − δa

1 − δpq̄
, i.e., (p1

2)
∗ <

N − Q
N

v,

The optimal solutions are (p∗2 , x∗2) = (
N − Q

N
v, (x1

2)
∗) = (

N − Q
N

v, 0).

B. If
󰀓

s ≤
2 − δa

1 − δpq̄

󰀔
&
󰀓󰀃

q ≤
1 − δp

2 − δp

󰀄
|
󰀃
q >

1 − δp

2 − δp
& s ≤

δa

1 − (2 − δp)q̄
󰀄󰀔

,

i.e.,
N − Q

N
v ≤ (p1

2)
∗ ≤ q̄v,

The optimal solutions are (p∗2 , x∗2) = ((p1
2)

∗, (x1
2)

∗)

= (
(1 + δpq̄)N − δaQ

2N
v,
(2 − δa)Q − (1 − δpq̄)N

2(1 − δa)q
).

C. If q >
1 − δp

2 − δp
& s >

δa

1 − (2 − δp)q̄
, i.e., (p1

2)
∗ > q̄,

The optimal solutions are (p∗2 , x∗2) = (q̄v, (x1
2)

∗) = (q̄v,
Q − (1 − q̄)N
(1 − δa)q

).
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ii. When p ∈ (q̄v,
N − δaQ

N
v], p > q̄v.

max
x

Π2(p, x) = max
x

Π2
2(p, (x2

2)
∗),

(Because s <
1
q
, (x2

2)
∗ =

Q − qN
(1 − δa)q

> 0) by solving dΠ2
2(p, (x2

2)
∗)/dp =

0, we get

(p2
2)

∗ =
N − δaQ
(2 − δp)N

v <
N − δaQ

N
v.

Thus, we only need to compare (p2
2)

∗ and q̄v.

A. If
󰀃
q ≤

1 − δp

2 − δp

󰀄
|
󰀃
q >

1 − δp

2 − δp
& s ≤

δa

1 − (2 − δp)q̄
󰀄
, i.e., (p2

2)
∗ ≤ q̄v,

The optimal solutions are (p∗2 , x∗2) = (q̄v, (x2
2)

∗) = (q̄v,
Q − qN
(1 − δa)q

).

B. If q >
1 − δp

2 − δp
& s >

δa

1 − (2 − δp)q̄
, i.e.,(p2

2)
∗ > q̄v,

The optimal solutions are (p∗2 , x∗2) = ((p2
2)

∗, (x2
2)

∗)

= (
N − δaQ
(2 − δp)N

v,
Q − qN
(1 − δa)q

).

(c) If q̄v >
N − δaQ

N
v, i.e., s <

δa

q
.

Then p < q̄v, so

max
x

Π2(p, x) = max
x

Π1
2(p, (x1

2)
∗)

We already know that

(p1
2)

∗ =
(1 + δpq̄)N − δaQ

2N
v.

Then we discuss whether (p1
2)

∗ in (
N − Q

N
v,

N − δaQ
N

v] or not.

i. If s ≥
2 − δa

1 − q̄δp
, i.e., (p1

2)
∗ ≤

N − Q
N

v,

The optimal solutions are (p∗2 , x∗2) = (
N − Q

N
v, (x1

2)
∗) = (

N − Q
N

v, 0).

ii. If
δa

1 − q̄δp
≤ s <

2 − δa

1 − q̄δp
, i.e., (p1

2)
∗ ∈ (

N − Q
N

v,
N − δaQ

N
v],
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The optimal solutions are (p∗2 , x∗2) = ((p1
2)

∗, (x1
2)

∗)

= (
(1 + δpq̄)N − δaQ

2N
v,
(2 − δa)Q − (1 − δpq̄)N

2(1 − δa)q
).

iii. If s <
δa

1 − q̄δp
, i.e., (p1

2)
∗ >

N − δaQ
N

v,

The optimal solutions are (p∗2 , x∗2) = (
N − δaQ

N
v,

Q
q
).

Observing the analysis in session (2), we know that these cases are mainly
dependent on the variation of s and q. The key threshold points of s are

{
δa

1 − δpq̄
,

2 − δa

1 − δpq̄
,

δa

q
,

1
q
,

δa

1 − (2 − δp)q̄
,

2 − δa − δp

1 − δp
}. So we need to discuss the

relationship between these thresholds to sort the cases above. Because δa, δp ∈

(0, 1) and q ∈ (0, 1], it’s easy to get
δa

1 − δpq̄
<

2 − δa

1 − δpq̄
,

δa

q
<

1
q
,

δa

1 − δpq̄
<

δa

q
<

δa

1 − (2 − δp)q̄
. And when q <

δa(1 − δp)

2 − δa − δaδp
,

2 − δa

1 − δpq̄
<

δa

q
; when q <

1 − δp

2 − δa − δp
,

2 − δa

1 − δpq̄
<

1
q
<

δa

2 − (1 − δp)q̄
; while q ≥

1 − δp

2 − δa − δp
,

δa

2 − (1 − δp)q̄
≤

1
q
≤

2 − δa

1 − δpq̄
.

So, adding {
δa(1 − δp)

2 − δa − δaδp
,

1 − δp

2 − δa − δp
} getting from sorting key points about

s, the key threshold points of q are {
1 − δp

2 − δp
,

δa(1 − δp)

2 − δa − δaδp
,

1 − δp

2 − δa − δp
}. Simi-

larly, we have
1 − δp

2 − δp
<

1 − δp

2 − δa − δp
,

δa(1 − δp)

2 − δa − δaδp
<

1 − δp

2 − δa − δp
.

When s and q are realised as specific values, some subcases in session (2) will
be eliminated. And because the thresholds of q are only related to δa, δp, while
those of s are also related to q, we first discuss the varies of q and then come to

s. For the discussion of q, it’s easy to show that
1 − δp

2 − δp
doesn’t have affect on the

subcases, so we only need to discuss the points of {
δa(1 − δp)

2 − δa − δaδp
,

1 − δp

2 − δa − δp
}.

• If q ∈ (0,
δa(1 − δp)

2 − δa − δaδp
].

For s we have:

δa

1 − δpq̄
<

2 − δa

1 − δpq̄
≤

δa

q
<

1
q
<

δa

1 − (2 − δp)q̄
,
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and
1
q
>

2 − δa − δp

1 − δp
.

Thus, sessions of (2(a)i), (2(b)iB), (2(b)iC), (2(b)iiB) are eliminated.

• If q ∈ (
δa(1 − δp)

2 − δa − δaδp
,

1 − δp

2 − δa − δp
].

For s we have:

δa

1 − δpq̄
<

δa

q
<

2 − δa

1 − δpq̄
≤

1
q
≤

δa

1 − (2 − δp)q̄
,

and also
1
q
≥

2 − δa − δp

1 − δp
.

In this scenario, sessions of (2(a)i), (2(b)iC), (2(b)iiB), (2(c)i) are eliminated.

• If q ∈ (
1 − δp

2 − δa − δp
, 1] For s we have:

δa

1 − δpq̄
<

δa

q
<

δa

1 − (2 − δp)q̄
<

1
q
<

2 − δa

1 − δpq̄
,

and also
1
q
<

2 − δa − δp

1 − δp
.

Then sessions of (2(b)iA), (2(c)i) are eliminated.

By looking into the details of optimal solutions in these valid cases under dif-

ferent segments of s and q, we know that the results under q ∈ (0,
δa(1 − δp)

2 − δa − δaδp
]

and q ∈ (
δa(1 − δp)

2 − δa − δaδp
,

1 − δp

2 − δa − δp
] are the same, so we can combine the two

intervals in the summary of session (2).

In summary,

• If q ∈ (0,
1 − δp

2 − δa − δp
]

(a) s ∈ (0,
δa

1 − δpq̄
]

The optimal solutions are (p∗2 , x∗2) = (
N − δaQ

N
v,

Q
q
), and the corre-

spond max revenue is δpq̄Qv.

(b) s ∈ (
δa

1 − δpq̄
,

2 − δa

1 − δpq̄
]
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The optimal solutions are (p∗2 , x∗2)

= (
(1 + δpq̄)N − δaQ

2N
v,
(2 − δa)Q − (1 − δpq̄)N

2(1 − δa)q
), and the correspond

max revenue is
(1 − δpq̄)2N2 − 2(δa + δaδpq̄ − 2δpq̄)NQ + δ2

a Q2

4(1 − δa)N
v.

(c) s ∈ (
2 − δa

1 − δpq̄
,+∞)

The optimal solutions are (p∗2 , x∗2) = (
N − Q

N
v, 0), and the correspond

max revenue is
(N − Q)Q

N
v.

• If q ∈ (
1 − δp

2 − δa − δp
, 1]

(a) s ∈ (0,
δa

1 − δpq̄
]

The optimal solutions are (p∗2 , x∗2) = (
N − δaQ

N
v,

Q
q
), and the corre-

spond max revenue is δpq̄Qv.

(b) s ∈ (
δa

1 − δpq̄
,

δa

1 − (2 − δp)q̄
]

The optimal solutions are (p∗2 , x∗2)

= (
(1 + δpq̄)N − δaQ

2N
v,
(2 − δa)Q − (1 − δpq̄)N

2(1 − δa)q
), and the correspond

max revenue is
(1 − δpq̄)2N2 − 2(δa + δaδpq̄ − 2δpq̄)NQ + δ2

a Q2

4(1 − δa)N
v.

(c) s ∈ (
δa

1 − (2 − δp)q̄
,

1
q
]

The optimal solutions are (p∗2 , x∗2) = (
N − δaQ
(2 − δp)N

v,
Q − qN
(1 − δa)q

), and the

correspond max revenue is
[1 − δp(2 − δp)(1 − q2)]N2 − 2[δa − δp(2 − δp)q̄]NQ + δ2

a Q2

2(1 − δa)(2 − δp)N
v.

(d) s ∈ (
1
q
,

2 − δa − δp

1 − δp
]

The optimal solutions are (p∗2 , x∗2) = (
N − δaQ
(2 − δp)N

v, 0), and the corre-

spond max revenue is
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(1 − δp)2N2 − 2[δa − δp(2 − δp)]NQ + [δ2
a − δp(2 − δp)]Q2

2(1 − δa)(2 − δp)N
v.

(e) s ∈ (
2 − δa − δp

1 − δp
,+∞)

The optimal solutions are (p∗2 , x∗2) = (
N − Q

N
v, 0), and the correspond

max revenue is
(N − Q)Q

N
v.

3. p ∈ (
N − δaQ

N
v, v]

The theoretical optimal x of Π1
3, Π2

3, and Π3
3 are

(x1
3)

∗ =
Q
q

, (x2
3)

∗ =
(q̄v − p)N + (1 − δa)vQ

(1 − δa)qv
, (x3

3)
∗ =

Q
q
− N,

respectively.

• If p ≤ q̄v, then

(x1
3)

∗ ∈ (
Qv

v − p
,+∞), (x2

3)
∗ >

Qv
v − p

, (x3
3)

∗ >
Np − (N − δaQ)v

v − p
.

Thus,
max

x
Π3(x) = Π1

3((x1
3)

∗)

• If q̄v < p ≤ (1 − δaq)v, then

(x1
3)

∗ <
Qv

v − p
, (x2

3)
∗ ∈ (

Np − (N − δaQ)v
v − p

,
Qv

v − p
], (x3

3)
∗ >

Np − (N − δaQ)v
v − p

.

Thus,
max

x
Π3(x) = Π2

3((x2
3)

∗)

• If p > (1 − δaq)v, then then (x1
3)

∗ <
Qv

v − p
, (x2

3)
∗ <

Qv
v − p

], (x3
3)

∗ <

Np − (N − δaQ)v
v − p

. Thus,

max
x

Π3(x) = max
x

Π3
3(x),

Note that when s ≤
1
q
, (x3

3)
∗ ≥ 0, then maxx Π3

3(x) = Π3
3((x3

3)
∗); other-

wise maxx Π3
3(x) = Π3

3(0).

137



Similar to the discussion in session (2), we need to check whether q̄v, (1− δaq)v

located in the interval (
N − δaQ

N
v, v]. Obviously, q̄v < (1 − δaq)v, both q̄v and

(1 − δaq)v are less than v, so we only need to check the left-side.

(a) If q̄v ≥
N − δaQ

N
v, i.e., s ≤

δa

q

i. When p ∈ (
N − δaQ

N
v, q̄v], p ≤ q̄v.

max
x

Π3(p, x) = max
x

Π1
3(p, (x1

3)
∗)

But Π3(p, x) doesn’t depend on p, which means p can be any value

on (
N − δaQ

N
v, q̄v]. The optimal solutions are (p∗3 , x∗3) = (p,

Q
q
), the

correspond maximum revenue is q̄δpQv.

ii. When p ∈ (q̄v, (1 − δaq)v],

max
x

Π3(p, x) = max
x

Π2
3(p, (x2

3)
∗)

By solving dΠ2
3(p, (x2

3)
∗)/dp = 0, we get (p2

3)
′ = q̄v, also noted that

d2Π2
3(p, (x2

3)
∗)/dp2 > 0, then Π2

3(p, (x2
3)

∗) is increasing on (q̄v, (1 −
δaq)v]. Thus,

(p2
3)

′ = (1 − δaq)v.

iii. When p ∈ ((1 − δaq)v, v],

max
x

Π3(p, x) = max
x

Π3
3(p, (x3

3)
∗)

By solving dΠ2
3(p, (x2

3)
∗)/dp = 0, we get

(p3
3)

∗ = v.

The optimal solutions are (p∗3 , x∗3) = (v,
Q
q
− N), the correspond max-

imum revenue is q̄δpQv +
δpq2

2
Nv.

It’s not hard to show this revenue function is continuous both on p and

x, so we can get that the optimal solutions of the case s <
δa

q
are obtained
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from session 3(a)iii, i.e., (p∗3 , x∗3) = (v,
Q
q
− N), the correspond maximum

revenue is q̄δpQv +
δpq2

2
Nv.

(b) If q̄v <
N − δaQ

N
v ≤ (1 − δaq)v, i.e., s ∈ (

δa

q
,

1
q
]

Things are the same as subcases in sessions (3(a)ii) and (3(a)iii). Thus, the
optimal solutions also remain the same.

(c) If (1 − δaq)v <
N − δaQ

N
v, i.e., s >

1
q

Then p > (1 − δaq)v. Note that in this case, (x3
3)

∗ < 0, so

max
x

Π3(p, x) = max
x

Π3
3(p, 0)

By solving dΠ2
3(p, (x2

3)
∗)/dp = 0, we get

(p3
3)

∗ = v.

The optimal solutions are (p∗3 , x∗3) = (v, 0), the correspond maximum rev-

enue is
δp(2N − Q)Q

2N
v.

By analysing the cases above, we can summarise these results as

• If s ≤
1
q
, The optimal solutions are (p∗3 , x∗3) = (v,

Q
q
− N), and the corre-

spond maximum revenue is q̄δpQv +
δpq2

2
Nv.

• If s >
1
q
, The optimal solutions are (p∗3 , x∗3) = (v, 0), and the correspond

maximum revenue is
δp(2N − Q)Q

2N
v.

As far as now, we have got the local optimal solutions under these three dif-
ferent segments of p. And we also know that the parameters q and s are the key
indicators when discussing different cases. Thus, the next is to compare local ex-
tremum revenue under different cases of q and s.

Comparing different local results

For Π1(p, x) and Π2(p, x), because

Π1(
N − Q

N
v, x) = lim

p→ N−Q
N v+

Π2(p, x),
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and Π1(p, x) on p is increasing on (0,
N − Q

N
v], so the comparing of these two seg-

ments is naturally completed when exploring the second segment, that is when the

optimal price is
N − Q

N
v, then the optimal solution will be Π1(

N − Q
N

v, x).

Hence the most complicated part is to compare results from the second and the
last segment.

Because the threshold of s when p ∈ (
N − δaQ

N
v, v] is only

1
q
, which is also con-

tained in the threshold of s when p ∈ (
N − Q

N
v,

N − δaQ
N

v], we take the thresholds

of s and q from p ∈ (
N − Q

N
v,

N − δaQ
N

v] as the criteria. (For statement convenience,

we refer the second price segment as p ∈ (
N − Q

N
v,

N − δaQ
N

v] and the last price

segment as p ∈ (
N − δaQ

N
v, v] in the following proof.)

• If q ∈ (0,
1 − δp

2 − δa − δp
]

1. s ∈ (0,
δa

1 − δpq̄
]

From the analysis above we know that s <
1
q
, so the local extremum

revenue from the last price segment is q̄δpQv +
δpq2

2
Nv.

Π2max = δpq̄Qv, Π3max = q̄δpQv +
δpq2

2
Nv. So the global optimal solu-

tions are (p∗, x∗) = (p∗3 , x∗3) = (v,
Q
q
− N), and the correspond maximum

revenue is q̄δpQv +
δpq2

2
Nv.

2. s ∈ (
δa

1 − δpq̄
,

2 − δa

1 − δpq̄
]

Also s <
1
q
, we compare

(1 − δpq̄)2N2 − 2(δa + δaδpq̄ − 2δpq̄)NQ + δ2
a Q2

4(1 − δa)N
v

and q̄δpQv +
δpq2

2
Nv.
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Let

L1 =
(1 − δp q̄)2N2 − 2(δa + δaδp q̄ − 2δp q̄)NQ + δ2

a Q2

4(1 − δa)N
v −

󰀣
q̄δpQv +

δpq2

2
Nv

󰀤

=

󰀫 󰀅
(1 − δp q̄)N − δaQ

󰀆2

4(1 − δa)N
−

δpq2

2
N

󰀬
v

=

󰁫󰀓
1 − δp q̄ −

󰁴
2(1 − δa)δpq

󰀔
N − δaQ

󰁬 󰁫󰀓
1 − δp q̄ +

󰁴
2(1 − δa)δpq

󰀔
N − δaQ

󰁬

4(1 − δa)N
v

Because s >
δa

1 − δpq̄
, so

󰀓
1 − δpq̄ +

󰁴
2(1 − δa)δpq

󰀔
N − δaQ > 0. Then

let
L′

1 =
󰀓

1 − δpq̄ −
󰁴

2(1 − δa)δpq
󰀔

N − δaQ

=
󰁫
(1 − δp) + (δp −

󰁴
2(1 − δa)δp)q

󰁬
N − δaQ,

in which
󰁫
(1 − δp) + (δp −

󰁴
2(1 − δa)δp)q

󰁬
> 0. This can be simply proved

by contradiction:

󰁫
(1 − δp) + (δp −

󰁴
2(1 − δa)δp)q

󰁬
≤ 0 means

󰀃
δp < 2(1 − δa)

󰀄
&(q ≥

1 − δp󰁴
2(1 − δa)δp − δp

). But
󰀃
δp < 2(1 − δa)

󰀄
induces

1 − δp

2 − δa − δp
<

1 − δp󰁴
2(1 − δa)δp − δp

,

and we know that q ≤
1 − δp

2 − δa − δp
, so it is impossible to meet

q ≥
1 − δp󰁴

2(1 − δa)δp − δp

, then
󰁫
(1 − δp) + (δp −

󰁴
2(1 − δa)δp)q

󰁬
≤ 0 is

not real.

If s >
δa

1 − δpq̄ −
󰁴

2(1 − δa)δpq
, Π2max > Π3max; otherwise Π2max >

Π3max. Because s ∈ (
δa

1 − δpq̄
,

2 − δa

1 − δpq̄
], and we have

δa

1 − δpq̄ −
󰁴

2(1 − δa)δpq
>

δa

1 − δpq̄
, so we need to compare

δa

1 − δpq̄ −
󰁴

2(1 − δa)δpq
and

2 − δa

1 − δpq̄
. We have that when
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q ≤
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

,

δa

1 − δpq̄ −
󰁴

2(1 − δa)δpq
≤

2 − δa

1 − δpq̄
. Also we know q must in (0,

1 − δp

2 − δa − δp
].

So we have when 2δa + δp ≥ 2,
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

≤
1 − δp

2 − δa − δp
.

In this case, we have

(a) If 2δa + δp ≥ 2:

i. if q ∈ (0,
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

],

– if s ∈ (
δa

1 − δpq̄
,

δa

1 − δpq̄ −
󰁴

2(1 − δa)δpq
]:

Π2max ≤ Π3max

– if s ∈ (
δa

1 − δpq̄ −
󰁴

2(1 − δa)δpq
,

2 − δa

1 − δpq̄
]:

Π2max > Π3max

ii. if q ∈ (
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

,
1 − δp

2 − δa − δp
],

Π2max ≤ Π3max

(b) if 2δa + δp < 2:

– if s ∈ (
δa

1 − δpq̄
,

δa

1 − δpq̄ −
󰁴

2(1 − δa)δpq
]:

Π2max ≤ Π3max

– if s ∈ (
δa

1 − δpq̄ −
󰁴

2(1 − δa)δpq
,

2 − δa

1 − δpq̄
]:

Π2max > Π3max

3. s ∈ (
2 − δa

1 − δpq̄
,

1
q
]

Still s ≤
1
q
, then we compare

(N − Q)Q
N

v and q̄δpQv +
δpq2

2
Nv.
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Let

L2 =
(N − Q)Q

N
v −

󰀣
q̄δpQv +

δpq2

2
Nv

󰀤

=

󰀥
−

δpq2

2
s2 + (1 − δpq̄)s − 1

󰀦
Q2

N
v

Solving L2 = 0 as the equation of s, we get the roots

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

s1 =
2

(1 − δpq̄)−
󰁴
(1 − δpq̄)2 − 2δpq2

s2 =
2

(1 − δpq̄) +
󰁴
(1 − δpq̄)2 − 2δpq2

Because
1 − δpq̄

δpq2 /
1
q
> 1 and also s1 =

(1 − δpq̄) +
󰁴
(1 − δpq̄)2 − 2δpq2

δpq2 >

1 − δpq̄
δpq2 , so s1 >

1
q
. Denote L1 as L1(s), we have

L2(
1
q
) =

2(1 − δp)− (2 − δp)q
2q

– When q ≥
2(1 − δp)

2 − δp
, then L2(

1
q
) ≤ 0, thus when s ∈ (

2 − δa

1 − δpq̄
,

1
q
],

L2(s) ≤ 0. Thus, Π2max ≤ Π3max.

– When q <
2(1 − δp)

2 − δp
, we have L2(

1
q
) > 0. Then we need to fur-

ther check s2 and
2 − δa

1 − δpq̄
. If s2 ≤

2 − δa

1 − δpq̄
, then L2(s) > 0 with

s ∈ (
2 − δa

1 − δpq̄
,

1
q
]; if s2 >

2 − δa

1 − δpq̄
, then L2(s) < 0 with s ∈ (

2 − δa

1 − δpq̄
, s2],

and L2(s) ≥ 0 with s ∈ (s2,
1
q
].

By looking into s2/
2 − δa

1 − δpq̄
,

we get when q ≤
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

, s2 ≤
2 − δa

1 − δpq̄
;

otherwise s2 >
2 − δa

1 − δpq̄
.
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Besides, if 2δa + δp ≥ 2, we have
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

≤

2(1 − δp)

2 − δp
≤

1 − δp

2 − δa − δp
;

if 2δa + δp < 2,
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

>
2(1 − δp)

2 − δp
>

1 − δp

2 − δa − δp
.

Thus, in this case, we have

(a) 2δa + δp ≥ 2:

i. if q ∈ (0,
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

]:

Π2max > Π3max

ii. if q ∈ (
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

,
2(1 − δp)

2 − δp
]:

– if s ∈ (
2 − δa

1 − δpq̄
,

2

(1 − δpq̄) +
󰁴
(1 − δpq̄)2 − 2δpq2

]:

Π2max ≤ Π3max

– if s ∈ (
2

(1 − δpq̄) +
󰁴
(1 − δpq̄)2 − 2δpq2

,
1
q
]:

Π2max > Π3max

iii. if q ∈ (
2(1 − δp)

2 − δp
,

1 − δa

2 − δa − δp
]:

Π2max ≤ Π3max

(b) 2δa + δp < 2:

Π2max > Π3max

4. s ∈ (
1
q
,+∞)

Because s >
1
q
, we come to compare

(N − Q)Q
N

v and
δp(2N − Q)Q

2N
v.

Similarly, we have that

(a) 2δa + δp ≥ 2:
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i. if q ∈ (0,
2(1 − δp)

2 − δp
]:

Π2max > Π3max

ii. if q ∈ (
2(1 − δp)

2 − δp
,

1 − δa

2 − δa − δp
]:

– if s ∈ (
1
q
,

2 − δp

2(1 − δp)
]:

Π2max ≤ Π3max

– if s ∈ (
2 − δp

2(1 − δp)
,+∞):

Π2max > Π3max

(b) 2δa + δp < 2:

Π2max > Π3max

• If q ∈ (
1 − δp

2 − δa − δp
, 1]

1. s ∈ (0,
δa

1 − δpq̄
]

Hence s <
1
q
, similarly we get the same conclusion as the case under

q ∈ (0,
1 − δp

2 − δa − δp
].

2. s ∈ (
δa

1 − δpq̄
,

δa

1 − (2 − δp)q̄
]

With the same as the case under q ∈ (0,
1 − δp

2 − δa − δp
], the comparison

of
(1 − δpq̄)2N2 − 2(δa + δaδpq̄ − 2δpq̄)NQ + δ2

a Q2

4(1 − δa)N
v and q̄δpQv +

δpq2

2
Nv

should be conducted. Thus, we take L1 again.

L1 =

󰁫󰀓
1 − δp q̄ −

󰁴
2(1 − δa)δpq

󰀔
N − δaQ

󰁬 󰁫󰀓
1 − δp q̄ +

󰁴
2(1 − δa)δpq

󰀔
N − δaQ

󰁬

4(1 − δa)N
v

But the range of q and the right side of the range of s are different. Be-

cause q >
1 − δp

2 − δa − δp
, then 1 − δpq̄ −

󰁴
2(1 − δa)δpq is not necessarily

larger than 0. We rewrite L1 as the function of s:
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L1(s) =

󰁫󰀓
1 − δp q̄ −

󰁴
2(1 − δa)δpq

󰀔
s − δa

󰁬 󰁫󰀓
1 − δp q̄ +

󰁴
2(1 − δa)δpq

󰀔
s − δa

󰁬

4(1 − δa)N
Q2v

By solving L1(s) = 0, we get the two roots

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

s1 =
δa

(1 − δpq̄)−
󰁴

2(1 − δa)δpq

s2 =
δa

(1 − δpq̄) +
󰁴

2(1 − δa)δpq

It’s obvious that 0 < s2 <
δa

1 − δpq̄
, then we need to discuss the possible

cases of s1:

if s1 < 0, then we have L1(s) < 0 with s ∈ (
δa

1 − δpq̄
,

δa

1 − (2 − δp)q̄
];

if s1 > 0, then s1 > s2 also holds.

Thus, if s1 > 0, we need to further check whether s2 >
δa

1 − (2 − δp)q̄

or not. If so, we will have L1(s) < 0 with s ∈ (
δa

1 − δpq̄
,

δa

1 − (2 − δp)q̄
];

otherwise, L1(s) ≤ 0 with s ∈ (
δa

1 − δpq̄
, s1] and L1(s) > 0 with s ∈

(s1,
δa

1 − (2 − δp)q̄
].

By further looking at these thresholds when discussing these conditions,
we can summarise the conclusion in this case:

(a) If 2δa + δp ≥ 2:

Π2max ≤ Π3max

(b) If 2δa + δp < 2:

i. if q ∈ (
1 − δp

2 − δa − δp
,

2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

]

– if s ∈ (
δa

1 − δpq̄
,

δa

(1 − δpq̄)−
󰁴

2(1 − δa)δpq
)

Π2max ≤ Π3max
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– if s ∈ (
δa

(1 − δpq̄)−
󰁴

2(1 − δa)δpq
,

δa

1 − (2 − δp)q̄
]

Π2max > Π3max

ii. if q ∈ (
2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

, 1]

Π2max ≤ Π3max

3. s ∈ (
δa

1 − (2 − δp)q̄
,

1
q
]

Also because s ≤
1
q
, we compare

[1 − δp(2 − δp)(1 − q2)]N2 − 2[δa − δp(2 − δp)q̄]NQ + δ2
a Q2

2(1 − δa)(2 − δp)N
v and q̄δpQv+

δpq2

2
Nv.

Let

L3 =
[1 − δp(2 − δp)(1 − q2)]N2 − 2[δa − δp(2 − δp)q̄]NQ + δ2

a Q2

2(1 − δa)(2 − δp)N
v −

󰀣
q̄δpQv +

δpq2

2
Nv

󰀤

=
[1 − D(1 − δaq2)]s2 − 2δa(1 − Dq̄)s + δ2

a

2(1 − δa)(2 − δp)N
Q2v

in which D = δp(2 − δp). We let

L′
3 = [1 − D(1 − δaq2)]s2 − 2δa(1 − Dq̄)s + δ2

a

The ∆ of the equation L′
3 = 0 is

∆(q) = 4δ2
a

󰁱
(1 − Dq̄)2 − [1 − D(1 − δaq2)]

󰁲

= 4δ2
a

󰁱
(D2 − δaD)q2 + 2D(1 − D)q − D(1 − D)

󰁲

It can be proved that when q ∈ (
1 − δp

2 − δa − δp
, 1], we have ∆(q) > 0. Thus,

we can give the roots of the equation L′
3 = 0 as

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

s1 =
δa

(1 − Dq̄)−
󰁳
(1 − Dq̄)2 − (1 − D + δaDq2)

s2 =
δa

(1 − Dq̄) +
󰁳
(1 − Dq̄)2 − (1 − D + δaDq2)
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It’s easy to know that s1 > s2 > 0. And also because 1 − Dq̄ > 1 − (2 −

δp)q̄, then we have s2 <
δa

1 − (2 − δp)q̄
. So, the next is to check whether s1

locates in (
δa

1 − (2 − δp)q̄
,

1
q
] or not.

At first, we can get that when q <
2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

,

s1 <
δa

1 − (2 − δp)q̄
. And also when 2δa + δp < 2 we have

1 − δp

2 − δa − δp
<

2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

.

Then, we have when q <
1 − δp󰁳

δa(1 − δa)D + δa(1 − δp)
, s1 <

1
q
. And also

when 2δa + δp < 2 we have
1 − δp󰁳

δa(1 − δa)D + δa(1 − δp)
>

1 − δp

2 − δa − δp
;

when δa > (1 − δp)2, we have
1 − δp󰁳

δa(1 − δa)D + δa(1 − δp)
< 1.

Thus, the summary of this case is

(a) If 2δa + δp ≥ 2: i.e. s1 ≥
1
q

Π2max ≤ Π3max

(b) If 2δa + δp < 2:

i. if δa ≥ (1 − δp)2:

A. if q ∈ (
1 − δp

2 − δa − δp
,

2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

]

Π2max > Π3max

B. if q ∈ (
2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

,
1 − δp󰁳

δa(1 − δa)D + δa(1 − δp)
]

– if s ∈ (
δa

1 − (2 − δp)q̄
,

δa

(1 − Dq̄)−
󰁳
(1 − Dq̄)2 − (1 − D + δaDq2)

]

Π2max ≤ Π3max
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– if s ∈ (
δa

(1 − Dq̄)−
󰁳
(1 − Dq̄)2 − (1 − D + δaDq2)

, 1]

Π2max > Π3max

C. if q ∈ (
1 − δp󰁳

δa(1 − δa)D + δa(1 − δp)
, 1]

Π2max ≤ Π3max

ii. if δa < (1 − δp)2:

A. if q ∈ (
1 − δp

2 − δa − δp
,

2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

]

Π2max > Π3max

B. if q ∈ (
2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

, 1]

– if s ∈ (
δa

1 − (2 − δp)q̄
,

δa

(1 − Dq̄)−
󰁳
(1 − Dq̄)2 − (1 − D + δaDq2)

]

Π2max ≤ Π3max

– if s ∈ (
δa

(1 − Dq̄)−
󰁳
(1 − Dq̄)2 − (1 − D + δaDq2)

, 1]

Π2max > Π3max

4. s ∈ (
1
q
,

2 − δa − δp

1 − δp
]

Because s >
1
q
, we need to compare

(1 − δp)2N2 − 2[δa − δp(2 − δp)]NQ + [δ2
a − δp(2 − δp)]Q2

2(1 − δa)(2 − δp)N
v

and
δp(2N − Q)Q

2N
v.

Referring to results from Chapter 2, we have:

(a) If 2δa + δp ≥ 2:

Π2max ≤ Π3max

(b) If 2δa + δp < 2:

i. if q ∈ (
1 − δp

2 − δa − δp
,

1 − δp󰁳
δa(1 − δa)D + δa(1 − δp)

]
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Π2max > Π3max

ii. if q ∈ (
1 − δp󰁳

δa(1 − δa)D + δa(1 − δp)
, 1]

– if s ∈ (
1
q
,

󰁳
δa(1 − δa)D + δa(1 − δp)

1 − δp
]

Π2max ≤ Π3max

– if s ∈ (

󰁳
δa(1 − δa)D + δa(1 − δp)

1 − δp
,

2 − δa − δp

1 − δp
]

Π2max > Π3max

5. s ∈ (
2 − δa − δp

1 − δp
,+∞)

Because s >
1
q
, we need to compare

(N − Q)Q
N

v and
δp(2N − Q)Q

2N
v.

Referring to results from Chapter 2, we have:

(a) If 2δa + δp ≥ 2:

– if s ∈ (
2 − δa − δp

1 − δp
,

2 − δp

2(1 − δp)
]

Π2max ≤ Π3max

– if s ∈ (
2 − δp

2(1 − δp)
,+∞)

Π2max > Π3max

(b) If 2δa + δp < 2:

Π2max > Π3max

Finally, there are six different kinds of equilibrium solutions in total under dif-
ferent cases. We can get the theorem by re-organising the different cases of these
equilibria.

150



And for convenience, we let D = δp(2 − δp) and

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

q̄ = 1 − q

qh1 =
2(1 − δa)(1 − δp)

(2 − δa)
󰁴

2(1 − δa)δp − 2(1 − δa)δp

qh2 =
2(1 − δp)

2(1 − δp) +
󰁴

2(1 − δa)δp

qh3 =
1 − δp󰁳

δa(1 − δa)D + δa(1 − δp)

and

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

S1(q) = 1/q

S2(q) =
δa

1 − δpq̄

S3(q) =
2 − δa

1 − δpq̄

S4(q) =
δa

1 − (2 − δp)q̄

S5(q) =
δa

(1 − δpq̄)−
󰁴

2(1 − δa)δpq

S6(q) =
2

(1 − δpq̄) +
󰁴
(1 − δpq̄)2 − 2δpq2

S7(q) =
δa

(1 − Dq̄)−
󰁳
(1 − Dq̄)2 − (1 − D + δaDq2)

A2.4 Proof of Proposition 3.3

Proof. Proof of Proposition 3.3

When p ≤ N−Q
N v, advertisers with v > p cannot win an impression in RTB

following equation (2.4). They choose to buy guaranteed contracts to secure impres-
sions. Therefore, the number of contracts buyers will exceed Q, and all Q impres-
sions will be consumed through guaranteed contracts.

While p ∈ (N−Q
N v, N−δaQ

N v], if no extra advertisers exist, the original batch of

advertisers with valuations in (p, p−δa
N−Q

N v
1−δa

] will join RTB, and their bidding prices
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decrease from p to N−Q
N v. Note that if advertisers’ bidding prices are N−Q

N v, they
would be the last ones that can win an impression in RTB. Therefore, after the pub-
lisher introduces M extra advertisers to join RTB, some advertisers with bidding
prices close to N−Q

N v cannot win impressions anymore. Because extra advertisers
will bid truthfully by their valuations since they have missed the guaranteed con-

tracts. Then advertisers with valuations close to but less than p−δa
N−Q

N v
1−δa

may quit to
seek more utilities by bidding close to p. On the contrary, they can get a promised
v − p payback if they turn back to buy a guaranteed contract. Consequently, the for-

mer threshold value v′ = p−δa
N−Q

N v
1−δa

get smaller because of the existence of M extra
advertisers.

Denoted the new threshold as v′M, then the consumers of impressions consist of

four parts: a) the number of contracts buyers is v−v′M
v N, b) the number of untruth-

telling bidders from the original batch in RTB is v′M−p
v N, c) the number of truth-

telling bidders from the original batch in RTB is p−b(v′M)
v N, d) the number of truth-

telling bidders from the extra batch is v−b(v′M)
v M. Accordingly, we have

v − v′M
v

N +
v′M − p

v
N +

p − b(v′M)

v
N +

v − b(v′M)

v
M = Q

Solving the equation we get

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

v′M =
p − δa

N+M−Q
N+M v

1 − δa

b(v′M) =
N + M − Q

N + M
v

(A2.1)

If the publisher sets contract price in (N−Q
N v, N+M−Q

N+M v], then v′M ≤ p holds.
This means no advertisers with valuations larger than p choose to join RTB. On the
other hand, if the price p > N+M−δaQ

N+M v, then v′M > v. In this case, all advertisers
with valuations larger than p will join RTB and bid untruthfully. Finally, if the price
exceeds v, all advertisers go to RTB and follow the truth-telling bidding strategy.

In summary, we can get advertisers’ behavioural modes under different pricing
segments.

A2.5 Proof of Corollary 3.5

Proof. Proof of Corollary 3.5

First, we substitute q → 0 into the result of Theorem 3.2, the publisher’s deci-
sions are only depend on δa, δp and s:
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1. s ∈ (1,+∞) ∩ (0,
δa

1 − δp
] Max revenue:

Πmax = δpQv

with optimal price p∗ = v;

2. s ∈ (1,+∞) ∩ (
δa

1 − δp
,

2 − δa

1 − δp
]

Max revenue:

Πmax =
(1 − δa)2N2 − 2(δa + δaδp − 2δp)NQ + δ2

a Q2

4(1 − δa)N
v

with optimal price p∗ = (1+δp)N−δaQ
2N v;

3. s ∈ (
2 − δa

1 − δp
,+∞)

Max revenue:

Πmax =
(N − Q)Q

N
v

with optimal price p∗ = N−Q
N v.

Then we let M → +∞ in Theorem 3.4. The conditions of different cases are
depend on N+M−Q

N+M . Because M → +∞, we have

lim
M→+∞

N + M − Q
N + M

= 1.

Thus, no matter 2δa + δp ≥ 2 or 2δa + δp < 2, the publisher’s optimal decision is

p∗ = lim
M→+∞

N + M − Q
N + M

v = v

and its max revenue is

Πmax = lim
M→+∞

2Q(N + M − Q)(N + δpM)

2(N + M)2 v = δpQv

The comparison is obvious that the publisher takes more advantage of revenue
space with information dominance. Because the upper bound of the revenue from
the RTB is δpQv. Thus, if the original scarcity is high enough, the publisher can
make more profit by selling some impressions to guaranteed contracts.
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A2.6 Proof of Proposition 3.6.

Proof. Proof of Proposition 3.6

We prove this proposition from the side of the original advertisers and the pub-
lisher, respectively.

From the original advertisers’ side, if the advertiser with valuation v = N+x−Q
N+x v

chooses to attend the RTB and loses, then the better decision for it is to buy a guar-
anteed contract in period 1. This means a quota of impressions that can be won by
extra advertisers in RTB would be transferred to guaranteed contracts. Therefore,
the publisher wastes a unit of cost to introduce an extra advertiser. Consequently,
the current x is not an optimal one for them. Thus, condition a) must hold for an
optimal x∗(p)

From the publisher side, it’s natural that an optimal x∗(p) must maximise its
revenue compared with other x under current p.

A2.7 Proof of Equation (3.3)

Proof. Proof of Equation (3.3)

1. p ∈ [0, N−Q
N v]

All impressions will be consumed by original advertisers through guaranteed
contracts. Thus, the revenue function of the publisher is

Π1(p, x) = Qp − cx

2. p ∈ (N−Q
N v, N−δaQ

N v]

(a) x ∈ (Np−(N−Q)v
v−p ,+∞)

In this case, p < N+x−Q
N+x v. Thus, original advertisers with valuations v >

p will all buy guaranteed contracts because they cannot win impressions
in the RTB under the strategy of b(v). And the left impressions will all be
won by the extra advertisers. The corresponding revenue of the publisher
is

Π1
2(p, x) =

v − p
v

Np + δp

󰁝 v

x−(Q− v−p
v N)

x v
xv

1
v

dv − cx

(b) x ∈ [0, Np−(N−Q)v
v−p ]
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In this case, p > N+x−Q
N+x v and p ≤ N−δaQ

N v < N+x−δaQ
N+x v. We know that the

original advertisers with valuations v = b−1(N+x−Q
N+x v) can join the RTB

by bidding N+x−Q
N+x v. Then we get the threshold value in this case is

v′x =
p − δa

N+x−Q
N+x v

1 − δa
.

Original advertisers with valuations v ∈ (v′x, v] will buy guaranteed con-
tracts; other advertisers from the original batch will attend the RTB by
bidding b(v). So the revenue function in this case is

Π2
2(p, x) =

v − v′x
v

Np

+ δp

󰀫󰁝 v′x

p
Nb(v)

1
v

dv +
󰁝 p

b(v′x)
Nv

1
v

dv +
󰁝 v

b(v′x)
xv

1
v

dv

󰀬
− cx

3. p ∈ (N−δaQ
N v, v)

(a) x ∈ (Np−(N−Q)v
v−p ,+∞)

Because p < N+x−Q
N+x v, from the case above we get the revenue function

under the current case is

Π1
3(p, x) =

v − p
v

Np + δp

󰁝 v

x−(Q− v−p
v N)

x v
xv

1
v

dv − cx

(b) x ∈ (Np−(N−δaQ)v
v−p , Np−(N−Q)v

v−p ]

Because p ∈ [N+x−Q
N+x v, N+x−δaQ

N+x v), from the case above we get the revenue
function under this case is

Π2
3(p, x) =

v − v′x
v

Np

+ δp

󰀫󰁝 v′x

p
Nb(v)

1
v

dv +
󰁝 p

b(v′x)
Nv

1
v

dv +
󰁝 v

b(v′x)
xv

1
v

dv

󰀬
− cx

(c) x ∈ [0, Np−(N−δaQ)v
v−p ]

We know that p ≥ N+x−δaQ
N+x v such that v′x ≥ v. So all original advertisers

will go to the RTB with the bidding strategy b(v).

Π3
3(p, x) = δp

󰀫󰁝 v

p
Nb(v)

1
v

dv +
󰁝 p

N+x−Q
N+x v

Nv
1
v

dv +
󰁝 v

N+x−Q
N+x v

xv
1
v

dv

󰀬
− cx
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4. p ∈ [v,+∞)

If the publisher sets the price higher than v, all advertisers’ behaviour remains
the same as that case in which the price equals v. All advertisers, no matter
from the original batch or not, will join the RTB and bid truthfully.

Π4(p, x) = δp

󰀫󰁝 v

N+x−Q
N+x v

Nv
1
v

dv +
󰁝 v

N+x−Q
N+x v

xv
1
v

dv

󰀬
− cx

In summary, we obtain the whole revenue function on the domain of p and
x.

A2.8 Proof of Lemma 3.7.

Proof. Proof of Lemma 3.7

The first-order of Πp(x) on this interval is

dΠp(x)
dx

= −c(1 − δa)(N + x)3 − (1 − δa)δpQvx2 + (δa p − δpv)NQx

+ δaNQ[Np − δp(N − Q)v],

and the second order is

d2Πp(x)
dx2 = −3c(1 − δa)(N + x)2 − 2(1 − δa)δpQvx + (δa p − δpv)NQ.

First, we have
dΠp(0)

dx
> 0 for p > N−Q

N v > δp
N−Q

N v. Then, by observing

d2Πp(x)
dx2 , we know that there are three possible cases of its roots: a) no real roots;

b) two negative roots; c) one negative root and one positive root. No matter in

which case, we can guarantee that
dΠp(x)

dx
> 0 first and

dΠp(x)
dx

≤ 0 then when x
increasing from 0.
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A3 Appendix for Study 3

A3.1 Summary of Key notations

Table A3.1: Summary of Key notations

Notation Type Description
Q Parameter Total number of impressions
Θ, θ Parameter Random parameter and its realisation for im-

pression quality
A, α Parameter Random parameter and its realisation for

matching degree
i Parameter Advertiser index, i ∈ {1, 2}
t Parameter Impressions index, t ∈ {0, 1, 2, . . . , Q}
vi,t Parameter Advertiser i’s valuation for impression t
f (·) Function Probability density function for impression

quality
g(·) Function Probability density function for matching de-

gree
E(·) Function Expectation for an random variable
EΩ(·) Function Conditional expectation for an random vari-

able on Ω
p Decision Variable Price of guaranteed contracts
U Decision Variable Available number of guaranteed contracts
xi Decision Variable Advertiser i’s demand for guaranteed con-

tracts
U′ Decision Variable Agreed number of guaranteed contracts
ΘGC Decision Variable Quality criteria for guaranteed contracts
θ′ Decision Variable The threshold quality in threshold type allo-

cation policies
bi Decision Variable Bid from advertiser i

A3.2 Proof of Proposition 4.1

Proof. Proof of Proposition 4.1

From equation (4.8), we know these two advertisers’ utility functions are sym-
metry, then if one advertiser gets more utility with a distinguished number of guar-
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anteed contracts, this solution would also be better for another one. Thus, if one
advertiser gets optimal utility when xi = x∗, then x∗ will also be at least one of the
optimal demands.

A3.3 Proof of Lemma 4.2.

Proof. Proof of Lemma 4.2

Because ∑U′−1
y=0 h(y) + ∑Q−1

z=U′ k(z) = 1, the publisher’s revenue function can be
written as

Πpub = U′p

+ E(min{α1, α2})ERTB(θ)(Q − U′)

+ E(min{α1, α2})(E(θ)− ERTB(θ))
Q−1

∑
z=U′

k(z)(Q − z)

guaranteed contracts prior policy In this case, we have

∂Πpub

∂θ′
=

α

6

󰀻
󰀿

󰀽(Q − U′)−
Q−1

∑
z=U′

󰀵

󰀷 (z − 1)!
(U′ − 1)!(z − U′)!

󰀣
θ − θ′

θ

󰀤U′ 󰀣
θ′

θ

󰀤z−U′

(Q − z)

󰀣
1 + U −

θ − θ′

θ′
(z − U′)

󰀤󰀶

󰀸

󰀼
󰁀

󰀾

Let x =
θ′

θ
∈ [0, 1], n = z − U′, and

f (x) =
Q−U−1

∑
n=0

󰀥
(U + n − 1)!
(U′ − 1)!n!

(1 − x)U′
xn(Q − U − n) (1 + U − (1 − x)n)

󰀦
,

we have
∂Πpub

∂θ′
=

α

6
󰀅
(Q − U′)− f (x)

󰀆
.

Because f (0) = (Q − U′)(1 + U) ≥ (Q − U′), f (1) = 0 and f (x) is continuous on

[0, 1]. Therefore, there must be an odd number of solutions of
∂Πpub

∂θ′
= 0. If the

number is 1, then we need to compare Πpub(θ′ = 0) and Πpub(θ′ = θ) to get the
local maximum on [0, θ]. Otherwise, if the number of solutions for Πpub(θ′ = 0)
is m = 2k + 1(k > 0), then we also need to compare the value on the k local max
extrema1.

1Note that we have implemented some numerical experiments to illustrate the property of f (x),
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RTB prior policy We have

∂Πpub

∂θ′
=

α

6

󰀻
󰀿

󰀽(Q − U′)−
Q−1

∑
z=U′

󰀵

󰀷 (z − 1)!
(U′ − 1)!(z − U′)!

󰀣
θ′

θ

󰀤U′ 󰀣
θ − θ′

θ

󰀤z−U′

(Q − z)

󰀣
1 + U −

θ′

θ − θ′
(z − U′)

󰀤󰀶

󰀸

󰀼
󰁀

󰀾

Let x =
θ′

θ
∈ [0, 1], n = z − U′, and

g(x) =
Q−U−1

∑
n=0

󰀥
(U + n − 1)!
(U′ − 1)!n!

xU′
(1 − x)n(Q − U − n)

󰀣
1 + U −

x
1 − x

n

󰀤󰀦
,

Then we have
∂Πpub

∂θ′
=

α

6
󰀅
(Q − U′)− g(x)

󰀆
.

Similarly, because g(0) = 0, g(1) = Q and g(x) is continuous on [0, 1]. Therefore,

there must be an odd number of solutions of
∂Πpub

∂θ′
= 0. If the number is 1, the

local maximum is obtained at θ′∗ such that
∂Πpub

∂θ′
= 0. Otherwise, if the number of

solutions for Πpub(θ′ = 0) is m = 2k + 1(k > 0), then we also need to compare the
value on the k + 1 local max extrema2.

In summary, no matter whether in the guaranteed contracts prior policy or in
the RTB prior policy, Πpub of θ′ only contains infinite extrema on [0, θ].

A3.4 Proof of Lemma 4.3.

Proof. Proof Lemma 4.3

As advertisers’ utility from one impression via the guaranteed contracts is uGC
i,t =

αi,tθt − p, then we have uGC
i,t < 0 always holds when p > αθ. Therefore, the pricing of

guaranteed contracts over αθ makes all advertisers take participate in the RTB.

we find that f (x) is monotonic on [0, 1] in all of our tests.
2Numerical experiments also illustrate that g(x) is monotonic on [0, 1].
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