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Summary 

While Attention-Deficit Hyperactivity Disorder (ADHD) is characterized by age-related changes 

in symptoms and brain structures during childhood and adolescence, the link between brain 

structure and function is less clear. Given that prior longitudinal magnetic resonance imaging 

(MRI) research has predominantly focused on cortical structures, there exists a compelling need 

for longitudinal MRI research to investigate previously unexplored brain regions and networks, 

specifically the limbic system. The studies described in this thesis used multimodal MRI 

techniques (structural and diffusion MRI) to investigate the link between limbic system structural 

development and ADHD symptomology at three time points, at approximately 18-month intervals, 

from ages 9-14. 

 

Study 1 investigated the developmental differences in limbic system volumes among individuals 

with ADHD and controls using structural MRI scans processed with FreeSurfer software. The 

analyses of this study revealed that compared to controls, the ADHD group had lower volume in 

the amygdala, hippocampus, orbitofrontal cortex and cingulate gyrus across the three study time 

points. In the ADHD group, increased mammillary body volume growth was significantly 

associated with the persistence of symptom severity during mid-adolescence. 

 

Study 2 explored the development of limbic system white matter in children and adolescents with 

ADHD using higher-order diffusion MRI data processed with ExploreDTI software. Manual 

tractography isolated the key white matter tracts of the limbic system. The analyses found that 

compared to controls, individuals with ADHD displayed reduced microstructural organisation in 

the cingulum bundle and fornix across all three study time points.  

 

Study 3 investigated the development of topological organisation of the limbic system’s structural 

connectivity among individuals with ADHD and controls using ExploreDTI software. Results 

showed that reduced routing efficiency and network density were significantly associated with 

increased ADHD symptom severity, suggesting that underconnectivity of the limbic system may 

underpin increased symptom severity in ADHD. 

 

Overall, the results of the studies in this thesis suggest that atypical development of limbic system 

grey matter, white matter and subcortical nuclei may be a neurobiological feature associated with 

the persistence of ADHD symptoms during the transition into mid-adolescence. 
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1 General introduction 

 

1.1. Overview of ADHD 

Attention-Deficit Hyperactivity Disorder (ADHD) is a highly prevalent, impairing 

condition that significantly impacts the individual, their family, and the broader 

community (Gallo and Posner 2016). Like many other psychiatric conditions, the 

diagnosis of ADHD has been significantly refined and developed over the past 50 years 

(Posner, Polanczyk, and Sonuga-Barke 2020). What was once identified in the Diagnostic 

and Statistical Manual of Mental Disorders (second edition; DSM-II) as a “hyperkinetic 

reaction of childhood” has been redefined in both the DSM-5 and International 

Classification of Diseases (11th edition; ICD-11) as a condition that spans an individual's 

entire life, presenting distinct criteria for both children and adults (American Psychiatric 

Association and Association 2013; Organization 2004). This evolution in diagnosis has 

been the result of periodic review and reformulation, influenced by both research insights 

and clinical factors (Posner, Polanczyk, and Sonuga-Barke 2020). Historically, diagnostic 

systems in psychiatry have focused on a descriptive or phenomenological approach, often 

overlooking the underlying causes of ADHD (Posner, Polanczyk, and Sonuga-Barke 

2020). However, as our understanding of the aetiology and pathophysiology of ADHD 

expands, there is potential for a shift in these diagnostic approaches (Posner, Polanczyk, 

and Sonuga-Barke 2020). By incorporating scientific discoveries, there is the possibility 

to expand and refine clinical approaches for people with ADHD (Posner, Polanczyk, and 

Sonuga-Barke 2020). 

Currently, while medication-based treatments for ADHD prove efficacious and 

cost-effective in the short term (Pliszka et al. 2006; Scheffler et al. 2007), the long-term 

effectiveness of these treatment strategies on educational, vocational, and social outcomes 

remains unclear (Molina et al. 2009; Chang et al. 2019). Additionally, given the low 

adherence to these medication-based treatments, particularly in adolescence (Adler and 

Nierenberg 2010), there is a pressing need for the development of improved long-term 

ADHD treatments (Posner, Polanczyk, and Sonuga-Barke 2020). Changing the 

perspective on ADHD's aetiology through continued scientific advancement could pave 

the way for the development of innovative strategies that enhance existing treatments or 

novel alternatives (Posner, Polanczyk, and Sonuga-Barke 2020). 
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1.1.1. Classification and Diagnosis of ADHD 

ADHD diagnosis requires a comprehensive evaluation of current and previous 

symptoms along with any functional impairments (Posner, Polanczyk, and Sonuga-Barke 

2020). As per the National Institute for Health and Care Excellence (NICE), the diagnosis 

of ADHD should only be made by a healthcare professional with specialised training and 

expertise in the diagnosis of ADHD (Atkinson and Hollis 2010). The diagnosis procedures 

requires a comprehensive clinical and psychosocial evaluation, including a full 

developmental and psychiatric history as well as observer reports of the individuals mental 

state (Atkinson and Hollis 2010). For a diagnosis of ADHD, symptoms should meet the 

diagnostic criteria of the DSM-5 (Lahey et al. 2005) or ICD-11 (Reed et al. 2019), and 

must cause moderate to severe psychological, social and/or educational impairment to the 

individual (Atkinson and Hollis 2010). These impairments must also occur in 2 or more 

settings including social, familial, educational or occupational environments (Atkinson 

and Hollis 2010). 

The DSM is a classification system developed in the United States of America that 

provides standardised criteria for the diagnosis of psychiatric disorders (Lahey et al. 2005). 

According to the American Psychiatric Association’s DSM-5, ADHD is defined in 

children (< 17 years) by the presence of six or more symptoms in the domains of 

inattention or hyperactivity and impulsivity (Lahey et al. 2005) (see Topic Box 1). For 

adults, five symptoms in either domain are required to meet diagnostic criteria (Lahey et 

al. 2005). The DSM-5 modified the onset age criteria from before seven years in the DSM-

IV to before 12 years, offering more flexibility in diagnosing adults (Lahey et al. 2005). It 

has also shifted from categorising ADHD into three subtypes (based on dominant 

symptoms) to using the term “presentation” to highlight the fluidity of symptom change 

as individuals mature and develop (Lahey et al. 2005) (see Topic Box 1).  

The ICD is a globally recognised medical classification system maintained by the 

World Health Organisation (WHO), which includes both physical and mental health 

conditions (Reed et al. 2019). Recently the ICD has revised its diagnostic framework to 

align with the DSM-5, transitioning ADHD from the disruptive category to the 

neurodevelopmental disorder category (Reed et al. 2019). It also replaced the term 

“hyperkinetic disorder” with “ADHD” and recognises inattentive, hyperactive and 

impulsive symptom presentations (Reed et al. 2019). Unlike the DSM-5 and the ICD-10, 
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the ICD-11 outlines the fundamental traits of the disorder without defining a specific age 

of onset, duration, or number of symptoms (Reed et al. 2019) (see Topic Box 1). 

 

Topic Box 1: ADHD diagnostic criteria according to the DSM-5 and ICD-11. 

 

DSM-5 

Inattention 

● Displays careless mistakes or fails to pay close attention to details in tasks.  

● Faces difficulty sustaining attention during tasks. 

● Often ignores direct conversations.   

● Struggles to follow instructions or finish tasks (e.g. loses focus, or gets side-tracked). 

● Finds difficulty in organising tasks and activities. 

● Avoids or shows reluctance in tasks requiring sustained mental effort. 

● Often loses essential items for tasks and activities. 

● Is easily distracted by external stimuli. 

● Shows forgetfulness in daily activities. 

 

Hyperactivity/Impulsivity 

● Exhibits restless behaviours like fidgeting, tapping, or squirming. 

● Inappropriately leaves a seat when expected to remain seated. 

● Runs and climbs in inappropriate situations (adolescents or adults might be limited to 

feeling restless). 

● Unable to play or engage in leisure activities quietly. 

● ‘On the go’ or acting as if ‘driven by a motor’. 

● Talks excessively. 

● Blurts out answer before a question has been completed.  

● Has difficulty waiting their turn. 

● Interrupts or intrudes on others (e.g. conversations or games). 

 

Predominant ADHD Presentation (formally known as ADHD subtypes): 

● Inattentive presentation: Individuals up to age 16 must exhibit six or more inattentive 

symptoms, while also having less than six hyperactivity/impulsivity symptoms (> 17 years 

old require 5).   
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● Hyperactive/Impulsive presentation: Individuals up to age 16 must display six or more 

hyperactivity/impulsivity symptoms, while also having less than six inattentive symptoms 

(> 17 years old require 5).   

● Combined presentation: Individuals up to age 16 must display six or more symptoms in 

both inattentive and hyperactive/Impulsive categories (> 17 years old require 5). 

 

 

ICD11 

 

● Presents a persistent pattern (at least 6 months) of inattention, hyperactivity, or impulsivity. 

● Symptoms typically onset in early to mid-childhood. 

● Symptoms affect academic, occupational, or social functioning.  

 

ICD11 definitions: 

1. Inattention: Marked by difficulty in sustaining attention in non-stimulating or 

unrewarding tasks, distractibility, and organisational problems.  

2. Hyperactivity: Characterised by excessive motor activity and difficulty remaining still, 

especially in structured situations requiring self-control. 

3. Impulsivity: Manifested as acting on immediate stimuli without thoughtful deliberation or 

consideration of risks and consequences.  

 

 

1.1.2. Emotional Dysregulation and ADHD 

Emotional dysregulation is commonly observed in ADHD, with prevalence 

estimates between 24% and 50% among children with ADHD (Seymour et al. 2017; Shaw, 

Stringaris, et al. 2014). Emotional regulation refers to one’s capacity to adjust emotional 

states, facilitating productive, goal-orientated behaviours (Thompson 1994). It involves 

the mechanisms that enable an individual to focus on, evaluate, and flexibly respond to 

emotionally arousing stimuli (Shaw, Stringaris, et al. 2014). These mechanisms trigger 

behavioural and physiological responses that can be altered to align with goal-orientated 

objectives (Shaw, Stringaris, et al. 2014). Emotional dysregulation emerges when these 

adaptive mechanisms are compromised, resulting in behaviours counterproductive to an 

individual’s interest (Shaw, Stringaris, et al. 2014). This regulation includes 1) emotional 

reactions and experiences that are disproportionate or unfitting for the context compared 
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to societal expectations; 2) swift, unstable changes in emotion (lability); and 3) an unusual 

focus/fixation on emotional stimuli (Shaw, Stringaris, et al. 2014). Emotional 

dysregulation represents a major source of impairment among individuals with ADHD 

(Shaw, Stringaris, et al. 2014). Research indicates that emotional problems have a greater 

impact on well-being and self-esteem compared to symptoms of hyperactivity and 

inattention (Shaw, Stringaris, et al. 2014). In addition, the presence of childhood emotional 

dysregulation is associated with increased rates of anxiety disorders, mood disorders, 

disruptive behaviour disorders, and substance use disorders in adulthood (Althoff et al. 

2010).   

Building on this understanding, it is important to recognise the overlap between 

emotional dysregulation in ADHD and bipolar disorder. Despite their distinct diagnostic 

criteria, ADHD and bipolar disorder share a clinical presentation of emotional 

dysregulation (Shaw, Stringaris, et al. 2014). This similarity not only presents diagnostic 

challenges, as the emotional symptoms in ADHD can mirror those in bipolar disorder, but 

also challenges in pathophysiological research as MRI studies have shown both shared and 

distinct neurobiological mechanisms underpinning emotional regulation in these disorders 

(Shaw, Stringaris, et al. 2014; Seymour et al. 2015). As such, to fully understand the 

impact and pathophysiology of emotional dysregulation in ADHD it is important to 

acknowledge the potential impact of diagnostic overlap.  

 

1.1.3. Epidemiology of ADHD 

A study from 2007, which included over 100 research papers, indicated a 

worldwide prevalence of 5.3% (95% confidence intervals (CI): 5.01-5.56) (Polanczyk et 

al. 2007). Differences in results across these studies can be attributed to varying diagnostic 

criteria, information sources used, and the requirement of both functional impairments and 

symptoms for a diagnosis (Faraone et al. 2015). While adjusting for these methodological 

discrepancies, a later meta-analysis found no significant differences in ADHD prevalence 

across countries in Europe, Asia, Africa, and the Americas (Polanczyk et al. 2007). Other 

meta-analyses have reported varying rates but often have significant constraints, like 

exclusive use of DSM criteria to diagnose ADHD or simulated prevalence rates (Thomas 

et al. 2015; Erskine et al. 2013).  

It is important to note that ADHD isn’t limited to children; while many affected 

children do not continue to meet full ADHD diagnosis criteria in adulthood, a substantial 
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proportion continue to experience functional impairments or subthreshold impairing 

symptoms that continue to impact their lives (Faraone, Biederman, and Mick 2006). An 

analysis estimated adult ADHD prevalence to be 2.5% of the population (95% CI: 2.1-3.1) 

(Simon et al. 2009). In addition, studies focusing on older adults (aged 55-85) also found 

similar prevalence rates (Michielsen et al. 2012; Guldberg-Kjär and Johansson 2009), with 

longitudinal studies suggesting that around two-thirds of youths diagnosed with ADHD 

continue to experience impairing symptoms into adulthood (Faraone, Biederman, and 

Mick 2006).  

A distinct feature of ADHD in children is the high ratio of diagnosed boys vs girls, 

a trend that has been supported by both population and clinical studies (Posner, Polanczyk, 

and Sonuga-Barke 2020). Specifically, studies have identified a boy-to-girl ADHD 

diagnoses ratio of 3:1 and 4:1 (Joseph Biederman et al. 2002; Cuffe, Moore, and McKeown 

2005). This disparity may arise from a host of influences such as distinct symptom 

expression between boys and girls, biases in diagnostic criteria, or a combination of 

biological and environmental factors (Posner, Polanczyk, and Sonuga-Barke 2020). In 

adulthood, this sex ratio seemingly narrows to 1.6:1 in male vs females with ADHD 

(Willcutt 2012). While the causes for this shift in sex ratios across the lifespan remains 

unclear (Stibbe et al. 2020), research indicates varying rates of ADHD persistence in 

adulthood by sex. Specifically, approximately 60% of females with a childhood ADHD 

diagnosis continue to meet diagnostic criteria in adulthood (Biederman, Petty, Monuteaux, 

et al. 2010; Hinshaw et al. 2012), compared to only 35% of men (Biederman, Petty, Evans, 

et al. 2010). 

 

1.2. Pathophysiology of ADHD 

The pathophysiology of ADHD refers to the functional and anatomical 

mechanisms that underlie the disorder’s symptoms and progression. While the 

pathophysiology of ADHD is not fully understood, research suggests a complex interplay 

between genetic, environmental and neuroanatomical factors in the manifestation of the 

disorder (Faraone et al. 2015). Given the scope of this thesis, the following section will 

focus on the current understanding of genetic and brain abnormalities associated with 

ADHD.  
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1.2.1. Genetics of ADHD 

ADHD is a highly heritable neurodevelopmental disorder, with parents and 

siblings of patients with ADHD having between a fivefold and tenfold increased risk of 

developing the disorder compared to the general population (Biederman et al. 1992; 

Biederman et al. 1990).  Twin studies indicate that 70-80% of ADHD cases in children 

and adults can be attributed to genetics (Posner, Polanczyk, and Sonuga-Barke 2020). 

ADHD is shaped by both stable genetic influences and those that emerge at different 

developmental stages across the lifetime (Chang et al. 2013). This suggests that genes 

contribute to the onset, persistence and remission of ADHD symptoms through both stable 

neurobiological abnormalities and atypical developmental processes (Faraone et al. 2015).  

Two main characteristics of ADHD, inattention and hyperactivity, are separate yet 

interconnected areas of psychopathology (Larsson et al. 2013). The genetic correlation 

between these domains is around 0.6, indicating substantial overlap, but there are also 

unique genetic influences specific to each domain (Larsson et al. 2013). Furthermore, 

shared genetic factors also contribute to the presence of emotional dysregulation in ADHD 

(Merwood et al. 2014; Surman et al. 2011). The genetic connection between ADHD and 

other neurodevelopmental and psychopathological traits is also noteworthy. Family and 

twin studies have illustrated that common genetic influences are present between ADHD 

and various other conditions and traits, including conduct disorder (Christiansen et al. 

2008), cognitive performance (Kuntsi et al. 2014), autism spectrum disorder (Rommelse 

et al. 2010) and mood disorders (Cole et al. 2009; Doyle and Faraone 2002). This genetic 

overlap of ADHD and other psychiatric disorders is also reflected in the Genome-Wide 

Association Studies (GWAS) data. 

GWAS data has been used to identify single nucleotide polymorphisms (SNPs) 

and copy number variants (CNVs) associated with ADHD (Demontis et al. 2019; 

Demontis et al. 2023). These methods examine the genomes of both cases and controls for 

thousands of SNPs to investigate if any SNPs or CNVs correlate with the disorder (Witte 

2010). Based on GWAS data, the SNP heritability (h2
SNP) of ADHD is estimated to be 

between 0.14 and 0.22 (Demontis et al. 2019; Demontis et al. 2023), indicating that 

between 14-22% of the heritability of ADHD can be attributed to numerous genetic 

variants (loci) (Demontis et al. 2019; Demontis et al. 2023). The largest GWAS study to 

date (ADHD = 38,691 and control = 186,843) identified 27 ADHD-associated risk loci, 

highlighting 76 potential risk genes (Demontis et al. 2023). The results of this GWAS 
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research revealed that ADHD is highly polygenic, influenced by approximately 7,300 

(Standard Deviation (SD). = 324) common genetic variants that account for roughly 90% 

of the disorder’s h2
SNP (Demontis et al. 2023). Furthermore, it emphasised that these genetic 

markers are not exclusive to ADHD but are shared extensively with other psychiatric 

disorders such as, schizophrenia, major depressive disorder, and autism (Demontis et al. 

2023). The GWAS findings suggest that rather than having distinct ADHD-specific loci, 

there are certain genes that can impact a range of mental health disorders, but they manifest 

differently depending on the condition (Demontis et al. 2023).  

 

1.2.2. Genetics and Brain Development in ADHD  

Functionally, ADHD risk genes have been shown to participate in all stages of 

brain development (Tierney and Nelson 2009). Processes of brain development are crucial 

for shaping cognitive abilities, behaviours, and overall mental health, ensuring optimal 

functioning and adaptability throughout a life time (Tierney and Nelson 2009). If the stages 

of brain development are disrupted, it can lead to lasting cognitive, behavioural and 

neurological consequences (Tierney and Nelson 2009). These neurodevelopmental 

processes are orchestrated in a highly conserved sequence (Sabariego-Navarro et al. 2022). 

Briefly, neural progenitors located in specific neurogenic zones undergo proliferation, 

differentiating into distinct neuronal classes (neurogenesis) (Stiles and Jernigan 2010). 

These newly formed neurons then undergo a guided migration to their target locations 

within the neural architecture (neuronal migration) (Stiles and Jernigan 2010). Once 

positioned, they form intricate synaptic connections (synaptogenesis) (Dark, Homman-

Ludiye, and Bryson-Richardson 2018). These synaptic connections extend to form both 

local and long-distance axons interconnecting different brain regions (neural connectivity) 

(Dark, Homman-Ludiye, and Bryson-Richardson 2018). Subsequently, synaptic 

refinement occurs, optimising the neuronal network through activity-dependent pruning, 

thereby selectively enhancing the most robust synaptic contacts and reducing neuronal 

redundancy (synaptic plasticity) (Dark, Homman-Ludiye, and Bryson-Richardson 2018).  

Several ADHD-associated genes identified from GWAS are known to have 

functional significance in all stages of brain development (Dark, Homman-Ludiye, and 

Bryson-Richardson 2018). Genes associated with ADHD predominantly influence the 

formation and functioning of synapses (Dark, Homman-Ludiye, and Bryson-Richardson 

2018). It has been proposed that the lower brain grey matter volume reported in ADHD 
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may be a consequence of reduced synaptic density rather than neuronal cell loss (Dark, 

Homman-Ludiye, and Bryson-Richardson 2018). As such, variants in these ADHD-

associated genes have been proposed as potential contributors to the observed decrease in 

grey matter associated with the disorder (Dark, Homman-Ludiye, and Bryson-Richardson 

2018; Hoogman et al. 2017b). Additionally, the delayed establishment of neural 

connections – a mechanism associated with ADHD gene variants – can lead to an 

underdeveloped brain (Dark, Homman-Ludiye, and Bryson-Richardson 2018). This is in 

line with the observed neurodevelopmental patterns of reduced and delayed development 

of brain structures seen in individuals with ADHD (Shaw et al. 2007; Shaw and Sudre 

2021). Please see Table 1.1 for further details on the relationship between ADHD 

associated genes and brain development. 

In summary, ADHD-associated genes play key roles in various stages of brain 

development, especially in the formation and function of synapses (Dark, Homman-

Ludiye, and Bryson-Richardson 2018). These genetic influences may contribute to the 

observed reductions in grey matter and delays in brain structure development among 

individuals with ADHD (Friedman and Rapoport 2015). 



Table 1.1 ADHD-associated genes and processes of brain development. 

Neurodevelopmental 

process 

Description ADHD-associated genes 

involved in this process 

 

Neurogenesis 

 

Neurogenesis refers to the complex process of new neurons forming in the brain (Stiles and Jernigan 2010). In this intricate process,  

neural progenitor cells follow specific patterns of proliferation, differentiating into mature neurons (Dark, Homman-Ludiye, and Bryson-

Richardson 2018). A balanced interplay of proliferation and differentiation is essential for proper brain development, and any deviations 

have profound impacts on brain development (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Variants in ADHD-associated genes 

are hypothesised to disrupt these processes of neurogenesis, potentially contributing to the reduced brain volumes seen in the disorder 

(Dark, Homman-Ludiye, and Bryson-Richardson 2018). 

 

 

CDH13, FOXP2, 

GRM1, GRM5, 

GRM7, MEF2C, 

NOS1, PARK2, 

SLC6A4 

Synaptogenesis Synaptogenesis is the process by which synapses are formed between neurons in the nervous system, enabling the transmission of signals 

and the establishment of functional neural networks (Dark, Homman-Ludiye, and Bryson-Richardson 2018). ADHD-associated genes have 

been shown to impact the local attractive cues guiding the location of synapse formation, disrupting the establishment of synaptic contacts 

between axons and dendrites (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Disruption to this intricate process can not only lead 

to reduced synaptic formation but also decreased grey matter volume (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Numerous 

genes associated with ADHD are involved in synaptogenesis, and a decrease in synaptic density may contribute to the observed reduction 

in brain volumes in individuals with ADHD (Dark, Homman-Ludiye, and Bryson-Richardson 2018). 

 

BDNF, FOXP2, 

GRM5, MEF2C, 

PTPRF, ST3GAL3 
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Neuronal Migration Neuronal migration is the process by which neurons move from their place of origin (neurogenic zone) to their final position in the brain 

(De Rouvroit and Goffinet 2001). This process is guided by a series of migration cues, which mainly consist of signalling molecules, 

including neurotransmitters and cell adhesion molecules, that influence neuronal movements via intracellular signalling pathways (De 

Rouvroit and Goffinet 2001). Variants in ADHD-associated genes can disrupt these migratory cues leading to abnormal brain development 

(Dark, Homman-Ludiye, and Bryson-Richardson 2018). It is hypothesised that in ADHD these disruptions can manifest either as a delay 

or mislocalisation of migrating neurons to their final location in the brain (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Such 

disruptions may contribute to the neural phenotype of delayed neurodevelopment seen in the disorder (Dark, Homman-Ludiye, and 

Bryson-Richardson 2018). 

FOXP2, 

SLC6A4 

 

 

 

 

 

 

  

Neuronal 

connectivity 

Neural connectivity in terms of neurodevelopment refers to the processes of neuronal pathfinding, which are essential for forming neuronal 

interconnections via axonal formation (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Neuronal pathfinding refers to the 

mechanism by which the extensions of neurons, such as axons and dendrites, navigate to their appropriate target and is essential for the 

formation of functional neural circuits (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Similar to neuronal migration, this process 

is driven by a series of guidance cues and cell adhesion molecules dispersed across the developing brain (Dark, Homman-Ludiye, and 

Bryson-Richardson 2018). Dysregulation of these guidance cues, through variants in ADHD-associated genes, can lead to a delayed 

establishment of neural connections (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Such delays can lead to an underdeveloped 

brain, an observation that aligns with the developmental delays often seen in individuals with ADHD (Dark, Homman-Ludiye, and 

Bryson-Richardson 2018).  

 

CDH13, 

LPHN3/ADRGL3, 

PCDH7, SEMA6D 
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Synaptic Plasticity Synaptic plasticity involves changes in synaptic strength over time, leading to either strengthening (long-term potentiation) or weakening 

(long-term depression) of synapses and is crucial for the refinement and organisation of brain networks (Turrigiano and Nelson 2004). The 

ability to regulate neural connections through these processes is essential for maintaining optimal brain function (Dark, Homman-Ludiye, 

and Bryson-Richardson 2018). Any impairment in this regulation could lead to a reduction in brain volumes and the formation of 

inefficient neural networks (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Interestingly, the disruption to processes of synaptic 

plasticity has been shown to be the most common neurodevelopmental effect of ADHD-associated genes (Dark, Homman-Ludiye, and 

Bryson-Richardson 2018). Specifically, it has been proposed that the decreases in brain volumes seen in ADHD may be linked to 

disruptions to synaptic potentiation and synaptic maintenance (Dark, Homman-Ludiye, and Bryson-Richardson 2018).    

 

BDNF, CDH13, 

FOXP2, GRM5, 

LPHN3/ADRGL3, 

MEF2C, PTPRF, 

ST3GAL3 
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1.2.3. MRI research: Brain Structure in ADHD 

This section will explore the current insights in relation to brain structure in 

children and adolescents with ADHD, specifically looking at research that investigated 

brain grey matter, subcortical nuclei and white matter through structural and diffusion MRI 

techniques. This section will also discuss current understanding of the neurodevelopmental 

trajectories of brain structures in ADHD.  

 

Structural MRI 

Magnetic resonance imaging (MRI) allows for high-quality anatomical images of 

the brain to be produced non-invasively and in vivo. MRI differentiates between grey 

matter, white matter, and cerebrospinal fluid, contributing to the mapping and 

characterisation (volume, surface area, thickness and gyrification) of cortical and 

subcortical structures (Symms et al. 2004). To date, six meta-analyses of structural MRI 

(sMRI) volumetric studies in children and adolescents with ADHD have been published 

(Valera et al. 2007; Hutchinson, Mathias, and Banich 2008; Ellison-Wright, Ellison-

Wright, and Bullmore 2008; Nakao et al. 2011; Frodl and Skokauskas 2012; Norman et 

al. 2016). These examined differences in total brain volume and the volume of both cortical 

and subcortical brain structures.  

Two sMRI meta-analyses using a region-of-interest approach investigated 

volumetric differences in children with ADHD and controls (Valera et al. 2007; 

Hutchinson, Mathias, and Banich 2008). These meta-analyses reported a reduction in grey 

matter volumes in the prefrontal, striatal, parietal, and cerebellar regions that were 

associated with individuals with ADHD compared to controls (Valera et al. 2007; 

Hutchinson, Mathias, and Banich 2008). The largest differences were reported in the 

cerebellar region, splenium of the corpus callosum, caudate and total cerebral volume 

(Valera et al. 2007; Hutchinson, Mathias, and Banich 2008).  

Whole-brain meta-analyses of voxel-based morphometry (VBM) studies found 

that consistent reductions in volumes of the basal ganglia, specifically the putamen, globus 

pallidum and caudate nucleus, were associated with ADHD (Ellison-Wright, Ellison-

Wright, and Bullmore 2008; Nakao et al. 2011; Frodl and Skokauskas 2012; Norman et 

al. 2016). Overall, the six meta-analyses to date have demonstrated reduced brain volume 

in children and adolescents with ADHD in frontal, parietal, and subcortical regions, 

predominantly in the basal ganglia (Valera et al. 2007; Hutchinson, Mathias, and Banich 
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2008; Ellison-Wright, Ellison-Wright, and Bullmore 2008; Nakao et al. 2011; Frodl and 

Skokauskas 2012; Norman et al. 2016). While such meta-analyses provide valuable 

information on brain structure in ADHD, these studies relied on published data as source 

material (Frodl and Skokauskas 2012; Nakao et al. 2011). This reliance posed a limitation 

in addressing varying covariates across studies, such as age and medication use (Frodl and 

Skokauskas 2012; Nakao et al. 2011). Moreover, these meta-analyses encompassed studies 

that differed in methods and protocols, including their choice of segmentation software 

and quality control measures (Hoogman et al. 2017b).  

To address these limitations and increase statistical power, the ENIGMA 

(Enhanced Neuroimaging Genetics Through Meta-Analysis) ADHD Working Group was 

established in 2013 (Giedd 2019). This initiative aimed to consolidate structural MRI data 

from both individuals with ADHD and healthy controls across the lifespan. Two ENIGMA 

mega-analyses were conducted and examined between-group differences in cortical grey 

matter and subcortical nuclei among children and adolescents with ADHD and controls 

(Hoogman et al. 2017b; Hoogman et al. 2019). 

One structural MRI ENIGMA mega-analysis investigated group differences in 

cortical brain structures among children with ADHD (n = 1081) and controls (n = 1048) 

aged 4-14 years old (Hoogman et al. 2019). Compared to controls, the ADHD group 

displayed reductions in various cortical surface areas (Hoogman et al. 2019). Specifically, 

among individuals with ADHD, reduced surface area was found in the frontal, temporal 

and cingulate regions compared to controls (Hoogman et al. 2019). Focusing on cortical 

thickness in children with ADHD, there were reductions in the temporal pole, fusiform 

gyrus, precentral gyrus and parahippocampal gyrus compared to controls (Hoogman et al. 

2019). 

Another structural ENIGMA MRI mega-analysis investigated group differences in 

subcortical brain structures among children and adolescents with ADHD (n = >600) and 

controls (n = >600) aged 5-14 years old (Hoogman et al. 2017b). The results found that 

children with ADHD had reduced grey matter volume in the accumbens, amygdala, 

caudate, hippocampus, pallidum, putamen, thalamus, and total intracranial volume 

compared to controls (Hoogman et al. 2017b). Exploratory analysis investigated age-

related differences in attaining peak volume of subcortical structures between children 

with ADHD and controls (Hoogman et al. 2017b). The results of this analysis found that 

compared to controls, children with ADHD displayed a delay in attaining peak volume in 
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the amygdala, hippocampus and accumbens (Hoogman et al. 2017b). The authors caution 

that these results, limited by the study’s cross-sectional design, require confirmation 

through longitudinal studies (Hoogman et al. 2017b).  

Taken together, ADHD is associated with structural abnormalities in grey matter 

and subcortical nuclei during childhood and adolescence (Hoogman et al. 2017b; 

Hoogman et al. 2019). There are a large number of studies demonstrating reductions in 

volume, cortical thickness and surface area, with the most prominent differences being 

identified in the prefrontal, cingulate, basal ganglia, hippocampus, amygdala and total 

intracranial volume (Hoogman et al. 2017b; Hoogman et al. 2019). Exploratory age-

stratified analysis identified a maturation delay in the development of subcortical 

structures among children with ADHD (Hoogman et al. 2017b), revealing exciting 

avenues for future longitudinal research to explore. 

 

Diffusion MRI 

Diffusion-weighted magnetic resonance imaging (dMRI) is a powerful MRI 

technique that investigates white matter microstructure through the degree of diffusivity 

of molecules within biological tissue (Jones and Leemans 2011). The diffusion of 

molecules in white matter is influenced by cellular membranes, specifically myelin 

sheaths, which determine the diffusion-weighted contrast signal (Van Hecke, Emsell, and 

Sunaert 2016). This signal can be used to estimate the underlying microstructure and 

reconstruct the organisation of white matter tracts (Van Hecke, Emsell, and Sunaert 2016). 

In the early 2000s, the most common technique for modelling dMRI was Diffusion Tensor 

Imaging (DTI) (Basser, Mattiello, and LeBihan 1994; Mori and van Zijl 2002). DTI is an 

important research tool for understanding white matter microstructure (Qiu, Mori, and 

Miller 2015; Goddings et al. 2021; Sexton et al. 2014), but it has some limitations. Most 

notably, it cannot accurately model voxels that contain crossing white matter fibres 

(Pierpaoli et al. 2001; Behrens et al. 2007; Jeurissen et al. 2011). In recent years, 

improvements in dMRI acquisition parameters have allowed for higher-order diffusion 

modelling techniques, which increase reconstruction accuracy and can overcome some of 

the limitations of DTI (Van Hecke, Emsell, and Sunaert 2016). High Angular Resolution 

Diffusion Imaging (HARDI) uses an increased number of diffusion direction gradients to 

estimate microstructural properties along multiple fibre populations within a single voxel, 
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providing improved accuracy for white matter tract reconstruction compared to traditional 

DTI (Descoteaux).  

Another advancement in dMRI acquisition parameters is the collection and 

integration of multiple b-values (Pines et al. 2020; Jeurissen et al. 2014)('Advances in 

Cognitive Neurodynamics (V)'  2016). B-values summarise diffusion-weighting strength, 

duration, and amplitude during scans (Van Hecke, Emsell, and Sunaert 2016). Different 

strength b-values affect tissue responses, which can be used to improve the reconstruction 

accuracy in neurocellular environments (Van Hecke, Emsell, and Sunaert 2016). Diffusion 

of molecules in the brain can be better detected with higher b-values (Burdette et al. 2001), 

but they are also more prone to noise and artefacts than lower b-values (Kingsley and 

Monahan 2004). Multi-shell dMRI data combine high b-value images for increased signal 

and low b-value images for reduced noise, resulting in improved anatomical accuracy 

(Pines et al. 2020). In the context of higher-order diffusion modelling, various techniques 

have been developed, including constrained deconvolution (CSD), diffusion spectrum 

imaging  (DSI), diffusion kurtosis imaging (DKI), Q-ball, and neurite orientation and 

dispersion density imaging (NODDI) (Jeurissen et al. 2011; Zhang et al. 2012; Tuch 2004; 

Tournier et al. 2004b; Dhollander et al. 2021). These techniques describe the diffusion of 

molecules within a voxel with greater accuracy compared to DTI (Van Hecke, Emsell, and 

Sunaert 2016). For example, the fibre orientation distribution (FOD) function for CSD and 

diffusion orientation distribution function (dODF) for DSI and Q-ball can be used to model 

voxels that contain crossing white matter fibres (Van Hecke, Emsell, and Sunaert 2016). 

As a result, metrics derived from these higher-order models have increased accuracy and 

yield clinically relevant information that cannot be obtained from the DTI model (Van 

Hecke, Emsell, and Sunaert 2016). Higher-order diffusion models offer crucial insights 

into neurological and psychiatric disorders by revealing detailed information about white 

matter tracts' microstructure and organization (Van Hecke, Emsell, and Sunaert 2016). 

While a detailed description of the common dMRI metrics and their clinical implications 

is provided in Table 3.1, a summary of the metrics that will be discussed in the following 

sections is provided below in Table 1.2.  
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Table 1.2 Diffusion MRI metrics investigated in the systematic review. 

Modelling 

technique 

Metric Description 

DTI 

Fractional 

anisotropy 

 

A summary measure that quantifies the directional preference of molecule 

diffusion within a reconstructed fibre tract (Van Hecke, Emsell, and 

Sunaert 2016; Zhang and Burock 2020). 

Radial  

diffusivity 

  

A metric that measures the rate of diffusivity perpendicular to the 

principle direction of diffusion in a reconstructed fibre tract (Song et al. 

2005; Van Hecke, Emsell, and Sunaert 2016). 

Axial  

diffusivity 

  

 

A measure of the rate of diffusion along the principal direction of the 

reconstructed fibre tract (Alexander et al. 2007; Van Hecke, Emsell, and 

Sunaert 2016). 

Mean  

diffusivity 

 

A metric that quantifies the total amount of diffusion in reconstructed 

fibre tract, regardless of direction (Alexander et al. 2007; Van Hecke, 

Emsell, and Sunaert 2016). 

DSI 

Generalised 

fractional  

anisotropy  

 

An extension of fractional anisotropy, generalised fractional anisotropy 

quantifies the directional preferences of molecule diffusion within a 

reconstructed fibre tract (Van Hecke, Emsell, and Sunaert 2016). Unlike 

fractional anisotropy, generalised fractional anisotropy is derived from 

more complex dMRI models which can capture multiple diffusion 

directions in a given voxel (Van Hecke, Emsell, and Sunaert 2016). 

 

Return-to-

orientation 

probability 

A metric that evaluates the total diffusional cellular volume, offering 

insights into the cellular structure and arrangement of a  reconstructed 

fibre tract (Assaf, Mayk, and Cohen 2000; Özarslan et al. 2013; Ning, 

Westin, and Rathi 2015). 

 

Return-to-axis 

probability 

A measure that characterises the axonal density and packing of a 

reconstructed fibre tract (Assaf, Mayk, and Cohen 2000; Özarslan et al. 

2013; Ning, Westin, and Rathi 2015). 

 

DKI 

Mean kurtosis  An analogue to mean diffusivity, this metric quantifies the overall non-

gaussian (kurtosis) diffusion of a reconstructed fibre tract regardless of 

direction (Van Hecke, Emsell, and Sunaert 2016). 
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Axial kurtosis  An extension of axial diffusivity, that measures the kurtosis diffusion 

along the principle direction of a reconstructed fibre tract (Steven, Zhuo, 

and Melhem 2013). 

 

Radial kurtosis  An analogue to radial diffusivity, this metric quantifies the kurtosis 

diffusion along the perpendicular direction of a reconstructed fibre tract 

(Steven, Zhuo, and Melhem 2013). 

 

FBA 

Fibre density A measure of white matter microstructure, specifically focusing on the 

density of fibre tracts within a given region (Raffelt et al. 2012; Genc et 

al. 2020). 

 

Fibre cross-

section 

A fixel-wise analogue of tensor-based morphometry, this metric evaluates 

the cross-sectional area of individual tracts, offering insights into their 

morphological properties (Raffelt et al. 2012). 

 

Fibre density and 

cross-section 

A fixel-wise analogue of voxel-based morphometry, this metric combines 

density and cross-sectional measurements to provide a comprehensive 

overview of white matter microstructural integrity (Raffelt et al. 2012). 

 

Graph 

theory 

Streamline  A measure of structural connectivity that quantifies the number, 

proportion and/or weighting of the  streamline connections between two 

nodes (Yeh et al. 2016). Streamlines are virtual reconstructions of single 

fibre pathways (Van Hecke, Emsell, and Sunaert 2016). 

 

Global  efficiency  A metric that quantifies the network’s overall potential for efficient 

information transmission, determined by calculating the average inverse 

of the shortest path length across all pairs of nodes (Bullmore and Sporns 

2009). 

 

Small-world 

network 

A network characteristic that indicates efficient local and global 

information transfer within a network (Rubinov and Sporns 2010). This 

network characteristic is a key feature of the human brain (Rubinov and 

Sporns 2010). 

 

Rich club region  A network characteristic where highly connected nodes preferentially 

connect with each other, such architecture is characteristic of the human 

brain (Colizza et al. 2006).  
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Diffusion MRI Research in ADHD 

As part of this PhD research, a systematic review was conducted, in which white 

matter microstructure in children and adolescents (< 18 years) with ADHD (Connaughton 

et al. 2022) (DOI: 10.1016/j.nicl.2022.102957). This review incorporates 46 studies in 

total, utilising diverse diffusion MRI imaging techniques and analytic methods 

(Connaughton et al. 2022). It includes whole-brain, region of interest and connectomic 

analyses, presenting a comprehensive overview of the dMRI research in children and 

adolescents with ADHD (Connaughton et al. 2022). The next section will provide an 

overview of the findings of this systematic review.  
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Abstract 

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental 

disorder. Advances in diffusion magnetic resonance imaging (MRI) acquisition sequences 

and analytic techniques have led to growing body of evidence that abnormal white matter 

microstructure is a core pathophysiological feature of ADHD. This systematic review 

provides a qualitative assessment of research investigating microstructural organisation of 

white matter amongst children and adolescents with ADHD. This review included 46 

studies in total, encompassing multiple diffusion MRI imaging techniques and analytic 

approaches, including whole-brain, region of interest and connectomic analyses. Whole-

brain and region of interest analyses described atypical organisation of white matter 

microstructure in several white matter tracts: most notably in frontostriatal tracts, corpus 

callosum, superior longitudinal fasciculus, cingulum bundle, thalamic radiations, internal 

capsule and corona radiata. Connectomic analyses, including graph theory approaches, 

demonstrated global underconnectivity in connections between functionally specialised 

networks. Although some studies reported significant correlations between atypical white 

matter microstructure and ADHD symptoms or other behavioural measures there was no 

clear pattern of results. Interestingly however, many of the findings of disrupted white 

matter microstructure were in neural networks associated with key neuropsychological 

functions that are atypical in ADHD. Limitations to the extant research are outlined in this 

review and future studies in this area should carefully consider factors such as sample size, 

sex balance, head motion and medication status. 

 

Keywords 

Attention Deficit Hyperactivity Disorder, children and adolescents, diffusion MRI, 

white matter microstructure, tractography, connectomic 
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Introduction  

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder 

characterised by hyperactivity, impulsivity, and inattention, which causes significant 

functional impairment (Thapar and Cooper 2016). It is one of the commonest childhood 

psychiatric conditions with an estimated prevalence of 5.3% in children and adolescents 

(Polanczyk et al. 2007), and is highly heritable, with a heritability estimate of 0.76 

(Faraone and Larsson 2019). While the pathophysiology of ADHD is not well understood, 

neuroimaging research has reported abnormalities in both brain structure (Valera et al. 

2007; Frodl and Skokauskas 2012; Hoogman et al. 2017b; Hoogman et al. 2019), function 

(Castellanos and Proal 2012; Cortese et al. 2012a) and functional connectivity (a term 

describing the co-ordination of processing or communication between brain regions (Gao 

et al. 2019)) across widespread brain regions in children and adolescents with ADHD. The 

developmental periods of childhood and adolescence are of particular interest in ADHD 

as research has shown changes in the ADHD symptomology and neuropsychological 

functioning as an individual enters puberty (Dorn 2006). Furthermore, white matter is 

particularly sensitive to remodelling with exposure to pubertal hormones (Juraska and 

Willing 2017)  and adolescence is a crucial period for the re-organisation of white matter 

in the brain (Paus, Keshavan, and Giedd 2008). 

Diffusion magnetic resonance imaging is a technique that enables the assessment 

of the underlying architectural organisation of white matter tracts through the 

measurement of restricted diffusion of molecules in tissue (Jones and Leemans 2011). In 

early 2000’s the most common diffusion MRI analysis model was Diffusion Tensor 

Imaging (DTI) (Basser, Mattiello, and LeBihan 1994; Mori and van Zijl 2002). DTI 

remains an important diffusion MRI modelling technique and frequent diffusion indices 

using DTI modelling are fractional anisotropy, mean diffusivity, radial diffusivity and 

axial diffusivity (see topic box 1 in supplemental material). DTI analysis of diffusion data 
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has a number of limitations, including its ability to model only a single fibre-tract per voxel 

(Pierpaoli et al. 2001; Behrens et al. 2007; Jeurissen et al. 2011). The limitations of DTI 

and the development of diffusion MRI acquisition parameters such as increased diffusion-

weighted directions and multiple b-values have led to more advanced diffusion MRI 

imaging models. These include diffusion kurtosis imaging (DKI), diffusion spectrum 

imaging (DSI), constrained spherical deconvolution (CSD), Q-ball, fixel-based analyses 

(FBA) and neurite orientation and dispersion density imaging (NODDI) (Pierpaoli et al. 

2001; Behrens et al. 2007; Jeurissen et al. 2011; Zhang et al. 2012; Alexander 2008; Broad 

et al. 2019; Van Hecke, Emsell, and Sunaert 2016). These diffusion modelling techniques 

estimate the fibre orientation distribution function for CSD, or diffusion orientation 

distribution function for DSI and Q-ball, parameters that can describe the direction of 

diffusion in voxels with multiple crossing fibres. Metrics derived from these higher order 

models have increased accuracy, yielding clinically relevant information that cannot be 

obtained from the DTI model (Van Hecke, Emsell, and Sunaert 2016). Common metrics 

derived from these advanced DWI methods are summarised in topic box 1 (see 

supplemental table). 

There are many different methods of diffusion analysis, which can be broadly 

categorised as follows: whole brain, region of interest, and connectomic. Whole-brain 

analyses evaluate local voxel-wise differences across the whole brain. A common whole-

brain analysis technique is tract-based spatial statistics, an automated analysis for 

evaluating diffusion metrics in major white matter tracts on a voxel-wise level across 

groups of subjects (Smith et al. 2006). Region of interest analyses are based on the 

delineation of predefined areas of interest in the brain. Common region of interest 

techniques includes atlas-based analyses and tractography. Atlas-based analysis uses a 

standard or population-specific atlas to evaluate differences in regions of the brain. 

Tractography uses the orientation of the diffusion profile to reconstruct specific white 

matter tracts in 3-dimensional space, allowing researchers to investigate the micro-

structural organisation of white matter tracts connecting specific brain regions. 

Connectomic analyses is a technique which models the human brain as a complex 

network (connectome) and evaluates the topological property of this network enabling the 

investigation of white matter organisation at the macroscopic level (Liao, Vasilakos, and 

He 2017; Sporns, Tononi, and Kötter 2005). Typically, in white matter connectomic 

research, using both structural and diffusion MRI, the brain connectome consists of nodes 
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comprised of nodes (grey matter) and edges (white matter) (Bullmore and Sporns 2012). 

Graph Theory is a mathematical framework that can be used for the assessment and 

representation of the human brain connectome. A variety of graph-theoretical measures 

can be extrapolated that provide summary information on properties of the brain network 

(or sub-networks) (Sporns, Tononi, and Edelman 2000; Bullmore and Sporns 2012)(see 

topic box 1 in supplemental material). 

Previous meta-analyses of diffusion MRI research in children with ADHD reported 

wide-spread abnormalities in white matter microstructure. These abnormalities were in 

brain regions including the corpus callosum, cingulum, inferior and superior longitudinal 

fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, internal capsule, 

cerebellum, basal ganglia and areas of the frontal, temporal, parietal and occipital lobe 

(van Ewijk et al. 2012; Chen et al. 2016). However, these meta-analyses only included 

studies that had used a whole-brain diffusion MRI approach. There has been no previous 

systematic review that investigated the white matter microstructure of ADHD across 

multiple diffusion MRI analytic techniques. This paper provides a systematic review of 

diffusion MRI studies that have used whole-brain, region of interest and connectomic 

approaches to investigate white matter microstructure in children and adolescents with 

ADHD. The results of this systematic review are described in the following sections: 1) 

whole-brain and region of interest studies, 2) connectomic studies, 3) associations between 

white matter and ADHD symptoms. In the discussion we explore the evidence for, and the 

possible impact of, disrupted white matter in the neural networks associated with the key 

neuropsychological functions that are atypical in ADHD. 

  

Material and Methods  

A systematic literature search of the EMBASE, Medline, PsychINFO, Web of 

Science, and the Cochrane Library databases was conducted on the 18th of June 2021. 

Reference lists of retrieved studies were also searched manually to screen for additional 

papers. The search strategy was prospectively registered to PROSPERO, where full details 

and breakdown of the search strategy are available (PROSPERO ID: CRD42020160401). 

After de-duplication, the title and abstract of 1538 papers were screened, and relevant 

studies were selected and reviewed. Inclusion criteria were: human research that 

investigated between-group white matter differences using diffusion-weighted MRI, in 

children aged 3-18, who had a formal diagnosis of ADHD according to DSM-4, DSM-4-
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TR, DSM-5 or ICD-10. Studies were included only if they included a typically developing 

comparison group aged 3-18, were published in English and in a peer-reviewed journal. 

After screening, 1323 records were excluded, and two authors (MC and JM) independently 

reviewed 215 studies that met inclusion criteria to confirm eligibility. 46 studies met 

inclusion criteria (see Figure 1).  

The following information was extracted: study population characteristics (i.e., 

sample demographics, sample size, diagnostic criteria), diffusion MRI modelling 

technique, diffusion MRI analysis technique, main findings (Table 1). Data extraction was 

completed independently by the two authors MC and JM, and disagreements regarding 

extracted data or study inclusion were resolved by a mediator (EOH/RW) (see Figure 1). 

A qualitative review of all eligible studies was then conducted. 

 

Figure 1: Flow diagram of selection of studies 
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Results   

Whole-brain and region of interest studies 

 

Frontostriatal White Matter Tracts  

There were nine studies that examined frontostriatal tracts. Seven studies reported 

reduced white matter microstructure in all four frontostriatal tracts (striatum-dorsolateral 

prefrontal cortex, striatum-orbitofrontal cortex, striatum-medial prefrontal cortex, and 

striatum-ventrolateral prefrontal cortex) (see Topic box 2 in supplemental material) in 

children and adolescents with ADHD, characterised by reduced generalised fractional 

anisotropy (Chiang et al. 2015; Chiang et al. 2016; Shang et al. 2013; Gau et al. 2015; Wu 

et al. 2014; Lin et al. 2014; Tung et al. 2021). Two studies did not find between-group 

differences in white matter organisation of these tracts (de Zeeuw, Mandl, et al. 2012; Silk, 

Vilgis, et al. 2016). 

 

Corpus Callosum 

Twelve studies investigated the corpus callosum in ADHD. Eight studies reported 

decreased organisation of white matter microstructure in regions of the corpus callosum 

in young people with ADHD which was characterised by reduced fractional anisotropy 

(Cao et al. 2010; Qiu et al. 2011; Ameis et al. 2016; King et al. 2015; Pastura et al. 2016; 

Wu et al. 2017) and higher mean kurtosis (Adisetiyo et al. 2014). In contrast, one study 

reported increased axial diffusivity (Tamm, Barnea-Goraly, and Reiss 2012). Four other 

studies did not report a difference in white matter organisation in this tract in ADHD 

(Hamilton et al. 2008; Peterson et al. 2011; Bouziane et al. 2018; Fuelscher et al. 2021). 

 

Superior Longitudinal Fasciculus 

Of the sixteen studies that examined the superior longitudinal fasciculus, twelve 

reported reduced white matter microstructural organisation in the superior longitudinal 

fasciculus in children and adolescents with ADHD. These studies included reports 

of decreased generalised fractional anisotropy (Chiang et al. 2015; Chiang et al. 2016), 

decreased fractional anisotropy (Hamilton et al. 2008; King et al. 2015; Pastura et al. 2016; 

Wu et al. 2017), increased mean diffusivity (Pavuluri et al. 2009; Nagel et al. 2011; 

Lawrence et al. 2013), increased radial diffusivity (Wu et al. 2017), increased mean 
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kurtosis (Adisetiyo et al. 2014) and decreased return-to-orientation probability and return-

to-axis probability (Wu et al. 2020). In contrast, two other studies reported higher 

fractional anisotropy (Silk et al. 2009b) and lower mean diffusivity (Adisetiyo et al. 2014) 

in the superior longitudinal fasciculus amongst individuals with ADHD. Two studies did 

not find between-group differences in white matter organisation of these tracts (Peterson 

et al. 2011; Bouziane et al. 2018). 

 

Cingulum Bundle 

Fourteen studies investigated white matter microstructure of the cingulum. Six 

studies described reduced white matter organisation in the cingulum in children with 

ADHD characterised by reduced generalised fractional anisotropy (Chiang et al. 2015; 

Chiang et al. 2016; Tung et al. 2021), fractional anisotropy (King et al. 2015) and increased 

mean diffusivity (Pavuluri et al. 2009), and decreased return-to-orientation probability and 

return-to-axis probability (Wu et al. 2020). Two other studies reported conflicting results; 

one reported an increase in fractional anisotropy (Silk et al. 2009b), the other 

reported higher axial diffusivity  (Svatkova et al. 2016) in the cingulum in  children and 

adolescents with ADHD. Six other studies that isolated the cingulum bundle did not report 

any significant between-group difference in white matter structure (Hamilton et al. 2008; 

Peterson et al. 2011; Lawrence et al. 2013; Lin et al. 2014; Cooper, Thapar, and Jones 

2015; Fuelscher et al. 2021). 

 

Thalamic White Matter   

Ten studies examined thalamic white matter; four of these reported a reduction in 

microstructural organisation of the thalamic radiation in participants with ADHD 

characterised by lower generalised fractional anisotropy (Tung et al. 2021), lower 

fractional anisotropy (Bouziane et al. 2018), higher mean kurtosis (Adisetiyo et al. 2014) 

and higher mean diffusivity and axial diffusivity (Lawrence et al. 2013). In contrast four 

studies found increased fractional anisotropy in the anterior (Tamm, Barnea-Goraly, and 

Reiss 2012; Svatkova et al. 2016) and posterior thalamic radiation (Peterson et al. 2011; 

Pastura et al. 2016) in children with ADHD. Two other studies reported atypical white 

matter microstructure in white matter tracts connecting the thalamus to a number of 

regions. Reduced fractional anisotropy was found in white matter tracts between the 

thalamus and striatum, hippocampus, motor cortex and prefrontal cortex (Xia et al. 2012). 
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Decreased return-to-orientation probability and return-to-axis probability was reported in 

white matter connections between the thalamus and pre-central gyrus, superior frontal 

gyrus and left paracentral gyrus (Wu et al. 2020). Increased return-to-orientation 

probability and return-to-axis probability was found between the thalamus and right 

paracentral gyrus (Wu et al. 2020).  

  

Internal Capsule   

Of the eight studies examining the internal capsule, seven found disrupted 

organisation of white matter in children with ADHD. Five reported decreased fractional 

anisotropy in the internal capsule (Ashtari et al. 2005; Qiu et al. 2011; Pastura et al. 2016; 

Wu et al. 2017) and posterior limb of the internal capsule (Nagel et al. 2011). Two other 

studies reported increased mean kurtosis, reflecting increased complexity in tissue 

microstructure (Adisetiyo et al. 2014), reduced fibre coherence and increased mean 

diffusivity (Pavuluri et al. 2009) in this tract. One study failed to find between-group 

differences in white matter organisation in the internal capsule (Peterson et al. 2011).  

 

Corona Radiata  

Eight studies investigated the corona radiata in children and adolescents with 

ADHD. Five of these reported disrupted organisation of corona radiata white matter. 

Reduced fractional anisotropy was reported in all regions of the corona radiata (anterior, 

superior and posterior) (Pavuluri et al. 2009; Nagel et al. 2011; Qiu et al. 2011; Wu et al. 

2017), and increased radial diffusivity (Wu et al. 2017), axial diffusivity (Tamm, Barnea-

Goraly, and Reiss 2012), and mean diffusivity was reported in the anterior corona radiata 

(Pavuluri et al. 2009). Three other studies reported contrasting findings with increased 

fractional anisotropy in the anterior corona radiata (Davenport et al. 2010; Tamm, Barnea-

Goraly, and Reiss 2012) and reduced mean diffusivity in the superior and posterior corona 

radiata in children with ADHD (Adisetiyo et al. 2014). 

 

White matter organisation in other regions 

Other white matter tracts have not been as extensively studied, and for many tracts 

there has been mixed findings relating to white matter microstructure with some studies 

finding between-group differences but others failing to find a difference. 

Reduced organisation of white matter microstructure has been reported in the arcuate 
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fasciculus (Chiang et al. 2016; Tung et al. 2021), inferior longitudinal fasciculus (Pavuluri 

et al. 2009), uncinate fasciculus (Nagel et al. 2011; Tamm, Barnea-Goraly, and Reiss 2012; 

Fuelscher et al. 2021; Tung et al. 2021), inferior fronto-occipital fasciculus (Tamm, 

Barnea-Goraly, and Reiss 2012; Adisetiyo et al. 2014; Pastura et al. 2016; Fuelscher et al. 

2021; Tung et al. 2021), corticospinal tract (Hamilton et al. 2008; Fuelscher et al. 2021), 

external capsule (Adisetiyo et al. 2014; Pastura et al. 2016; Wu et al. 2017),  fronto-pontine 

tract (Fuelscher et al. 2021), parieto-occipital pontine tract (Fuelscher et al. 2021), frontal 

aslant tract (Tung et al. 2021), perpendicular fasciculus (Tung et al. 2021), stria terminalis 

(Tung et al. 2021), forceps major (Lin et al. 2020) and forceps minor (Qiu et al. 2011; 

Lawrence et al. 2013; King et al. 2015; Svatkova et al. 2016) as well as in white matter 

tracts in the parahippocampal gyrus (Peterson et al. 2011), lingual gyrus (Peterson et al. 

2011), striatum (Ashtari et al. 2005; Wu et al. 2017), premotor region (Ashtari et al. 2005), 

motor cortex (Jacobson et al. 2015), basal ganglia (Li et al. 2010; Qiu et al. 2011), fornix 

(Davenport et al. 2010), fronto-parietal tracts (Nagel et al. 2011) and white matter in the 

medial orbitofrontal cortex (Jacobson et al. 2015), parieto-occipital region (Ashtari et al. 

2005), cerebellar peduncle (Ashtari et al. 2005; Bechtel et al. 2009) and cerebellum (Nagel 

et al. 2011). Increased white matter microstructural organisation has been reported in the 

corticospinal tract (Silk et al. 2009b), uncinate fasciculus (Silk et al. 2009b; Tamm, 

Barnea-Goraly, and Reiss 2012), inferior fronto-occipital fasciculus (Tamm, Barnea-

Goraly, and Reiss 2012), inferior longitudinal fasciculus (Silk et al. 2009b; Svatkova et al. 

2016), corticospinal tract (Svatkova et al. 2016), striatum (Peterson et al. 2011), anterior 

forceps (Tamm, Barnea-Goraly, and Reiss 2012) and forceps minor (Tamm, Barnea-

Goraly, and Reiss 2012; Lawrence et al. 2013), as well as in white matter in the frontal 

region (Li et al. 2010; Davenport et al. 2010), and temporo-occipital white matter (Kobel 

et al. 2010). A number of studies reported no-between group difference in the inferior 

longitudinal fasciculus (Hamilton et al. 2008), uncinate fasciculus (Hamilton et al. 2008; 

Lawrence et al. 2013), inferior fronto-occipital fasciculus (Hamilton et al. 2008; Lawrence 

et al. 2013), corticospinal tract (Cooper, Thapar, and Jones 2015), cerebellar peduncle 

(Fuelscher et al. 2021), forceps major (Lawrence et al. 2013) and the basal ganglia (Silk 

et al. 2009a). 

 

Connectomic studies 
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Five studies were identified that used graph theory analysis to investigate both 

global and regional white matter microstructure in children with ADHD.  In graph 

theory analysis of whole brain networks, children with ADHD displayed the same small-

world network organisation seen in a neurotypical population (Cao et al. 2013; Beare et 

al. 2017), but decreased global, long-range connections suggesting a reduction in 

connections between local, functionally specialised networks in ADHD (Beare et al. 2017; 

Cao et al. 2013; Cha et al. 2015). The greatest reduction in efficiency was seen in the left 

parietal, frontal, and occipital cortices (Cha et al. 2015).  Decreased white matter 

organisation was reported inside highly connected regions (rich-club regions) of the 

network amongst children with ADHD (Ray et al. 2014). These results suggest that ADHD 

may be characterised by under-connectivity inside highly connected regions (rich-club 

regions) and that this underconnectivity may be partially explained by findings of lower 

generalised fractional anisotropy within these regions (Ray et al. 2014). However, the 

white matter networks in the population with ADHD were not simply characterized by 

reduced connectivity; outside of highly connected regions (rich-club regions), white matter 

microstructure between other brain regions was increased, highlighting the complexity of 

the network dynamics within this disorder (Ray et al. 2014).  Regional abnormalities of 

the connectome in children with ADHD were characterised by reduced connectivity in a 

network comprising frontal, striatal, and cerebellar regions (Hong et al. 2014), decreased 

white matter connections in prefrontal circuitry (Cao et al. 2013; Beare et al. 2017) 

and fronto-accumbal circuitry (Cha et al. 2015), and increased white matter connections 

in the orbitofrontal-striatal circuitry in children with ADHD (Cao et al. 2013).  

 

Associations between white matter and ADHD symptoms  

 

Several of the diffusion MRI studies included in this systematic review 

investigated the relationship between white matter organisation and ADHD symptom 

severity.  

  

Overall ADHD severity 

Greater severity of ADHD symptoms has been correlated with increased fractional 

anisotropy in the cingulum bundle (Cooper, Thapar, and Jones 2015) and left sagittal 

stratum (Peterson et al. 2011), and with greater left lateralisation of fractional anisotropy 
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values in white matter between the putamen and ventrolateral prefrontal cortex (Silk, 

Vilgis, et al. 2016). Overall severity has been associated with reduced fibre density in the 

left fronto-pontine tract (Fuelscher et al. 2021) and reduced axonal/cellular density and 

volume in the thalamus-precentral gyrus bundle (Wu et al. 2020). However, other studies 

have failed to find any correlation between diffusion metrics and ADHD severity scores 

(Ercan, Suren, Bacanlı, et al. 2016; Svatkova et al. 2016; Bouziane et al. 2018). 

 

Inattention 

Higher inattention scores were significantly associated with reduced generalised 

fractional anisotropy in the left striatum-orbitofrontal cortex (Wu et al. 2014), right 

superior longitudinal fasciculus (Chiang et al. 2015) and cerebellum (Ashtari et al. 2005), 

increased mean diffusivity, axial diffusivity, or radial diffusivity values in the forceps 

minor (Lawrence et al. 2013) and reduced network connectivity strength in a prefrontal 

network (Cao et al. 2013). A number of other studies have reported correlations between 

inattention scores and white matter organisation in the frontostriatal tracts (Shang et al. 

2013; Wu et al. 2014; Chiang et al. 2015; Chiang et al. 2016), superior longitudinal tracts 

(Chiang et al. 2016), cingulum bundle (Chiang et al. 2015; Chiang et al. 2016), posterior 

corona radiata, posterior limb of the internal capsule, frontolimbic and temporo-occipital 

white matter (Nagel et al. 2011) however, these studies have not specified the direction of 

the association. 

  

Hyperactivity/impulsivity 

Higher scores on measures of hyperactivity/impulsivity have been associated with 

increased fractional anisotropy in the right inferior longitudinal fasciculus (King et al. 

2015), corpus callosum, right superior longitudinal fasciculus and right corona radiata (Wu 

et al. 2017), lower fractional anisotropy in the forceps major (Lin et al. 2020) and increased 

network connectivity strength in the orbitofrontal-striatal portion of a defined network 

(Cao et al. 2013). Other studies reported significant associations between 

hyperactivity/impulsivity and white matter organisation in  frontostriatal tracts (Shang et 

al. 2013; Wu et al. 2014; Chiang et al. 2015), superior longitudinal fasciculus (Chiang et 

al. 2015) and cingulum bundle (Chiang et al. 2015) although the direction of association 

has not been specified. One study did not find any correlation between white matter 

microstructure and hyperactivity/impulsivity scores in ADHD (Hamilton et al. 2008).  
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Other neuropsychological / behavioural functions 

Reduced organisation of white matter microstructure in young people with ADHD 

has also been significantly associated with deficits in a variety of neuropsychological 

functions including executive function (Lawrence et al. 2013; Chiang et al. 2016; Svatkova 

et al. 2016), vigilance (Wu et al. 2014; Chiang et al. 2015), cognitive control (Li et al. 

2010), inhibitory control (Jacobson et al. 2015), fine motor competence (Hyde et al. 2021), 

delayed reward (Bessette and Stevens 2019) and school dysfunction (Gau et al. 2015). 

Significant correlations have been reported between white matter microstructural 

organisation and spatial planning (Shang et al. 2013; Chiang et al. 2016), reaction time 

(Lin et al. 2014; Fall et al. 2015) and short-term memory (Chiang et al. 2016), but the 

direction of these correlations has not been specified.  

 

 

 

Discussion  

 

Overall Findings   

The results of this systematic review highlight widespread abnormalities of white 

matter microstructure in both discrete white matter tracts and neural networks in children 

and adolescents with ADHD. Whole-brain and region of interest approaches reported 

atypical organisation of white matter microstructure in several white matter tracts, with 

the most prominent findings in the frontostriatal tracts, corpus callosum, superior 

longitudinal fasciculus, cingulum bundle, thalamic radiations, internal capsule and corona 

radiata. Connectomic approaches suggested global underconnectivity in connections 

between functionally specialised networks as well as regional reductions in network 

efficiency in frontal, parietal, striatal, occipital, and cerebellar regions. In some white 

matter tracts however, increased connectivity was reported and it appears that ADHD is 

not simply characterised by underconnectivity within neural networks, highlighting the 

complexity of this neurodevelopmental disorder. 

From a behavioural perspective, many studies have reported significant 

correlations between disrupted white matter organisation and a variety of behavioural 

measures. However, few studies have investigated the association between the same 
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behavioural measure and diffusion metric in the same white matter tract, and replication 

is therefore required. In many studies it was not clear whether correlation analyses were 

exploratory or whether there was correction for multiple comparisons. In addition, a 

number of studies did not report the direction of the association rendering the information 

less clinically meaningful. Consequently, there is not yet a clear consensus on the overall 

impact white matter pathology has on core features of ADHD or other behavioural 

measures. 

Research in ADHD has consistently reported deficits across a wide range of 

neurocognitive domains. Several neuropsychological theories postulate that the core 

deficits of ADHD are underpinned primarily by executive dysfunction (Barkley 1997), 

atypical reward processing (Sagvolden et al. 2005; Tripp and Wickens 2008; Sonuga-

Barke 2011), aberrant functioning of the default mode network (Sonuga-Barke and 

Castellanos 2007), or delay aversion (Sonuga-Barke et al. 2008). While it is clear that there 

is atypical white matter microstructure in ADHD, the links between white matter 

pathology and these neuropsychological theories has not been well explored. In the 

following sections we provide a brief overview of four key neuropsychological theories of 

ADHD, consider their associated neural networks and explore potential links with the 

white matter pathology  described in this review. There is overlap in certain  white matter 

tracts which are involved in multiple neurocognitive processes (e.g. frontostriatal tract, 

superior longitudinal fasciculus and cingulum bundle). We synthesise the findings of this 

systematic review to explore if neuroimaging evidence is concordant with disrupted white 

matter in these networks.   

 

Executive dysfunction theory of ADHD 

The executive dysfunction theory of ADHD holds that deficits in executive 

function underpin the core symptoms of ADHD (Barkley 1997). There is a wealth of 

behavioural and neuroimaging data supporting this hypothesis (Roth and Saykin 2004; 

Hosenbocus and Chahal 2012; Hart et al. 2013), however this theory does not provide a 

unifying pathophysiological explanation for ADHD (Solanto et al. 2001; Nigg et al. 2005; 

Sonuga-Barke, Bitsakou, and Thompson 2010; de Zeeuw, Weusten, et al. 2012; Sjöwall 

et al. 2013; Coghill et al. 2014). Executive functioning is subserved by the cortico-striato-

thalamo-cortical (CSTC) neural network, superior longitudinal fasciculus white matter 

and the cingulum bundle. The frontostriatal tracts are a key component of the CSTC and 
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connect the striatum to the frontal cortex.  In children and adolescents with ADHD, 

previous research has reported reduced white matter microstructural organisation of 

frontostriatal tracts (Shang et al. 2013; Lin et al. 2014; Wu et al. 2014; Chiang et al. 2015; 

Chiang et al. 2016; Gau et al. 2015; Tung et al. 2021)  was associated with inattention 

(Chiang et al. 2015; Chiang et al. 2016; Shang et al. 2013; Wu et al. 2014), deficits in 

focused attention (Chiang et al. 2015), impulsivity (Chiang et al. 2015; Wu et al. 2014), 

school dysfunction (Gau et al. 2015), reaction time(Lin et al. 2014), 

hyperactivity/impulsivity (Shang et al. 2013), executive function (Shang et al. 2013) and 

ADHD symptom severity (Beare et al. 2017).  The superior longitudinal fasciculus, and 

specifically the superior longitudinal fasciculus II has also been implicated in executive 

functioning in ADHD. The superior longitudinal fasciculus II is thought to play a role in 

visuospatial awareness and attention (Chiang et al. 2015; Schmahmann et al. 2008). White 

matter microstructure of the superior longitudinal fasciculus II was reduced (Wu et al. 

2020; Tung et al. 2021) in children with ADHD and this finding has been associated with 

reduced fine motor control (Hyde et al. 2021). The cingulate gyrus is associated with 

executive function (Schermuly et al. 2010; Bubb, Metzler-Baddeley, and Aggleton 2018) 

and this brain region is strongly connected to the cingulum bundle (Nolte, Vanderah, and 

Gould 2016). Reduced microstructural organisation of white matter in the cingulum 

bundle has been repeatedly reported in the ADHD literature (Nagel et al. 2011; Chiang et 

al. 2015; Chiang et al. 2016; King et al. 2015; Wu et al. 2020; Tung et al. 2021) and this 

atypical white matter has been associated with inattention (Chiang et al. 2015; Chiang et 

al. 2016), sustained attention (Chiang et al. 2015), impulsivity (Chiang et al. 2015), 

vigilance (Chiang et al. 2015), planning (Chiang et al. 2016), ADHD severity(Cooper, 

Thapar, and Jones 2015), reaction time(Lin et al. 2014), executive function (Svatkova et 

al. 2016). 

  

Atypical reward processing theory of ADHD 

Altered sensitivity to reward is considered a core element in the pathophysiology 

of ADHD (Sagvolden et al. 2005; Tripp and Wickens 2008; Sonuga-Barke 2011). 

Behaviourally, children with ADHD tend to favour small immediate rewards over larger 

delayed ones (Sonuga-Barke 2011). Functional MRI studies have consistently shown that 

individuals with ADHD show neural hyposensitivity in dopaminergic neurons in the 

nucleus accumbens when presented with rewarding stimuli (Baroni and Castellanos 2015; 



 

 

52 

 

Plichta and Scheres 2014; Furukawa et al. 2020).The main neural network subserving 

reward processing is the fronto-accumbal circuitry (Knutson et al. 2007; Cha et al. 2016), 

which originates in the nucleus accumbens and projects to prefrontal regions (orbitofrontal 

cortex, anterior cingulate gyrus, dorsal prefrontal cortex).  Reduced white matter 

microstructure of the fronto-accumbal circuitry has been reported in youths with ADHD 

(Cha et al. 2015) and this white matter change has been associated with increased 

aggression (Cha et al. 2015). The frontostriatal tract (striatum-orbitofrontal cortex) is also 

a key component of the reward processing circuitry (Haber 2011) and in children and 

adolescents with ADHD, a number of studies have reported reduced white matter 

microstructure of this tract (Shang et al. 2013; Lin et al. 2014; Wu et al. 2014; Gau et al. 

2015; Chiang et al. 2015; Chiang et al. 2016)  This atypical white matter has been 

associated with inattention (Chiang et al. 2016; Shang et al. 2013; Wu et al. 2014), focused 

attention (Chiang et al. 2015), hyperactivity/impulsivity (Chiang et al. 2015; Cao et al. 

2013), school dysfunction (Gau et al. 2015), reaction time(Lin et al. 2014), executive 

function (Shang et al. 2013). 

 

Default mode network theory of ADHD 

The default mode network (DMN) theory of ADHD suggests that many 

problems associated with ADHD arise from periodic lapses in attention due to 

spontaneous intrusions of DMN activation (Sonuga-Barke and Castellanos 2007). The 

DMN is a network comprised of distinct brain regions in the ventromedial and lateral 

prefrontal cortex, posteromedial and inferior parietal cortex, and medial and lateral 

temporal cortex (Andrews-Hanna et al. 2010; Kernbach et al. 2018; Lopez-Persem et al. 

2019). The nodes of the DMN are connected by a number of major white matter tracts 

including the anterior and posterior cingulum bundles, uncinate fasciculus, superior 

longitudinal fasciculus II, arcuate fasciculus, and inferior longitudinal fasciculus (Alves et 

al. 2019). There are also structural connections between subcortical and cortical nodes of 

the DMN; fibres of the anterior thalamic radiation connect the thalamus and prefrontal 

cortex, fibres of the cingulum connect the basal forebrain with the prefrontal and cingulate 

cortices and fibres of the fornix connect the basal forebrain with the hippocampus (Alves 

et al. 2019). Reduced organisation of white matter microstructure has been described in 

the cingulum (Chiang et al. 2015; Chiang et al. 2016; King et al. 2015; Pavuluri et al. 2009; 

Nagel et al. 2011; Wu et al. 2020; Tung et al. 2021), superior longitudinal fasciculus II 
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(Wu et al. 2020; Tung et al. 2021), arcuate fasciculus (Chiang et al. 2016; Tung et al. 2021) 

and inferior longitudinal fasciculus (Nagel et al. 2011). Conversely, an increase in white 

matter microstructural organisation was reported in the uncinate fasciculus (Tamm, 

Barnea-Goraly, and Reiss 2012) and anterior thalamic radiata (Tamm, Barnea-Goraly, and 

Reiss 2012; Lawrence et al. 2013; Svatkova et al. 2016). White matter microstructural 

organisation in the DMN tracts was also significantly associated with ADHD symptoms 

and neuropsychological functioning; in the cingulum (inattention (Chiang et al. 2015; 

Chiang et al. 2016), sustained attention (Chiang et al. 2015), impulsivity (Chiang et al. 

2015), vigilance (Chiang et al. 2015), planning (Chiang et al. 2016), ADHD severity 

(Cooper, Thapar, and Jones 2015), reaction time (Lin et al. 2014) and executive function 

(Svatkova et al. 2016)), superior longitudinal fasciculus II (motor response (Wu et al. 

2020)), arcuate fasciculus (inattention (Chiang et al. 2016) and executive functioning 

(Chiang et al. 2016)) and inferior longitudinal fasciculus (delay reward (Bessette and 

Stevens 2019), impulsivity (King et al. 2015), executive functioning (Svatkova et al. 

2016)). 

 

Delay aversion theory of ADHD 

The delay aversion theory holds that a desire to avoid delay underpins the core 

deficits in ADHD (Sonuga-Barke et al. 2008; Sonuga-Barke 2005), delay aversion is 

mediated by atypical functioning in brain regions associated with the anticipation and 

response to aversive outcomes. These regions are primarily the amygdala and 

its connections with the prefrontal cortex (specifically dorsolateral prefrontal cortex and 

ventrolateral prefrontal cortex), temporal pole, and insula (Sonuga-Barke 2005; Van 

Dessel et al. 2018). Functional MRI research findings have provided support for the delay 

aversion theory (Lemiere et al. 2012; Wilbertz et al. 2013; Van Dessel et al. 2018; Van 

Dessel et al. 2020). Research specifically investigating the white matter microstructure 

of the complete delay aversion network in ADHD has not yet been conducted. 

However significant abnormalities have been found in components of this 

network. The uncinate fasciculus is a major white matter tract connecting the amygdala 

and the ventral prefrontal cortex; greater white matter microstructure of the uncinate 

fasciculus predicted reduced amygdalar activation (Kim and Whalen 2009; Swartz et al. 

2014). Three studies included in this systematic review reported atypical white matter 

organisation in the uncinate fasciculus. However the findings were mixed with two study 
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finding reduced generalised fractional anisotropy (Tung et al. 2021) and fractional 

anisotropy (Nagel et al. 2011) and the other finding increased fractional anisotropy (Silk 

et al. 2009b). Impairment in an individual’s ability to wait for future rewards has been 

associated with reduced activation in brain reward circuitry, specifically in the ventral 

striatum and dorsolateral prefrontal cortex (Bishop 2008; Gold, Morey, and McCarthy 

2015; Van Dessel et al. 2018; Bessette and Stevens 2019). Much previous research has 

described a reduction in white matter microstructural organisation of the frontostriatal-

dorsolateral tract in children with ADHD (Shang et al. 2013; Lin et al. 2014; Wu et al. 

2014; Gau et al. 2015; Chiang et al. 2015; Chiang et al. 2016) , a finding that has been 

associated with focused attention (Chiang et al. 2015), sustained attention (Chiang et al. 

2015), hyperactivity (Shang et al. 2013), vigilance (Chiang et al. 2015), reaction time (Lin 

et al. 2014), school dysfunction (Gau et al. 2015). 

In summary, this systematic review is the first review paper to synthesise evidence 

of atypical white matter microstructure in children and adolescents with ADHD in relation 

to the neuropsychological theories of ADHD (executive functioning, reward processing, 

delay aversion and default mode network functioning). Disrupted organisation of white 

matter may be a neurobiological feature that could potentially provide a unifying 

pathophysiological account for the diverse neuropsychological theories of ADHD.  

 

Limitations of diffusion MRI research in ADHD  

Key limitations include variance in sample demographics, sample size, head 

motion and medication status.  

 

Sample demographics 

In relation to study populations, it is important to consider sex and age range and 

a recent study using normative modelling to investigate white matter in ADHD and autism 

spectrum disorder suggested that some of the inconsistencies in findings might be 

explained by confounders of age and sex (Tung et al. 2021). There was a significant sex 

imbalance in many studies included in this systematic review, with 12/45 studies including 

only males in their sample. In the developing brain the effects of sex on white matter 

microstructure remain unclear but may influence diffusion MRI measures (Bava et al. 

2011; Chiang et al. 2011). The heterogenous age ranges found in the studies included in 

this review may limit the ability to compare results across different studies. White matter 
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organisation is sensitive to remodelling in childhood and particularly in adolescence 

(Juraska and Willing 2017) and white matter in younger children with ADHD may have 

changed significantly by later adolescence. 

 

Sample size 

Small sample sizes, typical for brain-wide association studies (research linking 

differences in brain structure to behavioural phenotypes), may be a key element in the 

widespread replication failure of brain-wide association studies (Button et al. 2013b; 

Ioannidis et al. 2014; Botvinik-Nezer et al. 2020). It is hoped that the increased sample 

size facilitated by datasets from large consortia  will increase the reproducibility of brain-

wide association studies. 

 

Head motion 

Many diffusion MRI studies in children with ADHD have not controlled for head 

motion which may lead to false positive findings (Aoki, Cortese, and Castellanos 2018). 

Head motion has been associated with a spurious reduction in FA (Yendiki et al. 2014), a 

finding that raises concern that results of some diffusion MRI research may be a result of 

group differences in head motion. This would be particularly pertinent for a condition such 

as ADHD where hyperactivity is a core feature. It is important that future ADHD 

neuroimaging research considers the impact of head motion, controlling for head 

motion both during scanning and during image processing.  

 

ADHD medication 

Another factor that may contribute to the differences in findings between studies 

is the impact of ADHD medication on brain structure. It has been suggested that 

unmedicated children with ADHD display reduced white matter volume compared to both 

neurotypical controls and medicated children with ADHD (Castellanos, Lee, et al. 2002b). 

A recent clinical trial found that following four months of methylphenidate treatment, boys 

with ADHD had an increase in FA in several association tracts and the corpus callosum 

compared to non-medicated boys with ADHD (Bouziane et al. 2019). A study included in 

this systematic review investigated drug-naïve boys with ADHD finding no case-control 

differences in white matter microstructure (Bouziane et al. 2018), with the authors 

suggesting that previously seen case-control differences may partially be attributed to 
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medication use. As studies typically contain participants with mixed medication status it 

is important that future research considers the potential effects of medication.  

 

Conclusion  

This paper was a systematic review of diffusion MRI research in children and 

adolescents with ADHD. Our results showed that white matter microstructural 

organisation was disrupted in many major fibre tracts in young people with ADHD, 

however there is heterogeneity in the literature that may stem from a variety of 

methodological limitations. There is not yet a clear consensus about the impact of white 

matter pathology on core features of ADHD or other behavioural measures, but this review 

has shown that numerous studies have reported aberrant white matter in the neural 

networks associated with four key neuropsychological theories of ADHD. Atypical white 

matter microstructure appears to be a core neurobiological feature of ADHD which could 

provide a unifying pathophysiological explanation for major neuropsychological theories 

of ADHD. 

 

1.2.4. MRI Research: Brain Development in ADHD 

While cross-sectional MRI studies found widespread brain differences in grey 

matter (Hoogman et al. 2019), subcortical nuclei (Hoogman et al. 2017b) and white matter 

(Connaughton et al. 2022) between children and adolescents with and without ADHD. The 

nature of these differences – whether they are disorder specific abnormalities or delays of 

normal development – remains a subject of debate (El-Sayed et al. 2003; Shaw and Sudre 

2021). Longitudinal MRI research has offered valuable insights into the changes in brain 

structure and function over time in individuals with ADHD, contributing to the 

formulation of the neurodevelopmental models of ADHD. Currently the two leading 

neurodevelopmental models of ADHD are the maturation delay hypothesis (Shaw et al. 

2007; Shaw et al. 2012; Rubia 2007) and the convergence model (Shaw and Sudre 2021).  

 

Maturation Delay Hypothesis 

The maturation delay hypothesis of ADHD suggests that individuals with ADHD 

typically experience a delay in cortical development of approximately 3-years, particularly 

in the frontal, temporal, and parietal lobes (Shaw et al. 2007). Evidence for this theory 

comes from longitudinal studies that have found that children and adolescents with ADHD 
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show marked delays in the development of brain grey and white matter compared to 

controls (Shaw et al. 2007; Shaw et al. 2012; Rubia 2007; Chiang et al. 2023). 

The original longitudinal structural MRI study conducted in 2002 investigated 

changes in lobar brain volume across multiple time points between the ages of 5-20 years 

old in unmedicated individuals with ADHD (n=152) and controls (n=139) (Castellanos, 

Lee, Sharp, Jeffries, Greenstein, Clasen, Blumenthal, James, Ebens, and Walter 2002). At 

the initial scan, children with ADHD were found to have reduced volumes across the 

cerebrum and cerebellum compared to controls (Castellanos, Lee, Sharp, Jeffries, 

Greenstein, Clasen, Blumenthal, James, Ebens, and Walter 2002). While both groups 

followed similar developmental trajectories for these brain structures, the ADHD group 

showed a persistent developmental delay in the volumetric maturation of these regions 

from childhood through to adulthood (Castellanos, Lee, Sharp, Jeffries, Greenstein, 

Clasen, Blumenthal, James, Ebens, and Walter 2002). Such consistent parallel trajectories 

across all structures, except for the caudate, imply that the factors influencing brain 

development in ADHD are stable and non-progressive (Castellanos, Lee, Sharp, Jeffries, 

Greenstein, Clasen, Blumenthal, James, Ebens, and Walter 2002). 

A follow-up longitudinal study aimed to investigate the trajectory of sub-lobar 

cortical thickness across multiple time points among individuals with ADHD between the 

ages of 7-13 years old (n=223) and controls (n=223) (Shaw et al. 2007). The results found 

that although the cortical thicknesses of brain structures in children with ADHD were 

reduced, the developmental trajectories of these structures were similar in children with 

and without ADHD (Shaw et al. 2007). The study found that the age of attaining peak 

cortical thickness was delayed in individuals with ADHD by 3 years across most of the 

cerebrum (Shaw et al. 2007). The most pronounced delays were seen in the frontal lobes, 

with a delay of 5 years in the middle frontal cortex and a delay of 2 years in the superior 

and medial prefrontal cortices (Shaw et al. 2007). The second most pronounced delay was 

reported with children with ADHD displaying a 4 year delay in attaining peak cortical 

thickness in the bilateral middle and superior temporal cortex (Shaw et al. 2007).  

The third longitudinal study extended the maturation delay hypothesis to map the 

growth curves of cortical surface area and gyrification in children with ADHD (n = 234) 

and controls (n = 231) during the transition from childhood into early adulthood (Shaw et 

al. 2012). While children with ADHD displayed a neurotypical developmental trajectory 

in surface area across much of the cerebrum (Shaw et al. 2012), the study found a marked 
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delay in the development of cortical surface area in frontal, temporal and parietal lobes in 

those with ADHD, mirroring the delay in cortical thickness previously reported (Shaw et 

al. 2012). At a lobar level, the delay seen in the ADHD group was highly regional, with 

the most prominent delays being found in the right prefrontal cortex (2 year delay), right 

parietal lobe (1.5 year delay), left parietal lobe (2 year delay), right temporal lobe (0.5 year 

delay), left temporal lobe (1.5 year delay) (Shaw et al. 2012). There were no group 

differences in the timing of attaining peak surface area in the occipital lobe (Shaw et al. 

2012).  

In addition to developmental abnormalities in brain grey matter and subcortical 

nuclei, longitudinal diffusion MRI research has found evidence of maturation delay in 

white matter microstructural organisation among individuals with ADHD. A longitudinal 

DSI study investigated changes in white matter microstructure at two time points among 

individuals with and without ADHD (Chiang et al. 2023). In this study, at time point 1 

(mean age 10.95), individuals with ADHD displayed reduced generalised fractional 

anisotropy (GFA) in several white matter tracts, specifically the arcuate fasciculus, 

superior longitudinal fasciculus, frontal aslant tract, cingulum bundle, inferior fronto-

occipital fasciculus, frontostriatal tract (connecting to the prefrontal cortex), thalamic 

radiation, corticospinal tracts, and the corpus callosum (Chiang et al. 2023). As individuals 

with ADHD showed a more rapid rate of increase in GFA, by time point 2 (mean age 

15.96), these tracts had normalised to the control group’s GFA (Chiang et al. 2023). This 

study demonstrated atypical developmental trajectories in white matter tracts in ADHD, 

marked by a “normalisation” process with age in ADHD from childhood to early 

adulthood, supporting the maturational delay theory of ADHD (Shaw and Sudre 2021; 

Shaw et al. 2013). Of note, as per the diagnostic procedures of this study, ADHD diagnosis 

was only confirmed at time point 1. Significant differences in inattentive, hyperactive, 

impulsivity and total ADHD severity score (as measured by the Kiddie Schedule for 

Affective Disorders and Schizophrenia for School-Aged Children (K-SADS-E)) were 

found in the ADHD group from time point 1 to time point 2. This indicated a significant 

decrease in ADHD symptom severity and a potential diagnostic remission within the 

ADHD group at time point 2. This is a crucial consideration, as the trajectories observed 

in this study may align with another prominent neurodevelopmental model of ADHD, the 

convergence model. 
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Convergence Model of ADHD 

The convergence model proposes that the improvement or remission of ADHD 

symptoms is a result of atypical neural characteristics in childhood converging towards 

neurotypical markers in adolescence and adulthood (Shaw and Sudre 2021). This model 

incorporates the concept of the maturation delay hypothesis (Shaw and Sudre 2021). The 

fundamental distinction between the two models is that, according to the convergence 

model, children with ongoing ADHD symptoms exhibit continuous, non-progressing 

differences in brain structures throughout their lives when compared to individuals with 

remission of ADHD symptoms and controls (Shaw and Sudre 2021).To-date two MRI 

findings have provided support for the convergence model in ADHD.  

The first longitudinal MRI study investigated 92 individuals with ADHD and 184 

controls examining the link between trajectories of cortical grey matter development 

during childhood and adolescence with symptom severity outcomes in adulthood (Shaw 

et al. 2013). The results of this study found that differing trajectories of the medial and 

dorsolateral prefrontal cortex and cingulate gyrus at childhood and adolescence was 

associated with ADHD symptom severity in adulthood (Shaw et al. 2013). Specifically, 

higher rates of cortical thinning in these medial brain regions during childhood and 

adolescence were associated with the persistence of ADHD symptoms in adulthood (Shaw 

et al. 2013). Conversely, individuals that experienced ADHD diagnosis remission in 

adulthood displayed either cortical thickening or minimal thinning in these medial 

structures during childhood and adolescence, resulting in a convergence towards 

neurotypical cortical measures by adulthood (Shaw et al. 2013). Taken together, the results 

of this study suggest that a convergence towards neurotypical cortical features throughout 

childhood and adolescence may underpin symptom remission in adulthood (Shaw et al. 

2013). 

Evidence for the convergence model was also observed in dMRI research 

(Fuelscher et al. 2023). A longitudinal dMRI study from the Neuroimaging of the 

Children's Attention Project (NICAP) - the same dataset analysed in this thesis - 

investigated the relationship between deviations from typical white matter fibre 

development and the persistence or remission of ADHD symptoms during childhood and 

adolescence (Fuelscher et al. 2023). The study revealed that individuals with ADHD (both 

symptom remission and persistence), compared to controls, exhibited lower fibre bundle 

cross-section, indicative of fibre morphology (Fuelscher et al. 2023), in specific areas such 
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as thalamic pathways, striatal pathways, and the superior longitudinal fasciculus at around 

age 10 (Fuelscher et al. 2023). However, individuals showing remission of ADHD 

symptoms were associated with accelerated fibre development in the thalamic pathways, 

striatal pathways, and superior longitudinal fasciculus compared to individuals with 

persistent ADHD symptoms (Fuelscher et al. 2023). As a result, by age 14, they displayed 

increased progression and convergence towards non-ADHD fibre morphology, 

contrasting those with persistent ADHD symptoms, who continued to display ongoing 

neural anomalies throughout childhood and adolescence (Fuelscher et al. 2023). The 

findings of this study are consistent with the convergence model, suggesting that shifts in 

neural features towards neurotypical structures may underpin the remission of ADHD 

symptoms (Shaw et al. 2013). 

Identifying how brain structure changes over developmental stages in ADHD and 

whether deviations from neurotypical trajectories of brain development are linked with 

differential outcomes, such as persistence or remission of ADHD symptoms, is essential 

to further our pathophysiological understanding of ADHD. As the neurodevelopmental 

models of ADHD are dependent on accurate tracking of symptom changes, maintaining 

robust diagnostic classification across study time points is essential for future longitudinal 

research.  

 

1.3. Outstanding Issues 

While there are promising advances in our understanding of the neural correlates 

of ADHD, there are two important outstanding issues that remain to be addressed.  

Firstly, most longitudinal studies have primarily focused solely on cortical 

structures (Shaw et al. 2012; Shaw et al. 2007). There has been limited research into 

subcortical structures in ADHD, and consequently the developmental trajectories of 

subcortical structures and networks in ADHD remain poorly understood (Hoogman et al. 

2017b; Rosch et al. 2018). To address this issue, the studies described in this thesis will 

investigate a previously under-explored brain network in ADHD, the limbic system. The 

limbic system is a group of interconnected cortical and subcortical structures involved in 

processes of emotion, cognition and human behaviour17. While atypical limbic system 

structure and function have been identified in various neurodevelopmental disorders 

(Rajmohan and Mohandas 2007), its specific role and influence within the context of 

ADHD remains largely unknown. This lack of understanding is surprising, given the high 
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prevalence of emotion dysregulation observed in individuals with ADHD (Philip Shaw et 

al. 2014). Additionally, some recent studies have reported that core symptoms of ADHD, 

such as impulsivity and attention deficits, are associated with structural and functional 

abnormalities within limbic system regions (Bauer et al. 2018; Hart et al. 2013; Tajima-

Pozo et al. 2016). Despite these initial findings and the potential importance of the limbic 

system in ADHD’s aetiology, there is a striking lack of research investigating the 

developmental trajectory of the limbic system in ADHD. Understanding the 

developmental trajectories of this prominent brain network could shed light on the 

underlying neural mechanisms responsible for both the core symptoms and associated 

emotional dysregulation, offering insights into the disorder’s pathogenesis. 

The second outstanding issues is that although ADHD is increasingly viewed as a 

disorder of dysfunctional neural networks involving multiple brain tissues (grey and white 

matter), the majority of MRI studies have deployed a single MRI modality, limiting the 

research to a single tissue type (Gareth Ball et al. 2019). Multimodal MRI approaches are 

vital in the study of complex neurobiological disorders such as ADHD, as they provide a 

comprehensive investigation of the brain across multiple tissue types (Gareth Ball et al. 

2019). Unlike single-modality analysis, which may only offer a limited perspective, 

multimodal techniques combine different imaging modalities to provide better 

characterisation of the variability across tissue types in a given disorder (Groves et al. 

2011). The studies described in this thesis will incorporate multimodal neuroimaging 

techniques (structural and diffusion MRI) to provide a more comprehensive investigation 

of the developmental trajectories of the limbic system in ADHD. 

Overall, based on the research reviewed to this point in Chapter 1, there is a need 

for ADHD research to investigate brain development in previously unexplored regions and 

networks, specifically the limbic system. Given that ADHD is associated with 

abnormalities in brain grey and white matter, a multimodal MRI approach is required for 

a comprehensive investigation of this network within the disorder.  

 

1.4. The limbic System 

Emotions, behaviours, and memories emerge from the synchronised activities of 

brain regions interconnected by the limbic system (Catani, Dell'acqua, and Thiebaut de 

Schotten 2013). The concept of the limbic system has a long enduring history (Mesulam 

2000; Catani, Dell'acqua, and Thiebaut de Schotten 2013). Initially introduced by Thomas 
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Willis (1664), the limbic system, rooted in the Latin term “limbus”, meaning “border”, 

was recognised for its distinctive positioning around the brainstem, suggesting a boundary 

between basic and advanced cognitive functions (Willis 1973). Its meaning has expanded 

over the years to encompass various brain regions with diverse functions (Marshall and 

Magoun 2013). Anatomical and physiological advancements in the early 20th century led 

by Christfield Jakob and James Papez led to the formulation of the first interconnected 

neural loop responsible for linking action, perception and memory to emotion, this circuit 

was known as the Jakob-Papez system (Jakob 1906; Papez 1937). This interconnected 

neural loop included structures such as the hippocampus, thalamus, mammillary bodies, 

cingulate gyrus, caudate nucleus, dentate gyrus and olfactory bulb (Jakob 1906; Papez 

1937). According to Papez, emotion arises through either cognitive input channelled 

through the hippocampus or from visceral and somatic perceptions entering this circuit 

through the hypothalamus169. While this particular model is no longer considered fully 

accurate, it is important to acknowledge the foundational significance of the Jakob-Papez 

circuit in the formulation of the limbic system (Catani, Dell'acqua, and Thiebaut de 

Schotten 2013). 

A decade after the formulation of the Jakob-Papez network, Paul Yakovlev 

proposed that the orbitofrontal cortex, insula, amygdala, and anterior temporal lobe form 

a neural circuit underpinning processes of emotion and motivation, known as the 

Yakovlev’s amygdala-orbitofrontal network (Yakovlev 1948). In two seminal papers, Paul 

MacLean, in 1949 and 1952, proposed a unitary model of the limbic system that consisted 

of both the Jakob-Papez circuit (Jakob 1906; Papez 1937) and Yakovlev’s amygdala-

orbitofrontal network (Yakovlev 1948), that has remained almost unchanged since 

(MacLean 1949, 1952). MacLean’s model suggests that the limbic cortex, together with 

the limbic subcortical structures, form a functionally integrated network (MacLean 1949, 

1952). This network is connected by short and long-range fibre pathways and is specialised 

for linking visceral states and emotions to cognition and behaviour (MacLean 1949, 1952).  

While the definition of the limbic system remains a subject of debate, recent 

advancements in neuroimaging and tracing methods have allowed for a more precise 

delineation of its structures (Catani, Dell'acqua, and Thiebaut de Schotten 2013). The 

studies described in this thesis used a definition of the limbic system described by Catani 

and colleagues (2013). As per this description, the limbic system consists of both 

subcortical nuclei (amygdala, hippocampus, mammillary bodies, and anterior thalamic 
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nuclei) and cortical grey matter (cingulate gyrus and orbitofrontal cortex) interconnected 

by short and long-range fibre pathways (see Table 1.3 for functions of limbic system 

structures) (Catani, Dell'acqua, and Thiebaut de Schotten 2013). The major white matter 

pathways of the limbic system include the cingulum bundle, uncinate fasciculus, fornix, 

mammillothalamic tract, and anterior thalamic projections (see network schematic in 

Figure 1.1) (Catani, Dell'acqua, and Thiebaut de Schotten 2013).  

 

 

Table 1.3 Brief description of the limbic system structures and functions. 

Amygdala The amygdala plays a role in emotional behaviour, particularly the processing of both aversive 

(LeDoux 1998) and pleasant information (Adolphs 2010; Janak and Tye 2015). 

 

Hippocampus 

 

The hippocampus has been shown to subserve functions of memory, attention, cognition, and 

emotion (Davidson, Jackson, and Kalin 2000; Davidson, Putnam, and Larson 2000; Posner and 

Rothbart 1998).  

 

Cingulate gyrus The cingulate gyrus is involved in the processing of emotions and behavior regulation (Rolls 

2019a). 

 

Orbitofrontal cortex 

 

The orbitofrontal cortex is involved in processes of inhibition (Stalnaker, Cooch, and 

Schoenbaum 2015), impulsivity (Winstanley et al. 2004), and emotional control (Maia and 

McClelland 2004).  

 

Mammillary bodies Functionally, although the mammillary bodies have been shown to be involved in recollective 

memory, the exact function of this structure remains unclear (Vann 2010). 

 

Anterior thalamic 

nuclei 

The anterior thalamic nuclei is involved in alertness, learning and memory (Child and Benarroch 

2013).  
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Figure 1.1 Schematic of the limbic system. 

 

 

 

Figure 1.1: Graphical illustration of the limbic system alongside its primary pathways. The colours of the pathways match 

the tracts specified in the legend. 

 

1.5. Aims and Hypotheses 

The central aim of the studies described in this thesis are to investigate the link 

between structural changes of the limbic system and ADHD symptomology during the 

crucial developmental transition from childhood into mid-adolescence. This research is 

designed to explore three key aspects of the limbic system in individuals with ADHD 

compared to controls: 1) the volumes of grey matter and subcortical nuclei, 2) the 

microstructural properties of white matter tracts and 3) the topological organisation of the 

limbic system’s structural connectivity. 
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1.5.1. Study 1: The Limbic System in Children and Adolescents with ADHD: A 

Longitudinal Structural MRI Analysis 

The aims of Study 1 are 1) to investigate the developmental trajectories of limbic 

system structures (grey matter and subcortical nuclei) among individuals with ADHD 

during the transition from childhood into mid-adolescence and 2) to explore the 

relationship between changes in ADHD symptom severity and limbic system volumes 

among individuals with ADHD. Based on previous research (Hoogman et al. 2019; 

Hoogman et al. 2017b; Shaw et al. 2007; Shaw et al. 2012; Rubia 2007), the hypotheses 

of Study 1 are that, compared to controls, individuals with ADHD will display 1) reduced 

volume and 2) developmental delays in the volume of limbic system structures during the 

transition from childhood to mid-adolescence.  

 

1.5.2. Study 2: Limbic System White Matter in Children and Adolescents with 

ADHD: A Longitudinal Diffusion MRI Analysis 

The aims of Study 2 are 1) to examine the developmental differences in the 

microstructural organisation of limbic system white matter tracts among children and 

adolescents with ADHD and controls at three time points between the ages of 9 to 14 years 

and 2) to explore the relationship between changes in ADHD symptom severity and 

microstructural organisation of limbic system fibres among individuals with ADHD.  

Based on prior research (Connaughton et al. 2022; Fuelscher et al. 2023; Chiang et al. 

2023), the hypotheses are that individuals with ADHD will display 1) lower 

microstructural organisation and 2) atypical development of microstructural organisation 

in limbic system white matter tracts during the transition from childhood to mid-

adolescence compared to controls.  

 

1.5.3. Study 3: Structural Connectivity of the Limbic System in Children and 

Adolescents with ADHD: A Longitudinal Network Analysis 

The aims of Study 3 are 1) to characterise the developmental differences in the 

topological organisation of the limbic system’s structural connectivity in children with 

ADHD and controls during the transition from childhood into mid-adolescence, and 2) to 

explore the relationship between ADHD symptom severity and structural connectivity of 

the limbic system in individuals with ADHD. Based on cross-sectional findings (Cao et 

al. 2013; Ray et al. 2014; Hong et al. 2014; Cha et al. 2015; Beare et al. 2017; Qian et al. 
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2021), the hypotheses are that, compared to controls, individuals with ADHD will 

demonstrate decreased network efficiency and underconnectivity in the limbic system 

structural connectivity connectome across the three study time points.  
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2 Neuroimaging of the Children’s Attention Project (NICAP) 

The studies presented in this thesis are based on data from the Neuroimaging of 

the Children’s Attention Project (NICAP) (Sciberras et al. 2013; Silk, Genc, et al. 2016). 

This chapter offers a detailed overview of the NICAP study, including its recruitment 

procedures, and describes the demographic, clinical characteristics, and medication history 

of its participants. 

 

2.1. The cohort  

 

2.1.1. Children’s Attention Project (CAP)  

Participants for NICAP were initially recruited from the CAP study. The CAP 

cohort and methods have been described previously (Sciberras et al., 2013). In summary, 

the CAP study involved screening for ADHD among children in their second year of 

formal schooling, using parent and teacher reports on the Conners 3 ADHD Index (N = 

6098) (Conners 2008). The screening process took place across 43 socio-economically 

diverse primary schools in Melbourne, Australia. Children screened positive as potential 

ADHD cases if parent and teacher ADHD indices were at or above the 75th percentile for 

boys and 80th percentile for girls. Children screened negative if both parent and teacher 

ADHD indices were ≥75th percentile for boys and ≥80th percentile for girls. Individuals 

that were screened as positive for ADHD then completed a parent face-to-face diagnostic 

interview to confirm ADHD status. The baseline data collection, conducted between 2011 

and 2012, included a sample of 179 children diagnosed with ADHD and 212 children 

classified as non-ADHD controls. Following on from CAP baseline data collection, 

participants were followed up at 2 intervals (18 and 36 months from CAP baseline) at ages 

8.5 and 10.   

 

2.1.2. Neuroimaging of the Children’s Attention Project (NICAP) 

Baseline recruitment for the NICAP study coincides with the CAP 36-month 

follow-up data collection (age 10 years). Enrolment in the NICAP study from the CAP 

cohort required obtaining additional informed consent from the participants' parents or 

guardians. The NICAP study consists of 3 time points, at roughly 18-month intervals, 

between the ages of 9 and 14 years. At each data collection time-point participating 
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families attended a 3.5 hour assessment session at The Royal Children’s Hospital, 

Melbourne, Australia. Assessment sessions involve a structured diagnostic interview, 

parent questionnaire, child cognitive assessment and MRI scanning. Questionnaires were 

also sent to the child’s classroom teacher to ensure the child is assessed in their usual 

classroom condition. The research staff conducting assessments were blinded to the child’s 

diagnostic status.  

At baseline (10 years) and 36 months (13 years), a well-validated and widely used 

National Institute of Mental Health Diagnostic Interview Schedule for Children (DISC-

IV) diagnostic interview (60–90 mins) was conducted to determine the participants’ 

ADHD status and comorbid mental health problems including anxiety, mood and 

externalizing disorders. This thesis focused on individuals with persistent ADHD 

diagnosis across the study time points. As such, the participants included in the ADHD 

group received a confirmed clinical ADHD diagnosis based on a clinically administered 

DISC-IV interview (Shaffer et al. 2000) at each assessment (recruitment [3 years prior to 

imaging], wave 1 and wave 3 imaging time points). Participants in the control group did 

not meet the diagnostic criteria for ADHD at any study time point. Demographic and 

clinical characteristics of the ADHD and non-ADHD group is provided in Table 2.1  

 

Table 2.1 Demographics and clinical variables of the NICAP data set  

  Mean (SD) p-value 

  ADHD Control  

Time point 1 

Demographic factors    

Scans  71 102  

Mean FWD 0.694 (0.15) 0.688 (0.17) 0.489 

Age – years 10.40 (0.49) 10.36 (0.50) 0.626 

Female sex n (%) 15 (21.12%) 42 (41.17%) 0.009 

Left-handed n (%) 13 (18.30%) 14 (13.46%) 0.501 

Matrix reasoning raw 21.08 (5.97) 22.15 (4.68) 0.383 

SES 1019.9 (41.76) 1018 (45.72) 0.881 

    

Clinical factors 

 

   

Connor’s Index 11.41 (6.46) 2.26 (3.73) <0.001 
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Hyperactivity 

symptoms 

4.90 (2.76) 0.94 (1.39) <0.001 

Inattentive symptoms 7.08 (2.15) 1.57 (2.02) <0.001 

Medication use (%) 28 (39.43%) 7 (6.86%) <0.001 

Extern. Disorder n (%)  37 (52.11%) 15 (14.70%) <0.001 

Intern. Disorder (%) 20 (28.62%) 11 (10.78%) 0.010 

Time point 2 

Demographic factors    

Scans 70 96  

Mean FWD 0.644 (0.18) 0.601 (0.14) 0.371 

Age – years 11.69 (0.53) 11.73 (0.55) 0.597 

Female sex n (%) 16 (22.85%) 41 (42.70%) 0.012 

Left-handed n (%) 11 (15.71%) 12 (12.50%) 0.411 

Matrix reasoning raw 23.77 (5.16) 24.55 (4.58) 0.340 

SES 1021 (40.52) 1016 (46.12) 0.519 

    

Clinical factors    

Connor’s Index 10.60 (6.72) 2.64 (4.19) <0.001 

Medication use (%) 25 (35.71%) 8 (8.33%) <0.001 

Time point 3 

Demographic factors    

Scans  47 64  

Mean FWD 0.694 (0.11) 0.637 (0.08) 0.885 

Age – years 13.25 (0.61) 13.15 (0.57) 0.381 

Female sex n (%) 12 (25.55%) 28 (43.75%) 0.075 

Left-handed n (%) 6 (12.76%) 6 (9.37%) 0.596 

Matrix reasoning raw 25.51 (5.08) 25.97 (4.05) 0.891 

SES 1018.4 (41.14) 1014.2 (50.07) 0.722 

Clinical factors    

Connor’s Index 9.17 (6.92) 1.48 (3.21) <0.001 

Medication use (%) 13 (27.65%) 1 (1.56%) <0.001 

Extern. Disorder n (%)  12 (25.53%) 5 (7.81%) 0.035 

Intern. Disorder (%) 10 (21.27%) 3 (4.68%) 0.051 
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2.2. NICAP procedures 

 

2.2.1. Questionnaires  

During the NICAP study, comprehensive questionnaires covering various 

functional domains were administered to gather data on predictor and outcome variables 

(see Table 2.2.). These questionnaires, completed by the child, their parents, and teachers, 

focused on the child’s ADHD symptom severity, social, and emotional functioning. 

Parents provided further details through questionnaires about the child’s emotional, 

physical, social, and school quality of life, experiences of peer victimization, symptoms 

indicative of autism spectrum disorders, general health, and medication history. 

Additionally, questionnaires pertaining to the home environment assessed family quality 

of life, stressful life events, and parental mental health. The study also included 

retrospective questions on pre- and post-natal factors such as maternal alcohol 

consumption and smoking during pregnancy, gestational diabetes, pre-eclampsia, 

stress/anxiety/depression during pregnancy, birth weight, gestational age, neonatal 

intensive care, and postnatal maternal depression. Teachers provided information about 

the child’s academic competence, the student-teacher relationship, and details regarding 

their own teaching characteristics and education services.  

 

Table 2.2 Summary of Assessment measures for NICAP study  

Measures Source Time Point 

  CAP NICAP 

  1 2 1 2 3 

Diagnostic Interview 

ADHD & comorbidities DISC-IV; structured clinical interview  P ✓  ✓  ✓ 

Magnetic Resonance Imaging 

 Structural T1 C   ✓ ✓ ✓ 

 Structural T2 C   ✓ ✓ ✓ 

 Multi-shell DWI C   ✓ ✓ ✓ 
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 Resting state fMRI C   ✓ ✓ ✓ 

Cognitive Assessment 

Intellectual functioning  WASI: vocabulary, matrix reasoning C ✓  ✓ ✓ ✓ 

Language CELF 4th edition: screening test C ✓  ✓ ✓ ✓ 

Academic Achievement WRAT 4: word reading, numeracy C ✓  ✓ ✓ ✓ 

Working Memory Computerised N-Back  C   ✓ ✓ ✓ 

Inhibition Computerised stop-signal task C   ✓ ✓ ✓ 

Sustained Attention Computerised SART C   ✓ ✓ ✓ 

Spatial Attention Landmark task C   ✓ ✓ ✓ 

Cognitive Flexibility Computerised set-shifting task C   ✓ ✓ ✓ 

Visual-Motor Grooved pegboard test C   ✓ ✓ ✓ 

Questionnaires 

Puberty Development Pubertal development scale; Tanner stage 

charts 

P   ✓ ✓ ✓ 

Child Functioning 

ADHD Symptoms Conner’ 3 parent & teacher ADHD index P,T ✓ ✓ ✓ ✓ ✓ 

Autism Spectrum 

Disorder 

SCQ – lifetime version; SSIS: autism 

spectrum scale 

P ✓ ✓ ✓ ✓ ✓ 

Mental Health & Social 

Functioning  

SDQ: total problems score, emotional, 

conduct, peer and inattention-

hyperactivity scale 

P,T ✓ ✓ ✓ ✓ ✓ 

Social Skills SSIS: Responsibility, self-control, 

bullying, communication and engagement 

scales 

P,T ✓ ✓ ✓ ✓ ✓ 

Prosocial Behaviours SDQ: Prosocial behaviour P,T ✓ ✓ ✓ ✓ ✓ 

Victimisation SEQ: Physical victimisation, relational 

victimisation 

P  ✓ ✓ ✓ ✓ 

Quality of Life Paediatric quality of life inventory (Ped 

QL v4) 

P ✓ ✓ ✓ ✓ ✓ 

Health Medication history, child global health, 

sustained injuries, allied health services 

use 

P ✓ ✓ ✓ ✓ ✓ 

Home Environment 
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Parental Mental Health Kessler 6: psychosocial symptom screener P ✓ ✓ ✓ ✓ ✓ 

Family Quality of Life CHQ: Emotional impact, time impact, 

family activities 

P ✓ ✓ ✓ ✓ ✓ 

Family Adversity Stressful life events scale P ✓ ✓ ✓ ✓ ✓ 

Parenting LSAC parenting scales: parental warmth, 

hostility, consistency, parental self-

efficacy 

P ✓ ✓ ✓ ✓ ✓ 

Couple Relationship LSAC family functioning scales: parental 

conflict, support, and relationship 

satisfaction 

P ✓ ✓ ✓ ✓ ✓ 

Pre/postnatal Factors LSAC prenatal & postnatal questions P ✓     

School Environment 

Classroom performance SSIS: Academic competence T ✓ ✓ ✓  ✓ 

Teacher-child 

Relationship  

STRS (short form): conflict and closeness T ✓ ✓ ✓  ✓ 

Education Service Specialised school services, individual 

education plans, in-class assistance and 

grade repetition 

T ✓ ✓ ✓  ✓ 

Physical Measures 

 Height, Weight C ✓  ✓ ✓ ✓ 

Legend: Child ages time points, CAP 1 - 7 years, CAP 2 - 8.5 years, NICAP 1- 10 year, NICAP 2 - 11.5 years, and NICAP 3 - 13 years 

Abbreviations: Clinical evaluation of language fundamentals (CELF),child health questionnaire,(CHQ), diagnostic interview schedule 

for children-IV (DISC-IV), diffusion weighted imaging (DWI),  functional magnetic resonance imaging (fMRI),  longitudinal study of 

Australian children (LSAC), sustained attention to response task (SART), social communication questionnaire (SCQ ),  strengths & 

difficulties questionnaire (SDQ), social experience questionnaire (SEQ), social skills improvement system (SSIS), student-teacher 

relationship scale (STRS),  test of everyday attention for children (TEA-CH), Wechsler abbreviated scales of intelligence (WASI), 

Wechsler intelligence scale for children (WISC), wide range achievement test (WRAT). Table 2.2 is sourced from NICAP protocol 

publication (Silk et al., 2016).  

2.2.2. Clinical features of the ADHD group 

The following section will discuss the clinical features of the ADHD group 

investigated in this study such as presentation type, symptom severity, medication use and 

co-occurring comorbidities. 

 

ADHD Symptom Presentation 
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ADHD Subtype 

ADHD symptom count was assessed only at NICAP baseline using the DISC-IV. 

Among those classified as persistent-ADHD at baseline, 59.7% presented with ADHD-

combined subtype, 32.8% ADHD-inattentive subtype and 7.4% ADHD-

hyperactive/impulsive subtype.  

 

ADHD Symptom Changes Across the NICAP Time Points 

The Connors 3 ADHD index was conducted at all 3 time points of the NICAP 

study. As expected, individuals with ADHD displayed significantly higher ADHD 

symptom severity compared to controls (Table 2.1). Within the ADHD group, symptom 

severity decreased across the three study time points (see Figure 2.1). The ARI, a measure 

of emotional dysregulation, was conducted at study time points one and two. Compared to 

controls, children with ADHD had significantly higher ARI scores (Table 2.1). Within the 

ADHD group, ARI score reduced across study time points one and two (see Figure 2.2). 

These patterns are in line with previous research that indicates as individuals transition 

from childhood into early adolescence ADHD symptom severity reduces and emotional 

dysregulation issues remain relatively stable (Philip Shaw et al. 2014; Shaw and Sudre 

2021).  

 

 

Figure 2.1 ADHD Symptom Severity in the ADHD group across the 3 study time points 

 

 

 

Figure 2.2 ARI scores in the ADHD group across the 3 study time points 
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Comorbidities  

During the DISC-IV, participants were assessed for the presence of internalizing 

and externalizing co-occurring disorders. NICAP participants were identified as 

presenting with an internalizing disorder if they met diagnostic criteria for 

depression, dysthymia, separation anxiety disorder, social phobia, generalized anxiety 

disorder, posttraumatic stress disorder, obsessive-compulsive disorder, hypomania, or a 

manic episode. NICAP participants were identified as presenting with an externalizing 

disorder if they met diagnostic criteria for oppositional defiant disorder or conduct 

disorder. As reported in Table 2.1, children in the ADHD group presented with 

significantly more co-occurring comorbidity (internalizing or externalizing disorders) 

compared to the control group at all three study time points. Importantly, as the 

neurobiological differences in comorbidities in ADHD remains poorly understood, 

sensitivity analysis was conducted to ensure the findings of this thesis were not 

confounded by the presence of comorbidity. Details of the sensitivity analysis used is 

described in section 3.2.5.  

 

Medication Status 

Medication status was collected at all three NICAP study time points. In total, 81 

individual scans were performed on participants who were actively taking medication 

during the MRI scan. The participants were either on a single medication or a combination 

of multiple medications. Out of the 81 scans, 42 individuals were taking a single 

medication, and 39 individuals were taking multiple medications. Full details about the 

https://www.sciencedirect.com/topics/medicine-and-dentistry/dysthymia
https://www.sciencedirect.com/topics/medicine-and-dentistry/separation-anxiety-disorder
https://www.sciencedirect.com/topics/medicine-and-dentistry/social-phobia
https://www.sciencedirect.com/topics/medicine-and-dentistry/generalized-anxiety-disorder
https://www.sciencedirect.com/topics/medicine-and-dentistry/generalized-anxiety-disorder
https://www.sciencedirect.com/topics/medicine-and-dentistry/posttraumatic-stress-disorder
https://www.sciencedirect.com/topics/medicine-and-dentistry/hypomania
https://www.sciencedirect.com/topics/neuroscience/mania
https://www.sciencedirect.com/topics/medicine-and-dentistry/oppositional-defiant-disorder
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type of medication use in this study is provided in Table 2.3. To ensure the case-control 

findings described in this thesis were not confounded by medication use, sensitivity 

analysis was conducted to investigate the impact of medication. Details of the sensitivity 

analysis used is described in section 3.2.5.  

 

Table 2.3 Medication use during MRI scans in this thesis 

Type of medication Name of medication Number of 

scans 

Stimulants  

Ritalin (Methylphenidate) 

 

33 

 Concerta (Extended-release Methylphenidate) 26 

 Dexamphetamine 1 

 Vyvanse (Lisdexamfetamine) 10 

Non-stimulants  

Strattera (Atomoxetine) 

 

5 

 Guanfacine (Intuniv, Tenex) 2 

 Catapres (Clonidine) 14 

Antidepressants  

Lovan (Fluoxetine) 

 

11 

Antipsychotics  

Risperdal (Risperidone) 

 

8 

Sleep Aids  

Melatonin 

 

20 
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3.1. Introduction 

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental 

disorder with global prevalence estimates of 5-7% in children and adolescents (Polanczyk 

et al. 2007). Alongside the core behavioural symptoms of inattention, hyperactivity, and 

impulsivity, ADHD is also associated with emotional dysregulation (Seymour et al. 2017; 

Shaw, Stringaris, et al. 2014). Emotional dysregulation is an individual's inability to adjust 

their emotional state in a manner that promotes adaptive, goal-orientated behaviours 

(Shaw, Stringaris, et al. 2014). In individuals with ADHD, emotional dysregulation during 

childhood is associated with increased rates of anxiety, mood disorders, disruptive 

behaviour disorders, and drug abuse in adulthood (Althoff et al. 2010). During the 

transition from childhood to adolescence, ADHD symptoms undergo notable change, with 

hyperactive and impulsive symptoms often declining (Langberg et al. 2008; Ickowicz 

2002)and inattentive symptoms tending to persist (Hart et al. 1995). While the trajectories 

of emotional dysregulation during this period remain unclear, studies suggest that as the 

core symptoms of ADHD improve into adulthood, emotional dysregulation might also 

show parallel improvements (Althoff et al. 2010).  

In parallel with these symptom changes, it is known that the human brain 

undergoes significant structural changes in grey matter volume, surface area, and cortical 

thickness  (Tamnes et al. 2017; Peterson et al. 2021; Vijayakumar et al. 2016) during the 

transition from childhood to adolescence. Interestingly, longitudinal neuroimaging 

research in individuals with ADHD consistently reveals deviations in brain development. 

Compared to controls, individuals with ADHD exhibit reduced or delayed cortical 

maturation in areas associated with attention, impulse control, and executive functioning 

(Shaw et al. 2007; Shaw et al. 2012; Rubia 2007; Shaw and Sudre 2021). Two leading 

neurodevelopmental theories of ADHD include the maturation delay hypothesis (Shaw et 

al. 2007; Shaw et al. 2012; Rubia 2007).  and the convergence model (Shaw and Sudre 

2021). The maturation delay hypothesis posits that compared to controls, individuals with 

ADHD show a roughly 3-year delay in cortical development, particularly in the frontal, 

temporal, and parietal lobes(Shaw et al. 2007), with this delay being most pronounced 

during childhood (Shaw et al. 2012; Shaw et al. 2007). The convergence model suggests 

that symptom improvement or remission in ADHD is associated with the normalization of 

neural features that were atypical in early childhood  (Shaw and Sudre 2021). This model 



 

 

78 

 

also integrates the concept of delayed maturation in ADHD, suggesting that it is 

underpinned by a correction of earlier developmental lags(Shaw and Sudre 2021). The 

critical difference between the two models is that according to the convergence model, 

children with persistent ADHD show ongoing non-progressive differences in brain 

structures across the lifetime compared to controls (Shaw and Sudre 2021).  

Although these developmental models provide insights into the neurobiological 

underpinnings of ADHD symptom progression, most longitudinal studies have focused on 

cortical structures (Shaw et al. 2012; Shaw et al. 2007). As a result, our understanding of 

these models in relation to subcortical structures and networks remains largely incomplete 

(Hoogman et al. 2017b; Rosch et al. 2018). This gap is particularly surprising considering 

that functional imaging research suggests that abnormalities in subcortical brain regions 

may be present from the onset of ADHD and continue throughout life, irrespective of 

symptom change (Halperin and Schulz 2006). To further understand the neurobiological 

mechanisms of ADHD, it is essential to extend these neurodevelopmental models to 

subcortical structures and networks. 

The limbic system, often termed the “emotional network” (Mesulam 2000; Catani, 

Dell'acqua, and Thiebaut de Schotten 2013), is a group of interconnected cortical 

(cingulate gyrus and orbitofrontal cortex) and subcortical (amygdala, hippocampus, 

mammillary bodies, and anterior thalamic nuclei) structures  (see network schematic in 

Figure 1) (Catani, Dell'acqua, and Thiebaut de Schotten 2013). The limbic system plays a 

crucial role in emotional processing and regulation, as well as many other aspects of 

human behaviour and cognition (Catani, Dell'acqua, and Thiebaut de Schotten 2013). 

While the limbic system is suggested to be a central network in the pathophysiology of 

many neurodevelopmental disorders (Rajmohan and Mohandas 2007), its specific role in 

ADHD remains largely unknown. This is perhaps surprising, given the high prevalence of 

emotion dysregulation in people with ADHD (Shaw, Stringaris, et al. 2014). Interestingly, 

a small number of studies have also reported that core symptoms of ADHD are associated 

with structural and functional alterations within the limbic system (Bauer et al. 2018; Hart 

et al. 2013; Tajima-Pozo et al. 2016). Despite the links between limbic system pathology 

and core symptoms of ADHD, no previous studies have investigated the developmental 

trajectory of the limbic system in ADHD. The study aims to provide novel insights into 

the structural development of this crucial brain network and also further our understanding 
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of the relationship between ADHD symptoms and brain structure during the pivotal 

transition from childhood into mid-adolescence.  

Using longitudinal structural MRI data, acquired across three time points, this 

study investigates the volumetric development of limbic system structures in children with 

ADHD and controls. The hypotheses are that compared to controls, individuals with 

ADHD will display 1) lower volumes and 2) delayed development in limbic system 

structures during the transition from childhood to mid-adolescence. The study also aims 

to investigate brain-behaviour relationships through a series of exploratory analyses in 

order to better understand the functional impact of the limbic system in ADHD.   

 

3.2. Methods and Materials  

3.2.1. Study Design and Participants 

The data in the studies described in this thesis were collected as part of the 

Neuroimaging of the Children’s Attention Project (NICAP) (Sciberras et al. 2013; Silk, 

Genc, et al. 2016). NICAP procedures and clinical characteristics have been previously 

described in Chapter 2. Briefly, NICAP is a single site, multimodal longitudinal 

neuroimaging study assessing a community-based cohort of children with and without 

ADHD over a 5-year period. The NICAP study consists of three study time points at 

approximately 18-month intervals, from ages 9-14 between 2014-2018.Multimodal MRI 

scanning occurred at three time points. This thesis focused on individuals with persistent 

ADHD diagnosis across the study time points. As such, the participants included in the 

ADHD group received a confirmed clinical ADHD diagnosis based on a clinically 

administered National Institute of Mental Health Diagnostic Interview Schedule for 

Children (DISC-IV) (Shaffer et al. 2000) at each assessment (recruitment [3 years prior to 

imaging], wave 1 and wave 3 imaging time points). Participants in the control group did 

not meet the diagnostic criteria for ADHD at any study time point. Written informed 

consent was obtained from participants' parents/guardians before enrolment. Ethical 

approval for the research conducted in this thesis was obtained from both the Royal 

Children's Hospital Melbourne Human Research Ethics Committee (HREC #34071) and 

the School of Psychology, Trinity College Dublin (SPRECC042021-01). 
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3.2.2. Structural MRI Data Acquisition 

A 30-minute mock scan session was completed before scanning to familiarize each 

participant with the MRI environment and procedures. All neuroimaging data were 

collected at a single site at the Murdoch Children’s Research Institute at the Royal 

Children’s Hospital, Melbourne, on a 3-Tesla Siemens scanner using a 32-channel head 

coil, however while the first two waves were collected on a total imaging matrix (TIM) 

Trio scanner, the third wave was collected after an upgrade to a MAGNETOM Prisma 

scanner (previous papers on this cohort have found minimal effects of scanner upgrade 

(Vijayakumar, Youssef, et al. 2021)). T1-weighted volumes were collected using a multi-

echo magnetization prepared rapid gradient-echo (MEMPRAGE) sequence with in-

scanner motion correction (MoCo) (TR = 2530 ms, TE = 1.77, 3.51, 5.32, 7.2 ms, matrix 

= 256 x 232, number of slices = 176, voxel size = 0.9 mm3, flip angle = 7o). T2-weighted 

volumes were obtained using a T2-SPACE (Sampling perfection with application 

optimized contrast with flip angle evolution) protocol (TR = 3200 ms, TE = 532, matrix = 

256 x 230, slices = 176, voxel size = 0.9 mm3). T1 and T2-weighted volumes were used 

to provide optimal sensitivity and increase the accuracy of subcortical brain reconstruction 

(Seiger et al. 2021; Iglesias et al. 2015).  

 

3.2.3. MRI Quality Control  

MRI quality control (QC) procedures were undertaken at pre, during and post scan. 

Prior to the scan, a mock scanner session was completed to ensure participants were 

comfortable in the MRI environment and could minimise motion during live scanning 

session. During live scanning, Siemens in-scanner motion correction feature, adjusting the 

field-of-view and slice positioning in real-time to account for movement during the 

acquisition process (Tisdall et al. 2012). This feature significantly reduces the effect of 

motion artefacts and substantially improves image quality (Zaitsev, Maclaren, and Herbst 

2015). This was particularly crucial for the studied population, namely with attentional 

and hyperactivity difficulties, where motion is a large challenge (Murillo et al. 2015). In 

cases where head motion was high during scan acquisition, multiple scans were acquired 

until a suitable image was completed. Poor images due to motion were identified by the 

expert on-site radiographer. 

Post scan QC procedures involved a meticulous visual inspection of both raw and 

processed images that followed an established MRI image quality control guidelines 
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(Vijayakumar, Ball, et al. 2021). The inspection criteria were focused on several key 

aspects such as, ringing artifacts (characterised by circular or ripple-like patterns that could 

distort image quality), motion artifacts (marked by blurring or ghosting), image noise 

(variations in image intensities and/or graininess) and image truncation/ field-of-view cut-

off. For the raw T1 and T2 images, a 4-point Likert scale was employed in the evaluation. 

A score of '1' indicated a sharply defined image with no observable artifacts. A score of '2' 

was assigned to images with slight blurriness or minor ringing confined to a small cortical 

area. Images rated '3' exhibited considerable blurriness and/or ringing throughout much of 

the brain, extending into white matter regions. A rating of ‘3’ was also given if image 

field-of-view cut-off was present. A rating of '4', denoting extensive blurriness and/or 

ringing across the entire brain. If image field-of-view cut-off was present a rating of 4 was 

also given. Any image that received a score of '3' or higher was excluded from the study 

to maintain the integrity of the data. The processed images were similarly scrutinised, 

evaluated on a 3-point Likert scale that assessed the accuracy of anatomical structures such 

as white matter, cerebrospinal fluid (CSF), and pial surfaces. A score of '1' signified near-

perfect reconstruction, while '2' indicated minor reconstruction issues confined to small 

areas of the brain. A score of '3', signifying poor reconstruction characterised by extensive 

or distorted areas of CSF. Any score of 3 led to the exclusion of the scan. The methodology 

implemented in the study included standardised viewing conditions, ensuring that all 

images were reviewed under consistent lighting and display settings. An experienced 

neuroscientist, trained in identifying and rating MRI artifacts, carried out the inspection. 

A sequential analysis approach was adopted, where each raw image was initially reviewed 

for quality before proceeding to assess the processed images. This approach ensured an 

unbiased evaluation.  

Following this comprehensive visual inspection, a total of 380 scans were deemed 

suitable for analysis, with 44 scans excluded due to incomplete MRI image sets (both T1 

and T2 images not present) and 27 scans being removed due to quality concerns (20 

removed at pre-processing and 7 at post-processing) . Throughout this process, no manual 

edits were made to the remaining data.  

 

3.2.4. Structural MRI Data Processing 

FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) was used to isolate the 

structures of the limbic system. FreeSurfer analyses were performed using a Redhat-based 
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scientific Linux 7 on the high-performance computing system at Trinity College Dublin, 

Ireland. All MRI images were processed using FreeSurfer’s recon -all function (version 

7.2) for full cortical reconstruction and brain segmentation (Fischl et al. 2002; Fischl et al. 

2004). The Desikan-Killiany-Tourville (DKT) atlas was used for brain parcellations 

(Desikan et al. 2006a). Additional FreeSurfer segmentation tools were used to extract the 

anterior thalamic nuclei (Iglesias et al. 2018) and mammillary bodies(Billot et al. 2020). 

The following bilateral limbic system structures were isolated: amygdala, hippocampus, 

mammillary bodies, anterior thalamic nuclei, cingulate gyrus (sum of cingulate gyrus 

parcellations), and orbitofrontal cortex (sum of orbitofrontal cortex parcellations).  

 

3.2.5. Behavioural Measures: Conner’s 3 ADHD Index and the Affective 

Reactivity Index 

 

Conner’s 3 ADHD Index (CAI): a rating scale questionnaire consisting of 10 

items designed to evaluate the presence of the primary symptoms associated with ADHD 

in children aged 6 to 18 years within the past month (Conners 2008).  These items are 

aligned with the diagnostic criteria outlined in the DSM-5 and are rated using a four-point 

Likert scale. At each of the three NICAP study time points, the parent-reported Conner’s 

3 ADHD index was administered to assess the presence of core ADHD symptoms in study 

participants, with a higher score indicating a greater presence of symptoms.  

 

Affective Reactivity Index (ARI):  is a psychological assessment tool for 

measuring emotional reactivity and irritability in children and adolescents. The ARI is a 

7-item Likert scale questionnaire completed by the child’s parent/guardian which has been 

shown to have excellent internal consistency (Stringaris et al. 2012). The ARI was 

completed at NICAP study time points 1 and 2, with a higher ARI score indicating 

increased emotional dysregulation and irritability.  

 

3.2.6. Statistical Analysis 

Prior to statistical analyses, all data points were Winsorized (Reifman and Garrett 

2010; Blaine 2018) (i.e. any data points with a z-score exceeding ±3 were adjusted to ±3 

standard deviations from the mean) to minimize the effects of extreme outliers. Primary 

statistical analyses were performed using the R software package (version 4.1.1) (Team 
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2013). To measure between-group differences in volume of limbic system structures, 

linear mixed-effects modelling (LMM) was performed using the lme4 package in R 

(version 1.1-27.1) (Bates et al. 2014). A LMM is a versatile statistical approach that 

combines both fixed and random effects to analyse complex unbalanced data structures, 

such as those found in longitudinal studies (Fitzmaurice, Laird, and Ware 2012; Verbeke 

1997). Fixed effects in an LMM represent the explanatory variables that are assumed to 

hold uniformly across the study such as sex and diagnostic group. These effects quantify 

the general relationships between these variables and the outcome of interest (DV), 

providing insights into broader patterns or tends within the data. Random effects, on the 

other hand, account for individual variations by allowing each subject to have their unique 

baseline (intercept) and rate of change over time (slope), thus capturing the inherent 

variability across subjects in the data.  

An essential procedure of LMM is data-driven model selection, in which the goal 

is to identify a parsimonious model (i.e., high goodness of fit using as few explanatory 

variables as possible) to reduce the risk of a Type 1 error (Zuur et al. 2009). An established 

top-down LMM model selection was used to select the optimal model for each structure 

of the limbic system (Zuur et al. 2009; Harrison et al. 2018). The details of the LMM 

models tested in this study are presented in Table 3.1. IQ was not included as a covariate 

in any of the tested models as the inclusion of IQ is deemed inappropriate for 

neurodevelopmental disorders involving cognitive deficits such as ADHD as it can lead to 

overcorrected and spurious findings (Dennis et al. 2009). A top-down approach to model 

selection starts with the most complex model, which includes all random and fixed effects. 

These effects are then systematically removed in a backward fashion using a combination 

of fit statistics – corrected Akaike Information Criterion (AICc), corrected Bayesian 

Information Criterion (BICc), and Log-Likelihood Ratio test (LRT) – to identify the 

optimal model for each limbic system structure. Random effects were identified by 

comparing the fit of the models with and without the random effect of slope (RX1a vs. 

RX1b). The random effect of slope was included if it significantly increased the model fit 

and the model’s boundary was not singular. The fixed effects of interest (i.e., group and 

group-by-age interaction) were identified by comparing the model fit of the null model (a 

model that only contained the covariate fixed effects: age at baseline, age, sex, and 

intracranial volume) against both fixed-effects models (FX1/FX2 vs. null). If a fixed-

effects model significantly increased fit compared to the null model, this indicated a 
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significant effect on volume due to the fixed effects of interest. If both fixed effects models 

significantly increased model fit compared to the null model, but there was no difference 

in model fit between the two fixed effects models (FX1 vs. FX2), the parsimonious model 

(FX1) was selected, as including the interaction term was not statistically justified.  

When initially comparing model fit, Maximum Likelihood (ML) was used to allow 

for comparability with the model fit parameters AICc and BICc. However, once the 

“optimal model” was identified, this model was refitted using Restricted Maximum 

Likelihood (REML) to increase the accuracy of estimates of the final model parameters. 

The covariance structure was set to “unstructured”, which is the default covariance 

structure in R software. This structure imposes no restrictions on the covariance 

parameters, thus allowing the inclusion of variations in the slopes.  

In all the optimal models, a robust two-stage False Discovery Rate (FDR) 

(Benjamini, Krieger, and Yekutieli 2006) procedure was employed to correct for multiple 

comparisons at q = 0.05. Two-stage FDR correction was conducted using the MuToss 

package (Team et al. 2017) in R (version 4.1.1). In line with recommendations for 

generating effect sizes in longitudinal LMM studies (Hoffman 2015), pseudo-standardised 

coefficients (β) were calculated using the effectsize package (Ben-Shachar, Lüdecke, and 

Makowski 2020) in R (version 4.1.1). These coefficients standardise according to the 

levels of the predictor, taking into account both within-group and between-group variants, 

thus offering accurate and reliable measure of effect sizes in longitudinal LMM studies.  

Exploratory analyses were performed to examine the relationship between limbic 

system volumes and ADHD symptoms (CAI and ARI scores) in children and adolescents 

with ADHD. These relationships were investigated using LMM via the lme4 package in 

R (version 1.1-27.1) (Bates et al. 2014). The chosen LMM model, illustrated as model 

FX3b in Table 3.1, evaluated if changes in limbic system volumes over time varied based 

on ADHD symptom severity, incorporating an age-by-ADHD symptoms interaction term. 

This model also adjusted for covariates age, sex, and intracranial volume. To mitigate the 

effects of multiple comparisons, a two-stage FDR correction was applied using the 

MuToss package (Team et al. 2017) in R (version 4.1.1).  

Sensitivity analyses were performed to assess the potential impact of confounding 

factors (case-control sex imbalance and ADHD medication status) on the primary 

statistical analyses. The first sensitivity analysis examined the potential confound caused 

by the case-control sex imbalance in the study sample. To investigate this, 100 LMM 
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iterations were run using randomly selected proportionately sex-matched case-control 

samples. To ensure the sex-matching in the control group was unbiased, 65 female controls 

scans were randomly excluded at each iteration using a script developed in R studio (see 

Section 12.1) (v.4.1.1). Averages of all 100 iterations were then collected to compare the 

results of the sensitivity analysis to the primary analysis.  

The second sensitivity analysis explored the potential impact of medication use in 

the ADHD group. This was accomplished by conducting LMM analyses on the optimal 

models to compare limbic system volumes between individuals with ADHD who were 

taking medication and those who were not (Table 3.2). The third sensitivity analysis 

explored the potential impact of internalizing and externalizing comorbidities on limbic 

system volumes. To examine this, LMM analyses of the optimal models were conducted 

with an additional covariate of co-occurring disorder status (binary coded to indicate the 

presence or absence of an internalizing/externalizing disorder at Wave 1 and/or Wave 3).  

 

Table 3.1 Linear mixed models tested: limbic system structures in ADHD and controls. 

Random Effects Models 

   

RX 1a  

 ROI ~ ICV + age at baseline + sex + diagnosis*age + (1 + age |subject) 

 

   

RX 1b   

 ROI ~ ICV + age at baseline + sex + diagnosis* age + (1|subject) 

 

   

Fixed Effects Models 

 

Null 0a   

 ROI ~ ICV + age + age at baseline + sex + (1 + age | subject) 

 

   

Null 0b   

 ROI ~ ICV + age + age at baseline + sex + (1|subject) 

 

   

FX 1a   
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 ROI ~ ICV + sex + age + age at baseline + diagnosis + (1 + age |subject) 

 

FX 1b   

 ROI ~ ICV + sex + age + age at baseline + diagnosis + (1|subject) 

 

FX 2a   

 ROI ~ ICV + sex + age + age at baseline + diagnosis* age + (1 + age |subject) 

 

FX 2b   

 ROI ~ ICV + sex + age + age at baseline + diagnosis* age + (1|subject) 

 

FX 3b  

 ROI ~ ICV + sex + age*ADHD symptom + (1|subject) 

 

Table 3.1: RX = random effects, FX = fixed effects, ROI = regions of interest, ICV = intracranial volume, 

age = participant age from baseline (in months). To increase interpretability, the variables ICV and age at 

baseline were mean-centred. ADHD symptom = CAI and ARI score. 

 

Table 3.2 Linear mixed models tested: limbic system and medication use in ADHD.  

Random Effects Models 

   

RX 1a  

 ROI ~ ICV + age at baseline + sex + medication status*age + (1 + age |subject) 

 

   

RX 1b   

 ROI ~ ICV + age at baseline + sex + medication status*age + (1|subject) 

Fixed Effects Models 

 

Null 0a   

 ROI ~ ICV + age + age at baseline + sex + (1 + age | subject) 

Null 0b   

 ROI ~ ICV + age + age at baseline + sex + (1|subject) 

 

FX 1a   

 ROI ~ ICV + sex + age + age at baseline + medication status + (1 + age |subject) 
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FX 1b   

 ROI ~ ICV + sex + age + age at baseline + medication status + (1|subject) 

 

FX 2a   

 ROI ~ ICV + sex + age + age at baseline + medication status * age + (1 + age |subject) 

FX 2a   

 ROI ~ ICV + sex + age + age at baseline + medication status * age + (1|subject) 

 

 

 

3.3. Results 

3.3.1. Demographics of Study Population 

The final data consisted of 380 scans from 166 individuals (children with 

ADHD:57, controls:109) scanned across three time points between the ages of 9-14 (Table 

3.3).  

 

Table 3.3 Study cohort characteristics. 

 ADHD Controls Test of 

significance 

Total scans 123 257 - 

Scans wave 1 50 99 - 

Scans wave 2 48 94 - 

Scans wave 3 25 64 - 

Medication use at any wave (%) 43 0 - 

 

 

% female wave 1 

 

20 

 

43 

 

p = .005 

% female wave 2 22 43 p = .021 

% female wave 3 33 42 p = .382 

Mean age wave 1 (years) 10.35 10.38 p = .681 

Mean age wave 2 (years) 11.65 11.72 p = .467 

Mean age wave 3 (years) 12.98 13.16 p = .377 

    

Table 3.3: summarises the number of scans, medication usage, sex distribution, and mean age for ADHD 

and control groups across the three study time points, along with the results of between-group statistical 

tests. 
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3.3.2. Limbic System Volumes in Children and Adolescents with ADHD and 

Controls 

 

Model Selection Results: Limbic System Structures in ADHD and Controls 

Random Effects Structure 

Models that included intercept and slope as random effects were found to be the 

best fit for the amygdala (right) and cingulate gyrus (bilateral). The model that included 

only the intercept as a random effect was the best fit for the amygdala (left), hippocampus 

(bilateral), mammillary body (bilateral), anterior thalamic nuclei (bilateral), and 

orbitofrontal cortex (bilateral). For full results of the random effects model selection 

statistics please see Table 1 provided in the volume 2.  

 

 

Fixed Effects Structures 

The model that included both fixed effects (i.e., group-by-age interaction) was the 

best fit for the orbitofrontal cortex (left). The reduced model that only included the fixed 

effect of group was the best fit for the amygdala (bilateral), hippocampus (bilateral), 

orbitofrontal cortex (right), and cingulate gyrus (bilateral). For the mammillary bodies 

(bilateral) and anterior thalamic nuclei (bilateral), no significant difference in model fit 

was found between the fixed effects models and the null model, implying that in these 

structures, the null hypothesis could not be rejected due to the fixed effects of interest. For 

a complete overview of the fixed effects model selection statistics please see Tables 2 

provided in the volume 2.  

 

Results of Optimal Models 

Full results of optimal models are presented in Table 3.7 and Table 3.8. There was 

a significant effect of group in volumes of the amygdala (left: β = -0.38, 95% CI = -0.66 

to -0.11; right: β = -0.34, 95% CI = -0.60 to -0.08, (Figure 2.1)), hippocampus (left: β = -

0.44, 95% CI = -0.73 to -0.15; right: β = -0.34, 95% CI = -0.64 to -0.04, (Figure 2.2)), 

cingulate gyrus (left: β = -0.42, 95% CI = -0.73 to -0.11; right: β = -0.32, 95% CI = -0.62 

to -0.01, (Figure 2.3)) and orbitofrontal cortex (right: β = -0.33, 95% CI = -0.59 to -0.06, 

(Figure 2.4)). In all analyses, across all three time points, there was lower volume of these 

structures in children with ADHD compared to controls. All regions above survived two-
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stage FDR correction. No significant difference in volume was observed between the 

groups for the bilateral mammillary bodies, anterior thalamic nuclei or left orbitofrontal 

cortex (Figure 2.5). There was no significant between-group difference in group-by-age 

interaction bilaterally in the amygdala, hippocampus, cingulate gyrus, orbitofrontal gyrus, 

mammillary bodies, and anterior thalamic nuclei.  

 

3.3.3. Exploratory Analysis: The Relationship Between CAI and ARI Scores and 

Limbic System Volumes in Children and Adolescents with ADHD 

The exploratory analysis found a significant effect of the interaction term CAI-by-

age on the volume of the left mammillary body (β = 0.17, 95% CI = 0.08 to 0.25 (Figure 

2.6)) in the ADHD group across the study time points. This finding survived two-stage 

FDR correction. After adjusting for multiple comparisons, CAI or ARI had no other 

significant effect on limbic system volumes in children and adolescents with ADHD 

(Figure 3.7-2.8; Table 3.6-3.7).  

 

3.3.4. Sensitivity Analyses 

The first sensitivity analysis examined the potential confound caused by the case-

control sex imbalance in the study sample. In the 100 random sex-matched analyses, there 

was a slight reduction in p-value significance. This was expected given the increases in 

standard errors (SE) related to the reduction in sample size (Table 3.8). The right 

hippocampus was the only structure that no longer survived post hoc analysis following 

sensitivity analysis. To further understand the impact of group sex balance on right 

hippocampus volume, we compared beta weights and SEs of the main analysis and sex-

balanced sensitivity models. Importantly, in the right hippocampus models, the beta values 

for the main effect of diagnosis were still within the SEs of the optimal models (see Figure 

3.9), demonstrating that the overall pattern of results in the primary analysis was most 

likely not confounded by a sex-ratio group imbalance in the study.  

The results of the second sensitivity analysis revealed no significant differences in 

any limbic system structure between the ADHD medication use group and the ADHD non-

medication use group (Table 3.9-3.10). The results of the third sensitivity analysis are 

presented in Table 3.11. Importantly, the sensitivity analysis beta values of the main effect 

of diagnosis were still within the SEs of the optimal models (Figure 3.10). Given the beta 

value and SEs, the sensitivity analysis demonstrated that the overall pattern of results in 
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the primary analysis was most likely not confounded by the presence of internalizing and 

externalizing comorbidity.
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Figure 3.1 Amygdala volume growth across the three study time points. 

 

Figure 2.1: Bilateral amygdala development in the ADHD and control groups during the transition from childhood to mid-adolescence. A group effect was observed 

in the amygdala (bilaterally); the ADHD group displayed lower volumes compared to the control group across the three time points in this study. No significant 

group-by-age interactions were observed in the amygdala (bilaterally). 
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Figure 3.2 Hippocampus volume growth across the three study time points. 

 

 

 

Figure 2.2: Bilateral hippocampus development in the ADHD and control groups during the transition from childhood to mid-adolescence. A group effect was observed in 

the hippocampus (bilaterally); the ADHD group displayed lower volumes compared to the control group across the three time points in this study. No significant group-

by-age interactions were observed in the hippocampus (bilaterally). 
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Figure 3.3 Cingulate gyrus volume growth across the three study time points. 

 

 

 

Figure 2.3: Bilateral cingulate gyrus development in the ADHD and control groups during the transition from childhood to mid-adolescence. A group effect was observed 

in the cingulate gyrus (bilaterally). Compared to controls, the ADHD group displayed lower volumes across the three time points in this study. No significant group-by-

age interactions were observed in the cingulate gyrus (bilaterally). 
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Figure 3.4 Right orbitofrontal cortex volume growth across the three study time points. 

 

Figure 2.4: Right orbitofrontal cortex development in the ADHD and control groups during the transition 

from childhood to mid-adolescence. The ADHD group displayed lower volumes in the right orbitofrontal 

cortex compared to controls across the three time points in this study. No significant group-by-age 

interactions were observed in the right orbitofrontal cortex. 
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Table 3.4 Results of optimal mixed-effects models (without interaction term) analyses: Limbic system volumes in ADHD and Controls. 

 

 

ICV Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Hippocampus 

(Left) 

4.384e-05 

(7.986e-05) 

0.549, 

0.583 

2.097e+02 

(5.356e+01) 

3.915, 

<0.000 

9.093e+00 

(5.875e-01) 

15.476, 

<0.000 

4.771e+01 

(5.535e+01) 

0.862, 

0.389 

-1.655e+02 

(5.533e+01) 

-2.991, 

0.003* 

 

Hippocampus 

(Right) 

7.171e-05 

(8.111e-05) 

0.884, 

0.377 

1.501e+02 

(5.678e+01) 

2.643, 

0.008 

8.295e+00 

(5.926e-01) 

13.998, 

<0.000 

3.665e+01 

(5.894e+01) 

0.622, 

0.535 

-1.298e+02 

(5.902e+01) 

-2.200, 

0.029* 

 

Amygdala (Left) 3.786e-05 

(4.793e-05) 

0.790, 

0.430 

1.557e+02 

(2.688e+01) 

5.792, 

<0.000 

2.887e+00 

(3.670e-01) 

7.865, 

<0.000 

3.474e+01 

(2.734e+01) 

1.271, 

0.205 

-7.368e+01 

(2.716e+01) 

-2.713, 

0.007* 

 

Amygdala 

(Right) 

6.040e-05 

(4.406e-05) 

1.371,  

0.171 

1.477e+02 

(2.393e+01) 

6.174, 

<0.000 

2.362e+00 

(3.769e-01) 

6.268, 

<0.000 

5.469e+00 

(2.451e+01) 

0.223, 

0.823 

-6.244e+01 

(2.429e+01) 

-2.570 

0.011* 

 

Cingulate Gyrus 

(Left) 

5.827e-04 

(2.656e-04) 

2.194, 

0.029 

6.041e+02 

(2.358e+02) 

2.562, 

0.011 

-9.063e+00 

(2.098e+00) 

-4.320, 

<0.000 

-9.060e+01 

(2.575e+02) 

-0.352, 

0.725 

-7.073e+02 

(2.619e+02) 

-2.700, 

0.007* 

 

Cingulate Gyrus 

(Right) 

1.511e-03 

(2.880e-04) 

5.248, 

<0.000 

4.021e+02 

(2.510e+02) 

1.602, 

0.110 

-9.859e+00 

(2.231e+00) 

-4.419, 

<0.000 

-2.778e+02 

(2.720e+02) 

-1.022, 

0.308 

-5.651e+02 

(2.764e+02) 

-2.044, 

0.042* 

 

Orbitofrontal 

Cortex (Right) 

1.973e-03 

(4.974e-04) 

3.967, 

<0.000 

1.008e+03 

(2.513e+02) 

4.011, 

<0.000 

-3.095e+01 

(3.944e+00) 

-7.846, 

<0.000 

3.735e+02 

(2.535e+02) 

1.473, 

0.142 

-6.151e+02 

(2.510e+02) 

-2.451, 

0.015* 

*= Factors that survived two-stage FDR correction 
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Table 3.5 Results of optimal mixed-effects models (with interaction term) analyses: Limbic system volumes in ADHD and Controls. 

 

 

ICV  Sex  Months from baseline Age at baseline Diagnosis  Diagnosis * Months from 

baseline  

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Orbitofrontal Cortex 

(Left) 

1.905-03 

(4.712e-04) 

 

4.043, 

<0.000 

8.154e+02 

(2.503e+02) 

3.258, 

0.001 

-2.495e+01 

(3.997e+00) 

-6.240, 

<0.000 

1.024e+02 

(2.533e+02) 

0.404, 

0.686 

-3.597e+02 

(2.679e+02) 

-1.343, 

0.180 

-1.495e+01 

(7.647e+00) 

-1.955, 

0.051 

Anterior Thalamic 

Nuclei (Left) 

1.453e-05 

(5.163e-06) 

 

2.815, 

0.005 

3.193e+00 

(2.757e+00) 

1.158, 

0.248 

4.410e-02 

(4.383e-02) 

1.006, 

0.315 

-5.949e-01 

(2.803e+00) 

-0.212, 

0.832 

-3.702e-01 

(2.951e+00) 

-0.125, 

0.900 

-9.513e-02 

(8.386e-02) 

-1.134, 

0.257 

Anterior Thalamic 

Nuclei (Right) 

1.730e-05 

(5.032e-06) 

3.438, 

<0.000 

3.822e+00 

(2.596e+00) 

-0.923, 

0.357 

-3.994e-02 

(4.327e-02) 

-0.923, 

0.357 

-7.995e-01 

(2.632e+00) 

-0.304, 

0.761 

-9.979e-01 

(2.786e+00) 

-0.358, 

0.720 

-7.791e-02 

(8.289e-02) 

-0.940, 

0.348 

 

Mammillary Bodies 

(Left) 

3.347e-06 

(3.915e-06) 

 

0.855, 

0.393 

5.88e+00 

(1.912e+00) 

2.819, 

0.005 

1.392e-01 

(3.214e-02) 

4.330, 

<0.000 

-9.846e-01 

(1.912e+00) 

-0.515, 

0.607 

-1.578e+00 

(2.037e+00) 

-0.775, 

0.439 

-9.730e-04 

(6.157e-02) 

-0.016, 

0.987 

Mammillary Bodies 

(Right) 

2.338e-06 

(3.899e-06) 

0.600, 

0.549 

2.189e+00 

(2.101e+00) 

1.042, 

0.299 

2.126e-01 

(3.076e-02) 

6.911 

<0.000 

2.506e+00 

(2.120e+00) 

1.182, 

0.239 

-1.859e-01 

(2.225e+00) 

-0.084, 

0.933 

-6.136e-02 

(5.872e-02) 

-1.045, 

0.297 
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Table 3.5 Results of optimal mixed-effects models (with interaction term) analyses: Limbic system volumes in ADHD and Controls. 

 

 

ICV  Sex  Months from baseline Age at baseline Diagnosis  Diagnosis * Months from 

baseline  

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Orbitofrontal Cortex 

(Left) 

1.905-03 

(4.712e-04) 

 

4.043, 

<0.000 

8.154e+02 

(2.503e+02) 

3.258, 

0.001 

-2.495e+01 

(3.997e+00) 

-6.240, 

<0.000 

1.024e+02 

(2.533e+02) 

0.404, 

0.686 

-3.597e+02 

(2.679e+02) 

-1.343, 

0.180 

-1.495e+01 

(7.647e+00) 

-1.955, 

0.051 

Anterior Thalamic 

Nuclei (Left) 

1.453e-05 

(5.163e-06) 

 

2.815, 

0.005 

3.193e+00 

(2.757e+00) 

1.158, 

0.248 

4.410e-02 

(4.383e-02) 

1.006, 

0.315 

-5.949e-01 

(2.803e+00) 

-0.212, 

0.832 

-3.702e-01 

(2.951e+00) 

-0.125, 

0.900 

-9.513e-02 

(8.386e-02) 

-1.134, 

0.257 

Anterior Thalamic 

Nuclei (Right) 

1.730e-05 

(5.032e-06) 

3.438, 

<0.000 

3.822e+00 

(2.596e+00) 

-0.923, 

0.357 

-3.994e-02 

(4.327e-02) 

-0.923, 

0.357 

-7.995e-01 

(2.632e+00) 

-0.304, 

0.761 

-9.979e-01 

(2.786e+00) 

-0.358, 

0.720 

-7.791e-02 

(8.289e-02) 

-0.940, 

0.348 

 

Mammillary Bodies 

(Left) 

3.347e-06 

(3.915e-06) 

 

0.855, 

0.393 

5.88e+00 

(1.912e+00) 

2.819, 

0.005 

1.392e-01 

(3.214e-02) 

4.330, 

<0.000 

-9.846e-01 

(1.912e+00) 

-0.515, 

0.607 

-1.578e+00 

(2.037e+00) 

-0.775, 

0.439 

-9.730e-04 

(6.157e-02) 

-0.016, 

0.987 

Mammillary Bodies 

(Right) 

2.338e-06 

(3.899e-06) 

0.600, 

0.549 

2.189e+00 

(2.101e+00) 

1.042, 

0.299 

2.126e-01 

(3.076e-02) 

6.911 

<0.000 

2.506e+00 

(2.120e+00) 

1.182, 

0.239 

-1.859e-01 

(2.225e+00) 

-0.084, 

0.933 

-6.136e-02 

(5.872e-02) 

-1.045, 

0.297 
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 Figure 3.5 Volumes of limbic system structures showing no significant differences between ADHD and control groups. 
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Figure 3.6 Interaction between ADHD symptom severity and age on left mammillary body volume 

in ADHD. 

 

Figure 2.6: Associations between left mammillary body development and ADHD symptom severity (CAI) during the 

transition from childhood to mid-adolescence within the ADHD group. As individuals with ADHD age, those with 

more severe symptoms tend to show a slower decline or even potential growth in left mammillary body volume 

compared to those with milder symptoms.  
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Table 3.6 Results of mixed-effects models (with interaction term) analyses: limbic system volumes and CAI scores in ADHD. 

 

 

ICV Sex Months from baseline CAI Months from baseline * CAI 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Hippocampus (Left) 

 

 

-1.064e-05 

(1.267e-04) 

-0.084, 

0.933 

5.940e+02 

(1.234e+02) 

4.813, 

<0.000 

7.326e+00 

(2.448e+00) 

2.993, 

0.004 

-4.095e+00 

(4.632e+00) 

-0.884, 

0.379 

-2.776e-02 

(1.730e-01) 

-0.160, 

0.873 

Hippocampus (Right) 

 

 

1.143e-04 

(1.438e-04) 

0.796, 

0.429 

4.505e+02 

(1.256e+02) 

3.587, 

<0.000 

7.917e+00 

(2.838e+00) 

2.789, 

0.007 

-3.554e+00 

(5.265e+00) 

-0.675, 

0.501 

-4.201e-02 

(2.008e-01) 

-0.209, 

0.835 

Amygdala (Left) 

 

 

4.311e-05 

(7.308e-05) 

0.590, 

0.556 

2.738e+02 

(5.406e+01) 

5.064, 

<0.000 

-6.093e-01 

(1.513e+00) 

-0.403, 

0.688 

-3.146e+00 

(2.687e+00) 

-1.171, 

0.244 

2.154e-01 

(1.073e-01) 

2.006, 

0.049 

Amygdala (Right) 

 

 

9.652e-05 

(6.281e-05) 

1.537, 

0.128 

2.469e+02 

(4.739e+01) 

5.210, 

<0.000 

2.019e+00 

(1.291e+00) 

1.564, 

0.123 

1.804e-02 

(2.308e+00) 

0.008 

0.994 

2.023e-02 

(9.159e-02) 

0.221, 

0.826 

Cingulate Gyrus 

(Left) 

 

 

3.571e-04 

(4.660e-04) 

0.766, 

0.446 

1.404e+03 

(5.604e+02) 

2.505, 

0.015 

-1.073e+01 

(8.750e+00 ) 

-1.226, 

0.225 

-3.138e+01 

(1.700e+01) 

-1.846, 

0.069 

-1.781e-01 

(6.172e-01) 

-0.289, 

0.773 

Cingulate Gyrus 

(Right) 

1.874e-03  

(4.694e-04) 

3.991, 

<0.000 

5.378e+02 

(5.649e+02) 

0.952, 

0.345 

-5.024e+00 

(8.814e+00) 

-0.570, 

0.571 

-2.213e+01 

(1.712e+01) 

-1.293, 

0.200 

-7.817e-01 

(6.217e-01) 

-1.257, 

0.213 
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Orbitofrontal Cortex 

(Left) 

 

1.677e-03 

(7.349e-04) 

2.282, 

0.024 

1.041e+03 

(5.445e+02) 

1.912, 

0.061 

-5.097e+01 

(1.521e+01) 

-3.352, 

0.001 

6.317e+01   

(2.702e+01) 

-2.337, 

0.021 

1.219e+00 

(1.079e+00) 

1.130, 

0.263 

Orbitofrontal Cortex 

(Right) 

 

1.855e-03 

(7.714e-04) 

2.405, 

0.017 

1.024e+03 

(5.023e+02) 

2.038, 

0.046 

-2.894e+01 

(1.690e+01) 

-1.713, 

0.091 

-1.599e+01 

(2.855e+01) 

-0.560, 

0.576 

-1.193e+00 

(1.202e+00) 

-0.993, 

0.324 

Anterior Thalamic 

Nuclei (Left) 

 

6.548e-06 

(8.469e-06) 

0.773, 

0.441 

7.905e-01 

(6.131e+00) 

0.129, 

0.898 

2.037e-01 

(1.768e-01) 

1.152, 

0.254 

4.005e-01 

(3.117e-01) 

1.285, 

0.202 

-1.614e-02 

(1.255e-02) 

-1.287, 

0.203 

Anterior Thalamic 

Nuclei (Right) 

 

6.548e-06 

(8.469e-06) 

0.773, 

0.441 

7.905e-01 

(6.131e+00) 

0.129, 

0.898 

2.037e-01 

(1.768e-01) 

1.152, 

0.254 

4.005e-01 

(3.117e-01) 

1.285, 

0.202 

-1.614e-02 

(1.255e-02) 

-1.287, 

0.203 

Mammillary Body 

(Left) 

 

-4.143e-06 

(5.186e-06) 

-0.799, 

0.426 

9.872e+00 

(3.985e+00) 

2.477, 

0.016 

-2.404e-01 

(1.060e-01) 

-2.268, 

0.026 

-2.230e-01 

(1.905e-01) 

-1.171, 

0.244 

2.775e-02 

(7.514e-03) 

3.693, 

<0.000 

Mammillary Body 

(Right) 

 

5.140e-07 

(5.971e-06) 

0.086, 

0.931 

1.061e+01 

(4.279e+00) 

2.480, 

0.016 

5.295e-03 

(1.251e-01) 

0.042, 

0.966 

-7.715e-02 

(2.198e-01) 

-0.351, 

0.726 

1.449e-02 

(8.883e-03) 

1.631, 

0.108 
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Figure 3.7 Scatter plot of non-significant limbic system volumes by CAI scores in ADHD. 

Left Hippocampus Right Hippocampus 

  

Left Amygdala Right Amygdala 

  

Left Anterior Thalamic Nuclei Right Anterior Thalamic  Nuclei 
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Right  Mammilly Body 

 

Left Cingulate Gyrus Right  Cingulate Gyrus 

  

Figure 2.7: This scatter plot exclusively features non-significant limbic system network volumes (y-axis) alongside CAI scores 

(colour-coded) within the population. Each data point represents an individual in the study. The colour gradient used to represent CAI 

scores ranges from low (gold) to medium (orange) and high (dark red). Despite the absence of statistical significance, this visualization 

sheds light on the relationship between non-significant limbic system volumes and CAI scores across the ADHD population. 
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Table 3.7 Results of mixed-effects models (with interaction term) analyses: limbic system volume and ARI scores in ADHD. 

 

 

ICV Sex Months from baseline ARI Months from baseline * ARI 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Hippocampus (Left) 

 

4.578e-04 

(2.033e-04) 

 

2.252, 

0.272 

5.388e+02 

(1.103e+02) 

4.886, 

<0.000 

1.477e+00  

(2.326e+00) 

0.635, 

0.529 

4.337e+00 

(8.679e+00) 

0.500, 

0.619 

3.218e-01 

(4.001e-01) 

0.804, 

0.426 

Hippocampus (Right) 

 

8.497e-04 

(2.226e-04) 

 

3.817, 

0.001 

3.549e+02 

(1.091e+02) 

3.253, 

0.002 

2.405e+00 

(2.779e+00) 

0.866, 

0.392 

3.622e+00 

(9.782e+00) 

0.370, 

0.712 

2.617e-01 

(4.735e-01) 

0.553, 

0.583 

Amygdala (Left) 

 

 

2.555e-04 

(1.150e-04) 

2.221, 

0.029 

2.349e+02 

(5.325e+01) 

4.411, 

<0.000 

-8.680e-01 

(1.537e+00) 

-0.565, 

0.576 

2.905e+00 

(5.164e+00) 

0.563, 

0.575 

2.676e-01 

(2.601e-01) 

1.029, 

0.309 

Amygdala (Right) 

 

 

3.195e-04 

(9.138e-05) 

3.497, 

<0.000 

2.217e+02 

(4.361e+01) 

5.084, 

<0.000 

1.190e+00 

(1.174e+00 ) 

1.013, 

0.317 

3.173e+00 

(4.053e+00) 

0.783, 

0.436 

4.800e-03 

(1.995e-01) 

0.024, 

0.980 

Cingulate Gyrus 

(Left) 

 

 

3.943e-03 

(7.190e-04) 

5.484, 

<0.000 

9.801e+02 

(4.864e+02) 

2.015, 

0.049 

1.138e+01 

(7.375e+00) 

-1.544, 

0.131 

-6.138e+00 

(2.951e+01) 

-0.208, 

0.836 

9.506e-01 

(1.286e+00) 

0.739, 

0.464 

Cingulate Gyrus 

(Right) 

 

4.480e-03 

(8.050e-04) 

5.566, 

<0.000 

2.021e+02 

(5.334e+02) 

0.379, 

0.706 

1.848e+00 

(8.318e+00) 

0.222, 

0.825 

-1.961e-01   

(3.313e+01) 

-0.006, 

0.995 

-2.094e+00 

(1.449e+00) 

-1.445, 

0.156 
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Orbitofrontal Cortex 

(Left) 

 

4.954e-03 

(1.057e-03) 

4.688, 

<0.000 

3.766e+02 

(4.799e+02) 

0.785, 

0.436 

-2.616e+00 

(1.452e+01) 

-0.180, 

0.858 

-7.794e+01 

(4.784e+01) 

-1.629, 

0.107 

-1.463e+00 

(2.450e+00) 

-0.597, 

0.553 

Orbitofrontal Cortex 

(Right) 

 

6.153e-03 

(9.836e-04) 

6.255, 

<0.000 

2.379e+02 

(4.073e+02) 

0.584, 

0.562 

-3.542e+01 

(1.629e+01) 

-2.174, 

0.035 

-1.134e+02 

(4.702e+01) 

-2.412, 

0.018 

1.551e+00 

(2.699e+00) 

0.574, 

0.568 

Anterior Thalamic 

Nuclei (Left) 

 

2.552e-05 

(1.393e-05) 

1.833, 

0.070 

-8.832e-01 

(6.038e+00) 

-0.146, 

0.884 

-1.974e-02 

(2.074e-01) 

-0.095, 

0.924 

-4.760e-02 

(6.458e-01) 

-0.074, 

0.941 

-5.770e-04 

(3.473e-02) 

-0.017, 

0.986 

Anterior Thalamic 

Nuclei (Right) 

 

2.552e-05 

(1.393e-05) 

1.833, 

0.070 

-8.832e-01 

(6.038e+00 ) 

-0.146, 

0.884 

-1.974e-02 

(2.074e-01) 

-0.095, 

0.924 

-4.760e-02 

(6.458e-01) 

-0.074, 

0.941 

-5.770e-04 

(3.473e-02) 

-0.017, 

0.986 

Mammillary Body 

(Left) 

 

1.321e-05 

(8.443e-06) 

1.565, 

0.121 

8.006e+00 

(4.050e+00) 

1.977, 

0.053 

-1.917e-01 

(1.079e-01) 

-1.777, 

0.082 

-2.225e-01 

(3.737e-01) 

-0.595, 

0.553 

4.039e-02 

(1.834e-02) 

2.203, 

0.032 

Mammillary Body 

(Right) 

2.493e-05 

(8.903e-06) 

2.800, 

0.006 

7.935e+00 

(4.098e+00) 

1.936, 

0.058 

-2.251e-01 

(1.200e-01) 

-1.876, 

0.067 

-9.168e-02 

(4.007e-01) 

-0.229, 

0.819 

5.415e-02 

(2.028e-02) 

2.670, 

0.010 
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    Figure 3.8 Scatter plot of non-significant limbic system volumes by ARI scores in ADHD. 
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Left Cingulate Gyrus Right  Cingulate Gyrus 

  

Figure 2.8: This scatter plot exclusively features non-significant limbic system network volumes (y-axis) alongside ARI scores (colour-

coded) within the population. Each data point represents an individual in the study. The colour gradient used to represent ARI scores 

ranges from low (gold) to medium (orange) and high (dark red). Despite the absence of statistical significance, this visualization sheds 

light on the relationship between non-significant limbic system volumes and ARI scores across the ADHD population. 
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Table 3.8 Mean values of the effect of diagnosis in the 100 iterations of optimal mixed-

effects models analyses with sex sex-matched case-control samples.  

 Diagnosis 

 B (SD) SE (SD) t (SD) p 

Hippocampus (Left) -151.125 

(9.548) 

58.257 

(0.857) 

-2.594 

(0.164) 

0.012*  

 

Hippocampus (Right) -120.955 

(9.921) 

61.591 

(0.958) 

-1.964 

(0.162) 

0.055 

 

Amygdala (Left) -70.055 

(4.370) 

28.397 

(0.500) 

-2.467 

(0.142) 

0.016* 

 

Amygdala (Right) -61.282 

(2.764) 

24.679 

(0.246) 

-2.483 

(0.108) 

0.015* 

 

Cingulate Gyrus (Left) -710.609 

(51.894) 

268.437 

(5.313) 

-2.648 

(0.195) 

0.010* 

Cingulate Gyrus (Right) -583.268 

(42.539) 

283.561 

(4.067) 

-2.057 

(0.152) 

0.044* 

 

Orbitofrontal Cortex (Left) -343.072 

(49.202) 

269.478 

(6.215) 

-1.275 

(0.193) 

0.212 

 

Orbitofrontal Cortex (Right) -622.017 

(40.934) 

254.495 

(5.094) 

-2.445 

(0.174) 

0.017* 

 

Anterior thalamic nuclei (Left) -0.574 

(0.490) 

3.041 

(0.061) 

-0.188 

(0.161) 

0.839 

 

Anterior thalamic nuclei (Right) -1.418 

(0.435) 

2.921 

(0.042) 

-0.486 

(0.151) 

0.632 

 

Mammillary bodies (Left) -1.243 

(0.357) 

2.108 

(0.027) 

-0.590 

(0.169) 

0.562 

 

Mammillary bodies (Right) 0.154 

(0.468) 

2.306 

(0.037) 

0.068 

(0.203) 

0.860 

 

Table 3.8: B = regression coefficient, SD = standard deviations, t = t score, p = p-value, * = survived Two-

stage FDR correction. 
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Figure 3.9 Beta value and SEs of the main effect diagnosis in the sex-balanced sensitivity 

analysis 

 

 



 

Table 3.9 Results of optimal mixed-effects models (without interaction term) analyses: Limbic system volume and medication use in ADHD. 

 

 

ICV Sex Months from 

baseline 

Age at baseline Medication Status 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Hippocampus (Left) -1.738e-04 

(1.273e-

04) 

-1.365, 

0.176 

5.601e+02 

(1.295e+02) 

4.323, 

<0.000 

 

6.941e+00 

(1.139e+00) 

 

6.092, 

<0.000 

-2.004e+01 

(1.020e+02) 

-0.197, 

0.844 

1.175e+02 

(5.499e+01) 

2.137, 

0.035 

Hippocampus (Right) 2.150e-04 

(1.629e-

04) 

1.320, 

0.190 

4.227e+02 

(1.302e+02) 

3.245, 

0.002 

7.918e+00 

(1.330e+00) 

5.953, 

<0.000 

-5.652e+01 

(1.036e+02) 

-0.546, 

0.587 

8.538e+01 

(7.056e+01) 

1.210, 

0.228 

 

 

Table 3.10 Results of optimal mixed-effects models (with interaction term) analyses: limbic system volumes and medication use in ADHD. 

 

 

ICV Sex Months from baseline Age at baseline Medication Status Medication Status  * 

Months from baseline  

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Amygdala 

(Left) 

 

2.833e-05 

(7.736e-05) 

0.366, 

0.715 

2.657e+02 

(5.704e+01) 

4.657, 

<0.000 

2.287e+00 

(8.755e-01) 

2.612, 

0.011 

8.622e+00 

(4.550e+01) 

0.189, 

0850 

4.550e+01 

(3.677e+01) 

1.237, 

0.218 

-2.692e-01 

(1.290e+00) 

-0.209, 

0.835 
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Amygdala 

(Right) 

 

 

1.434e-04 

(7.664e-05) 

1.871, 

0.064 

2.366e+02 

(4.811e+01) 

4.917, 

<0.000 

2.324e+00 

(1.067e+00) 

2.178, 

0.035 

9.393e+00 

(3.845e+01) 

0.244, 

0.808 

4.242e+01 

(3.359e+01) 

1.263, 

0.211 

-9.010e-01 

(1.598e+00) 

-0.564, 

0.576 

Cingulate 

Gyrus (Left) 

 

3.437e-04 

(4.791e-04) 

0.717, 

0.475 

1.410e+03 

(5.759e+02) 

2.449, 

0.017 

-8.394e+00 

(5.828e+00) 

-1.440, 

0.157 

-2.086e+02, 

(4.457e+02) 

-0.468, 

0.641 

-1.032e+02 

(2.434e+02) 

-0.424, 

0.673 

-2.804e+00 

(8.877e+00) 

-0.316, 

0.753 

Cingulate 

Gyrus 

(Right) 

 

1.952e-03 

(4.906e-04) 

3.978, 

<0.000 

5.436e+02 

(5.734e+02) 

0.948, 

0.347 

-1.204e+01, 

(5.058e+00) 

-2.380, 

0.020 

-3.933e+02 

(4.447e+02) 

-0.884, 

0.379 

3.312e+00 

(2.448e+02) 

0.014, 

0.989 

-1.297e+00 

(7.461e+00) 

-0.174, 

0.862 

Orbitofrontal 

Cortex (Left) 

 

2.269e-03 

(8.039e-04) 

2.822, 

0.005 

7.529e+02 

(5.746e+02) 

1.310, 

0.196 

-2.965e+01 

(9.202e+00) 

-3.222, 

0.002 

3.553e+02 

(4.588e+02) 

0.774, 

0.442 

-4.713e+02 

(3.805e+02) 

-1.238, 

0.218 

-6.564e+00 

(1.356e+01) 

-0.484, 

0.630 

Orbitofrontal 

Cortex 

(Right) 

 

2.055e-03 

(8.297e-04) 

2.477, 

0.014 

8.571e+02 

(4.983e+02) 

1.720, 

0.091 

-3.870e+01 

(1.037e+01) 

-3.733, 

<0.000 

4.434e+02, 

(3.999e+02) 

1.109, 

0.272 

-4.927e+02 

(3.843e+02) 

-1.282, 

0.202 

-4.849e-02 

(1.526e+01) 

-0.003, 

0.997 

Anterior 

Thalamic 

Nuclei (Left) 

 

1.146e-05 

(9.065e-06) 

1.264, 

0.209 

-2.426e+00 

(6.254e+00) 

-0.388, 

0.700 

3.681e-02 

(1.053e-01) 

0.350, 

0.738 

5.302e+00 

(4.998e+00) 

1.061, 

0.294 

2.341e+00 

(4.271e+00) 

0.548, 

0.585 

-1.461e-01 

(1.551e-01) 

-0.942, 

0.350 
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Anterior 

Thalamic 

Nuclei 

(Right) 

 

2.353e-05 

(8.633e-06) 

2.726, 

0.007 

-4.151e+00 

(5.681e+00) 

-0.731, 

0.468 

-1.879e-02 

(1.024e-01) 

-0.184, 

0.855 

4.598e+00 

(4.547e+00) 

1.011, 

0.316 

3.056e+00 

(4.042e+00) 

0.756, 

0.451 

-1.520e-01 

(1.508e-01) 

-1.008, 

0.317 

Mammillary 

Bodies (Left) 

 

-4.236e-06 

(5.839e-06) 

-0.725, 

0.469 

1.142e+01 

(4.110e+00) 

2.778, 

0.007 

4.391e-02 

(6.725e-02) 

0.653, 

0.516 

-1.904e+00 

(3.283e+00) 

-0.580, 

0.564 

-3.820e+00 

(2.758e+00) 

-1.385, 

0.168 

1.567e-01 

(9.909e-02) 

1.581, 

0.118 

Mammillary 

Bodies 

(Right) 

-1.643e-06 

(6.151e-06) 

-0.267, 

0.789 

1.046e+01 

(4.258e+00) 

2.456, 

0.017 

1.756e-01 

(7.132e-02) 

2.462, 

0.016 

-1.903e+00 

(3.403e+00) 

-0.559, 

0.578 

1.523e+00 

(2.899e+00) 

0.525, 

0.600 

3.605e-02 

(1.051e-01) 

0.343, 

0.732 
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Table 3.11 Results of optimal mixed-effects models analyses with comorbidity status: Limbic system volumes in ADHD and Controls. 

 

 

ICV Sex Months from baseline Age at baseline Diagnosis Comorbidity 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Amygdala (Left) 

 

 

3.458e-05 

(4.794e-05) 

0.721 

0.471 

1.563e+02  

(2.695e+01) 

5.799 

<0.000 

2.929e+00 

(3.688e-01) 

7.943 

<0.000 

3.406e+01 

(2.742e+01) 

1.242 

0.215 

-7.722e+01 

(2.745e+01) 

-2.813 

0.005 

2.650e+01 

(2.553e+01) 

1.038 

0.300 

Amygdala (Right) 

 

 

6.089e-05 

(4.415e-05) 

1.379 

0.168 

1.477e+02 

(2.394e+01) 

6.171 

<0.000 

2.363e+00 

(3.797e-01) 

6.224 

<0.000 

5.468e+00 

(2.453e+01) 

0.223 

0.823 

-6.241e+01 

(2.453e+01) 

-2.545 

0.011 

-3.260e-01 

(2.190e+01) 

-0.015 

0.988 

Cingulate Gyrus 

(Left) 

 

6.108e-04 

(2.650e-04) 

2.305 

0.022 

6.160e+02 

(2.451e+02) 

2.513 

0.012 

-9.031e+00 

(1.886e+00) 

-4.788 

<0.000 

-9.050e+01 

(2.646e+02) 

-0.343 

0.732 

-7.142e+02 

(2.696e+02) 

-2.648 

0.008 

-1.226e+02 

(1.343e+02) 

-0.913 

0.362 

Cingulate Gyrus 

(Right) 

 

1.414e-03 

(2.844e-04) 

4.973 

<0.000 

3.997e+02 

(2.580e+02) 

1.550 

0.123 

-1.065e+01 

(2.028e+00) 

-5.255 

<0.000 

-2.415e+02 

(2.775e+02) 

-0.870 

0.385 

-5.457e+02 

(2.823e+02) 

-1.933 

0.055 

-1.458e+02 

(1.443e+02) 

-1.010 

0.313 

Hippocampus 

(Left) 

 

4.547e-05 

(8.010e-05) 

0.568 

0.570 

2.095e+02 

(5.358e+01) 

3.910 

<0.000 

9.079e+00 

(5.927e-01) 

15.316 

<0.000 

4.795e+01 

(5.536e+01) 

0.866 

0.387 

-1.642e+02 

(5.561e+01) 

-2.953 

0.003 

-9.447e+00 

(4.164e+01) 

-0.227 

0.820 

Hippocampus 

(Right) 

7.271e-05 

(8.137e-05) 

0.894 

0.372 

1.501e+02 

(5.680e+01) 

2.642 

0.008 

8.292e+00 

(5.979e-01) 

-13.868 

<0.000 

3.667e+01 

(5.896e+01) 

0.622 

0.534 

-1.295e+02 

(5.930e+01) 

-2.184 

0.030 

-2.648e+00 

(4.210e+01) 

-0.063 

0.949 
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Orbitofrontal 

Cortex (Right) 

2.021e-03 

(4.973e-04) 

4.063 

<0.000 

9.970e+02 

(2.504e+02) 

3.981 

<0.000 

-3.161e+01 

(3.969e+00) 

-7.964 

<0.000 

3.842e+02 

(2.526e+02) 

1.521 

0.130 

-5.601e+02 

(2.525e+02) 

-2.218 

0.028 

-4.132e+02 

(2.709e+02) 

-1.525, 

0.128 



 116 

 

Figure 3.10 Beta value and SEs of the main effect diagnosis in the comorbidity sensitivity analysis 
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3.4. Discussion 

This longitudinal study described in this chapter investigated the volumetric 

development of limbic system structures in children and adolescents with ADHD. Across 

the three NICAP study time points, individuals with ADHD exhibited lower volume in the 

bilateral amygdala, hippocampus, cingulate gyrus, and right orbitofrontal cortex compared 

to controls. Exploratory analysis identified a significant interaction between age and 

symptom severity on left mammillary body volume in the ADHD group, suggesting limbic 

system development may play a role in the pathophysiology of ADHD. Consistent with 

the ENIGMA mega-analyses (Hoogman et al. 2017b; Hoogman et al. 2019) and other 

recent studies (Shaw, De Rossi, et al. 2014; Norman et al. 2016), the sensitivity analysis 

revealed no significant association between structural brain changes and ADHD 

medication use in children and adolescents (Tables 2.9-2.10). 

 

3.4.1. Between-Group Differences in the Development of Limbic System 

Structures 

To further understand the findings of the study described in this chapter, it is 

helpful to consider the neurotypical developmental patterns of the brain structures that 

comprise the limbic system. The volume of cortical structures (e.g., orbitofrontal cortex 

and cingulate gyrus) increases rapidly from mid-gestation before peaking during 

childhood (orbitofrontal cortical volume peaks at age 6-7 years (Bethlehem et al. 2022) 

and cingulate gyrus volume peaks at age 7-9 years (Bethlehem et al. 2022)), followed by 

a near-linear decrease in volume from late childhood to late adulthood (Bethlehem et al. 

2022). This developmental pattern was observed in both control and ADHD groups in the 

cingulate gyrus (Figure 2.3) and orbitofrontal cortex (Figure 2.4), evidenced by the 

volumetric decrease seen across the NICAP study time points. Despite the apparent typical 

developmental pattern, children with ADHD had persistently lower volumes of these 

structures compared with controls. These findings are consistent with the ‘convergence 

model’ (Shaw and Sudre 2021), which suggests that children with persistent ADHD 

diagnosis display fixed, non-progressive development of neural features throughout 

childhood and adolescence (Shaw and Sudre 2021). 

Subcortical structures (e.g., amygdala and hippocampus) increase in volume 

throughout childhood and early adolescence before obtaining peak volume during mid-
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puberty (14-15 years) (Bethlehem et al. 2022; Herting et al. 2018), followed by a near-

linear decrease in volume throughout adulthood (Bethlehem et al. 2022). This 

developmental pattern was seen for both control and ADHD groups in the amygdala 

(Figure 2.1) and hippocampus (Figure 2.2), as indicated by the increase in the volumes of 

these structures across the study time points. Compared to controls, however, the ADHD 

group showed persistently lower volume in these structures. This suggests a potential 

developmental “lag”. While it is possible that this finding reflects a developmental delay 

(Shaw et al. 2007; Shaw et al. 2012; Rubia 2007), longitudinal studies employing a wider 

age range that captures the age of peak volume attainment are crucial to investigate if 

structures in the ADHD group would normalise later in development. Given that ADHD 

is associated with abnormalities across numerous brain structures with distinct 

developmental mechanisms and trajectories (Bethlehem et al. 2022; Herting et al. 2018), 

the pathophysiology will likely involve varied region-specific developmental patterns.  In 

response to reviewer comments, additional supplementary analyses were conducted 

investigating the between-group differences in regions that are key to ADHD, such as the 

basal ganglia, inferior prefrontal cortex, and dorsolateral prefrontal cortex (see Section 7.6 

in the appendices).  

Although the underlying mechanisms that lead to the lower volume and potentially 

delayed neurodevelopment in ADHD remain unknown, variants of several ADHD-

associated genes have been shown to play a critical role in all stages of cortical 

development (Dark, Homman-Ludiye, and Bryson-Richardson 2018). A recent review 

(Dark, Homman-Ludiye, and Bryson-Richardson 2018) investigated how these ADHD-

associated genes contribute to neurodevelopment and how variants in these genes could 

result in the neurological phenotypes observed in the disorder. The most common effect 

of ADHD-associated genes on brain development is the disruption of synaptic formation 

and activity (Dark, Homman-Ludiye, and Bryson-Richardson 2018), and it has been 

suggested that lower grey matter volume in the brain may be due to the loss of synaptic 

density rather than neuronal cell loss (Dark, Homman-Ludiye, and Bryson-Richardson 

2018). It has been proposed that variants in these ADHD-associated genes may contribute 

to the reduced grey matter seen in the disorder (Dark, Homman-Ludiye, and Bryson-

Richardson 2018). Furthermore, the delayed establishment of neural connections – a 

process associated with ADHD susceptibility genes – has been shown to result in an 

underdeveloped brain (Dark, Homman-Ludiye, and Bryson-Richardson 2018), consistent 
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with the patterns of reduced volumes in various brain structures seen in individuals with 

ADHD (Dark, Homman-Ludiye, and Bryson-Richardson 2018).  

 

3.4.2. ADHD Symptoms Severity and Limbic System Volumes in ADHD 

While ADHD is characterised by age-related changes in symptoms and brain 

structure during childhood and adolescence, the link between brain structure and function 

is less clear. Exploratory analyses conducted in the study described in this chapter revealed 

a novel association between the developmental trajectory of left mammillary body volume 

and ADHD symptom severity. The analyses found a significant age-by-symptom severity 

interaction with left mammillary body volume in the ADHD group (Figure 2.6). Based on 

the results of this study, as individuals with ADHD progress from childhood to mid-

adolescence, those with severe symptoms may show a slower decline or even a potential 

growth in left mammillary body volume compared to those with milder symptoms. This 

suggests that variations in mammillary body development may play a role in the 

persistence and increase of ADHD symptom severity during mid-adolescence. 

While there has been a long-standing awareness of the impact of mammillary body 

pathology in adults, it is only recently that researchers have become aware of the 

significance of mammillary body pathology in younger populations (Meys et al. 2022). 

The mammillary bodies are an integral component of the limbic system,  playing a pivotal 

role in encoding complex memories (McNaughton and Vann 2022). While once thought 

to serve primarily as a “relay” to the hippocampus, recent studies have shown that through 

the limbic system pathways, the mammillary bodies influence a wide range of brain 

regions (McNaughton and Vann 2022). The mammillary bodies have been shown to 

provide arousal and interoceptive information to boost and bias the iterative processing of 

the limbic system (McNaughton and Vann 2022). As such, the input of the mammillary 

bodies can significantly affect emotional regulation, memory formation and recall, and 

behaviour (McNaughton and Vann 2022). It has been suggested that the mammillary 

bodies input play a role in psychiatric and neurodevelopmental disorders, like ADHD, 

where memory impairments and emotional dysregulation are commonly observed 

(McNaughton and Vann 2022).  

Mammillary body volumes are observed to increase until approximately 15 years 

old (Vann et al. 2022). So, while individuals with increased symptom severity might seem 

to converge towards a “normative” pattern, the underlying functionality or efficiency of 
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this region and their modulation of neural circuits, such as the limbic system, could still 

be compromised, contributing to the increased symptom severity. This finding underscores 

the belief that in ADHD, there might not just be differences in brain structure but also in 

how these structures modulate neural circuits to influence symptom expression (Konrad 

and Eickhoff 2010). Structural MRI data provides limited insight into the functional 

dynamics of these changes. To fully understand the link between atypical mammillary 

body development and ADHD symptom severity, in-depth functional imaging and 

histological studies are essential. 

 

3.4.3. Limitations 

A limitation of the study described in this chapter is there were significantly fewer 

female than male participants at study time points 1 and 2. Despite well-characterized 

differences in symptom profiles between girls and boys with ADHD (Mowlem et al. 2019), 

sex-specific differences in brain development are less clear. Research has reported no 

difference between girls and boys with ADHD in developmental trajectories of brain 

volume (Castellanos, Lee, et al. 2002a) or cortical thickness (Shaw et al. 2013). However, 

many studies investigating brain development in ADHD have not tested for sex 

differences, making it difficult to determine whether sex-specific differences in brain 

development are present in ADHD. The sensitivity analysis conducted in the study 

described in this chapter suggests that the sex imbalance between the ADHD and control 

groups in the sample did not significantly impact the results of the primary analysis (Table 

3.8). Therefore, the findings of the primary analysis are unlikely to be confounded by this 

sex imbalance. Nevertheless, given that females with ADHD are often underrepresented 

in case-control studies, there is a need for future research to include sufficient female 

participants to investigate sex-specific differences in the disorder. 

Another limitation of the study described in this chapter is that structural 

differences across the different ADHD subtypes (inattentive, hyperactive/impulsive, and 

combined) were not explored. While many of the smaller sample-sized studies (n<50) 

failed to identify differences in volume between subtypes (Pineda et al. 2002; Carmona et 

al. 2005; Vilgis et al. 2016), larger-scale studies have now suggested that there may be 

subtle volumetric differences across the subtypes (Al-Amin, Zinchenko, and Geyer 2018; 

Wu et al. 2022) . Therefore, it is important that future research should investigate 
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developmental differences across ADHD subtypes. Additional limitations of the studies 

featured in this thesis are described in Section 5.3. 

 

3.4.4. Conclusion  

The longitudinal study described in this chapter found that compared to controls, 

children and adolescents with ADHD had lower grey matter volume across development 

in key limbic system structures. Additionally, among individuals with ADHD, the 

developmental trajectory of the left mammillary body was significantly associated with 

alterations in symptom severity during the transition from childhood into mid-adolescence. 

Taken together, atypical development in limbic system structures appears to be a potential 

neurobiological feature of ADHD, advancing our pathophysiological understanding of this 

highly prevalent neurodevelopmental disorder. 
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4 Diffusion MRI Data Processing and Analysis: A Practical 

Guide with ExploreDTI 

 

This chapter presents the detailed methodologies used for processing diffusion 

MRI (dMRI) data in this thesis. Originally published as a comprehensive book chapter 

(Connaughton M, 2023, DOI: 10.31219/osf.io/mbyjh), it serves as both a rigorous 

documentation of the procedures employed and a guide for future researchers in the field. 

The chapter outlines the principles of dMRI, followed by a step-by-step explanation of 

data acquisition, preprocessing, and analysis. It emphasizes the innovative techniques 

developed during this research, offering insights into the decision-making process behind 

these methods. This chapter is crucial for understanding the data processing foundation 

that supports the thesis' findings. 
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4.1. Introduction 

White matter refers to the nerve fibers, also known as axons, that interconnect 

regions of the brain (Fields 2010). Healthy development of white matter is essential for 

neurotypical brain function and cognition (Lebel and Deoni 2018). This complex 

developmental process involves several mechanisms such as axonal growth, myelination, 

and synaptic pruning (Stiles and Jernigan 2010). The intricate interplay between these 

processes is key for the establishment of neural networks for the efficient transmission of 

information within the brain (Lebel and Deoni 2018). Abnormalities in white matter 

development have been linked to a range of cognitive functions (Lebel and Beaulieu 2011) 

and psychiatric impairments, including autism (Andrews et al. 2021), ADHD (Bouziane 

et al. 2018), and schizophrenia (Peters and Karlsgodt 2015). 

Diffusion-weighted magnetic resonance imaging (dMRI) is a powerful 

neuroimaging technique that allows for the investigation of white matter microstructure 

through the diffusion measurement of molecules within biological tissue (Jones and 

Leemans 2011). In white matter, the diffusion of molecules is affected by cellular 

membranes (i.e., myelin sheaths), defining the diffusion-weighted contrast. This diffusion-

weighted signal can then be mathematically modeled to estimate the underlying 

microstructure and reconstruct the organization of white matter tracts (Van Hecke, Emsell, 

and Sunaert 2016). In the early 2000s, the most common dMRI modeling technique was 

Diffusion Tensor Imaging (DTI) (Basser, Mattiello, and LeBihan 1994; Mori and van Zijl 

2002). While DTI remains a key tool for researchers in understanding the impact of white 

matter microstructure (Qiu, Mori, and Miller 2015), DTI has some limitations, such as its 

inability to accurately model areas in which crossing white matter fibres are present 

(Pierpaoli et al. 2001).  

In recent years, advances in dMRI acquisition parameters have enabled higher-

order diffusion modeling techniques that increase reconstruction accuracy and can 

overcome some of the limitations of DTI. With High Angular Resolution Diffusion 

Imaging (HARDI), an increased number of diffusion direction gradients is acquired, which 

allows for the estimation of microstructural properties along multiple fiber populations 

within a single voxel and provides improved reconstruction accuracy of white matter tracts 

compared to the traditional DTI framework (Descoteaux, 2015). Another advance in dMRI 

for tractography is the integration of multiple b-values (Pines et al. 2020). Briefly, b-values 

are a summary measure of the strength, duration, and amplitude of the diffusion-weighting 
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applied during the scan. Different strength b-values elicit altered tissue responses which 

can be used to increase the reconstruction accuracy of various neurocellular environments. 

Higher b-values are more sensitive to detecting diffusion of molecules within brain tissues 

(Burdette et al. 2001), but are also more susceptible to noise and artifacts compared to 

lower b-values (Kingsley and Monahan 2004) As such, multi-shell dMRI data leverages 

the increased signal of high b-value images with the reduced noise of low b-value images 

to provide increased anatomical accuracy (Pines et al. 2020).  

In the context of higher-order diffusion modelling, techniques have been 

developed, such as constrained deconvolution (CSD), Q-ball, and neurite orientation and 

dispersion density imaging (NODDI) among many others (Jeurissen et al., 2011). These 

techniques can describe the distribution of molecule diffusion within a voxel more 

accurately compared to DTI (e.g., the fiber orientation distribution (FOD) function for 

CSD and diffusion orientation distribution function (dODF) for DSI and Q-ball) and can 

be used to model voxels containing crossing white matter fibers. Thus, metrics derived 

from these higher-order models have increased accuracy, yielding clinically more relevant 

information that cannot be obtained from the DTI model (Van Hecke, Emsell, and Sunaert 

2016). Higher-order diffusion models provide more detailed information about the 

microstructure and organization of white matter tracts, which can provide important 

insights into the pathophysiology of neurological and psychiatric disorders. 

The aim of this Chapter is to introduce neuroimaging researchers to the concepts 

and techniques of dMRI data processing used in the field, with a focus on providing a 

practical step-by-step guide for processing multi-shell HARDI data and generating CSD-

based tractography using the ExploreDTI software (Leemans et al. 2009). Brief 

explanations of the rationale behind each processing step will be provided to aid the 

researcher in understanding the concepts and principles involved. Potential processing 

pitfalls will be discussed, and tips for troubleshooting common issues will be provided. 

Overall, this guide aims to provide a comprehensive resource for researchers to gain the 

skills and knowledge necessary to process dMRI data effectively and efficiently.  

 

4.2. Methods 

4.2.1. Starting point for the data 

Advanced FOD modeling techniques, such as CSD, require specific diffusion 

parameters. Typically for multi-shell HARDI, a minimum of two b-values images (b = 
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2500-3000 s/mm2) and 45 diffusion-weighted directions (Van Hecke, Emsell, and Sunaert 

2016), are required for CSD modeling for white matter tractography purposes. The 

Neuroimaging of the Children’s Attention Project (NICAP)(Silk, Genc, et al. 2016) study 

diffusion parameters were used for the processing step-by-step guide provided below. Data 

from the NICAP cohort are available via Lifecourse 

(https://lifecourse.melbournechildrens.com/cohorts/cap-and-nicap/). 

 

4.2.2. Data Storage and Computational expense 

The step-by-step guide provided here was run on a Linux system with an Intel Core 

i7 processor and 32 GB RAM using MATLAB R2016b. A standalone version of 

ExploreDTI is also available. Details of the ExploreDTI instalment are provided below. It 

is recommended to run Steps 9 and 10 using high-performance computers, given the large 

processing time of these step. Table 4.1 shows the estimated processing times per 

participant for each step, with MATLAB parallel processing enabled. 

 

Table 4.1 Approximate processing times for each per participant are provided below 

(Steps 7 and 8 are optional if multiple b-value data sets were acquired separately). 

Processing 

Step 

Name of section Processing time (approx.) 

1 Convert Bval and Bvec files into text files < 1 min 

2 Signal Drift < 1 min 

3 Sort Bvals < 1 min 

4 Gibbs Ringing < 1 min 

5 Flip Permute < 1 min 

6 Generate Mat File 5 min 

7 Concatenate all b-value .mat files 2 min 

8 Generate Mat File of concatenated .nii files 20 min 

9 SM/EC/EPI distortion corrections 360 min 

10 Whole brain Tractography 70 min 

 

 

4.2.3. Step-by-step guide 

In this Section, we will provide a step-by-step guide for processing multi-shell 

HARDI data (in BIDS format) and generating CSD-based tractography using the 

https://lifecourse.melbournechildrens.com/cohorts/cap-and-nicap/
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ExploreDTI software. As this guide is for complete neuroimaging novices, we will use the 

ExploreDTI graphic user interface (GUI). A step-by-step guide to installing and using 

ExploreDTI is provided in the user manual. As we are using BIDS format, each subject 

folder containing the diffusion files should have .json, .bval, .bvec, and .nii files (see Table 

4.2). Although advanced diffusion modeling is not feasible with the AOMICS datasets 

(https://nilab-uva.github.io/AOMIC.github.io/), we have also included step-by-step 

command lines to demonstrate the possibility to preprocess several subjects all at once 

(see supplemental material). 

 

Table 4.2 Description of dMRI files in BIDS format 

File Name Comment 

.json This is a file containing a description of scan acquisition details. 

.bval This file contains a summary of the diffusion-weightings applied during scanning.  

.bvec These files contain details on the diffusion gradient vectors of the scan. 

.nii this is the raw diffusion scan in NIfTI format 

 

Convert Bval and Bvec files into text files (Step 1)  

The first processing step is to generate .txt file(s) from the .bval and .bvec files for 

the images you are processing. The .txt file is a summary file of the b-values and diffusion-

weighting directions used during image acquisition and is required for image processing.  

 

In ExploreDTI: 

1. Plugins →  Convert → *.bval/*.bvec to B-matrix *.txt files(s) (see Figure 4.1) 

a. Select folder containing *.bval and *.bval file(s) 

b. Select output folder for *.txt file(s) 

 

2. The output folder now includes the converted .txt file(s) 

 

 

 

 

 

 

http://www.exploredti.com/manual/Manual_ExploreDTI.pdf
https://nilab-uva.github.io/AOMIC.github.io/
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Figure 4.1 Step 1 using the ExploreDTI GUI 

 

 

Signal Drift Correction (Step 2) 

Signal drift is a phenomenon caused by scanner imperfections, which leads to an 

adverse alteration of the acquired signal and a bias in the estimation of diffusion measures 

if not corrected (Vos et al. 2017).  

Note: We recommend the use of 'quadratic fit', but a signal drift fitting guide is 

provided in the Appendix 1 for users who want to investigate the impact of different fitting 

approaches (see eFigure 1). 

 

In ExploreDTI: 

1. Plugins →  Correct for DWI signal drift (see Figure 4.2).  

a. Single or multiple data sets:  multiple. 

b. Select the folder of .nii file(s). 

c. Select output folder. 

2. The output folder now includes,  

a. *_sdc.txt file(s) 
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b. *_sdc.nii file(s) 

c. *_sdc.png file(s) 

 

Figure 4.2 Step 2 using the ExploreDTI GUI 

 

 

Note: As the signal drift correction uses the non-diffusion weighted (b-0) files 

acquired to correct for signal drift, it is crucial that signal drift correction is completed before 

sorting b values, which may change the order of the acquired dMRI volumes (Step 3).  

 

Sort B-Values, Organise and remove excess b-0 files (Step 3) 

For the remaining processing steps ExploreDTI requires that all b-0 files are sorted 

to the beginning of the diffusion files. This step quickly organizes the files to have all the 

b-0 files at the beginning of the .nii and .txt files.  

 

In ExploreDTI:  

1. Plugins →  Sort DWI *.nii file(s) wrt b-values (see Figure 4.3) 

a. File name suffix: *_sorted.nii. 

b. Single or multiple data sets:  multiple. 

c. Select the folder of *.nii file(s) and *.txt file(s). 

d. Select output folder. 

2. The output folder now includes, 
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a. *_sdc_sorted.txt file(s) 

b. *_sdc_sorted.nii file(s) 

 

Figure 4.3 Step 3 using the ExploreDTI GUI 

 

 

Note: Rarely, additional b-0 files are collected during scanning. To investigate if 

extra b-0 files are present, open the newly sorted .txt file and investigate (see Figure 4.4). If 

excess b-0 files are present (see red box in Figure 4), these can be removed in ExploreDTI. 

 

Figure 4.4 Example of a sorted .txt file containing 6 b-0 images 
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Gibbs Ringing Correction (Step 4) 

A phenomenon known as Gibbs ringing may occur due to the shortening/truncation 

of Fourier transforms to reconstruct the MRI signal. If uncorrected, Gibbs ringing leads to 

artifacts that appear as multiple fine parallel lines in the image.  

In ExploreDTI: 

1. Plugins →  TV for Gibbs ringing in non-DWI’s (4D *.nii) (see Figure 4.5) 

a. Select Gibbs Ringing Correction settings (see Table 4.3). 

b. Single or multiple data sets:  Multiple. 

c. Select the folder of *.nii files. 

d. Select output folder. 

2. The output folder now includes, 

a. *_sdc_sorted_GR_TV.nii files.  

3. Create and move *_sdc_sorted_GR_TV.nii files into a new folder. 

 

Figure 4.5 Step 4 using the ExploreDTI GUI 

 



 132 

 

 

 

Table 4.3 Setting Gibbs ringing parameters 

Parameter Comment 

Number of non-DWIs This information is provided in the *.txt file.  

 

Lambda ([1 200]) Lambda is a parameter that can be used to control the degree of Gibbs ringing in 

image reconstruction algorithms. A higher value of lambda will suppress Gibbs 

ringing more. However, it should be noted that a high value of lambda will also 

reduce the level of high-frequency information in the processed image, and 

therefore it is important to find a balance between reducing Gibbs ringing and 

preserving image quality. 

Recommendation: 100 (Default setting) 

Number of iterations ([1 

200]) 

The number of iterations is another parameter that controls the degree of Gibbs 

ringing correction.  

Recommendation: 100 (Default setting) 

Step size ([0.001–0.1]) The step size determines the magnitude of the update applied to the image 

estimate at each iteration of the algorithm. A smaller step size will result in a 

slower convergence of the algorithm and less Gibbs ringing, while a larger step 
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size will result in a faster convergence but more Gibbs ringing. The optimal value 

is a desired trade-off between Gibbs ringing reduction and computational time.  

Recommendation: 0.01 (Default setting) 

Imaging plane  

(coronal:1, sagittal:2, 

axial:3) 

 

The Gibbs ringing correction algorithm takes into account the imaging plane in 

which the image was acquired. This information is found in the subject specific 

*.json file,  

Phase Encoding Directions 

i   left-right (sagittal) 

i-  right-left (sagittal) 

j   anterior–posterior (axial) 

j-  posterior–anterior (axial) 

k   inferior-superior (coronal) 

k-  superior–inferior (coronal) 

 

Flip Permute (Step 5) 

Permutations and flips in spatial configuration and/or mismatches between spatial 

and diffusion coordinate systems can accidentally occur during processing and analyses 

across different software packages, potentially resulting in errors. The "flip/permute” tool 

in ExploreDTI can reorientate images and also avoid further unexpected axis flips and 

permutations in any following image processing step. Use default ExploreDTI settings as 

orientations will be inspected at the next step.  

In ExploreDTI: 

1. Plugins →  Flip/permute dimension(s) of 3D/4D *.nii files (see Figure 4.6) 

a. Use default setting:  

i. File name suffix: _FP 

ii. Permute dimensions: 1 2 3 

iii. Flip dimensions: 0 0 0  

iv. Force voxel size: leave empty 

b. Single or multiple data sets: multiple. 

c. Select the folder of *.nii file(s). 

d. Select output folder. 

The output folder now includes *_sdc_sorted_GR_TV_FP.nii files.  

 

Figure 4.6 Step 5 using the ExploreDTI GUI 
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The next processing step requires each individual image to have matching .nii and 

.txt file names. Thus, rename *_sdc_sorted.txt files in the previous folder to match the 

current .nii file (e.g. *_sdc_sorted_GR_TV_FP.txt) and create a new folder containing 

matching .txt and .nii files. 

 

Generate .mat file (Step 6) 

It is required to generate a .mat file from the processed .nii and corresponding .txt 

files before tractography or other analysis tools can be applied. The DTI .mat file is a 

matlab format file and can be loaded into ExploreDTI for further processing and analysis.  

 

In ExploreDTI:  

1. Calculate DTI *.mat file → Convert raw data to ‘DTI *.mat.(see Figure 4.7) 

a. Select settings (see Table 4.4). 

b. Select the folder of *.nii.  

c. Select folder .txt files: Press cancel if each .nii has its associated .txt file.  

d. Select output folder. 

The output folder now includes *_sdc_sorted_GR_TV_FP.mat files. 

 

Figure 4.7 Step 6 using the ExploreDTI GUI 
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Table 4.4 Selecting .mat generation parameters 

Parameter Comment 

Format diffusion weighted data 4D Nifti (*.nii) 

 

Permute spatial dimensions This allows you to flip spatial dimensions of image.  

Recommendation: Use default settings (AP RL IS) if there are no 

issues with spatial dimensions. 

Flip spatial orientations This step allows you flip the direction of the dimensions. This is 

important if your data was collected in Neurological dimensions 

rather than Radiological conventions. In this instance, you may need 

to flip dimensions from Right – Left to Left – Right. To flip, change 

the parameter from ‘AP RL IS’ to ‘AP LR IS’. 

If your data were collected in Radiological dimensions the default 

setting of ‘AP RL IS’ should be appropriate.   

Perform visual data check This allows you to quickly visualize the orientation of the image. 

Diffusion tensor estimation The robust tensor estimation algorithms aim to minimize the impact 

of outliers on the final diffusion tensor estimate, leading to more 

reliable results. 

Recommendation: Robust (exclude outliers) 

Format diffusion information Text file (*.txt) 

Background masking approach Automatic 

Permute gradient components Permute gradient components should correspond to data and may 

require some investigation (see Note below this table). 

Flip sign of gradient components The sign of gradient components should correspond to data and may 

require some investigation (see Note below this table). 

Data processing mode Single or multiple data sets 

b-value in units s/mm2 E.g., 1000 

Voxel size [AP RL IS] (in mm) E.g., 2 2 2 

Number of non-DW images E.g., 3 

Number of DW images E.g., 30 
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Matrix size [AP RL IS] E.g., 128  128  60 

 

Note: A common pitfall of dMRI processing is orientation issues. During the .mat generation 

step you should investigate the flip/permutations to ensure appropriate orientations were 

selected. It is advised that you first use the default settings as ExploreDTI is able to 

automatically provide the correct orientation settings (Jeurissen, Leemans, and Sijbers 

2014). ExploreDTI deploys the widely used color convention to ensure the orientations 

(‘Permute gradient components’) are correct (left-right: Red, top-bottom: Blue, and front-

back: Green). Good tracts to investigate when checking orientations are the corpus callosum 

– a white matter tract that is orientated left-right (Red) and the corticospinal tracts - white 

matter tracts that are orientated top-bottom (Blue). To see an example of orientation checks 

see Figures 4.8 & 4.9. 
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Figure 4.8 Checking Permute Gradient Components 

4.8a.  4.8b. 

  

Before-and-after correct flipping of the ‘Permute gradient components’. As you can see in Figure 4.8a while 

the corticospinal tract is the correct orientation (blue arrow) the corpus callosum (red arrow) – a white matter 

tract that is orientated left-right – is green. This indicates that the x and y axis need to be flipped. To do so, 

change the ‘Permute gradient components’ from x y z → y x z and generate a new correctly orientated .mat 

file (Figure 4.8b.). 

 

Figure 4.9 Checking Flip Sign Components 

4.9a.  4.9b. 

  

Figure 4.9 illustrates an investigation into the flip sign gradients. While the orientations of the images of both 

images are correct the gradient sign may be flipped. Use Glyphs (in Explore DTI:  Draw ROI → Draw Glyphs) 

to inspect the signs and investigate the ‘Flip sign of gradient components’. Figure 4.9a. shows an incorrect 

flip sign gradient as the glyphs are not following the curvature of the Corpus Callosum. To fix this the z 



 138 

component must be flipped. To do so, change the ‘flip sign gradients’ from x y z → x y -z and generate the 

correct .mat file (4.9b.).  

 

Concatenate all b-value .mat files (Step 7) 

This step concatenates all the single b-values (shells) .mat files together to create 

a multi-shell .nii file. This enables a major benefit of multi-shell imaging; namely, 

leveraging the increased signal of high b-value images with the reduced noise of low b-

value images to produce an image with increased anatomical accuracy. 

Firstly, you should organize all your b-value .mat files into scan-specific folders 

(see below).  

 

 

In ExploreDTI:  

1. Plugins →  Concatenate DTI *.mat files (to *.nii) (see Figure 4.10) 

a. Select folder of folders: select the folder containing all the scan-specific 

folders. 

2. The output folder now includes,  

a. *_concatenated.txt file(s) 

b. *_concatenated.nii file(s). 
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Figure 4.10 Step 7 using the ExploreDTI GUI 

 

 

Generate concatenated .mat file (Step 8) 

It is now required that you convert the concatenated .nii files into .mat files. As any 

orientation issues should have been resolved at Step 5, default orientation settings will be 

used. For processing efficiency, it is advised that you move *_concatenated.nii and 

*_concatenated.txt files into a folder.  

 

In ExploreDTI:  

1. Calculate DTI *.mat file →  Convert raw data to ‘DTI *.mat’ (see Figure 4.7) 

a. Select settings (see Table 4.5). 

b. Select the folder of *_concatenated.nii files. 

c. Select folder *_concatenated.txt files: Press cancel.  

d. Select output folder. 

2. The output folder now includes,  

a. *_concatenated.mat file(s). 



Table 4.5 Selecting .mat generation parameters 

Parameter Comment 

Format diffusion weighted data 4D Nifti (*.nii) 

Permute spatial dimensions AP RL IS 

Flip spatial orientations AP RL IS 

Perform visual data check No. 

Diffusion tensor estimation Robust (exclude outliers) 
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Format diffusion information Text file (*.txt) 

Background masking approach Automatic 

Permute gradient components x y z  

Flip sign of gradient components x y z  

Data processing mode Multiple data sets 

b-value in units s/mm2 NaN (for multi-shell data) or any integer for DTI 

Voxel size [AP RL IS] (in mm) E.g., 2 2 2 

Number of non-DW images The total number of b-0 images in the concatenated images (Using 

the parameters in NICAP study, e.g., number of non-DW images = 

16). 

Number of DW images The total number of b-value images in the concatenated images 

(Using the parameters in NICAP study, e.g., number of DW images = 

130) 

Matrix size [AP RL IS] E.g., 128  128  60 

 

Correcting subject motion, eddy currents, and EPI-induced distortions (Step 9) 

This step corrects subject motion (SM), eddy currents (EC), and EPI-induced 

distortions (EPI). This is a crucial processing step, as such distortions can lead to 

significant changes in diffusion metric estimates. Additionally, you can use ‘undistorted’ 

structural MRI (T1 or T2) images to unwrap the deformations in the diffusion data (For 

more details see ExploreDTI manual). If you do not have a structural MRI this step can be 

conducted in native space. To process this step in ExploreDTI without a structural MRI 

file ensure the following setting is selected, Settings →  SM/EC/EPI correction → Also 

register to other data → No thanks (stay in native space). Before beginning this step move 

*_concatenated.mat files (and *_nu.nii and *_mask.nii files if necessary) to a folder. 

 

Note: Due to the large computational demand of Step 9, it is recommended to use 

multi-core computing support for this tool with a minimum of 32 GB RAM for dMRI data 

if you have more than 100 DW images. 

 

In ExploreDTI: 

1. Select settings (see Table 4.6). 

2. Start MATLAB parallel pooling.  

3. Plugins →  Correct for subject motion & EC/EP distortions. (see Figure 4.11) 

a. Single or multiple data sets: Multiple. 

http://www.exploredti.com/manual/Manual_ExploreDTI.pdf
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b. Select the folder of *_concatenated.mat files. 

i. Include *_nu.nii and *_mask.nii for using structural MRI files for 

registration. 

c. Select output folder. 

The output folder now includes *_concatenated_trafo.mat files. 

 

Figure 4.11 Step 9 using the ExploreDTI GUI 

 

 

Table 4.6 Selecting SM/EC/EPI distortion parameters 

Parameter Comment 

Settings →  SM/EC/EPI correction → 

masking stuff 

This setting allows you to use a mask generated from a structural 

MRI scan. If you do not have a structural MRI mask, do not 

select the ‘masking stuff’ setting.  

Settings →  SM/EC/EPI correction → 

Also register to other data → Yes, to do 

EPI correction (non-rigid) 

 

This setting allows you to register your diffusion image to a 

structural MRI image during the EPI correction, enabling 

increased distortion correction.  

Recommendation: select ‘orig_nu’ from Freesurfer processed 

structural MRI files. 

Settings →  SM/EC/EPI correction → 

also register to other data → 

registration details → Deformation axes 

 

By default, the non-linear deformations are allowed along any 

orientation.  

Recommendation: correction will likely improve if the 

registration is constrained to model deformations only along the 

phase encoding direction. To do this (example A-P orientation), 

change “Deformation axes” to [1 0 0]. 

Settings →  SM/EC/EPI correction → 

Registration details for SM/EC 

corrections → interpolation method 

Recommendation: Linear or cubic spline 

 

Whole brain tractography (Step 10) 

Whole brain tractography in ExploreDTI generates white matter tracts using a 

deterministic approach. Other software packages, such as FSL and MRtrix are available if 
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you would like to do probabilistic tractography. It is recommended that you complete 

whole brain tractography before reconstructing specific white matter tracts for analysis.  

In ExploreDTI:  

1. Plugins →  whole brain tractography → CSD (see Figure 4.12) 

a. Select settings (see Table 4.7). 

b. Single or multiple data sets: multiple. 

c. Select the folder of *_trafo.mat files. 

d. Select output folder.  

e. The output folder now includes the *_trafo_Tracts_CSD.mat files (see 

Figure 4.13). 

 

Figure 4.12 Step 10 using the ExploreDTI GUI 

 

 

Table 4.7 Whole Brain Tractography parameters 

Parameter Comment 

Seedpoint resolution (mm) Seed point resolution is a measure of how close together the seed points are 

placed in the brain.  A higher seed point resolution will result in a higher 

number of seed points used in the tractography algorithm, and therefore a 

higher number of the reconstructed tracts. However, this also increases the 

computation time.  

Recommendation: 2 2 2 

Step size (mm) The step size is a parameter that determines the distance between each point 

in the reconstructed tracts. A smaller step size will result in a higher accuracy 

of the reconstructed tracts, but it will also increase the computation time.  

Recommendation: 1 

Angle threshold The angle threshold is a parameter controls the angular deviation of 

consecutive steps during pathway reconstruction.  A higher angular threshold 

will result in more or longer tracts, but it will also increase the risk of false 
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positive tracts. If you are planning to exact tracts with high curvature (such as 

the fornix) it is advised to set this threshold higher (e.g., 60 degrees). 

Fiber length range This step allows you to set the upper and lower bound of the length of the 

reconstructed fibers. Change this setting if you are investigating particularly 

long or short white matter tracts. If you are investigating both long and short 

fiber it is recommended to set this setting to, 10 – 500. 

Random permutations of 

seed points? 

0 = no / 1 = yes (setting to get rid of rectilinear grid-pattern artifacts) 

 Recommendation: 0 

 

 

Figure 4.13 Complete CSD tractography (subsampled: 50) 

X axis view Y axis view Z axis view 

   

 

Extracting Diffusion MRI Metrics (Step 11) 

At this step, you should have already extracted the white matter tracts you want to 

analyse. A step-by-step guide of conducting manual tractography is provided in the 

ExploreDTI manual. This step allows you to export diffusion metrics for the analyzed tract 

pathway of interest.  

 

In ExploreDTI:  

1. Plugins →  convert → info. of tract *.mat file(s) to .txt. (see Figure 4.14) 

a. Select the folder of .nii.  

b. Select output folder. 

2. The output folder now includes, 

a. *.txt files 

3. Export *.txt file to Excel. 

http://www.exploredti.com/manual/Manual_ExploreDTI.pdf
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Figure 4.14 Step 11 using the ExploreDTI GUI 

 

 

 

 

4.2.4. Conclusion 

This book Chapter offers a comprehensive resource that equips researchers with 

the necessary skills and knowledge to effectively and efficiently process large diffusion 

MRI data sets. By providing practical, step-by-step guides, researchers can process both 

DTI and multi-shell HARDI data using the ExploreDTI software. When choosing a 

diffusion MRI modelling technique, it is important to consider the pros and cons of both 

DTI and multi-shell HARDI approaches. Multi-shell HARDI offers several advantages 

over DTI, including increased anatomical accuracy and the ability to model crossing 

fibres. However, it also comes with certain disadvantages compared to DTI that warrant 

careful evaluation. A significant drawback of multi-shell HARDI is that it is a highly 

computationally expensive technique, which results in significantly longer processing 

times compared to DTI. Nevertheless, steps can be taken to reduce processing time through 

resource optimization. Researchers can optimise the utilisation of computational resources 

by fine-tuning the processing parameters described in this book Chapter. When processing 

large data sets, it is advised to experiment with different settings parameters to find the 

optimal balance between reconstruction accuracy and processing time. Overall, it is crucial 

to assess the accessible resources, both available time and computational resources, before 

deciding which diffusion MRI modelling technique to employ.  
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5 Limbic System White Matter in Children and Adolescents with 

ADHD: A Longitudinal Diffusion MRI Analysis 

 

5.1. Introduction  

ADHD is increasingly viewed as a disorder of connectivity, a “dysconnectome” in 

which microstructural differences in white matter tracts interconnecting large-scale brain 

systems are associated with symptom expression (Sudre et al. 2023; Sudre et al. 2021; 

Konrad and Eickhoff 2010). White matter comprises nerve fibres, known as axons, that 

connect different regions of the brain (Fields 2010). Healthy development of white matter 

is crucial for efficient information transmission within the brain, leading to neurotypical 

brain function and cognition (Lebel and Deoni 2018). Diffusion-weighted MRI (dMRI) is 

a neuroimaging modality that enables the in-vivo exploration of white matter 

microstructure by measuring the diffusion of molecules within biological tissue (Van 

Hecke, Emsell, and Sunaert 2016). The movement of molecules in white matter is 

influenced by cellular membranes, such as myelin sheaths, which shape the diffusion-

weighted signal (Jones and Leemans 2011). By employing mathematical modelling, this 

diffusion-weighted signal can be utilised to estimate and reconstruct the underlying 

microstructural organisation of white matter tracts (Van Hecke, Emsell, and Sunaert 

2016). dMRI enables the assessment of various diffusivity metrics, which are associated 

with underlying microstructural organisational properties of white matter (see Table 5.1). 
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Table 5.1 Description and clinical implications of dMRI Metrics. 

Modelling 

technique 

Metric 

 

Description 

DTI 

Fractional 

anisotropy 

(FA) 

A frequently used measure that summarises the degree of white 

matter microstructural organization. In clinical contexts, a decrease in 

FA value may indicate demyelination, axonal damage, or decline of 

white matter coherence (Van Hecke, Emsell, and Sunaert 2016; 

Zhang and Burock 2020). 

 

Radial 

diffusivity 

(RD) 

 

A metric used to assess the level of diffusion occurring perpendicular 

to the principal diffusion direction. Clinically, increased radial 

diffusivity could be considered a sensitive indicator for increased 

processes of demyelination (Song et al. 2005; Van Hecke, Emsell, 

and Sunaert 2016). 

 

Axial  

diffusivity  

(AD) 

 

A quantitative measure that summarise the degree of diffusion along 

the principal diffusion direction. In clinical context, a decrease in AD 

has been linked to disrupted axonal integrity and organisation 

(Alexander et al. 2007; Van Hecke, Emsell, and Sunaert 2016). 

 

Mean  

diffusivity  

(MD) 

A scalar metric that represents the overall extent of diffusion within a 

voxel, independent of direction. An elevation in MD has been linked 

to oedema, axonal loss, and demyelination (Alexander et al. 2007; 

Van Hecke, Emsell, and Sunaert 2016). 

DKI 

Kurtosis 

anisotropy 

(KA) 

Quantifies the non-gaussian diffusion in a given voxel. KA is an 

analogue to the FA (Poot et al. 2010) but importantly can offer a 

contrast in areas where tissue complexity causes FA to fail (Hansen 

and Jespersen 2016). Increased KA may reflect improved myelination 

and axonal organisation (Maiter et al. 2021; Hansen 2019). 

 

Axial  

Kurtosis 

(AK) 

 

Evaluates the non-gaussian diffusion of molecules along the axial 

direction and is an analogue of AD (Steven, Zhuo, and Melhem 

2013). Decreases in AK have been associated with diminished axonal 

integrity and packing (Falangola et al. 2014).  

 

Radial  

Kurtosis 

(RK) 

A summary measure of the non-gaussian diffusion occurring in the 

radial direction and is an analogue of RD (Steven, Zhuo, and Melhem 

2013). Elevated RK may indicate the deterioration of myelin, 



 147 

 neurofilaments and/or microtubules degeneration (Takahashi et al. 

2002; Does, Parsons, and Gore 2003; Schwartz et al. 2005; Yong-

Hing et al. 2005; Thelwall et al. 2006; Goryawala et al. 2018). 

 

Mean  

Kurtosis 

(MK) 

An analogue to MD and is a measure of the overall non-gaussian 

diffusion, independent of direction. Decreases in MK may reflect 

reduced structural complexity, specifically processes of myelin 

breakdown and reduced axonal packing (Falangola et al. 2014).   

 

dMRI has been an essential tool in ADHD pathophysiological research, identifying 

atypical white matter microstructure as a potential core neurobiological feature of the 

disorder (Connaughton et al. 2022). Cross-sectional dMRI research has consistently 

identified several tracts with reduced white matter microstructure in children and 

adolescents with ADHD, characterised by reduced microstructural organisation (lower 

GFA and/or FA) in the frontostriatal tracts (Chiang et al. 2015; Chiang et al. 2016; Shang 

et al. 2013; Gau et al. 2015; Wu et al. 2014; Lin et al. 2014; Tung et al. 2021), corpus 

callosum (Cao et al. 2010; Qiu et al. 2011; Ameis et al. 2016; King et al. 2015; Pastura et 

al. 2016; Wu et al. 2017), superior longitudinal fasciculus (Chiang et al. 2015; Chiang et 

al. 2016; Pastura et al. 2016; Wu et al. 2017), cingulum bundle (Chiang et al. 2015; Chiang 

et al. 2016; Tung et al. 2021; King et al. 2015), internal capsule (Qiu et al. 2011; Pastura 

et al. 2016; Wu et al. 2017; Ashtari et al. 2005; Nagel et al. 2011), corona radiata (Qiu et 

al. 2011; Wu et al. 2017; Pavuluri et al. 2009; Nagel et al. 2011), and thalamic white matter 

(Tung et al. 2021; Bouziane et al. 2018). However, inconsistent findings have also been 

reported, which may be attributed to the limitations of cross-sectionally designed studies 

and the diffusion MRI models used (Connaughton et al. 2022). While cross-sectional 

studies are vital for generating hypotheses and examining associations, their inability to 

capture temporal changes or individual variabilities is a major limitation for 

pathophysiological research. Despite numerous authors emphasising the need for 

longitudinal case-control dMRI studies in children and adolescents with ADHD (Bouziane 

et al. 2018), there are two studies to-date.  

The first longitudinal dMRI study used the NICAP study to investigate whether 

deviations from typical trajectories of white matter fibre development are associated with 

the persistence or remission of ADHD symptoms (Fuelscher et al. 2023). Compared to 

controls, individuals with ADHD displayed lower fibre bundle cross-section (FC) – a 
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measure of fibre morphology (Raffelt et al. 2017) – in thalamic pathways, striatal 

pathways, and superior longitudinal fasciculus at around age 10 but showed accelerated 

development of fibre morphology between ages 10 and 14 (Fuelscher et al. 2023). Within 

the ADHD group, individuals with remission of ADHD symptoms displayed increased 

convergence towards non-ADHD fibre morphology compared to individuals with 

persistent ADHD symptoms (Fuelscher et al. 2023). By contrast, children with persistent 

ADHD displayed ongoing neural anomalies throughout childhood and adolescence 

(Fuelscher et al. 2023). The findings if this study are consistent with the convergence 

model, a prominent neurodevelopmental model of ADHD that suggests convergence of 

neural features towards neurotypical brain structures is associated with remission of 

ADHD symptoms (Shaw et al. 2013). 

The second longitudinal DSI study investigated white matter microstructure at two 

time points, from childhood to young adulthood (Chiang et al. 2023). Compared to 

controls, individuals with ADHD showed a more rapid rate of development of GFA in the 

left arcuate fasciculus, right SLF, left frontal aslant tract, left cingulum, left inferior fronto-

occipital fasciculus (IFOF), left FS-PFC, left thalamic radiation, bilateral corticospinal 

tracts, and the corpus callosum (Chiang et al. 2023). The findings of this study suggest that 

atypical brain development in ADHD is characterised by normalisation and possible 

compensatory neuroplasticity processes, supporting the maturational delay hypothesis of 

ADHD (see Section 1.2.4) (Shaw and Sudre 2021; Shaw et al. 2013). Developmental 

models like the convergence model and maturation delay hypothesis have significantly 

contributed to our understanding of the neurobiological underpinnings of ADHD. 

However, it is essential to acknowledge that ADHD is characterised by differences across 

numerous brain regions, each with distinct developmental mechanisms and trajectories 

(Bethlehem et al. 2022; Herting et al. 2018). Consequently, it is likely that the 

pathophysiology of ADHD involves varied region-specific developmental patterns. 

Therefore, it is crucial for ongoing research to investigate under-explored regions of the 

brain to better understand the complex relationship between brain development and 

ADHD. 

To date, much of ADHD white matter research has focused on components of the 

frontostriatal, default mode, ventral attention, somatomotor, and cortico-striato-thalamo-

cortical networks (Connaughton et al. 2022). The limbic system network remains an 

under-investigated region of interest in ADHD research (see Section 1.3). Despite previous 
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cross-sectional findings of differences in structures of the limbic system in ADHD 

(Connaughton et al. 2022) and the high prevalence of emotional dysregulation seen in the 

disorder (Shaw, Stringaris, et al. 2014), the limbic system remains an under-investigated 

region of interest in ADHD research. To date, no longitudinal study has investigated the 

developmental trajectories of limbic system white matter in ADHD. As described in 

Section 1.4, the limbic system comprises of a collection of interconnected cortical and 

subcortical structures dedicated to linking visceral states and emotional cognition and 

behaviour (Mesulam 2000; Lövblad, Schaller, and Isabel Vargas 2014; Rolls 2019c; 

Messina, Grecucci, and Viviani 2021). The key white matter tracts of the limbic system 

include the cingulum bundle, uncinate fasciculus, fornix, anterior thalamic projections and 

mammillothalamic tracts (see Figure 1.1) (Catani, Dell'acqua, and Thiebaut de Schotten 

2013).  

Historically, reconstructing complex subcortical structures such as limbic system 

white matter tracts has been challenging for dMRI research. Since the early 2000s, the 

most common dMRI modelling technique is Diffusion Tensor Imaging (DTI) (Van Hecke, 

Emsell, and Sunaert 2016). While DTI has been a pioneering technique, it has some 

limitations, such as poor spatial resolution, low signal-to-noise ratio (SNR), high 

susceptibility to partial volume effects, and an inability to model crossing fibres (Pierpaoli 

et al. 2001; Behrens et al. 2007; Jeurissen et al. 2011). These limitations becomes 

particularly problematic when reconstructing complex white matter tracts associated with 

crossing fibres, such as those found in the limbic system (Kamali et al. 2018). However, 

recent advancements in dMRI acquisition parameters have led to notable progress in 

higher-order diffusion modelling techniques that increase white matter tract reconstruction 

accuracy and can overcome some of the limitations of DTI (Van Hecke, Emsell, and 

Sunaert 2016). High Angular Resolution Diffusion Imaging (HARDI) has emerged as an 

influential approach that uses additional diffusion direction gradients during acquisition 

(Van Hecke, Emsell, and Sunaert 2016). This allows for the estimation of microstructural 

properties along multiple fibre populations within a single voxel and provides improved 

reconstruction accuracy of white matter tracts compared to the traditional DTI framework 

(Van Hecke, Emsell, and Sunaert 2016). 

Another significant advance in dMRI for tractography is multi-shell imaging which 

involves the integration of multiple b-values (Van Hecke, Emsell, and Sunaert 2016). B-

values are a summary measure of the strength, duration, and amplitude of the diffusion-
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weighting applied during the scan. By employing different b-values, distinct tissue 

responses can be elicited, enhancing the reconstruction accuracy of various neurocellular 

environments. Higher b-values offer greater sensitivity in detecting diffusion of molecules 

within brain tissues (Burdette et al. 2001) but are more prone to noise and artefacts 

compared to lower b-values (Kingsley and Monahan 2004). To mitigate this, multi-shell 

dMRI data leverages the increased signal from high b-value images with the reduced noise 

from low b-value images, resulting in improved anatomical accuracy for fibre 

reconstruction (Pines et al. 2020). The utilisation of multi-shell HARDI data offers the 

opportunity to employ an advanced fibre tracking technique called constrained spherical 

deconvolution (CSD) based tractography (Tournier et al. 2004a; Tournier, Calamante, and 

Connelly 2007). CSD-based tractography uses the fibre orientation distribution (FOD) 

function, this provides a more precise description of the distribution of molecule diffusion 

within a voxel and leads to increased fibre reconstruction accuracy compared to DTI 

(Tournier, Calamante, and Connelly 2007). This capability makes CSD especially valuable 

in modelling voxels that contain complex, crossing white matter fibres (Tournier, 

Calamante, and Connelly 2007). As Wheeler-Kingshot et al., (2009) reported, DTI tensor-

based estimation cannot accurately reconstruct regions of complex fibre orientation 

resulting in uncertainty of the tensor derived scalar metrics. Importantly, applications of 

fibre orientation estimations, such as CSD tractography, have been shown to provide a 

more accurate tract specific metrics and are recommended in regions containing complex 

fibre tracts (Wheeler‐Kingshott and Cercignani 2009; Reijmer et al. 2012).   

Additionally, the acquisition of multi-shell HARDI data can facilitate higher-order 

diffusion modelling techniques, such as diffusion kurtosis imaging (DKI) (Jensen et al. 

2005). DKI expands on the traditional DTI model by capturing the degree of non-Gaussian 

diffusion, offering a more comprehensive characterisation of the diffusion profile within 

a voxel (Van Hecke, Emsell, and Sunaert 2016). DKI provides several analogous but 

complementary quantitative measures to DTI, which are based on the kurtosis tensor (see 

Table 3.1). Importantly, metrics derived from these higher-order models have increased 

accuracy, particularly in subcortical structures (Glenn et al. 2015), yielding clinically 

relevant information that cannot be obtained from the DTI model (Cheung et al. 2009; Van 

Hecke, Emsell, and Sunaert 2016). By incorporating DKI, researchers gain a deeper 

insight into the microstructural complexity and heterogeneity of tissue, providing a more 

nuanced analysis of white matter properties.  
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The study described in this chapter reports an analysis of longitudinal data, using 

higher-order dMRI techniques, aiming to investigate the development of limbic system 

white matter in children and adolescents with ADHD and controls at three time points 

between the ages of 9 to 14 years. To investigate more complex diffusion profiles, both 

gaussian (DTI) and non-gaussian (DKI) metrics were compared in children with ADHD 

and controls. Based on cross-sectional (Connaughton et al. 2022) and longitudinal 

(Fuelscher et al. 2023; Chiang et al. 2023) findings, the hypotheses are that individuals 

with ADHD will display 1) reduced microstructural organisation and 2)  atypical 

development in limbic system white matter during the transition from childhood to mid-

adolescence compared to controls. Exploratory analyses will investigate the relationship 

between microstructural organisation of limbic system white matter tracts and ADHD 

symptom severity in children and adolescents with ADHD. 

 

5.2. Methods and Materials  

5.2.1. Study Design and Participants 

The clinical assessment and diagnosis grouping procedures used in this study was 

previously described in Section 2.2.1. Briefly, this longitudinal analysis consisted of 169 

children (72 children with ADHD and 97 controls) recruited as part of the Neuroimaging 

of the Children’s Attention Project (NICAP) (Sciberras et al. 2013; Silk, Genc, et al. 2016). 

Children between the ages of 6 and 8 years were initially recruited from 43 

socioeconomically diverse primary schools across Melbourne, Australia. Multimodal MRI 

scanning occurred at three time points (wave 1, mean = 10.39, SD = 0.46; wave 2, mean 

= 11.69, SD = 0.54; wave 3, mean = 13.19, SD = 0.62). This thesis focused on individuals 

with persistent ADHD diagnosis across the study time points. As such, the participants 

included in the ADHD group received a confirmed clinical ADHD diagnosis based on a 

clinically administered National Institute of Mental Health Diagnostic Interview Schedule 

for Children (DISC-IV) (Shaffer et al. 2000) at each assessment (recruitment [3 years prior 

to imaging], wave 1 and wave 3 imaging time points). Participants in the control group did 

not meet the diagnostic criteria for ADHD at any study time point. 
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5.2.2. Diffusion MRI Data Acquisition 

As described in Section 2.2.2, multimodal MRI images were collected from a 

single site at the Murdoch Children’s Research Institute at the Royal Children’s Hospital, 

Melbourne, on a 3-Tesla Siemens scanner using a 32-channel head coil. dMRI data were 

collected using a multi-band accelerated EPI sequence protocol (CMRR, University of 

Minnesota) (Moeller et al. 2010), which allows for accelerated dMRI multi-shell 

acquisition. Multi-shell high angular resolution diffusion imaging (HARDI) data were 

acquired using the following protocol: 2800 s/mm2, (60 directions, four interleaved b = 0 

volumes), 2000 s/mm2 (45 directions, 6 interleaved b = 0 volumes), and 1000 s/mm2 (25 

directions, 6 interleaved b = 0 volumes) with an anterior-posterior phase encoding 

direction. See Table 5.2 for description of the NICAP dMRI image acquisition protocol.  

 

 

Table 5.2 Description of diffusion imaging protocol used in the NICAP study. 

Parameter Shell 1 Shell 2  Shell 3 Comment 

Flip angle 90 90 90 The flip angle is the degree to which the radiofrequency 

(RF) pulse flips the magnetization vector off the 

direction of the main MRI magnetic field (Currie et al. 

2013). In diffusion MRI, the flip angle is typically set to 

90, to minimize the impact of T2 decay, allowing for a 

more accurate measurement of diffusion properties 

(Van Hecke, Emsell, and Sunaert 2016).  

 

Repetition Time  

(TR) 

3200ms 3200ms 3200ms The TR is the time interval between successive RF 

pulses. A longer TR value can lead to decreased signal-

to-noise ratio and reduced diffusion reconstruction 

accuracy (Currie et al. 2013). In dMRI the typical TR is 

>3ms to allow for full signal recovery (Van Hecke, 

Emsell, and Sunaert 2016). 

 

Echo Time 

(TE) 

110ms 110ms 110ms Echo time refers to the time interval between the RF 

pulse and the maximum amplitude of the MRI signal 

(Plewes and Kucharczyk 2012). In dMRI the typical 

range of TE is 60-110ms (Van Hecke, Emsell, and 

Sunaert 2016). 
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Matrix size (mm3) 110x110 110x110 110x110 The matrix size determines the spatial resolution of the 

reconstructed image. A larger matrix size provides 

increased spatial resolution but also lengthens the 

duration of the scan. In dMRI, the typical range of 

matrix size is 96-192 (mm3) but this can vary depending 

on study requirements (Van Hecke, Emsell, and Sunaert 

2016). 

 

Voxel size (mm3) 2.4 2.4 2.4 The voxel size is the cubic volume size of each voxel in 

the reconstructed image. It is linked to the matrix size 

and defines the spatial resolution of the reconstructed 

image. Smaller voxel size provides higher spatial 

resolution but also increases the computational expense 

and scan time. In dMRI, a voxel size of 1-6mm is 

typically used (Van Hecke, Emsell, and Sunaert 2016). 

 

Phase-encoding 

direction 

A/P A/P A/P The phase encoding direction refers to the direction in 

which the phase of MR signal encodes spatial 

information in the reconstructed image. It is essential 

that the phase encoding direction is on the same plane 

for all scans of the study. If not, the diffusion metrics 

may be affected (Van Hecke, Emsell, and Sunaert 

2016).  

 

Slice thickness 3mm 3mm 3mm The slice thickness refers to the thickness of each slice 

in the reconstructed image, lower slice thickness 

provides increased spatial resolution. In dMRI 

acquisition parameters, a range of 1-6mm is typically 

used (Van Hecke, Emsell, and Sunaert 2016). 

 

Slice gap 0mm 0mm 0mm The slice gap refers to the distance between two 

adjacent image slices. A slice thickness of 0mm avoids 

gaps and enables better fiber tracking for dMRI analysis 

(Van Hecke, Emsell, and Sunaert 2016).  

 

b-value (s/mm2) 2800 2000 1000 >2500 required for HARDI (Van Hecke, Emsell, and 

Sunaert 2016). 
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# of diffusion direction  60 45 25 Typically >40 used in HARDI (Van Hecke, Emsell, and 

Sunaert 2016). 

 

 

# of non-diffusion 4 6 6 About 1 per 6 diffusion images (Van Hecke, Emsell, 

and Sunaert 2016). 

 

 

Acquisition time  3.5-4m 3-3.5m 2-2.5m These are approximations, acquisition times may vary. 

Table 3.2: A/P = Anterior/Posterior, ms = millisecond, mm = millimeters, s/mm2 = seconds per millimeter squared, # = number, 

m = minute. 

 

5.2.3. Diffusion MRI Data Processing 

Diffusion images were processed using ExploreDTI software (Leemans et al. 

2009). A comprehensive breakdown of the dMRI processing procedures used in this study 

is presented in the step-by-step guide outlined in the Chapter 3. Briefly the pre-processing 

steps included signal drift, Gibbs ringing, echo-planar imaging (EPI) distortion and subject 

motion correction. To reduce the effects of EPI distortion and subject motion, each 

diffusion MRI scan was coregistered to a subject-specific structural MRI T1 nu_orig 

image (a volume with a normalised intensity, obtained by correcting for non-uniformity in 

the org.mgz volume). As recommended by Leemans and Jones (2009), b-matrices were 

rotated while correcting for subject motion/EPI distortion (Leemans and Jones 2009). This 

ensures that the diffusion gradients remain accurately aligned with the brain’s anatomy to 

improve the integrity of the diffusion metrics (Wheeler‐Kingshott and Cercignani 2009). 

Robust tensor estimation through the REKINDLE method was selected for its efficacy in 

removing outliers and maximizing tensor accuracy (Chang, Jones, and Pierpaoli 2005). 

Robust tensor estimations have been shown to significantly improve fibre reconstruction 

quality as is particularly beneficial in white matter fibres vulnerable to CSF contamination, 

such as the fornix, as evidenced in prior studies (Plaisier et al. 2014). 

Quality control of both raw and processed dMRI scans was conducted in line with 

diffusion MRI quality control guidelines (Tax, Vos, and Leemans 2016). The visual 

inspection focused on identifying and correcting specific diffusion artifacts, including 

eddy currents, Gibbs ringing, chemical shifts, Nyquist ghosting, pulsations, interslice 

instabilities, and signal dropouts. In evaluating raw dMRI images, a 4-point Likert scale 
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was utilized. A score of '1' was assigned to images free of visible artifacts, representing 

optimal quality. Images with a score of '2' exhibited minor artifacts, such as slight motion 

blur or minimal eddy current distortions, while a score of '3' was given to images with 

moderate artifacts, including more pronounced motion blur or eddy current distortions. 

Images severely compromised by artifacts, indicated by a score of '4', were characterised 

by excessive motion blur or significant susceptibility-induced geometric distortions. Any 

images that received a score of 3 or greater were excluded from the study. For the post-

processed images, a 3-point Likert scale was employed to assess the effectiveness of 

artifact corrections and the accuracy of diffusion profiles. Images with near-perfect 

reconstructions were scored as '1', those with minor issues confined to small brain areas 

received a '2', and scans with poor reconstruction, evidenced by extensive or distorted 

areas, were scored '3' and excluded from the study. The study's methodology encompassed 

standardised viewing conditions, ensuring consistent lighting and display settings for 

image review. An experience neuroscientist, skilled in identifying and rating MRI 

artifacts, conducted the inspections. A sequential analysis approach was adopted; each raw 

image was initially reviewed for quality, followed by the assessment of processed images, 

guaranteeing an unbiased evaluation. 

Following this thorough visual inspection, 360 scans were found suitable for 

analysis, with 15 scans excluded due to incomplete MRI image sets (missing b-value 

images) and 5 scans excluded due to quality concerns—2 during pre-processing and 3 

post-processing. No manual edits were made to the data of the remaining scans. 

 

5.2.4. Tractography Approach 

This chapter used deterministic Constrained Spherical Deconvolution (CSD) 

tractography to reconstruct whole brain tractography. The CSD approach was applied to 

the data using the concatenated multi-shell HARDI images (b = 1000, 2000, 2800 s/mm2) 

using the recursive calibration of the response function (Tax et al. 2014). Whole-brain 

fibre deterministic tractography was performed using the following settings: seed points 

resolution 2x2x2 mm3, step size 1 mm, angle threshold 60°, fibre length range, 10 – 500 

mm. Detailed descriptions of each of these settings is provided in the step-by-step guide 

in Section 7.4. 

A multiple region of interest (ROI) approach was used to ensure reliable and 

consistent extraction of the limbic system tracts across all participants. This approach has 
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previously been demonstrated to effectively isolate the major tracts in the human brain 

(Mori and van Zijl 2002; Wakana et al. 2007). To ensure the accuracy of the ROI gates, 

all tracts of interest were extracted using a subject-specific anatomic scan and colour-

coded first eigenvector-fractional anisotropy (FEFA) dMRI images. Details of tract 

extraction protocols are provided below.   

 

5.2.5. White matter tract extraction protocol 

 

Cingulum Bundles 

The cingulum bundle is a prominent white matter tract interconnecting frontal, 

parietal, and medial temporal regions, as well as linking subcortical nuclei to the cingulate 

gyrus (Vanderah and Gould 2016). The cingulum bundle is a key limbic system white 

matter tract, interconnecting the amygdala, hippocampus, cingulate gyrus as well as other 

regions (Catani, Dell'acqua, and Thiebaut de Schotten 2013). The ‘standard cingulum’ was 

reconstructed bilaterally using the protocol outlined by Jones and colleagues (Jones et al. 

2013). To locate the rostral-caudal midpoint of the body of the corpus callosum, the 

midpoint between the posterior part of the curve of the genu (i.e., its most posterior part at 

flexion and the front of the splenium (i.e., its most anterior part at flexure) was identified. 

Two “AND” ROI – the term “AND” indicates that fibres must pass through this ROI – 

drawn five sections anterior and posterior of the identified rostral-caudal midpoint of the 

body of the corpus callosum. These two “AND” ROIs were separated by approximately 

18mm in the anterior-posterior plane. All streamlines that passed through both “AND” 

ROIs were retained as ‘cingulum bundle’ pathways. Additional, “NOT” ROIs – the term 

“NOT” indicates that any fibres passing through this ROI are excluded – were used to 

exclude tracts that were inconsistent with known projections of the cingulum bundle. This 

procedure was repeated to extract the cingulum bundles in both hemispheres. A complete 

reconstruction of the bilateral cingulum bundles is provided in Figure 5.1.   

 

Figure 5.1 Reconstructed cingulum bundles in a single subject with ADHD using CSD-based tractography. 
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Figure 5.1: The figure shows the reconstructed cingulum bundles of a single subject in the ADHD group from this study. The 

cingulum bundles are highlighted in gold. 

 

Fornix 

The fornix is a key limbic system white matter bundle that interconnects the medial 

temporal lobe to the mammillary bodies and hypothalamus (Catani and Thiebaut de 

Schotten 2008; Ross 2008; Mori et al. 2000). The ROIs were manually drawn for each 

individual subject using landmark techniques that have been shown to be highly 

reproducible (Metzler-Baddeley et al. 2011). A seed ROI – a term “SEED” indicates that 

fibres either originated or terminated in the ROI – was placed where the anterior pillars 

enter the fornix body (coronal plane). Using the mid-sagittal plane as a guide, an “AND” 

ROI was drawn in the axial plane encompassing both the crus fornici at the lower part of 

the splenium of the corpus callosum. Finally, two “NOT” ROIs were drawn, 1) rostral to 

the anterior fornix pillars and caudal to the crus fornici (coronal slice), 2) through the 

corpus callosum and the upper pons (axial slice) to exclude streamlines from the corpus 

callosum and corticospinal tract. Once all ROIs were placed the fornix was reconstructed. 

This procedure was repeated to extract the fornix in both hemispheres. Figure 5.2 displays 

a complete reconstruction of the bilateral fornix.  
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Figure 5.2 Reconstructed bilateral fornix in a single subject with ADHD using CSD-based tractography. 

 

Figure 5.2: The figure shows the reconstructed bilateral fornix (red) of a single subject in the ADHD group from this study.  

 

Mammillothalamic Tracts 

The mammillothalamic tracts run inferior-superior from the mammillary bodies to 

the anterior thalamic nuclei and are the major connections of the anterior thalamic nuclei 

with the hypothalamic nuclei (Haines 2008). The multiple ROI approach to extracting the 

mammillothalamic tracts was described by Kamali and colleagues (2018) (Kamali et al. 

2018). Using a subject-specific FEFA diffusion image the first “AND” ROI was drawn to 

encompass the fibres coursing through the mammillary bodies (axial plane). The second 

“AND” ROI was placed to contain the streamlines projecting from the medial aspect of 

the anterior thalamic nuclei. The addition of a second “ROI” excluded possible 

contamination from the stria terminalis and fornix. This procedure was repeated to extract 

the mammillothalamic projections in both hemispheres. An example of a reconstructed 

bilateral mammillothalamic projections is provided in Figure 5.3.   
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Figure 5.3 Reconstructed mammillothalamic tracts in a single subject with ADHD using CSD-based 

tractography. 

 

Figure 5.3: The figure shows the reconstructed mammillothalamic tracts of a single subject in the ADHD group from this study. 

The mammillothalamic tracts are highlighted in yellow. 

 

Anterior Thalamic Projections 

The anterior thalamic nuclei receives incoming fibres from the mammillothalamic 

tract and fornix and send outgoing projections via the anterior thalamic pathways to the 

orbitofrontal and anterior cingulate cortex (Catani, Dell'acqua, and Thiebaut de Schotten 

2013). These anterior thalamic projections traverse through the anterior limb of the internal 

capsule, which is a dense bundle of white matter fibres that connects the thalamus to the 

cerebral cortex (Catani, Dell'acqua, and Thiebaut de Schotten 2013). A multiple ROI 

approach was used to extract the anterior thalamic projections (Niida et al. 2018; Wakana 

et al. 2007; Wakana et al. 2004). The first “AND” ROI was drawn that defines the anterior 

limb of the internal capsule (coronal plane), The second “AND” ROI was drawn and the 

entire thalamus was delineated (coronal slice). A “NOT” ROI passing through the 

midbrain, the corticospinal tract and the corticopontine tract (axial slice) were set to 

remove anatomically implausible fibres. This procedure was repeated to extract the 

anterior thalamic projections in both hemispheres. Figure 5.4 shows reconstructed bilateral 

anterior thalamic projections.  
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Figure 5.4 Reconstructed anterior thalamic projections in a single subject with ADHD using CSD-based 

tractography. 

 

Figure 5.4: The figure shows the reconstructed anterior thalamic projections of a single subject in the ADHD group from this 

study. The anterior thalamic projections are highlighted in green. 

 

Uncinate Fasciculus  

The uncinate fasciculus interconnects the anterior region of the temporal lobe with 

the orbital and polar frontal cortex. The white matter fibres of the uncinate fasciculus 

originate from the temporal pole, uncus, parahippocampal gyrus, and amygdala. Projecting 

in a U-shaped turn, the fibres enter the floor of the external capsule (Vanderah and Gould 

2016; Catani, Dell'acqua, and Thiebaut de Schotten 2013; Catani et al. 2002). Two “AND” 

ROIs were placed as follows: (1) at the hippocampus-amygdala region, which was drawn 

in the temporal lobe at the junction with the anterior part of the temporal stem (axial slice), 

and (2) at the anterior cingulate area was drawn in the medial frontal lobe (coronal slice) 

(Hernando et al. 2015; Kier et al. 2004). The two “AND” ROIs were drawn to cover a 

generous area to capture all possible streamlines that pass through both ROIs.  This 

procedure was repeated to extract the uncinate fasciculi in both hemispheres. A complete 

reconstruction of the bilateral uncinate fasciculus is displayed in Figure 5.5.   
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Figure 5.5 Reconstructed uncinate fasciculi in a single subject with ADHD using CSD-based tractography. 

 

Figure 5.5: The figure shows the reconstructed uncinate fasciculi of a single subject in the ADHD group from this study. The 

uncinate fasciculi are highlighted in purple. 

 

5.2.6. Behavioural Measures: Conner’s 3 ADHD index (CAI) and the Affective 

Reactivity Index (ARI) 

 

Conner’s 3 ADHD index (CAI): As described in Section 3.2.5.  

 

Affective reactivity index (ARI):  As explained in previously in Section 3.2.5.  

 

 

5.2.7. Statistical Analyses 

Prior to statistical analyses, all data points underwent Winsorization procedures 

(Reifman and Garrett 2010; Blaine 2018) (i.e. any data points with a z-score exceeding ±3 

were adjusted to ±3 standard deviations from the mean) to minimize the effects of extreme 

outliers. Full details of LMM procedures used in the study described in this chapter were 

previously presented in Section 3.2.6. Briefly, a top-down LMM model selection 

procedure was used to examine the between-group differences in microstructural 

organization of limbic system white matter tracts. The details of the LMM models tested 

in this study are presented in Table 5.3. Exploratory statistical analyses were conducted to 
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examine the relationship between microstructural organization of limbic system white 

matter tracts and behavioural measures (CAI and ARI) in children and adolescents with 

ADHD (model FX3b in Table 5.3). To mitigate the issues of multiple comparisons, a two-

stage FDR correction was applied using the MuToss package (Team et al. 2017) in R 

(v.4.1.1). As described in Section 3.2.6., sensitivity analyses were conducted to evaluate 

the potential influence of confounding factors, such as case-control sex imbalance, ADHD 

medication status, comorbidity status, and head motion on the primary statistical analyses. 

To investigate the impact of head motion, a sensitivity analysis was conducted, 

incorporating mean frame-wise displacement as a covariate in the primary analsis optimal 

models.  

 

Table 5.3 Tested models: limbic system white matter tracts in ADHD and controls. 

Random Effects Models 

RX 1a  

 ROI ~ age at baseline + sex + diagnosis*age + (1 + age |subject) 

 

RX 1b   

 ROI ~ age at baseline + sex + diagnosis* age + (1|subject) 

 

Fixed Effects Models 

Null 0a   

 ROI ~ age + age at baseline + sex + (1 + age | subject) 

 

Null 0b   

 ROI ~ age + age at baseline + sex + (1|subject) 

 

FX 1a   

 ROI ~ sex + age + age at baseline + diagnosis + (1 + age |subject) 

 

FX 1b   

 ROI ~ sex + age + age at baseline + diagnosis + (1|subject) 

 

FX 2a   

 ROI ~ sex + age + age at baseline + diagnosis* age + (1 + age |subject) 

 

FX 2b   

 ROI ~ sex + age + age at baseline + diagnosis* age + (1|subject) 
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FX 3b  

 ROI ~ ICV + sex + age* ADHD symptom + (1|subject) 

Table 5.3: RX = random effects, FX = fixed effects, ROI = regions of interest, age = participant age from 

baseline (in months). To increase interpretability age was mean-centred at baseline. 

 

5.3. Results 

5.3.1. Demographics and Clinical Characteristics of Study Population 

Full details of the demographic and clinical characteristics of this chapter’s study 

population are provided in Table 5.4. No significant between-group difference was found 

in age, handedness, socioeconomic status, or matrix reasoning across all three study time 

points. Clinically, children with ADHD had significantly higher levels of ADHD symptom 

severity compared to controls. Children with ADHD were also more likely to present with 

externalising and internalising disorders than controls.  

 

Table 5.4 Demographics and clinical variables. 

  Mean (SD) p-value 

  ADHD Control  

Time point 1 

Demographic factors    

Scans after QC 59 74  

Age – years 10.40 (0.49) 10.37 (0.49) 0.789 

Female sex n (%) 14 (23.72%) 30 (40.54%) 0.062 

Left-handed n (%) 9 (15.25%) 11 (14.86%) 0.950 

Matrix reasoning raw 21.68 (5.55) 21.74 (4.64) 0.841 

SES 1016.3 (41.22) 1020 (43.39) 0.654 

    

Clinical factors 

 

   

Connor’s Index 10.98 (6.52) 2.44 (4.29)) <0.001 

Hyperactivity 

symptoms 

4.76 (2.75) 1.08 (1.61) <0.001 

Inattentive symptoms 7.06 (2.18) 1.70 (2.20) <0.001 

Medication use (%) 18 (30.50%) 4 (5.40%) <0.001 
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Extern. Disorder n (%)  29 (49.15%) 15 (20.27) <0.001 

Intern. Disorder (%) 16 (27.12%) 9 (12.16%) 0.028 

Time point 2 

Demographic factors    

Scans after QC 55 76  

Age – years 11.69 (0.52) 11.68 (0.56) 0.925 

Female sex n (%) 13 (23.63%) 32 (42.10%) 0.044 

Left-handed n (%) 6 (10.90%) 10 (13.15%) 0.698 

Matrix reasoning raw 24.43 (4.60) 24.36 (4.71) 0.940 

SES 1017 (40.12) 1016 (47.27) 0.892 

    

Clinical factors    

Connor’s Index 10.49 (6.81) 2.42 (3.80) <0.001 

Medication use (%) 17 (30.90%) 4 (5.47%) <0.001 

Time point 3 

Demographic factors    

Scans after QC 40 56  

Age – years 13.28 (0.62) 13.13 (0.59) 0.242 

Female sex n (%) 9 (22.5%) 24 (42.85%) 0.063 

Left-handed n (%) 6 (15%) 6 (10.51%) 0.531 

Matrix reasoning raw 25.98 (4.47) 25.6 (4.24) 0.614 

SES 1020.6 (39.25) 1015 (50.86) 0.649 

    

Clinical factors    

Connor’s Index 9.09 (6.69) 1.63 (3.91) <0.001 

Medication use (%) 9 (22.5%) 1 (1.78) 0.004 

Extern. Disorder n (%)  8 (20%) 4 (7.14%) 0.147 

Intern. Disorder (%) 10 (25%) 2 (3.57%) 0.006 

Table 3.4: p = p-value, SD = standard deviation, SES = socio-economic status. 

 

 

 

 

 



 165 

 

 

5.3.2. Limbic System White Matter Tracts in Children and Adolescents with 

ADHD and Controls 

 

Model Selection Procedure 

Full details of the model selection fit statistics are provided in the appendices 

(Tables 6-21 provided in volume 2). A total of twelve fixed effects of interest models 

(model containing diagnosis and/or diagnosis-by-age interaction) were significantly 

different compared to the null models. For all other models, there was no significant 

difference between the fixed effects of interest models and the null models, indicating the 

effects of white matter microstructure due to the fixed measures of interest. The selected 

optimal models from the top-down LMM model selection procedure are provided in Table 

5.5. 

 

Table 5.5 Results of LMM model selection: optimal models. 

 FA AD MD RD KA AK MK RK 

Cingulum Bundle (Left) 

 
FX1A FX1A FX1A FX1A FX1A* FX1B FX1B FX1A 

Cingulum Bundle (Right) 

 
FX1B FX1B FX1B FX1B FX1A* FX1B FX1B FX1A 

Fornix (Left) 

 
FX1B FX1B* FX1B FX2B* FX1B* FX1B FX1B FX1B 

Fornix (Right) 

 
FX1B* FX1B FX1B* FX1B FX1B* FX1B FX1B FX1B 

Anterior Thalamic 

Projections (Left) 

 

FX1A FX1A FX1A FX1A FX1A* FX1B FX1B FX2B* 

Anterior Thalamic 

Projections (Right) 

 

FX1B FX1B FX1A FX1B FX2B FX1B FX1B FX1A 

Mammillothalamic tract 

(Left) 

 

FX1B FX1B FX1B FX1B FX1B FX1B FX1B FX1B 
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Mammillothalamic tract 

(Right) 

 

FX1B FX1B FX1B FX1B FX1B FX1B* FX1B* FX1B 

Uncinate Fasciculus 

(Left) 

 

FX1B FX1A FX1A* FX1A FX1B* FX1B FX1B FX1B 

Uncinate Fasciculus 

(Right) 
FX1A* FX1B FX1B FX1A FX1B FX1B FX1B FX1B 

Table 3.5: * = Model was significantly different to the null models 

 

Results of Optimal Models 

There was a significant effect of the diagnostic group in kurtosis anisotropy (KA)  

of the bilateral cingulum bundle (Left, β = -0.36, 95% CI = -0.62 to -0.09; Right, β = -

0.36, 95% CI = -0.62 to -0.11, (Figure 5.6)) and left Fornix (β = -0.32, 95% CI = -0.57 to 

-0.06, (Figure 5.7)), characterised by reduced KA in these white matter tracts across all 

three study time points compared to controls. There was a significant effect of the group-

by-age interaction of RK in the left anterior thalamic projection (β = 0.25, 95% CI = 0.08 

to 0.42, (Figure 5.8)), organization by increased change of RK in the ADHD group 

compared to controls across the three study time points. There was a significant effect of 

the diagnostic group in RD of the left Fornix (β = 0.31, 95% CI = 0.04 to 0.58), 

organization by increased RD in the ADHD group compared to controls (see Figure 5.9). 

All regions reported above survived two-stage FDR correction. There were no other 

significant between-group differences in the microstructural organisation of limbic system 

white matter in children with ADHD and controls. All other findings are presented in Table 

5.6-5.15 and Figure 5.10-5.17. 

 

5.3.3. ADHD Symptoms Severity and Limbic System White Matter in ADHD 

The exploratory analyses found no significant effect of the interaction term ADHD 

symptom-by-age on limbic system white matter tract  microstructural organisation in in 

the ADHD group across the study time points (CAI,     Figure 5.18-5.25;     Figure 5.26-

5.33). Full details of these results are provided in Table 5.16-5.31 and Figure 5.18-5.33.  
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5.3.4. Sensitivity Analyses 

The first sensitivity analysis, using the 100 random sex-matched LMM analyses, 

reported an expected slight reduction in p-value significance, given the increase in 

standard errors (SE) related to the reduction in sample size (Table 5.32). Importantly the 

beta values for the main effect of diagnosis were still within the SEs of the optimal models 

(Figure 5.34). Given the beta value and SEs, the sensitivity analysis demonstrated that the 

overall pattern of results in the primary analysis was most likely not confounded by a sex-

ratio group imbalance in the study.  

The second sensitivity analysis found there was no significant difference in white 

matter microstructural organization in the bilateral cingulum bundle, left fornix, and left 

anterior thalamic projection among medicated ADHD and non-medicated ADHD children 

(Tables 5.33-5.34).  

The results of the third and fourth sensitivity analyses are presented in Table 5.35 

and 5.36, importantly in the sensitivity analyses the beta values for the effect of diagnosis 

remained within the SEs of the optimal models (see Figure 5.35-5.36). Considering the 

beta value and SEs, this sensitivity analysis indicated that the main findings of the primary 

analysis were likely not confounded by the presence comorbidity or head motion. Overall, 

the sensitivity analyses demonstrated that the results of the primary analysis were most 

likely not biased by the sex ratio per group, medication status, comorbidity status or head 

motion.   
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Figure 5.6 Kurtosis anisotropy of the bilateral cingulum bundle across the three study time points. 

Left Cingulum Bundle Right Cingulum 

  

Figure 5.6: Bilateral cingulum bundle KA in the ADHD and control groups during the transition from childhood to mid-adolescence. 

A main effect of group interaction was observed in the bilateral cingulum; the ADHD group displayed reduced KA compared to the 

control group across all three study time points.           

 

 

 

Figure 5.7 Kurtosis anisotropy of the left fornix across the three study time points. 

Left Fornix 

 

 

Figure 5.7: Left Fornix KA in the ADHD and control groups during the transition from childhood to mid-

adolescence. A significant main effect of group was observed in the left Fornix; the ADHD group displayed 

reduced KA compared to the control group.  
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Figure 5.8 Radial Kurtosis of the left anterior thalamic projecton across the three study 

time points. 

Left Anterior Thalamic Projection 

 

 

 

 

Figure 5.8: Left anterior thalamic projection RK in the ADHD and control groups during the transition from 

childhood to mid-adolescence. A group-by-age interaction was observed in the left anterior thalamic 

projection; the ADHD group displayed increased RK compared to the control group. 

 

 

 

 

 

 

Figure 5.9 Radial diffusivity of the left fornix across the three study time points. 

Left Fornix 

 

 

 

 

 

 

 

 

Figure 5.9: Left Fornix development in the ADHD and control groups during the transition from childhood 

to mid-adolescence. A group effect was observed in the left Fornix; the ADHD group displayed increased RD 

compared to the control group. No significant group-by-age interaction was observed. 
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Table 5.6 Results of optimal mixed-effects models (without interaction term) analyses: limbic system white matter KA in ADHD and controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

-9.077e-04 

(3.534e-03) 

-0.257,  

0.079 

2.466e-04 

(7.318e-05) 

3.369 , 

<0.000 

6.657e-03 

(3.563e-03) 

1.869, 

0.063 

-8.780e-03 

(3.331e-03) 

-2.635, 

0.009* 

Cingulum Bundle (Right) 

 

 

3.054e-03 

(3.483e-03) 

0.877, 

0.381 

3.712e-04 

(7.315e-05) 

5.074 , 

<0.000 

1.276e-02 

(3.628e-03) 

3.518 , 

<0.000 

-9.178e-03 

(3.299e-03) 

-2.782, 

0.006* 

Fornix (Right) 

 

 

-8.876e-04 

(4.068e-03) 

-0.218, 

0.828 

-1.960e-04  

(7.911e-05 ) 

-2.478, 

0.014 

9.841e-03 

(4.117e-03) 

2.390, 

0.018 

-4.772e-03 

(3.860e-03) 

-1.236 

0.218 

Anterior Thalamic Projections 

(Left) 

 

8.212e-04 

(2.619e-03) 

0.314, 

0.754 

-1.703e-04 

(5.980e-05) 

-2.848, 

0.005 

1.927e-03 

(2.642e-03) 

0.729, 

0.466 

-5.481e-03 

(2.479e-03) 

-2.211, 

0.028 

Anterior Thalamic Projections 

(Right) 

 

6.984e-04 

(2.625e-03) 

0.266, 

0.790 

1.843e-05 

(5.245e-05) 

0.351, 

0.725 

4.119e-03 

(2.653e-03) 

1.552, 

0.122 

-5.240e-03 

(2.489e-03) 

-2.105, 

0.036 

Mammillothalamic tract (Left) 

 

 

-2.692e-04 

(3.760e-03) 

-0.072, 

0.943 

-7.215e-04 

(1.215e-04) 

-5.936, 

<0.000 

5.136e-03 

(3.866e-03) 

1.329, 

0.186 

-5.419e-03 

(3.598e-03) 

-1.506, 

0.134 



 171 

Mammillothalamic tract 

(Right) 

 

-5.522e-04 

(4.232e-03) 

-0.130, 

0.896 

-5.411e-04 

(1.312e-04) 

-4.124, 

<0.000 

-2.286e-03 

(4.341e-03) 

-0.52, 

0.599 

5.953e-03  

(4.041e-03) 

1.473, 

0.143 

Uncinate Fasciculus (Left) 

 

 

-1.934e-03  

(3.080e-03) 

-0.628, 

0.530 

2.293e-04 

(6.918e-05) 

-3.314, 

0.001 

6.074e-03  

(3.110e-03) 

1.953, 

0.052 

-2.538e-03 

(2.922e-03) 

-0.868,  

0.386 

Uncinate Fasciculus (Right) 1.426e-04 

(3.299e-03) 

0.043, 

0.966 

4.532e-06  

(6.262e-05) 

0.072, 

0.942 

4.192e-03 

(3.315e-03) 

1.265, 

0.208 

-1.251e-03 

(3.137e-03) 

-0.399,  

0.691 

 

 

 

Table 5.7 Results of optimal mixed-effects models (with interaction term) analyses: limbic system white matter tracts KA in ADHD and controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis Diagnosis * Months from 

baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Fornix (left) 3.083e-03 

(3.163e-03) 

0.975, 

0.331 

-4.787e-04  

(7.474e-05) 

-6.405, 

<0.000 

2.570e-03 

(3.231e-03) 

0.795, 

0.042 

-1.007e-02 

(3.675e-03) 

-2.740, 

0.006* 

1.870e-04  

(1.496e-04) 

1.250, 

0.212 
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Table 5.8 Results of optimal mixed-effects models (without interaction term) analyses: limbic system white matter AK in ADHD and controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.426e-03 

(4.033e-03) 

0.360,  

0.719 

1.967-03 

(1.111e-04) 

17.713 , 

<0.000 

1.157e-02 

(4.128e-03) 

2.805, 

0.005 

-2.175e-03 

(3.854e-03) 

-0.565, 

0.573 

Cingulum Bundle (Right) 

 

 

3.707e-04 

(3.914e-03) 

0.095, 

0.924 

2.119e-03 

(1.110e-04) 

19.100 , 

<0.000 

8.917e-03  

(4.008e-03) 

2.225 , 

0.027 

-1.719e-03  

(3.742e-03) 

-0.459, 

0.646 

Fornix (Left) 

 

 

5.890e-03  

(5.022e-03) 

1.173, 

0.243 

1.151e-03  

(1.402e-04) 

8.205, 

<0.000 

1.986e-03 

(5.165e-03) 

0.385, 

0.701 

-2.708e-03 

(4.769e-03) 

-0.568 

0.571 

Fornix (Right) 

 

 

5.373e-03 

(9.350e-03) 

0.575, 

0.566 

1.527e-03  

(1.895e-04) 

8.055, 

<0.000 

1.360e-02  

(9.472e-03) 

1.436, 

0.153 

-6.686e-03  

(8.881e-03) 

-0.753 

0.453 

Anterior Thalamic Projections 

(Left) 

 

8.689e-03  

(3.837e-03) 

2.265, 

0.025 

1.885e-03  

(1.118e-04) 

16.861, 

<0.000 

8.626e-03  

(3.923e-03) 

2.198, 

0.029 

-1.771e-03  

(3.662e-03) 

-0.484, 

0.629 

Anterior Thalamic Projections 

(Right) 

 

7.338e-03  

(3.850e-03) 

1.906, 

0.058 

2.131e-03  

(1.172e-04) 

18.181, 

<0.000 

8.942e-03  

(3.947e-03) 

2.266, 

0.024 

-1.992e-03  

(3.685e-03) 

-0.540, 

0.589 
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Mammillothalamic tract (Left) 

 

 

1.852e-02  

(7.815e-03) 

2.369, 

0.019 

8.635e-04  

(2.245e-04) 

3.846, 

<0.000 

6.913e-03  

(7.993e-03) 

0.865, 

0.388 

-5.954e-03  

(7.467e-03) 

-0.797, 

0.426 

Mammillothalamic tract (Right) 

 

 

3.598e-04 

(8.132e-03) 

0.044, 

0.964 

7.370e-04 

(2.505e-04) 

2.94, 

0.003 

8.514e-03 

(8.340e-03) 

1.02, 

0.308 

1.865e-02  

(7.765e-03) 

2.40, 

0.017 

Uncinate Fasciculus (Left) 

 

 

6.067e-03  

(5.240e-03) 

1.158, 

0.249 

1.582e-03 

(1.317e-04) 

12.014, 

<0.000 

8.431e-03 

(5.307e-03) 

1.588, 

0.114 

-4.411e-03  

(4.989e-03) 

-0.884,  

0.378 

Uncinate Fasciculus (Right) 1.261e-02 

(4.943e-03) 

2.551, 

0.011 

2.119e-03  

(1.424e-04) 

14.877, 

<0.000 

1.072e-02  

(5.038e-03) 

2.129, 

0.035 

-2.872e-03  

(4.759e-03) 

-0.603,  

0.547 
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Table 5.9 Results of optimal mixed-effects models (without interaction term) analyses: limbic system white matter MK in ADHD and controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.012e-02  

(6.879e-03) 

1.471,  

0.143 

2.559e-03  

(1.635e-04) 

15.653 , 

<0.000 

1.846e-02  

(7.083e-03) 

2.607, 

0.009 

-1.078e-02  

(6.558e-03) 

-1.643, 

0.102 

Cingulum Bundle (Right) 

 

 

9.482e-03 

(6.822e-03) 

1.390, 

0.166 

2.674e-03 

(1.623e-04) 

16.477 , 

<0.000 

1.912e-02 

(7.001e-03) 

2.730 , 

0.007 

-1.025e-02  

(6.498e-03) 

-1.578, 

0.116 

Fornix (Left) 

 

 

1.030e-03 

(7.506e-03) 

0.137, 

0.891 

1.304e-03  

(1.865e-04) 

6.994, 

<0.000 

9.730e-03 

(7.699e-03) 

1.264, 

0.208 

-3.048e-03  

(7.115e-03) 

-0.428 

0.669 

Fornix (Right) 

 

 

4.143e-03  

(1.179e-02) 

0.351, 

0.726 

1.587e-03  

(2.353e-04) 

6.743, 

<0.000 

1.873e-02  

(1.194e-02) 

1.569, 

0.119 

-9.060e-03   

(1.119e-02) 

-0.809 

0.419 

Anterior Thalamic Projections 

(Left) 

 

9.215e-03 

(6.415e-03) 

1.437, 

0.153 

2.028e-03 

(1.546e-04) 

13.123, 

<0.000 

5.192e-03 

(6.587e-03) 

0.788, 

0.432 

-9.493e-03  

(6.104e-03) 

-1.555, 

0.122 

Anterior Thalamic Projections 

(Right) 

6.471e-03 

(6.847e-03) 

0.945, 

0.346 

2.293e-03 

(1.635e-04) 

14.028, 

<0.000 

1.209e-02 

(7.036e-03) 

1.719, 

0.087 

-1.146e-02  

(6.524e-03) 

-1.756, 

0.081 
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Mammillothalamic tract (Left) 

 

 

8.107e-03 

(8.345e-03) 

0.972, 

0.333 

1.154e-03 

(2.271e-04) 

5.082, 

<0.000 

1.056e-02 

(8.532e-03) 

1.237, 

0.218 

-1.892e-03  

(7.966e-03) 

-0.238, 

0.813 

Mammillothalamic tract (Right) 

 

 

-5.694e-03  

(8.876e-03) 

-0.641, 

0.522 

7.064e-04 

(2.557e-04) 

2.76, 

0.006 

9.534e-03 

(9.078e-03) 

1.05, 

0.295 

2.156e-02   

(8.465e-03) 

2.54, 

0.011 

Uncinate Fasciculus (Left) 

 

 

4.347e-03 

(9.027e-03) 

0.482, 

0.631 

1.463e-03  

(2.065e-04) 

7.086, 

<0.000 

1.488e-02 

(9.257e-03) 

1.608, 

0.110 

-8.326e-03  

(8.589e-03) 

-0.969,  

0.334 

Uncinate Fasciculus (Right) 1.624e-02  

(7.921e-03) 

2.050, 

0.042 

1.973e-03  

(2.049e-04) 

9.628, 

<0.000 

9.146e-03  

(8.111e-03) 

1.128, 

0.261 

-5.167e-03  

(7.589e-03) 

-0.681,  

0.497 
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Table 5.10 Results of optimal mixed-effects models (without interaction term) analyses: limbic system white matter RK in ADHD and controls. 

 Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.259e-02 

(1.290e-02) 

0.975,  

0.331 

3.029e-03 

(3.739e-04) 

8.102 , 

<0.000 

1.934e-02 

(1.308e-02) 

1.478,, 

0.141 

-9.889e-03  

(1.227e-02) 

-0.806, 

0.421 

Cingulum Bundle (Right) 

 

 

2.150e-02 

(1.329e-02) 

1.617, 

0.107 

2.710e-03 

(3.472e-04) 

7.804 , 

<0.000 

3.296e-02 

(1.346e-02) 

2.449, 

0.015 

-1.767e-02  

(1.263e-02) 

-1.400, 

0.163 

Fornix (Left) 

 

 

1.470e-0 

(1.472e-02) 

0.100, 

0.921 

1.487e-03  

(3.194e-04) 

4.655,, 

<0.000 

6.010e-03 

(1.531e-02) 

0.392, 

0.695 

1.468e-04 

(1.397e-02) 

0.011 

0.992 

Fornix (Right) 

 

 

7.868e-03 

(1.574e-02) 

0.500, 

0.618 

1.437e-03 

(3.268e-04) 

4.397, 

<0.000 

1.304e-02 

(1.594e-02) 

0.818, 

0.415 

-1.004e-02  

(1.495e-02) 

-0.672 

0.503 

Anterior Thalamic Projections 

(Right) 

 

5.102e-04 

(1.198e-02) 

0.043, 

0.966 

2.485e-03 

(3.143e-04) 

7.906, 

<0.000 

2.370e-02 

(1.211e-02) 

1.957, 

0.052 

-1.682e-02  

(1.138e-02) 

-1.478, 

0.141 

Mammillothalamic tract (Left) 

 

 

4.431e-04 

(1.056e-02) 

0.042, 

0.967 

2.105e-03 

(2.964e-04) 

7.100, 

<0.000 

1.652e-02 

(1.081e-02) 

1.528, 

0.128 

-3.329e-03 

(1.009e-02) 

-0.330, 

0.742 
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Mammillothalamic tract (Right) 

 

 

-6.837e-03  

(1.113e-02) 

-0.600, 

0.549 

1.082e-03  

(3.040e-04) 

3.560, 

<0.000 

5.180e-03 

(1.162e-02) 

0.446, 

0.656 

1.615e-02   

(1.085e-02) 

1.488, 

0.138 

Uncinate Fasciculus (Left) 

 

 

4.820e-03 

(1.541e-02) 

0.313, 

0.755 

1.860e-03  

(3.717e-04) 

5.004, 

<0.000 

2.361e-02 

(1.558e-02) 

1.515, 

0.132 

-1.021e-02 

(1.463e-02) 

-0.698,  

0.486 

Uncinate Fasciculus (Right) 2.205e-02 

(1.458e-02) 

1.512, 

0.133 

1.943e-03 

(3.603e-04) 

5.393, 

<0.000 

1.105e-02 

(1.474e-02) 

0.750, 

0.455 

-5.551e-03 

(1.395e-02) 

-0.398,  

0.691 
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Table 5.11 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts RK in ADHD and controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis Diagnosis * Months from 

baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Anterior 

Thalamic 

Projections 

(Left) 

3.282e-03 

(1.120e-02) 

0.293, 

0.769 

2.614e-03 

(2.709e-04) 

9.647, 

<0.000 

5.270e-03 

(1.135e-02) 

0.464, 

0.642 

-3.406e-02 

(1.306e-02) 

-2.608, 

0.009 

1.591e-03 

(5.427e-04) 

2.93, 

0.003* 
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Table 5.12 Results of optimal mixed-effects models (without interaction term) analyses: limbic system white matter FA in ADHD and controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

4.119e-03 

(3.998e-03) 

1.030,  

0.304 

4.180e-04 

(1.144e-04) 

3.654 , 

<0.000 

6.110e-03 

(4.047e-03) 

1.510, 

0.133 

-2.315e-03  

(3.788e-03) 

-0.611, 

0.541 

Cingulum Bundle (Right) 

 

 

1.779e-03 

(4.297e-03) 

0.414, 

0.679 

6.988e-04 

(7.156e-05) 

9.765, 

<0.000 

9.252e-03 

(4.335e-03) 

2.134, 

0.034 

-6.047e-03  

(4.055e-03) 

-1.491, 

0.137 

Fornix (Left) 

 

 

7.554e-03 

(5.922e-03) 

1.276, 

0.204 

-6.713e-04 

(1.139e-04) 

-5.894, 

<0.000 

5.085e-03  

(5.993e-03) 

0.848, 

0.397 

-7.863e-03  

(5.614e-03) 

-1.401 

0.163 

Fornix (Right) 

 

 

7.316e-03 

(4.696e-03) 

1.558, 

0.121 

-1.882e-04  

(1.130e-04 ) 

-1.666, 

0.097 

2.053e-03   

(4.766e-03) 

0.431, 

0.667 

-1.035e-02   

(4.466e-03) 

-2.317 

0.021 

Anterior Thalamic 

Projections (Left) 

 

2.542e-03 

(3.495e-03) 

0.727, 

0.468 

2.293e-04 

(9.267e-05) 

2.474, 

0.014 

4.416e-04 

(3.541e-03) 

0.125, 

0.900 

-7.193e-05  

(3.313e-03) 

-0.022, 

0.982 

Anterior Thalamic 

Projections (Right) 

 

-2.266e-03 

(3.651e-03) 

-0.621, 

0.533 

2.920e-04 

(7.469e-05) 

3.910, 

<0.000 

4.838e-03 

(3.699e-03) 

1.308, 

0.192 

-4.496e-03  

(3.464e-03) 

-1.298, 

0.196 



 180 

Mammillothalamic tract 

(Left) 

 

-6.496e-03 

(4.896e-03) 

-1.327, 

0.186 

-4.426e-04  

(1.342e-04) 

-3.298, 

0.001 

1.042e-02 

(4.999e-03) 

2.085, 

0.038 

-5.286e-03  

(4.671e-03) 

-1.131, 

0.259 

Mammillothalamic tract 

(Right) 

 

-4.305e-03 

(4.693e-03) 

-0.917, 

0.360 

-2.114e-04 

(1.460e-04) 

-1.488, 

0.149 

1.234e-03 

(4.815e-03) 

0.256, 

0.798 

4.918e-03    

(4.489e-03) 

1.095, 

0.275 

Uncinate Fasciculus (Left) 

 

 

-3.623e-03 

(5.099e-03) 

-0.711, 

0.478 

1.861e-04 

(9.763e-05) 

1.907, 

0.057 

-3.816e-03 

(5.162e-03) 

-0.739, 

0.460 

2.665e-04   

(4.822e-03) 

0.055,  

0.956 

Uncinate Fasciculus 

(Right) 

-4.073e-03  

(4.851e-03) 

-0.839, 

0.402 

3.820e-04  

(1.315e-04) 

2.906, 

0.004 

5.227e-03 

(4.901e-03) 

1.066, 

0.287 

-5.946e-03  

(4.618e-03) 

-1.288,  

0.199 
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Table 5.13 Results of optimal mixed-effects models (without interaction term) analyses: limbic system white matter MD in ADHD and controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.283e-05 

(5.406e-06) 

2.373,  

0.018 

-8.210e-07  

(1.546e-07  ) 

-5.312, 

<0.000 

-1.427e-06  

(5.479e-06) 

-0.260, 

0.794 

-3.572e-06  

(5.127e-06) 

-0.697, 

0.487 

Cingulum Bundle (Right) 

 

 

1.345e-05 

(5.976e-06) 

2.251, 

0.025 

-1.514e-06  

(1.090e-07) 

-13.890, 

<0.000 

-5.890e-06  

(6.041e-06) 

-0.975, 

0.331 

2.384e-06  

(5.657e-06) 

0.421, 

0.674 

Fornix (Left) 

 

 

-2.305e-05 

(1.888e-05) 

-1.221, 

0.224 

-3.167e-07  

(3.578e-07) 

-0.885, 

0.377 

3.905e-05  

(1.911e-05) 

2.044, 

0.042 

3.555e-05   

(1.790e-05) 

1.986 

0.048 

Fornix (Right) 

 

 

1.469e-06 

(1.538e-05) 

0.096, 

0.924 

-4.347e-07  

(4.095e-07) 

-1.062, 

0.289 

1.659e-05 

(1.564e-05) 

1.061, 

0.290 

-1.452e-05  

(1.465e-05) 

-0.992, 

0.323 

Anterior Thalamic 

Projections (Left) 

 

9.015e-06 

(5.156e-06) 

1.749, 

0.082 

-8.101e-07 

(1.462e-07) 

-5.539, 

<0.000 

2.881e-06 

(5.223e-06) 

0.552, 

0.581 

-4.902e-06  

(4.887e-06) 

-1.003, 

0.317 

Anterior Thalamic 

Projections (Right) 

 

9.705e-06 

(5.420e-06) 

1.790, 

0.075 

-1.301e-06  

(1.181e-07) 

-11.016, 

<0.000 

1.548e-06 

(5.477e-06) 

0.283, 

0.777 

-3.256e-06  

(5.136e-06) 

-0.634, 

0.527 
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Mammillothalamic tract 

(Left) 

 

1.261e-05 

(1.851e-05) 

0.691, 

0.497 

6.785e-07 

(5.379e-07) 

1.262, 

0.208 

-7.484e-06 

(1.894e-05) 

-0.395, 

0.693 

1.551e-05  

(1.768e-05) 

0.877, 

0.382 

Mammillothalamic tract 

(Right) 

 

3.848e-06 

(2.491e-05) 

0.154, 

0.877 

-2.992e-07 

(6.593e-07) 

-0.454, 

0.650 

4.296e-05 

(2.541e-05) 

1.691, 

0.092 

-2.473e-05  

(2.375e-05) 

-1.041, 

0.299 

Uncinate Fasciculus (Left) 

 

 

7.794e-06 

(5.680e-06) 

1.372, 

0.172 

-1.134e-06 

(1.727e-07) 

-6.564, 

<0.000 

4.100e-06 

(5.770e-06) 

0.710, 

0.478 

-3.648e-06  

(5.399e-06) 

-0.676,  

0.500 

Uncinate Fasciculus 

(Right) 

1.591e-05 

(6.338e-06) 

2.511, 

0.013 

-8.770e-07 

(1.789e-07) 

-4.901, 

<0.000 

-5.596e-06 

(6.447e-06) 

-0.868, 

0.386 

1.690e-06  

(6.056e-06) 

0.279,  

0.780 
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 Table 5.14 Results of optimal mixed-effects models (without interaction term) analyses: limbic system white matter AD in ADHD and controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

2.410e-05 

(7.341e-06) 

3.283,  

0.001 

-6.963e-07  

(2.021e-07) 

-3.445, 

<0.000 

2.210e-06 

(7.443e-06) 

0.297, 

0.766 

-6.686e-06  

(6.964e-06) 

-0.960, 

0.338 

Cingulum Bundle (Right) 

 

 

1.979e-05 

(7.632e-06) 

2.593, 

0.010 

-1.342e-06  

(1.567e-07) 

-8.559, 

<0.000 

3.410e-07 

(7.732e-06) 

0.044, 

0.964 

-6.223e-06  

(7.246e-06) 

-0.859, 

0.391 

Fornix (Left) 

 

 

-1.590e-05 

(3.328e-05) 

-0.478, 

0.633 

-1.143e-06  

(6.621e-07) 

-1.726, 

0.085 

6.079e-05 

(3.370e-05) 

1.804, 

0.073 

3.021e-05  

(3.157e-05) 

0.957, 

0.340 

Fornix (Right) 

 

 

2.026e-06 

(2.627e-05) 

0.077, 

0.938 

-7.332e-07  

(7.225e-07) 

-1.015, 

0.311 

2.894e-05  

(2.672e-05) 

1.083, 

0.280 

-5.403e-05  

(2.503e-05) 

-2.158 

0.032 

Anterior Thalamic 

Projections (Left) 

 

1.452e-05 

(6.340e-06) 

2.290, 

0.023 

-6.893e-07 

(1.714e-07) 

-4.021, 

<0.000 

2.813e-06 

(6.418e-06) 

0.438, 

0.661 

-1.049e-05  

(6.006e-06) 

-1.746, 

0.082 

Anterior Thalamic 

Projections (Right) 

1.155e-05 

(6.939e-06) 

1.665, 

0.098 

-1.397e-06 

(1.515e-07) 

-9.224, 

<0.000 

2.152e-06 

(7.041e-06) 

0.306, 

0.760 

-8.251e-06  

(6.596e-06) 

-1.251, 

0.212 
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Mammillothalamic tract 

(Left) 

 

1.240e-05 

(2.331e-05) 

0.532, 

0.595 

4.022e-07 

(6.350e-07) 

0.633, 

0.527 

5.225e-06 

(2.379e-05) 

0.220, 

0.826 

9.672e-06  

(2.223e-05) 

0.435, 

0.664 

Mammillothalamic tract 

(Right) 

 

6.763e-06 

(3.157e-05) 

0.214, 

0.830 

-4.851e-07 

(7.916e-07) 

-0.613, 

0.540 

6.788e-05 

(3.215e-05) 

2.112, 

0.036 

-2.384e-05  

(3.007e-05) 

-0.793, 

0.429 

Uncinate Fasciculus (Left) 

 

 

9.607e-06 

(8.381e-06) 

1.146, 

0.254 

-1.286e-06  

(2.567e-07) 

-5.010, 

<0.000 

6.048e-06     

(8.518e-06) 

0.710, 

0.479 

-6.224e-06  

(7.972e-06) 

-0.781,  

0.436 

Uncinate Fasciculus 

(Right) 

2.018e-05 

(8.412e-06) 

2.399, 

0.017 

-8.440e-07 

(2.363e-07) 

-3.572, 

<0.000 

1.488e-06 

(8.556e-06) 

0.174, 

0.862 

-9.489e-06  

(8.037e-06) 

-1.181,  

0.239 



 185 

Table 5.15 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts RD in ADHD and Controls. 

 

 

Sex Months from baseline Age at baseline Diagnosis Diagnosis * Months 

from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

7.258e-06  

(5.711e-06) 

1.271, 

0.206 

-8.479e-07  

(1.647e-07) 

-5.148, 

<0.000 

-4.121e-06  

(5.786e-06) 

-0.712, 

0.477 

-7.366e-06  

(6.416e-06) 

-1.148, 

0.253 

4.068e-07 

(3.299e-07) 

1.233, 

0.220 

Cingulum Bundle (Right) 

 

 

1.041e-05  

(6.466e-06) 

1.611, 

0.109 

-1.496e-06  

(1.024e-07) 

-14.608, 

<0.000 

-9.180e-06  

(6.525e-06) 

-1.407, 

0.161 

4.874e-06 

(6.709e-06) 

0.726, 

0.468 

9.900e-08  

(2.051e-07) 

0.483, 

0.630 

Fornix (Left) 

 

 

-2.310e-05  

(1.363e-05) 

-1.695 , 

0.091 

8.063e-08 

(2.621e-07) 

0.308, 

0.758 

3.049e-05  

(1.379e-05) 

2.211, 

0.028 

4.508e-05  

(1.486e-05) 

3.033, 

0.002* 

-1.076e-06   

(5.248e-07) 

-2.050 , 

0.041 

Fornix (Right) 

 

 

-4.347e-06 

(1.155e-05) 

-0.376, 

0.707 

-2.067e-07 

(3.039e-07) 

-0.680, 

0.497 

1.010e-05  

(1.175e-05) 

0.860, 

0.391 

6.995e-07  

(1.398e-05) 

0.050, 

0.960 

2.617e-08  

(6.087e-07) 

-0.043, 

0.966 

Anterior Thalamic Projections (Left) 

 

 

6.337e-06 

(5.306e-06) 

1.194, 

0.234 

-7.141e-07  

(1.486e-07) 

-4.807, 

<0.000 

2.133e-06  

(5.378e-06) 

0.397, 

0.692 

-9.370e-06  

(6.132e-06) 

-1.528, 

0.129 

4.401e-07  

(2.976e-07) 

1.479, 

0.141 

Anterior Thalamic Projections (Right) 

 

 

9.155e-06   

(5.787e-06) 

1.582 , 

0.116 

-1.172e-06  

(1.093e-07) 

-10.726 , 

<0.000 

3.395e-07 

(5.857e-06) 

0.058, 

0.954 

-1.847e-06  

(6.267e-06) 

-0.295, 

0.768 

1.297e-07  

(2.188e-07) 

0.593 , 

0.554 
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Mammillothalamic tract (Left) 

 

 

1.719e-05  

(1.643e-05) 

1.046, 

0.297 

7.028e-07  

(5.055e-07) 

1.390, 

0.166 

-1.133e-05  

(1.686e-05) 

-0.067, 

0.503 

3.312e-05 

(2.144e-05) 

1.545, 

0.123 

-9.886e-07  

(1.013e-06) 

-0.976, 

0.330 

Mammillothalamic tract (Right) 

 

 

4.992e-06  

(2.170e-05) 

0.230, 

0.818 

1.381e-07  

(6.209e-07) 

0.222, 

0.824 

2.945e-05  

(2.220e-05) 

1.327, 

0.186 

-4.552e-05   

(2.730e-05) 

-1.667, 

0.096 

1.425e-06  

(1.244e-06) 

1.145, 

0.253 

Uncinate Fasciculus (Left) 

 

 

8.293e-06 

(6.354e-06) 

1.305 , 

0.194 

-9.336e-07  

(1.716e-07) 

-5.441 , 

<0.000 

5.047e-06   

(6.446e-06) 

0.783, 

0.435 

-8.422e-06  

(7.139e-06) 

-1.180, 

0.240 

3.100e-07 

(3.436e-07) 

0.902 , 

0.369 

Uncinate Fasciculus (Right) 1.575e-05 

(7.002e-06) 

2.249 , 

0.025 

-8.544e-07  

(2.078e-07) 

-4.111, 

<0.000 

-1.017e-05  

(7.084e-06) 

-1.435, 

0.153 

5.066e-06  

(8.275e-06) 

0.612, 

0.541 

-7.129e-08  

(4.164e-07) 

-0.171, 

0.864 
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Figure 5.10 White matter that had no significant between-group difference in KA across the three-study time points. 
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Figure 5.11 White matter that had no significant between-group difference in AK across the three-study time points. 

Left Anterior Thalamic Projection Right Anterior Thalamic Projection 

  

Left Cingulum Bundle Right Cingulum Bundle 



 191 

  

 

Left Fornix 

 

Right Fornix 

  



 192 

Left Mammillothalamic Tract Right Mammillothalamic Tract 

  

  



 193 

Left Unicnate Fasciculus
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Figure 5.12 White matter that had no significant between-group difference in MK across the three-study time points. 
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Figure 5.13 White matter that had no significant between-group difference in RK across the three-study time point. 
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Figure 5.14 White matter that had no significant between-group difference in FA across the three-study time points. 
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Figure 5.15 White matter that had no significant between-group difference in MD across the three-study time points. 
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Figure 5.16 White matter that had no significant between-group difference in AD across the three-study time points. 
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Figure 5.17 White matter that had no significant between-group difference in RD across the three-study time points. 
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    Figure 5.18 Scatter plot of non-significant limbic system white matter AK by CAI scores in ADHD. 

Left Anterior Thalamic Projections Right Anterior Thalamic Projections 

  

Left Fornix Right Fornix 



 217 

  

Left Uncinate Fasciculus Right Uncinate Fasciculus 

 

 

 



 218 

 

 

Left Mammillothalamic Tract Right Mammillothalamic Tract 

  

Left Cingulum Bundle Right Cingulum Bundle 



 219 

  



 220 

    Figure 5.19 Scatter plot of non-significant limbic system white matter KA by CAI scores in ADHD. 
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    Figure 5.20 Scatter plot of non-significant limbic system white matter MK by CAI scores in ADHD. 
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    Figure 5.21 Scatter plot of non-significant limbic system white matter RK by CAI scores in ADHD. 
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    Figure 5.22 Scatter plot of non-significant limbic system white matter AD by CAI scores in ADHD. 
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    Figure 5.23 Scatter plot of non-significant limbic system white matter FA by CAI scores in ADHD. 
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    Figure 5.24 Scatter plot of non-significant limbic system white matter MD by CAI scores in ADHD. 
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    Figure 5.25 Scatter plot of non-significant limbic system white matter RD by CAI scores in ADHD. 
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    Figure 5.26 Scatter plot of non-significant limbic system white matter AK by ARI scores in ADHD. 
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    Figure 5.27 Scatter plot of non-significant limbic system white matter KA by ARI scores in ADHD. 
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    Figure 5.28 Scatter plot of non-significant limbic system white matter MK by ARI scores in ADHD. 
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    Figure 5.29 Scatter plot of non-significant limbic system white matter RK by ARI scores in ADHD. 
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    Figure 5.30 Scatter plot of non-significant limbic system white matter AD by ARI scores in ADHD. 
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    Figure 5.31 Scatter plot of non-significant limbic system white matter FA by ARI scores in ADHD. 
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    Figure 5.32 Scatter plot of non-significant limbic system white matter RD by ARI scores in ADHD. 
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    Figure 5.33 Scatter plot of non-significant limbic system white matter MD by ARI scores in ADHD. 
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Table 5.16 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts KA and CAI scores in ADHD. 

 

 

Sex Months from baseline CAI CAI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

-1.095e-03 

(5.887e-03) 

-0.186,  

0.435 

1.692e-04 

(1.809e-04) 

0.936, 

0.352 

2.979e-04 

(3.808e-04) 

0.782, 

0.435 

1.123e-05 

(1.555e-05) 

0.722, 

0.472 

Cingulum Bundle (Right) 

 

 

8.232e-03 

(6.181e-03) 

1.331, 

0.187 

1.536e-04 

(1.870e-04) 

0.822, 

0.414 

1.597e-04 

(3.976e-04) 

0.402, 

0.689 

1.373e-05 

(1.603e-05) 

0.857, 

0.394 

Fornix (Left) 

 

 

5.097e-03 

(5.875e-03) 

0.868, 

0.389 

-4.959e-04 

(2.139e-04) 

-2.318, 

0.023 

1.820e-04 

(4.189e-04) 

0.434, 

0.665 

8.795e-06 

(1.785e-05) 

0.493 

0.624 

Fornix (Right) 

 

 

1.625e-03 

(6.334e-03) 

0.257, 

0.798 

-1.265e-04 

(2.098e-04) 

-0.603, 

0.548 

5.412e-04 

(4.320e-04) 

1.253, 

0.212 

1.885e-05 

(1.799e-05) 

1.048 

0.298 

Anterior Thalamic Projections 

(Left) 

 

1.167e-03 

(4.433e-03) 

0.263, 

0.793 

-1.534e-04 

(1.379e-04) 

-1.113, 

0.269 

1.125e-04 

(2.905e-04) 

0.387, 

0.699 

-3.135e-06 

(1.183e-05) 

-0.265, 

0.792 

Anterior Thalamic Projections 

(Right) 

 

-7.198e-05 

(4.302e-03) 

-0.017, 

0.987 

-1.529e-04 

(1.500e-04) 

1.019, 

0.311 

-2.079e-05 

(3.015e-04) 

-0.069, 

0.945 

8.847e-06 

(1.285e-05) 

0.689, 

0.493 
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Mammillothalamic tract (Left) 

 

 

1.769e-03 

(7.047e-03) 

0.251, 

0.802 

-8.205e-04 

(3.793e-04) 

-2.163, 

0.032 

-3.544e-05 

(6.248e-04) 

-0.057, 

0.954 

2.413e-05 

(3.201e-05) 

0.754, 

0.452 

Mammillothalamic tract (Right) 

 

 

-5.174e-03 

(7.169e-03) 

-0.722, 

0.472 

-2.709e-04 

(4.031e-04) 

-0.671, 

0.503 

8.932e-04 

(6.524e-04) 

1.369, 

0.173 

-4.725e-05 

(3.388e-05) 

-1.395, 

0.165 

Uncinate Fasciculus (Left) 

 

 

3.239e-03 

(5.258e-03) 

0.616, 

0.540 

-2.616e-05 

(2.075e-04) 

-0.126, 

0.900 

6.288e-04 

(3.895e-04) 

1.614, 

0.109 

-2.170e-05 

(1.765e-05) 

-1.229,  

0.222 

Uncinate Fasciculus (Right) -2.374e-03 

(5.543e-03) 

-0.428, 

0.669 

1.410e-04 

(1.573e-04) 

0.897, 

0.372 

5.814e-04 

(3.388e-04) 

1.716, 

0.088 

-1.507e-05 

(1.341e-05) 

-1.124,  

0.264 
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Table 5.17 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts AK and CAI scores in ADHD. 

 

 

Sex Months from baseline CAI CAI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

-5.590e-03 

(7.009e-03) 

-0.798,  

0.428 

2.142e-03 

(3.391e-04) 

6.318, 

<0.000 

7.739e-04 

(5.956e-04) 

1.200, 

0.196 

-3.390e-05  

(2.891e-05) 

-1.173, 

0.244 

Cingulum Bundle (Right) 

 

 

-4.531e-03 

(7.316e-03) 

-0.619, 

0.538 

1.986e-03 

(3.343e-04) 

5.940, 

<0.000 

4.062e-04 

(6.003e-04) 

0.677, 

0.500 

-8.921e-07 

(2.851e-05) 

-0.031, 

0.975 

Fornix (Left) 

 

 

1.979e-03 

(8.246e-03) 

0.240, 

0.811 

1.001e-03   

(3.663e-04) 

2.733, 

0.007 

6.836e-05 

(6.577e-04) 

0.104, 

0.917 

3.091e-05 

(3.052e-05) 

1.013 

0.313 

Fornix (Right) 

 

 

-6.604e-03  

(1.578e-02) 

-0.419, 

0.676 

1.492e-03 

(5.545e-04) 

2.690, 

0.008 

1.563e-03 

(1.114e-03) 

1.404, 

0.162 

5.907e-05 

(4.750e-05) 

1.244 

0.216 

Anterior Thalamic Projections 

(Left) 

 

9.284e-03 

(7.007e-03) 

1.325, 

0.190 

1.809e-03 

(3.267e-04) 

5.538, 

<0.000 

1.973e-04 

(5.797e-04) 

0.340, 

0.734 

4.643e-06 

(2.781e-05) 

0.167, 

0.868 

Anterior Thalamic Projections 

(Right) 

2.273e-03 

(6.883e-03) 

0.330, 

0.742 

2.160e-03 

(3.532e-04) 

6.115, 

<0.000 

4.310e-04 

(6.054e-04) 

0.712, 

0.478 

-2.665e-06 

(3.004e-05) 

-0.089, 

0.929 
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Mammillothalamic tract (Left) 

 

 

9.719e-03 

(1.238e-02) 

0.785, 

0.433 

4.439e-04 

(6.920e-04) 

0.642, 

0.522 

-4.843e-04 

(1.124e-03) 

-0.431, 

0.667 

1.185e-04 

(5.831e-05) 

2.032, 

0.044 

Mammillothalamic tract (Right) 

 

 

-1.557e-02 

(1.438e-02) 

-1.083, 

0.283 

5.198e-04 

(7.597e-04) 

0.684, 

0.495 

-9.873e-04 

(1.259e-03) 

-0.784, 

0.434 

2.033e-05 

(6.400e-05) 

0.318, 

0.751 

Uncinate Fasciculus (Left) 

 

 

9.161e-03 

(9.875e-03) 

0.928, 

0.357 

1.463e-03  

(3.982e-04) 

3.689, 

<0.000 

-1.779e-05 

(7.407e-04) 

-0.024, 

0.980 

1.035e-05 

(3.387e-05) 

-0.306,  

0.760 

Uncinate Fasciculus (Right) 5.678e-03 

(9.933e-03) 

0.572, 

0.570 

2.619e-03 

(4.806e-04) 

5.450, 

<0.000 

1.230e-03 

(8.315e-04) 

1.479, 

0.142 

-5.867e-05 

(4.064e-05) 

-1.443,  

0.152 
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Table 5.18 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts RK and CAI scores in ADHD. 

 

 

Sex Months from baseline CAI CAI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

2.653e-02 

(2.162e-02) 

1.227,  

0.224 

3.177e-03 

(9.631e-04) 

3.299, 

0.001 

5.690e-04 

(1.748e-03) 

0.325, 

0.745 

5.018e-05 

(8.229e-05) 

0.610, 

0.543 

Cingulum Bundle (Right) 

 

 

4.736e-02 

(2.164e-02) 

2.188, 

0.032 

2.501e-03  

(8.961e-04) 

2.791, 

0.006 

5.268e-04 

(1.676e-03) 

0.314, 

0.753 

6.679e-05 

(7.656e-05) 

0.872, 

0.385 

Fornix (Left) 

 

 

3.639e-02 

(2.468e-02) 

1.474, 

0.146 

1.267e-03 

(9.907e-04) 

1.279, 

0.205 

4.993e-04 

(1.859e-03) 

0.269, 

0.789 

3.715e-05 

(8.261e-05) 

0.450 

0.654 

Fornix (Right) 

 

 

9.965e-03 

(2.724e-02) 

0.366, 

0.716 

1.229e-03 

(9.383e-04) 

1.310, 

0.194 

1.505e-03 

(1.900e-03) 

0.792, 

0.430 

1.209e-04 

(8.040e-05) 

1.503 

0.136 

Anterior Thalamic Projections 

(Left) 

 

2.603e-02 

(1.970e-02) 

1.321, 

0.191 

3.575e-03 

(8.338e-04) 

4.288, 

<0.000 

3.658e-06 

(1.542e-03) 

0.002, 

0.998 

-7.758e-06 

(7.116e-05) 

-0.109, 

0.913 

Anterior Thalamic Projections 

(Right) 

1.113e-02 

(2.030e-02) 

0.549, 

0.585 

2.540e-03 

(8.191e-04) 

3.101, 

0.002 

5.330e-04 

(1.549e-03) 

0.344, 

0.731 

5.927e-05 

(7.000e-05) 

0.847, 

0.399 



 285 

 

Mammillothalamic tract (Left) 

 

 

-8.390e-03 

(1.811e-02) 

-0.463, 

0.644 

2.408e-03 

(8.969e-04) 

2.685, 

0.008 

1.148e-03 

(1.527e-03) 

0.752, 

0.453 

7.980e-05 

(7.587e-05) 

1.052, 

0.295 

Mammillothalamic tract (Right) 

 

 

-1.879e-02 

(2.101e-02) 

-0.894, 

0.375 

1.471e-03 

(9.473e-04) 

1.553, 

0.124 

-3.017e-04 

(1.676e-03) 

-0.180, 

0.857 

4.592e-06 

(8.018e-05) 

0.057, 

0.954 

Uncinate Fasciculus (Left) 

 

 

4.997e-02 

(2.629e-02) 

1.900, 

0.062 

1.846e-03 

(1.219e-03) 

1.515, 

0.133 

-9.080e-04 

(2.138e-03) 

-0.425, 

0.671 

7.115e-05 

(1.034e-04) 

0.688,  

0.492 

Uncinate Fasciculus (Right) 2.334e-02 

(2.595e-02) 

0.899, 

0.372 

3.197e-03 

(1.198e-03) 

2.668, 

0.009 

1.709e-03 

(2.114e-03) 

0.809, 

0.420 

-1.221e-04 

(1.015e-04) 

-1.203,  

0.232 



 286 

 

Table 5.19 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts MK and CAI scores in ADHD. 

 

 

Sex Months from baseline CAI CAI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.382e-02 

(1.265e-02) 

1.092,  

0.279 

2.776e-03 

(5.421e-04) 

5.121, 

<0.000 

1.322e-03 

(9.997e-04) 

1.323, 

0.188 

-4.543e-06 

(4.636e-05) 

-0.098, 

0.922 

Cingulum Bundle (Right) 

 

 

1.902e-02 

(1.256e-02) 

1.514, 

0.135 

2.325e-03 

(5.138e-04) 

4.525, 

<0.000 

5.897e-04 

(9.660e-04) 

0.610, 

0.543 

3.763e-05 

(4.390e-05) 

0.857, 

0.394 

Fornix (Left) 

 

 

1.004e-02 

(1.287e-02) 

0.780, 

0.439 

1.091e-03 

(5.324e-04) 

2.049, 

0.043 

1.685e-04 

(9.861e-04) 

0.171, 

0.864 

3.857e-05 

(4.438e-05) 

0.869 

0.387 

Fornix (Right) 

 

 

-2.232e-03 

(2.002e-02) 

-0.111, 

0.911 

1.420e-03 

(7.015e-04) 

2.024, 

0.046 

1.814e-03 

(1.410e-03) 

1.286, 

0.200 

9.012e-05 

(6.009e-05) 

1.500 

0.137 

Anterior Thalamic Projections 

(Left) 

 

2.004e-02 

(1.089e-02) 

1.840, 

0.071 

2.229e-03 

(4.994e-04) 

4.464, 

<0.000 

8.405e-06 

(8.925e-04) 

0.009, 

0.992 

1.132e-05 

(4.253e-05) 

0.266, 

0.790 

Anterior Thalamic Projections 

(Right) 

6.795e-03 

(1.269e-02) 

0.536, 

0.594 

2.290e-03 

(5.172e-04) 

4.428, 

<0.000 

8.793e-04 

(9.738e-04) 

0.903, 

0.368 

2.778e-05 

(4.419e-05) 

0.629, 

0.531 
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Mammillothalamic tract (Left) 

 

 

2.777e-03 

(1.283e-02) 

0.217, 

0.829 

8.655e-04 

(6.635e-04) 

1.304, 

0.195 

6.252e-05 

(1.110e-03) 

0.056, 

0.955 

1.114e-04 

(5.606e-05) 

1.987, 

0.049 

Mammillothalamic tract (Right) 

 

 

-2.309e-02 

(1.605e-02) 

-1.439, 

0.155 

7.541e-04 

(7.726e-04) 

0.976, 

0.331 

2.566e-05 

(1.329e-03) 

0.019, 

0.985 

1.256e-06 

(6.528e-05) 

0.019, 

0.985 

Uncinate Fasciculus (Left) 

 

 

2.291e-02 

(1.633e-02) 

1.403, 

0.166 

1.412e-03 

(6.665e-04) 

2.118, 

0.037 

2.228e-04 

(1.233e-03) 

0.181, 

0.856 

2.035e-05 

(5.667e-05) 

0.359,  

0.720 

Uncinate Fasciculus (Right) 1.076e-02 

(1.492e-02) 

0.721, 

0.474 

2.736e-03 

(6.791e-04) 

4.029, 

<0.000 

1.915e-03 

(1.205e-03) 

1.589, 

0.114 

-8.201e-05 

(5.752e-05) 

-1.426,  

0.157 
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Table 5.20 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts FA and CAI scores in ADHD. 

 

 

Sex Months from baseline CAI CAI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.391e-02 

(7.679e-03) 

1.812, 

0.074 

-1.264e-04 

(2.488e-04) 

-0.508, 

0.612 

3.117e-05 

(5.070e-04) 

0.061, 

0.951 

4.544e-05 

(2.121e-05) 

2.142, 

0.034 

Cingulum Bundle (Right) 

 

 

1.044e-02 

(7.028e-03) 

1.486, 

0.142 

5.712e-04 

(1.902e-04) 

3.004, 

0.003 

5.101e-04 

(4.186e-04) 

1.219, 

0.225 

8.312e-06 

(1.635e-05) 

0.508, 

0.612 

Fornix (Left) 

 

 

2.751e-02 

(9.971e-03) 

2.759, 

0.007 

-7.701e-04 

(3.585e-04) 

-2.148, 

0.034 

-2.023e-04 

(7.095e-04) 

-0.285, 

0.776 

1.960e-05  

(3.055e-05) 

0.642 

0.522 

Fornix (Right) 

 

 

1.515e-02 

(7.479e-03) 

2.026, 

0.046 

-5.722e-04 

(3.314e-04) 

-1.727, 

0.087 

-1.411e-04 

(5.976e-04) 

-0.236, 

0.813 

3.448e-05 

(2.822e-05) 

1.222 

0.224 

Anterior Thalamic Projections 

(Left) 

 

4.663e-03 

(6.281e-03) 

0.743, 

0.461 

2.691e-05 

(2.157e-04) 

0.125 

0.901 

-3.162e-04 

(4.293e-04) 

-0.737, 

0.463 

3.851e-06 

(1.838e-05) 

0.210, 

0.835 

Anterior Thalamic Projections 

(Right) 

 

1.065e-03 

(6.353e-03) 

0.168, 

0.867 

4.864e-05 

(2.298e-04) 

0.212, 

0.833 

-3.558e-04 

(4.514e-04) 

-0.788, 

0.432 

2.137e-05 

(1.963e-05) 

1.089, 

0.279 
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Mammillothalamic tract (Left) 

 

 

1.666e-04 

(8.378e-03) 

0.020, 

0.984 

-6.241e-04 

(4.156e-04) 

-1.502, 

0.136 

2.586e-04 

(7.091e-04) 

0.365, 

0.716 

1.057e-05 

(3.518e-05) 

0.301, 

0.764 

Mammillothalamic tract (Right) 

 

 

-7.785e-04 

(8.301e-03) 

-0.094, 

0.926 

-2.722e-04 

(4.687e-04) 

-0.581, 

0.563 

8.552e-04 

(7.610e-04) 

1.124, 

0.263 

-5.595e-06 

(3.951e-05) 

-0.412, 

0.888 

Uncinate Fasciculus (Left) 

 

 

2.733e-03 

(8.514e-03) 

0.321, 

0.749 

4.726e-04 

(3.111e-04) 

1.519, 

0.132 

1.052e-03 

(6.038e-04) 

1.743, 

0.083 

-3.541e-05 

(2.649e-05) 

-1.337, 

0.184 

Uncinate Fasciculus (Right) 2.707e-03 

(8.359e-03) 

0.324, 

0.747 

6.348e-04 

(3.857e-04) 

1.635, 

0.103 

6.295e-04 

(6.683e-04) 

0.942, 

0.348 

-2.456e-05 

(3.238e-05) 

-0.759, 

0.450 
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Table 5.21 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts AD and CAI scores in ADHD. 

 

 

Sex Months from baseline CAI CAI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

3.178e-05 

(1.198e-05) 

2.653,  

0.009 

-1.336e-07 

(4.855e-07) 

-0.275, 

0.783 

7.731e-07 

(9.024e-07) 

0.857, 

0.393 

-1.894e-08 

(4.128e-08) 

-0.459, 

0.647 

Cingulum Bundle (Right) 

 

 

3.245e-05 

(1.297e-05) 

2.501, 

0.001 

-1.586e-06 

(4.758e-07) 

-3.332, 

0.001 

-5.143e-07 

(9.346e-07) 

-0.550 

0.583 

1.734e-08 

(4.080e-08) 

0.425, 

0.671 

Fornix (Left) 

 

 

1.126e-04 

(5.574e-05) 

2.021, 

0.047 

-1.312e-06 

(2.044e-06) 

-0.642, 

0.522 

4.219e-07 

(4.012e-06) 

0.105, 

0.916 

-7.005e-08 

(1.741e-07) 

-0.402 

0.688 

Fornix (Right) 

 

 

-4.705e-07 

(4.276e-05) 

-0.011, 

0.991 

-3.472e-06 

(1.985e-06) 

-1.749, 

0.083 

-6.539e-06 

(3.512e-06) 

-1.862, 

0.064 

2.659e-07 

(1.689e-07) 

1.575 

0.118 

Anterior Thalamic Projections 

(Left) 

 

1.677e-05 

(1.070e-05) 

1.567, 

0.122 

3.767e-08 

(4.437e-07) 

0.085 

0.933 

-4.690e-07 

(8.170e-07) 

-0.574, 

0.567 

-4.166e-08 

(3.771e-08) 

-1.105, 

0.272 

Anterior Thalamic Projections 

(Right) 

 

1.351e-05 

(1.268e-05) 

1.675, 

0.291 

-1.836e-06 

(4.191e-07) 

-4.381, 

<0.000 

-1.335e-06  

(8.578e-07) 

-1.556, 

0.122 

4.700e-08 

(3.599e-08) 

1.306, 

0.195 
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Mammillothalamic tract (Left) 

 

 

-2.471e-05 

(4.265e-05) 

-0.579, 

0.564 

1.163e-06 

(1.971e-06) 

0.590, 

0.556 

3.933e-06 

(3.462e-06) 

1.136, 

0.258 

-7.837e-08 

(1.671e-07) 

-0.469, 

0.640 

Mammillothalamic tract (Right) 

 

 

2.140e-05 

(5.636e-05) 

0.380, 

0.706 

4.500e-07 

(2.418e-06) 

0.186, 

0.853 

1.978e-08 

(4.381e-06) 

0.005, 

0.996 

1.558e-07 

(2.054e-07) 

0.759, 

0.450 

Uncinate Fasciculus (Left) 

 

 

1.555e-05 

(1.590e-05) 

0.978, 

0.332 

-5.181e-07 

(6.538e-07) 

-0.793, 

0.430 

1.222e-07 

(1.208e-06) 

0.101, 

0.920 

-5.531e-08 

(5.557e-08) 

-0.995,  

0.322 

Uncinate Fasciculus (Right) 3.403e-05 

(1.438e-05) 

2.367, 

0.021 

-1.043e-06 

(6.903e-07) 

-1.512, 

0.133 

8.633e-08 

(1.176e-06) 

0.073, 

0.941 

1.302e-08 

(5.790e-08) 

0.225,  

0.822 
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Table 5.22 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts RD and CAI scores in ADHD. 

 

 

Sex Months from baseline CAI CAI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

6.323e-07 

(1.054e-05) 

0.060,  

0.952 

9.021e-08 

(3.709e-07) 

0.243, 

0.808 

4.310e-07 

(7.311e-07) 

0.589, 

0.556 

-7.104e-08 

(3.160e-08) 

-2.248, 

0.026 

Cingulum Bundle (Right) 

 

 

5.722e-06 

(1.050e-05) 

0.545, 

0.588 

-1.526e-06 

(2.795e-07) 

-5.460, 

<0.000 

-8.481e-07 

(6.188e-07) 

-1.371 

0.173 

5.362e-09 

(2.405e-08) 

0.223, 

0.824 

Fornix (Left) 

 

 

2.504e-07 

(2.659e-05) 

0.009, 

0.993 

-1.593e-07 

(8.914e-07) 

-0.179, 

0.859 

4.654e-07 

(1.815e-06) 

0.256, 

0.798 

-3.375e-08 

(7.600e-08) 

-0.444 

0.658 

Fornix (Right) 

 

 

-8.613e-06 

(1.986e-05) 

-0.434, 

0.666 

-1.726e-07 

(8.593e-07) 

-0.201, 

0.841 

-8.944e-07 

(1.565e-06) 

-0.572, 

0.569 

-5.893e-09 

(7.321e-08) 

-0.080 

0.936 

Anterior Thalamic Projections 

(Left) 

 

2.889e-06 

(9.208e-06) 

0.314, 

0.755 

-1.314e-07 

(3.787e-07) 

-0.347 

0.729 

5.706e-07 

(6.997e-07) 

0.816, 

0.416 

-2.346e-08 

(3.219e-08) 

-0.729, 

0.468 

Anterior Thalamic Projections 

(Right) 

 

7.761e-06 

(1.011e-05) 

0.767, 

0.446 

-1.346e-06 

(2.930e-07) 

-4.595, 

<0.000 

-5.598e-07 

(6.298e-07) 

-0.889, 

0.376 

2.173e-08 

(2.519e-08) 

0.862, 

0.391 
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Mammillothalamic tract 

(Left) 

 

-9.240e-06 

(3.110e-05) 

-0.297, 

0.767 

1.075e-06  

(1.573e-06) 

0.684, 

0.496 

1.029e-06 

(2.663e-06) 

0.386, 

0.700 

-3.318e-08 

(1.331e-07) 

-0.249, 

0.804 

Mammillothalamic tract 

(Right) 

 

5.316e-06 

(4.050e-05) 

0.131, 

0.896 

2.281e-07 

(1.876e-06) 

0.122, 

0.903 

-1.132e-06 

(3.292e-06) 

-0.344, 

0.731 

1.282e-07 

(1.591e-07) 

0.806, 

0.422 

Uncinate Fasciculus (Left) 

 

 

4.010e-06 

(1.035e-05) 

0.387, 

0.699 

-9.041e-07 

(4.392e-07) 

-2.058, 

0.042 

-8.983e-07 

(8.009e-07) 

-1.122, 

0.263 

1.501e-08 

(3.731e-08) 

0.402,  

0.688 

Uncinate Fasciculus (Right) 1.148e-05 

(1.298e-05) 

0.884, 

0.379 

-1.415e-06 

(5.798e-07) 

2.441, 

0.016 

-8.175e-07 

(1.019e-06) 

-0.803, 

0.423 

4.874e-08 

(4.869e-08) 

1.001,  

0.319 
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Table 5.23 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts MD and CAI scores in ADHD. 

 

 

Sex Months from baseline CAI CAI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.203e-05 

(9.380e-06) 

1.283,  

0.203 

3.295e-08 

(3.688e-07) 

0.089, 

0.929 

7.528e-07 

(6.943e-07) 

1.084, 

0.280 

-5.419e-08 

(3.137e-08) 

-1.727, 

0.087 

Cingulum Bundle (Right) 

 

 

1.423e-05 

(9.717e-06) 

1.464, 

0.148 

-1.634e-06 

(3.051e-07) 

-5.357, 

<0.000 

-7.076e-07 

(6.368e-07) 

-1.111 

0.268 

1.065e-08 

(2.621e-08) 

0.406, 

0.686 

Fornix (Left) 

 

 

2.698e-05 

(3.514e-05) 

0.768, 

0.445 

-5.478e-07 

(1.160e-0) 

-0.472, 

0.638 

8.648e-07 

(2.377e-06) 

0.364, 

0.717 

-6.295e-08 

(9.892e-08) 

-0.636 

0.526 

Fornix (Right) 

 

 

-1.933e-06 

(2.663e-05) 

-0.073, 

0.942 

-1.333e-06 

(1.138e-06) 

-1.172, 

0.244 

-2.472e-06 

(2.083e-06) 

-1.187, 

0.237 

7.510e-08 

(9.693e-08) 

0.775 

0.440 

Anterior Thalamic Projections 

(Left) 

 

7.455e-06 

(8.849e-06) 

0.842, 

0.402 

-7.594e-08 

(3.766e-07) 

-0.202 

0.841 

2.844e-07 

(6.859e-07) 

0.415, 

0.679 

-3.513e-08 

(3.199e-08) 

1.098, 

0.275 

Anterior Thalamic Projections 

(Right) 

1.088e-05 

(9.848e-06) 

1.105, 

0.273 

-1.556e-06 

(2.903e-07) 

-5.360 

<0.000 

-8.561e-07 

(6.202e-07) 

-1.380, 

0.170 

2.633e-08 

(2.496e-08) 

1.055, 

0.295 
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Mammillothalamic tract 

(Left) 

 

-1.801e-05 

(3.430e-05) 

-0.525, 

0.601 

9.324e-07 

(1.689e-06) 

0.552, 

0.582 

1.381e-06 

(2.891e-06) 

0.478, 

0.633 

-3.370e-08 

(1.430e-07) 

-0.236, 

0.814 

Mammillothalamic tract 

(Right) 

 

6.738e-06 

(4.655e-05) 

0.145, 

0.885 

3.015e-07 

(2.019e-06) 

0.149, 

0.882 

-3.703e-07 

(3.642e-06) 

-0.102, 

0.919 

1.135e-07 

(1.715e-07) 

0.662, 

0.510 

Uncinate Fasciculus (Left) 

 

 

7.667e-06 

(9.339e-06) 

0.821, 

0.414 

-9.113e-07 

(4.344e-07) 

-2.098, 

0.038 

-5.694e-07 

(7.629e-07) 

-0.746, 

0.456 

-9.991e-09 

(3.683e-08) 

-0.271,  

0.786 

Uncinate Fasciculus (Right) 1.903e-05 

(1.177e-05) 

1.617, 

0.111 

-1.376e-06 

(5.377e-07) 

-2.559, 

0.012 

-6.929e-07 

(9.356e-07) 

-0.741, 

0.460 

3.576e-08 

(4.514e-08) 

0.792,  

0.430 
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Table 5.24 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts KA and ARI scores in ADHD. 

 

 

Sex Months from baseline ARI ARI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

-4.032e-04 

(6.226e-03) 

-0.065,  

0.949 

3.212e-04 

(2.357e-04) 

1.363, 

0.180 

5.595e-04 

(7.399e-04) 

0.756, 

0.451 

1.072e-05 

(4.494e-05) 

0.239, 

0.812 

Cingulum Bundle (Right) 

 

 

9.679e-03 

(6.159e-03) 

1.571, 

0.121 

1.788e-04 

(2.955e-04) 

0.605, 

0.548 

7.273e-04 

(8.491e-04) 

0.857, 

0.394 

5.470e-05 

(5.650e-05) 

0.968, 

0.338 

Fornix (Left) 

 

 

7.387e-03 

(6.127e-03) 

1,206, 

0.233 

3.145e-04 

(3.243e-04) 

0.970, 

0.337 

9.066e-04 

(8.834e-04) 

1.026, 

0.307 

-2.009e-06 

(6.153e-05) 

-0.033 

0.974 

Fornix (Right) 

 

 

5.264e-03 

(7.027e-03) 

0.749, 

0.457 

2.029e-04 

(3.402e-04) 

0.597, 

0.554 

9.891e-04 

(9.345e-04) 

1.058, 

0.292 

2.848e-05 

(6.429e-05) 

0.443 

0.660 

Anterior Thalamic Projections 

(Left) 

 

3.059e-03 

(4.307e-03) 

0.710, 

0.480 

7.709e-05 

(2.086e-04) 

0.370, 

0.713 

2.455e-04 

(5.839e-04) 

0.421, 

0.675 

9.570e-06 

(3.991e-05) 

0.240, 

0.812 

Anterior Thalamic Projections 

(Right) 

3.434e-04 

(4.270e-03) 

0.080, 

0.936 

-2.159e-04 

(2.562e-04) 

-0.843, 

0.403 

1.035e-04 

(6.546e-04) 

0.158, 

0.875 

7.664e-05 

(4.910e-05) 

1.561, 

0.124 
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Mammillothalamic tract (Left) 

 

 

9.958e-03 

(8.304e-03) 

1.199, 

0.235 

-3.003e-04 

(5.850e-04) 

-0.513, 

0.609 

-1.087e-03 

(1.351e-03) 

-0.801, 

0.425 

1.175e-04 

(1.133e-04) 

1.037, 

0.303 

Mammillothalamic tract (Right) 

 

 

-2.199e-03 

(8.345e-03) 

-0.264, 

0.793 

-3.443e-04 

(5.860e-04) 

0.588, 

0.558 

1.125e-03 

(1.375e-03) 

0.818, 

0.415 

-2.160e-04 

(1.145e-04) 

-1.887, 

0.063 

Uncinate Fasciculus (Left) 

 

 

6.286e-03 

(5.727e-03) 

1.098, 

0.277 

-5.448e-04 

(3.423e-04) 

-1.192, 

0.117 

-9.996e-05 

(8.654e-04) 

-0.116, 

0.908 

9.882e-05 

(6.594e-05) 

-1.499,  

0.140 

Uncinate Fasciculus (Right) 6.847e-05 

(5.778e-03) 

0.012, 

0.991 

-5.437e-05 

(2.043e-04) 

-0.266, 

0.792 

-4.888e-04 

(6.733e-04) 

-0.726, 

0.470 

6.125e-05 

(4.039e-05) 

1.517,  

0.138 
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Table 5.25 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts AK and ARI scores in ADHD. 

 

 

Sex Months from baseline ARI ARI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

-4.349e-03 

(6.656e-03) 

-0.653,  

0.516 

-1.120e-04 

(4.122e-04) 

-0.272, 

0.787 

-1.606e-03 

(1.022e-03) 

-1.573, 

0.119 

1.582e-04 

(7.914e-05) 

1.999, 

0.050 

Cingulum Bundle (Right) 

 

 

-4.584e-03 

(6.802e-03) 

-0.674, 

0.502 

-4.001e-04 

(4.329e-04) 

-0.924, 

0.358 

-9.400e-04 

(1.072e-03) 

-0.887, 

0.382 

1.638e-04 

(8.298e-05) 

1.974, 

0.052 

Fornix (Left) 

 

 

5.236e-04  

(8.726e-03) 

0.060, 

0.952 

-2.500e-04 

(5.475e-04) 

-0.457, 

0.650 

-1.292e-03 

(1.366e-03) 

-0.946, 

0.347 

9.827e-05 

(1.043e-04) 

0.942 

0.350 

Fornix (Right) 

 

 

3.678e-03 

(1.711e-02) 

0.215, 

0.831 

8.391e-04 

(8.998e-04) 

0.933, 

0.355 

3.443e-03 

(2.373e-03) 

1.451, 

0.150 

-3.534e-05 

(1.704e-04) 

-0.207 

0.837 

Anterior Thalamic Projections 

(Left) 

 

7.961e-03 

(6.918e-03) 

1.151, 

0.254 

-7.221e-05 

(4.483e-04) 

-0.161, 

0.873 

-6.451e-04 

(1.086e-03) 

-0.594, 

0.554 

1.299e-04 

(8.609e-05) 

1.509, 

0.137 

Anterior Thalamic Projections 

(Right) 

2.350e-03 

(6.918e-03) 

0.340, 

0.735 

-2.927e-04 

(4.674e-04) 

-0.626, 

0.533 

-3.576e-04 

(1.122e-03) 

-0.319, 

0.750 

1.584e-04 

(8.961e-05) 

1.768, 

0.081 
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Mammillothalamic tract 

(Left) 

 

1.347e-02 

(1.477e-02) 

0.912, 

0.365 

1.857e-04 

(1.042e-03) 

0.178, 

0.859 

-4.213e-03 

(2.405e-03) 

-1.751, 

0.082 

4.335e-04 

(2.019e-05) 

2.147, 

0.035 

Mammillothalamic tract 

(Right) 

 

-1.970e-02 

(1.609e-02) 

-1.224, 

0.227 

1.321e-04 

(1.128e-03) 

0.117, 

0.907 

-2.543e-03 

(2.651e-03) 

-0.960, 

0.340 

-1.381e-04 

(2.205e-04) 

-0.626, 

0.534 

Uncinate Fasciculus (Left) 

 

 

8.607e-03 

(1.053e-02) 

0.818, 

0.417 

-5.328e-04 

(5.341e-04) 

-0.997, 

0.324 

-9.958e-04 

(1.474e-03) 

-0.676, 

0.501 

1.666e-04 

(1.026e-04) 

1.623,  

0.111 

Uncinate Fasciculus (Right) 1.018e-02 

(9.319e-03) 

1.093, 

0.281 

7.868e-05 

(6.340e-04) 

0.124, 

0.902 

-1.409e-03 

(1.489e-03) 

-0.947, 

0.346 

1.678e-04 

(1.257e-04) 

1.334,  

0.188 
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Table 5.26 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts RK and ARI scores in ADHD. 

 

 

Sex Months from baseline ARI ARI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

2.325e-02 

(2.306e-02) 

1.008,  

0.317 

1.535e-03 

(1.412e-03) 

1.087, 

0.281 

-1.207e-03 

(3.519e-03) 

-0.343, 

0.732 

3.678e-04 

(2.711e-04) 

1.357, 

0.180 

Cingulum Bundle (Right) 

 

 

4.320e-02 

(2.156e-02) 

2.004, 

0.049 

4.229e-04 

(1.473e-03) 

0.287, 

0.774 

3.285e-04 

(3.517e-03) 

0.093, 

0.925 

3.679e-04 

(2.824e-04) 

1.303, 

0.197 

Fornix (Left) 

 

 

3.077e-02  

(2.728e-02) 

1.128, 

0.264 

-1.327e-03 

(1.478e-03) 

-0.898, 

0.373 

-2.537e-03 

(3.979e-03) 

-0.638, 

0.525 

1.328e-04 

(2.807e-04) 

0.473 

0.638 

Fornix (Right) 

 

 

1.697e-02 

(2.994e-02) 

0.567, 

0.573 

2.978e-04 

(1.486e-03) 

0.200, 

0.842 

2.657e-03 

(4.034e-03) 

0.659, 

0.512 

1.769e-04 

(2.811e-04) 

0.629 

0.532 

Anterior Thalamic Projections 

(Left) 

 

1.239e-02 

(2.211e-02) 

0.560, 

0.577 

7.765e-04 

(1.308e-03) 

0.593, 

0.555 

-2.645e-03 

(3.316e-03) 

-0.798, 

0.427 

1.707e-04 

(2.510e-04) 

0.680, 

0.499 

Anterior Thalamic Projections 

(Right) 

-2.440e-03 

(2.073e-02) 

-0.118, 

0.906 

-7.785e-04 

(1.234e-03) 

-0.631, 

0.530 

4.617e-04 

(3.165e-03) 

0.146, 

0.884 

4.320e-04 

(2.364e-04) 

1.827, 

0.072 
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Mammillothalamic tract 

(Left) 

 

-1.614e-02 

(2.058e-02) 

-0.784, 

0.436 

1.271e-03 

(1.335e-03) 

0.952, 

0.345 

-9.837e-04 

(3.219e-03) 

-0.305, 

0.761 

1.807e-04 

(2.586e-04) 

0.699, 

0.487 

Mammillothalamic tract 

(Right) 

 

-3.861e-02 

(2.154e-02) 

-1.793, 

0.078 

3.497e-04 

(1.407e-03) 

0.249, 

0.804 

-4.329e-03 

(3.436e-03) 

-1.260, 

0.210 

-7.278e-05 

(2.758e-04) 

-0.264, 

0.792 

Uncinate Fasciculus (Left) 

 

 

4.285e-02 

(2.922e-02) 

1.466, 

0.147 

-1.146e-03 

(1.936e-03) 

-0.592, 

0.555 

-6.964e-03 

(4.638e-03) 

-1.501, 

0.136 

6.270e-04 

(3.735e-04) 

1.679,  

0.098 

Uncinate Fasciculus (Right) 2.029e-02 

(2.830e-02) 

0.717, 

0.477 

5.024e-04 

(1.895e-03) 

0.265, 

0.792 

-1.221e-03 

(4.486e-03) 

-0.272, 

0.786 

1.228e-04 

(3.760e-04) 

0.327,  

0.745 
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Table 5.27 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts MK and ARI scores in ADHD. 

 

 

Sex Months from baseline ARI ARI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.639e-02 

(1.319e-02) 

1.243,  

0.218 

5.045e-04 

(7.249e-04) 

0.696, 

0.489 

-8.517e-04 

(1.906e-03) 

-0.447, 

0.655 

2.619e-04 

(1.390e-04) 

1.884, 

0.064 

Cingulum Bundle (Right) 

 

 

1.812e-02 

(1.132e-02) 

1.601, 

0.114 

-2.364e-04 

(7.420e-04) 

-0.319, 

0.751 

-5.468e-05 

(1.810e-03) 

-0.030, 

0.976 

2.815e-04 

(1.422e-04) 

1.979, 

0.052 

Fornix (Left) 

 

 

7.627e-03  

(1.402e-02) 

0.544, 

0.589 

-7.157e-04 

(7.521e-04) 

-0.951, 

0.346 

-1.904e-03 

(2.034e-03) 

-0.936, 

0.352 

1.328e-04 

(1.427e-04) 

0.931 

0.357 

Fornix (Right) 

 

 

7.564e-03 

(2.163e-02) 

0.350, 

0.728 

5.640e-04 

(1.149e-03) 

0.491, 

0.626 

3.266e-03 

(3.015e-03) 

1.083, 

0.281 

6.049e-05 

(2.176e-04) 

0.278 

0.782 

Anterior Thalamic Projections 

(Left) 

 

1.399e-02 

(1.092e-02) 

1.281, 

0.205 

2.780e-04 

(7.569e-04) 

0.367, 

0.715 

-1.282e-03 

(1.775e-03) 

-0.722, 

0.472 

1.474e-04 

(1.454e-04) 

1.013, 

0.315 

Anterior Thalamic Projections 

(Right) 

5.312e-04 

(1.216e-02) 

0.044, 

0.965 

-5.806e-04 

(7.133e-04) 

-0.814, 

0.419 

2.133e-04 

(1.844e-03) 

0.116, 

0.908 

2.759e-04 

(1.367e-04) 

2.019, 

0.048 
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Mammillothalamic tract 

(Left) 

 

9.886e-04 

(1.526e-02) 

0.065, 

0.948 

3.282e-04 

(9.860e-03) 

0.333, 

0.740 

-3.485e-03 

(2.383e-03) 

-1.462, 

0.146 

3.971e-04 

(1.909e-04) 

2.080, 

0.041 

Mammillothalamic tract 

(Right) 

 

-3.127e-02 

(1.735e-02) 

-1.802, 

0.077 

4.406e-04 

(1.212e-03) 

0.362, 

0.718 

-3.070e-03 

(2.857e-03) 

-1.075, 

0.285 

-1.281e-04 

(2.376e-04) 

-0.539 

0.591 

Uncinate Fasciculus (Left) 

 

 

2.063e-02 

(1.728e-02) 

1.193, 

0.237 

-9.601e-04 

(9.949e-04) 

-0.965, 

0.339 

-2.806e-03 

(2.566e-03) 

-1.094, 

0.277 

3.408e-04 

(1.916e-04) 

1.779,  

0.081 

Uncinate Fasciculus (Right) 1.311e-02 

(1.526e-02) 

0.859, 

0.394 

2.551e-04 

(9.253e-04) 

0.276, 

0.784 

-7.736e-04 

(2.306e-03) 

-0.335, 

0.738 

1.531e-04 

(1.835e-04) 

0.834,  

0.408 
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Table 5.28 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts FA and ARI scores in ADHD. 

 

 

Sex Months from baseline ARI ARI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.245e-02 

(7.985e-03) 

1.559,  

0.124 

4.395e-04 

(4.329e-04) 

1.015, 

0.315 

-8.362e-06 

(1.146e-03) 

-0.007, 

0.994 

-1.838e-05 

(8.249e-05) 

-0.223, 

0.825 

Cingulum Bundle (Right) 

 

 

1.232e-02 

(7.605e-03) 

1.621, 

0.110 

1.481e-04 

(3.000e-04) 

0.494, 

0.624 

-4.895e-04 

(9.481e+01) 

-0.531, 

0.597 

7.556e-05 

(5.703e-05) 

1.325, 

0.192 

Fornix (Left) 

 

 

3.027e-02 

(1.068e-02) 

2.835, 

0.006 

3.815e-04 

(6.214e-04) 

0.614, 

0.541 

7.807e-04 

(1.619e-03) 

0.482, 

0.630 

-3.416e-05 

(1.181e-04) 

-0.289 

0.773 

Fornix (Right) 

 

 

7.564e-03 

(8.542e-03) 

1.605, 

0.114 

-2.464e-04 

(5.336e-04) 

-0.462, 

0.646 

-1.820e-03 

(1.295e-03) 

-1.406, 

0.163 

3.566e-05 

(1.008e-04) 

0.354 

0.725 

Anterior Thalamic Projections 

(Left) 

 

3.520e-03 

(7.173e-03) 

0.491, 

0.625 

2.667e-04 

(3.491e-04) 

0.764, 

0.448 

-5.351e-04 

(9.739e-04) 

-0.549, 

0.584 

-6.673e-06 

(6.646e-05) 

-0.100, 

0.920 

Anterior Thalamic Projections 

(Right) 

9.635e-04 

(6.860e-03) 

0.140, 

0.889 

-2.359e-04 

(3.316e-04) 

-0.711, 

0.480 

-9.560e-04 

(9.282e-04) 

-1.030, 

0.305 

7.078e-05 

(6.313e-05) 

1.121, 

0.268 
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Mammillothalamic tract 

(Left) 

 

5.547e-03 

(9.852e-03) 

0.563, 

0.576 

-1.725e-04 

(6.666e-04) 

-0.259, 

0.797 

-1.524e-03 

(1.582e-03) 

-0.963, 

0.338 

1.140e-04 

(1.275e-04) 

0.894, 

0.375 

Mammillothalamic tract 

(Right) 

 

3.111e-03 

(9.594e-03) 

0.324, 

0.746 

6.835e-04 

(7.321e-04) 

0.934, 

0.353 

-6.416e-05 

(1.636e-03) 

-0.039, 

0.969 

-8.553e-05 

(1.398e-04) 

-0.612 

0.542 

Uncinate Fasciculus (Left) 

 

 

5.088e-03 

(8.643e-03) 

0.589, 

0.559 

-5.431e-04 

(5.442e-04) 

-0.998, 

0.323 

8.497e-05 

(2.566e-03) 

0.063, 

0.950 

1.309e-04 

(1.037e-04) 

1.262,  

0.213 

Uncinate Fasciculus (Right) 3.262e-03 

(8.994e-03) 

0.363, 

0.718 

2.830e-04 

(5.594e-04) 

0.506, 

0.615 

1.159e-03 

(1.363e-03) 

0.850, 

0.397 

-6.669e-05 

(1.059e-04) 

-0.630,  

0.532 
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Table 5.29 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts AD and ARI scores in ADHD. 

 

 

Sex Months from baseline ARI ARI* Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

2.900e-05 

(1.292e-05) 

2.244,  

0.028 

5.875e-07 

(7.124e-07) 

0.825, 

0.413 

3.792e-07 

(1.871e-06) 

0.203, 

0.839 

-1.303e-07 

(1.357e-07) 

-0.960, 

0.341 

Cingulum Bundle (Right) 

 

 

3.152e-05 

(1.284e-05) 

2.455, 

0.017 

-2.257e-09 

(7.108e-07) 

-0.003, 

0.997 

-1.031e-06 

(1.863e-06) 

-0.553, 

0.581 

-1.067e-07 

(1.354e-07) 

-0.788, 

0.434 

Fornix (Left) 

 

 

1.266e-04 

(6.139e-05) 

2.061, 

0.043 

-2.802e-06 

(3.797e-06) 

-0.738, 

0.463 

4.513e-06 

(9.591e-06) 

0.471, 

0.639 

3.467e-09 

(7.224e-07) 

0.005 

0.996 

Fornix (Right) 

 

 

-1.278e-05 

(4.731e-05) 

-0.270, 

0.788 

3.514e-06 

(3.256e-06) 

1.079, 

0.284 

-2.218e-07 

(7.530e-06) 

-0.029, 

0.977 

-4.972e-07 

(6.153e-07) 

-0.808 

0.422 

Anterior Thalamic Projections 

(Left) 

 

1.663e-05 

(1.015e-05) 

1.638, 

0.106 

1.058e-06 

(6.481e-07) 

1.632, 

0.107 

-3.120e-08 

(1.584e-06) 

-0.020, 

0.984 

-1.262e-07 

(1.235e-07) 

-1.022, 

0.311 

Anterior Thalamic Projections 

(Right) 

8.623e-06 

(1.273e-05) 

0.678, 

0.500 

-2.074e-07 

(6.339e-07) 

-0.327, 

0.745 

-9.886e-07 

(1.749e-06) 

-0.565, 

0.573 

-1.055e-07 

(1.207e-07) 

-0.874, 

0.386 
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Mammillothalamic tract 

(Left) 

 

-5.789e-05 

(4.211e-05) 

-1.375, 

0.174 

1.041e-06 

(3.035e-06) 

0.343, 

0.733 

2.048e-06 

(6.977e-06) 

0.294, 

0.770 

-3.273e-07 

(5.803e-07) 

-0.564, 

0.575 

Mammillothalamic tract 

(Right) 

 

2.056e-05 

(5.511e-05) 

0.373, 

0.710 

-2.615e-07 

(3.023e-06) 

-0.086, 

0.931 

-7.743e-07 

(8.006e-06) 

-0.097, 

0.923 

2.718e-07 

(5.781e-07) 

0.470 

0.640 

Uncinate Fasciculus (Left) 

 

 

8.041e-06 

(1.673e-05) 

0.481, 

0.632 

-9.386e-07 

(8.123e-07) 

-1.155, 

0.254 

-4.610e-07 

(2.269e-06) 

-0.203, 

0.839 

2.912e-08 

(1.547e-07) 

0.188,  

0.851 

Uncinate Fasciculus (Right) 2.714e-05 

(1.589e-05) 

1.708, 

0.092 

-1.506e-06 

(8.787e-07) 

-1.714, 

0.092 

-2.369e-07 

(2.277e-06) 

-0.104, 

0.917 

4.549e-09 

(1.664e-07) 

-0.027,  

0.978 
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Table 5.30 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts RD and ARI scores in ADHD. 

 

 

Sex Months from baseline ARI ARI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.336e-06 

(1.074e-05) 

0.124,  

0.901 

-3.015e-07 

(5.932e-07) 

-0.508, 

0.613 

1.381e-07 

(1.557e-06) 

0.089, 

0.929 

-4.554e-08 

(1.130e-07) 

-0.403, 

0.689 

Cingulum Bundle (Right) 

 

 

1.725e-06 

(1.026e-05) 

0.168, 

0.867 

-3.627e-07 

(4.615e-07) 

-0.786, 

0.436 

3.692e-07 

(1.337e-06) 

0.276, 

0.783 

-1.375e-07 

(8.782e-08) 

-1.566, 

0.124 

Fornix (Left) 

 

 

-3.398e-07 

(2.556e-05) 

-0.013, 

0.989 

-2.259e-06 

(1.667e-06) 

-1.355, 

0.181 

1.712e-06 

(4.099e-06) 

0.418, 

0.677 

-5.848e-08 

(3.174e-07) 

-0.184 

0.855 

Fornix (Right) 

 

 

-8.386e-06 

(2.145e-05) 

-0.391, 

0.697 

1.740e-06 

(1.416e-06) 

1.228, 

0.224 

4.989e-06 

(3.343e-06) 

1.492, 

0.139 

-2.618e-07 

(2.677e-07) 

-0.978 

0.332 

Anterior Thalamic Projections 

(Left) 

 

5.126e-06 

(9.356e-06) 

0.548, 

0.586 

3.636e-07 

(5.760e-07) 

0.631, 

0.530 

1.481e-06 

(1.433e-06) 

1.033, 

0.304 

-8.706e-08 

(1.098e-07) 

-0.793, 

0.431 

Anterior Thalamic Projections 

(Right) 

5.728e-06 

(9.905e-06) 

0.578, 

0.565 

3.599e-09 

(4.875e-07) 

0.007, 

0.994 

5.786e-07 

(1.353e-06) 

0.428, 

0.670 

-1.166e-07 

(9.283e-08) 

-1.256, 

0.215 
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Mammillothalamic tract 

(Left) 

 

-3.521e-05 

(3.300e-05) 

-1.067, 

0.289 

1.030e-06 

(2.518e-06) 

0.409, 

0.683 

4.363e-06 

(5.625e-06) 

0.776, 

0.440 

-4.367e-07 

(4.809e-07) 

-0.908, 

0.366 

Mammillothalamic tract 

(Right) 

 

5.522e-06 

(4.109e-05) 

0.134, 

0.894 

-5.142e-07 

(2.481e-06) 

-0.207, 

0.837 

1.788e-06 

(6.247e-06) 

0.286, 

0.775 

1.292e-07 

(4.746e-07) 

0.272 

0.786 

Uncinate Fasciculus (Left) 

 

 

-9.956e-07 

(1.040e-05) 

-0.096, 

0.924 

3.610e-07 

(7.412e-07) 

0.487, 

0.628 

4.584e-07 

(1.717e-06) 

0.267, 

0.790 

-1.889e-07 

(1.412e-07) 

-1.338,  

0.185 

Uncinate Fasciculus (Right) 8.601e-06 

(1.405e-05) 

0.612, 

0.543 

-1.405e-06 

(7.034e-07) 

-1.997, 

0.051 

-1.938e-06 

(1.921e-06) 

-1.009, 

0.315 

1.492e-07 

(1.332e-07) 

1.120,  

0.268 
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Table 5.31 Results of mixed-effects models (with interaction term) analyses: limbic system white matter tracts MD and ARI scores in ADHD. 

 

 

Sex Months from baseline ARI ARI * Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Cingulum Bundle (Left) 

 

 

1.299e-05 

(9.500e-06) 

1.367,  

0.176 

2.033e-07 

(5.199e-07) 

0.391, 

0.697 

8.238e-07 

(1.370e-06) 

0.601, 

0.549 

-9.271e-08 

(9.906e-08) 

-0.936, 

0.353 

Cingulum Bundle (Right) 

 

 

1.277e-05 

(9.346e-06) 

1.366, 

0.177 

-1.768e-07 

(4.710e-07) 

-0.375, 

0.709 

2.922e-07 

(1.292e-06) 

0.226, 

0.822 

-1.297e-07 

(8.969e-08) 

-1.446, 

0.155 

Fornix (Left) 

 

 

3.002e-05 

(3.574e-05) 

0.840, 

0.404 

-2.451e-06 

(2.217e-06) 

-1.106, 

0.274 

2.646e-06 

(5.591e-06) 

0.473, 

0.637 

-2.998e-08 

(4.217e-07) 

-0.071 

0.944 

Fornix (Right) 

 

 

-2.243e-06 

(2.847e-05) 

-0.079, 

0.937 

1.830e-06 

(1.846e-06) 

0.991, 

0.325 

3.919e-06 

(4.397e-06) 

0.891, 

0.375 

-3.039e-07 

(3.488e-07) 

-0.871 

0.387 

Anterior Thalamic Projections 

(Left) 

 

8.809e-06  

(8.438e-06) 

1.044, 

0.300 

6.987e-07  

(5.464e-07) 

1.279, 

0.205 

8.519e-07 

(1.326e-06) 

0.642, 

0.522 

-1.222e-07 

(1.041e-07) 

-1.174, 

0.245 

Anterior Thalamic Projections 

(Right) 

9.032e-06 

(9.459e-06) 

0.955, 

0.343 

-1.580e-07 

(4.463e-07) 

-0.354, 

0.725 

1.712e-07  

(1.264e-06) 

0.136, 

0.892 

-1.061e-07 

(8.495e-08) 

-1.248, 

0.218 
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Mammillothalamic tract 

(Left) 

 

-4.715e-05 

(3.541e-05) 

-1.331, 

0.188 

1.263e-06 

(2.683e-06) 

0.471, 

0.639 

3.401e-06 

(6.016e-06) 

0.565, 

0.573 

-4.336e-07 

(5.125e-07) 

-0.846, 

0.400 

Mammillothalamic tract 

(Right) 

 

6.222e-06 

(4.683e-05) 

0.133, 

0.895 

-7.005e-09 

(2.565e-06) 

-0.003, 

0.998 

2.049e-06 

(6.798e-06) 

0.301, 

0.764 

6.622e-09 

(4.904e-07) 

0.014 

0.989 

Uncinate Fasciculus (Left) 

 

 

9.332e-07 

(9.465e-06) 

0.099, 

0.922 

-2.004e-07 

(6.309e-07) 

-0.318 

0.752 

5.068e-08 

(1.510e-06) 

0.034, 

0.973 

-1.038e-07 

(1.202e-07) 

-0.864,  

0.391 

Uncinate Fasciculus (Right) 1.444e-05 

(1.313e-05) 

1.100, 

0.276 

-1.541e-06 

(6.235e-07) 

-2.471, 

0.017 

-1.749e-06 

(1.751e-06) 

-0.999, 

0.320 

1.198e-07 

(1.180e-07) 

1.015,  

0.315 
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Table 5.32 Mean values of the effect of diagnosis in the 100 iterations of optimal mixed-effects models 

analyses of limbic system with sex sex-matched case-control samples. 

 Diagnosis 

 B SE T p-value 

     

Left Cingulum Bundle (KA) -8.50e-03 3.397e-03 -2.515 0.014 

 

Right Cingulum Bundle (KA) -8.89e-03 3.452e-03 -2.575 0.011 

 

Left Fornix (KA) -9.50e-03 3.816e-03 -2.489 0.014 

 

Left Fornix (RD) 4.31e-05 1.57e-05 2.743 0.008 

 

Left Anterior Thalamic Projection 

(RK) 

1.462e-03 

 

 

5.77e-04 

 

2.531 

 

0.014 
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Table 5.33 Results of medication status sensitivity analysis using optimal mixed-effects models (without interaction term) analyses: 

limbic system white matter KA in ADHD. 

 

 

Sex Months from baseline Age at baseline Medication Status 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Left Cingulum Bundle 

(KA) 

 

-9.298e-04  

(5.888e-03) 

-0.158,  

0.8750 

2.454e-04  

(9.812e-05) 

2.501, 

0.014 

9.517e-03 

(4.983e-03) 

1.910, 

0.060 

-1.651e-03 

(4.642e-03) 

-0.356 

0.722 

 

Right Cingulum Bundle 

(KA) 

 

7.010e-03 

(5.801e-03) 

1.208, 

0.231 

2.309e-04   

(9.961e-05) 

2.317, 

0.022 

1.208e-02 

(4.907e-03) 

2.462 , 

0.016 

-4.265e-03 

(4.580e-03) 

-0.931, 

0.353 

Left Fornix (KA) 3.272e-03 

(6.003e-03) 

0.545, 

0.587 

-4.137e-04  

(1.263e-04) 

-3.277, 

0.001 

2.593e-03  

(5.255e-03) 

0.493, 

0.623 

-7.553e-03 

(5.872e-03) 

-1.286, 

0.200 
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Table 5.34 Results of medication status sensitivity analysis using optimal mixed-effects models (without interaction term) analyses: limbic system white 

matter RD in ADHD. 

 

 

Sex Months from baseline Age at baseline Medication status Medication status*Months from 

baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Left Anterior 

Thalamic 

Projection  (RK) 

 

2.758e-02 

(1.707e-02) 

1.616, 

0.119 

3.691e-03 

(4.889e-04) 

7.550, 

<0.000 

2.603e-02  

(1.481e-02) 

1.758, 

0.083 

2.164e-02  

(1.952e-02) 

1.109, 

0.269 

 

-1.081e-03   

(9.794e-04) 

-1.104, 

0.272 

Left Fornix (RD) 3.675e-07  

(2.643e-05) 

0.014, 

0.989 

-3.899e-07  

(5.477e-07) 

-0.712, 

0.478 

3.994e-05  

(2.245e-05) 

1.779, 

0.079 

1.377e-05  

(2.557e-05) 

0.539, 

0.591 

 

-7.544e-07   

(1.103e-06) 

-0.684, 

0.495 
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Table 5.35 Results of optimal mixed-effects models analyses with comorbidity status: limbic system white matter microstructure 

in ADHD and Controls. 

  

 

 

Sex Age at baseline Months from baseline Diagnosis Comorbidity Diagnosis* Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Left Cingulum 

Bundle (KA) 

 

1.678e-04 

(3.626e-03) 

0.046 

0.963 

6.959e-03 

(3.664e-03) 

1.899 

0.059 

2.683e-04 

(7.601e-05) 

3.530 

<0.000 

-8.618e-03 

(3.448e-03) 

-2.500 

0.013 

1.765e-03 

(2.629e-03) 

0.671 

0.502 

n/a n/a 

Right Cingulum 

Bundle (KA) 

 

 

4.022e-03  

(3.756e-03) 

1.071 

0.285 

1.070e-02 

(3.801e-03) 

2.816, 

0.005 

3.949e-04 

(8.315e-05) 

-4.749 

<0.000 

-8.679e-03 

(3.601e-03) 

-2.410 

0.016 

1.188e-03 

(3.023e-03) 

0.393 

0.694 

n/a n/a 

Left Fornix (KA) 

 

 

2.491e-03 

(3.017e-03) 

0.826 

0.410 

1.241e-03 

(3.089e-03) 

0.402 

0.688 

-5.354e-04 

(7.338e-05) 

-7.296 

<0.000 

-7.385e-03 

(3.565e-03) 

-2.071 

0.039 

-6.360e-03 

(2.920e-03) 

-2.178 

0.030 

2.276e-04  

(1.446e-04) 

1.573 

0.117 

Left Fornix (RD) 

 

 

-1.244e-05 

(1.219e-05) 

-1.020 

0.309 

3.249e-05 

(1.240e-05) 

2.620, 

0.009 

1.805e-07 

(2.719e-07) 

0.664, 

0.507 

3.613e-05 

(1.392e-05) 

2.595 

0.009 

1.671e-05 

(1.074e-05) 

1.556 

0.120 

-9.357e-07 

(5.365e-07) 

-1.744 

0.082 

Left Anterior 

Thalamic 

Projections (RK) 

3.534e-03 

(1.186e-02) 

0.298, 

0.766 

6.248e-03 

(1.205e-02) 

0.519, 

0.604 

2.675e-03 

(2.996e-04) 

8.930, 

<0.000 

-4.104e-02 

(1.414e-02) 

-2.903 

0.003 

1.625e-02 

(1.168e-02) 

1.391 

0.165 

1.775e-03 

(5.885e-04) 

3.016 

0.002 
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Table 5.36 Results of optimal mixed-effects models analyses with frame-wise displacement: limbic system white matter 

microstructure in ADHD and Controls. 

  

 

 

Sex Age at baseline Months from baseline Diagnosis FWD Diagnosis* Months from baseline 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Left Cingulum 

Bundle (KA) 

 

-1.103e-03 

(3.526e-03) 

-0313 

0.754 

6.937e-03 

(3.562e-03) 

1.947 

0.053 

2.672e-04 

(7.447e-05) 

3.588 

<0.000 

-8.955e-03 

(3.330e-03) 

-2.689 

0.007 

8.961e-03 

(6.506e-03) 

1.377 

0.169 

n/a n/a 

Right Cingulum 

Bundle (KA) 

 

 

8.639e-04 

(3.351e-03) 

0.258 

0.796 

1.208e-02 

(3.486e-03) 

3.465 

<0.000 

4.130e-04 

(6.058e-05) 

6.818 

<0.000 

-6.431e-03 

(3.166e-0) 

-2.031 

0.043 

1.097e-03 

(5.749e-03) 

0.191 

0.848 

n/a n/a 

Left Fornix (KA) 

 

 

2.773e-03 

(2.992e-03) 

0.927 

0.355 

2.393e-04 

(3.071e-03) 

0.078 

0.938 

-5.123e-04 

(7.421e-05) 

-6.903 

<0.000 

-9.285e-03 

(3.537e-03) 

-2.625 

0.009 

2.097e-04 

(7.213e-03) 

0.029 

0.976 

2.386e-04 

(1.469e-04) 

1.624 

0.105 

Left Fornix (RD) 

 

 

-1.102e-05 

(1.229e-05) 

-0.897 

0.371 

3.406e-05 

(1.251e-05) 

2.722 

0.007 

6.596e-08  

(2.745e-07) 

0.240 

0.810 

4.220e-05 

(1.401e-05) 

3.012 

0.002 

5.410e-06 

(2.730e-05) 

0.198 

0.843 

-1.078e-06 

(5.436e-07) 

-1.983 

0.048 
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Left Anterior 

Thalamic 

Projections (RK) 

 

 

-2.749e-03 

(1.043e-02) 

-0.264 

0.792 

3.095e-03 

(1.053e-02) 

0.294 

0.769 

2.733e-03 

(2.382e-04) 

11.473 

<0.000 

-2.487e-02 

(1.188e-02) 

-2.093 

0.037 

5.245e-02 

(2.387e-02) 

2.198 

0.028 

1.201e-03 

(4.723e-04) 

2.543 

0.117 
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Figure 5.34 Beta values and SEs of sex-group sensitivity analysis. 
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Figure 5.35 Beta values and SEs of Comorbidity sensitivity analysis. 
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Figure 5.36 Beta values and SEs of FWD sensitivity analysis. 

 

 

 

 

 

 

 

 

 

 

5.4. Discussion  

The longitudinal dMRI study described in this chapter aimed to investigate 

microstructural alterations within key limbic system white matter tracts during the 
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transition from childhood into mid-adolescence among individuals with ADHD compared 

to controls. Both gaussian (DTI) and non-gaussian (DKI) metrics were investigated to 

provide a more complex description of the diffusion profiles. Exploratory analysis 

investigated associations between microstructural organisation of limbic system white 

matter and ADHD symptom severity in children with ADHD. The study described in this 

thesis presents three main findings. First, children with ADHD displayed reduced white 

matter microstructural organisation – decreased KA and increased RD – in the bilateral 

cingulum bundles and left fornix compared to controls. Second, during the transition from 

childhood to mid-adolescence, children with ADHD displayed an increased rate of change 

of RK in the left anterior thalamic projection compared to controls. Third, in children with 

ADHD, increased ADHD symptom severity was significantly correlated with increased 

KA in the right fornix. 

 

5.4.1. Role of Limbic System White Matter Tracts Implicated in ADHD 

 

Cingulum Bundle 

The cingulum bundle is a key limbic system white matter tract which interconnects 

the amygdala, hippocampus, cingulate gyrus, and other brain regions (Catani, Dell'acqua, 

and Thiebaut de Schotten 2013). The cingulum bundle has been linked to a wide range of 

functions, including executive function, attention, emotional processing and regulation 

(Bubb, Metzler-Baddeley, and Aggleton 2018). The cingulum bundle displays an extended 

period of maturation through mid-adolescence and beyond, often not reaching its adult 

characteristics until the mid-twenties or later. With a mean age of 42 years to reach peak 

FA, the cingulum is considered one of the last major white matter tracts to mature by this 

metric (Lebel and Beaulieu 2011; Lebel et al. 2012). In the study described in this chapter, 

individuals with ADHD displayed reduced KA in the cingulum bundle (bilaterally) 

compared to controls across all three NICAP time points. In both groups, the cingulum 

bundle’s white matter organisation increased linearly across the three NICAP study time 

points; a pattern consistent with neurotypical cingulum bundle maturation (Lebel, Treit, 

and Beaulieu 2019; Das et al. 2017). Findings of reduced KA but not FA suggest that there 

may be changes in the microstructural complexity or heterogeneity of the cingulum bundle 

without significant alterations in the overall organisation of this white matter tract. 

Neurobiologically, increased KA has been shown to reflect higher myelination and axonal 
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organisation, which are processes associated with neurotypical development of the 

cingulum bundle (Maiter et al. 2021; Hansen 2019). As such, the reduced KA seen in the 

ADHD group across all three time points may reflect atypical cingulum bundle 

development, specifically a fixed non-progressive disruption to neurodevelopmental 

processes of myelination and axonal packing, consistent with the previously mentioned 

convergence developmental model of ADHD. 

While the cingulum bundle is one of the most prominently linked white matter 

tracts to ADHD, inconsistencies have also been reported. In previous cross-sectional 

studies, six reported reduced white matter microstructural organisation in the cingulum in 

children with ADHD characterised by reduced FA (King et al. 2015), GFA (Chiang et al. 

2015; Chiang et al. 2016; Tung et al. 2021), decreased return-to-orientation probability 

and return-to-axis probability (Wu et al. 2020), and increased MD (Pavuluri et al. 2009).  

Two other studies reported conflicting results, characterised by findings of increased 

FA(Silk et al. 2009b), and AD (Svatkova et al. 2016), while five other studies found no 

significant between-group difference in cingulum bundle microstructure (Lin et al. 2014; 

Hamilton et al. 2008; Peterson et al. 2011; Lawrence et al. 2013; Cooper, Thapar, and 

Jones 2015).  

 

Fornix 

The fornix is a white matter bundle that interconnects the medial temporal lobe to 

the mammillary bodies and hypothalamus (Catani and Thiebaut de Schotten 2008; Ross 

2008; Mori et al. 2000), which plays a vital role in memory formation and retrieval, spatial 

navigation and emotional and motivational learning (Hoffman et al. 2022; Benear, Ngo, 

and Olson 2020; Senova et al. 2020). The fornix is one of the earliest white matter tracts 

to develop, maturing during infancy and early childhood (Hoffman et al. 2022; Dimond et 

al. 2020). In this chapter, children with ADHD had reduced KA and increased RD in the 

left fornix compared to controls. This significant main effect appears to be driven by study 

time point one, with the ADHD group converging towards the control group at time point 

3 (Figures 5.7 & 5.9). The findings of this study are consistent with the maturational delay 

hypothesis of ADHD (Shaw et al. 2007; Shaw et al. 2012; Rubia 2007). Reduced KA and 

increased RD may indicate differences in fornix microstructural organisation are 

associated with decreased complexity and altered myelination (Maiter et al. 2021; Xie et 

al. 2010; Winklewski et al. 2018). The findings of the present study support previous 



 324 

research suggesting a link between ADHD and decreased microstructural organisation of 

the left fornix (Davenport et al. 2010; Onnink et al. 2015). It is important to note that the 

investigation of the fornix in ADHD has been constrained by limited research and 

inconsistent findings (van Ewijk et al. 2012). The fornix is a difficult white matter tract to 

reconstruct accurately, given its high curvature and anatomical location. It is plausible that 

traditional DTI metrics have struggled to capture the diffusion profile needed to investigate 

this white matter tract accurately. With the advancement in dMRI acquisition parameters 

and diffusion modelling techniques, further research is needed to explore the involvement 

of the fornix in children and adolescents with ADHD.  

Additional information can be drawn from the previous longitudinal fixel-based 

analysis (FBA), a method conceptually similar to voxel-based analyses, that utilised the 

same NICAP dataset to investigate fibre density and fibre morphology of the cingulum 

bundle and fornix (Fuelscher et al. 2023). They found that compared to controls, children 

with ADHD displayed no significant difference in fibre density or fibre morphology of the 

cingulum bundle and fornix across the three NICAP study time points. FBA is a new dMRI 

technique that provides quantitative measures of fibre-specific populations, focusing on 

intra-axonal diffusion properties in a given voxel. While FBA has the benefit of providing 

greater biological specificity of a given white matter bundle, it does not provide 

information on the extra axonal diffusion properties. Extra-axonal diffusion refers to the 

diffusion occurring outside the axonal membranes, encompassing the spaces between 

axons, myelin sheaths, and other cellular components (Van Hecke, Emsell, and Sunaert 

2016). Given the heterogeneous nature of biological tissues such as the brain white matter, 

valuable insights can be gained by investigating extra axonal diffusion profiles. 

Considering the findings of previous FBA analyses and the current study, differences 

observed in limbic system white matter microstructural organisation may be driven by 

atypical extra axonal diffusion. These findings indicate that children with ADHD might 

have diminished microstructural complexity or heterogeneity in the cingulum bundle and 

fornix without substantial alterations in the overall organisation or coherence of these fibre 

bundles.  

 

Anterior Thalamic Projection 

The anterior thalamic nuclei receive incoming fibres from the mammillothalamic 

tract and fornix and send outgoing projections via the anterior thalamic pathways to the 
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orbitofrontal and anterior cingulate cortex (Catani, Dell'acqua, and Thiebaut de Schotten 

2013). The anterior thalamic projection is involved in various executive functions, such as 

cognitive control and emotion regulation (Niida et al. 2018; Lichenstein, Verstynen, and 

Forbes 2016).  In this study, compared to controls, individuals with ADHD displayed a 

significant age-by-group interaction, with a rapid increase in RK during childhood to mid-

adolescence. There are many neurobiological mechanisms that may help explain such a 

result. This rapid increase in non-gaussian diffusion in the radial direction may be 

attributed to processes of neuroinflammation, specifically an increased breakdown of 

myelin, neurofilaments, and microtubule degeneration associated with the ADHD group 

(Takahashi et al. 2002; Does, Parsons, and Gore 2003; Schwartz et al. 2005; Yong-Hing 

et al. 2005; Thelwall et al. 2006; Goryawala et al. 2018). Alternatively, the overshoot 

developmental trajectory of the anterior thalamic projections may be explained by the 

compensatory hypotheses of ADHD (Fassbender and Schweitzer 2006). The 

compensatory hypotheses of ADHD suggest certain brain regions are associated with a 

compensatory development of neuroplasticity processes (Chiang et al. 2020). Identifying 

the biological mechanisms underpinning this finding is beyond the scope of this study; 

however, it identifies an exciting area for future research to explore.  

Overall, this study found that children with ADHD are associated with atypical 

development of key limbic system white matter tracts – specifically the cingulum bundle, 

fornix, and anterior thalamic projection – compared to controls during the transition from 

childhood into mid-adolescence. These findings advance our understanding of the 

developmental models in ADHD and suggest that the pathophysiology of ADHD will 

likely involve varied region-specific developmental patterns.  

 

5.4.2. Potential Neurobiological Processes Underlying Atypical White Matter in 

ADHD 

This section will discuss the findings of this study in the context of the prominent 

neurobiological theories of ADHD. Phenomenological approaches such as DTI and DKI 

utilise mathematical approximations of the dMRI signal without making assumptions 

about the specific microstructural properties of the underlying tissue (Martinez-Heras et 

al. 2021). While these approaches offer excellent sensitivity to microscopic diffusion 

alterations within a voxel, it cannot pinpoint the exact mechanisms responsible for changes 

in DTI and DKI metrics (Martinez-Heras et al. 2021). Therefore, interpreting dMRI 
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metrics in conjunction with other epigenetic, genetic and animal model research is 

essential, as these dMRI metrics provide complementary information rather than direct 

measures of neurobiological processes. The atypical microstructural organization found in 

this study has been linked with neurobiological mechanisms such as dysregulated 

myelination and processes associated with neuroinflammation.  

 

Processes of Dysregulated Myelination 

The findings of this study – particularly in the cingulum and fornix – support a 

long-standing hypothesis that the neurobiological phenotype seen in ADHD may be 

underpinned by dysregulated myelination and related changes in neuronal plasticity, 

particularly in the frontostriatal and limbic circuits (Dark, Homman-Ludiye, and Bryson-

Richardson 2018; Lesch 2019). Myelination is a process in which the myelin sheath 

surrounding neurons is formed and strengthened. When myelination is delayed or 

disrupted, it can affect brain maturation by altering neuronal plasticity. This is because 

dysregulated myelination can interrupt the normal growth of neurites and axons due to 

abnormal production of the myelin sheath. In support of this hypothesis, a recent genome-

wide association (GWAS) meta-analysis suggested that the pathophysiology of ADHD 

may be underpinned by a genetically driven dysregulated myelination (Demontis et al. 

2019). In that study, the most significant locus was a gene encoding the beta-galactoside-

alpha-2, 3-sialyltransferase-III (ST3GAL3) membrane protein. ST3GAL3 plays a key role 

in the sialylation of glycoproteins, a process essential for the proper formation and function 

of myelin sheath (Yoo et al. 2015). Animal research has found that ST3GAL-3 deficient 

mice displayed ADHD-like behaviours, specifically impaired cognitive function and 

motor coordinated gait (Yoo et al. 2015). Additionally, these behavioural phenotypes were 

driven by demyelination, characterised by a reduction in major myelin proteins, fewer 

myelinated axons, and a decrease in myelin (Yoo et al. 2015).  

Other novel candidates, including FOXP2 and MEF2C identified in the GWAS 

meta-analysis, may also directly or indirectly be involved in the dysregulation of 

myelination (Dark, Homman-Ludiye, and Bryson-Richardson 2018). FOXP2 may affect 

myelination through its role in neuronal development and connectivity. Studies have 

demonstrated that reduced FOXP2 expression leads to abnormalities in the development 

and function of oligodendrocytes, which subsequently affect myelination processes (Lesch 

2019). MEF2C is a transcription factor that plays a critical role in various aspects of brain 
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development, including axonal myelination. MEF2C is thought to impact myelination 

through its regulatory effects on the expression of genes involved in oligodendrocyte 

development. Studies have shown that MEF2C deficiency leads to impaired 

oligodendrocyte differentiation and reduced myelin formation (Li et al. 2018). The 

collective evidence from GWAS and neuroimaging studies suggest that variants in 

ADHD-associated genes may be linked to disrupted myelination, potentially contributing 

to the neurobiological phenotype seen in ADHD. Further research exploring this link will 

offer crucial insights into the pathophysiology of ADHD. 

 

Processes of Neuroinflammation 

The findings of a rapid increase in the left anterior thalamic projection RK in the 

ADHD group raise intriguing possibilities of a potential link with neuroinflammation in 

the pathophysiology of ADHD, in line with emerging evidence in this area (Pakpoor et al. 

2018; Dunn, Nigg, and Sullivan 2019). Neuroinflammation is proposed to influence brain 

development and subsequently increase the risk of neurodevelopmental disorders by 

acting through mechanisms including glial activation (Réus et al. 2015), increased 

oxidative stress (Hassan et al. 2016), aberrant neuronal development (Belmadani et al. 

2006), decreased neurotropic support (Sen, Duman, and Sanacora 2008), and altered 

neurotransmitter function (Kronfol and Remick 2000). Further support is found in 

environmental risk factors for ADHD including maternal infection, maternal tobacco 

smoking, fetal alcohol syndrome, and maternal obesity, all share an increased maternal 

inflammatory profile, raising the possibility that inflammation during neural development 

may play a role in the pathophysiology of ADHD (Costenbader and Karlson 2006; Shankar 

et al. 2011; Terasaki and Schwarz 2016). At this stage, it is essential to emphasise that 

these connections are speculative, further research is needed to establish any causal 

relationship between neuroinflammation and ADHD. This highlights the exciting potential 

for future research in this area. 

The findings of this chapter provide additional support for dysregulated 

myelination in ADHD pathophysiology and further research is required to validate and 

elucidate the potential role of neuroinflammatory processes. ADHD is a complex and 

heterogeneous disorder, and dysregulated myelination and neuroinflammation are just one 

of many potential factors that may contribute to its aetiology. Further research is required 

to understand the precise link between these neurodevelopmental processes in ADHD. 
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Gaining insights into the neurobiological mechanisms underlying the observed neural 

anomalies can inform the development of targeted treatments, ultimately enhancing 

symptom management and outcomes for individuals with the disorder. To achieve this, 

incorporating kurtosis metrics in future dMRI research is recommended due to their 

increased sensitivity in detecting neurobiological processes compared to traditional tensor 

metrics (Falangola et al. 2014). 

 

5.4.3. White Matter Microstructure and ADHD Symptom Severity 

The exploratory analysis of the study described in this thesis found no significant 

association between ADHD symptom severity and microstructural properties of limbic 

system white matter in children and adolescents with ADHD. This finding aligns with the 

majority of case-control white matter brain-behaviour research in this population, which 

failed to find any association between diffusion metrics of limbic system white matter 

tracts and ADHD symptoms severity (Bouziane et al. 2018; Svatkova et al. 2016; Ercan, 

Suren, Bacanli, et al. 2016; Fuelscher et al. 2021). Notably, one of these dMRI studies 

using the same data set as the current study (NICAP) and employing FBA also found no 

significant association between the white matter morphology of the cingulum bundle, 

thalamic projections and uncinate fasciculus and symptom severity in children and 

adolescents with ADHD (Fuelscher et al. 2021). Taken together, the research suggests that 

individual limbic system white matter fibres do not underpin symptom severity in ADHD 

during childhood and mid-adolescence. As symptom expression likely arises from the 

complex integration and interaction between multiple neural networks and brain regions, 

network analysis may provide further insights into ADHD symptoms. 

 

5.4.4. Limitations  

One limitation of utilising DKI is the relatively extended time required for image 

acquisition compared to DTI. The longer acquisition time heightens the susceptibility to 

imaging artifacts and thermal noise, thereby increasing the likelihood of estimating non-

physical values during the fitting process, especially in voxels characterised by low RD 

(Tabesh et al. 2011; Veraart, Van Hecke, and Sijbers 2011; Henriques 2012; Billiet et al. 

2015; Henriques et al. 2021). Although advancements in artifacts correction, noise 

removal, and constrained parameter estimation techniques have minimised this issue 

(Tabesh et al. 2011; Veraart, Van Hecke, and Sijbers 2011; Ades-Aron et al. 2018; Veraart 
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et al. 2016; Mohammadi et al. 2015; Kuder et al. 2012), complete elimination has not been 

achieved. To minimise this limitation, a thorough visual inspection of all dMRI images 

was conducted. Each image was meticulously examined and evaluated for the presence of 

artifacts, issues related to data quality, and excessive head motion. 

A further limitation of this chapter’s study is the lack of understanding of how 

puberty affects white matter microstructure in relation to ADHD. The influence of puberty 

on ADHD remains uncertain. Given that the presentation of ADHD symptoms and 

neuropsychological functioning appear to change as an individual enters puberty (Dorn 

2006), and considering white matter has been shown to be particularly sensitive to 

remodelling with exposure to pubertal hormones (Juraska and Willing 2017), it is 

important for future research to investigate the role of pubertal hormones in the 

development and underlying mechanisms of ADHD. 

The number of female participants at study time point 2 was significantly lower 

compared to male participants, which represents a sex-balance limitation. While there are 

well-documented differences in symptom profiles between girls and boys with ADHD 

(Mowlem et al. 2019), the specific sex-related disparities in brain development remain less 

clear. Previous research revealed differences in white matter microstructure between 

adolescent males and females with ADHD. King and colleagues (2012) found that females 

with ADHD exhibited increased fractional anisotropy (FA) in major white matter tracts 

such as the corticospinal tract, inferior longitudinal fasciculus, and superior longitudinal 

fasciculus, compared to males with ADHD (King et al. 2015). In the sensitivity analysis, 

it was found that the sex imbalance between ADHD and controls groups did not 

significantly affect the results of the primary analysis (Table 3.32), thereby the findings of 

the primary analysis are unlikely to be confounded by this sex imbalance. However, given 

that numerous studies investigating brain development in ADHD have not adequately 

accounted for the potential sex difference, it is crucial for future research to explore how 

sex differences contribute to the manifestation of symptoms, response to treatment and 

developmental trajectories of brain networks. 

A potential limitation of the study described in this chapter is that some individuals 

with ADHD were taking medication at certain points throughout the study. Previous 

research reported no significant difference in white matter microstructure between 

children with ADHD who have taken stimulant medication compared to no history of 

stimulant medication (Castellanos, Lee, Sharp, Jeffries, Greenstein, Clasen, Blumenthal, 



 330 

James, Ebens, and Walter 2002). Consistent with these findings, the sensitivity analysis 

conducted in this study found no notable differences in white matter microstructure in 

ADHD individuals with and without medication use (Table 5.33-5.34). This suggests that 

any observed differences in white matter microstructure are unlikely to be attributed to the 

effect of medication use. Nevertheless, our understanding of the effects ADHD medication 

on white matter properties remains limited. Therefore, it is important for future ADHD 

research to continue investigating the potential impact of medication on brain 

development, as current studies often include participants with mixed medication status.  

 

5.4.5. Conclusion 

In conclusion, the study described in this chapter used higher-order dMRI 

modelling techniques to reveal significant developmental differences in limbic system 

white matter microstructure among children and adolescents with ADHD. Specifically, 

reduced white matter microstructural organization was observed in the bilateral cingulum 

bundle, left fornix, and left anterior thalamic projections during the transition from 

childhood to mid-adolescence. These findings contribute valuable insights into the 

developmental models and neurobiological mechanisms of ADHD. Furthermore, they 

open avenues for future research to explore the functional significance and clinical 

implications of these limbic system white matter microstructural changes. 
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6 Structural Connectivity of the Limbic System in Children and 

Adolescents with ADHD: A Longitudinal Network Analysis 

 

6.1. Introduction 

While univariate approaches such as structural MRI volumetric analysis (Chapter 

3) and diffusion MRI tractography analysis (Chapter 5) offer valuable insights into 

individual regional abnormalities in ADHD, they offer limited insights into the complex 

interplay of multiple interconnected brain regions from which cognitive functions and 

behaviours emerge (Bressler and Menon 2010). The psychopathology of ADHD, along 

with various other psychiatric conditions, is increasingly being viewed not as 

abnormalities in isolated brain regions but rather as disorders stemming from various 

dysfunctional brain networks (Cortese et al. 2012b; Konrad and Eickhoff 2010). An 

important next step in furthering our understanding of brain structural changes in ADHD 

is in the application of network analysis.  

Network analysis is a valuable approach that enables the investigation of complex 

interactions among multiple, interconnected brain regions (Bressler and Menon 2010). 

Connectomic analysis is a specific type of network analysis that models the human brain 

as a network (or connectome) (Liao, Vasilakos, and He 2017; Sporns, Tononi, and Kötter 

2005). In structural connectivity network analyses, the brain network (connectome) is 

modelled as an integrated system of nodes (reconstructed representations of grey matter 

and/or subcortical nuclei regions) interconnected by connections known as edges 

(reconstructed representations of white matter tracts), enabling the investigation of white 

matter topology at a macroscopic level (Bressler and Menon 2010; Liao, Vasilakos, and 

He 2017; Sporns, Tononi, and Kötter 2005; Bullmore and Sporns 2012) (see Topic Box 1 

for definition of structural connectivity).  

 

Topic Box 1. Structural connectivity vs white matter microstructural integrity 

Structural connectivity, as a specific type of brain connectivity, is defined by the physical interconnection of 

two brain regions through a fibre tract, typically measured in vivo in humans using diffusion MRI (dMRI). 

As such, structural connectivity is an approximation of the actual underlying fibre density or the number of 

axons in these tracts (Jones, Knösche, and Turner 2013). It's important to note that structural connectivity is 

distinct from white matter microstructural organisation, which focuses on the properties within white matter 

tracts, such as the degree of myelination, fibre coherence, and the integrity of axonal membranes, often 
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indicated by metrics like FA, MD, RD or MD (Van Hecke, Emsell, and Sunaert 2016). While structural 

connectivity assesses the existence and number of connections between brain regions, white matter 

microstructural organisation provides insight into the quality and condition of the tracts themselves (Van 

Hecke, Emsell, and Sunaert 2016). 

 

The network nodes are derived from parcellations of T1 structural MRI images 

while the edges are derived from tractography methods using diffusion MRI (dMRI) 

images (Yeh et al. 2021). Typically, in structural connectivity networks, edges are 

generated by streamlines (Hagmann et al. 2008). Streamlines are virtual reconstructions 

of single fibre pathways through the diffusion field that are generated using tractography 

algorithms (Van Hecke, Emsell, and Sunaert 2016). In structural connectivity networks 

streamlines give an approximate measure of the number of white matter fibres connecting 

two nodes (Van Hecke, Emsell, and Sunaert 2016). Once the edges are generated, they can 

be defined either as binary or weighted. In a binary network, edges are described simply 

by the presence or absence of streamlines interconnecting two nodes (1 or 0) (Bullmore 

and Sporns 2012). In weighted networks, edges are assigned a value (weight) representing 

the strength, intensity, and/or capacity of the streamlines interconnecting the network 

nodes (Yeh et al. 2021). In structural connectivity network analyses, there are generally 

three methodologies employed to convert streamline counts into edge weights: raw 

streamline count (Yeh et al. 2016), Hagmann weighting (Hagmann et al. 2008) and 

streamline fraction (Cao et al. 2013). Descriptions of each approach are provided below:  

 

Raw streamline count is a  measure of structural connectivity that quantifies the 

number of connections between two regions (nodes) (Yeh et al. 2016). This is a basic 

unnormalized metric and is calculated simply by:  

 

𝐶𝑎𝑏 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑔𝑖𝑜𝑛 𝑎 𝑡𝑜 𝑟𝑒𝑔𝑖𝑜𝑛 𝑏 

 

Hagmann weighting is an edge weighting formula that quantifies the strength of 

the connection between two nodes a and b based on their streamline counts, streamline 

lengths, and volume of nodes (Hagmann et al. 2008). Below is a breakdown of the 

Hagmann weighting formula: 
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𝑊 =
2𝐶𝑎𝑏 ∑𝑖=1

𝑘 1/𝐿𝑖

𝑉𝑎 + 𝑉𝑏
  

 

● Cab : This is the count of streamlines connecting region a and b, which serves as a 

quantitative measure of the connection strength in each direction between two 

regions.  

 

● ∑𝑖=1
𝑘 1/𝐿𝑖: This is the sum of the reciprocals of the lengths of the individual 

streamlines (Li ) connecting a and b. By taking the reciprocal, shorter streamlines 

(which are often considered more reliable or meaningful) contribute more to the 

sum than longer streamlines.  

 

● 𝑉𝑎 + 𝑉𝑏: These are the volumes of regions a and b. They serve as normalisation 

factors that account for the sizes of the connected regions. Larger regions generate 

more streamlines due to their increased size, so normalising by volume can make 

the weighting more interpretable and reliable.   

 

● 
2𝐶𝑎𝑏 ∑𝑖=1

𝑘 1/𝐿𝑖

𝑉𝑎+𝑉𝑏
 = The final formula combines these components. The 2𝐶𝑎𝑏 term 

essentially doubles the raw streamline count, and this is then weighted by the sum 

of the reciprocals of streamline lengths. This product is then normalised by the sum 

of the volumes of the two connected regions 𝑉𝑎 + 𝑉𝑏 

 

Streamline fraction is an edge weighting defined as a measure of the “connection 

probability” between two nodes a and b based on their streamline counts (Cao et al. 2013). 

Below are the details of the streamline fraction equation:  

 

𝐹 = 0.5 (
𝐶𝑎𝑏

𝐶𝑎 𝑡𝑜𝑡𝑎𝑙
+

𝐶𝑏𝑎

𝐶𝑏 𝑡𝑜𝑡𝑎𝑙
) 

 

● Cab and Cba : These are the number of streamlines that go from region a to region 

b and vice versa. Similar to the term in the previous equation, it serves as a measure 

of the raw connection strength between two nodes.  
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● Ca total and Cba total : These terms represent the total number of streamlines leaving 

regions a and b. They serve as normalisation factors that account for regions with 

higher or lower overall connectivity.  

 

● 
𝐶𝑎𝑏

𝐶𝑎 𝑡𝑜𝑡𝑎𝑙
 and 

𝐶𝑏𝑎

𝐶𝑏 𝑡𝑜𝑡𝑎𝑙
 : These fractions represent the proportion of streamlines 

connecting a to b and b to a relative to the total number of streamlines leaving 

these regions. These values provide a normalised measure of directional strength. 

 

 

● 0.5 (
𝐶𝑎𝑏

𝐶𝑎 𝑡𝑜𝑡𝑎𝑙
+

𝐶𝑏𝑎

𝐶𝑏 𝑡𝑜𝑡𝑎𝑙
) = The final equation takes an average of the two directional 

fractions. The multiplication by 0.5 serves to normalise the sum, effectively 

providing an approximation of the “connection probability” between two regions. 

 

To explore the topological organisation of brain networks, the selected edge 

weighting is repeated for each edge in the network to construct a structural connectivity 

matrix. This structural connectivity matrix describes the topological organisation of a brain 

network circuitry (Bullmore and Sporns 2012), which can be characterised using graph 

theory.  Graph theory is a branch of mathematics that can be used to combine non-invasive 

imaging with statistical modelling to quantify the topological properties of a structural 

connectivity matrix (Farahani, Karwowski, and Lighthall 2019). Through this framework, 

a variety of graph-theoretical metrics can be derived to provide information about brain 

network properties (Bullmore and Sporns 2012; Sporns, Tononi, and Edelman 2000) 

(Table 6.1).  
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Table 6.1 Common graph theory network characteristics and metrics in dMRI neuroscience research. 

Graph Theory Network Characteristics 

Shortest Path length A network feature that refers to the minimum amount of connections needed to link two nodes 

(Bullmore and Sporns 2009). In a binary network, length of the shortest path is the fewest number of 

edges (or steps) needed to interconnect two nodes (Bullmore and Sporns 2009). In a weighted network, 

shortest path length is defined by the minimum summed edge weight required to interconnect two 

nodes (Bullmore and Sporns 2009).   

 

Network Neighbour A network feature typically defined as a node the that is directly connected to another node by an edge 

(Bullmore and Sporns 2009). Nodes are considered neighbours if there exists a direct link or edge 

between them in the network (Bullmore and Sporns 2009).  

Network Cluster A network feature that refers to when the nearest neighbours of a node are also directly connected to 

each other (Bullmore and Sporns 2009).  

Small-world network A network characterised by a high clustering coefficient (see definition below) among nodes and a 

short average path length between any two nodes (Rubinov and Sporns 2010). Networks with small-

worldness exhibit efficient local and global information transfer and is considered a fundamental 

feature of the human brain’s structural network (Rubinov and Sporns 2010). 

Rich club region  A network feature where highly connected nodes tend to connect to other highly connected nodes, such 

architecture is characteristic of the human brain (Colizza et al. 2006). These regions would have a 

disproportionally high number of connections and would be highly interconnected, serving as central 

hubs for information flow and network integration (Dennis et al. 2013; McAuley, da Fontoura Costa, 

and Caetano 2007).  

Graph Theory Metrics 

Density A binary network metric that quantifies the extent of interconnectivity among nodes within a network 

(Bullmore and Sporns 2009). Network density is calculated by dividing the number of actual 

connections by the number of total possible connections within a network (Bullmore and Sporns 2009). 

A network with high density would indicate that many regions of the network are directly connected to 

each other via edges, suggesting a high level of integration and potential for fast information exchange 

between brain regions (Bullmore and Sporns 2009; Rubinov and Sporns 2010). 

Characteristic Path 

Length 

A network efficiency measure of the integration of nodes in a network (Rubinov and Sporns 2010). 

Characteristic path length is calculated as the average shortest path length between all possible pairs of 

nodes in a given network (Rubinov and Sporns 2010). In the context of brain networks, lower 

characteristic path length can indicate higher efficiency of information transfer between the nodes of a 

network (Bullmore and Sporns 2009; Bullmore and Sporns 2012).  
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Global Efficiency A measure of network efficiency that is calculated by the sum of the average of inverse shortest path 

lengths in a network (Latora and Marchiori 2001). By calculating the inverse of the shortest path 

length, more efficient connections (shortest paths) yield higher values, and less efficient connections 

(longer paths) yield smaller values (Latora and Marchiori 2001). High global efficiency indicates that 

information can quickly be exchanged across a network, while low efficiency suggests that the network 

may have bottlenecks or long paths that slow information flow (Achard and Bullmore 2007; Latora and 

Marchiori 2003). 

 

Local Efficiency A measure of network fault tolerance by quantifying how network nodes communicate with its 

neighbouring parts when the network is damaged, or a node is removed (Latora and Marchiori 2001). 

Local efficiency is calculated as the average of the inverse of the shortest path lengths between all 

neighbours of each node in a network (Latora and Marchiori 2001). High local efficiency indicates that 

the nodes of a network are highly interconnected with their neighbouring nodes, enabling fast and 

efficient information exchange within these local subnetworks (Latora and Marchiori 2001; Latora and 

Marchiori 2003). 

Routing efficiency A binary network measure of how efficiently information can be transferred between all nodes of a 

network (Avena-Koenigsberger, Misic, and Sporns 2018).. Routing efficiency is calculated as the 

inverse of the shortest path lengths between all node pairs in a network (Avena-Koenigsberger, Misic, 

and Sporns 2018). Higher routing efficiency indicates that the network has on average, shorter paths 

between nodes, allowing for faster and more efficient information transfer across the entire network 

(Goñi et al. 2013). It also suggests that the network can better integrate and handle multiple streams of 

information concurrently(Latora and Marchiori 2001; Goñi et al. 2013). 

 

Network Strength A measure that quantifies the overall connectivity or ‘wiring cost’ of the network (Van Den Heuvel and 

Sporns 2011). This is calculated by the sum of the average edge weights across the network (Rubinov 

and Sporns 2010). Higher global network strength could reflect a greater capacity for information 

transfer across a network (Van Den Heuvel and Sporns 2011).  

 

Clustering Coefficient A measure that quantifies the degree to which nodes in a network tend to cluster together (Bullmore 

and Sporns 2009). The clustering coefficient is the ratio of actual number of network clusters to the 

maximum number of possible clusters (Bullmore and Sporns 2009). A high clustering coefficient 

suggests that neighbouring nodes are likely to be interconnected, forming a tightly-knit community of 

interconnected nodes (Rubinov and Sporns 2010). This measure is linked to network resilience and 

efficient local processing (Rubinov and Sporns 2010). 
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Betweenness 

Centrality 

A measure that quantifies the importance of a node within a network by measuring the fraction of all 

shortest paths in the network that pass through a given node (Rubinov and Sporns 2010). A higher 

betweenness centrality indicates that a node is more integrated and has a greater influence on the 

information flow within a network (Rubinov and Sporns 2010). 

 

The majority of published MRI connectomics studies in ADHD have analysed 

resting-state functional MRI (Cao et al. 2013; Cao et al. 2014b; Beare et al. 2017) and 

focused on functional connectivity, but there is now an emerging interest in structural 

connectivity (see review (Cao et al. 2014a)). Using dMRI, structural connectivity 

connectomics are derived from the topological properties of white matter fibres connecting 

different brain regions (Sporns, Tononi, and Kötter 2005). At the time of writing, five prior 

cross-sectional studies have examined structural connectivity network properties in 

children and adolescents with ADHD (Cao et al. 2013; Ray et al. 2014; Hong et al. 2014; 

Cha et al. 2015; Beare et al. 2017). These studies employed varying methods of edge 

weighting, a factor that should be considered when interpreting their findings. Summaries 

of these studies are provided in the subsequent paragraphs.   

Cao and colleagues (2013) conducted a whole-brain structural connectome (edges 

defined by streamline count probability) study of children with ADHD (n=30) and controls 

(n=30) (Cao et al. 2013). The results found that children with ADHD displayed reduced 

global efficiency compared to neurotypical controls, with the most pronounced efficiency 

decreases in the left parietal, frontal, and occipital cortices (Cao et al. 2013). Additionally, 

reduced structural connectivity in the prefrontal-dominant circuitry and increased 

structural connectivity in the orbitofrontal-striatal circuitry were significantly correlated 

with heightened symptoms of inattention and hyperactivity/impulsivity in children with 

ADHD (Cao et al. 2013).  

Ray and colleagues (2014) analysed the whole-brain white matter connectome 

(edges defined by streamline count) in children with ADHD (n=20) and controls (n=20) 

(Ray et al. 2014). The results of this study found that compared to controls, children with 

ADHD displayed reduced connectivity inside highly interconnected regions (rich-club 

regions) of the network (Ray et al. 2014). Yet beyond the highly interconnected rich-club 

regions, white matter microstructure between brain regions displayed increased 

connectivity, highlighting that the network dynamics of ADHD are not solely defined by 

reduced connectivity (Ray et al. 2014).  
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Hong and colleagues (2014) investigated whole-brain white matter connectomics 

(edges defined by Hagmann weighting) in children with ADHD (n=71) and controls 

(n=26) (Hong et al. 2014). The results identified a significant reduction in the connectivity 

between frontal, striatal, and cerebellar regions with significantly reduced structural 

connectivity in children and adolescents with ADHD compared to controls (Hong et al. 

2014). Additional analysis found reduced fractional anisotropy (FA) in connections inter-

linking the inferior frontal gyrus, superior frontal gyrus, anterior cingulate gyrus, occipital 

gyrus, supplementary motor area and cerebellar regions were significantly correlated with 

increased inattention scores in children with ADHD (Hong et al. 2014).  

Whole-brain white matter connectomics (defined by raw streamline count) 

research by Cha and colleagues (2015) reported that children with ADHD (n=30), relative 

to controls (n=31), had reduced white matter connectivity in the fronto-accumbal network 

(Cha et al. 2015). Interestingly, even though a reduction in network connectivity in the 

fronto-accumbal network was reported in those with ADHD compared with controls, a 

higher level of connectivity in this network was correlated with an increase in aggression 

in children with ADHD (Cha et al. 2015).  

Beare and colleagues (2017) investigated whole-brain white matter connectomes 

(edges defined by Hagmann weighting) in children with  ADHD (n=21) and controls 

(n=21) (Beare et al. 2017). The results found that while both ADHD and control groups 

displayed small-world network organisation typically expected in a human brain (Beare et 

al. 2017), individuals with ADHD were associated with decreased long-range, global 

connections, implying reduced communication between specialised local networks in 

individuals with ADHD (Beare et al. 2017). The ADHD group also exhibited a sub-

network with heightened connectivity involving bilateral frontostriatal connections and 

left occipital, temporal, and parietal regions (Beare et al. 2017). Notably, the 

microstructural organisation of white matter in these regions (measured by mean FA) was 

positively correlated with symptom severity among children with ADHD (Beare et al. 

2017).  

Overall, structural connectivity whole-brain connectomics research to date has 

suggested ADHD may be characterised by global underconnectivity in connections 

between functionally specialised networks (Cao et al. 2013; Beare et al. 2017; Cha et al. 

2015), along with localised reductions in network efficiency in frontal, parietal, striatal, 

occipital, and cerebellar regions (Cha et al. 2015; Hong et al. 2014). However, white matter 
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network organisation in ADHD does not appear to be simply characterised by 

underconnectivity, as increased connectivity has been reported in the orbitofrontal-striatal 

circuitry (Ray et al. 2014). While white matter network abnormalities have been associated 

with clinical manifestations of ADHD symptoms (Hong et al. 2014; Cao et al. 2013; Beare 

et al. 2017), it is important to recognise that these previous studies may be subject to 

limitations, such as inadequate statistical power, which increases the likelihood of false-

positives.  

 Research on white matter in ADHD has predominantly focused on elements of the 

frontostriatal, default mode, ventral attention, somatomotor, and cortico-striato-thalmo-

cortical networks (Connaughton et al. 2022), leaving the limbic system underexplored. 

The limbic system, with its intricate network of interconnected grey matter and subcortical 

structures – structures often atypical in ADHD (Hoogman et al. 2017a; Hoogman et al. 

2019) – is central to several cognitive and emotional functions (Catani, Dell'acqua, and 

Thiebaut de Schotten 2013). Moreover, the limbic system is part of wider limbic-cortical 

networks, which have been found to be dysregulated in ADHD (Rubia 2011; Castellanos 

and Proal 2012). Despite the noted ADHD-related anomalies in crucial limbic system 

structures (Hoogman et al. 2017a; Hoogman et al. 2019), no structural connectivity 

network studies have specifically focused on the limbic system. A targeted network 

analysis of the limbic system would provide a more nuanced understanding of its potential 

contribution to the pathophysiology of ADHD during childhood and mid-adolescence.  

Using CSD-based tractography and graph theory, the study described in this 

chapter will conduct a longitudinal network analysis of the limbic system among 

individuals with ADHD and controls during the transition from childhood to mid-

adolescence. The main objectives of this study are 1) to investigate the between-group 

differences in limbic system network measures in children and adolescents with ADHD 

and controls and 2) to explore the relationship between ADHD symptom severity and 

limbic system network metrics among individuals with ADHD. Based on the limited cross-

sectional findings (Cao et al. 2013; Ray et al. 2014; Hong et al. 2014; Cha et al. 2015; 

Beare et al. 2017; Qian et al. 2021), the hypothesis is individuals with ADHD will be 

associated with decreased network efficiency and underconnectivity within the limbic 

system across the three NICAP study time points when compared to controls. Exploratory 

analysis will explore the relationship between limbic system network metrics and ADHD 

symptom severity in children and adolescents with ADHD. 
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6.2. Methods and Materials  

6.2.1. Chapter Design and Participants 

The methods for clinical assessment and diagnosis grouping of the study 

participants have been detailed earlier in Chapter 2. Briefly, the study described in this 

chapter included 161 participants (36% females); 67 children with ADHD and 94 controls. 

Participants were recruited as part of the Neuroimaging of the Children’s Attention Project 

(NICAP) (Sciberras et al. 2013; Silk, Genc, et al. 2016), which is described in detail in 

Chapter 2. Each participant completed behavioural questionnaires (Conner’s 3 ADHD 

index and the Affective Reactivity Index), and multimodal MRI scanning occurred at three 

time points (wave 1, mean = 10.39, SD = 0.46; wave 2, mean = 11.67, SD = 0.53; wave 3, 

mean = 13.19, SD = 0.60). Details of ethical approval for the NICAP study are provided 

in Section 3.2.1. This thesis focused on individuals with persistent ADHD diagnosis across 

the study time points. As such, the participants included in the ADHD group received a 

confirmed clinical ADHD diagnosis based on a clinically administered National Institute 

of Mental Health Diagnostic Interview Schedule for Children (DISC-IV) (Shaffer et al. 

2000) at each assessment (recruitment [3 years prior to imaging], wave 1 and wave 3 

imaging time points). Participants in the control group did not meet the diagnostic criteria 

for ADHD at any study time point. 

 

6.2.2. MRI Data Acquisition 

The MRI data acquisition protocol for the NICAP study has been previously 

described: structural MRI in Section 3.2.2 and diffusion MRI in Section 5.2.2. 

 

6.2.3. MRI Data Processing 

The MRI data processing has been detailed previously: structural MRI in Section 

3.2.3 and diffusion MRI in Section 5.2.3. Briefly, structural MRI data were processed 

using FreeSurfer’s recon -all function (v.7.2) for motion correction, full cortical 

reconstruction and segmentation (Fischl et al. 2002; Fischl et al. 2004). The automated 

segmentation and parcellation of cortical and subcortical regions was executed using the 

Destrieux atlas, resulting in a total of 162 grey matter and subcortical nuclei regions 

(Destrieux et al. 2010).  
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As described in Section 5.2.3, multi-shell HARDI images were processed using 

ExploreDTI software (Leemans et al. 2009). The processing steps included, flip permute, 

quadratic signal drift, Gibbs ringing, eddy current, echo-planar imaging and subject 

motion corrections (Vos et al. 2017; Sarra 2006; Perrone et al. 2015; Leemans and Jones 

2009; Irfanoglu et al. 2012). Crucially for network construction, subject-specific diffusion 

images were linearly co-registered to a subject-specific structural T1 image (nu_orig) 

during EPI distortion and subject motion correction (Irfanoglu et al. 2012). As outline in 

Section 5.2.3, whole brain deterministic CSD-based tractography was reconstructed using 

the following parameters: seed point resolution 2 x 2 x 2 mm3, step size 1 mm, angle 

threshold 60°, fibre length range, 10 – 500 mm.  

To ensure the precise alignment of structural and diffusion MRI images, which had 

already been subject to extensive QC inspections (as described in Chapters 3 & 5), a 

detailed visual quality control assessment was performed for each subject, following the 

guidelines provided in the ExploreDTI manual (Leemans et al. 2009). This essential 

process involved overlaying the structural image onto the diffusion first eigenvector-

fractional anisotropy (FEFA) map, as depicted in Figure 6.1. The FEFA map was 

specifically selected for its ability to accentuate the directional orientation of diffusion 

fibres, enhancing the visibility of any potential misalignments between the structural and 

diffusion MRI images. Particular attention was paid to the alignment of the cerebrospinal 

fluid, pia layer, and major white matter tracts, ensuring their accurate co-registration. This 

meticulous cross-referencing was vital for precise alignment verification between the 

structural and diffusion MRI images. 

Following visual inspection, 338 scans were found suitable for analysis, with a 

total of 22 scans removed; 17 of these were excluded due to unsuccessful connectome 

generation that could not be rectified, while an additional 5 were eliminated due to 

structural and diffusion image alignment discrepancies.  
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Figure 6.1 An example of an appropriate structural and diffusion image alignments 

 

Figure 6.1: this figure shows an example of an accurate alignment of a subject’s structural and 

diffusion MRI images. As per the visual quality control strategy, subject-specific diffusion MRI 

FEFA and structural MRI images were overlaid and a visual inspection to confirm alignment 

accuracy.   

 

6.2.4. Connectome Construction 

ExploreDTI software (Leemans et al. 2009) was used to construct subject-specific 

networks. The two fundamental elements of the network under investigation are nodes and 

edges (Sporns, Tononi, and Kötter 2005). For the network reconstruction of the limbic 

system, the following procedures were employed to define the nodes and edges. A visual 

guide of these procedures is also provided in Figure 6.2. 
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Node Definition 

Anatomical masks were outlined using the automated segmentation and 

parcellation (Fischl et al. 2004) from the Destrieux Atlas (Desikan et al. 2006b) (see Figure 

6.2.). In the study described in this chapter, the nodes were bilaterally defined to include 

the following regions: the thalamus, hippocampus, amygdala, rostral anterior cingulate 

gyrus, caudal anterior cingulate gyrus, posterior cingulate gyrus, isthmus cingulate gyrus, 

parahippocampal gyrus, lateral orbitofrontal cortex, and medial orbitofrontal cortex.  

 

Edge Definition 

Using the whole brain CSD tractography, streamlines were generated with the 

“pass” definition, this assigns a streamline to a pair of nodes if the streamline intersects 

them in its path without imposing further restrictions on its start/endpoint (Hagmann et al. 

2008). The network is unrestricted, meaning every pair of nodes may potentially be 

connected by an edge (Hagmann et al. 2008). As discussed above, structural connectivity 

strength is traditionally measured by the raw streamline count (Hagmann et al. 2008). 

Streamline count is known to be impacted by several factors unrelated to true anatomical 

connectivity that may lead to spurious fibres (Sarwar, Ramamohanarao, and Zalesky 2019; 

Zalesky et al. 2016). These factors include, node size, connection length, and connection 

complexity (Hagmann et al. 2008). To mitigate these factors, the study described in this 

chapter incorporated a streamline density-weighted (Hagmann weighting) procedure 

(Hagmann et al. 2008; Sotiropoulos and Zalesky 2019). As described in the introduction, 

this procedure corrects for over-sampling of long tracts associated with whole-brain 

tractography and normalises based on node size, which is particularly important in 

networks containing a wide range of node volumes (Hagmann et al. 2008). Overall, 

Hagmann weighting streamline count provides a measure of structural connectivity in 

which the streamline count strength is more reflective of the underlying anatomical 

connectivity (Hagmann et al. 2008). 

 

6.2.5. Global Network Metrics 

Following the completion of network construction, a suite of graph theory metrics 

– topological measures used to quantify brain networks (Rubinov and Sporns 2010) – were 

computed using the Brain Connectivity Toolkit (BCT) (Rubinov and Sporns 2010). The 

graph theory metrics used in this chapter are global efficiency, characteristic path length, 
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network density, clustering coefficient, network strength, local efficiency and routing 

efficiency (described in Table 6.1).  

 

 

Figure 6.2 Visual guide to constructing a subject-specific limbic system connectome. 

 

Figure 6.2: This figure outlines the key processing steps for the construction of a subject-specific limbic system connectome. After 

processing T1 and DWI images, full cortical parcellation and whole-brain tractography is performed. During processing the DWI image 

was co-registered to the T1 image, for connectomics construction it is essential that these two images are registered to the same space. 

Using ExploreDTI software the nodes are defined and edges are then generated using the “pass” definition, which assigns a streamline to 

a pair of nodes if the streamline intersects them. These procedures are repeated for each subject in the study to create subject-specific 

limbic system connectomes.   

 

6.2.6. Behavioural Measures: Conner’s 3 ADHD index (CAI) and the affective 

reactivity index (ARI) 

 

Conner’s 3 ADHD index (CAI): As described in Section 3.2.5.  

 

Affective reactivity index (ARI):  As explained in previously in Section 3.2.5.  
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6.2.7. Statistical Analyses 

Before statistical analyses a systematic inspection of the data including outlier 

identification was performed. Outliers were defined as any data points diverging by ±3 

standard deviations from the data mean. In line with established statistical practice outliers 

were removed to minimise the effect of extreme values (Iglewicz and Hoaglin 1993), 

which is a particular concern given the risk of “false fibres” being generated in diffusion 

MRI connectomics (Sotiropoulos and Zalesky 2019). Full details of top-down LMM 

procedures used in this study were described in 3.2.5. The specific tested LMM models 

are presented in Table 6.2. 

Table 6.2 Tested LMMs: limbic system network measures in ADHD and controls. 

Random Effects Models 

RX 1a  

 Network Metric ~ ICV + age at baseline + sex + diagnosis*age + (1 + age |subject) 

RX 1b   

 Network Metric ~ ICV + age at baseline + sex + diagnosis* age + (1|subject) 

Fixed Effects Models 

Null 0a   

 Network Metric ~ ICV + age + age at baseline + sex + (1 + age | subject) 

Null 0b   

 Network Metric ~ ICV + age + age at baseline + sex + (1|subject) 

FX 1a   

 Network Metric ~ ICV + sex + age + age at baseline + diagnosis + (1 + age |subject) 

FX 1b   

 Network Metric ~ ICV + sex + age + age at baseline + diagnosis + (1|subject) 

FX 2a   

 Network Metric ~ ICV + sex + age + age at baseline + diagnosis* age + (1 + age |subject) 

FX 3b   

 Network Metric ~ ICV + sex + age + age at baseline + diagnosis* age + (1|subject) 

FX 3b  

 Network Metric ~ ICV + sex + age* ADHD symptom + (1|subject) 
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6.3. Results 

6.3.1. Demographics and Clinical Characteristics of Study Population 

Demographic and clinical characteristics of the study populations are presented in 

Table 6.3. As with the previous studies described in Chapters 3 and 5, at wave 2 there were 

significantly fewer female participants in the ADHD group compared to the controls. No 

significant differences were observed between ADHD and non-ADHD control groups in 

age, handedness, socioeconomic status (SES), or matrix reasoning score at all three 

NICAP study time points. Regarding clinical characteristics, children with ADHD 

displayed higher levels of ADHD symptom severity compared to the control group. 

Additionally, children with ADHD were more likely to exhibit externalising and 

internalising disorders than the control group.  

 

Table 6.3 Demographics and clinical variables. 

  Mean (SD) p-value 

  ADHD Control  

Time point 1  

Demographic factors    

Scans after QC 53 69  

Age – years 10.40 (0.49) 10.37 (0.49) 0.905 

Female sex n (%) 13 (24.52 29 (42.02) 0.068 

Left-handed n (%) 7 (13.20) 9 (13.04) 0.996 

Matrix reasoning raw 21.77 (5.62) 21.62 (4.58) 0.633 

SES 1017 (41.52) 1019 (44.62) 0.738 

    

Clinical factors 

 

   

Connor’s Index 10.98 (6.33) 2.56 (4.41) <0.001 

Hyperactivity symptoms 4.83 (2.65) 1.07 (1.64) <0.001 

Inattentive symptoms 7.03 (2.22) 1.86 (2.34) <0.001 

Medication use (%) 17 (30.07) 4 (5.79) <0.001 

Extern. Disorder n (%)  26 (49.05) 12 (17.39) <0.001 

Intern. Disorder (%) 12 (22.64) 8 (11.59) 0.11 
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Time point 2 

Demographic factors    

Scans after QC 53 69  

Age – years 11.67 (0.48) 11.67 (0.56) 0.972 

Female sex n (%) 11 (23.63%) 32 (42.10%) 0.022 

Left-handed n (%) 5 (9.43%) 8 (11.59%) 0.874 

Matrix reasoning raw 24.77 (4.04) 24.40 (4.54) 0.700 

SES 1018 (40.86) 1015 (48.36) 0.739 

    

Clinical factors    

Connor’s Index 10.04 (6.74) 2.45 (3.88) <0.001 

Medication use (%) 14 (26.41) 4 (5.79) <0.001 

Time point 3 

Demographic factors    

Scans after QC 39 55  

Age – years 13.25 (0.60) 13.14 (0.59) 0.385 

Female sex n (%) 9 (22.5) 30 (42.85) 0.066 

Left-handed n (%) 6 (15.38) 6 (10.90) 0.521 

Matrix reasoning raw 25.92 (4.52) 25.65 (4.26) 0.704 

SES 1020.6 (39.78) 1015 (50.34) 0.664 

    

Clinical factors    

Connor’s Index 9.28 (6.71) 3.94 (3.91) <0.001 

Medication use (%) 9 (23.07) 1 (1.81) 0.004 

Extern. Disorder n (%)  8 (20.51) 3 (5.45) 0.072 

Intern. Disorder (%) 10 (25.64) 2 (3.63) 0.006 

Note: SD = standard deviation, SES = socio-economic status. 

 

6.3.2. Between-Group Differences in Network Metrics of the Limbic System  

 

Model Selection Procedure 

Full results of the model selection fit statistics are provided in the appendix (Tables 

22-23 provided in volume 2). Following outlier exclusion, some models did not have 

sufficient observations to support the complex random effects model (containing random 

intercept and random slope). No significant difference between the fixed effects of interest 
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models and the null models was found in any of the graph theory metrics, indicating that 

there was no effect of diagnosis and/or diagnosis-by-age interaction on the network 

metrics of the limbic system. The selected optimal models from the top-down LMM model 

selection procedure are provided in Table 6.4. 

 

Table 6.4 Results of LMM Model Selection: optimal models. 

 Graph Theory Metrics 

 Ccoeff Eglo Eloc Erout NStren Nden Cpl 

Selected Optimal Model 

 FX1A FX1A FX1A FX1A FX1A FX1A FX1A 

Ccoeff = characteristic coefficient, Eglo = global efficiency, Eloc = local efficiency, Erout = routing efficiency, NStren = 

network strength, Nden = network density, Cpl = characteristic path length 

 

Results of Optimal Models 

There were no statistically significant between-group differences in any of the 

graph theory measures (Table 6.5), specifically network density, global efficiency, local 

efficiency, routing efficiency, clustering coefficient, network strength, and characteristic 

path length (Figure 6.3). These findings indicate that there is no significant difference in 

network properties of the limbic system between children with ADHD and controls.  

 

6.3.3. ADHD Symptoms and Limbic System Network Metrics in ADHD 

An exploratory analysis found a significant effect of Conner’s 3 ADHD index 

scores (CAI) on routing efficiency (β  = - 0.29, 95% CI = -0.48 to -0.10, (Figure 6.4))  and 

network density (β  = - 0.24, 95% CI = -0.43 to -0.05, (Figure 6.5)) in the ADHD group 

across the NICAP study time points. Overall, reduced routing efficiency and network 

density in the limbic system were significant predictors of increased ADHD symptom 

severity among individuals with ADHD across childhood and mid-adolescence. All results 

reported above survived two-stage FDR correction. There was no other significant effect 

of CAI or ARI on any limbic system network metric in children and adolescents with 

ADHD (Figure 6.7-6.8). Table 6.6-6.7 displays the full results of the exploratory analyses 

for all limbic system networks metrics. 
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6.3.4. Sensitivity Analyses 

The sensitivity analysis indicated that the medication status covariate did not drive 

the primary findings (see Table 6.8). Due to the collinearity between CAI scores and 

medication use (r = 0.337, p = <0.001), an expected reduction in p-value was reported 

when medication status was included as a covariate. The beta coefficients of the sensitivity 

analyses were largely unchanged and importantly remained within the standard errors of 

the main analyses. This suggests that the original relationship between network metric and 

CAI scores was relatively robust and not substantially affected by the inclusion of the 

covariate. The results from the second and third sensitivity analysis are presented in Table 

6.9 and 6.10. The sensitivity analyses revealed that the beta values associated with the 

main diagnostic effect were still within the Standard Errors (SEs) of the optimal models 

(Figures 6.7 & 6.8). Based on the beta value and SEs, the sensitivity analysis suggested 

that the results of the exploratory analysis were likely not confounded by comorbidity 

status or head motion. Overall, the sensitivity analyses demonstrated that the results of the 

exploratory analysis were most likely not biased by medication status, comorbidity status 

or head motion.
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Table 6.5 Results of mixed-effects models (with interaction term) analyses: limbic system global metrics in ADHD and controls. 

 

 

ICV Sex Months from baseline Age at baseline Diagnosis 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Network 

Efficiency 

 

-2.929e-13 

(1.895e-13) 

-1.545, 

0.310 

-5.451e-08 

(7.307e-08) 

-0.746, 

0.560 

4.163e-09 

(1.955e-09) 

2.129, 

0.217 

-1.374e-07 

(7.249e-08) 

-1.895, 

0.250 

6.010e-08 

(6.781e-08) 

0.886, 

0.501 

Characteristic 

Path Length 

 

-2.269e-13  

(1.218e-13) 

-1.863, 

0.369 

-1.896e-08 

(4.609e-08) 

-0.411, 

0.767 

1.115e-09 

(1.264e-09) 

0.882, 

0.574 

-1.023e-07 

(4.551e-08) 

-2.248, 

0.325 

4.628e-08 

(4.265e-08) 

1.085, 

0.515 

Network Density 

 

 

-1.974e-08 

(3.642e-08) 

-0.542, 

0.588 

1.714e-02 

(1.419e-02) 

1.208, 

0.228 

-1.091e-03  

(3.667e-04) 

-2.975, 

0.003 

1.658e-02 

(1.403e-02) 

1.182, 

0.239 

1.987e-03 

(1.315e-02) 

0.151, 

0.880 

Clustering 

Coefficient 

 

-2.429e-13 

(1.556e-13) 

-1.561, 

0.339 

-7.527e-08 

(5.798e-08) 

-1.298, 

0.397 

1.850e-09 

(1.614e-09) 

1.146, 

0.437 

-9.878e-08 

(5.761e-08) 

-1.715, 

0.312 

2.977e-08 

(5.382e-08) 

0.553, 

0.669 

Network 

Strength 

 

-4.387e-12 

(2.326e-12) 

-1.886, 

0.069 

-5.460e-07 

(8.818e-07) 

-0.619, 

0.541 

1.705e-08 

(2.384e-08) 

0.715, 

0.480 

-1.831e-06  

(8.724e-07) 

2.099, 

0.045 

8.920e-07 

(8.163e-07) 

1.093, 

0.284 

Local Efficiency 

 

-2.674e-13 

(2.111e-13) 

-1.267, 

0.334 

-1.860e-08 

(7.872e-08) 

-0.236, 

0.835 

9.586e-10 

(2.203e-09) 

0.435, 

0.706 

-1.783e-07  

(7.785e-08) 

-2.290, 

0.152 

-6.654e-09 

(7.290e-08) 

-0.091, 

0.935 



 351 

 

Routing 

Efficiency 

-1.915e-09 

(1.107e-09) 

-1.729, 

0.084 

5.757e-04 

(4.281e-04) 

1.345, 

0.180 

-3.719e-05 

(1.129e-05) 

-3.292, 

0.001 

3.365e-04 

(4.213e-04) 

0.799, 

0.425 

2.412e-04 

(3.954e-04) 

-0.610, 

0.542 

Table 6.6 Results of mixed-effects models (with interaction term) analyses: limbic system network measures and CAI scores in ADHD. 

 

 

ICV Sex Months from baseline CAI Months from baseline * CAI 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Network 

Efficiency 

 

-1.647e-14 

(2.752e-13) 

-0.060, 

0.967 

-9.550e-09 

(1.270e-07) 

-0.075, 

0.959 

2.983e-09 

(5.872e-09) 

0.508, 

0.746 

-4.782e-09 

(1.022e-08) 

-0.468, 

0.763 

1.549e-10 

(5.069e-10) 

0.306, 

0.837 

Characteristic 

Path Length 

 

-8.116e-14 

(1.777e-13) 

-0.457, 

0.830 

-5.459e-08 

(8.279e-08) 

-0.659, 

0.777 

2.237e-10 

(3.740e-09) 

0.060, 

0.974 

-7.791e-09 

(6.625e-09) 

-1.176, 

0.688 

8.371e-11 

(3.074e-10) 

0.272, 

0.890 

Network Density 

 

 

-2.504e-08 

(5.555e-08) 

-0.451, 

0.653 

3.311e-02 

(2.556e-02 ) 

1.295, 

0.200 

-2.176e-03 

(1.203e-03) 

-1.809, 

0.073 

-5.197e-03 

(2.091e-03) 

-2.486, 

0.014* 

1.011e-04 

(9.872e-05) 

1.024, 

0.308 

Clustering 

Coefficient 

 

-6.492e-14 

(2.174e-13) 

-0.299, 

0.861 

-1.282e-07   

(1.005e-07) 

-1.275, 

0.603 

2.688e-09 

(4.358e-09) 

0.617, 

0.745 

-2.178e-09 

(7.964e-09) 

-0.273, 

0.871 

8.823e-11 

(3.670e-10) 

0.240, 

0.886 

Network 

Strength 

 

-1.878e-12 

(3.352e-12) 

-0.560, 

0.587 

-1.168e-06 

(1.553e-06) 

-0.752, 

0.469 

-2.582e-08 

(6.694e-08) 

-0.386, 

0.707 

-1.863e-07 

(1.226e-07) 

-1.520, 

0.157 

3.691e-09 

(5.637e-09 ) 

0.655, 

0.526 
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Local Efficiency 

 

1.051e-14 

(2.999e-13) 

0.035, 

0.980 

-2.410e-08 

(1.379e-07) 

-0.175, 

0.900 

-2.759e-09 

(6.101e-09) 

-0.452, 

0.757 

-5.618e-09 

(1.103e-08) 

-0.509, 

0.732 

4.721e-10 

(5.131e-10 ) 

0.920, 

0.583 

Routing 

Efficiency 

-1.211e-09 

(1.675e-09) 

-0.723, 

0.471 

9.408e-04 

(7.965e-04) 

1.181, 

0.242 

-6.884e-05 

(3.303e-05) 

-2.084, 

0.040 

-1.702e-04 

(6.153e-05) 

-2.767, 

0.006* 

2.369e-06 

(2.754e-06) 

0.860, 

0.391 
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Table 6.7 Results of mixed-effects models (with interaction term) analyses: limbic system network measures and ARI scores in ADHD. 

 

 

ICV Sex Months from baseline ARI Months from baseline * ARI 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Network 

Efficiency 

 

-1.740e-13 

(3.906e-13) 

-0.445, 

0.797 

4.007e-09 

(1.358e-07) 

0.030, 

0.985 

1.784e-08 

(8.316e-09) 

2.146, 

0.486 

2.529e-08 

(2.100e-08) 

1.204, 

0.600 

-3.137e-09 

(1.800e-09) 

-1.743, 

0.525 

Characteristic 

Path Length 

 

-1.019e-13 

(2.345e-13) 

-0.435, 

0.867 

-3.122e-08 

(8.251e-08) 

-0.378, 

0.881 

1.277e-08 

(4.996e-09) 

2.556, 

0.671 

2.154e-08 

(1.277e-08) 

1.686, 

0.717 

-2.933e-09 

(1.074e-09) 

-2.731, 

0.664 

Network Density 

 

 

-4.419e-08 

(8.460e-08) 

-0.522, 

0.602 

1.047e-03 

(2.990e-02) 

0.035, 

0.972 

-3.470e-03 

(1.835e-03) 

-1.891, 

0.064 

-1.071e-02 

(4.888e-03) 

-2.190, 

0.031 

3.668e-04 

(3.996e-04) 

0.918, 

0.362 

Clustering 

Coefficient 

 

-1.219e-13 

(2.895e-13) 

-0.421, 

0.850 

-8.030e-08   

(1.027e-07) 

-0.782, 

0.769 

1.706e-08 

(5.836e-09) 

2.924, 

0.589 

3.018e-08 

(1.528e-08) 

-1.974, 

0.640 

-3.190e-09 

(1.272e-09) 

2.509, 

0.608 

Network 

Strength 

 

-2.975e-12  

(4.436e-12) 

-0.671, 

0.521 

-1.077e-06 

(1.518e-06) 

-0.709, 

0.499 

1.994e-07 

(9.890e-08) 

2.016, 

0.078 

3.165e-07 

(2.424e-07) 

1.306, 

0.227 

-4.856e-08 

(2.128e-08) 

-2.282, 

0.051 

Local Efficiency 

 

-2.176e-13 

(4.298e-13) 

-0.506, 

0.766 

-1.272e-08 

(1.517e-07) 

-0.084, 

0.957 

9.597e-09  

(8.742e-09) 

1.098, 

0.602 

1.438e-08 

(2.287e-08) 

0.629, 

0.723 

-3.436e-10   

(1.801e-09) 

-0.191, 

0.903 
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Routing 

Efficiency 

-1.965e-09 

(2.475e-09) 

-0.794, 

0.429 

4.810e-05 

(9.043e-04) 

0.053, 

0.957 

-5.175e-05 

(5.066e-05) 

-1.021, 

0.312 

-2.560e-04 

(1.394e-04) 

-1.837, 

0.069 

-9.512e-07 

(1.104e-05) 

-0.086, 

0.931 
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Figure 6.3 Between-group difference in limbic system graph theory metrics across the three NICAP study time points. 
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Table 6.8 Results of mixed-effects models (with interaction term) analyses: limbic system network measures and CAI scores in ADHD. 

 

 

ICV Sex Months from baseline Medication Status CAI Months from baseline * CAI 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Routing 

Efficiency 

 

-5.264e-10 

(1.678e-09) 

-0.314, 

0.754 

1.071e-03 

(7.802e-04) 

1.373, 

0.174 

2.983e-09 

(5.872e-09) 

0.508, 

0.746 

-6.450e-05  

(3.287e-05) 

-1.962, 

0.053 

-1.239e-04 

(6.444e-05) 

-1.923, 

0.056 

2.101e-06 

(2.739e-06) 

0.767, 

0.445 

Network 

Density 

 

-1.584e-08 

(5.684e-08) 

-0.279, 

0.781 

3.486e-02 

(2.574e-02) 

1.355, 

0.180 

-2.138e-03 

(1.204e-03) 

-1.775, 

0.079 

2.053e-02  

(2.487e-02) 

0.826, 

0.411 

-4.586e-03 

(2.224e-03) 

-2.062, 

0.041 

9.823e-05 

(9.878e-05) 

0.994, 

0.322 
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Table 6.9 Results of mixed-effects models analyses with comorbidity: limbic system network measures and CAI scores in ADHD. 

 

 

ICV Sex Months from baseline Comorbidity CAI Months from baseline * CAI 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Routing 

Efficiency 

 

-1.330e-09 

(1.709e-09) 

-0.778 

0.438 

9.910e-04 

(8.274e-04) 

1.198 

0.235 

-6.924e-05 

(3.330e-05) 

-2.079 

0.040 

-3.369e-04 

(5.765e-04) 

-0.584 

0.560 

-1.644e-04 

(6.296e-05) 

-2.611 

0.010 

2.206e-06 

(2.774e-06) 

0.795 

0.428 

Network 

Density 

 

-3.418e-08 

(5.677e-08) 

-0.602 

0.548 

3.177e-02 

(2.648e-02) 

1.200, 

0.234 

-2.165e-03 

(1.221e-03) 

-1.773, 

0.079 

-8.249e-03 

(2.003e-02) 

-0.412, 

0.681 

-4.931e-03 

(2.145e-03) 

-2.298, 

0.023 

9.913e-05 

(1.001e-04) 

0.990, 

0.324 
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Table 6.10 Results of mixed-effects models analyses with FWD: limbic system network measures and CAI scores in ADHD. 

 

 

ICV Sex Months from baseline FWD CAI Months from baseline * CAI 

 B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p B (SE) t, p 

Routing 

Efficiency 

 

-1.191e-09 

(1.740e-09) 

-0.684 

0.495 

8.991e-04 

(8.267e-04) 

1.088 

0.281 

-6.770e-05 

(3.469e-05) 

-1.952 

0.054 

-5.236e-04 

(1.961e-03) 

-0.267 

0.789 

-1.698e-04 

(6.489e-05) 

-2.617 

0.010 

2.353e-06 

(2.887e-06) 

0.815 

0.417 

Network 

Density 

 

-2.246e-08 

(5.742e-08) 

-0.391 

0.696 

3.027e-02 

(2.639e-02) 

1.147 

0.256 

-2.107e-03 

(1.254e-03) 

-1.681 

0.096 

-1.767e-02 

(6.632e-02) 

-0.266 

0.790 

-5.214e-03 

(2.192e-03) 

-2.378 

0.019 

1.014e-04 

(1.028e-04) 

0.987 

0.326 
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Figure 6.4 Relationship between of CAI score and routing efficiency in the ADHD group over the 

NICAP study time points. 

 

Figure 6.4: This figure illustrates the predicted change in routing efficiency of the limbic system (y-axis) as a function of 

age (x-axis). The colours represent different percentiles of CAI scores: 25th percentile (red), median (green), and 75th 

(blue). The Y axis represents the predicted routing efficiency values from the LMM model used in the exploratory 

analysis. 
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Figure 6.5 Relationship between of CAI score and network density in the ADHD group over the 

NICAP study time points. 

 

Figure 6.5: This figure illustrates the predicted change in network density of the limbic system (y-axis) as a function of 

Months from baseline (x-axis). The colours represent different percentiles of CAI scores: 25th percentile (red), median 

(green), and 75th (blue). The Y axis represents the predicted network density values from the LMM model used in the 

exploratory analysis. 
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Figure 6.6 Beta values and SEs of medication sensitivity analyses. 
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Figure 6.7 Beta values and SEs of comorbidity sensitivity analyses. 
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Figure 6.8 Beta values and SEs of FWD sensitivity analyses. 
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Figure 6.9 Scatter plot of non-significant limbic system network measures by CAI scores in ADHD. 

Network Efficiency Characteristic Path Length 

  

Clustering Coefficient Network Strength 

  

Local Efficiency 

 

Figure 4.7: This scatter plot exclusively features non-significant limbic system network measures (y-axis) alongside CAI scores 

(colour-coded) within the population. Each data point represents an individual in the study. The colour gradient used to represent CAI 

scores ranges from low (gold) to medium (orange) and high (dark red). Despite the absence of statistical significance, this visualisation 

sheds light on the relationship between non-significant limbic system network measures and CAI scores across the ADHD population. 
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Figure 6.10 Scatter plot of non-significant limbic system network measures by ARI scores in ADHD. 
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Local Efficiency 

 

Figure 4.8: This scatter plot exclusively features non-significant limbic system network measures (y-axis) alongside CAI scores 

(colour-coded) within the population. Each data point represents an individual in the study. The colour gradient used to represent CAI 

scores ranges from low (gold) to medium (orange) and high (dark red). Despite the absence of statistical significance, this visualisation 

sheds light on the relationship between non-significant limbic system network measures and CAI scores across the ADHD population. 

 

 

6.4. Discussion 

 

6.4.1. Summary 

The aim of the study described in this chapter was to investigate the topological 

organisation of limbic system connectivity in individuals with ADHD and controls during 

the transition from childhood to mid-adolescence. The results show that children with 

ADHD displayed no significant difference in network measures of the limbic system 

compared to controls across the three NICAP study time points. The exploratory analysis 

found that reduced routing efficiency and network density of the limbic system were 

significantly associated with increased symptom severity among individuals with ADHD. 

This discussion will explore the potential neurobiological mechanisms that may underpin 

these findings. Additionally, the findings will be discussed with respect to methodological 

considerations and study limitations. 
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6.4.2. Between-Group Differences in Network Properties of the Limbic System 

The primary analysis exploring network metrics of the limbic system in ADHD 

and controls revealed no significant between-group differences. The findings of this study 

revealed an intriguing dichotomy. While the primary analysis showed no significant 

differences in limbic system network measures between ADHD and controls, the 

exploratory analysis revealed a clear association between ADHD symptom severity and 

limbic system network measures.  Specifically, it was found that network measures – 

routing efficiency and network density – were significantly associated with ADHD 

symptom severity. This apparent paradox could be explained by the internal variability 

inherent to the ADHD group in this study. Despite a concerted effort to maintain consistent 

diagnostic profiles within the ADHD group by including only those individuals with 

persistently diagnosed ADHD across the NICAP study time points, it is important to 

acknowledge that ADHD, akin to many neurodevelopmental disorders, is recognised to 

exist along a spectrum (Fair et al. 2012). Within the ADHD group, there was relatively 

high variability in symptom severity (CAI Mean = 10.23, SD = 6.56; ARI Mean = 4.13, 

SD = 3.47). It is possible that alterations to the limbic system network may be more 

sensitive to ADHD symptom severity rather than ADHD diagnosis. As such, the 

heterogeneity of symptom severity within the ADHD group could essentially dilute any 

apparent between-group differences with averages compared between ADHD and control 

groups. If so, group-level comparisons between ADHD and control subjects may not 

reveal significant differences, yet within the ADHD group, a significant association with 

symptom severity might emerge. The inherent variability within the ADHD phenotype is 

a continuous consideration for case-control ADHD research (Silk et al. 2019) and is 

discussed in detail in Section 5.3.3. Future research is required to elucidate these 

relationships, potentially considering factors such as ADHD subtypes, symptom 

dimensions or the presence of comorbidities to provide a more nuanced understanding of 

the neurobiological underpinnings of ADHD. 

 

6.4.3. Network Properties of the Limbic System and ADHD Symptom Severity 

Understanding the dynamics between the topological organisation of brain 

structural connectivity and ADHD symptoms remains an essential area of research. 

Previous diffusion MRI connectomics research suggested links between the structural 

organisation of white matter and ADHD symptoms (Connaughton et al. 2022), but as all 
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previous studies were whole brain analyses, making comparisons with the findings of the 

study described in this chapter is challenging. This chapter describes the first empirical 

work to investigate the link between the organisation of limbic system structural 

connectivity and ADHD symptoms. The findings described in this chapter revealed that 

among individuals with ADHD, reduced network density and routing efficiency were 

significantly associated with increased symptom severity across the three NICAP time 

points (Figures 6.4-6.5). Network density and routing efficiency are both binary metrics 

that reflect the interconnectivity of a network Table 6.1. These metrics provide a simple 

measure of the efficiency of information transfer within the network (Bullmore and Sporns 

2009; Goñi et al. 2013). As such, the results indicate that increased ADHD symptom 

severity is associated with reduced number of limbic system connections.  

These findings raise an intriguing contradiction. As ADHD symptom severity, 

routing efficiency and network density decreased across the study time points it would be 

expected that reductions in ADHD symptom severity would be associated with reduction 

in routing efficiency and network density, but the opposite occurred. This suggests that 

even as the limbic system undergoes typical neural refinement, characterised by fewer 

interconnections across the study time points, an optimal level of interconnectedness may 

be essential for limbic system functioning and deviations from this may be associated with 

ADHD symptoms. 

 

6.4.4. Potential Neurodevelopmental Mechanisms Contributing to the Findings 

The findings of the study described in this chapter point to a link between reduced 

white matter connections in the limbic system and increased ADHD symptom severity. To 

further understand the neurobiological processes in ADHD it is essential to interpret MRI 

research in conjunction with other epigenetic, genetic and animal model research.  As 

previously mentioned in Section 1.2.2, the most common effect of ADHD-associated 

genes on brain development involves the disruption of neuronal and synaptic formation, 

plasticity, and regulation (Dark, Homman-Ludiye, and Bryson-Richardson 2018; Mueller 

et al. 2017). Two mechanisms that can have a profound effect on the development of white 

matter connections are neural connectivity and synaptic plasticity. The following section 

will examine the current evidence for potential disruptions to these neurodevelopmental 

processes and the impact they might have on the ADHD phenotype.  
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Neural Connectivity 

Neural connectivity refers to the process where environmental cues guide neuronal 

axons to grow and extend, ensuring the establishment of connections between neurons (De 

Rouvroit and Goffinet 2001). As discussed in Table 1.1, in the developing brain, guidance 

cues and cell adhesion molecules play a crucial role in orchestrating the formation of 

neural connection (Dark, Homman-Ludiye, and Bryson-Richardson 2018). Cell adhesion 

molecules, located on the cell surface, facilitate the establishment and maintenance of 

neural connectivity through their interaction with neuronal growth cones (Togashi, 

Sakisaka, and Takai 2009). The growth cones of developing neurons are guided to their 

targets (neuronal pathfinding) by attractive and repulsive cues in the extracellular 

environment (Thomas and Yoshikawa 2009). Cell adhesion molecules of interest in 

ADHD research are the cadherin molecules (Togashi, Sakisaka, and Takai 2009). 

Genome-wide association studies (GWAS) found risk loci for ADHD within the 

cadherin13 (CDH13) and protocadherin 7 (PCDH7) genes (Lasky-Su et al. 2008; 

Demontis et al. 2023; Demontis et al. 2019). CDH13 mediates the adhesion and interaction 

between neurons, guiding neuronal processes, such as axonal growth and dendritic 

branching, which are essential for establishing neural circuits (Drgonova et al. 2016). 

Disruptions in CDH13 have been demonstrated to negatively affect axonal  pathfinding 

resulting in diminished neural connectivity between brain regions (Takeuchi et al. 2000; 

Bai, Ghoshal, and Jacob 2006). Similarly, the PCDH7 gene is involved in cell adhesion 

and signalling, helping cells stick together and communicate with each other, and plays an 

important role in establishing and maintaining complex neural networks (Wang et al. 

2020). PCDH7 knock-out mice display stalled axonal formations suggesting that PCHD7 

acts as a positive cue for axonal guidance (Leung et al. 2013; Kim et al. 2007). These 

findings provide compelling evidence that variants in ADHD-associated genes such as 

CDH13 and PCDH17 can disrupt the normal processes of formation of white matter fibres 

in the brain. Such disruptions may in turn lead to the structural connectivity deficits 

observed in ADHD.  

 

Synaptic Plasticity 

Another neurodevelopmental mechanism that impacts white matter fibre 

development is a process known as synaptic plasticity. Synaptic plasticity involves 

changes in synaptic strength over time, leading to either strengthening (long-term 
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potentiation) or weakening (long-term depression) of synapses and is crucial for the 

refinement and organisation of brain networks (Turrigiano and Nelson 2004). Potentiation 

and depression of synapses allow for neuronal pathways to be tuned in an activity-

dependent manner to improve efficiency (Turrigiano and Nelson 2004). The inability to 

regulate neural connections can lead to decreased brain volumes and inefficient neural 

networks, a common neurological phenotype seen in ADHD (Dark, Homman-Ludiye, and 

Bryson-Richardson 2018). The glutamate receptor metabotropic (GRM) family play an 

important role in long-term potentiation and depression of synapses (Niswender and Conn 

2010). The GRM genes localise to pre and postsynaptic elements, suggesting they are 

important to synaptic plasticity processes (Niswender and Conn 2010). Two glutamate 

receptor genes of particular interest in ADHD are GRM5 and GRM7 (Howells and Russell 

2008; Pattij and Vanderschuren 2008; Dorval et al. 2007).  

GRM 5 gene creates a protein called metabotropic glutamate receptor 5 (Lu et al. 

1997). This protein belongs to a group called G protein-coupled receptors (Lu et al. 1997). 

When a molecule, like glutamate, attaches to this receptor, the receptor changes its shape 

(Lu et al. 1997). This change triggers a chain reaction inside the cell involving molecules 

called guanine nucleotide-binding proteins, which ultimately activate other molecules, 

such as phospholipase C (Tuteja 2009). This is a common way for cells to respond to 

signals from their environment and is essential for regulating synaptic activity and neural 

activity (Dark, Homman-Ludiye, and Bryson-Richardson 2018). GRM5 knockout mice 

have been shown to display consistent defects in long-term potentiation in N-methyl-D-

aspartic acid (NMDA) in receptor-dependent pathways such as CA1 region and dentate 

gyrus of the hippocampus (Lu et al. 1997). Alterations in GRM5 are linked to decreased 

dendritic spine density, particularly in young mice (Wijetunge et al. 2008). Dendritic 

spines are receiving points for neural signals and a reduction in density may signify fewer 

available sites for synaptic connections, potentially leading to diminished neural 

connectivity (Runge, Cardoso, and de Chevigny 2020). Interestingly, genetic research 

found a deletion within GRM5 in parents and their children with ADHD (Elia et al. 2010), 

providing further support for the link between GRM5 variants and the disorder.   

Another ADHD-associated gene of interest is GRM7 (Noroozi et al. 2019), which 

has also been linked to other psychiatric conditions including, bipolar disorder (Fallin et 

al. 2005; Tang, Thornton-Wells, and Askland 2011), autism  (Noroozi et al. 2016) and 

major depressive disorder (Pergadia et al. 2011). GRM7 gene plays a crucial role in 
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protecting neurons; it is thought that neuronal overstimulation can be prevented through 

the regulation of both excitatory and inhibitory signalling systems (Niswender and Conn 

2010; Sansig et al. 2001). It does this by suppressing certain communication pathways 

within the neuron, specifically by reducing the activity of a molecule called adenylate 

cyclase (Song et al. 2021). This in turn, dampens the function of NMDA receptors (Gu et 

al. 2012), which are another type of receptor involved in cell communication and can cause 

cell damage if they become overactive (Luo, Wu, and Chen 2011). It is believed that an 

inability to recruit GRM7 to synapses could lead to deficits in synaptic plasticity, leading 

to reduced transmission of information across synapses (Bushell et al. 2002; Goddyn et al. 

2008). Through mechanisms involving neuronal damage, variants in the GRM7 gene could 

potentially play a role in the observed alterations in neural connectivity associated with 

ADHD (Noroozi et al. 2019). 

In summary, the reduced white matter connections associated with ADHD 

symptom severity could be a result of the complex interplay between various ADHD-

associated genes that are crucial for the formation and establishment of neural connections. 

Given their crucial role in neural connectivity (Dark, Homman-Ludiye, and Bryson-

Richardson 2018), the cadherin gene family represent a promising focus of future research 

seeking to investigate the neurodevelopmental basis of ADHD. It is important to note that 

our current understanding of neural formation, regulation and plasticity in the context of 

ADHD is still limited, and there is a need for further research to fully understand the 

intricacies of this relationship and its implications for symptomology.  

 

6.4.5. Methodological Considerations with Connectomics 

In methodological terms, this study showcases significant strengths by employing 

an advanced MRI scan protocol coupled with a comprehensive processing pipeline. These 

rigorous methodologies have proven to offer significantly improved reliability in 

constructing structural connectomes (Roine et al. 2019). Nonetheless, despite these efforts 

to enhance reliability, there remain some innate challenges in connectomics analysis that 

warrant careful consideration (Avena-Koenigsberger, Misic, and Sporns 2018). 

 

Node Definition 

The definition of the nodes is of vital importance, particularly in smaller, function-

specific brain networks (Avena-Koenigsberger, Misic, and Sporns 2018), such as the 
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limbic system. The anatomical boundaries of the limbic system have been a point of debate 

due to its complex architecture and the proximity and interaction with other critical brain 

regions (Catani, Dell'acqua, and Thiebaut de Schotten 2013). The specific components of 

the limbic system can vary according to different anatomical and functional perspectives, 

leading to various interpretations and node definitions (Catani, Dell'acqua, and Thiebaut 

de Schotten 2013). Consequently, it is important to consider these different interpretations 

when conducting research involving the limbic system, especially in the field of network 

analysis. As this is an overarching consideration across the three chapters of this 

dissertation, the anatomical boundaries of the limbic system are extensively discussed in 

Section 7.3.2. Additionally, while investigating specific brain networks may offer valuable 

insights, these investigations might not capture the nuances of how these localised 

networks are integrated within the overarching framework of the whole-brain network. 

For instance, in the case of structural connectivity networks, the shortest path lengths may 

considerably differ based on the node definition (Avena-Koenigsberger, Misic, and Sporns 

2018). It is conceivable that the shortest path between two nodes in the limbic system 

might involve a node not defined in this study, potentially leading to a misrepresentation 

of communication efficiency between these two brain regions.  

The study described in this thesis focused on constructing a connectome of the 

limbic system to investigate its role in ADHD symptomology. While this approach has 

provided valuable insights, a potential future exploration could employ Network Brain 

Statistics (NBS) to analyse the limbic system within the context of the whole-brain 

structural connectivity matrix. This broader approach would not only reinforce the current 

findings regarding the limbic system but could also unveil impactful interconnections with 

the limbic system that are not apparent in a limbic-specific analysis. The use of NBS in a 

whole-brain context might uncover how the limbic system's connectivity with other brain 

regions, such as the prefrontal cortex or basal ganglia, contributes to the complex 

symptomology of ADHD. Such research could greatly impact our understanding of the 

involvement of the limbic system in ADHD.  

 

Communication Dynamics in Brain Networks  

The basis for nearly all brain activities and functions lies in how neurons signal 

and communicate with each other (Avena-Koenigsberger, Misic, and Sporns 2018). 

Although network science techniques has proven useful for simulating functional brain 



375 

 

networks, it is important to note that these approaches are based on certain assumptions 

that may not accurately reflect neural systems (Avena-Koenigsberger, Misic, and Sporns 

2018). The nature of graph-based inferences, or predictions, about communication patterns 

heavily depends on the basic assumptions or definitions regarding what constitutes an 

interaction or exchange of information between different brain regions (Avena-

Koenigsberger, Misic, and Sporns 2018). Most analyses focusing on the transfer efficiency 

of information within neural networks leverage shortest-path-based metrics, such as 

betweenness centrality, closeness centrality and network efficiency (Van Den Heuvel et 

al. 2009; Bassett and Bullmore 2006; De Pasquale et al. 2016). These metrics are grounded 

in the assumption that neural elements can selectively route information along the shortest 

path (Avena-Koenigsberger, Misic, and Sporns 2018). In the context of neural systems, 

this assumption is being challenged (Avena-Koenigsberger, Misic, and Sporns 2018). The 

concept of routing communication along the most efficient (shortest) path inherently 

assumes that neural signals have access to information or knowledge about the global 

network topology (Boguna, Krioukov, and Claffy 2009; Goñi et al. 2013; Abdelnour, 

Voss, and Raj 2014). Although possible, this assumption seems highly improbable in a 

physiological system, as it is difficult to conceptualise how an action potential could 

encode its intended route and destination (Avena-Koenigsberger, Misic, and Sporns 2018). 

Additionally, an overreliance on the shortest paths for communication can leave a majority 

of the network’s connections unused, even when these paths could offer nearly as efficient 

alternatives (Avena-Koenigsberger, Misic, and Sporns 2018). In the context of large-scale 

brain networks, this could mean overlooking more than 80% of known fibre tracts (Avena-

Koenigsberger et al. 2017). As a result, measures based on shortest paths are unaffected 

by the targeted removal of edges, as long as the edges used in the shortest paths remain 

intact (Avena-Koenigsberger, Misic, and Sporns 2018). This leads to an overload of 

information flow on these shortest paths, resulting in network communication that is 

vulnerable to bottlenecks, delays, and information loss (Avena-Koenigsberger, Misic, and 

Sporns 2018). Consequently, shortest-path network efficiency measures could provide a 

distorted representation of network efficiency (Avena-Koenigsberger, Misic, and Sporns 

2018). 

Graph theory metrics are undeniably beneficial in offering summarised insights 

into network topology (Bullmore and Sporns 2009). Considering the methodological 

considerations mentioned above, however, it is crucial to exercise caution when inferring 
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complex communication dynamics from graph theory metrics (Avena-Koenigsberger, 

Misic, and Sporns 2018). 

 

6.4.6. Limitations 

Head motion during MRI image acquisition is a particular concern for studies 

involving children with ADHD (Pardoe, Kucharsky Hiess, and Kuzniecky 2016). If not 

appropriately managed, head motion can lead to data loss and spurious findings (van Ewijk 

et al. 2012; Alexander‐Bloch et al. 2016). To address this concern, several measures were 

implemented to minimise motion-related effects. These measures included, conducting 

multiple initial scans when motion was high, utilising Siemens in-scanner motion 

correction, visually inspecting the quality of raw and processed images, and applying head 

motion correction on both structural and diffusion data. Considering the link between head 

motion, age and ADHD diagnosis, the inclusion of head motion as a covariate might result 

in an underestimation of the effects of interest (Dosenbach et al. 2017; Kong et al. 2014; 

Thomson et al. 2021). Additionally, previous research utilising the NICAP data set have 

indicated minimal head motion across the sample and no significant between-group 

difference in motion metrics between ADHD and control groups (Fuelscher et al. 2023). 

Nevertheless, it remains critical that ADHD research continues to minimise the impact of 

head motion on MRI data. Diligently addressing head motion artefacts enhances the 

robustness and validity of neuroimaging analyses, leading to more accurate insights into 

the neural correlates of ADHD. 

A limitation of the study described in this chapter was that 37% of individuals 

included in the ADHD group had a history of taking medication during the study. While 

the sensitivity analysis conducted in this study indicated that medication use did not impact 

the primary findings of the study described in this chapter, the observed collinearity 

between medication use and ADHD symptom severity poses challenges in isolating their 

individual effects on network metrics. While no previous study has specifically 

investigated the impact of ADHD medication on structural connectivity connectomes, 

recent meta-regressions analysis found no significant effect of prior medication use and 

white matter properties among individuals with ADHD (Parlatini et al. 2023; Bouziane et 

al. 2018).  Taken together, it is unlikely that the results of this study were confounded my 

medication use. Nevertheless, it remains essential for future ADHD research to continue 

investigating the potential impact of medication on brain development, such investigations 
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will help further our understanding of the complex interplay between medication use and 

neural outcomes in individuals with ADHD. 

 

6.4.7. Conclusion 

In conclusion, the study described in this chapter contributes significantly to the 

limited understanding of the limbic system’s role in the pathophysiology of ADHD. While 

no notable between-group differences were found in the limbic system network measures, 

a significant association was found between network measures (density and routing 

efficiency) and ADHD symptom severity. This suggests that underconnectivity of the 

limbic system may underpin increased symptom severity in ADHD. While potential 

mechanisms were discussed, future investigations are needed to expand on this study to 

further understand the involvement of the limbic system in ADHD. 
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7 General Discussion 

7.1. Review of Aims and Results 

The primary aim of the research presented in this thesis was to examine the 

relationship between structural alteration in the limbic system and ADHD symptoms 

across the developmental period from childhood to mid-adolescence. The data utilized in 

this thesis were sourced from the Neuroimaging of the Children’s Attention Project 

(NICAP (Silk, Genc, et al. 2016)), a longitudinal study employing multimodal MRI to 

assess children, both with and without ADHD, at three time points, at approximately 18-

month intervals, from ages 9-14 (Silk, Genc, et al. 2016). The studies described in this 

thesis were designed to explore three key aspects of the limbic system in individuals with 

ADHD compared to controls: 1) variations in grey matter and subcortical nuclei volumes, 

2) the microstructural properties of white matter tracts and 3) the topological organisation 

of the limbic system’s structural connectivity. 

  

7.1.1. Overview of Findings from Chapter 2 

The first study in this thesis deployed longitudinal structural MRI data, acquired 

across three time points, to investigate the volumetric changes in limbic system grey matter 

and subcortical nuclei among individuals with ADHD and controls. Using Freesurfer 

software the following bilateral limbic system structures were isolated: amygdala, 

hippocampus, mammillary bodies, anterior thalamic nuclei, cingulate gyrus (sum of 

cingulate gyrus parcellations), and orbitofrontal cortex (sum of orbitofrontal cortex 

parcellations). The primary analyses of this study revealed that compared to controls, the 

ADHD group had lower volume of the amygdala (bilateral), hippocampus (bilateral), 

cingulate gyrus (bilateral), and orbitofrontal cortex (right) across development (9-14 

years). Exploratory analyses revealed a significant interaction between symptom severity 

and age on the volume of the mammillary body (left) among individuals with ADHD, 

indicating that variations in mammillary body development may play a role in the 

persistence and increase of ADHD symptom severity during mid-adolescence. Overall, 

the findings of the study described in Chapter 2 suggest that atypical development in limbic 

system volumes may be a neurobiological feature of ADHD. 
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7.1.2. Overview of Findings from Chapter 3 

The aim of the second study in this thesis was to explore the development of limbic 

system white matter in children and adolescents with ADHD between the ages of 9 to 14 

years. Using multi-shell HARDI and CSD-based tractography, the major white matter 

tracts of the limbic system were manually isolated. These included the cingulum bundle, 

uncinate fasciculus, fornix, anterior thalamic projections and mammillothalamic tracts. 

The primary analyses found that compared to controls, individuals with ADHD displayed 

reduced kurtosis anisotropy in the cingulum bundle (bilateral) and fornix (left) across all 

three study time points. Additionally, individuals with ADHD were found to have atypical 

development of radial kurtosis in the anterior thalamic projection (left) compared to 

controls. Exploratory analyses revealed no significant association between ADHD 

symptom severity and microstructural organisation of limbic system white matter tracts. 

In conclusion, the study described in Chapter 2 revealed significant developmental 

differences in microstructural organisation in key limbic system white matter tracts in 

ADHD compared to controls, providing novel insights into the neural underpinnings of 

the disorder. 

 

7.1.3. Overview of Findings from Chapter 4 

The third study of this thesis aimed to investigate the topological organisation of 

the limbic system’s structural connectivity among individuals with ADHD and controls. 

Using both structural and diffusion MRI scans, subject-specific limbic system structural 

connectivity connectomes were generated. While the primary analyses did not reveal any 

significant between-group differences in limbic system network measures, the exploratory 

analyses demonstrated a clear association between limbic system network measures and 

ADHD symptom severity. Specifically, among individuals with ADHD, reduced routing 

efficiency and network density were significantly associated with increased ADHD 

symptom severity. Overall, the results of this study suggest that decreased 

interconnectivity of this intricate network may play a role in the persistence of increased 

ADHD symptom severity into mid-adolescence.  

 

7.2. Overall Implications 

The studies described in this thesis add considerably to the knowledge of how the 

brain develops in ADHD. Specifically, it sheds new light on the role of limbic system 
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maturation in the manifestations of ADHD symptom expression. By exploring the 

structural dynamics of the limbic system and its link with ADHD symptom severity and 

persistence, this research advances our knowledge of the complex neurodevelopmental 

mechanisms underlying the disorder. Understanding the developmental trajectories of 

neural features in ADHD could guide clinicians in predicting the clinical course of the 

disorder. One of the most difficult questions that parents and young people with ADHD 

ask clinicians is for how long they will have ADHD symptoms. Currently the answer is 

frustratingly vague - “about 50% of people will not have impairing ADHD symptoms in 

adulthood” (Polanczyk et al. 2007; Simon et al. 2009). If a clinician had the ability to 

correctly predict the course of the disorder, it would have a profound impact for families.  

Although targeted interventions informed by these neuroanatomical findings remain a 

long-term goal, the ultimate aim is to refine and improve treatments by targeting the 

underlying neurobiological mechanisms of ADHD. The following section describes the 

implications of the research presented in this thesis with respect to 1) the limbic system 

and ADHD pathophysiology, 2) the limbic system and the neurodevelopmental models of 

ADHD, 3) the neural mechanisms of emotional dysregulation in ADHD and 4) the 

neurobiological processes underlying the neural phenotype of ADHD. 

 

7.2.1. Limbic System and ADHD Pathophysiology  

As discussed in Section 1.4, the limbic system is an important brain network 

involved in various processes of emotion, cognition and behaviour (Catani, Dell'acqua, 

and Thiebaut de Schotten 2013). While the limbic system was suggested to be a central 

network in the pathophysiology of many neurodevelopmental disorders (Rajmohan and 

Mohandas 2007), it was previously underexplored in ADHD. Using a multimodal MRI 

approach, the studies described in this thesis provided a novel link between disruptions to 

the limbic system and ADHD pathophysiology.  

Synthesising the results of the multimodal approach, specifically the studies 

described in Chapters 3 and 5, reveal notable elements of the limbic system that may be 

particularly pertinent to ADHD. The cingulum bundle was associated with reduced white 

matter microstructural integrity in the ADHD group all three study time points. 

Interestingly, ADHD-associated reductions in volume were also found in the 

interconnected brain regions of the cingulum bundle, specifically the cingulate gyrus, 

orbitofrontal cortex, amygdala and hippocampus (Bubb, Metzler-Baddeley, and Aggleton 
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2018). To understand what was driving these structural differences in ADHD, it is 

important to consider the relationship between grey and white matter. While this 

relationship is complex, there is evidence suggesting that reduced grey matter may be 

driven by compromised synaptogenesis, a neurodevelopmental process associated with 

ADHD risk genes (Dark, Homman-Ludiye, and Bryson-Richardson 2018). As discussed 

in Section 1.2.2, altered synaptogenesis can disrupt the establishment of synapses formed 

between neurons, resulting in reduced white matter density and integrity (Dark, Homman-

Ludiye, and Bryson-Richardson 2018). As such, it is plausible that the reduced white 

matter integrity of the cingulum bundle may be indicative of disruptions to synaptogenesis 

in this white matter tract, resulting in cascading impacts on the structural volume of its 

connected regions. These cascading effects could contribute to the observed volume 

reductions in the interconnected structures, potentially forming a subnetwork within the 

limbic system that may be central to the disrupted development seen in ADHD. 

The finding of ADHD-associated reduced limbic system structural connectivity, as 

detailed in Chapter 6, is particularly interesting as research has shown that disrupted white 

matter may underpin the disrupted functional connectivity seen in the disorder (Soman et 

al. 2023). This interplay between structure and function in the brain highlights a crucial 

aspect of ADHD's pathology. Functional connectivity is scaffolded by the structural 

connections of the brain, disruptions to this scaffolding can result in suboptimal neural 

communications across a network, resulting in compromised executive and cognitive 

functioning (Park and Friston 2013; Baum et al. 2020). In ADHD, research has shown 

dysregulated myelination and axonal formation might underpin the disrupted structure-

function coupling seen in the disorder (Soman et al. 2023). This disruption to the brain’s 

structural and functional harmony may contribute to ADHD symptom expression (Soman 

et al. 2023). As such, the findings of Chapter 6, which demonstrate an association between 

reduced limbic system interconnectivity and increased symptom severity in ADHD, likely 

indicate compromised structural scaffolding within this system. Such disrupted structural 

connectivity scaffolding could lead to impairments in the limbic system’s functional 

connectivity, ultimately affecting its overall functioning. This compromised functionality 

within the limbic system is likely a key factor contributing to the increased severity of 

symptoms observed in ADHD. These insights not only highlight the limbic system's role 

in ADHD but also the importance of structural connectivity in understanding the disorder's 

pathophysiology. 
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7.2.2. Limbic System and the Neurodevelopmental Models of ADHD 

As discussed in Section 1.2.4, the neurodevelopmental models of ADHD represent 

a promising area of pathophysiological research that provide a framework for the 

relationship between the age-associated changes in brain structures and symptoms seen in 

ADHD (Shaw and Sudre 2021). Although these developmental models provide insights 

into the neurobiological underpinnings of ADHD symptom progression, most longitudinal 

studies have focused on cortical structures (Shaw et al. 2012; Shaw et al. 2007). As a result, 

our understanding of these models in relation to subcortical structures and networks is 

largely incomplete (Hoogman et al. 2017b; Rosch et al. 2018). This thesis expanded the 

neurodevelopmental models of ADHD to previously unexplored brain regions and 

structures. Using a multimodal MRI approach, the studies described in this thesis found 

that, compared to controls, there was an association between persistent ADHD diagnosis 

status and reduced volume, and microstructural organisation in key limbic system 

structures, providing novel support for the convergence model of ADHD (Shaw and Sudre 

2021). The convergence model posits that individuals with persistent ADHD diagnosis 

will display fixed, non-progressive neural features, in contrast to those who experience 

symptom remission and exhibit a convergence towards neurotypical neural features (Shaw 

and Sudre 2021).  

As highlighted in Section 1.2.2., genes associated with ADHD that play a role in 

brain development predominantly influence neuronal and synaptic formation (Dark, 

Homman-Ludiye, and Bryson-Richardson 2018). Disruptions in these processes may 

underlie the neurobiological mechanisms consistent with the convergence-model 

phenotype. The findings in the studies described in Chapters 3 and 5 underscore that while 

individuals with ADHD exhibit both reduced limbic system volume and white matter 

microstructural integrity, the developmental trajectories of these structures align with 

neurotypical patterns (Bethlehem et al. 2022). This suggests that the combination of early 

developmental disruptions in neuronal and synaptic formation (processes linked to 

reduced grey matter volume and white matter integrity) and no accelerated 'catch-up' phase 

associated with ADHD symptom remission could lead to the fixed, non-progressive neural 

features characteristic of persistent ADHD.  
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7.2.3. Limbic System and Emotional Dysregulation ADHD 

While the findings of this thesis revealed a link between limbic system 

development and ADHD symptom severity, no significant association was found with 

emotional dysregulation. Emotional regulation encompasses multi-level processes, 

including both ‘bottom-up’ and ‘top-down’ neural regulation (Philip Shaw et al. 2014). 

The limbic system incorporates “bottom-up” regulation, which involves the amygdala and 

orbitofrontal cortex. “Bottom-up” regulation is how individuals assess emotional stimuli 

and value rewards, allowing quick and automatic responses to emotional stimuli (Philip 

Shaw et al. 2014). It is worth considering that the presence of emotional dysregulation in 

ADHD is a complex cognitive process that is likely influenced by various neural circuits 

beyond the limbic system (Philip Shaw et al. 2014).  

“Top-down” regulatory processing (which involves the ventrolateral prefrontal 

cortex, medial prefrontal cortex and anterior cingulate gyrus), governs the allocation of 

attention and responses to emotional stimuli (Phillips, Ladouceur, and Drevets 2008; 

Ochsner and Gross 2005). This processing involves a more controlled and rational 

assessment of emotions, enabling individuals to modulate their reactions based on 

reasoned judgement (Philip Shaw et al. 2014). As this study focused on the limbic system, 

the structures involved in ‘top-down’ processing were not investigated. It is plausible that 

while the limbic system may play a role in emotional regulation, ‘top-down’ processes 

might be more critical for emotional dysregulation in ADHD (Philip Shaw et al. 2014).  

It is also possible that the metric used to measure emotion regulation in this study, 

the ARI, influenced the finding of a lack of association between emotion dysregulation 

and limbic system structures. As discussed in Section 1.1.2, emotional dysregulation is a 

complex construct that can manifest in various forms, including problems with impulse 

control, mood swings, and an unusual fixation on emotional stimuli (Shaw, Stringaris, et 

al. 2014). Although the Affective Reactivity Index (ARI) is commonly used to measure 

emotional dysregulation, it may not fully capture this multifaceted construct (Nigg et al. 

2020). The ARI primarily measures irritability and reactivity, which are just two 

components of emotional dysregulation (Nigg et al. 2020). It has been suggested that 

irritability refers to anger dysregulation whereas emotional dysregulation refers to 

dysregulation of both angry and positive emotions (Nigg et al. 2020). As such, the ARI 

may provide only a partial representation of emotional dysregulation. Considering the 

complex and multi-dimensional nature of emotional regulation, future research on children 
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with ADHD would benefit from incorporating a more comprehensive range of 

assessments, including but not limited to the Emotion Regulation Checklist (ERC) 

(Shields and Cicchetti 1997), Temperament in Middle Childhood Questionnaire (TMCQ) 

(Simonds and Rothbart 2004) and Children’s Emotion Management Scales (CEMS) 

(Zeman, Shipman, and Penza-Clyve 2001; Zeman, Shipman, and Suveg 2002; Zeman et 

al. 2010). 

 

7.2.4. Neurobiological Processes Underlying Atypical Brain Development in 

ADHD 

Previous MRI research – including the findings presented in this thesis - has 

identified ADHD-associated macroanatomical developmental abnormalities in both 

subcortical and cortical regions (Shaw et al. 2012; Shaw et al. 2007). While the underlying 

mechanisms of these changes remains unclear, genomics studies offer an exciting direction 

for future research. Many risk genes for ADHD play a functional role in all stages of brain 

development (Dark, Homman-Ludiye, and Bryson-Richardson 2018), with a particular 

interest on neural formation, myelination, and synaptic regulation (Dark, Homman-

Ludiye, and Bryson-Richardson 2018). It is believed that disturbances to these 

neurodevelopmental processes likely play a role in the neural phenotype seen in ADHD 

(Dark, Homman-Ludiye, and Bryson-Richardson 2018). Exploring the relationship 

between risk genes for ADHD and brain development provides a molecular framework for 

understanding the neuroanatomical changes identified through MRI research.  

Among the genes of interest, members of the cadherin gene family, specifically 

CDH13 and PCDH7, represent a noteworthy focus. These genes are particularly intriguing 

due to their role in neurogenesis, synaptic formation and neural connectivity, mechanisms 

that appear to be altered in ADHD (see Table 1.1) (Dark, Homman-Ludiye, and Bryson-

Richardson 2018). Other candidate genes of interest include GRM5 (involved in 

neurogenesis, synaptogenesis and synaptic plasticity), ST3GAL3 (involved in 

synaptogenesis and synaptic plasticity), FOXP2 (involved in neurogenesis, neuronal 

migration, and synaptogenesis) and MEF2C (involved in neurogenesis and 

synaptogenesis) (Dark, Homman-Ludiye, and Bryson-Richardson 2018). While these 

findings hold promise, it is important to note that our current understanding of neural 

formation and connectivity in the context of ADHD is still limited. Future integrated MRI, 
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genomic and animal model studies are imperative for delineating the precise mechanisms 

underpinning the neural phenotype seen in ADHD. 

 

7.3. Limitations and Future Directions of this Thesis 

Each study within this thesis has specific limitations, which are discussed in their 

respective chapters. In addition to these, there are some overarching limitations that apply 

more broadly to the type of work presented in this thesis.  

 

7.3.1. Limitations of MRI-Based Studies 

While the findings of the studies described in this thesis make a significant 

contribution to our understanding of the pathophysiology of ADHD, it is important to 

acknowledge an inherent limitation of MRI research. MRI data provides reconstructed 

representations of brain regions and networks. The accuracy of these brain reconstructions 

has been shown to be influenced by various factors, such as imaging parameters and 

processing steps (Despotović, Goossens, and Philips 2015; Van Hecke, Emsell, and 

Sunaert 2016). It has been demonstrated that suboptimal imaging parameters and image 

processing has been shown to lead to inaccurate and potentially false reconstructions 

(Despotović, Goossens, and Philips 2015; Van Hecke, Emsell, and Sunaert 2016). To 

maximise the quality and validity of the MRI reconstructions, the current work employed 

advanced MRI techniques, such as multi-shell HARDI (Van Hecke, Emsell, and Sunaert 

2016) and CSD-based tractography (Tournier et al. 2004a; Tournier, Calamante, and 

Connelly 2007). These techniques have been shown to significantly improve 

reconstruction and segmentation accuracy (Van Hecke, Emsell, and Sunaert 2016). 

Nevertheless, it is important to recognise that even with these advanced techniques, MRI 

data are ultimately approximations of brain structures that are subject to artifacts and 

inaccuracies (Van Hecke, Emsell, and Sunaert 2016). As such, careful interpretation of 

MRI research findings is needed, particularly when trying to infer underlying 

neurobiological mechanisms.  

For a more thorough understanding of structural brain changes in ADHD, 

complementing in vivo MRI findings with ex vivo histological research is necessary. Both 

in vivo MRI and ex vivo histological approaches have their respective strengths and 

weaknesses. MRI research provides valuable but indirect anatomical and functional 

insights into large samples across multiple time points. This lack of direct anatomical 
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measurement can limit the completeness and accuracy of the underlying neurobiological 

mechanisms. Conversely, ex vivo histological research offers high resolution, direct 

observations of brain structures, but is often constrained by limited sample sizes and an 

inability to capture developmental changes across time (Hillman 2000). The integration of 

both in vivo MRI and ex vivo histological techniques is essential for advancing our 

understanding of the neurobiological underpinnings of ADHD.  

 

7.3.2. Anatomical Boundaries of the Limbic System 

While the studies of this thesis used a scientifically defined limbic system (Catani, 

Dell'acqua, and Thiebaut de Schotten 2013) (see schematic Figure 1.1), it needs to be 

acknowledged that there is currently no universally accepted anatomical definition of the 

limbic system (Stephani 2014). Definitions vary, with some incorporating structures like 

the septal nucleus, insula and parahippocampal gyrus(Michael-Titus, Revest, and 

Shortland 2010). Beyond these anatomical inconsistencies, the conceptualisation of the 

limbic system as a single functional unit has been challenged (Rolls 2015). Rather the 

limbic system may be comprised of multiple functionally distinct networks (Rolls 2015). 

For example, it has been proposed that the limbic system is composed of two functionally 

distinct networks. The first includes the hippocampus and its connected structures and is 

involved in episodic memory (Kesner and Rolls 2015; Rolls 2018b, 2021) and navigation 

(Rolls and Wirth 2018). The second network involves the amygdala and its connected 

structures, particularly the orbitofrontal cortex, and is primarily involved in processes of 

emotion and regulation (Rolls 2018a, 2019b). In this dual model approach, the cingulate 

gyrus adds an additional layer of complexity, as it appears to play a role in both functional 

networks (Rolls 2019c). This variability in both structural and functional definitions 

presents a limitation of limbic system research, hindering the formation of a unified body 

of literature and a coherent understanding of limbic system functions.  

Future research aimed at better understanding the limbic system can focus on two 

key areas: 1) investigating how the limbic system is integrated into the broader whole brain 

network, and 2) elucidating the interactions and functions of the limbic system’s 

subnetworks. The ultimate objective should be the reconciliation of diverse anatomical 

and functional definitions, facilitating a more cohesive and unified understanding of this 

vital neural system.   
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7.3.3. Limitation of Heterogeneity of ADHD Group in Case-Control MRI 

Research 

ADHD is a highly heterogeneous disorder (Li et al. 2021), with symptoms varying 

widely in presentation, severity and duration across individuals with the disorder (Faraone 

et al. 2015). This heterogeneity is particularly relevant during adolescence as individuals 

with ADHD have been shown to fluctuate in their diagnostic status across this period 

(Margaret H. Sibley  et al. 2022). In MRI case-control research, in which the overarching 

goal is to isolate stable and reliable neurobiological differences between the case and 

control groups (Marquand et al. 2016), heterogeneity within the ADHD group is a common 

limitation (Faraone et al. 2015). Therefore, having diagnosis and symptom stability in both 

ADHD and control groups is beneficial for isolating reliable neurobiological between-

group differences. As discussed in Section 2.2.1, the studies described in this thesis made 

a concerted effort to maintain consistent diagnostic profiles within the ADHD group by 

including only individuals with persistently diagnosed ADHD across the NICAP study 

time points. Despite this, variability of symptom severity within the ADHD group still 

remained, highlighting the heterogeneity in the disorder. 

This limitation of ADHD research emphasises the need for future studies to 

investigate the neurodevelopmental processes of ADHD subtypes, symptom dimensions 

or the presence of comorbidities to provide a greater understanding of the neurobiological 

underpinnings of ADHD. 

 

7.3.4. Linear Growth Curves 

All three studies in this thesis investigated changes in brain structure across three  

time points using linear mixed-effects models. Although these time points provide 

valuable insights, the application of linear models may not fully encapsulate the intricate 

patterns of brain development. Alternative modelling techniques such as quadratic or cubic 

polynomial curves may provide a more nuanced portrayal of the trajectories of brain 

changes across time (Elhakeem et al. 2022). Quadratic and cubic curves offer more 

flexibility than linear models because they can capture non-linear trends in developmental 

trajectories (Elhakeem et al. 2022). The studies in this thesis deployed linear modelling 

due to the limited time points in the NICAP data set. With three time points, there were 

insufficient degrees of freedom to reliably estimate polynomial curves (Francis et al. 

1991). Alternatively, Generalized Additive Mixed Models (GAMM) represent an 
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advanced statistical technique that allows for flexible modelling of non-linear relationships 

within longitudinal data. GAMM can handle complex patterns by incorporating smooth 

functions, making it particularly useful in studies where relationships between variables 

are not strictly linear. However, while GAMM offers advanced modelling capabilities for 

non-linear relationships, a limitation compared to LMM is its increased complexity and 

potential for overfitting, especially in studies with a limited number of time points or 

participants (Wood 2017). As such, the studies described in this thesis deployed LMM 

over GAMM as LMM provided the necessary balance between simplicity and accuracy 

for this context, ensuring clear interpretation of linear trends in brain development and 

behaviours. 

While linear models could arguably be a reasonable approximation for capturing 

brain changes in this specific developmental period (Bethlehem et al. 2022), it’s important 

to acknowledge the limitation imposed by the restricted number of study time points. More 

complex models, such as GAMM higher-order mixed modelling, that incorporate 

additional time points would provide a more detailed understanding of the changes in brain 

structure throughout development (Elhakeem et al. 2022). There is a pressing need for 

extended longitudinal studies featuring multiple time points to adequately map ADHD-

specific brain growth curves across various life stages. These studies could not only deepen 

our understanding of the disorder’s developmental trajectory but could also aid in the 

formulation of age-specific treatment plans. Future research should therefore prioritise 

developing longitudinal MRI research with more extensive temporal ranges to fully 

appreciate the complexities of brain development in populations with ADHD.  

 

7.3.5. Limitation of Sample Sizes in Brain-Behaviour Studies 

A common limitation in brain-behaviour association studies is small sample sizes 

(Button et al. 2013a; Schönbrodt and Perugini 2013; Boekel et al. 2015). In the studies 

described in this thesis, the sample sizes in the brain-behaviour association analyses are 

relatively small. Small sample sizes in brain-behaviour association studies can 

compromise statistical power, generalisability and reproducibility, thereby limiting the 

reliability of the findings (Button et al. 2013a; Schönbrodt and Perugini 2013; Boekel et 

al. 2015). To minimise this limitation, the studies described in this thesis deployed a 

focused brain-behaviour study approach (Gratton, Nelson, and Gordon 2022). This 

methodological choice involves a more concentrated participant group but places a higher 
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emphasis on precise classification and measurement of both brain structure and behaviour, 

utilising advanced MRI techniques and rigorous diagnostic classification (Gratton, Nelson, 

and Gordon 2022). This focused approach, though it includes fewer participants, is 

designed to enhance the quality and reliability of data, enabling more detailed and accurate 

correlations between brain structures and behavioural outcomes. Notably, as Gratton et al. 

(2022) suggest, such a focused approach can yield effect sizes comparable to those found 

in larger consortia studies, demonstrating its effectiveness in capturing significant brain-

behaviour relationships even within a smaller cohort (Gratton, Nelson, and Gordon 2022).  

Both focused samples and large consortia studies play valuable roles in psychiatric 

research. Large consortia studies offer heightened statistical power and generalisability 

due to their larger sample sizes (Marek et al. 2022), while focused sample approaches, 

leveraging their precision and sensitivity, provide valuable insights into the nuanced brain-

behaviour relationships (Gratton, Nelson, and Gordon 2022). Given the emerging 

conclusion that real, reproducible associations between individual differences in complex 

biological systems and heterogeneous disorders such as ADHD are likely to involve small 

effect sizes (Bernanke et al. 2022), future research can benefit from the application of both 

methodologies.  

 

7.3.6. Limitation of a Single Data Source 

This study's reliance on a single data source – the NICAP dataset –is a limitation. 

While the NICAP dataset, with its comprehensive phenotyping, advanced MRI techniques 

and longitudinal design, is an extremely valuable dataset, these same unique features 

limited the feasibility of cross-dataset reproducibility testing. As such, there is a lack of 

external replication of the findings, a significant concern in ADHD MRI research (Stikov, 

Trzasko, and Bernstein 2019; Button et al. 2013a; Hoogman et al. 2019).  

 

7.4. Future Directions of ADHD Pathophysiological Research 

A critical focus of future pathophysiology ADHD research lies in deciphering the 

neurobiological mechanisms underpinning the convergence model of ADHD. 

Specifically, understanding the mechanism underpinning the apparent 'catch-up' 

developmental phase associated with symptom remission in ADHD. Unravelling this 

aspect is paramount because it could reveal key insights into why some individuals 

experience a reduction in ADHD symptoms over time, while others continue to exhibit 
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persistent symptoms. Understanding these mechanisms could lead to the development of 

targeted interventions or treatments aimed at promoting this 'catch-up' phase in those with 

persistent ADHD. Such advancements hold the potential to significantly improve long-

term outcomes and quality of life for individuals affected by ADHD.  

For these advancements to materialise, a collaborative integration of genetic 

studies, animal model research, and neuroimaging investigations is essential. This 

multidisciplinary approach would allow for a more comprehensive understanding of 

ADHD pathophysiology, combining insights from various levels of analysis—from 

genetic underpinnings to brain structure and function. Ultimately, this integrative approach 

could pave the way for breakthroughs in ADHD research, transforming our ability to 

manage and treat this complex disorder effectively. 

 

7.5. Conclusion 

Extensive converging evidence from genetic, animal model and neuroimaging 

research suggests that abnormal development of brain structures may underpin symptom 

expression in ADHD. The central aim of this thesis was to investigate an underexplored 

brain network in ADHD, the limbic system. Using longitudinal MRI data and advanced 

multimodal MRI techniques, the studies in this thesis have provided novel insights into 

the developmental changes of the limbic system in ADHD. Overall results suggest that 

atypical development of limbic system grey matter, white matter and subcortical nuclei 

may be a neurobiological feature associated with the persistence of ADHD symptoms 

during the transition into mid-adolescence.  
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