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Summary 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder primarily 

characterized by the progressive degeneration of motor neurons. However, the understanding 

of ALS has evolved beyond its traditional characterisation as solely a motor disorder. It is now 

recognized as a spectrum disorder, ranging from classic ALS with no cognitive or behavioural 

changes to ALS with comorbid cognitive or behavioural impairment that may or may not reach 

the threshold for a diagnosis of ALS-frontotemporal dementia (ALS-FTD). This evolving 

perspective highlights the complexity of ALS and its diverse clinical presentations.  

Neuroimaging and neurobiology studies have revealed that ALS symptoms and their 

progressions are influenced not only by motor neurons but also by wider dysfunction and 

atrophy in brain networks. Analysing the spectral, spatial and temporal patterns of brain 

network dysfunction in ALS and how they relate to clinical presentation can enhance the 

assessment of disease progression and provide a quantitative foundation for disease 

stratification. The incorporation of electrophysiological measurements into clinical practice has 

the potential to predict individual prognoses, to enhance the design of clinical trials by allowing 

the stratification of patient groups and to offer more objective, quantitative assessments of drug 

effects based directly on the network disruptions observed in ALS. 

In this project, high-density electroencephalography (128-channels) was recorded at rest to 

interrogate ALS-related cognitive network dysfunction. First, given the prior evidence of non-

motor network dysfunction in resting-state EEG and its correlation with cognitive decline, a 

longitudinal assessment of spectral EEG measures was conducted. This aimed to assess the 

persistence of ALS-related network patterns over the course of the disease and their association 

with distinct cognitive phenotypes. Second, clustering techniques were applied to the EEG 

spectral power trajectories, aiming to identify stable subgroups among ALS patients. These 

trajectories were correlated with clinical and neuropsychological evaluations to evaluate the 

effectiveness of network-based measures in understanding disease progression, survival 

outcomes, and functional decline. Third, microstate analysis was applied to identify and 

analyse transient, recurrent, and quasi-stable brain states, which are hypothesised to reflect 

synchronised activity within functional networks. Changes in microstate parameters were 

explored as potential indicators of modulations in the temporal dynamics of brain networks, 

potentially associated with cognitive and behavioural impairment. Last, patterns of frequency-

specific power and phase-coupling in resting-state EEG were analysed, using a combined 

Hidden Markov Model and multivariate autoregression approach, to uncover temporal 
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disruptions in neural activity and functional connectivity within specific brain regions. The 

identification of spectrally distinct episodes in resting-state activity allowed for the provision 

of reliable indicators of ALS-related impairment specific to particular brain networks. 

This project revealed significant longitudinal changes in neural activity, particularly in the 

fronto-temporal region, with a decline in lower-frequency (θ-band) and an increase in higher-

frequency (γ-band) spectral power. Different ALS subgroups were characterized based on 

cognitive and behavioural profiles, showing distinct patterns of spectral EEG measure changes 

associated with cognitive decline, behavioural impairment, and motor decline. Survival was 

strongly linked to longitudinal changes in functional connectivity between specific brain 

regions in all subgroups. Clustering of longitudinal neural activity trajectories supported the 

existence of stable clusters corresponding to clinical profiles. Notably, differences in survival 

and functional decline were observed between clusters, highlighting the heterogeneity of ALS 

progression and the importance of studying long-term neural activity patterns in specific 

subgroups to understand disease advancement, survival outcomes, and functional deterioration. 

Despite the identification of abnormal spectral measures in both sensor and source space, which 

persisted longitudinally, the temporal dynamics of brain networks in ALS remain poorly 

understood. This research studied the temporal aspects of brain network activity using EEG 

microstate analysis, revealing that properties of EEG microstates could offer valuable 

prognostic insights into ALS, particularly regarding cognitive decline. Differences in 

microstate properties were observed between ALS and healthy-control groups, suggesting 

dysfunction within somatosensory and attention networks. Moreover, correlations between 

microstate properties and clinical measures indicated their potential as prognosis biomarkers 

for ALS and in particular cognitive decline. Additionally, distinct transient brain states with 

unique spectral characteristics were identified in resting-state EEG. Individuals with ALS 

exhibited altered dynamics in one brain state associated with the posterior default mode 

network. These findings demonstrate the importance of dynamic analyses in understanding 

disruptions within neural networks related to ALS, holding clinical significance for 

understanding EEG signal alterations in specific functional aspects of the disease. 

This thesis focuses on resting-state EEG measures to detect longitudinal neural activity patterns 

linked to cognitive-behavioural impairments in ALS. Additionally, this work examines 

patterns, observed in both sensor and source levels, which capture the temporal dynamics 

within EEG signals. These measures serve to quantify cognitive network disruptions in ALS 

and have the potential for further development to enhance patient care, assess drug 

effectiveness, and enable stratification for clinical trials and treatments.  
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I. Introduction 

1. ALS disease  

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease of the 

central nervous system (CNS). Despite important research efforts and recent advances, ALS 

still has no effective treatment. Life expectancy is on average 30 months after symptoms onset 

(Hardiman, Al-Chalabi, Brayne, et al., 2017).  

2. Epidemiology  

The disease is the most common form of motor neuron disease (MND) but is still rare with a 

crude incidence rate of 2-3 cases per 100 000 in Europe (Hardiman et al., 2011; Hardiman, Al-

Chalabi, Brayne, et al., 2017). The low prevalence of only 7-9/100 000 is due to the short 

survival time (Hardiman, Al-Chalabi, Brayne, et al., 2017). Despite relatively stable incidence 

rates in Europe, a lower average incidence rate of 1.75/100 000 was observed worldwide, by 

meta-analysis (Marin et al., 2017). North Africa and Asia appeared to have much lower average 

incidences (<1/100 000) than in Europe (or in populations with a majority of European 

descendants)  (Feldman et al., 2022; Marin et al., 2017).  

An increase in incidence is expected with the ageing of the population. Some studies already 

suggested an increase in incidence in the last decades but are counterbalanced by studies 

reporting stable incidence. The observed increase could be explained by adjusted diagnosis 

criteria and improved recognition of the disease, especially in the older population (Feldman 

et al., 2022; Hardiman, Al-Chalabi, Brayne, et al., 2017). The prevalence is also anticipated to 

increase thanks to improved treatments and support.  

Men are overall at a higher risk of developing the disease with an evaluated male-to-female 

ratio of 1.3-1.4 (Feldman et al., 2022; Marin et al., 2017). The population aged, 60 and over, 

has also been observed to be at higher risk; the age of onset being proportional to the life 

expectancy (Byrne, Jordan, et al., 2013).  

2.1. Clinical presentation  

The clinical presentations of ALS are highly heterogeneous, not only in terms of age of onset 

but also site of onset, rate of disease progression, motor/respiratory symptoms and presence of 

cognitive/behavioural impairments.  

ALS is characterised by the involvement of both upper and lower motor neurons (Hardiman et 

al., 2011). The progressive neurodegeneration affects the brain stem, cervical, thoracic and 

lumbar components of the central nervous system (Figure 1). Patients experiment progressive 
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muscle weakness or stiffness causing a range of symptoms including impaired limb movement, 

dysphagia, dysarthria and ventilation issues (Feldman et al., 2022; Hardiman et al., 2011). 

Failure of the respiratory function leads to death in most cases (Hardiman et al., 2011). After a 

focal onset of muscle weakness, it commonly spreads to adjacent body parts.  

 
Figure 1: A. Schematic representation of upper and lower motor neuron pathways. UMN, in blue, relay signals from the motor 
cortex to LMN, in green, which in turn relay signals to the muscles. In ALS disease, both UMN and LMN progressively 
degenerate. MN present in the brainstem innervate neck muscles; their degeneration causes speech and swallowing 
impairments. MN connecting in the cervical segment of the spinal cords communicate with the upper limbs and respiratory 
muscles. MN in the thoracic and lumbar segments respectively mostly innervate respiratory and lower limbs muscles. B. 
Amyotrophic lateral sclerosis – frontotemporal dementia spectrum. FTD is on one end of the spectrum with pure fronto-
temporal degeneration and only cognitive and behavioural impairments. ALS is on the other end with only motor and/or 
respiratory symptoms, caused by UMN and LMN degeneration. Patients are classified as ALS-FTD if they meet both the 
criteria for ALS and FTD classification. Some patients present with cognitive or behavioural impairment without meeting the 
criteria for an FTD diagnosis, it is defined as ALS cognitive impairment (ALSci) or ALS behavioural impairment (ALSbi). 
Created with BioRender.com 

The most common sites of onset are the spinal cord and bulbar region (Feldman et al., 2022). 

In Ireland, from 1995 to 2010, 58.4% of spinal (cervical and lumbar), 36.5% of bulbar and 

5.1% of generalised onsets were observed (Rooney et al., 2013).  Although, a geographical 

discrepancy in ALS phenotypes may exist (Hardiman, Al-Chalabi, Brayne, et al., 2017). 

Respiratory onset is usually rarer and happens mostly in men (Feldman et al., 2022). Growing 

evidence shows that cognitive and behavioural symptoms sometimes even precede motor or 

respiratory impairment (Mahoney et al., 2021; Pender et al., 2020). Cognitive and behaviour 

changes may represent potential early markers of the disease.  

A few years ago, the Strong diagnosis criteria were revised to recognise the neuropsychological 

deficits in ALS (Strong et al., 2017). The definition of ALS has been expanded to the concept 

of ALS fronto-temporal (ALS-FTD) spectrum (Figure 1). Around 15% of ALS patients are 

also diagnosed with FTD (Feldman et al., 2022; Pender et al., 2020). Most patients do not meet 

the criteria for dementia, but up to 50% of ALS patients develop cognitive or behavioural 

impairments, associated with changes in non-motor networks (Al-Chalabi et al., 2016). The 
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revised Strong criteria, therefore, describe the presence of such cognitive or behavioural 

impairment, respectively as ALSci and ALSbi.  

 

2.2. Risk factors 

2.2.1. Genetic factors 

Genetic factors have been observed to play an important role in the development of ALS 

disease.  

Familial ALS (FALS) represents around 20% of the cases (Ryan et al., 2018). The estimation 

of FALS incidence however varies (5-30%) depending on the degree of relatives and the extent 

of endophenotypes considered (Feldman et al., 2022; Ryan et al., 2018). Frontotemporal 

dementia (FTD) is usually considered on one end of the ALS-FTD spectrum. Additionally, 

other neuropsychiatric disorders, like schizophrenia, have been shown to occur at a higher rate 

in ALS patients’ relatives than in controls (Byrne, Heverin, et al., 2013; Hardiman, Al-Chalabi, 

Brayne, et al., 2017). Including such endophenotypes in the definition of FALS is likely to 

cause an increase in detection and may represent at best the genetic architecture of the disease. 

A polygenic overlap between schizophrenia and ALS disease has been suggested by a genome-

wide association study (Hardiman, Al-Chalabi, Brayne, et al., 2017; McLaughlin et al., 2017). 

Nonetheless, the uncertainties bounded by family health histories plead in favour of genetic 

testing.  

Across patients without any FALS history, around 15% carry ALS-associated genes (Feldman 

et al., 2022; Goutman et al., 2022).  The bulk of the current identified genetic risks relies on 

monogenic inheritance, with more than 40 disease-associated genes discovered (Feldman et 

al., 2022). The most observed mutations so far are C9orf72, SOD1, TARDBP and FUS. SOD1 

has been associated with motor degeneration, while C9orf72 seems to have stronger links with 

cognitive and behavioural impairment (Goutman et al., 2022). Both FUS and TARDBP 

mutations are among those connected with dementia (Goutman et al., 2022). The heritability 

character of the disease is, however, probable to be oligo- or polygenic. Due to the rare 

character of the disease, only international consortia have the potential to deliver answers to 

those questions.  

2.2.2. Environmental factors 

Despite their growing potential, genetic studies do not explain fully the apparition of the 

disease. The environment is hypothesised to have a similar influence on ALS risk. The answer 

to the cause of ALS may partially lie in epigenetic changes (Feldman et al., 2022). Numerous 
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studies examined potential environmental factors like environmental toxins (Lagrange et al., 

2022), medical events such as brain trauma (Goutman et al., 2022) or physical activity. In all 

likelihood, a combination of genetic risks and lifelong influence of environmental factors 

causes ALS, as suggested by the gene-time-environment hypothesis (Al-Chalabi & Hardiman, 

2013).  

2.3. Pathophysiology  

ALS disease is characterised by the degeneration of both upper and lower MN. Such abnormal 

neuronal death is caused by the presence of inclusion bodies. Different cellular and molecular 

patho-mechanisms have been investigated as a cause of this aberrant protein aggregation. 

Disrupted physiological processes include: RNA metabolism, homeostasis of the proteins, 

cellular transport, mitochondrial function and immune mechanisms (Feldman et al., 2022).     

The above-mentioned C9orf72, TARDBP and FUS mutations are involved in RNA alterations 

(Goutman et al., 2022).  The most discussed mutant protein is the TAR DNA binding protein 

43 (TDP-43). Indeed, around 97% of ALS patients display characteristics of TDP-43 

proteinopathy, with cytoplasmic inclusions of the protein (Hardiman, Al-Chalabi, Chio, et al., 

2017). A prion-like propagation of the disease has been hypothesised (Goutman et al., 2022; 

Koopman, 2022), and would be coherent with the stage-related spreading of TDP-43 

inclusions. FTD patients show similar signs of TDP-43 deposition; a similarity which argues 

in favour of the ALS-FTD spectrum (Scotter et al., 2015). Besides, the spreading of TDP-43 

pathology was associated with cognitive decline (Lulé et al., 2018), and in a post-mortem study, 

the type of cognitive impairment was predictive of the non-motor regions where the TDP-43 

aggregated (Gregory et al., 2020).  

Multiple ALS mutations, such as TARDBP, C9orf72 and SOD1, play a role in altered 

proteostasis (Feldman et al., 2022; Goutman et al., 2022). TDP-43 inclusion bodies, as well as 

FUS and C9orf72 mutations, cause defective transport between the nucleus and the cytoplasm. 

The inclusion bodies and mutations such as SOD1, induce mitochondrial dysfunction which 

leads to oxidative stress. 

Disrupted inflammatory mechanisms have also been observed in ALS patients, with an initial 

protective response followed by cytotoxicity (Feldman et al., 2022).  Different levels of 

immune cells in the blood, infiltrated immune cells in the CNS and abnormal production of 

cytokines (including interferon 𝛾) are all patho-mechanisms present in patients (Goutman et 

al., 2022).  
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The discovered molecular steps are likely to be interconnected and interdependent. Despite 

important progress in unravelling the physiological mechanisms of the disease, the pathological 

pathways remain incompletely understood. Enhancing the assessment of the spectrum of 

symptoms associated with the disease, which encompasses not only the deterioration of motor 

and respiratory functions but also cognitive and behavioural deficits, could play a crucial role 

in elucidating the underlying mechanisms of the condition. 

3. Cognitive impairment in ALS disease 

3.1. Late discovery of the cognitive aspects of the disease 

Originally, introduced by Jean-Martin Charcot in 1874, the term ‘Sclérose latérale 

amyotrophique’ or ALS, initially described a disease with purely motor symptoms (Charcot, 

1874).   Cognitive impairments only became apparent in the late twentieth century with the 

emergence of extra-motor neuroimaging evidence, large-scale epidemiologic results and robust 

neuropsychological assessments (Pender et al., 2020). Before, cognitive or behavioural 

impairments were masked by more apparent motor neuron symptoms (notably bulbar 

symptoms) or classified as emotional consequences of motor impairments. Since 2017, FTD is 

now officially associated with ALS in the ALS-FTDS (Strong et al., 2017).  

3.2. Clinical presentation of cognitive impairment 

ALS disease and FTD share pathophysiological and genetic characteristics, and around 15% 

of ALS patients present with co-morbid FTD (mainly behavioural variant-FTD, bvFTD). FTD 

is characterised by behavioural changes (like disinhibition or apathy), language problems and 

organisational struggles. Psychotic episodes may happen, especially in patients with C9orf72 

repeat expansion, while memory is generally preserved until the latest stages of the disease 

(Finger, 2016).   

Amongst non-demented ALS patients, around 40% have been observed to develop mild to 

moderate cognitive or behavioural symptoms (Pender et al., 2020; Phukan et al., 2012). Patients 

with abnormal cognition (ALSci) show executive and/or language dysfunction. The revised 

Strong criteria define executive impairment as impaired verbal fluency or impairment in two 

other non-overlapping measures of executive function (including working memory, problem-

solving and social cognition) (Strong et al., 2017). The hallmark of ALS executive dysfunction 

is verbal fluency, usually evaluated by the generation of lists of words (specified letter or 

semantic categories). To ensure the distinction between cognitive and motor disabilities, the 

task is timed and evaluated in comparison with the reading/writing of independent words.  
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Behavioural symptoms (ALSbi) encompass essentially apathy (in up to 60% of patients) but 

also mood, hygiene or eating habits changes. The revised Strong criteria for ALSbi is met if 

there is evidence of apathy or two other independent Rascovsky features (Strong et al., 2017).  

Emotional lability also occurs in patients and is clinically defined as a pseudobulbar affect, 

separately from cognitive or behavioural abnormalities (Feldman et al., 2022; Pender et al., 

2020). This affect has been hypothesised to occur because of disrupted mood regulation 

networks (Finegan et al., 2019). 

Specific disease phenotypes like the presence of C9orf72 repeat expansions or a bulbar onset 

seem to be predictive of existing or future cognitive impairment (Feldman et al., 2022).  

3.3. Assessment of cognitive impairment 

Early and regular assessment of cognitive impairment is essential for a better understanding of 

the disease and also for the welfare of the patients and their caregivers. 

The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) is a validated, widely used 

method for cognitive assessment in ALS (Abrahams et al., 2014). This tool allows for a short, 

multidomain assessment and has been specifically designed to account for the ALS disabling 

physical symptoms. ECAS, evaluates specifically executive function, language and social 

cognition, as ‘ALS-specific’ domains, but also memory and visuospatial skills (‘ALS-non-

specific’ domains) to remain general. Multiple forms of the questionnaire are available to limit 

practice effects in the case of longitudinal assessments. The ECAS cannot replace longer, 

detailed neuropsychological evaluations, however, it helps to identify needs and has been 

proven useful to clinical care (Feldman et al., 2022; Pender et al., 2020).  

An ALS-FTD diagnosis requires more detailed neuropsychiatric screenings. The ALS-FTD 

questionnaire evaluates behavioural impairment and can identify bvFTD (Raaphorst et al., 

2012).  

The recently developed Beaumont Behavioural Inventory (BBI) is more sensitive to 

behavioural impairments (Elamin et al., 2017; Feldman et al., 2022). This screening tool 

focuses on behavioural changes usually observed in ALS and adapts to physical disabilities.  

Behavioural assessments are even harder than cognitive evaluations and can be in some ways 

of limited reliability. Except for apathy, behavioural changes are reported by caregivers, with 

all the subjectivity it implies. Robust, quantitative biomarkers of cognitive impairment are 

required for prognostication and new treatment evaluations.  
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3.4. Progression of cognitive impairment over the course of the disease / Prognosis 

of cognitive impairment? 

Cognitive changes can occur early in the disease, even before physical symptoms onset 

(Feldman et al., 2022; Pender et al., 2020). Most patients have stable cognitive performances 

but around one-third of ALS patients (n=146; n=19) showed a cognitive decline in 

neuropsychological evaluations 6 months after baseline assessment (Bersano et al., 2020; K. 

M. Robinson et al., 2006).  

However, no actual consensus was reached on cognitive progressions in ALS patients. A recent 

meta-analysis study observed that only 5 out of 13 longitudinal studies detected cognitive 

decline (Finsel et al., 2022). The evolution of cognitive impairment possibly only happens in 

subgroups of patients. Worsening behavioural symptoms, for example, are commonly reported 

by caregivers of ALSbi patients (Bersano et al., 2020; Burkhardt et al., 2017).  

Neuroimaging or pathophysiological markers of cognitive impairment could bring additional 

information and help entangle the debate around cognitive decline.  

4. Potential biomarkers of cognitive impairment in ALS  

Biomarkers of cognitive impairment in ALS would improve disease management, clinical care 

and prognostication. Such biomarkers could also benefit clinical trials by facilitating 

participant categorisation and by ameliorating the detection of potential treatment effects.  

4.1. Fluid biomarkers 

Cerebrospinal fluid (CSF) and plasma neurofilaments efficiently differentiate between ALS 

patients and healthy controls (Benatar et al., 2016). As a consequence of neuroaxonal damage, 

elevated neurofilament light chain (NFL) levels are observed in the CSF and blood of patients 

with neurodegenerative diseases such as ALS, FTD, or Alzheimer’s disease (Forgrave et al., 

2019; Olsson et al., 2019; Taga & Maragakis, 2018). Concentrations of CSF NFL were 

associated with cognitive impairment in Alzheimer’s disease and FTD, although not in MND 

(Olsson et al., 2019).  

Glial fibrillary acidic protein (GFAP), which is found in astrocytes, is another potential 

biomarker of cognitive impairment in ALS. Elevated levels of GFAP in the cerebrospinal fluid 

(CSF) or serum have been associated with cognitive impairment in ALS patients (Falzone et 

al., 2022). GFAP is a cytoskeletal protein and its elevation in the CSF is thought to reflect 

astrogliosis. This process is hypothesised to become activated as a response to the degeneration 

of neurons in ALS. However, GFAP is not specific to ALS and its elevation can also be found 
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in other neurodegenerative disorders like FTD (Falzone et al., 2022). The lack of specificity 

and the invasiveness of CSF procedures limit the potential of these biomarkers.  

Similarly, lower levels of uric acid (a waste product of the purine metabolism) have been 

observed in ALS patients and other neurodegenerative diseases (Benatar et al., 2016; Taga & 

Maragakis, 2018). Uric acid has been extensively studied for its antioxidative properties. 

Emerging results are associating levels of uric acid in serum with cognitive impairment (Tang 

et al., 2021). Since oxidative stress is thought to participate in ALS neurodegeneration, uric 

acid represents a prime target for potential therapies. However, the lack of specificity or 

efficient distinction between ALS subphenotypes still represents an obstacle to its use as a 

biomarker.  

Wong et al. recently suggested that the p75 neurotrophin receptor (p75NTR) may play a role 

in the development of cognitive impairment in ALS, as it is involved in the regulation of nerve 

cells and as higher levels of p75NTR have been reported in patients with mild cognitive 

impairment (Longo et al., 2008; Wong et al., 2022). Nevertheless, even though p75NTR levels 

are associated with motor symptoms in ALS (Benatar et al., 2016; Taga & Maragakis, 2018), 

its role in the development of cognitive impairment in ALS remains obscure. 

4.2. Neuroimaging biomarkers 

Neuroimaging techniques, such as magnetic resonance imaging (MRI), can be used to detect 

changes in brain structure and function in patients, which subsequently can be used to identify 

cognitive impairment in ALS.  

Structural MRI (sMRI) can be used to detect changes in brain structure, such as changes in 

grey matter volume (voxel-based morphometry) and cortical thickness (structural-based 

morphometry). sMRI changes in ALS-FTD patients and/or patients with more subtle cognitive 

impairments usually include atrophy of specific extracortical regions, such as the 

frontotemporal area (Agosta et al., 2016; De Marchi et al., 2021; Senda et al., 2011). These 

regions are important for cognitive function, including memory, language, and executive 

function. In addition, longitudinal progression of the frontotemporal atrophy was shown 

(Menke et al., 2018; Trojsi et al., undefined/ed). 

Diffusion tensor imaging (DTI) is often used in combination with structural MRI. This method 

is used to assess the integrity of white matter pathways in the brain through the measure of 

water molecules diffusion. Cross-sectional studies have observed widespread white matter 

alterations, in non-motor areas like the prefrontal cortex, in behaviourally and cognitively 

impaired ALS patients (Benatar et al., 2016; De Marchi et al., 2021; Illán-Gala et al., 2020). 
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Diffusivity changes paralleled cognitive and behavioural symptoms (Benatar et al., 2016; 

Femiano et al., 2018). Longitudinal progressions of such white matter abnormalities were also 

shown but are more divergent between studies (Burgh et al., 2020; Menke et al., 2018; Trojsi 

et al., undefined/ed). Although a DTI-based sequential cognitive staging was proposed (Lulé 

et al., 2018), more research is required to test the sensitivity and replicability of the above 

findings. 

By measuring blood flow to different brain regions, functional MRI (fMRI) can evaluate 

alterations in functional connectivity between brain regions. Basaia et al. linked functional 

changes in frontal and temporal lobes respectively to behavioural and fluency impairments in 

individuals with ALS (Basaia et al., 2020; De Marchi et al., 2021). Another study detected 

different patterns of functional changes in cognitively impaired versus non-cognitively 

impaired ALS patients in inferior parietal and cerebellar regions. The cerebellar region, in 

particular, was associated with cognitive symptoms (De Marchi et al., 2021; Hu et al., 2020).  

An increase in functional connectivity over time was reported in the frontal lobe (frontostriatal 

network), which relates to declines in attention and fluency (Castelnovo et al., 2020).  

Positron emission tomography (PET) imaging can detect changes in glucose metabolism 

(which indicates changes in nerve cell activity) or in cerebral blood flow.  

Changes in metabolism were observed in extra-motor regions in ALS (Lloyd et al., 2000; 

Rajagopalan & Pioro, 2019) and more specifically, changes in cerebral blood flow in frontal 

and subcortical regions have been linked with fluency impairment (Abrahams et al., 1995; Kew 

et al., 1993). Nonetheless, while fluorodeoxyglucose PET is recommended for clinical 

diagnosis in some neurodegenerative diseases and dementias, its use was not supported for 

ALS or ALS-related cognitive impairment at the 2018 European Association of Nuclear 

Medicine panel (Nobili et al., 2018).  

 

5. Advantages of electrophysiological biomarkers  

Electrophysiological measures have advantages compared to other neuroimaging methods in 

quantifying network disruptions in ALS.  

5.1. Easiness of recordings 

EEG recordings have limited costs (maintenance and purchase) compared to other 

neuroimaging methods like (f)MRI, positron emission tomography (PET) or 

magnetoencephalography (MEG) (Baillet, 2017; DellaBadia Jr et al., 2002; Illman et al., 2020). 
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Besides, the level of expertise required is inferior for EEG recordings. Including more 

participants and a greater number of follow-up sessions is simpler in EEG research studies. 

5.2. Participants’ comfort 

The current project focuses on surface EEG, which is non-invasive. Electrodes are only put in 

contact with the scalp. The participant's comfort is therefore increased, and the risk of infection 

is inexistent. 

The sitting position maintained by participants during the EEG recordings is easier for ALS 

patients with respiratory issues and bulbar symptoms. Often neuroimaging methods involving 

scanners like MRI or PET require the participants to lie down and remain still for an extended 

period of time.  

5.3. Quality of the recordings 

Moreover, electrophysiological recordings allow for direct measurement of neuronal activity, 

as opposed to indirect metabolic neuroimaging methods (Menon & Crottaz‐Herbette, 2005). 

Brain metabolism is impacted by healthy ageing or metabolic syndrome, which could bias the 

interpretation of functional connectivity changes caused by neurodegeneration (Kotkowski et 

al., 2022; Mertens et al., 2022). EEG records potential changes on the scalp that result from 

voltage-gated ionic conductances causing post-synaptic potentials in cortical pyramidal 

neurons (Kirschstein & Köhling, 2009).  

As a consequence of the direct measure, EEG has an excellent temporal resolution. In this 

project, signals are recorded at 512Hz, while fMRI or PET imaging methods have temporal 

resolutions in the order of seconds and tens of seconds (Glover, 2011; G. Wang, 2019).  

EEG or MEG spatial resolution is inferior to fMRI and PET neuroimaging resolutions. The 

resolution of PET and fMRI are generally between three to ten mm, although it can reach 0.5 

mm with high field magnets (Glover, 2011). EEG/MEG resolution is usually in the order of 

10-20 mm. Nonetheless, high-density EEG coupled with structural MRI and new source 

localisation techniques improves highly the spatial resolution (Al-Chalabi et al., 2016; Glover, 

2011; Michel & Brunet, 2019).  

 

6. Existing electrophysiological markers of cognitive or non-motor network 

dysfunction in ALS 

6.1. TMS 

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that 

has been used to evaluate the function of the cerebral cortex.  
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Agarwal and colleagues used TMS to investigate the relationship between cortical excitability 

and cognitive/behavioural impairment in ALS. The study found that resting-state motor 

threshold (RMT, threshold to obtain a motor evoked potential) was predictive of cognition 

impairment (assessed by Addenbrooke’s Cognitive Examination scores) (Agarwal et al., 2018). 

Lower RMT and reduced short-interval intracortical inhibition (SICI) reflect cortical 

hyperexcitability and are characteristic of ALS and FTD diseases (Agarwal et al., 2021; De 

Marchi et al., 2021; Vucic & Kiernan, 2017). RMT has even been shown to differentiate 

between ALS-FTD and ALS cohorts (Agarwal et al., 2021), while reduced SICI was associated 

with executive dysfunction (assessed by ECAS scores) (Higashihara et al., 2021).  

6.2. MEG   

Magnetoencephalography (MEG) is an additional non-invasive neuroimaging technique that 

can measure the magnetic fields produced by the electrical activity of neurons in the brain.  

MEG responses to an MMN paradigm were observed to be altered in ALS patients with severe 

bulbar symptoms, suggesting impaired auditory and/or memory processing (Pekkonen et al., 

2004). A widespread increase in functional connectivity was also detected at rest, implying 

extra-motor network impairment (Proudfoot et al., 2019). 

Despite the potential of MEG to provide valuable insights, results are limited probably due to 

the cost and limited resolution of deep brain regions. 

6.3. EEG 

High-density (HD) resting-state EEG allowed for the detection of connectivity changes in 

extra-motor regions, at sensor level, that persisted along the progression of the disease 

(Nasseroleslami et al., 2019). At source-level, co-modulation of γ-band oscillating signals 

within the frontotemporal lobe correlated with language impairment (Dukic et al., 2019).  

Furthermore, task-based EEG paradigms provided quantitative measures of network 

disruptions which correlated with clinical measures of cognitive impairment.  

Mismatch negativity (MMN) is an event-related potential (ERP) generated by an oddball 

sound. In ALS cohorts, an average delay in peak time was observed, which correlated with 

executive dysfunction measured by the Stroop task (Iyer et al., 2017). Source reconstructed 

MMN responses showed increased power in the left middle/superior frontal gyri and posterior 

parietal cortex, which correlated with cognitive flexibility and verbal inhibition impairment 

(measured by the Color-Word Interference Test of the Stroop task) (McMackin, Dukic, et al., 

2019). Besides, a longitudinal MMN HD-EEG study noticed a progressive increase in spectral 

power in fronto-temporal regions (right inferior frontal gyrus and bilateral superior temporal 
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gyri) in ALS and interpreted it as ‘cognitive network hyperactivation’ (McMackin, Dukic, 

Costello, Pinto-Grau, McManus, et al., 2021).  

Sustained attention to response task (SART) generated left posterior parietal and insular 

increased spectral power in the ALS group compared to the healthy-control group at P3 

component of the ERP (positive ERP peak of voltage between 300-500ms after stimulus). In 

particular, the spectral power in the right precuneus (P3 NoGo versus Go) negatively correlated 

to behavioural inhibition, which may be representative of compensation (McMackin et al., 

2020). 

 

Electroencephalography is a direct measurement of the neuro-electric activity of the brain and 

has the potential to distinguish between cohorts with amyotrophic lateral sclerosis (ALS) and 

healthy controls (HC) (Dukic et al., 2019; Iyer et al., 2017; McMackin, Dukic, et al., 2019; 

McMackin et al., 2020; McMackin, Dukic, Costello, Pinto-Grau, McManus, et al., 2021; 

Nasseroleslami et al., 2019). Although previous studies have investigated network 

abnormalities in both the sensor- and source-space domains of ALS patients, the temporal 

dynamics of these atypical EEG measures are not yet well understood. 

 

7. Potential of microstates analysis to characterise cognitive network alterations  

7.1. Microstate history and definition  

Electroencephalography measures the electrical activity originating from voltage-gated ionic 

conductances, which are only noticeable at the scalp level when there is simultaneous post-

synaptic spiking of neurons with similar orientations. As the distance from the brain source 

increases, the recorded voltage decreases, meaning that EEG primarily captures cortical 

activity. One scalp electrode records activity from different brain sources (close by and remote) 

and a specific brain source simultaneously ‘projects’ to different scalp electrodes.   

Considerable time and effort have been dedicated to solving the inverse problem of localising 

neuronal sources that are responsible for observed scalp topographies. However, comparatively 

less attention has been given to investigating the temporal dynamics of these signals (Michel 

& Koenig, 2018). 

Along the time of the recordings, maps of scalp potentials (topoplots) can be extracted. While 

the succession of topoplots may intuitively look spontaneous and unorganised, Lehmann et al. 

detected a few transient, recurrent topographies which they called ‘micro-states’ (Lehmann et 

al., 1987). Their analysis was built upon the idea that brain activity can be segmented into 
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distinct and specific patterns. Through microstate analysis, patterns of brain activity can be 

identified and then time point topographies can be assigned to different clusters of microstates. 

These periods of stable topographies are believed to represent the synchronized activity of 

neural components that make up a functional network (Michel & Koenig, 2018). Changes in 

microstate parameters such as occurrence or duration are thought to reflect changes in the 

temporal dynamics of these brain networks, rather than changes in the functional connections 

between networks (Gschwind et al., 2016). 

7.2. Modulation of microstate characteristics by neurological and psychiatric 

conditions 

The microstates’ topographies remain stable across participants and conditions. However, 

altered microstate temporal dynamics have been found in participants with neurological and 

psychiatric conditions (Al Zoubi et al., 2019; Michel & Koenig, 2018).  

Schizophrenia is one of the most studied pathologies using the EEG microstate methodology 

(Koenig et al., 1999; Lehmann et al., 2005; Michel & Koenig, 2018; Nishida et al., 2013). 

Medium-size effects were observed, arguing in favour of cognitive episodes that are detected 

by the microstate approach and relevant in psychiatry (Michel & Koenig, 2018). The suitability 

of the microstate methodology was even investigated as a measure of schizophrenia treatment 

efficiency.  

In addition, alterations in the characteristics and the temporal dependencies of microstates were 

detected in anxiety and mood disorders (Al Zoubi et al., 2019) and post-traumatic stress 

disorder (Terpou et al., 2022). Frontotemporal dementia and Alzheimer’s disease were also 

observed to cause abnormalities in microstate patterns (Nishida et al., 2013).  

In multiple sclerosis and Huntington's disease, changes in microstates have been correlated 

with depression, cognitive fatigue scores, and cognitive performance (Faber et al., 2021; 

Gschwind et al., 2016). Furthermore, recent research has suggested that resting-state EEG 

microstates could serve as a biomarker for Parkinson's disease (Pal et al., 2021). 

Together, these findings suggest that resting-state EEG microstates have the potential to be 

used as a marker of cognitive impairment in various neurological and psychiatric conditions, 

including ALS.
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II. Literature review  

To advance the development of new treatments for ALS, reliable biomarkers are crucial for 

evaluating disease progression and treatment effectiveness (Benatar et al., 2016; Bowser et al., 

2011). While motor symptoms have been extensively studied in ALS, less attention has been 

given to extra-motor or cognitive network dysfunction. EEG, a widely used tool in cognitive 

neuroscience research, has shown promise as a potential biomarker for neurological and 

psychiatric conditions such as schizophrenia (Javitt et al., 2020), major depression (Olbrich & 

Arns, 2013), and Alzheimer's disease (Poil et al., 2013).  

Here, we provide an overview of current approaches for analysing EEG data to track cognitive 

network dysfunction. We explore the potential of emerging EEG measuring tools to 

complement structural and functional imaging in analysing cognitive impairment. We also 

highlight the need for further validation of these approaches to support the development of new 

treatments in ALS. 

1. Existing EEG observations of extra-motor brain network impairment in ALS 

Recorded scalp EEG reflects the summed synchronous postsynaptic potential of cortical 

pyramidal neurons with similar orientation (Teplan, 2002). Pyramidal neurons from the cortex 

are involved in cognitive processes and hypothesised to majorly be the source of EEG signals 

due to their location and orientation (perpendicular to the surface). The difference of electrical 

potential between the body of neuron (soma) and the apical dendrites cause the equivalent of 

an electrical dipole (Teplan, 2002).   

1.1. Event-locked EEG  

The use of EEG in ALS includes resting-state (also called continuous) and task- or stimulus-

based recordings. In event-related EEG, event-related potentials (ERPs) provide insights into 

the time-locked response to specific stimuli, while induced oscillatory responses offer 

information about the modulation of ongoing oscillatory activity by cognitive processes, 

without strict temporal alignment to stimuli onset. 
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1.1.1. Time-domain – delays in ERP components in ALS 

Traditionally, EEG research based on sensorimotor or cognitive tasks analyses event-related 

potentials (ERPs), which represent voltage changes caused by an evoked neural event (initiated 

by a stimulus). Several neurophysiological biomarkers candidate for cognitive impairment 

could be suggested based on ERP components (Raggi et al., 2010).   

Notably, (active) auditory oddball paradigms elicited longer P300 (positive peak around 300ms 

after stimulus) latency in individuals with ALS (Gil et al., 1995; Hanagasi et al., 2002; Ogawa 

et al., 2009; Paulus et al., 2002). This ERP component is often used as an index of cognitive 

processing speed. Delays in P300 correlate with speed-associated neuropsychological scores 

and have been associated with dementia (Polich, 2007).  

Increased delays and reduced amplitude were observed in mismatch negativity (MMN) or N2a 

(negative peak around 200ms after stimulus) following passive auditory oddball paradigm 

(Iyer et al., 2017; Raggi et al., 2008). Reduced amplitude of Processing Negativity (PN) peak 

(around 50ms and 500ms after stimulus) was also noted in ALS cohort in a selective attention 

task (Vieregge et al., 1999).    

A two-phases visual memory task evoked closed to no difference in N400 peaks between new 

and old items presented to individuals with ALS, while differences were present in healthy-

controls (Münte et al., 1998). Such difference suggested the presence of impaired memory 

processes in ALS.   

Few longitudinal studies of time-domain ERPs have been published, although the stability of 

P300 properties over time in ALS has been evaluated through the lens of Brain-Computer 

Interaction (BCI). P300 latency increases over the progression of the disease and as it correlates 

negatively with BCI performance, it needs to be accounted for (Zisk et al., 2022).  

1.1.2. Quantitative EEG: analysis in Frequency-domain  

In addition to the ERP properties of the signal, oscillations properties are assessed by 

transforming the time-domain signals into frequency-domain using Fourier transform or 

Wavelet analysis.  Typically, the signals are examined in specific frequency-bands of 

oscillation ranging from 1 to 100 Hz. These frequency-bands include δ (1-4 Hz), θ (5-7 Hz), α 

(8-13 Hz), β (14-30Hz), and γ (31-100Hz).  

To further understand the neural mechanisms of cognitive impairment in ALS, researchers may 

evaluate how cognitive stimuli affect oscillatory activity in the frequency-domain. This is 
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known as event-related spectral dynamics. For example, a decrease in β-band event-related 

desynchronization (ERD) in scalp parietal and pre-frontal areas was observed in individuals 

with ALS during a sustained attention to response task (SART). Furthermore, β-band event-

related synchronization (ERS) was associated with ECAS ALS-specific scores, which is a 

cognitive and behavioural screen designed for ALS patients (McMackin, Dukic, Costello, 

Pinto-Grau, Keenan, et al., 2021). These findings provide insights into how ALS affects neural 

processes underlying cognition and behaviour. 

1.1.3. High density EEG - Source localisation  

Since the 1920s when EEG was first used on the human brain, it has been widely used in 

research and clinical settings to study brain function and diagnose neurological and psychiatric 

disorders. While it fell out of favour with the development of other imaging techniques, like 

fMRI, recent technological advancements have made it a valuable tool once again due to 

improved spatial resolution (Michel & Brunet, 2019). Increased signal-to-noise ratio offers 

opportunity for source analysis, which can estimate the location of the brain networks 

producing ERP abnormalities. Specifically, high-density EEG refers to the use of EEG 

recordings with a larger number of electrodes placed on the scalp (usually 64 and more) 

compared to traditional EEG. The increased number of electrodes can provide more spatially 

accurate information about the location and intensity of electrical activity in the brain. Source 

analysis can detect abnormalities not picked up at sensor-level and provide complementary 

information on disrupted pathways. 

In particular, people with ALS who underwent SART testing showed increased spectral power 

in the left inferior parietal lobule and insular cortex during the elicitation of P300 components. 

Additionally, spectral power in the right precuneus during P300 was related to Color-Word 

Interference Test (CWIT) inhibition scores in ALS. The SART electrophysiological measures 

were linked to specific executive function impairments, and the changes observed in ALS 

patients were localized to specific frontal and parietal brain structures (McMackin et al., 2020).  

During MMN testing, individuals with ALS displayed an augmentation of power in the left 

posterior parietal, central, and dorsolateral prefrontal cortices, which was associated with 

reduced cognitive flexibility (McMackin, Dukic, et al., 2019). Indeed, MMN occurs when a 

stimulus deviates from an expected pattern, reflecting the brain's ability to detect and process 
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changes in the environment. ALS patients also exhibited a decrease in spectral power in the 

inferior frontal and left superior temporal gyri (McMackin, Dukic, et al., 2019). 

Task-based EEG has demonstrated its ability to effectively detect cognitive network 

dysfunction in individuals with ALS. This approach specifically focuses on capturing neural 

responses that are time-locked to specific events. However, it should be acknowledged that 

task-based EEG usually requires active engagement and effort from participants to complete 

specific cognitive, sensory or motor tasks, which can pose challenges to participants with ALS. 

The motor and speech disabilities associated with ALS may significantly impact the execution 

of specific actions required in task-based studies. 

 

1.2. Resting-state findings in ALS – motor and extra-motor involvement 

Unlike task-based EEG, resting-state EEG captures spontaneous brain activity during a relaxed 

state. Resting-state EEG offers several advantages over task-based EEG, particularly in the 

context of cognitive impairment in ALS, which has been associated with attrition rate. 

Participants with executive dysfunction showed a higher likelihood of dropout after 6 months 

(Elamin et al., 2013).  Resting-state EEG is more accessible and less burdensome for 

participants, especially those with severe motor or communication impairments such as the 

locked-in syndrome (Maruyama et al., 2021; Secco et al., 2020). By eliminating the need for 

participants to perform specific actions or respond to sensory stimulation, resting-state EEG 

reduces the potential bias introduced by speech or motor disabilities.  

One notable advantage is that resting-state EEG provides a more comprehensive and general 

overview of brain functioning. Task-based studies focus on examining targeted neural 

responses. Consequently, any spontaneous activity that occurs outside of the time period of 

interest is usually disregarded as background noise. Resting-state approach allows for a broader 

assessment of brain connectivity and neural interactions, potentially revealing underlying 

patterns or abnormalities that might be missed in task-based studies (J. Wang et al., 2013).  

Resting state experiments pose challenges in controlling subject behaviour compared to task-

related activity. Even with similar instructions, the subjective experience and thoughts of 

subjects vary greatly. This variability in cognitive state and experiences could potentially 

confound the results. However, controlling spontaneous thoughts might not be necessary, as 

random episodic spontaneous thoughts activate similar brain regions as resting state networks 
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(van Diessen et al., 2015). Despite the inherent heterogeneity in resting state experiments, there 

is evidence of consistent activation patterns in resting state networks among healthy 

individuals across various studies, suggesting a limited influence of external factors.  

While longer recordings have been found to enhance the stability of resting state networks, it 

is important to consider the risk of subject drowsiness, especially in the context of ALS 

symptoms that can cause fatigue. Therefore, the significance of conducting shorter resting-

state recordings becomes particularly relevant. It is worth noting that stability of EEG 

functional networks has been observed to emerge in as little as 100 seconds, emphasizing the 

potential feasibility of shorter recordings in capturing meaningful resting-state dynamics (C. J. 

Chu et al., 2012). Resting-state functional networks have been reliably identified using various 

neuroimaging techniques such as fMRI, fMRI-EEG, MEG, or ECoG, highlighting the validity 

and effectiveness of studying resting-state activity (Brookes et al., 2011; Damoiseaux et al., 

2006; Mantini et al., 2007, 2007; Miller et al., 2009; Smitha et al., 2017). 

The simplicity and wide range of application of resting-state EEG makes it a promising method 

for translating findings to clinical settings. 

1.2.1. RS – sensor space: the advantage of functional connectivity to quantify impairment 

in ALS  

Resting-state results were initially observed in sensor-space before transitioning to source-

space analyses. A study from 1998 showed a decrease in α-band power in the central scalp 

areas during rest (Mai et al., 1998). A widespread increase in 𝛾-band power was observed 

beyond central areas, in addition to a decrease in 𝛼- and 𝜃-band over the central areas (Jayaram 

et al., 2015). More recently, resting-state EEG recordings have also revealed a decrease in θ-

band spectral power, centred over the scalp motor areas, which persisted over the progression 

of the disease (Nasseroleslami et al., 2019).  

In advanced stages of ALS, individuals with complete locked-in syndrome (CLIS) exhibited 

decreased spectral power in the α, β, and γ frequency bands specifically in the fronto/central 

brain regions, when compared to healthy controls (Maruyama et al., 2021). The absence of 

motor activity may contribute to the observed decline in high-frequency brain activity but it 

was also hypothesized that this difference could be attributed to reduced "central arousal" or 

vigilance. Furthermore, the authors also drew parallels with Alzheimer's disease, proposing a 

potential connection between the decrease in high-frequency power and cognitive impairment. 
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Subsequent studies explored the connectivity among different brain regions by examining 

signal coherence, as a representation of cortical function. ALS patients have exhibited an 

increase in θ-band connectivity between scalp central areas, as well as an increase in 

connectivity between γ-band signals from the frontal and parietal scalp areas (Iyer et al., 2015; 

Nasseroleslami et al., 2019). Connectivity changes appeared more salient than the observed 

changes in spectral power and  persisted over the course of 16 months (Nasseroleslami et al., 

2019). These findings offer valuable insights into the neural changes associated with ALS, as 

they demonstrate persistent network changes not only in the motor or central areas, which are 

the focal points of structural changes in ALS, but also in the frontal areas, which are more 

closely associated with cognitive functions.  

1.2.2. RS- source space: Changes in co-modulation with frontal lobe signals associated 

with executive function and language impairment 

Intrinsic properties of the oscillatory signals, such as spectral power, coherence, and 

synchrony, have been linked to neurological disorders. By examining changes in spectral 

power and connectivity, researchers can gain insights into the underlying neural processes that 

are affected by ALS. In source-space, a reduction in β-band spectral power and synchrony was 

detected within the sensorimotor network in individuals with ALS (n=74). This decline in β-

band synchrony within the motor network was found to be linked to structural changes 

observed through MRI scans as well as motor impairment (Dukic et al., 2019). It is worth 

noting that β-band EEG signals are typically associated with the planning and execution of 

motor tasks, but their synchrony across the motor cortex appears to be altered in resting-state 

conditions as well. 

Alterations in co-modulation (or Amplitude Envelope Correlation, AEC) were observed within 

the fronto-parietal network (θ-band) and the fronto-temporal network (𝛾 -band), and these 

changes were respectively associated with executive and language composite scores (Dukic et 

al., 2019). Another study (𝑛  = 21) detected decreased 𝛼-band AEC in motor, frontal and 

temporal brain regions (Fraschini et al., 2018). However, the evolution of these findings 

throughout the progression of the disease still necessitates further investigation. 

1.2.3. Limitations of current RS EEG candidate biomarkers of cognitive impairment in ALS 

As mentioned above, RS EEG present advantages over event-related EEG. Current RS EEG 

biomarker candidates for cognitive impairment in ALS show good discriminatory power, with 
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AUROC of up to 0.73 (Dukic et al., 2019; Nasseroleslami et al., 2019).Cognitive and 

behavioural impairment in ALS can evolve over time but existing candidate biomarkers based 

on spectral measures have not been evaluated longitudinally. Biomarkers that track disease 

progression and cognitive decline longitudinally are needed for comprehensive disease 

monitoring and management. Additionally, a RS EEG measure of functional connectivity 

(AEC) have been associated with ECAS executive and language subscores (Dukic et al., 2019) 

but new EEG biomarker candidates have the potential to cover additional domains of cognitive 

and behavioural impairment. This is particularly pertinent given the potential of dynamical 

analysis to identify other abnormalities of neural processes related to neurological or 

psychiatric conditions (Michel & Koenig, 2018; Tarailis et al., 2023).  

Few studies evaluating the potential of new EEG biomarkers in ALS included sensitivity and 

specificity analyses. For instance, the β-band clustering coefficient of partial directed 

connectivity in nodal analysis demonstrated a sensitivity of 58% and specificity of 100% (Iyer 

et al., 2015). This highlights the importance of, not only finding new biomarker candidates per 

se, but also for multi-modal or integrative biomarkers, as demonstrated in other 

neurodegenerative diseases with cognitive impairment.  For example, a study on the prediction 

of progression to Alzheimer's disease from mild cognitive impairment showed improved 

performance by integrating six EEG biomarkers (sensitivity of 88% and specificity of 82%), 

compared to the best individual biomarker (Poil et al., 2013). Similarly, another study 

combining 25 resting-state EEG features achieved flawless classification of 61 patients with 

probable Alzheimer’s disease, Parkinson’s disease dementia, dementia with Lewy bodies, and 

FTD-bv (Garn et al., 2017). 

 

2. Potential of resting-state EEG dynamic analyses to evaluate cognitive network 

dysfunction in ALS 

High-density EEG has emerged as a robust tool that offers spatio-temporal information 

regarding functional brain networks. While specific brain regions or networks have been 

associated with cognition, dynamic interactions in large-scale brain networks are also essential 

to cognitive processes and overall brain coordination (Bressler & Menon, 2010; Stam, 2005).      
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2.1. EEG microstates – sensor space 

The utilisation of microstate EEG, as an additional approach, offers valuable complementary 

insights to functional connectivity. An increasing number of studies have demonstrated the 

sensitivity of microstate properties to neurological and psychiatric disorders, particularly those 

associated with disturbances in cognitive and behavioural processes (Al Zoubi et al., 2019; 

Dierks et al., 1997; Nishida et al., 2013; Tarailis et al., 2023; Terpou et al., 2022). 

2.1.1. Transient, quasi-stable and recurring states of the brain 

Microstates correspond to quasi-stable and recurring configurations of scalp electric fields that 

persist for a duration of a few tens of milliseconds. The concept of microstate originated from 

the initial observation that, within the EEG time series, the electrode positions of maximal and 

minimal potentials remain stable before swiftly transitioning to new positions that remain 

stable again (Lehmann et al., 1987). Polarity inversions (shift in the signs of the extrema) are 

observed during the stable periods as they follow the oscillations of the EEG signal. 

Oscillations of the same brain sources would cause an inversion of the polarity of the scalp 

electric field (Michel & Koenig, 2018). The absence of stable microstates in white noise with 

a Gaussian distribution (spatially unstructured data) or in time-shuffled EEG (temporally 

unstructured data) supports the notion that stable microstates are an intrinsic property of EEG 

signals and not the result of the specific processing methodology employed (Wackermann et 

al., 1993).    

Statistically grouping EEG topographies with high spatial similarity, rather than considering 

extrema positions alone, allows for the identification of representative topographies that best 

represent the variance in the timeseries in a global approach (Pascual-Marqui et al., 1995). 

Through clustering, researchers have consistently identified four to seven distinct classes of 

microstates across different participants and conditions, which account for 66% to 88% of the 

overall variance in the EEG signal (Tarailis et al., 2023). Each microstate class is postulated to 

represent a fundamental "building block" of the spontaneous thought process (Lehmann et al., 

1998). The original EEG timeseries can be decomposed into non-overlapping segments of the 

identified microstate classes (Michel & Koenig, 2018). Considering that functional states are 

believed to involve widespread brain activity, it is crucial to regard the scalp field as a whole. 

The reappearance of the same field configuration might arise from the involvement of identical 

neural sources, thereby reflecting the activation of the same functional network. 
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2.1.2. Neurophysiological basis of EEG microstates and their transitions 

The mechanisms driving microstates and their transitions are complex and not fully 

understood, but several hypotheses have been proposed. Microstates are believed to reflect 

synchronized activity among large-scale neuronal networks. Synchronized firing of neurons 

within these networks generates macroscopic electrical fields that can be detected by EEG. 

Specifically, microstates are hypothesised to be generated by spatially distinct sources 

associated by phase synchrony (Seeber & Michel, 2021). Additionally, variations in cortical 

excitability, influenced by neurotransmitter levels such as noradrenaline, acetylcholine, 

dopamine, serotonin, or neuropeptides, may impact microstate dynamics. For example, 

oxytocin was demonstrated to impact microstate variations, especially their durations (Schiller 

et al., 2019). Thalamocortical networks have also been implicated in generating and 

modulating synchronized neural oscillations detected by EEG (Lopes da Silva, 2013), with 

observations of associations between microstates and thalamic nuclei reported in fMRI-EEG 

studies (Michel & Koenig, 2018; Schwab et al., 2015). Microstates were hypothesised to 

correspond to different states of thalamocortical network activity, with transitions between 

microstates reflecting shifts in the functional connectivity within these networks, potentially 

including cortico-cortical networks as well.  

Although the exact mechanisms driving microstate transitions are unclear, studies have shown 

that transition probabilities are non-random, except in the case of Alzheimer’s disease, which 

introduces randomness (Nishida et al., 2013). Regarding the timescale correspondence 

between EEG microstates (approximately 80ms) and fMRI (5-10s), research by Van der Ville 

et al. revealed a scale-free or 'fractal structure' of microstate dynamics, along with long-range 

dependencies dependent on microstate temporal characteristics (Gschwind et al., 2015; Ville 

et al., 2010). However, this scale-free characterisation and long-range dependencies were later 

discussed and a limit to the memory range (<1s) was suggested, considering the decay of the 

autoinformation function of the sequence of microstates (von Wegner et al., 2017).  

The discrete nature of microstates has also been debated, with suggestions of a more 

continuous process (Mishra et al., 2020). While the dominance of a microstate over a specific 

duration is acknowledged, the microstate transitions and their underlying biomechanisms are 

proposed to follow continuous trajectories. 
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Overall, microstate dynamics likely arise from the interplay of multiple neurophysiological 

mechanisms, including neuronal synchronization, thalamocortical interactions, cortical 

excitability, neuromodulation, and others. Further research is needed to elucidate the specific 

contributions of these mechanisms to the generation and regulation of EEG microstates. 

 

2.1.3. Localisation of the brain sources generating microstates  

fMRI-EEG: multi-modal recordings 

To investigate the potential relationship between resting-state EEG microstates and fMRI 

resting-state networks (RSN), several studies have simultaneously recorded EEG and fMRI 

data (Abreu et al., 2021; Britz et al., 2010; Hunyadi et al., 2019; Musso et al., 2010a; Yuan et 

al., 2012). However, the differences in methodologies employed in these studies make direct 

comparisons challenging (Michel & Koenig, 2018). 

While most studies used a standard spatial clustering algorithm (Bréchet et al., 2019; Britz et 

al., 2010; Musso et al., 2010a), some studies employed ICA (Yuan et al., 2012) or HMM 

(Hunyadi et al., 2019) to identify these brain states. Moreover, the number of EEG microstates 

identified varied across studies, ranging from 4 to 16. In one study by Britz et al. (n= 9), the 

four canonical microstates were associated with auditory, visual, salience, and attention 

networks by convolving the microstate time courses with the hemodynamic response function 

and comparing them with fMRI ICA components (Britz et al., 2010).  

The one-to-one correspondence between microstates and resting-states networks has however 

been questioned. Two studies (n=24, n=9) associated microstates maps with a combination of 

fMRI resting-state networks and vice-versa, which appears to more accurately represent the 

dynamics of brain states (Hunyadi et al., 2019; Yuan et al., 2012).   

EEG microstates have consistently demonstrated a relationship with fMRI resting-state 

networks. The lack of a one-to-one association may be attributed to the disparity in temporal 

resolution between fMRI and EEG. In order to preserve the temporal resolution of EEG, 

several studies have employed EEG-based source localization methods to estimate the brain 

sources of the microstates (Michel & Koenig, 2018). These source estimations rely on a linear 

inverse solution applied directly to the EEG signals.  



 

41 
 

EEG sources reconstruction, the inverse problem 

For instance, Bréchet et al., (n=15) extracted 6 microstates from task-initiated EEG data using 

standard spatial clustering and subsequently estimated the sources of each microstate using 

LAURA linear distributed inverse solution. They detected fMRI connectivity networks using 

fractional amplitude of low frequency fluctuations (fALFF) in consecutive fMRI recordings 

and reported anatomical overlap between fMRI connectivity networks and EEG microstates 

sources (Bréchet et al., 2019). Other studies independently analysed EEG recordings without 

association with fMRI data (Bagdasarov et al., 2022; Bréchet et al., 2020; Custo et al., 2017; 

Liu et al., 2021; Milz et al., 2017; Pascual-Marqui et al., 2014). Initially, Pascual-Marqui et al. 

applied eLORETA to estimate the source localisation of each microstate. By averaging the 

activity across participants (n=109), they observed a significant spatial overlap among 

microstates. The same group observed that microstate topographies were mainly influenced by 

alpha-band activity (Milz et al., 2017). They postulated that microstate transitions might reflect 

inhibitory functions, given that alpha oscillations are known to reflect inhibitory control. 

Moreover, they suggested that a diverse set of brain regions, rather than specific ones, could 

generate the same microstate class, which poses challenges for source localization. Custo et al, 

similarly reported a substantial overlap among the sources of seven microstates, identified 

using a 2-steps GLM approach, which they referred to as ‘common hubs’ (Custo et al., 2017). 

The identified microstate-specific brain regions additionally overlapped with the fMRI-EEG 

results of Britz et al (Britz et al., 2010).   

More recent studies have explored the sources of microstates in various conditions, brain states, 

and during child development. In individuals with methamphetamine use disorder, the 

distribution of EEG power density during specific microstates is disrupted (Chen et al., 2020). 

For individuals with absence epilepsy, distinct microstate sources and parameters have been 

observed before and after seizures, suggesting a spatial and temporal recovery following the 

seizure (Liu et al., 2021). Bréchet et al. associated a particular class of microstates with the 

experience of dreams and investigated their source localization (Bréchet et al., 2020). 

Bagdasaro et al. observed changes in microstates C and D associated with age and sex in 

children aged 4-8. They identified the brain sources responsible for these microstates as 

partially located in the dorsal fronto-parietal network or dorsal attention network, and in the 

'midcingulo-insular' or salience network, respectively (Bagdasarov et al., 2022).     
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2.1.4. Microstates and cognitive impairment 

Functional interpretation of microstates 

Combining results from source localisation and paradigm studies, leads to possible 

interpretation of the functional network /significance of each ‘canonical’ microstate.  

Initially, microstate A was primarily associated with activation in the auditory network (Britz 

et al., 2010; Custo et al., 2017; Michel & Koenig, 2018). However, it has also been found to 

be linked to visual processing, particularly due to its higher coverage during visualisation 

rather than verbalisation tasks (Milz et al., 2016). In the recent systematic review by Tarailis 

et al, an association with the level of brain arousal or alertness was additionally suggested 

based on more recent findings (Tarailis et al., 2023).  

Microstate B has predominantly been associated with the visual network based on source 

localization and paradigm-based studies (Bréchet et al., 2019; Britz et al., 2010; Custo et al., 

2017; Michel & Koenig, 2018). Furthermore, an increased transition probability between 

microstate class B and microstate class C has been observed during an autobiographical 

memory task, possibly related to self-visualization (Bréchet et al., 2019).  

Microstate C topography tends to differ between studies and is sometimes reported as split 

between two different microstates with high spatial correlation, in studies with more than four 

microstate classes (Custo et al., 2017; Michel & Koenig, 2018; Tarailis et al., 2023). Britz et 

al, interpretated microstate C as originating from the salience network using combined EEG-

fMRI recordings (Britz et al., 2010). Source localisation studies observed a similar overlap 

with the DMN but rather related microstate C with self-reflection and internal mentation 

(Bréchet et al., 2019; Custo et al., 2017).         

The findings from studies investigating brain activity during microstates predominantly 

indicate an association between microstate D and the dorsal frontoparietal or dorsal attention 

network (Bréchet et al., 2019; Britz et al., 2010; Custo et al., 2017; Pascual-Marqui et al., 

2014). Notably, microstate D was found to be less prevalent during hypnosis (Katayama et al., 

2007) or during an undirected mentation, as applied in transcendental meditation (Faber et al., 

2017). These observations suggest that microstate D is associated with executive functioning, 

like attention reorientation. 

Although the specific brain regions generating microstates lack replicability, possibly due to 

methodological differences and temporal overlap, it seems evident that microstate classes A 
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especially and microstate B, in a lesser extent, are associated with more fundamental 

somatosensory functions, while classes C and D are linked to higher-order cognitive functions, 

as highlighted by Michel and Koenig (Michel & Koenig, 2018).  

Fluctuations in microstate properties in neurological and neuropsychological conditions 

To further establish the association of classes C and D with cognition, the influence of 

neuropsychiatric conditions like schizophrenia or frontotemporal dementia on the balance 

between microstate classes C and D has been observed (Nishida et al., 2013). Notably, a 

comprehensive meta-analysis spanning 15 years of research in schizophrenia revealed that 

microstate properties demonstrate larger effect sizes compared to spectral measures (Rieger et 

al., 2016). Although task-based averaged ERP analysis remains superior in identifying 

impaired brain processes in schizophrenia, microstate analysis offers distinct advantages when 

studying resting-state. Resting-state analysis are particularly relevant in specific cases, such as 

those affected by locked-in syndrome, while also enhancing our overall understanding of a 

condition.   

In bipolar disorder during the euthymic mental state, alterations in microstate class B properties 

have been observed, showing correlation with symptoms of dissociation and anxiety 

(Damborská et al., 2019; Vellante et al., 2020). However, the findings yielded contradictory 

results, with one study suggesting an increase in microstate B presence while the second 

indicates a decrease.      

In Alzheimer's disease, random patterns of microstate transitions have been observed, which 

do not occur in healthy controls (Nishida et al., 2013). There has also been a reported decrease 

in microstate stability (Dierks et al., 1997), and recently, a combination of EEG spectral 

measures and microstate complexity (new measure of transitioning between microstates) has 

enabled the classification of individuals with Alzheimer's disease versus healthy controls and 

the prediction of mild cognitive impairment progressing to Alzheimer's disease (Tait et al., 

2020). These findings suggest that EEG microstate analysis has the potential to become a 

functional biomarker for Alzheimer's disease. 

Similarly, microstate properties have been proposed as a biomarker for Parkinson's disease 

(Pal et al., 2021). The transition between microstate classes has been observed to correlate with 

cognitive impairment as assessed by the Mini-Mental State Examination (Hanoglu et al., 

2022), while the occurrence of microstate C and the duration of microstate B have been found 
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to correlate with cognitive decline as measured by the Montreal Cognitive Assessment (C. Chu 

et al., 2020) 

Microstates, which represent patterns of topographies, hold significant potential in tracking 

cognitive network dysfunction.  

2.2. Temporal patterns of spectral power and functional connectivity  

Resting-state EEG connectivity measures have demonstrated superior discrimination between 

individuals with ALS and those without, in comparison to time-domain measures (Dukic et al., 

2019). Consequently, investigating dynamical patterns of connectivity becomes particularly 

intriguing. Phase synchrony, a measure of functional connectivity, holds particular relevance 

as it is hypothesised to serve as a coordination and regulation mechanism for cognitive 

processes (Cohen, 2019). Studies have revealed its importance in cognitive functions such as 

working memory and attention tasks (Hinault et al., 2020; Varela et al., 2001). 

The spectrally-distinct episodes observed in resting-state recordings (Dukic et al., 2019; 

Nasseroleslami et al., 2019) serves as evidence that dynamic analysis of spectral power and 

connectivity measures can provide reliable domain-specific indicators of impairment in ALS. 

2.2.1. Microstates in time-frequency domain 

Brain microstates represent the concept of transient, yet repetitive occurrences of relatively 

stable topographies, associated with (one or more) brain sources. The Topographic Time-

Frequency Decomposition (TTFD) of EEG signal, proposed by Koenig et al., combines time-

domain topographies with time-frequency (TF) decomposition of the signal, using complex 

Gabor wavelets (Koenig et al., 2001). This is achieved by generating time-frequency planes, 

resulting in a topographical representation in the time-frequency domain. In a similar manner 

to microstate analysis, a clustering approach can be used to identify the most dominant time-

frequency topographies. 

This method has proven its efficacy in predicting fMRI dynamic functional connectivity (dFC) 

states more accurately than spectral power alone. Abreu et al. demonstrated that four time-

frequency microstates derived from TTFD outperformed spectral power in predicting fMRI 

dFC states, achieving an accuracy of 90% compared to 20% with spectral power (Abreu et al., 

2021). This highlights the relevance of time-frequency EEG microstates in comprehending 

brain network dynamics. More specifically, TF microstates (B, C and D) were associated with 

specific thalamus subnuclei activity as captured by simultaneous EEG-fMRI recordings 
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(Schwab et al., 2015). Thalamus control over functional cortical connectivity has been 

hypothesised to play a key role in attention and cognitive function (Schmitt et al., 2017), which 

may relate to the association of EEG microstates with cognitive mechanisms such as attention, 

memory or executive function.   

2.2.2. Dynamic analysis of spectral power and functional connectivity 

Vidaurre et al. have documented instances of transient, recurring events, in which spectral 

MEG measures such as spectral power and phase-based connectivity exhibit stability (Vidaurre 

et al., 2016; Vidaurre, Hunt, et al., 2018). Using an algorithm based on the Hidden Markov 

Model, they inferred spectral power and phase synchrony (in function of the frequency) for 

short period of time which may represent a stable HMM state or brain network. They then 

estimated how well the parameters can explain each time point to determine whether 

timepoints belong to the same state. Spectral, temporal and spatial information are all included 

in the resulting models. The source-localised power and connectivity features of the identified 

HMM states enabled the authors to link some states with functional sensory, motor and 

cognitive networks.  

Expanding on this methodology, Fauchon et al. (Fauchon et al., 2022) applied the same method 

to neuropathic pain, revealing abnormal patterns in the HMM MEG states associated with the 

sensorimotor and ascending nociceptive pathways, as well as the frontal attentional network 

when compared with healthy controls. Similarly, Zhang et al. investigated patients with major 

depression, using the same method, and observed alterations in the default mode network 

(DMN) and increased occupancy (or neural activity) in the fronto-temporal network among 

suicide attempters, as compared to non-suicidal patients (Zhang et al., 2022). Furthermore, the 

same research group successfully combined MEG with intracranial EEG, establishing a 

relationship between intracranial EEG power changes and MEG HMM brain states (Zhang et 

al., 2021). 

Growing evidence indicates that the whole-brain network can be decomposed into functional 

resting-state subnetworks consisting of spatially distributed brain regions (Damoiseaux et al., 

2006; Smitha et al., 2017; van den Heuvel et al., 2009).  Previous research using fMRI has 

demonstrated the importance of temporal fluctuations in functional connectivity, showing 

specific changes during different mental states such as analgesia (L. F. Robinson et al., 2015), 
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as well as in neurological and psychiatric conditions such as schizophrenia, major depression, 

and Alzheimer's disease (Hutchison et al., 2013). 

The development of new analysis methods for M/EEG holds the promise of enabling the 

identification of resting-state functional networks, similar to those well-established in fMRI 

literature. 

 

III. Aims and objectives  

1. Aims 

ALS is a neurodegenerative disease that affects both motor and non-motor neural networks. 

To effectively monitor the cognitive network dysfunction in ALS, there is a certain need for 

reliable biomarkers. Resting-state EEG has emerged as a promising tool for detecting neural 

network disruptions in ALS due to its non-invasive and low-cost nature. 

Previous resting-state EEG studies have shown non-motor neural network dysfunction in ALS 

(Nasseroleslami et al., 2019). Potential neurophysiological biomarkers that characterize these 

disruptions have already been described. By using source-space reconstructed resting-state 

EEG, functional connectivity differences have been observed between ALS and healthy 

control (HC) cohorts, which correlated with MRI structural changes and cognitive decline 

(Dukic et al., 2019). Resting-state EEG connectivity measures also formed stable clusters, 

which can serve as novel ALS phenotypes (Dukic et al., 2022). By identifying these 

phenotypes, clinicians can better tailor treatments and monitor disease progression. In 

summary, resting-state EEG is an advantageous tool for detecting and characterising cognitive 

network dysfunction in ALS. Using this promising method, the current work aimed to:   

Aim 1: Characterise cognitive phenotypes in ALS by distinct longitudinal changes of 

functional network disruptions  

Aim 2: Classify ALS patients based on resting-state EEG trajectories: clinical relevance and 

network progression 

Aim 3: Develop new biomarkers of cognitive-behavioural impairment based on dynamic 

resting-state episodes in sensor-space 

Aim 4: Develop new biomarkers of cognitive-behavioural impairment from spectral power and 

connectivity changes, using dynamic analysis of resting-state data 
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2. Hypotheses and Objectives 

2.1.  Aim 1: Characterise cognitive phenotypes in ALS by distinct longitudinal 

changes of functional network disruptions 

Rationale: The acknowledgement of the wide-ranging and diverse nature of 

neuropsychological impairments has been instrumental in pinpointing the existence of the 

ALS-FTD spectrum, which in turn has resulted in the development of the revised Strong 

diagnosis criteria (Strong et al., 2017). About 40% of patients exhibit cognitive or behavioural 

abnormalities, and an additional 14% develop dementia. Given the clinical heterogeneity 

inherent to the disease, the process of diagnosis and prediction of prognoses, as well as 

determining the efficacy of palliative treatment, can be challenging. Resting-state EEG has 

already detected non-motor network dysfunction in ALS patients that persisted over time in 

sensor-space (Nasseroleslami et al., 2019). In addition, changes in RS EEG functional 

connectivity have been observed between ALS patients and healthy controls that are correlated 

with cognitive decline (Dukic et al., 2019). 

Hypothesis: Distinct longitudinal changes of functional network disruption would correspond 

to distinct cognitive phenotypes 

2.2. Aim 2: Classify ALS patients based on resting-state EEG trajectories: clinical 

relevance and network progression  

Rationale: Longitudinal resting-state EEG spectral measures can offer valuable biomarkers to 

evaluate the dysregulation of cognitive-behavioural brain networks in ALS. The goal is to 

define stable subgroups of ALS patients based on trajectories of resting-state spectral EEG 

measures over time and to determine whether such clusters can be linked to clinical cognitive 

presentation. Relations between resting-state EEG trajectories and comprehensive clinical 

neuropsychological evaluations should allow creation of a comprehensive, network-based 

measure of impairment suitable for clinical trials. Analyzing patterns of brain activity 

trajectories could provide valuable insights into disease progression, survival outcomes, and 

functional decline. EEG-based subgrouping of individuals with ALS may contribute to a better 

understanding of ALS mechanisms and inform more personalised approaches to treatment and 

patient care. 

Hypothesis: This data-driven approach would generate a, longitudinally tested, set of 

measures, facilitating the development of a network-based measure of impairment suitable for 
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clinical trials and enhancing our understanding of ALS mechanisms for personalized treatment 

and care. 

2.3. Aim 3: Develop new biomarkers of cognitive-behavioural impairment based on 

dynamic resting-state episodes in sensor-space 

Rationale: Previous studies have explored abnormal connectivity in ALS using EEG measures 

(Dukic et al., 2019; Nasseroleslami et al., 2019), but the temporal dynamics of these measures 

are not well understood. Analysing multi-channel EEG signals can help identify transient, 

recurrent, and stable brain states. This approach, known as microstate analysis, identifies 

similar activity patterns and assigns each time point to a specific microstate, hypothesised to 

represent the synchronized activity of neural elements in a functional network (Michel & 

Koenig, 2018). Changes in microstate parameters reflect modulations in the temporal dynamics 

of brain networks rather than changes in connectivity between networks (Gschwind et al., 

2016). Microstate analysis is an established method that has revealed altered temporal 

dynamics in participants with neurological and psychiatric conditions, despite the stability of 

canonical microstate prototypes across participants and conditions (Al Zoubi et al., 2019; 

Michel & Koenig, 2018; Nishida et al., 2013).  

The culmination of prior research on resting-state EEG and the identification of specific 

cognitive episodes within resting-state activity serve as compelling evidence that the analysis 

of RS EEG signals can yield reliable measures of cognitive dysfunction.  

Hypothesis: Data generated from cognitive episodes of resting-state activity will provide 

biomarkers that strongly correlate with cognitive and behavioural impairment.  

2.4. Aim 4: Develop new measures of cognitive-behavioural impairment from 

spectral power and connectivity changes, using dynamic analysis of resting-state data 

in source-space 

Rationale: Another approach to studying brain network dynamics involves analysing patterns 

of frequency-specific power and phase-coupling. Co-modulation or synchrony between signals 

reflects important mechanisms of brain network coordination during motor or cognitive tasks. 

Differences in spectral power and functional connectivity have been observed between cohorts 

with amyotrophic lateral sclerosis (ALS) and healthy controls (HC). Specifically, disruptions 

in functional connectivity in frontal, frontoparietal, and fronto-temporal regions have been 

found to correlate with cognitive decline (Dukic et al., 2019).  
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Resting-state electrophysiology studies have revealed abnormal dynamical patterns of spectral 

power and/or functional connectivity in neuropathic pain (Fauchon et al., 2022), Alzheimer's 

disease (Núñez et al., 2021), and depression (Zhang et al., 2022). Such spatially distinct 

patterns are hypothesised to reflect functionally different brain networks.  

The findings from resting-state EEG studies, combined with the identification of spectrally 

distinct episodes in resting-state activity, serve as a proof of concept that analysing spectral 

brain microstates in resting-state EEG can provide reliable brain network-specific indicators 

of impairment. 

Hypothesis: data generated from spectral cognitive episodes of resting-state activity would 

yield new and complementary biomarkers of network impairment that strongly correlate with 

cognitive and behavioural deficits. 

 

IV. General materials and methods  

1. Participant recruitment 

Ethical approval was obtained from the Tallaght University Hospital / St. James's Hospital 

Joint Research Ethics Committee - Dublin [REC references: 2014 Chairman’s Action 7; 2019-

05 List 17 (01)] before the start of the project and data acquisition was performed in accordance 

with the Declaration of Helsinki. All participants provided informed written consent to the 

procedures before undergoing assessment. Specific and detailed participants’ demographics 

are included for each project in the corresponding chapter.  

1.1. ALS patient recruitment 

Clinicians approached patients diagnosed with ALS or ALS-FTD in the Irish National Centre 

of Expertise of ALS in Beaumont Hospital, Dublin, Ireland. All ALS diagnoses were based on 

the revised El Escorial criteria (Ludolph et al., 2015) and the Strong criteria (Strong et al., 

2017). Patients were offered the opportunity to participate in research and if interested were 

contacted later by phone call by a member of the Neural signal analysis and neurophysiology 

team to get further information on the progression of the EEG experiment. Patients diagnosed 

with primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), multiple sclerosis 

(MS), flail arm/leg syndromes, or with other medical morbidities/neurological 
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symptomatology like stroke, brain tumor or epilepsy were excluded. Consenting and suitable 

participants were dully informed of the longitudinal nature of the study (up to five recordings 

were to be scheduled every four to five months) but high dropout was expected due to the fast 

progression of the disease. As the disease progresses, it becomes more difficult for patients to 

travel to the hospital or even to stay in a sitting position for extended periods of time due 

notably to muscle cramps. 

1.2. Controls recruitment  

Aged-matched healthy controls (HC), without any neurological condition, were additionally 

recruited by a member of the team from an existing volunteer database (Burke et al., 2017) or 

through public advertising. First-degree relatives of ALS patients were excluded from the study 

to avoid any potential bias due to pre-symptomatic ALS or other related subthreshold clinical 

characteristics.   

 

2. Electrophysiological signals  

2.1. Acquisition hardware  

Electrophysiological signals were recorded on a Biosemi ActiveTwo system (Honsbeek et al., 

1998). The ActiveTwo system measures time-varying potential differences on body surfaces, 

using sintered Ag/AgCl electrodes. The active nature of the electrodes allows for reduced noise 

levels. A conductive gel at the interface between the electrode and the skin further limited 

external noise.   

Eight flat-type electrodes were used to detect physiological artefacts by recording 

electromyograms (EMG) and electrooculograms (EOG) signals. The EEG recordings were 

performed using 128 pin-type electrodes, with equiradial distribution on the skull, in a 

positioning headcap. High-density EEG improves the ability to estimate brain regions localised 

activity. All recordings were protected from external electric fields by a Faraday cage. Signals 

were digitised at 2048Hz and transmitted to the monitoring computer through a fiber-optic 

cable to ensure electrical isolation and absence of interference.    
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2.2. Acquisition software  

The signals were recorded at 512 Hz, with a low-pass anti-aliasing filter (cut-off at 104Hz), 

using Actiview software (Honsbeek et al., 1998). Online monitoring of signals stability and 

amplitude insured high quality recordings.  

 

2.3. Data acquisition procedure  

The experiments comprised resting-state EEG recordings, conducted at the Clinical Research 

Facility (CRF) of St James’s Hospital, Dublin. Written consent was obtained from participants 

after a careful reminder of the voluntary nature of the study and an outline of the experiment. 

For the duration of the experiment, participants were seated in a high-backseat or their own 

wheelchair when required. Eight EMG/EOG electrodes were applied on cleaned skin, on the 

earlobes, the temples, the mastoids and above/below the left eye. A size-appropriate headcap 

was then positioned by centring the electrode A1, horizontally between the nasion and inion 

bones, and coronally between the two ears, to allow future comparisons between participants. 

The positioning of the EEG cap was secured before the appliance of electrolyte gel in each 

electrode holder. While inserting pin-type electrodes in their assigned holders a conductive 

bridge formed between the skin and the electrodes. All electrode cables were tied to the 

participant’s chair to avoid any pulling.  

Electrode offsets, measuring the difference in voltage between an electrode and the Common 

mode sense (CMS) reference electrode, were monitored to remain stable and between +/- 

25mV. Following set-up, participants were asked to rest with eyes open (EO) and then closed 

(EC), always while comfortably seated. A letter X (6x8 cm2, printed black on white) provided 

a gaze target. EEG signals were recorded, for six blocks of 2 min, (three for each eye condition) 

to ensure subject wakefulness and well-being in-between. To ensure the most advantageous 

combination of participant effort and research output, the resting-state recordings were part of 

a much larger EEG experimental procedure, which will not be detailed, as only the resting-

state data were analysed for the subsequent results. It has to be noted that resting-state 

recordings were not conducted in a naive state, as participants typically engaged in cognitive 

or motor tasks prior to the recording. 
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2.4. Signal analysis 

The EEG signals were analysed using MATLAB R2019b-R2022a software (The MathWorks, 

2019), the EyeBallGUI toolbox (Mohr et al., 2017), the Fieldtrip v20190905 toolbox 

(Oostenveld et al., 2011) and the EEGLAB 2019 toolbox (Delorme & Makeig, 2004). 

2.4.1. Preprocessing 

An automatic artefact rejection method was used to reject bad epochs in the EEG signals 

(Dukic et al., 2017). The amplitude, the mean shift, the variance and the band-variance of 

spectral power were checked against a 3.5 Z-score threshold.  The EEG signal was resampled 

at 256 Hz, band-pass (one-pass zero-phase FIR: 1-97Hz) and notch filtered (third-order 

Butterworth: 50Hz). An automatic algorithm [28] [29], which evaluates the correlation 

between EEG channels, high signal standard deviations and the ratio of high to low 

frequencies, was then used to detect noisy channels. The average number of removed channels 

was 3.9±8.6. If more than 11 channels were marked as noisy, the recording was excluded from 

the study. Channels that were marked for removal were interpolated from the remaining 

electrodes using spline interpolation (Oostenveld et al., 2011). Finally, the channels were 

referenced to the common average.  

2.4.2. Source estimations 

The EEG data were processed as described in Dukic et al. (Dukic et al., 2019). Namely, source 

localisation was performed using the Linearly Constrained Minimum Variance (LCMV) 

beamformer (Oostenveld et al., 2011) and a head model based on the ICBM152 MRI template 

(Fonov et al., 2009). The source-space signals were estimated in 90 brain regions from the 

automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Using these 

source-localised signals, spectral measures were computed in six frequency bands usually 

considered in resting-state EEG studies (Dukic et al., 2017; Iyer et al., 2015), i.e. 𝛿 (2-4 Hz), 

𝜃 (4-7 Hz), 𝛼 (7-13 Hz), 𝛽 (13-30Hz), 𝛾  (30-47 Hz) and 𝛾  (53-97 Hz). For each brain region, 

normalised spectral power was estimated using a Fast Fourier analysis applied on 2 s epochs. 

For all pairs of brain regions, functional connectivity was estimated using amplitude envelope 

correlation (𝐴𝐸𝐶), which measures the co-modulation, and using imaginary coherence (iCoh), 

which measures the synchrony between two regions of interest (ROIs).  
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2.4.3. Longitudinal analyses 

The longitudinal analyses performed on the spectral power and functional connectivity data 

are described in chapter V. 

2.4.4. Dynamic analyses 

Dynamic analyses of resting-state EEG data were conducted to establish new measures of 

impairment in ALS. Changes in the dynamics of EEG signals have been observed in numerous 

neuropsychiatric conditions (Koenig et al., 1999; Lehmann et al., 2005; Michel & Koenig, 

2018; Nishida et al., 2013). Such analyses were meant to interrogate, in particular, fronto-

temporal and fronto-parietal cognitive networks. To this end, we investigated transient brain 

states defined in time and frequency domains. Detailed descriptions can be find in chapters VII 

and VIII.  

3. Motor and cognitive clinical scores 

Most patients underwent further clinical assessments, independently from the current project, 

including the revised ALS functional rating scale (ALSFRS-R) (Cedarbaum et al., 1999), 

King’s stagings, as well as ALS-specific behavioural and cognitive measurements (Traynor et 

al., 2003). Patients’ written and informed consent, included agreement to share clinical 

information with the research team. Functional clinical evaluations were collected from the 

Irish Motor Neuron Disease Registry (O’Toole et al., 2008; Rooney et al., 2013; Ryan et al., 

2018; Traynor et al., 2003) for the benefit of this research. Longitudinal Edinburgh cognitive 

and behavioural ALS Screen (ECAS) (Abrahams et al., 2014) and Beaumont behavioural 

inventory (BBI) (Elamin et al., 2017) were collected by the Academic Unit of Neurology, TCD, 

and made available for correlative analyses.  

3.1. Survival  

As part of the Irish Motor Neuron Disease Registry, ALS patients were asked an estimation 

of the initial date of symptoms onset. Dates of death are tracked as well to allow for survival 

time estimations.  

3.2. ALSFRS-R  

The revised ALS-functional rating scale (ALSFRS-R) evaluates a patient physical function 

through 12 measures rated from 0 to 4 (normal). Measures include the capacity to swallow, 

use utensils, climb stairs or breath and were grouped to be anatomically relevant. We defined 
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subgroups of the total rate, respectively of which body region or system the tasks fall in. The 

‘bulbar’ subgroup corresponds to scores 1 to 3, ‘upper limbs’ to scores 4 to 6, ‘lower limbs’ to 

scores 7 to 9 and ‘respiratory’ to scores 10 to 12. ALSFRS-R scores were collected, for most 

patients participating in the study, by clinicians as part of the Irish National ALS clinic.  

3.3. King’s stagings 

The King’s clinical staging system similarly estimates the anatomical progression of the 

disease. Stages are defined based on the number of affected regions, from 1 (early disease) to 

5 (death). When no King’s staging was available, the staging was extrapolated from ALSFRS-

R scores (Balendra et al., 2014).  

3.4. Edinburgh cognitive and behavioural ALS screen (ECAS) 

The Edinburgh Cognitive and Behavioral ALS Screen (ECAS) (Abrahams et al., 2014) is 

widely used to detect cognitive and behavioural changes, specifically in ALS patients. The 

screen consists of a quick neuropsychological assessment, usually performed by a trained 

professional as part of the Irish National ALS clinic. This screening tool incorporates 

executive, social, verbal fluency and language tasks, as ALS-specific assessments, but also 

memory and visuospatial tasks, as non-ALS specific. The total score ranges from 0 (poorest) 

to 136 (best performance). Three versions of the questionnaire (A, B and C) were used to 

reduce the practice effects (Costello et al., 2020; C. J. Crockford et al., 2018). Established cut-

off scores based on age and education in the Irish normative population were utilised to label 

patients with abnormal cognition.  

3.5. Pre-morbid IQ  

As a further cognitive assessment, a test of pre-morbid functioning (TOPF), which is an 

updated version of the Wechsler test of adult reading, estimated pre-symptomatic IQ in ALS 

patients attending the Irish National ALS clinic (Wechsler, 2003).  

3.6. Beaumont behavioural inventory (BBI) 

The BBI questionnaire was specifically designed to evaluate behavioural changes in ALS 

while taking into account the influence of motor impairment (Elamin et al., 2017). Scores above 

6 correspond to mild impairment while scores above 22 show severe behavioural changes.  
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4. Statistical methods 

Only statistical methods repeatedly used during the project are described in this section, more 

specific statistical analyses are described in their corresponding result section. All statistical 

analyses were performed using MATLAB software (The MathWorks, 2019).  

4.1. Parametric statistics 

Parametric statistics assume the data follow a probability distribution with fixed parameters, 

often the normal distribution.  

4.1.1. Linear Mixed-Effects model  

Linear mixed-effects (LME) models combine ‘fixed’ and ‘random’ effects, as an extension of 

standard linear models. They require linearity, homoscedasticity and normality of the residuals. 

Mixed-effects models are well adapted for sparse or unbalanced data sets (West et al., 2007) 

and thus recommended for longitudinal studies with missing data. In addition, subject-specific 

random effects are appropriate to represent at best the phenotypic diversity of ALS disease.  

 

4.2. Non-parametric statistics  

Non-parametric statistics are defined as not requiring any ‘parameter’ specification, either 

because no distribution shape is specified or because the probability distribution is specified 

without its parameters. Order and ranks statistics are common examples of such statistics. In 

the case of a normal distribution, parametric tests usually have more statistical power. 

However, the non-parametric methods have the advantages of the robustness and more 

generally, have wider applications.   

4.2.1. Non-parametric inferential statistical methods  

The Mann-Whitney-U test or Wilcoxon unsigned rank test is a non-parametric test applied on 

independent samples (Mann & Whitney, 1947). The null hypothesis assumes the two samples 

have identical distributions. It can be interpretated as a test of equality of the medians.  

The Wilcoxon signed rank test is another non-parametric hypothesis test, which is applied on 

paired observations (Mann & Whitney, 1947). It tests the null hypothesis that the median of 

the distribution is null.   

The non-parametric equivalent of the one-way analysis of variance (ANOVA), the Kruskal-

Wallis test, has also been applied.   
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The frequently mentioned, Spearmann’s correlation, is a rank-based measure that evaluates 

monotonic relationships between two variables. The parametric Pearson’s correlation only 

assesses linear relationships but is more robust to outliers. 

For any statistical test, a true effect can only be accurately detected if there is enough statistical 

power (1 − 𝛽). In this study, the statistical power or probability of correctly rejecting the null 

hypothesis, was estimated based on an Empirical Bayesian inference (EBI) (Nasseroleslami, 

2018).  The EBI toolbox initially fits an Akaike information criteria (AIC)-guided Gaussian 

mixed model on the Z-transformed test statistics to obtain an empirical estimation of the 

probability density function.  Probability density functions were then similarly estimated for 

the null and non-null distributions, both acquired by bootstrapping. Prior and posterior 

probabilities were inferred from the null distribution and density functions. Type I error (𝛼), 

Type II error (𝛽) and false discovery rate (FDR) could then be evaluated by numerical 

integration of the density functions.  

When considering multiple comparisons, the number of potential errors grows with the number 

of inferences. To counterbalance this issue, controlling procedures, like the Bonferroni 

correction (Bonferroni, 1936), have been developed. Among those, the FDR estimates the rate 

of false rejections. It was initially described by Benjamini and Hochberg to provide control 

over the number of Type I errors (false positives or 𝛼) (Benjamini & Hochberg, 1995).  They 

later proposed an adaptive FDR with improved power (Benjamini et al., 2006). This latest 

version is coded in the EBI toolbox and has been used to correct for multiple comparisons 

during this project (Nasseroleslami, 2018). 

 

V. Results: Cognitive phenotypes in ALS characterised by distinct 

longitudinal changes of functional network disruptions: a 

resting-state EEG study   

 
The study described in this section has been submitted to a peer-reviewed journal:  

Metzger M, Dukic S, et al., Distinct longitudinal EEG functional network disruptions 

characterise ALS cognitive phenotypes.  
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Figures, tables, results and discussion sections comes, in full, from this manuscript. 

Introduction and methods sections from this manuscript have been abbreviated to avoid 

repetition of the contents of previous chapters. The work described in this chapter is based on 

the cross-sectional study and data collection carried out by Mr Stefan Dukic when he was 

working in the Academic Unit of Neurology, TCD. Existing code was adapted and applied to 

longitudinal data. Further statistical analyses were developed specifically for this project.    

1. Introduction 

The presence of a wide a range of clinical presentations in ALS leads to uncertainties when 

diagnosing and predicting the disease course. There is therefore an urgent need for robust and 

validated phenotypic biomarkers, to improve understanding of variation in ALS progression 

and responses to potential therapies.(Bede & Hardiman, 2018; Nasseroleslami, 2018; Pender 

et al., 2020; Taga & Maragakis, 2018).  

Functional and structural magnetic resonance imaging (fMRI-sMRI) have been extensively 

employed to identify alterations in the brain due to ALS, revealing variations in grey matter 

and functional connectivity among subgroups of individuals with ALS based on cognitive 

profiles, both cross-sectionally(Temp et al., 2021) and longitudinally(Burgh et al., 2020; Shen 

et al., 2018). Nevertheless, using fMRI for clinical trials presents obstacles, encompassing 

considerable expenses, participant unease, restricted applicability to certain groups, and 

temporal resolution constraints, which are not encountered in other neuroimaging modalities 

like EEG. 

Directly measuring the function of networks which generate these cognitive and behavioural 

functions shows promise in the search for such biomarkers.(McMackin et al., 2020; 

McMackin, Muthuraman, et al., 2019) In particular, resting-state EEG offers greater 

accessibility and reduced participant burden, as it avoids the necessity of specific actions or 

responses, mitigating potential biases from speech or motor disabilities.(Maruyama et al., 

2021; Secco et al., 2020) Differences between the ALS group and healthy controls that 

persisted longitudinally have been identified, at sensor level, in resting-state EEG measures of 

neural activity (from 𝜃-band spectral power) and functional connectivity (from 𝜃, 𝛾 -band 

coherence between signals).(Nasseroleslami et al., 2019) Furthermore, source localization of 

EEG signals allowed researchers to determine the specific regions within the brain that 

generated the electrical activities recorded on the scalp. A subsequent study observed disease-
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specific patterns in the spatially mapped sources of brain activity, providing insights into the 

neural dynamics underlying functional impairments.(Dukic et al., 2019) Across different 

frequency bands, a decrease in neural activity has been shown in motor and non-motor 

networks (including the occipital, temporal and sensorimotor regions). Additionally, an 

increase in the co-modulation of signals has been observed in the central, posterior and frontal 

areas, while the synchrony between signals decreased in the frontotemporal and sensorimotor 

regions. Changes in EEG functional connectivity correlated with MRI structural atrophy in 

cognitive networks (frontal region), as well as clinical measures of functional cognitive 

impairment. 

In our previous studies, we demonstrated that resting-state electroencephalography (EEG) can 

identify at least four specific patterns of network dysfunction. PwALS who were part of the 

two clusters that displayed alterations in frontotemporal networks compared to HC, also 

demonstrated heightened cognitive and behavioral impairment. This observation points toward 

a link between network dysfunction and specific neuropsychological profiles manifested by 

individuals. The current longitudinal study is needed to show reliability and effectiveness of 

these measures, paving the way for their potential development into prognostic biomarkers for 

ALS. The primary objectives of this study were to identify and quantify changes in functional 

brain networks throughout the progression of ALS in individuals with distinct cognitive 

profiles.  

2. Methods 

2.1. Ethical approval 

Ethical approval was obtained from the Tallaght University Hospital/St. James's Hospital Joint 

Research Ethics Committee in Dublin [reference: 2014 Chairman’s Action 7 and 2019-05 List 

17 (01)], as described in General material and methods (Chapter IV). 

2.2. Recruitment – inclusion and exclusion criteria  

Exclusion and inclusion criteria are described in General material and methods (Chapter IV, 

section 1). 

Table 1: Demographic profiles for the individuals with ALS. Up to five recording sessions were scheduled, with in-between 

time delays representing delays between each session. The table details the gender proportions, the average ages at 
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recording and, when applicable, disease durations, delays between sessions, site of onset and the number of patients with 

FTD comorbidity. Numbers show mean and standard deviation. 

Groups N Male 

(%) 

Age 

(years) 

Disease duration 

[increment since 

T1] (months)  

Follow-up 

intervals 

(months) 

ALSFRS-R 

scores (at 

Tx) 

Site of onset (N) ALS-FTD 

diagnosis 

(N) Bulbar Spinal Thoracic 

Participants 

T1 

116 74 62 ± 11 25 ± 18  / 36 ± 7 22 

(19%) 

86 

(74%) 

5 (4%) 5 

Participants 

T2 

60 77 60 ± 11 32 ± 19 [+7.3] 4.9 ± 1.2 35 ± 8 14 

(23%) 

43 

(72%) 

2 (3%) 2 

Participants 

T3 

44 80 60 ± 12 37 ± 19 [+12] 4.9 ± 1.3 33 ± 9 8 

(18%) 

34 

(77%) 

1 (2%) 2 

Participants 

T4 

22 86 61 ± 11 42 ± 24 [+17] 4.9 ± 1.1 33 ± 7 2 (9%) 19 

(86%) 

1 (1%) 1 

Participants 

T5 

7 57 57 ± 13 52 ± 31 [+27] 6.5 ± 2.4 33 ± 6 0 6 

(86%) 

1 (14%) 0 

 

2.3. Experiment 

2.3.1. Experimental design 

The recruited participants attended EEG recording sessions. No blinding was performed, as 

the participants, experimenters or data analysists could not access the final EEG measures 

during experiments. EEG data from 124 individuals with ALS (male: 69.3%; age [mean ± 

standard deviation]: 63.13 ± 15) were recorded. The study included up to four follow-up 

recording sessions, with approximately 5.4 ± 2.1 months between sessions. The total number 

of EEG recordings was 249, of which 116 were baseline and 60, 44, 22 and 7 were follow-up 

1-4, respectively. On average, the participants attended 2 ± 1.2 recording sessions.  

2.3.2. Recruitment – inclusion and exclusion criteria  

Exclusion and inclusion criteria are described in General material and methods (Chapter IV, 

section 1). 

Table 1 details the demographic profile for each follow-up.  

2.3.3. EEG acquisition 

EEG data were collected at rest as described in General material and methods (Chapter IV, 

section 2). 
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2.3.4. Disease severity and neuropsychology assessment 

Disease severity was assessed using ALSFRS-R scores (Cedarbaum et al., 1999) and King’s 

staging system,(Balendra et al., 2014) collected from the Irish Motor Neuron Disease Registry. 

The assessments are described in details in General material and methods (Chapter IV, section 

3). The participants’ ALSFRS-R scores were recorded on average 7.4 ± 5.1 times, between 3.7 

and 145 months after onset. The symptoms were evaluated at intervals of approximately 3.3 ± 

3.7 months. Except for 9 participants from the EEG database, all participants had their 

ALSFRS-R scores registered.  

To provide wider clinical profiling, the Edinburgh Cognitive and Behavioral ALS Screen 

(ECAS) (Abrahams et al., 2014) and Beaumont behavioral inventory (BBI),(Elamin et al., 

2017) which were developed to compensate for the impact of motor impairment in ALS, were 

also obtained from parallel ongoing research projects in the Academic Unit of 

Neurology.(Costello et al., 2020, 2021)  The ECAS scores were obtained up to three times, 

between 3.7 and 100 months after onset, with a score range of 46 to 135 (for total ECAS, with 

an abnormality cut-off adapted for age and level of education). Three versions of the ECAS 

(A, B and C) were used to reduce the practice effects.(Costello et al., 2020; C. J. Crockford et 

al., 2018) Behaviour was assessed using the Beaumont behavioural inventory. BBI 

assessments were conducted up to three times for each participant, between 2.8 and 100 months 

after onset, yielding scores ranging from 0 to 73 (above 6 representing mild impairment and 

above 22 representing severe impairment). 

2.3.5. Subgrouping of participants according to their neuropsychological profiles 

To analyse the effect of the cognitive and behavioural impairment on spectral EEG measures, 

the longitudinal trajectories were modelled separately for subgroups of individuals with ALS: 

cognitively impaired (ci), behaviourally impaired (bi) and non-impaired (ncbi). This 

discrimination by neuropsychological profiles was included with the expectation that 

participants with cognitive or behavioural impairment experience different progressions of 

neurodegeneration compard to participants with normal cognition and behaviour. The ALS 

group comprised a total of 124 participants, with 27 participants exhibiting cognitive 

impairment (ALSci), 58 participants demonstrating behavioral impairment (ALSbi), and 53 
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participants showing no cognitive or behavioral impairment (ALSncbi). 14 participants were 

part of both the ALSci and ALSbi groups due to displaying both cognitive and behavioral 

impairments. Abnormal cognition was determined for a participant if they were diagnosed with 

ALS-FTD or if their ECAS scores exceeded the abnormality cut-off scores based on age and 

education for the Irish population.(Pinto-Grau et al., 2017; C. J. Crockford et al., 2018; Costello 

et al., 2020) The assessment of abnormal behavior was conducted using the BBI, with 

behavioral impairment defined as scoring ≥ 6 points on the BBI scale. 

2.4. Data analysis 

The EEG signals were preprocessed and processed as described in Chapter IV, section  2.4.  

The normalised spectral power, which measures the neural activity in a brain region, the 

amplitude envelope correlation (𝐴𝐸𝐶), which measures the co-modulation between two 

regions, and the imaginary coherence (iCoh), which measures the synchrony between two 

regions, were all obtained from the source-localised signals.  

2.5. Statistical analysis 

Linear mixed-effects (LME) models, which can account for disease heterogeneous 

progressions, were used to track brain network patterns of participants over time. This method 

has been shown to be robust for sparse and unbalanced data sets and useful for longitudinal 

studies with missing data.(West et al., 2007) LME Models were built to estimate the 

progressions of the EEG measures (normalised spectral power and connectivity) and of the 

clinical scores (ALSFRS-R, ECAS and BBI) over time.  

2.5.1. Electroencephalography 

Spectral power, co-modulation and synchrony were analysed separately for each frequency 

band (𝛿, 𝜃, 𝛼, 𝛽, 𝛾 , 𝛾 ). All models were built in MATLAB using the fitlme function, with the 

Quasi-Newton method, as the iterative algorithm to data fitting and optimising the likelihood 

function, and Restricted Maximum Likelihood to avoid bias in the estimated covariance 

parameters. F-statistics were conducted to test for significant fixed-effects. The purpose of our 

LME models was to check whether there is an overall main effect  of time (in the entire brain) 

but also to estimate the rate of progression in each brain region (as random-effects).  



 

62 
 

To reduce the dimensionality and avoid over-parameterisation (when not all the linear 

combinations of parameters are estimable), we regrouped and contracted the measures for 

broader brain areas: frontal, temporal, motor, parietal, occipital and subcortical areas (see 

Supplementary note 1: brain networks). The subgrouping was initially based on the five 

anatomical lobes: frontal, temporal, centro-parietal, occipital and subcortical. Since the motor 

cortex is a key area of atrophy in ALS, the centro-parietal lobe was subsequently separated 

into the parietal lobe and the motor network. 

To assess where significant longitudinal changes occurred, a bootstrapping method was 

performed on ROI-specific LME models (1 model per ROI): Measure ~ Time + 

(Time|Participant). To evaluate the null-hypothesis of no time effect on the EEG measures, the 

(two to five) timepoints were randomly resampled in each participant before computing a new 

LME model (1000 repetitions). The results of this statistical method were then corrected to 

account for the number of ROIs using a 10% adaptive false discovery rate (FDR) (Benjamini 

et al., 2006; Nasseroleslami, 2018)  and applied as a mask to visualise estimated sources of 

neural activity changes over time. 

Longitudinal trajectories of the EEG spectral power were estimated using the following model 

described in Wilkinson-Rogers notation:  

Power ~ Time + (Time|Participant) + (Time|ROI).  

The fixed-effects coefficient corresponds to the time since the onset of the disease (‘Time’). 

The random-effects include a participant-specific factor and an ROI-specific factor. Age and 

gender were considered for inclusion as random-effects but were not significantly improving 

the models (based on a likelihood ratio test); hence, were not included. The random-effect 

coefficients and the residuals, associated with the EEG score of a participant, within a brain 

region, were checked to confirm they follow normal distributions, were independent, and had 

constant variance (using the Kolmogorov–Smirnov test (q<.05); Ljung-Box Q-test (q<.05); 

Engle’s ARCH test (q<.05) or diagnostic plots).  

To estimate the connectivity progressions, we used a similar LME model, with the same fixed-

effects. It was then possible to add an interaction term to investigate participant-specific effects 
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on the functional connectivity within or between brain regions of interest.  In Wilkinson-

Rogers notation, the model is described as:  

Connectivity ~ Time + (Time|Participant) + (Time|ROI) + (-1+Time|ROI:Participant).  

All connectivity values were transformed using a rank-based inverse normal transformation 

(Beasley et al., 2009) to reduce the deviation of residuals from normality. Age and gender were 

again considered for inclusion as random-effects but were not significantly improving the 

models; therefore were not included. 

2.5.2. Clinical scores 

After evaluating the progression of EEG measures, we analysed the evolution of motor and 

cognitive clinical scores. While also considering total scores, we prioritised ALSFRS fine 

motor subscore as a measure of motor function, ECAS fluency subscores as a measure of 

cognitive impairment(Abrahams et al., 2000, 2014) and BBI scores as a measure of 

behavioural change. A linear function was defined to represent each clinical score (ALSFRS-

R fine motor subscore, total ECAS, ECAS fluency and BBI scores) progression over time. 

Each score was modelled as Score ~ Time + (Time|Participant). The fixed-effects coefficients 

can be described as the mean intercept and slope for all participants. Similarly, the random-

effects coefficients respectively described the participant-specific deviation from intercept and 

slope. Age, gender and education were considered for inclusion but only education was deemed 

relevant for the ECAS models (based on a likelihood ratio test). For the cognitive progression 

models, an additional term, to account for the versions of the ECAS questionnaire (A, B and 

C) was also added. The three alternative versions were used to reduce practice effects but, in 

our case, some participants performed a sequence A-A-A, while others undertook sequence A-

B-C, which needed to be addressed. The ECAS model can be described as: ECAS ~ Time + 

Version + (Time|Subj:Study) + (Time|Education). The assumptions of normality, 

independence, and constant variance of the residuals were checked (using the Kolmogorov–

Smirnov test (q<.05); Ljung-Box Q-test (q<.05); Engle’s ARCH test (q<.05) or diagnostic 

plots). 
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2.5.3. Correlations between EEG and clinical measures 

Following the estimation of both the linear mixed regressions of EEG measures and clinical 

scores (ALSFRS-R, ECAS, BBI) over time, the rank correlations between them were 

calculated. For each participant, the EEG spectral measure changes over time, at frequency f 

(𝛿 to 𝛾 -bands), were estimated by the time-related participant-specific random-effect of the 

linear mixed model. Similarly, participant/ROI interactions were used to localise participant-

specific variations in brain regions. All random-effects slope signs were adjusted according to 

the fixed-effect slope (or according to the sum of the fixed-effect slope and ROI-specific slope 

in the case of a participant/ROI interactions) to represent faster or slower changes in regard to 

the average changes across participants. For each participant, the clinical changes (survival or 

ALSFRS-R bulbar, upper / lower limbs, respiratory or total ECAS) over time were also 

estimated by the time-related slope of the LME model.  

Correlations between EEG and clinical measures regression coefficients were computed using 

the Spearman correlation coefficient. The statistical power of each correlation was estimated 

by bootstrapping (N=2000) using the EBI toolbox.(Nasseroleslami, 2018) A 5% FDR 

correction was implemented for the multiple comparisons of the participant/ROI interactions 

correlating with clinical scores, separately for each frequency and each score of motor or 

cognitive decline. Correlations between EEG values and survival were corrected similarly with 

a 1% FDR to facilitate visualisation. 

3. Results 

3.1. Changes in neural activity: decrease in slow oscillations, increase in faster 

oscillations  

We observed distinct patterns of longitudinal changes in neurophysiological measures within 

the entire ALS group. As indicated above, the neurophysiological measures investigated 

encompassed: the spectral power, reflecting the intensity of oscillations in neuroelectric 

activity, as well as the AEC (co-modulation of signals) and the iCoh (synchrony between 

signals), respectively representing an amplitude and a phase-based measure of functional 

connectivity between brain regions.  
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Across all participants, spectral power significantly increases over time in the frontal and 

temporal lobes in 𝛾-band and decreases in 𝜃-band (Figure 2).  A detailed description of the 

models examining these effects can be found in Supplementary Note 2. In the following 

sections, the longitudinal effects in the ALSci, ALSbi, and ALSncbi subgroups were 

investigated to assess whether the observed frontotemporal network changes could have been 

driven by ALSbi or ALSci participants. A detailed description of the longitudinal effects per 

subgroup can be found in the Appendix – Chapter V, Note 6. 

 
Figure 2: Changes in neural activity include a decrease in slow oscillations and increase in faster oscillations. Longitudinal 
changes of EEG spectral power in ALS were measured in term of significant longitudinal spectral power variations, based on 
the time fixed-effect and the time ROI-specific random-effects (Bootstrapping, q<0.05). Longitudinal changes were mapped 
to get a spatial visualisation. The neural activity showed a significant decrease in θ-band and an increase in γ-band. 

3.2. Longitudinal changes in functional clinical measures  

We observed significant changes in longitudinal functional clinical scores, including ALSFRS-

R and neuropsychological scores, within the entire ALS group. These scores serve as valuable 

tools for assessing both the physical and cognitive progression of the disease, using established 

qualitative measures. Specifically, our models computed significant declines in ALSFRS-R 

scores (p < 0.001) and a slight increase in ECAS total scores (p < 0.05). When considering 

ECAS scores for the overall ALS group, a practice effect and potential non-random dropout 

lead to an average increase.(Costello et al., 2020) Although some participants may exhibit a 

decrease in ECAS scores, 80% of the individuals in our dataset did not show any cognitive 

impairment at any point in time. Furthermore, verbal fluency and BBI scores did not exhibit 

significant changes over time. For a more detailed examination of the fixed-effects coefficients 

and random-effects variances, please refer to Appendix – Chapter V – Supplementary note 3. 
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3.3. Widespread increased EEG co-modulation in cognitively impaired participants 

We observed widespread significant increased (𝛿- and 𝜃-band) co-modulation in ALSci  (Figure 

3). The intra-frontal (𝛼-band) co-modulation also showed an increase for the ALSci subgroup. A 

detailed description of the fixed-effects can be found in the Supplementary material, Note 2.  

In ALSci, we observed that changes in participants' region-specific connectivity were associated 

with corresponding neuropsychological changes, as assessed through three consecutive 

administrations of the ECAS (Figure 3) (details in Appendix – Chapter V, Note 3). To elaborate 

further, higher rates of β-band co-modulation changes in connectivity between the frontal and 

occipital lobes, between the frontal and temporal lobes, and between the subcortical and occipital 

lobes were found to be positively correlated with a more rapid decline in verbal fluency scores 

(correlation coefficients: 𝑟  > 0.5, statistical powers: 1-𝛽 > 0.8). By contrast, higher rates of 

changes either (i) within the motor and parietal region (β-band) or (ii) between the motor and 

temporal lobes (δ-band) were associated with a decreased rate of change in cognition, affecting 

both the ECAS total score and verbal fluency score (correlation coefficients: 𝑟   ≤ -0.5, statistical 

powers: 1-𝛽 ≥ 0.8).  

No significant associations were found between the co-modulation in ALSci and other clinical 

measures (ALSFRS-R subscores or BBI scores). 
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Figure 3: Widespread increased EEG co-modulation in ALSci, and associations with cognitive decline. (A) Regions  of 
longitudinal changes of EEG co-modulation and synchrony in ALSci group. The significant longitudinal connectivity changes were 
mapped to get a spatial visualisation of their magnitudes. The longitudinal variations represent the combined estimated slope 
(significance by bootstrapping, q<0.1). A widespread increase in δ- and θ-band co-modulation was observed in ALSci. The dashed 
lines represent a decrease while the solid lines represent an increase in connectivity. A filled node represents significant intra-
region connectivity. (B-C) Regions  with significant correlations between participant/ROI-specific co-modulation progressions and 
cognitive decline, in ALSci. For each significant correlation, the correlation coefficient, 𝑟 , the p-value, p, and the statistical 
power,1-β are given. An adaptive FDR was applied to Spearman’s correlation coefficients. (B) Correlations between EEG co-
modulation and ECAS total score progressions. (C) Correlations between EEG co-modulation and ECAS verbal fluency  changes. 
ALSci: individuals with ALS and impaired cognition; MM: intra-motor connectivity; MP: connectivity between motor and parietal 
regions; PP: intra-parietal connectivity; FO: connectivity between frontal and occipital regions; ST: connectivity between 
subcortical and temporal regions; SO: connectivity between subcortical and occipital regions. 
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3.4. EEG spectral measures and behavioural impairment 

The spectral power significantly increased in the temporal lobe (𝛾 -band) in ALSbi (Figure 4). A 

detailed description of the fixed-effects can be found in the Appendix – Chapter V, Note 2. 

Additionally, a higher rate of change in 𝛼-band co-modulation between the frontal and parietal 

lobes was associated with an increased rate of changes in BBI scores (correlation coefficient: 𝑟  = 

0.4, statistical powers: 1-𝛽 = 0.9). No significant associations were found between the co-

modulation and other clinical measures (ALSFRS-R subscores or ECAS scores) in ALSbi. 

 
Figure 4: Increased EEG neural activity in the temporal lobe in ALSbi and associations with behavioural impairment. (A) 
Longitudinal changes of EEG spectral power in ALSbi. The significant temporal spectral power variations, in terms of the time 
fixed-effect and the time ROI-specific random-effects (Bootstrapping, q<0.1), were mapped to get a spatial visualisation. An 
increase in 𝛾 -band co-modulation was observed in the temporal lobe for the ALSbi group. (B) Regions with significant correlations 
between participant/ROI-specific co-modulation progressions and cognitive decline, in the ALSbi group. A higher rate of change 
in co-modulation between the frontal and parietal lobes was correlated with an increased rate of change in BBI scores. For each 
significant correlation, the correlation coefficient, 𝑟 , the p-value, p, and the statistical power,1-β, are given. An adaptive FDR was 
applied to Spearman’s correlations. ALSbi: individuals with ALS and impaired behaviour. 
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3.5. Widespread decreased 𝜷-band EEG synchrony in participants with normal 

cognition and behaviour 

In ALSncbi participants, we observed widespread significant changes in synchrony, with 

especially a significant decrease in 𝛽-band (q < 0.1, Figure 5). A detailed description of the 

fixed-effects, can be found in the appendix.  

 

Figure 5: Widespread decreased β-band EEG synchrony in the ALSncbi group. Regions of longitudinal changes of EEG 
synchrony in the ALSncbi group. The significant longitudinal connectivity changes were mapped to get a spatial visualisation 
of their magnitudes. A widespread decrease in β-band synchrony was observed in the ALSncbi group. The longitudinal 
variations represent the combined estimated slope (significance by bootstrapping, q<0.1). The dashed lines represent a 
decrease while the solid lines represent an increase in connectivity. A filled node represents significant intra-region 
connectivity. ALSncbi: individuals with ALS with normal cognition and behaviour. 

The slopes of the ALSFRS-R models (details in Appendix – Chapter V, Note 3) were used as 

an estimation of the speed of the disease progression per participant. We identified significant 

correlations of the changes in the clinical scores (progression rates) with the average brain-

wide changes in neural activity (spectral power). In cognitively and behaviourally unaffected 

participants, the spectral power changes (𝜃-, 𝛾 -, 𝛾 bands) negatively correlate (q <.05) with 

fine motor changes over time (𝜃-band: 𝑟  = -0.4, 𝑝 = 0.003, 1-β
0.05

 = 0.83; 𝛾 -band: 𝑟  = -0.4, 𝑝 

= 0.003, 1-β
0.05

 = 0.86; 𝛾 -band: 𝑟  = -0.4, 𝑝 = 0.002, 1-β
0.05

 = 0.84). Higher rate of change in 

spectral power were associated with decreased rate of change in the fine motor score.  

No significant associations were found between the spectral power and the other clinical 

measures (other ALSFRS-R subscores or neuropsychological scores) in the ALSncbi group.  

3.6. Correlations between survival and changes in the EEG measures 

The relationships between network changes and survival outcomes are depicted in Figure 6. 

In ALSci participants, higher rates of change in co-modulation, over the disease timecourse, 

between the frontal and temporal regions (𝛽-band) or between the subcortical and parietal lobes 

(𝜃-band) were associated with poorer prognosis (p<.001, FDR at q=.01). On contrary, higher 
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rates of change between the motor and parietal regions or within the parietal lobe were 

associated with a better prognosis (p <.001, FDR at q=.01).  

ALSbi participants showed a link between higher rates of change of 𝛾 -band co-modulation 

between frontal and parietal lobes and poorer prognosis (p <.001, FDR at q=.01).  

In ALSncbi participants, significant negative correlations were localised between the parietal 

and subcortical lobes (co-modulation, 𝛿-band). Positive correlations with survival were found 

between the subcortical lobe and the occipital area (𝛽-iCoh). 

 

Figure 6: Survival and EEG functional connectivity in ALSci, ALSbi and ALSncbi subgroups. Regions with significant 

correlations between survival and participant/ROI-specific connectivity (AEC and iCoh) progressions. Solid lines (or upper 

triangles) depict positive correlations, indicating that higher rates of functional connectivity change are associated with a 

better prognosis. In contrast, dashed lines (or lower triangles) represent negative correlations, signifying that higher rates of 

functional connectivity change are linked to a worse prognosis. In ALSci, ALSbi, and ALSncbi subgroups, the correlation 

coefficient, 𝑟 , the p-value, p, and the statistical power,1-β, are given for each significant correlation. An adaptive FDR was 

applied to Spearman’s correlations. ALSci: individuals with ALS and impaired cognition; ALSbi: individuals with ALS and 

impaired behaviour; ALSncbi: individuals with ALS with normal cognition and behaviour. 
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Figure 7: Summary of the main findings. Distinct changes in functional networks characterise cognitive phenotypes in ALS 
and are clinically relevant. Positive correlations, indicates that higher rates of functional connectivity change are associated 
with a better prognosis/increased rate of change in cognition or behaviour. In contrast, negative correlations, signify that 
higher rates of functional connectivity change are linked to a worse prognosis/lower rate of change in cognition or 
behaviour. 

4. Discussion 

This study identified significant longitudinal changes in neural activity within the fronto-

temporal region in ALS regardless of their (cognitive) phenotype, which is characterized by a 

decrease in lower frequency bands and an increase in higher frequency bands. Further 

investigation of the potential link between the longitudinal frontotemporal changes and 

cognitive or behavioural impairments, showed that the ALS subgroups defined based on their 

cognitive and behavioural profiles present with very distinct longitudinal effects. In the ALSci 

subgroup, we observed a widespread increase in co-modulation, which strongly correlated with 

cognitive decline (|rs| > 0.5, 1-𝛽 > 0.8). Meanwhile, in the ALSbi subgroup, we found that 

higher rates of change in co-modulation between the frontal and parietal lobes were associated 

with increased rates of change in BBI impairment (|rs | = 0.4, 1-𝛽 = 0.9). Notably, ALSncbi 

displayed a widespread decrease in β-band synchrony over time. Furthermore, within the 

ALSncbi subgroup, motor decline was linked to neural activity changes (|rs | = 0.4, 1-𝛽 > 0.8). 
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In all subgroups, survival was strongly associated with the rates of change in functional 

connectivity between specific brain regions (correlation coefficients |rs| > 0.5, statistical powers 

1-β > 0.9). The distinct neurophysiological (EEG) profiles in the three subgroups and the 

association of the EEG measures with the relevant clinical measures of progression, shows that 

the identified EEG measures do reflect the underlying network-level impairment in the 

cognitive, behavioural and non-cognitive-behavioural domains (Figure 7).  

4.1. Frontotemporal longitudinal changes in neural activity 

Functional networks in the frontotemporal lobe, a key region of atrophy in ALS, displayed 

significant changes over time. Decreased 𝜃-band and increased 𝛾-band spectral power was 

observed over time in the frontotemporal lobe. Lower 𝜃-band spectral power has been 

previously observed, in the temporal area, in PwALS compared to controls(Dukic et al., 2019; 

Nasseroleslami et al., 2019) (see Table 2). Frontotemporal and frontal-subcortical circuitry are 

frequently highly impacted in dementias and neuropsychological diseases.(Bonelli & 

Cummings, 2007; Neary et al., 1998; Tekin & Cummings, 2002) Notably, post-mortem 

examinations have revealed synapse loss in the prefrontal cortex of PwALS, which correlated 

with cognitive decline.(Henstridge et al., 2018) As our observed frontotemporal network 

changes may have been driven by ALSbi or ALSci participants, we investigated longitudinal 

effects in ALSci, ALSbi and ALSncbi subgroups.  

 

 

Table 2: Comparative table between the main cross-sectional and longitudinal results.  

Spectral power – neural activity 
 𝛿 𝜃 𝛼 𝛽 𝛾  𝛾  

Cross-
sectional 

(ALS vs HC) 
(Dukic et al., 

2019) 

↘ temporal and posterior regions   

Longitudinal  
(all ALS) 

 
↘ frontal, 
temporal 
regions 

  

↗ frontal 
and 

temporal 
regions 

 

Co-modulation 
 𝛿 𝜃 𝛼 𝛽 𝛾  𝛾  
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Cross-
sectional 

(ALS vs HC) 
(Dukic et al., 

2019) 

↗ frontal, 
central, 

posterior 
regions 

↗ central, 
posterior 
regions 

  

↗ frontal, 
central, 

posterior 
regions 

 

Longitudinal  
(all ALS) 

 
Widespread 

↗ 
    

Longitudinal 
ALSci 

Widespread ↗ 
↗ frontal 

region 
   

Longitudinal 
ALSncbi 

↗ posterior 
region 

     

Synchrony 
 𝛿 𝜃 𝛼 𝛽 𝛾  𝛾  

Cross-
sectional 
results 

(ALS vs HC) 
(Dukic et al., 

2019) 

↘ frontal, 
temporal 
regions 

  

↘ sensorimotor 
network: 
central, 

temporal 
regions 

  

Longitudinal 
ALSncbi 

   Widespread ↘   

4.2. Cognitive impairment and longitudinal increase in EEG co-modulation  

We observed no significant longitudinal changes in neural activity (spectral power) in ALSci 

subgroup, despite previous cross-sectional studies reporting decreased spectral power in 

temporo-posterior region (all ALS group versus HC).  

However, ALSci participants demonstrated widespread increases in 𝛿-, 𝜃- and 𝛽-bands co-

modulation over time, which is consistent with previous cross-sectional findings of higher co-

modulation in ALS group compared to controls in 𝛿, 𝜃 and 𝛾  frequency bands (Dukic et al., 

2019) (Table 2). Burgh et al. similarly observed longitudinal structural connectivity changes in 

participants with impaired cognition.(Burgh et al., 2020) This observed significant widespread 

increase in functional connectivity could appear antithetical to the findings of structural atrophy 

and metabolic reduction at rest in ALS.(Kew et al., 1993; Verstraete et al., 2010, 2014) 

However, approaches integrating structural and functional imaging showed increased 

functional connectivity within atrophied regions.(Douaud et al., 2011; Nasseroleslami et al., 

2019; Proudfoot et al., 2018) This increasing connectivity could be explained by an increase in 

compensation to decreasing structural connectivity tracts along with a progressive loss of 

GABA-ergic inhibitory interneurons and disinhibition of remaining glutamatergic 

tracts.(Douaud et al., 2011; Lloyd et al., 2000) Such disinhibition and hyperexcitability is 
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evidenced by numerous histopathological, neurophysiological, neuroimaging and clinical 

studies.(Turner & Kiernan, 2012)  

In ALSci, higher rate of connectivity changes in the frontotemporal, fronto-occipital, and 

subcortico-occipital areas (in the β-band) were associated with a more rapid decline in verbal 

fluency. Verbal fluency deficits are a well-documented cognitive impairment in ALS, 

frequently reported in previous studies.(Abrahams et al., 2000, 2014; Beeldman et al., 2016) 

These deficits are thought to be mediated by the frontotemporal areas.(Baldo et al., 2006) 

Furthermore, we found that higher rates of functional connectivity changes between most brain 

regions correlated with a more rapid decline in cognitive scores, both in terms of total scores 

and fluency scores on the ECAS. On the opposite, higher rates of connectivity changes 

involving motor or parietal regions (part of the sensorimotor network) were linked to a 

decreased rate of cognitive decline. This inverse relationship suggests a dissociation between 

connectivity changes involving sensorimotor regions and those involving other brain regions 

in individuals with ALS who experience cognitive impairment. 

4.3. Temporal longitudinal changes in behaviourally impaired individuals with ALS 

In ALSbi, an increase in 𝛾-band power was observed in the temporal lobe. These findings are 

supported by structural observations of frontotemporal cerebral changes in behaviourally 

impaired PwALS,(Burgh et al., 2020; Lulé et al., 2018) but have not been reported before in 

RS-EEG. Furthermore, higher rate of change in co-modulation between the frontal and the 

parietal lobes were associated with increased rate of changes in BBI scores.  

Furthermore, a higher rate of change in co-modulation between the frontal and parietal lobes 

was linked to an accelerated rate of changes in BBI scores. This suggests a meaningful 

connection between alterations in brain connectivity patterns and the progression of behavioral 

changes in ALS. In the combined ALSci/ASLbi group, the relationships observed between 

EEG functional connectivity and functional scores related to cognitive decline highlight the 

potential of EEG measures as a quantitative marker for disruptions in cognitive networks in 

ALS. 
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4.4. Motor and extra-motor functional changes in cognitively and behaviourally 

unaffected participants 

In ALSncbi, we observed significant longitudinal changes in spectral power, specifically in the 

𝛾 -band, localized to the frontal lobe. This suggests that cerebral changes extend beyond the 

primary motor cortex, a phenomenon previously linked to disease progression in the broader 

ALS population.(McMackin, Dukic, Costello, Pinto-Grau, McManus, et al., 2021; Menke et 

al., 2018) Evidence from diffusion tensor imaging has indicated a loss of structural connectivity 

spreading from motor regions to frontoparietal lobes(Verstraete et al., 2014), reinforcing the 

idea that ALS-related changes propagate from the primary motor cortex to other brain regions. 

In ALSncbi, we also noted an increase in connectivity (co-modulation) between the fronto-

sensorimotor regions and other regions, particularly in the δ and θ frequency bands, aligning 

with the hypothesis of a progressive spread of ALS-related changes beyond the primary motor 

cortex. 

Additionally, we observed a widespread decrease in β-band synchrony over time in ALSncbi, 

consistent with previous cross-sectional findings of reduced β-band synchrony in people with 

ALS (PwALS) (Table 2). This cross-sectional decrease in synchrony correlated with motor 

impairment and cortical atrophy, further highlighting its clinical relevance. 

To confirm the clinical significance of our observations regarding fronto-temporo-parietal 

changes over time, we correlated them with changes in clinical scores. Associations between 

EEG data and clinical measures were detected at the whole-brain level, not limited to specific 

brain regions. The correlations between spectral power and fine motor scores suggest the 

potential development of a prognostic biomarker for motor decline in the ALSncbi group. Co-

modulation between or within regions demonstrated links with neuropsychology, while 

synchrony showed association with motor function, as it was observed cross-sectionally.(Dukic 

et al., 2019) 

4.5. Associations between functional connectivity and survival in ALS subgroups 

In all ALS subgroups with distinct neuropsychological profiles (ALSci, ALSbi, ALSncbi), the 

rates of change in functional connectivity within specific brain regions showed robust 

associations with survival, as indicated by high correlation coefficients (𝑟  > 0.5) and strong 

statistical power (1-𝛽 .  > 0.9). 
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Within the ALSncbi group, we observed that an increased rate of change in α-band synchrony 

between the subcortical and occipital areas was linked to extended survival. On the opposite, 

an increased rate of change in δ-band co-modulation between the subcortical and sensorimotor 

network was associated with shorter survival. This suggests that alterations in connectivity 

within non-motor regions (other than central and parietal regions), may reflect the role of 

cerebral compensation in slowing down the disease progression, highlighting enhanced 

plasticity as a potential target for future treatment research. 

However, we also noted that increased rates of changes in frontotemporal and frontoparietal 

connectivity were associated with a less favorable prognosis, in participants with cognitive or 

behavioral impairments. In contrast, increased rate changes in connectivity within the 

sensorimotor network in ALSci were linked to longer survival.  

These findings imply the coexistence of distinct mechanisms contributing to either a faster or 

slower progression of the disease. Moreover, these mechanisms appear to vary among ALS 

subgroups characterised by different neuropsychological profiles. 

4.6. Limitations and considerations in longitudinal EEG studies for ALS 

A limitation of this study is the attrition in repeated longitudinal recordings, with only 7 out of 

124 participants attending the 5th session. Longitudinal changes can be more challenging to 

detect than cross-sectional differences due to the subtlety of measurements over time compared 

to the pronounced differences between the ALS and HC groups. While linear mixed-effects 

models can help account for missing data points, they do not eliminate potential bias. In this 

study, we assumed that missing recordings were missing at random, although they could be 

dependent on disease progression and therefore associated with EEG measures. In future 

research, obtaining longitudinal recordings from both PwALS and controls would allow for 

distinguishing between changes resulting from the disease and those associated with normal 

aging. 

Additionally, the categorisation into ALSci, ALSbi, and ALSncbi is ideally based on a full 

neuropsychological assessment rather than just relying on ECAS and BBI scores. Furthermore, 

while ECAS fluency scores serve as a valid measure of verbal fluency, it is a screening task 

with reduced sensitivity and specificity compared to full-battery tasks when assessing cognitive 

impairment.(Pinto-Grau et al., 2017)  
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5. Conclusion 

In conclusion, this study demonstrated significant longitudinal changes in neural activity within 

the fronto-temporal region in individuals with ALS. The investigation into distinct ALS 

subgroups, including ALSci, ALSbi, and ALSncbi, has provided valuable insights into the 

relationship between neural activity changes and cognitive or behavioral impairments. In the 

ALSci subgroup, a widespread increase in co-modulation was observed, strongly correlating 

with cognitive decline. Meanwhile, in the ALSbi subgroup, higher rates of change in co-

modulation between frontal and parietal lobes were associated with increased rates of change 

in BBI impairment. ALSncbi displayed a widespread decrease in β-band synchrony over time, 

with motor decline linked to neural activity changes in this subgroup. Importantly, survival in 

all subgroups was strongly associated with the rates of change in functional connectivity 

between specific brain regions, highlighting the potential clinical relevance of these findings. 

The study has provided evidence of the complex interplay between neural activity changes, 

cognitive and behavioral profiles, and disease progression in ALS. It suggests that different 

mechanisms may contribute to either a faster or slower progression of the disease, and these 

mechanisms vary among ALS subgroups characterised by different neuropsychological 

profiles. 

Future research should continue exploring the intricate dynamics of neural activity changes in 

ALS, which may hold the key to more personalised approaches in clinical trials and treatments. 

 

VI. Results: Data-driven classification of ALS patients based on resting-

state EEG trajectories  

The work described in this chapter is based on the previous chapter as well as on work from 

Mr Vlad Sirenko. Matlab code, that he developed for a parallel project, was adapted to the 

current analyses and further developed. 

1. Introduction 

The progression of ALS varies among individuals, resulting in differences in the rate of decline 

and the patterns of symptoms. This variability is evident not only in the rate of progression but 

also in the order in which symptoms appear, and the areas of the body affected. Such 

heterogeneity makes it challenging to predict the course of the disease (Bendotti et al., 2020). 

In a previous study conducted by our team, we discovered stable network-based subphenotypes 

of ALS by clustering RS-EEG measures (Dukic et al., 2022). This finding provided valuable 
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insights into the nature of the disease. Building on this foundation, our current study focuses 

on data-driven analysis of the longitudinal trajectories of spectral EEG measures. 

We applied clustering techniques on neural activity trajectories to identify significant and 

stable subgroups within the ALS population. By categorising the trajectories of resting-state 

spectral EEG measures over time, we aimed to uncover longitudinal patterns of network 

disruption that might remain hidden when analysing the entire ALS cohort as a whole. 

Furthermore, we sought to establish whether these identified subgroups align with specific 

clinical presentations, thereby enhancing our understanding of the clinical heterogeneity 

observed in individuals with ALS. The clinical profiles encompassed a range of factors, 

including motor function, respiratory health, cognitive decline, site of disease onset, and overall 

survival. 

In the course of a precedent study (chapter V), we identified distinct changes in neural activity 

and functional connectivity (represented by the co-modulation and synchrony of EEG signals) 

over time among different ALS subgroups with different neuropsychological profiles. 

Additionally, distinct longitudinal progressions in white and grey matter changes were 

observed based on factors such as the site of disease onset, cognitive profile, or C9orf72 status 

(Burgh et al., 2020). It is worth exploring whether a data-driven classification of longitudinal 

trajectories of neural activity aligns with clinical profiles. 

Our findings revealed distinct and statistically significant trajectories of neural activity 

progression in ALS subgroups. Moreover, the subgroups we identified exhibited significant 

differences in key clinical parameters, such as survival and decline in functional abilities (as 

indicated by longitudinal ALSFRS-R subscores). 

 

2. Methods 

2.1. Ethical approval 

Ethical approval was obtained from the Tallaght University Hospital/St. James's Hospital Joint 

Research Ethics Committee in Dublin [reference: 2014 Chairman’s Action 7 and 2019-05 List 

17 (01)], as described in General material and methods (Chapter IV) 

2.2. Participants 

2.2.1. Recruitment – inclusion and exclusion criteria 

Exclusion and inclusion criteria are described in Chapter IV, section 1.  



 

79 
 

2.2.2. Demographic profiles 

An ALS cohort of 124 individuals (male: 69.3%; age [mean ± standard deviation]: 63.13 ± 15) 

was part of this study. Individuals participated in as many as four follow-up recording sessions. 

The time intervals between each session were approximately 5.4 ± 2.1 months. The total 

number of recordings conducted throughout the study amounted to 249, with 116 of them being 

baseline recordings and 60, 44, 22, and 7 being follow-up recordings for sessions 1-4 

respectively. On average, patients attended two recording sessions, with a standard deviation 

of 1.2. Table 3 provides a breakdown of the demographic information for each follow-up 

session. 

Table 3: Demographic profiles. Numbers show mean ± standard deviation. The table details the gender proportions, the 

average ages at the time of recording and, when applicable, disease durations, delays between sessions, site of onset and the 

number of patients with FTD comorbidity. 

Groups N Male 

(%) 

Age 

(years) 

Disease 

duration 

(months) 

Follow-up 

intervals 

(months) 

ALSFRS-R 

scores 

Site of onset (N) ALS-FTD 

diagnosis 

(N)  Bulbar Spinal Thoracic 

Patients 

T1 
116 74 62 ± 11 25 ± 18 / 36 ± 7 22 86 5 5 

Patients 

T2 
60 77 60 ± 11 32 ± 19 4.9 ± 1.2 35 ± 8 14 43 2 2 

Patients 

T3 
44 80 60 ± 12 37 ± 19 4.9 ± 1.3 33 ± 9 8 34 1 2 

Patients 

T4 
22 86 61 ± 11 42 ± 24 4.9 ± 1.1 33 ± 7 2 19 1 1 

Patients 

T5 
7 57 57 ± 13 52 ± 31 6.5 ± 2.4 33 ± 6 0 6 1 0 

 

2.3. Experiment – EEG acquisition and Experimental paradigm 

EEG data were collected at rest as described in Chapter IV, section 2.  

2.4. Data analysis 

2.4.1. Processing of EEG data 

The EEG signals were preprocessed as described in Chapter IV, section  2.4.  

2.4.2. Longitudinal models 

Linear mixed-effects models were built to estimate the progressions of the EEG normalised 

spectral power. A detailed description of the models can be found in Chapter V. Subject-

specific slopes were extracted from the 90 longitudinal models (one per brain region) to 

become the features of the unsupervised model.  
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2.4.3. Clustering of longitudinal trajectories 

To follow up with our previous results (Chapter V) and cross-sectional observation of 

decreasing spectral power in lower frequency bands (θ to -bands) (Dukic et al., 2019), we 

applied a clustering pipeline on each frequency band independently.  

2.4.3.1. Feature selection 

Feature selection was applied to identify the most relevant features when grouping participants 

into meaningful clusters. The inclusion of irrelevant measures that do not differentiate between 

clusters may lead to cluster structure being masked by noise. By selecting appropriate features, 

we can improve the quality and efficiency of the clustering process and potentially gain better 

insights from the data (Dy & Brodley, 2004). The features were normalised to ensure that they 

would all contribute equally to the clustering results. The Sparse Hierarchical Clustering 

(SPARCL) algorithm was applied to the normalised features (Witten & Tibshirani, 2010). 

Traditional data dimensionality reduction methods, such as principal component analysis and 

non-negativity matrix factorization, may not always yield optimal separability for clustering. 

This algorithm overcomes this limitation by incorporating weighted feature selection using L1 

(lasso) and L2 penalties, guided by the gap statistic. By assigning weights to each feature (small 

gaps result in zero weights), the algorithm identifies and retains only the most relevant ones for 

clustering. Features with positive weights are considered meaningful and included in the 

subsequent clustering process. The possibility that all features were relevant was also 

considered. 

2.4.3.2. Clustering computation 

Participants' EEG longitudinal trajectories were analysed using a soft Gaussian mixture model, 

dividing them into two to seven subgroups. The trajectories are assumed to originate from a 

mixture of several Gaussian distributions, each having its set of unknown parameters. To define 

the parameters, a diagonal covariance matrix (shared between clusters) was fitted using the 

Expectation-Maximization algorithm, repeated five times. We chose a soft classification 

approach as it assigns probabilities of belonging to different classes, rather than a single 

definitive choice. This enables participants to potentially belong to multiple clusters 

simultaneously, which aligns well with the nature of the disease lying on a clinical spectrum 

that spans from ALS to frontotemporal dementia (FTD). This more nuanced approach has the 

potential to better capture the clinical manifestations along the spectrum. 
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2.4.3.3. Validation of the clustering results 

Identifying clusters represents merely the visible part of the iceberg, validation steps play a key 

role in ensuring the accuracy, reliability, and interpretability of the clustering results. 

Significance of the clusters – statistical analyses 

The optimal number of clusters (or participants subgroups) was determined using the silhouette 

criterion, which estimates the similarity within versus between clusters. The statistical 

significance of the clusters was assessed through permutation-based significance testing. This 

involved generating an empirical null distribution, with the null hypothesis that the dataset 

contained only random cluster structures. To build the null distribution, we adopted a sampling 

approach based on a uniform distribution with bounds aligned to the principal components of 

the data, following a computational method similar to that employed by Tibshirani et al. for 

the gap statistic (Tibshirani et al., 2001). This sampling method is more likely to produce 

artificial clusters, resulting in a more conservative test. We calculated the silhouette criterion 

for each dataset generated from random sampling (a total of 1000 generated datasets). 

Subsequently, we determined the p-values by calculating the proportion of times the silhouette 

criterion from the null sampled datasets exceeded the criterion obtained from the original 

dataset. In brief, this methodology allowed us to obtain an optimal number of subgroups, while 

also statistically validating the significance of the identified clusters. We checked that the 

separation between clusters was not the result of chance or white noise. An adaptive FDR 

(Benjamini et al., 2006) (q<.05) was applied to account for the multiple feature selection 

methods (no selection versus SPARCL)  and clustering algorithms (Soft GMM, hierarchical 

and spectral clustering).  

Robustness of the clusters 

To establish the robustness of the clusters, we iteratively left out 10% of the participants from 

the dataset. Subsequently, we performed feature selection and clustering again and checked 

whether the newly formed clusters were similar to the ones initially identified. The Adjusted 

Rand Index (ARI) was used to quantitatively measure the agreement between the original and 

perturbed clusters. The ARI had to be higher than 70% to deem the clusters as robust.  

Consistency of the clusters 

After defining the model based on 90% of the participants, we assessed its generalisability to 

the remaining 10% by employing a label propagation algorithm (Dukic et al., 2022). This 

additional step aimed to evaluate how well we could accurately classify the remaining 

participants. We again used the ARI to estimate the similarity with the results of the original 
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model, which ran on 100% of the participants. This validation step allowed us to validate the 

consistency of the identified clusters, ensuring that the results were not driven by specific 

subsets or biased towards particular participants. 

Comparison with the results of other clustering algorithms 

As a last validation step, we analysed the similarity with the results of other clustering 

algorithms: hierarchical and spectral clustering. The hierarchical clustering grouped data points 

sequentially based on their Euclidian distances. The data was organised in a tree-like structure 

by Ward’s linkage, which minimises the within-cluster variance (Ward, 1963).  This method 

is advantageous for exploratory purposes and relatively small datasets and was selected for its 

robustness to outliers (likely to form their own cluster). We additionally applied spectral 

clustering [Ng]. The Gaussian Similarity Kernel (GSK) was formed based on the Euclidian 

distance for all combinations of the number of ‘nearest-neighbours’ (2 to 7) and a scaling 

parameter σ among: {1.0, 1.25, 1.5, 1.75, 2.0}. An affinity matrix was obtained by averaging 

over all combinations, following the method described by Dukic et al. (Dukic et al., 2022). The 

eigenvectors of the normalised Laplacian of the affinity matrix were subsequently used to 

partition the data into clusters.  

The Chi-square statistic (or the Fisher test in the case of 2 clusters) was applied to test the null 

hypothesis of independence of the proportions in each cluster between the clustering 

algorithms.    

2.4.4. Longitudinal progression by cluster 

After categorising participants based on the longitudinal progression of their EEG spectral 

power, we re-evaluated the progression and its significance within each subgroup, following 

the same methodology described in Chapter V but tailored to the characteristics of each 

subgroup instead of the overall ALS group. To simplify and prevent the problem of having too 

many parameters to estimate, we combined the measurements of 90 brain regions into broader 

groups such as frontal, temporal, motor, parietal, occipital, and subcortical areas. This grouping 

was initially based on the five lobes of the brain: frontal, temporal, centro-parietal, occipital, 

and subcortical. However, due to the significance of the motor cortex in ALS, we further 

divided the centro-parietal lobe into the parietal lobe and the motor network. Additional details 

can be found in Appendix – Chapter IV, Supplementary note 1: Brain Networks. To account 

for multiple comparisons, we applied an adaptive FDR correction (Benjamini et al., 2006). 
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2.4.5. Clinical profiles by cluster 

Clinical profiles of the identified subgroups of participants were determined using the 

subscores of motor/respiratory (ALSFRS-R), cognitive (ECAS) and behavioural (BBI) decline 

(cross-sectional scores and longitudinal progressions) as well as the age, gender, medication 

(Riluzole), C9orf72 mutation, site of onset and survival. Significant clinical differences across 

the clusters were tested (for survival and for the ALSFRS-R, ECAS, BBI scores) using 

Kruskal–Wallis one-way ANOVA, or the Mann-Whitney U-test in the case of comparisons 

between only two clusters. The Chi-Square test of Independence was used to check for an 

association between the subgroups and categorical variables like the sites of onset. An adaptive 

FDR correction was applied (q<.05) to account for the multiple clinical measures.  

3. Results 

3.1. Stable clusters of longitudinal neural activity trajectories 

Through an analysis of longitudinal neural activity trajectories, distinct clusters were identified, 

demonstrating the presence of stable trajectory patterns across different ALS subgroups (Figure 

8). Notably, in the δ-band, we observed three stable clusters, while in the α-band, two clusters 

were identified. The β-band demonstrated five clusters and the 𝛾 -band exhibited three clusters. 

A 3D visualisation in principal components space of these clusters is presented in Figure 8. 

Frequency bands θ and 𝛾  did not show any significant stable clusters. However, the overall 

ALS group displayed significant longitudinal progressions in these two frequency bands (FDR, 

q<.05) (Figure 8). 

Our clustering solutions achieved statistical significance, as well as high levels of robustness 

and consistency, suggesting reproducibility of our findings. Additionally, the results aligned 

significantly with those of other clustering algorithms, further validating the credibility of our 

analysis. Table 4 provides details on the performed validation results (corresponding 

methodology can be found in section 2.4.3.3). 
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Figure 8: Summary of the clusters of longitudinal neural activity trajectories per frequency bands.Upper part of the table: Brainmaps are represented as a reminder of significant changes over 

time observed at group level. In 𝜃- and 𝛾 -band, the overall ALS group displayed significant longitudinal progressions of neural activity in the frontotemporal area (FDR, q<.05). Lower part of 

the table: Schematic representations of the identified clusters per frequency band  (if any) can be observed. In 𝛿-, 𝛼-, 𝛽- and 𝛾 , no significant progression over time was found but stable clusters 

were identified. For each frequency band, the clusters are visualised in principal components space (3 dimensions). An adaptive FDR (q<.05) was applied to account for the multiple feature 

selection methods (no selection versus SPARCL)  and clustering algorithms (Soft GMM, hierarchical and spectral clustering). 
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Table 4: Details of the validation analyses for the significant and stable clusters of longitudinal neural activity trajectories. For each frequency band in which stable clusters were observed, the 

feature selection method and clustering algorithm are indicated, as well as the results of statistical evaluations including: significance, robustness, consistency and comparison with other 

clustering algortihms. The feature selection methods included the Sparse Hierarchical Clustering (SPARCL) algorithm or the inclusion of all features. The significance of the clustering models 

was estimated using permutation-based testing. Significance was reached for clusters obtained using Soft Gaussian mixture modelling (GMM) (for 𝛿, 𝛼, 𝛽-band) and using the hierarchical 

algorithm (𝛾 -band). An adaptive FDR method (Benjamini et al., 2006) (q<.05) was applied to address the multiplicity arising from the various feature selection methods (no selection versus 

SPARCL) and clustering algorithms (Soft GMM, hierarchical, and spectral clustering). To ensure cluster robustness, 10% of participants were excluded, then feature selection and clustering 

were conducted again on the remaining participants to assess similarity with the initial clusters, measured using the adjusted rand index (ARI). Additionally, a label propagation algorithm was 

applied on the excluded 10% of participants and results were compared using ARI to validate cluster consistency. Comparison with another clustering algorithm (hierarchical or soft GMM, 

depending on the original algorithm, and spectral clustering) was evaluated using Chi-square statistic (or the Fisher test in the case of 2 clusters); the resulting p-values are shown in the last two 

columns of the table.    

Freq Feature selection 

method 

Clustering 

algorithm 

p-

value 

Robustness 

(ARI, %) 

Consistency 

(ARI, %) 

Comparison with 

hierarchical/GMM clustering 

Comparison with 

spectral clustering 

𝛿 - Soft GMM .001 91 86 2 ∙ 10   (Chi2 test) 0.01 (Chi2 test) 

𝛼 SPARCL Soft GMM .001 94 84 6 ∙ 10  (Fisher test) 2 ∙ 10  (Chi2 test) 

𝛽 SPARCL Soft GMM .002 82 70 2 ∙ 10  (Chi2 test) 9 ∙ 10  (Chi2 test) 

𝛾  - Hierarchical .002 80 65 4 ∙ 10  (Chi2 test)  2 ∙ 10  (Chi2 test) 
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3.2. Distinct longitudinal progression of neural activity in ALS subgroups   

The analysis of longitudinal trajectories of neural activity in the identified subgroups (or 

clusters) revealed evidence of distinct and statistically significant progression over time 

(q<.05). Significant progressions were observed within specific frequency bands, where no 

such progression was observed in the overall ALS group (Figure 9). In α-band, cluster 1 

(depicted in red) exhibited a noticeable decrease in activity within the temporal region, while 

cluster 2 (shown in blue) demonstrated an increase in activity within the central/parietal 

regions. In β-band, one cluster (in blue) displayed a significant decrease over time in the 

temporal area. No significant progression over time was observed for the clusters identified in 

the δ- and 𝛾 -bands. 

 
Figure 9: Significant longitudinal progression of neural activity in specific clusters. An adaptive FDR correction was applied 

to account for the multiple brain regions (q<.05).  

 

3.3. Distinct prognostic and functional decline in ALS subgroups 

The analysis of clinical profiles using clinical functional scores revealed distinct characteristics 

of specific ALS subgroups or clusters (Figure 10). In the clusters identified from the 𝛼-band 

neural activity trajectories, we observed significant differences in survival (Mann-Whitney U-

test, p = 0.0002, r = -0.2, AUC = 0.6). Notably, Cluster 1 (n= 11, depicted in blue) exhibited 

the longest survival, with an average of 9.4 years, while Cluster 2 (n =113, represented in red) 

had the shortest survival, with an average of 3.4 years. Additionally, the two α-band clusters 

were associated with significant differences in the longitudinal decrease in ALSFRS-R 
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subscores, encompassing upper limbs, lower limbs, bulbar, and respiratory symptoms. Cluster 

2 demonstrated a faster decline compared to Cluster 1 in all four functional subscores. The 

results for each subscore were as follows: upper limbs (p = 0.0003, r = 0.6, AUC = 0.8), lower 

limbs (p = 0.0003, r = 0.5, AUC = 0.8), bulbar (p = 0.002, r = 0.5, AUC = 0.7), and respiratory 

(p = 0.0001, r = 0.6, AUC = 0.8). 

There were no significant differences between the clusters in terms of age, gender, medication, 

C9orf72 repeat expansion status, site of onset or cognitive scores (q >.05). 

 

 

 

 
Figure 10: Distinct clinical profiles of ALS subgroups derived from 𝛼-band neural activity trajectories over time. Cluster 1 

(n= 11) is depicted in blue while cluster 2 (n = 113) is represented in red. * p<.05, ** p<.01, *** p<.001. An adaptive FDR 

correction was applied to account for the multiple clinical measures (q<.05). 

4. Discussion 

We demonstrated that by analysing the longitudinal trajectories of neural activity through high-

density quantitative EEG, it is possible to identify distinct ALS subgroups. These subgroups, 

identified via clustering, exhibited distinct patterns of brain activity progression in specific 

regions, that were undetectable when examining the group as a whole (see Chapter V for 

details). The longitudinal neural activity profiles showed robustness upon reassessment and 

consistency when extended to additional participants. Additionally, the identified ALS 

subgroups were associated with different prognostic outcomes. 
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4.1. ALS subgroups with distinct longitudinal progressions of brain activity  

Our investigation of frequency-specific neural activity progressions over time showed stable 

and statistically significant ALS subgroups. Despite the variability among ALS patients, there 

are consistent patterns of neural activity changes over time that can be grouped into distinct 

clusters (or subgroups). In frequency bands where no progression of neural activity over time 

was observed in the whole ALS group, it was possible to detect subgroups with distinct 

longitudinal progressions of neural activity (Figure 8). By grouping patients based on their 

neural activity patterns, we were able to detect meaningful progression trends that were not 

apparent when considering the entire ALS population. The number of stable clusters varied 

across different frequency bands. For example, in the δ-band, three stable clusters were 

identified, while the α-band had two clusters, the β-band had five clusters, and the 𝛾 -band had 

three clusters. This suggests that different frequency bands might exhibit different levels of 

heterogeneity in neural activity patterns. For instance, individuals with ALS in a completely 

locked-in state (CLIS) exhibited a shift from higher (𝛼  to 𝛾) toward lower frequency bands 

(𝛿 to 𝜃) (Maruyama et al., 2021). In earlier ALS stages, 𝜃-band neural activity was observed 

to decrease longitudinal (Nasseroleslami et al., 2019).  

The existence of such ALS subgroups, based on longitudinal EEG patterns, could be key to 

understanding ALS mechanisms. The clinical heterogeneity observed in ALS becomes critical 

in the context of drug development, as conventional clinical stratification parameters exhibit 

limited sensitivity as predictors of disease advancement and survival (Taga & Maragakis, 2018). 

The identification of these distinctive subgroups, with differing longitudinal neural activity 

patterns, may enhance our understanding of ALS progression and provide clues for more 

targeted therapeutic interventions. 

4.2. Neural activity longitudinal patterns in α-band subgroups: implications for 

survival and functional decline 

We observed disparities in both survival rates and the progression of functional decline 

between the two α-band subgroups. Cluster 2 within the α-band, represented in red, exhibited 

a faster decline across all four functional subscores: upper limbs, lower limbs, bulbar, and 

respiratory symptoms. These findings implicate that the neural activity patterns within the α-

band clusters may serve as indicators of the rate of functional decline in distinct symptom 

domains. Individuals with longer survival (averaging 9.4 years) and a slower functional decline 

demonstrated increased α-band brain activity across central and parietal regions. Conversely, 

those with shorter survival (averaging 3.4 years) displayed reduce in α-band activity over time 
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localised in the temporal region (Figure 9, Figure 10).  In β-band, a specific cluster (reported 

in blue) also exhibited a significant decrease in activity over time, particularly within the 

temporal area. While previous observations indicated a cross-sectional decrease in low-

frequency bands (from delta to beta) within temporal and posterior regions (Dukic et al., 2019), 

our study identified a pronounced longitudinal increase in neural activity within a subgroup 

characterised by extended survival. This distinct progression within the α-band clusters might 

reflect different underlying mechanisms or responses to the disease. 

While an extended disease duration could contribute to more degeneration time, the increase 

in α-band neural activity within a subgroup displaying longer survival might also be attributed 

to protective or compensatory mechanisms. Van der Burgh et al. noted significant cortical 

thinning in the primary motor and frontotemporal regions among individuals with shorter 

disease duration from onset to scan (less than 9-10 months, likely indicative of earlier stages) 

(Van Der Burgh, 2020). However, they did not observe further atrophy in follow-up 

examinations for individuals with longer disease durations at baseline (over 13 months). The 

longitudinal patterns of functional connectivity (fractional anisotropy, DTI) also exhibited 

divergence between the shorter and longer disease duration groups. It appears that substantial 

atrophy occurs at an early stage, with protective mechanisms possibly contributing to extended 

disease durations. Most neuroimaging studies typically occur later after onset (over 20-25 

months after onset). These studies mainly revealed progressive atrophy in the primary motor 

and frontal regions (grey matter) (Bede & Hardiman, 2018; Menke et al., 2018). The 

progression of ALS has previously been interpreted either as a ‘connectivity-based’ spread 

(Christidi et al., 2019; Schmidt et al., 2016) or a contiguous spread (Braak et al., 2013), 

following the propagation of TDP-43 aggregates. However, Cardenas-Blanco et al. observed 

no longitudinal grey matter atrophy across three timepoints (spaced approximately 3 months 

apart) (Cardenas-Blanco et al., 2016). Similarly, Trojsi et al. did not observe any grey matter 

changes over time in a one-year study.  Such inconsistencies may be attributed to 

heterogeneous mechanisms (Trojsi et al., 2020). The absence of longitudinal changes longer 

after onset could be attributed to more acute variations in neurodegenerative mechanisms, as 

suggested by our identification of subgroups based on patterns of longitudinal neural activity. 

While atrophy may progress in some individuals, it could decelerate in others, which would 

represent a crucial distinction. 
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4.3. Patterns of longitudinal neural activity and cognitive impairment 

In the previous chapter (Chapter V), we presented our findings which demonstrated distinct 

progressions in EEG measures over time among individuals with different neuropsychological 

profiles. Despite these variations in spectral EEG measures over time, none of the identified 

subgroups based on the patterns of neural activity showed significant differences in terms of 

cognition or behaviour. However, by conducting further analyses to cluster functional 

connectivity trajectories over time, we may identify clusters associated with specific cognitive 

profiles. A recent MRI study established a connection between disruption in structural 

connectivity and motor impairment, as well as disruption in functional connectivity and 

cognitive/behavioural impairment (Basaia et al., 2020). When examining ALS participants 

from a cross-sectional perspective, those with impaired cognition and/or behaviour exhibited 

atrophy, particularly in the frontotemporal regions. Conversely, participants with normal 

cognition demonstrated atrophy primarily focused in the motor region (Agosta et al., 2016; 

Illán-Gala et al., 2020). This insight highlights the relationship between neural changes and 

cognitive/behavioural status. 

Our own observation of a decline in neural activity over time within the temporal region for 

certain subgroups aligns with the progressive deterioration of the frontotemporal network 

observed by Trojsi et al (Trojsi et al., 2020). These changes in functional connectivity appeared 

to be distinct from changes in cognition, leading the authors to hypothesize that they may occur 

before the onset of cognitive or behavioural symptoms. 

4.4. Limitations  

The challenge of working with relatively small datasets introduced uncertainties in our 

clustering efforts. Other clustering solutions are likely to exist. To address this, we 

implemented validation analyses to mitigate a potential lack of reproducibility.  

As outlined in Chapter V, our longitudinal models may suffer from non-random dropout. We 

additionally recognise the potential of using HC longitudinal data to disentangle the natural 

ageing processes and the progression of ALS, as discussed in Chapter V.  

5. Conclusion 

In conclusion, the results of this study highlight the importance of considering longitudinal 

trajectories of neural activity within distinct subgroups or clusters of ALS patients. The 

findings emphasise the heterogeneity of ALS and suggest that analysing neural activity 

longitudinal patterns can provide valuable insights into disease progression, survival outcomes, 
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and functional decline. This information could potentially contribute to a deeper understanding 

of the underlying mechanisms of ALS and guide more personalised approaches to diagnosis, 

treatment, and patient care. 

 



 

 

VII. Results: Biomarkers of ALS based on dynamic resting-state 

episodes  

The study described in this section is published in the peer-reviewed journal Human Brain 

Mapping:  

Metzger M., Dukic S., et al., Functional network dynamics revealed by EEG microstates reflect 

cognitive decline in Amyotrophic lateral sclerosis. 

Figures, tables, results and discussion sections comes in full from this manuscript (combined 

main section and supplementary material). Introduction and methods sections from this 

manuscript have been abbreviated to avoid repetition of the contents of previous chapters. 

1. Introduction 
Whole-brain resting-state electroencephalographic (EEG) studies can provide robust evidence 

of motor and extra-motor degeneration in ALS. The most recent findings of frequency domain 

and source localisation analyses include increased co-modulation in the fronto-parietal area (𝜃, 

𝛾-band), and decreased synchrony in the fronto-temporal areas (𝛿, 𝜃-band) (Dukic et al., 2019; 

Nasseroleslami et al., 2019). Although abnormal functional connectivity in both sensor and 

source-space has been shown, there is limited understanding of the temporal dynamics of brain 

networks in ALS. 

Insights into the temporal dynamics of brain networks can be gained through the analysis of 

brain microstates, as described in Chapter II. Microstates are defined as transient, quasi-stable 

electric field configurations that repeat sequentially over time within an EEG recording. 

Microstate analysis involves identifying recurring topographical patterns of spontaneous neural 

activity across multiple time points and categorizing the EEG topography at each time point 

into one of these distinct microstate classes. Microstate transitions were originally attributed to 

changes in the coordination of synaptic activity (Lehmann et al., 1987). These distinct re-

occurring topographies of the scalp electrical potential (‘scalp maps’) have a duration spanning 

from milliseconds to seconds. Four canonical classes (labelled A-D) of microstates have been 

repeatedly described and have been associated with well-established resting-state networks 

(RSNs) in fMRI, based on the estimated brain regions generating each microstate (Michel & 

Koenig, 2018). Analysing these microstates allows us to investigate changes in the temporal 

dynamics of brain networks instead of changes in functional connectivity between networks, 

which is more typically examined in EEG studies (Gschwind et al., 2016). 



 

 

Changes in the properties of microstates have been previously associated with altered states of 

consciousness (Bai et al., 2021; Bréchet & Michel, 2022; Zanesco et al., 2021) and with 

neurological or neuropsychiatric conditions (Al Zoubi et al., 2019; Dierks et al., 1997; Faber 

et al., 2021; Gschwind et al., 2015; Koenig et al., 1999; Michel & Koenig, 2018; Nishida et al., 

2013). Alterations in microstate characteristics are thought to represent alterations in the 

rhythm of neural processes. However, it is the  microstates’ temporal dependencies that can 

perhaps give us the greatest insight into how brain function is altered in neurodegenerative 

diseases like ALS. Neurological conditions seem to alter the brain’s functional resting state 

transitions; forcing the brain to stay and/or change to specific functional networks. By 

examining the temporal dependencies between microstate sequences we can investigate how 

the transitions between functional brain networks are altered in disease. Temporal 

dependencies are modulated in mood or mental disorders, including FTD (Al Zoubi et al., 2019; 

Lehmann et al., 2005; Nishida et al., 2013). In Alzheimer's disease, in particular, transition 

patterns appear random while in healthy controls transitions between specific classes are 

preferred (Nishida et al., 2013).  

These findings suggest that EEG microstates have strong potential as a tool for detecting and 

measuring neural abnormalities in individuals with ALS, particularly as a task-free assessment 

of cognitive and behavioural function. Microstate computation exploits the activity that 

pertains to specific brain regions (by clustering EEG topographies) and therefore microstate 

classes are hypothesised to reflect specific functional networks, as evidenced by studies 

examining the relationship between resting-state networks and microstates. By quantifying 

microstate properties, we gain the ability to investigate neural network activity.   

The purpose of this study was to test whether microstate properties can differentiate ALS and 

HC groups, in standard characteristics (e.g., frequency of occurrence, duration) and temporal 

dependencies (e.g., transition probabilities and entropy in microstate sequences). This study 

also examined whether patients exhibit changes in microstate properties over time and whether 

microstate properties correlate with clinical presentation. To preface our results, RS EEG 

microstate analysis suggests that ALS affects both sensory and ‘higher-order’ networks, 

resulting in reduced dynamicity in brain state transitions. Microstate properties may be a useful 

ALS prognostic marker for cognitive decline and disease outcome. 



 

 

2. Methods 
2.1. Ethical approval 

Ethical approval was obtained from the Tallaght University Hospital/St. James's Hospital Joint 

Research Ethics Committee in Dublin [reference: 2014 Chairman’s Action 7 and 2019-05 List 

17 (01)], as described in General material and methods (Chapter IV) 

2.2. Participants 
2.2.1. Recruitment – inclusion and exclusion criteria 

Exclusion and inclusion criteria are described in Chapter IV, section 1.  

2.2.2. Demographic profiles 
EEG data recorded from 129 individuals with ALS (m: 77%; mean age: 60.89 +/- 11.4) and 78 

age-matched healthy controls (m: 36%; mean age: 60 +/- 12) were analysed. Four follow-up 

sessions were conducted for patients, approximately 5.4 +/- 2.1 months apart. Patients attended 

an average of 2 +/- 1.2 recording sessions. Detailed information about the demographic of the 

dataset can be found in Table 5.  

Table 5: Demographic profile for controls and patients. Up to five recording sessions were scheduled for the patients with in-
between time delays representing delays between each session. The table details the gender proportions, the average ages at 
recording and, when applicable, disease durations, delays between sessions, site of onset and the number of patients with FTD 
comorbidity. Numbers show mean ± standard deviation. 

Groups N 
Male 
(%) 

Age 
(years) 

Disease 
duration 
(months) 

Follow-up 
intervals 
(months) 

ALSFRS-
R scores 

Site of onset (N) ALS-FTD 
diagnosis 

(N) Bulbar Spinal Thoracic 

Controls  78 36 60 ∓ 12 / / / / / / / 

Patients 
T1 

121 75 62 ∓ 11 25 ∓ 18 / 36 ∓ 7 22 86 5 5 

Patients 
T2 

60 77 60 ∓ 11 32 ∓ 19 4.9 ∓ 1.2 35 ∓ 8 14 43 2 2 

Patients 
T3 

45 80 61 ∓ 12 37 ∓ 19 5.3 ∓ 2.8 33 ∓ 9 8 34 1 2 

Patients 
T4 

22 86 61 ∓ 11 42 ∓ 24 4.9 ∓ 1.1 33 ∓ 7 2 19 1 1 

Patients 
T5 

7 57 57 ∓ 13 52 ∓ 31 6.5 ∓ 2.4 33 ∓ 6 0 6 1 0 

 
2.3. Experiment – EEG acquisition and Experimental paradigm 

EEG data were collected at rest as described in Chapter IV, section 2.  

2.4. Data analysis 
2.4.1. Preprocessing of EEG data 

The EEG signals were preprocessed as described in Chapter IV, section  2.4. 

2.4.2. Computation of the EEG microstates 
To compute microstates, EEG data were low-pass filtered at 30Hz (zero-phase, Finite Impulse 

Response - ‘Brickwall’ filter, applied in dual pass form), as commonly recommended in 

microstate studies (Michel & Koenig, 2018). The computation steps following data pre-

processing are represented in Figure 11. The global mean-field power (GFP; representing the 



 

 

spatial standard deviation) was calculated for each participant with a Gaussian weighted 

moving average as a smoothing method (window of five timepoints or around 10ms) (Al Zoubi 

et al., 2019). Next, EEG topographies were extracted from the signals at 1000 randomly chosen 

instances of local maxima of the GFP curve (12 ∓ 2 % of the total number of peaks, calculated 

using a peak-finding algorithm). Only 1000, rather than all, peaks of GFP were used for each 

participant to facilitate computation with a relatively large dataset (Poulsen et al., 2018). These 

EEG topographies at GFP peaks were used to obtain the optimal signal-to-noise ratio, whereby 

peaks higher than 1.5 standard deviations from the mean were excluded from the selection. 

Very high GFP often represents non-neural activity and therefore needs to be rejected. Peaks 

with less than 10 ms delay in between were also excluded (Poulsen et al., 2018), as this 

minimum peak distance guarantees that all peaks are distinct. The selected EEG topographies 

were submitted to a modified K-means clustering algorithm, implemented in the Microstate 

EEGlab toolbox (Poulsen et al., 2018). The algorithm initially defines K microstate prototypes 

randomly selected from the EEG data. Each EEG sample is assigned to a cluster by minimising 

the Euclidean distance between the selected EEG maps and the associated prototype. New 

cluster prototypes are iteratively defined until convergence or a maximal number of repetitions 

(50 repetitions in our case) is reached. The algorithm models the signal strength and applies a 

constraint to only have one microstate active at a time.This differs from the original K-means 

algorithm by being polarity invariant (assigning opposite maps to the same cluster). The 

rationale for this approach is that the scalp potentials measured by EEG are generated by 

fluctuations in the synchronous firing of neurons; therefore an inverse polarity of the scalp 

potential field may happen while the same neuronal sources generate oscillations in the brain 

(Brodbeck et al., 2012; Michel & Koenig, 2018).  

The K-means algorithm was chosen over the agglomerative hierarchical clustering (AAHC) as 

it has a shorter computational time and both algorithms have been shown to result in similar 

microstates (Murray et al., 2008). The optimal number of clusters (or microstate classes) was 

selected using a K=3 cross-validation approach on a subset of 3-11 maps. Microstate prototypes 

were identified from two-thirds of the concatenated GFP peaks and backfitted to the remaining 

data points (the remaining third of the GFP peaks was the test set), allowing for evaluation of 

the prototypes' performance on the test set using measures of fit like global explained variance 

and cross-validation criterion (Pascual-Marqui et al., 1995). The cross-validation method 

ensures the stability of the results, i.e. not getting microstate cluster representing noise. To 

derive sequences of microstates, the grand mean across groups prototypes were then back-fitted 



 

 

to the original EEG recordings for both the HC and the ALS groups. Each EEG sample was 

associated with a prototype class using global map dissimilarity. Microstate time courses 

underwent temporal smoothing to minimize the influence of fast fluctuations, which may be 

caused by noise. Short microstate (<20ms) were modified to the next most probable microstate 

class (Poulsen et al., 2018). While temporal smoothing is beneficial for reducing noise-related 

artefacts, it is not suitable when investigating temporal dependencies within the microstate 

sequence. For this aspect of the study, temporal smoothing was intentionally omitted to 

preserve the inherent temporal structure of the microstate sequence, following the 

recommendation by von Wegner et al. (von Wegner et al., 2017).  

 

 



 

 

 
Figure 11: Microstate analysis pipeline. Description of the method used to compute microstates from EEG data. First, a low-
pass filter was applied, and the global mean-field amplitude (GFP) was calculated for each participant. Next, EEG maps were 
extracted from the signals at 1000 randomly chosen local maxima of the GFP curve and a modified K-means clustering 
algorithm was used to cluster these maps into microstate classes. Finally, the microstate prototypes were back-fitted to the 
original EEG recordings to derive sequences of microstates for both the HC and the ALS groups. 



 

 

 
Figure 12: Microstates’ stages of analysis. A. ALS and HC cohorts were compared cross-sectionally based on the microstate 
characteristics extracted from the sequence of microstates. The longitudinal changes of the extracted microstate 
characteristics were additionally examined. Both cross-sectional and longitudinal characteristics of the microstate sequences 
were analysed in association with clinical measures.  B. The dynamics hidden inside the sequence of microstates were studied 
based on information theory. 

2.4.3. EEG microstates analysis 
After the microstate sequences were computed, two types of analysis were conducted. First, 

the standard microstate characteristics were extracted, including the global explained variance, 

occurrence, duration and transition probabilities. Three categories of statistical analyses were 

conducted on those properties: 1) pairwise comparisons between HC and ALS groups, 2) 

longitudinal analysis in individuals with ALS over the progression of the disease and 3) cross-

sectional and longitudinal characteristics of the microstate sequences were analysed with 

respect to the clinical scores. 

Secondly, the temporal dependencies between microstate classes were examined using 

Shannon entropy and transition probabilities to quantify the predictability and randomness of 

the microstate sequence (von Wegner et al., 2017). The sequences of microstates were tested 

for Markovianity of order 0 to 2. The time-lagged mutual information between microstates, as 

well as the stationarity and symmetry of the transition probability matrices were also assessed. 

These properties have the advantage of being independent of the method used to compute the 

microstates (von Wegner et al., 2018).  

2.4.3.1. Standard properties of microstates  

The global explained variance (GEV) measures how well each microstate class can explain the 

variance in the EEG signal. Basic temporal parameters were determined, including the average 



 

 

duration (𝑚𝑠) of a microstate class, its frequency of occurrence (𝑠 ), and the fraction of time 

it is active during the recording (i.e. coverage). Transition probabilities were also derived from 

the sequences of microstates to quantify how often one class precedes another. The 

probabilities were not adjusted for class occurrences or durations, as we chose to report them 

both independently (Poulsen et al., 2018).  

2.4.3.2. Statistical analysis 

Cross-sectional pairwise comparisons 
Mann-Whitney U tests were computed for each microstate parameter (coverage, occurrence, 

duration and transition probability) to compare the HC and ALS cohorts. A 10% adaptive False 

Discovery Rate (FDR) correction was used to account for the four microstate classes (or twelve 

transitions between classes), which was based on the Benjamini & Krieger method (Benjamini 

et al., 2006) as implemented in the Empirical Bayesian inference (EBI) toolbox 

(Nasseroleslami, 2018). The effect sizes were derived from the U-statistics using the rank-

biserial correlation coefficient (Cureton, 1956): 𝑟 =
∙

, as well as the Area Under the 

Receiver Operating Characteristic Curve (Hajian-Tilaki, 2013): 𝐴𝑈𝑅𝑂𝐶 =
∙

 . A post-hoc 

EBI-based estimation of the statistical power was then calculated (Nasseroleslami, 2018).  

Microstate validation step 
A K=5 cross-validation analysis was performed on the healthy-controls group. The microstate 

prototypes were extracted from a portion of the HC and then backfitted on another independent 

set of HC (test set). No significant difference could be found between cross-validation folds 

testing sets for any of the four measures of interest: occurrence, coverage, duration, GEV 

(Kruskal–Wallis one-way ANOVA, p = 0.88). 

Longitudinal changes 
In the ALS group, mixed-effects models were used to examine the changes in microstate 

parameters and clinical scores (from ALSFRS-R, ECAS and BBI tests) over time as the disease 

progressed. Mixed-effects models were implemented with an intercept and a time-related slope, 

reflecting the rate of change per month (from 5 to 113 months after onset). Subject-specific 

random-effects were included: a random intercept was chosen for the longitudinal model to 

allow for different baseline values across subjects and a random slope was chosen to allow for 

different rates of change over time. Age, gender and site of onset as random-effects did not 

improve the model fit (likelihood ratio test) and were therefore not included in the final model. 

Education as a random-effect was deemed relevant for the ECAS model only. A specific 

deviation from intercept and slope, representing the level of education, was added (as random-



 

 

effect) to the model of cognitive performance. The longitudinal model of cognition also 

contained an additional fixed-effect term to account for the three different versions of the 

ECAS questionnaire. The mixed-effects parameters were estimated using restricted maximum 

likelihood. The assumptions of normal distributions, independence, and constant variance of 

the residuals were checked (using the Kolmogorov–Smirnov test (q<.05); Ljung-Box Q-test 

(q<.05); Engle’s ARCH test (q<.05) or diagnostic plots).  A rank-based inverse normal 

transformation was applied in cases where the residuals did not follow a normal distribution 

(Beasley et al., 2009). To evaluate the linearity of the parameters' progressions over time, 

quadratic polynomial regression models were estimated per subject (when data from at least 

three recordings were available). The quadratic coefficients did not significantly differ from 

zero (q<.05), so only first-order models were kept for further analyses. All patients were 

included in the final models, regardless of the number of recording sessions they attended as 

mixed-effects models can adjust for missing data. To assess the repeatability of the models, the 

variances of the linear mixed-effects models were analyzed and decomposed to determine the 

proportion of variance attributed to various sources, including within-person and between-

person measures (Rights & Sterba, 2021; Schielzeth & Nakagawa, 2022).  

Correlations with clinical measures 
Spearman rank correlations were computed between the microstate parameters and cross-

sectional physical and cognitive clinical scores in the ALS group (survival, ALSFRS-R and 

ECAS scores at the first timepoint). The correlation between the variables that describe the 

microstate properties and clinical scores over time was also estimated. We evaluated 

correlations separately for those with cognitive impairment (ALSci; based on ECAS score), 

behavioural impairment (ALSbi; based on BBI scores) and those without cognitive or 

behavioural impairment, as people with ALS that have extramotor impairments exhibit 

different changes in functional connectivity (Burgh et al., 2020; Temp et al., 2021). An adaptive 

FDR correction was applied and the statistical power was estimated using EBI (Nasseroleslami, 

2018) to account for the multiple clinical measures.  

Gender, age and medication 
To evaluate the effect of age, gender or medication on the observed EEG microstate properties, 

additional statistical tests were performed (Fisher’s test, Kruskal-Wallis analysis of variance 

and linear regression). We applied linear modelling to verify if the pairwise differences 

between patients and controls were driven by the significant differences in gender. For each 

microstate class and parameter, we assessed the differences between HC and ALS patients (at 

T1), while controlling for gender. In Wilkinson notation, the model would be described as: 



 

 

Parameter ~ Group + Gender. The rank-based inverse normal transformation was applied to 

ensure the normality of the observations. The previously observed group effects, by pairwise 

comparisons, were again significant while controlling for gender (FDR, q=0.05).  

2.4.3.3. Information-theoretical properties to assess temporal dependencies 

We performed an information-theoretical analysis of the temporal dependencies between 

microstate classes using Shannon entropy and by interrogating the transition probabilities 

(extracting their Markov properties, stationarity and symmetry), Figure 12, (von Wegner et al., 

2017, 2018). Studying entropy-related properties is a way to determine the predictability of the 

next microstate class. A sequence with only one microstate class appearing (amongst the four 

classes labelled A, B, C and D) would represent maximum predictability and therefore 

minimum entropy (e.g. only  B). We then derived the auto-information function (AIF) from 

the entropy values. AIF measures the time-lagged mutual information between microstates (it 

is an approximation of the auto-correlation function for nonmetric data). The AIF measures the 

time-lagged mutual information between microstates with time lag 𝜏, which can be estimated 

as the difference between the marginal and conditional entropies: 𝐼(𝜏) = 𝐻(𝑀 ) −

 𝐻(𝑀 |𝑀 ). The less ‘uncertainty’ about the time-lagged microstate 𝑀 , when 𝑀  is 

known, the more information is shared between the states and the higher the AIF is. The AIF 

was evaluated for all microstate classes as well as the contribution to AIF by each microstate 

class (the time-lagged mutual-information for each microstate class separately). 

Then we examined the features of the transition probabilities. We first tested for Markovianity 

order 0 to 2, to check whether the transition probabilities rely on the current class, the previous 

class, or two previous classes of the sequence of microstates: with the null hypothesis of no 

memory effect. The stationarity of the transition probability matrix was then evaluated based 

on the homogeneity of non-overlapping blocks of varying lengths. Stationarity means that the 

frequency of any transition between two classes does not depend on time and would not be 

significantly different in different blocks (von Wegner et al., 2017, 2018). Finally, the 

symmetry of the transition matrix was assessed to check whether the probability to transition 

from a class 𝑀  to another class 𝑀  was equivalent to the probability of passing from 𝑀  to 𝑀 . 

Statistical significance for symmetry, stationarity and the Markovianity was estimated using 

G-tests (i.e. maximum-likelihood significance tests) and chi-squared distributions (Al Zoubi et 

al., 2019; von Wegner et al., 2017, 2018). 

 



 

 

3. Results 
3.1. Four microstate prototypes identified in HC and ALS cohorts 

 
The topographies of the microstate prototypes and the optimal number of clusters identified in 

both HC and ALS groups (Figure 13) were similar to those conventionally reported in the 

literature (Michel & Koenig, 2018).  

 
Figure 13: Spatial topographies of the four microstate classes labelled A-D for both the HC and the ALS groups. The polarity 
is not taken into account. The microstate maps were reordered, according to their topographies, to fit the literature. The 
contribution of each class to the sequence of microstates is indicated below (in percentage).  

The portion of recordings explained by the four microstate prototypes (i.e., explained variance) 

was 58% for HC and 54% for the ALS group. The four topographies and the distributions of 

the explained variance did not differ between the two groups (t-test, p>0.9  and 2-sample 

Kolmogorov Smirnov test, p = 0.7, respectively).  

3.2. Modulation of microstate properties by ALS disease 
3.2.1. Distinct microstate properties between HC and ALS cohorts 

There were no differences in the GEV distributions of the microstate classes between ALS 

(measured at the first timepoint) and control groups after FDR correction (q<.1). Microstate 

class B, in particular, seems to be most affected by ALS. The occurrences of both microstate 

classes A and B were higher in the ALS group (Figure 14, occurrence A: p = 0.03, r= -0.2, 1-

β = 0.50, AUC = 0.59; occurrence B: p = 0.008, r = -0.2, 1-β = 0.65, AUC = 0.60). The 

coverages of classes A and B were also significantly higher in the ALS group (Figure 14,  



 

 

duration A: p = 0.04, r = -0.2, 1-β = 0.41, AUC = 0.58; duration D: p = 0.02, r = 0.2, 1-β = 

0.48, AUC = 0.60).  

The transition probabilities were significantly different between groups for 7 out of 12 

transitions (Figure 15). The largest difference between HC and ALS groups was observed for 

the transition of microstate C to microstate D (𝑝 = 0.004, 𝑟 = 0.3, 1 − β =  0.74, AUC =

0.63). The transition C→D was more frequent in healthy controls.  

 

Figure 14: Distributions of specific characteristics for the microstate classes (A-D) for HC and ALS cohorts. Significant 
differences were observed for the coverage of classes A and B (coverage A: p = 0.02; coverage B: p = 0.03), the occurrence 
of classes A and B (occurrence A: p = 0.03; occurrence B: p = 0.008), and a significant difference was also observed for the 
duration of classes A and D microstate (duration A: p = 0.04, duration D: p = 0.02). No significant difference was observed 
for the GEV of the microstates. All effect sizes were moderate (|r| = 0.2). Benjamini & Krieger FDR, q <0. 1, was applied. 
∗ 𝑝 ≤  .05, ∗∗ 𝑝 ≤  .01. 



 

 

  
Figure 15: Significant differences in the transition probabilities for the microstates classes (A-D) between HC and ALS cohorts 
(7 out of 12 transitions). The blue arrows represent higher transition probabilities in ALS, while the red arrows represent 
higher transitions in controls. Effect size |𝑟| are represented above each arrow and the thickness of the arrows is equal to 
10 ∙ |𝑟|. Benjamini & Krieger FDR, q <.1. Larger effect (𝑟 = 0.3) was observed for the transition from C to D.  

3.2.2. Longitudinal changes of microstate properties in ALS  
The longitudinal analysis of the microstate properties in the ALS group revealed a significant 

decrease in class B duration (5% increase) and GFP over time (2% increase) (Figure 16). The 

results emphasized the importance of taking into account different baseline values (using a 

random intercept model) between individuals and different rates of change over time (using a 

random slope model). This approach allows to effectively discern the sources of variability. In 

the longitudinal model of class B duration, the random slope variation accounts for 

approximately 1% of the total variance. In addition, roughly 60% of the outcome variance is 

attributable to person-specific differences at baseline. Similarly, for class B GFP,  4% of the 

total variance is attributed to random-time effects, while 70% is attributed to intercept variation. 

A summary of the linear mixed-effects models can be found in Table 6. 

Table 6: Model parameter estimates from longitudinal analyses of the microstates' properties. Fixed and random-effects of 
the models describing microstate occurrence, duration, coverage, global explained variance (GEV), and global field power 
(GFP) progressions over the time of the disease were computed. Only models with significant time effects (FDR correction, 
q=0.05) are shown. Standard errors were added in parenthesis for fixed-effects. The analysis included 129 patients and 1020 
observations. *p < .05; **p < .01; ***p < .001. 

 CLASS B 
 Duration (ms) GFP  
Log-likelihood -670 -370 
Fixed-effects 
Intercept  59 (0.6) ms *** 4 (0.2) 𝜇𝑉 *** 
Time  0.05 (0.02) ms/month * 0.02 (0.005) 𝝁𝑽/month *** 
Random-effects 
Intercept variance  3 ms2 2 𝜇𝑉2 

Time variance  0.02 (ms/month)2 0.01 (𝜇𝑉/month)2 

Residual  2 ms 0.6 𝜇𝑉 



 

 

 

Figure 16: Directions of the significant (q <.05) longitudinal microstate changes per microstate class. Grey lines represent 
linear models of microstate property change per participant (based on random-effects), while red lines represent the overall 
linear changes (based on fixed-effects). Crosses represent recording times for each participant. Microstate duration is 
expressed in ms. Global field power (GFP) is expressed in µV.  

3.2.3. Absence of gender, age or medication effect 
Gender, age or medication did not have a significant effect on the observed cross-sectional 

differences in microstate properties between ALS and HC groups or longitudinal effects in the 

ALS group (Figure 17).  

(a) Gender distributions in controls and in patients different recording sessions (T1-T5). Fisher’s exact test (𝛼=0.05, 
two-tailed) did not reveal any non-random association between gender and recording sessions for patients follow-ups. 

(b) Age distributions in the HC group and ALS group’s different recording sessions (T1-T5). Kruskal-Wallis one-
way analysis of variance revealed no statistical difference in age distribution between recording sessions. 



 

 

(c) Medication distributions in the ALS  group’s different recording sessions (T1-T5). Fisher’s exact test (𝛼=0.05, two-
tailed) did not reveal any non-random association between medication and recording sessions. 

 
Figure 17: Representations of the statistical tests to assess gender, age and medication effects. 

3.2.4. Longitudinal changes of clinical measures in ALS 
The clinical scores were also modelled using a linear mixed-effects model to investigate 

individual differences in progression (Appendix – Chapter VI, Supplementary material note 1). 

As expected, significant time effects were observed for each ALSFRS-R subscore (p< .001) 

(bulbar, lower limbs, upper limbs, respiratory), with a 0.1 to 0.2 points decline per month. The 

ECAS Total scores also significantly increased over time (p = 0.02, 0.2 points increase per 

month) but no increase was observed in the BBI scores (p = 0.05). 

3.2.5. Changes in microstate properties are associated with cognitive decline and 
prognosis  

We found that microstates episodes are not only affected by the disease but their characteristics 

are also associated with the level of cognitive decline. People with ALS who had shorter 

durations of microstate class B tended to have faster lower motor declines.   Individuals with a 

faster increase in microstate C coverage had a slower decline in fine motor skills (Figure 18).  

Cognitively and behaviourally impaired participants (ALScbi, n=69) with lower transition 

probabilities in microstate C to B, A to D and C to D showed a slower increase in ECAS total 

scores. ECAS scores generally increase over time due to non-random dropout or practice effect. 

At subject level, if these participants showed less of a practice effect it can be interpreted as a 

sign of cognitive decline. A lower transition probability between microstates C and B was also 

associated with shorter survival (Figure 18).  



 

 

 
Figure 18: Significant Spearman’s correlations between clinical scores progressions and properties of microstates classes 
for ALS cohort and subgroup of patients with distinct cognitive profiles (ALScbi). FDR correction at .05. TP: Transition 
Probability 

3.3. Influence of ALS on temporal dependencies in microstate sequences  
3.3.1. Memory effects in the sequences of microstates 

For both HC and ALS groups, there were no long-range memory effects in the microstate 

sequences, as typically observed (Al Zoubi et al., 2019; von Wegner et al., 2017, 2018). This 

can be seen in the decay of the periodic peaks of the AIF for time lags larger than 1𝑠. The 

existence of a ‘memory effect’ in the microstate sequence was estimated based on the AIF, by 



 

 

evaluating how much knowing the label at time 𝑡 reduces uncertainty at time 𝑡 + 𝜏. The 

subject-specific AIF revealed an oscillatory decay in function of the time lags (Figure 19, 

Control C47), with an average period of 35 +/- 5.5 ms for HC and 33 +/- 5.2 ms for ALS 

patients. For both HC and ALS groups, the AIF inspection showed that the temporal predictive 

information in previous time points dependence is less than 1‰ of that in the current time point 

(>1s lag) (Figure 20). In line with previous works on microstates’ temporal dependencies (Al 

Zoubi et al., 2019; von Wegner et al., 2017, 2018), this suggests the absence of long-range 

memory in microstate sequences. Both ALS patients and HC groups showed similar overall 

AIF content but the contribution of microstate C to the AIF was higher in patients compared 

with controls (Figure 21).   

The Markovianity tests were not significant for any order between zero and two, showing no 

Markov property (or ‘memoryless’ property, meaning the past is not important as long as the 

present is known) in the microstate sequences for ALS or HC groups (order 0: 𝑝 ~ 0; order 1: 

𝑝 < 3.6 ∙ 10 ; order 2: 𝑝 < 1.6 ∙ 10 ). Information from the current microstate is not 

enough to define the transition probability to the next microstate (Markov order 0). Information 

from the current and previous microstates is not enough to define the transition probability 

(Markov order 1). Information from the current and two previous microstates is still not enough 

to define the transition probability (Markov order 2). The rejection of the null hypotheses in 

the G-tests for low-order Markov property reveals memory effects stored at least two 

microstates in the past. 

 

 



 

 

Figure 19: Auto-information or time-lagged mutual 
information of the microstate sequence for control C47. It 
shows a periodic oscillation, on a logarithmic y-scale.  

Figure 20: Averaged auto-information of the microstates 
sequences for HC (green) and ALS patients (blue), with 90% 
confidence intervals as shaded areas. Logarithmic y-scale. 

 
Figure 21: Individual microstate class contributions to the global auto-information function, with 90% confidence intervals 
as shaded areas, for HC (green) and ALS patients (blue).  

 

3.3.2. Reduced dynamicity of microstate transitions in late-stage ALS 
In controls and individuals with early-stage ALS, the percentage of people with predominantly 

non-stationary transition matrices decreased at a similar rate as the block length was increased 

(where block length is the time window over which the transition probabilities were studied) 

(Figure 22). Participants in the late stage of ALS (King’s stage 4) were more likely to have 

stationary transition matrices. The frequency of a transition between two classes is staying the 

same in different blocks, thus becoming independent of time. In ~4s blocks, significantly more 

individuals with late-stage ALS (8%) have stationary transition matrices than individuals from 

earlier stages (1%) (Mann-Whitney U test, p=0.0032, FDR at 0.05). Higher stability in the 



 

 

transitions between microstate classes has been interpreted as a reduction in the dynamicity of 

neuronal connectivity  (Al Zoubi et al., 2019; von Wegner et al., 2017). No significant 

difference was observed between the King’s stages <4 and the HC group.  

 

 
Figure 22: Ratio of subjects (HC, ALS patients in King’s stage 4 and lower) with significantly (p<.01) non-stationary 
microstates transition matrices for different window lengths. For a ~4s window, significantly more people with King’s stage 
4 disease (8%) have stationary transition matrices than patients from earlier stages (1%) (Mann-Whitney U test, p=0.0047). 
Benjamini & Krieger FDR, q <0.05, was applied. ∗ 𝑝 ≤  .05, ∗∗ 𝑝 ≤  .01. 

For 54% of the HC and 58% of the individuals with ALS, the likelihood of passing from 

microstate class 𝑀  to class 𝑀  was not statistically equivalent to the likelihood of transitioning 

from 𝑀  to 𝑀 . In most participants, the transition matrices were asymmetric. However, only 

49% of individuals with late-stage ALS had asymmetric transition matrices.  

 

4. Discussion 
The results of this study demonstrate that the properties of EEG microstates can provide 

insight into ALS prognosis, particularly the degree of cognitive decline over time. The EEG 

microstates have been examined in a large cohort of people with ALS (n=129) and healthy 

controls (n=78), enabling a cross-sectional analysis. This analysis revealed that the standard 

properties of microstate classes A, B and D differ between ALS and control groups (Figure 

14), which may indicate dysfunction in the somatosensory and attention networks. There 

were also significant differences in microstate transitions between ALS and control groups, 

Figure 15, suggesting that the normal fluctuations in neural activity are altered in ALS. We 



 

 

also demonstrated that as ALS progresses, the neural dynamics undergo further changes. This 

is shown by longitudinal changes we observed in the standard properties of microstates 

(Table 6, Figure 16) and their temporal dependencies (Figure 22). Participants with late-stage 

disease showed more symmetry and stationarity in their transition matrices (Figure 22), 

which could reflect reduced neuronal flexibility (dynamicity in switching between brain 

microstates).  

Finally, the correlations between microstate properties and ALS prognosis revealed that higher 

duration of class B and faster increase of class C coverage over time are associated with a 

slower decline in gross motor skills in ALS. For cognitively and behaviourally impaired 

patients, lower transition probabilities from A to D, C to B and C to D are specifically 

associated with cognitive decline. This suggests that the microstate parameters have particular 

potential for development as prognostic biomarkers for ALS.  

4.1. Changes in microstate properties in ALS  
We found that four cluster prototypes (Figure 13) explained ~60% of the variance and exhibited 

similar topographies in healthy controls and ALS groups (they were also similar to the maps 

described in the literature, see review (Michel & Koenig, 2018)). In studies including more 

topographies, the four maps initially found in 1999 (Koenig et al., 1999) are usually observed 

along other topographies, independently of ages, mental states or neurological conditions (Al 

Zoubi et al., 2019; Custo et al., 2014; Faber et al., 2021; Zanesco et al., 2020). The original A-

D labels were kept based on topographical similarity to the initial maps. Consistent with 

previous studies (Michel & Koenig, 2018), we observed that four microstate prototypes 

explained at best the variance of topographical patterns in unrelated data. This cross-validation 

check of the optimal number of microstates ensured the microstate prototypes were not 

representing recording noise (Poulsen et al., 2018).  

4.1.1. Distinct microstate properties between HC and ALS cohorts  
The statistically significant increase in microstate class A duration and microstate class B 

coverage in the ALS group, when compared to healthy controls, is similar to what was observed 

in Parkinson's disease (C. Chu et al., 2020),-and in multiple sclerosis studies (Gschwind et al., 

2016). The increase in class A and B coverage has also been demonstrated in Huntington's 

disease (Faber et al., 2021), and an increase in class A occurrence has been documented in both 

schizophrenia (Lehmann et al., 2005) and spastic diplegia (Gao et al., 2017).  

The results of previous fMRI-EEG studies suggest that class A originates from the bilateral 

temporal gyri (Britz et al., 2010), occipital and posterior cingulate areas (Pascual-Marqui et al., 

2014) or the sensorimotor cortex (Yuan et al., 2012). Diverse interpretations of microstate class 



 

 

A's functional role have been reported; initially linked with the auditory network (Britz et al., 

2010; Custo et al., 2017), a broader involvement including visual processing has been 

suggested, due to its increased coverage during visualization-oriented tasks compared to 

verbalization tasks (Milz et al., 2017). Both of these interpretations would situate the sources 

of class A microstate within the sensory network, which is known to be affected in ALS. A 

recent review analysis conducted by Tarailis et al. has further proposed a potential link between 

microstate class A and varying levels of brain arousal or alertness (Tarailis et al., 2023). Class 

B is thought to originate in the occipital lobe and is associated with visual function (Britz et 

al., 2010). Both microstates A and B appear to reflect the activation of sensory networks, as 

indicated by their modulations in multiple sclerosis (Gschwind et al., 2016) and movement 

disorders in general (ALS, Huntington’s, Parkinson and spastic disorder). 

Microstate class D occurrence was higher in the ALS cohort than in HC. A high contribution 

of fronto-parietal areas and anterior/posterior cingulate cortices (Britz et al., 2010; Pascual-

Marqui et al., 2014) was observed during microstate class D, which altogether suggest an 

association of microstate D with the attention network. Microstates classes C and D have been 

associated with ‘high-order functional networks’ (as opposed to somatosensory or motor 

networks) (Michel & Koenig, 2018). The balance between such microstate classes was 

observed to be affected by neuropsychiatric conditions like schizophrenia or FTD (Nishida et 

al., 2013). While ALS is not primarily classified as a psychiatric disorder, the condition can 

often present with cognitive and behavioural symptoms. 

Taken together the cross-sectional comparisons of microstate properties between ALS and HC 

cohorts echo the dual impairment of sensorimotor and cognitive functions in ALS.  

4.1.2. Longitudinal changes of microstate properties in ALS 
For individuals with ALS, the duration and the GFP of class B significantly increased by 0.05 

and 0.02 points per month (Table 6). Neither of those properties was significantly different 

between the HC group and ALS group at the first recording session. The microstate properties 

showing significant differences between ALS and HC groups did not reveal any longitudinal 

change. This finding suggests the presence of important neuronal changes early in the disease, 

leading to distinct microstate properties in the ALS and HC groups. There may be slower or 

delayed continuous mechanisms causing changes in other microstate properties. Since early 

degeneration is usually compensated by remaining neuronal networks in neurodegeneration, 

such slower mechanisms may be compensatory. In ALS, symptoms only become apparent 

when a resilience threshold is crossed (Benatar et al., 2022; Keon et al., 2021).  



 

 

4.2. Altered microstate dynamics in ALS 
Previous literature has shown that there are differences in microstate transition probabilities in 

mood or mental disorders (Al Zoubi et al., 2019; Lehmann et al., 2005) and FTD (Nishida et 

al., 2013), and we hypothesised that the transition probabilities would also be altered in 

participants with ALS that exhibited cognitive and behavioural symptoms. As expected, we 

observed significant differences in microstate dynamics between ALS and HC groups in seven 

out of twelve of the transition probabilities (q<0. 1, FDR correction) (Figure 15). More 

specifically, we observed that patients switch less frequently from microstate C to microstate 

D (Figure 15).   

The results of previous studies on stroke, which reported no significant difference in transition 

probabilities compared to controls (Hao et al., 2022), suggest that the temporal dynamics of 

neural networks are not solely due to structural changes.  

In this study, we employed the information-theoretical analysis proposed by von Wegner et al. 

to further investigate the dynamics of EEG microstates (von Wegner et al., 2017). Our findings 

align with their results indicating that the microstate sequence does not adhere to a low-order 

Markov property, suggesting that microstate labelling is influenced by not only the current state 

or the current and last two states, but also previous states. Furthermore, our analysis of the auto-

information function revealed non-Markovian behaviour for time lags of up to 2 seconds, 

consistent with previous research (Al Zoubi et al., 2019; von Wegner et al., 2017), indicating 

the presence of extended short-range memory effects in the microstate sequences. 

For the majority of the subjects (HC and ALS cohorts with King’s stages <4), the transition 

matrices were asymmetric. This has been previously interpreted as a sign of ‘non-equilibrium’ 

of the neural networks (von Wegner et al., 2017). A lack of symmetry in transition matrices 

has been interpreted as a positive property, implying the existence of a “driving force” (if there 

were no “driving force”, and the neural networks were at equilibrium, the transition from one 

state to a second state would be equal to the transition from the second state to the first one). It 

is not surprising therefore that the late-stage group (King’s stages 4) tended to have more 

patients with symmetric and stationary transition matrices, Figure 22. The increased number of 

symmetric and stationary transition matrices observed in late-stage ALS may correspond to the 

dysfunction of this ‘driving-force’.  The thalamus, in particular, has been described as a key 

relay of energy, and could represent a hypothetic ‘driving-force’ (von Wegner et al., 2017) 

(thalamic involvement has been demonstrated in motor neuron diseases (Chipika, Christidi, et 

al., 2020; Chipika, Finegan, et al., 2020; Deymeer et al., 1989)).    



 

 

The observed change in microstate transitions in late-stage disease could also be explained by 

the distress individuals with ALS may experience towards the end of their life. A higher ratio 

of symmetrical and stationary matrices in individuals with mood and anxiety disorders 

compared to healthy controls has been similarly shown by (Al Zoubi et al., 2019), which they 

interpreted as arising from “ruminative thoughts”. Increased equilibrium could additionally 

arise due to a reduction in the flexibility of brain dynamics in ALS. A previous study has shown 

that the incidence of ‘neuronal avalanches’, a measure of brain dynamics determined by 

quantifying aperiodic bursts of neuronal activity diffusing across the brain, was reduced in ALS 

compared with healthy controls cohort and was associated with disease stage (Polverino et al., 

2022).  

4.3. Clinical relevance of EEG microstates 
The main finding from the analysis of the correlation between microstate parameters and 

clinical measures was that lower duration of microstate class B and slower change in coverage 

of class C were significantly associated with faster functional decline in the lower limbs (Figure 

18). These measures, therefore, have potential utility in prognostic prediction of motor 

function.  

We evaluated correlations with clinical scores specifically for subgroups of ALS patients with 

distinct cognitive profiles as altered microstates characteristics have been specifically 

associated with impaired cognition and mental health (Al Zoubi et al., 2019; Dierks et al., 1997; 

Nishida et al., 2013; Tait et al., 2020). In cognitively and behaviourally impaired patients, the 

lower transition probabilities A to D, C to B and C to D are additionally associated with 

cognitive decline. This decline is suggested by the gradual improvement in cognitive 

performance (measured by ECAS Total scores), which is slower when compared to the average 

practice effect. Additionally, a lower transition rate from C to B was associated with shorter 

survival (Figure 18).  

The transition probability C → B appear to be a key potential biomarker of ALS prognosis. 

Higher transition probabilities from C to B seem to represent signs of slower decline in ALS. 

This supports our hypothesis that changes in microstates dynamics could predict the 

progression of ALS, including cognitive decline. 

4.4. Limitations and Future Directions 
The EEG microstate analysis is based on a repeatedly observed phenomenon representing 

ongoing thought processes. However, there remains a lack of understanding of the neural 

mechanisms leading to the presence of microstates and their transitions. It remains unclear how 

microstates actually reflect conscious thoughts, despite new insights on microstates in various 



 

 

states of consciousness (e.g., sleep, anaesthesia, wakefulness) (Bréchet & Michel, 2022) and 

rough estimations of the brain sources each microstate class originate from (Bréchet et al., 

2020; Britz et al., 2010; Custo et al., 2017; Milz et al., 2017; Musso et al., 2010a; Pascual-

Marqui et al., 2014). The interpretation of microstates' characteristics often relies heavily on 

estimated brain sources. Previous studies of the brain sources underlying different microstates 

have reported diverse findings, possibly as a result of differences in methodology and/or lack 

of temporal independence (difficulty of dissociating microstate sources as microstates are a 

continuous process). This complicates the interpretation of microstate changes (Britz et al., 

2010; Mishra et al., 2020; Yuan et al., 2012). Microstates are fundamentally defined based on 

sensor space analysis. Therefore, for a precise association with brain sources, other methods 

can provide more information, such as examining patterns of activation directly in brain 

networks' functional connectivity. In this study, over-interpretation was carefully avoided by 

cross-examining microstates’ hypothetic generators with paradigm-based studies.  

One important consideration is the possible non-random dropout within the ALS cohort over 

time, wherein individuals with greater impairments are more likely to be lost to attrition. In the 

case of longitudinal ECAS scores, the observed increase may not solely be attributed to the 

practice effect but could also be influenced by artificial inflation of cognitive scores due to the 

dropout of more impaired participants. However, this potential bias is mitigated when 

examining correlations between EEG and clinical measures progressions at the subject level, 

as both are expected to be similarly affected by non-random dropout. 

A limitation of the present study is the heterogeneity of onsets and cognitive/behavioural ALS 

profiles. In future studies, a more continuous collection of data should help to account for a 

greater number of clinical profiles and we envisage that a comparison of microstates in 

different ALS subphenotypes will be possible.  

4.5. Conclusion 
These RS EEG microstate results indicate that ALS impacts both sensory and higher-order 

networks. These findings are consistent with the range of motor, respiratory, and cognitive 

impairments observed in ALS clinical presentations. Temporal dynamics of resting state EEG 

enable us to further quantify the multidimensional impairments. Importantly, we found reduced 

dynamicity in brain state transitions, which may occur as a result of declining cognition, 

repetitive thoughts, anxiety, or neuronal loss. We have shown that changes in microstate 

properties are associated with cognitive decline and prognosis, making them a promising 

prognostic marker for ALS. 

 



 

 

VIII. Results: Developing new measures of cognitive-behavioural 

impairment from spectral power and connectivity changes, 

using dynamic analysis of resting-state data  

 
1. Introduction 

Neural network disturbances in ALS have been associated not only with motor or respiratory 

impairments but also with cognitive and behavioural impairments, the latter occurring in a 

substantial proportion of cases. Research has revealed that specific dysfunctions within spectral 

power and functional connectivity are linked to ALS. For instance, disruptions in functional 

connectivity in regions spanning the frontal, frontoparietal, and fronto-temporal areas have 

been correlated with cognitive decline (Dukic et al., 2019).  

As described in Chapter VII, EEG microstates, which are recurring topographies of scalp 

electrical potentials, revealed alterations in functional brain network dynamics in ALS. Specific 

microstate transition probabilities correlated with cognitive decline in individuals with 

cognitive impairments. Differences between ALS and HC in microstates associated with 

higher-order cognitive function were additionally observed.  

Estimating precise and reliable brain sources for each microstate would deepen our 

understanding of microstates and their links with neural networks. Investigating brain sources 

underlying microstates led to varied outcomes due to methodological disparities and challenges 

in disentangling microstate sources given their continuous nature (Abreu et al., 2021; Custo et 

al., 2017; Musso et al., 2010b; Pascual-Marqui et al., 2014) (see Chapter VII for more 

information). Since microstates are primarily defined through sensor-space analysis, directly 

examining spectral patterns within brain networks would represent a promising alternative 

approach. 

 The aim of the current project was to identify spatially distinct patterns of brain states, 

reflecting functionally different brain networks, and examine whether abnormalities in brain 

states were associated with ALS. To achieve this, a hidden-Markov model (HMM) was applied 

in association with a multivariate autoregressive model (MAR) (Vidaurre et al., 2016; 

Vidaurre, Hunt, et al., 2018) on resting-state EEG data from 78 HC and 99 individuals with 

ALS. Twelve brain states were identified by identifying patterns of spectral measures (i.e. 

spectral power and coherence) from the source-reconstructed EEG timecourses in the 90 AAL 

brain regions described previously. The spectral properties of the identified states allow for 



 

 

their association with known functional networks like the visual, sensorimotor or default mode 

networks. The exploration of recurring patterns in resting-state EEG data in source-space 

represents a compelling approach for understanding the dynamic intricacies of brain activity 

and their potential disruptions in ALS. Our preliminary results showed distinct temporal 

properties of the brain state associated with the posterior default mode network between the 

ALS and the HC groups.   

This dynamic analysis has the potential to not only provide a deeper comprehension of the 

altered functional networks in ALS but also to offer valuable insights that could potentially 

pave the way for targeted therapeutic strategies. 

    

2. Methods 

2.1. Ethical approval 

Ethical approval was obtained from the Tallaght University Hospital/St. James's Hospital Joint 

Research Ethics Committee in Dublin [reference: 2014 Chairman’s Action 7 and 2019-05 List 

17 (01)], as described in General material and methods (Chapter IV) 

2.2. Participants 

2.2.1. Recruitment – inclusion and exclusion criteria 

Exclusion and inclusion criteria are described in Chapter IV, section 1.  

2.2.2. Demographic profiles 

EEG data recorded from 99 ALS patients (m: 73%; mean age: 60.89 ± 11.4) and 81 age-

matched healthy controls (m: 43%; mean age: 60.93 ± 11.3) were analysed in this study. 

Detailed information about the demographic of the dataset can be found in Table 3. 

 

Table 7: Demographic profiles. Numbers show mean ± standard deviation. The table details the gender proportions, the 

average ages at the time of recording and, when applicable, disease durations, delays between sessions, site of onset and the 

number of patients with FTD comorbidity. 

Groups N Male 
(%) 

Age 
(years) 

Disease 
duration 
(months) 

ALSFRS-R 
scores 

Site of onset (N) ALS-FTD 
diagnosis 
(N) 

 Bulbar Spinal Thoracic 

HC 78 36 60 ∓ 12 / / / / / / 
ALS 99 73 61 ± 11 22 ± 17 37 ± 6.1 20 72 5 5 

 

2.3. Experiment – EEG acquisition and Experimental paradigm 

EEG data were collected at rest as described in Chapter IV, section 2.  



 

 

2.4. Data analysis 

2.4.1. Preprocessing of EEG data 

The EEG signals were preprocessed as described in Chapter IV, section  2.4. Source-space 

timecourses were estimated in 90 brain regions from the AAL atlas (Tzourio-Mazoyer et al., 

2002). 

2.4.2. Source-space timecourse decomposition and spectral characterisation   

We decomposed the source-space timecourses into transient, reoccurring brain states by 

applying a time-delay embedded Hidden Markov Model (TDE HMM). The model was trained 

to convert a source-reconstructed time course into a sequence of functional networks 

characterised by spectral power and signals coherence. The TDE HMM  was inferred and state-

specific spectral information extracted using the HMM-MAR toolbox 

(https://github.com/OHBA-analysis/HMM-MAR), which includes explanations about the 

model (Vidaurre, Hunt, et al., 2018). The TDE-HMM ran in parallel on a workstation with 

AMD Ryzen Threadripper PRO 5945WX processeur running at 4.1GHz to 4.5GHz, using 

64Gb of RAM.  The computation steps following data pre-processing are summarised in Figure 

23. 

 
Figure 23: Brain states analysis pipeline. Description of the method used to compute brain state timecourses from EEG data. 
The process started with the application of a linear constraint minimum variance (LCMV) beamformer for source 
reconstruction. This allowed the estimation of the sources of brain activity within the raw EEG data. Subsequently, the 
estimation of timecourses within 90 distinct brain regions of interest (ROIs) was accomplished using the automated anatomical 
atlas (AAL). By employing the time-delay embedded hidden markov model (TDE-HMM), timecourses of recurring spectral 
patterns (which can be interpreted as brain states) were extracted from the combined data of both the ALS and HC groups. 
The temporal properties of the extracted timecourses were then calculated, providing insights into the occurence duration or 
transitions of these brain states. A multi-taper method was employed to obtain the distinct spectral signatures associated with 
each brain state. Finally, the spectral information was factorised per frequency band using non-negative matrix factorisation 
(NNMF). In summary, the brain state analysis pipeline inlcuded a series of interconnected steps, which allowed for the study 
of brain state dynamics using EEG data. 



 

 

2.4.2.1. The Hidden Markov Model  

A Hidden Markov Model (HMM) is a statistical approach, based on a set of hidden states and 

a set of observable outputs. The hidden states are unobserved variables that represent the 

underlying system dynamics, while the observable outputs are the measurements or 

observations we can directly observe. An EEG timeserie can therefore be modelled into a 

sequence of ‘hidden’ states, with one state for each timepoint. The model assumes that the 

system transitions between hidden states over time according to a probabilistic transition 

matrix. Each hidden state has associated probabilities for emitting different observable outputs, 

defined by an emission matrix. The probability of being at a specific state at each time point is 

influenced by the state at the preceding time point. A stochastic inference was carried to 

estimate the posterior probabilities despite the large size of our dataset (99 ALS and 81 HC 

participants, 256Hz, 6 min recordings) (Vidaurre, Abeysuriya, et al., 2018). Given a sequence 

of observable outputs, an HMM allowed us to infer the most likely sequence of hidden states 

that generated the observations. The Viterbi algorithm efficiently computed the maximum 

likelihood path through the model.  

2.4.2.2. The time-delay embedded HMM (TDE-HMM) 

The TDE-HMM was applied to infer brain states based on spectral power and signals coherence 

(or phase-locking as described by Vidaurre et al.). It has the advantages of being 

computationally efficient and avoiding overfitting when modelling whole-brain EEG data (90 

brain regions in our case) (Vidaurre, Hunt, et al., 2018). The spectral activity was examined 

over a time window using a Gaussian distribution: the multivariate autocovariance was 

computed. This ‘embedding’ allowed us to efficiently identify patterns in the timecourses 

(transient and recurring brain states). Additionally a principal component analysis (PCA) 

decomposition was applied to simplify computation and avoid overfitting.  

2.4.2.3. TDE-HMM parameters 

Before applying the TDE-HMM, the polarity of the source-reconstructed signals was 

harmonised to ensure uniformity across all participants. To optimise sign alignment among all 

participants, the lagged partial correlation between pairs of regions was computed (Vidaurre, 

Hunt, et al., 2018). The TDE-HMM was then applied on the concatenated timecourses from 

both the ALS and HC groups. For the time-delay embedding, a window of 15 time points 

(equivalent to 58.6 ms) was used. Stochastic inference was performed with 10 participants per 

batch. The inference was run iteratively until a minimum decrease in free energy (tolerance 

10 ) or a maximal number of 500 cycles was reached. The TDE-HMM analysis was 



 

 

conducted on the principal components decomposition of the windowed space, for K = 12 

states. The number of principal components used was twice the count of brain regions (2x90 

ROIs).  

2.4.2.4. Spectral decomposition of the model 

After obtaining the sequence of brain states from the TDE-HMM, we extracted spectral 

information (power and coherence) for each state using the multivariance covariance matrix.  

A multi-taper method was applied to extract for each state, the spectral power and coherence 

per frequency bin between 1 and 45Hz.  

   

2.4.3. Statistical analysis 

2.4.3.1. Pairwise comparisons of brain states’ temporal properties  

From the sequences of brain states, temporal properties were computed for each participant to 

determine how often they reoccur, how long they last and how they transition. We computed 

the transition probabilities between each pair of states, while also calculing metrics like the 

fractional occupancy of each state, the rate of transitions between states (or switching rate), the 

state lifetime (indicating the number of time points per state occurrence), and the state interval 

time (representing the number of time points between each state's occurrences). 

We performed Mann-Whitney U tests on all state sequence parameters to compare between 

the HC and ALS groups. To address potential false positives, a 10% adaptive FDR correction 

was applied, to account for the twelve brain states. This correction followed the approach of 

Benjamini & Krieger (Benjamini et al., 2006) as implemented in the Empirical Bayesian 

inference (EBI) toolbox (Nasseroleslami, 2018). Effect sizes were computed from U-statistics 

using the rank-biserial correlation coefficient (Cureton, 1956): 𝑟 =
∙

, along with the Area 

Under the Receiver Operating Characteristic Curve (AUROC) (Hajian-Tilaki, 2013): 

𝐴𝑈𝑅𝑂𝐶 =
∙

 . Additionally, a post-hoc estimation of statistical power using EBI toolbox 

was calculated (Nasseroleslami, 2018). 

 

2.4.3.2. Significance of the spectral measures in each state 

To study the spectral measures characterising the identified brain state, a permutation test was 

performed (Vidaurre, Hunt, et al., 2018).  The spectral power and functional connectivity in 

each state were computed for each participant. Null distributions of the relative spectral 

measures within-state (in relation to the average in the state), were obtained, by shuffling the 



 

 

relative spectral measures 5000 times. Significantly higher neural activations and functional 

connectivities, across participants, were extracted for each state. Multiple comparisons 

correction was applied to account for the number of brain regions (FDR, q<.01) (Benjamini & 

Hochberg, 1995).  

 

3. Results 

3.1. Recurring brain states in ALS and HC, identified using TDE-HMM  

Twelve brain states with distinct patterns of spectral power and coherence were identified for 

the combined ALS and HC group, using the TDE-HMM method. Additionally, for each 

participant, a timecourse of the probabilities of activation of each brain state was obtained. The 

portion of variance in the timecourses explained by the twelve brain states (i.e., explained 

variance) was ~70%. 

 

3.2. Contrasting temporal dynamics of brain states between ALS and HC Groups  

Analysis of the timecourses of brain state occurrences enabled an examination of the temporal 

properties of these states, including factors such as lifetimes of each state occurence, intervals 

between occurrences, fractional occupancy, and switching rates. In average across states, the 

brain states last 98. 6 ms for HC and 98.8ms for individuals with ALS. Figure 24 shows the 

distributions of the properties  for each state in the ALS and the HC groups. Notably, 

individuals with ALS exhibited significantly longer durations of brain state 10 in contrast to 

the HC group (p = 0.004, r = 0.3, AUC = 0.64, 1 − 𝛽 .  =  0.79). Those with ALS, 

additionally, displayed shorter intervals, indicating a lower number of timepoints between 

occurrences of state 10 (p = 0.0005, r = −0.3, AUC = 0.64, 1 − 𝛽 .  =  0.92). No statistically 

significant differences were observed in switching rates or fractional occupancy between the 

ALS and HC groups. 

 



 

 

 

 

 
Figure 24: Distinct temporal dynamics of brain states between the ALS and HC groups. Distribution of life times, intervals 
and fractional occupancy for each brain state. Effect sizes were moderate. A dotted line was added in case some outliers lied 
outside the scope to facilitate visualisation. Benjamini & Krieger FDR, q <0.1, was applied. ∗ 𝑝 ≤  .05, ∗∗ 𝑝 ≤  .01, *** p 
≤  .001. 



 

 

3.3. Wideband distinct spectral measures across brain states  

The neural activity and functional connectivity of the identified brain states exhibit distinct 

patterns. This is illustrated in Figure 25, where spectral measures (power and coherence), 

spanned across a wide frequency range (1-45Hz), are displayed for each state, relative to the 

average within-state. To enhance clarity, a mask highlighting values significantly higher or 

lower than the average within-state across participants has been applied. 

 

 

 
Figure 25: Spectral power in the twelve states resulting from the TDE-HMM model in the overall group (HC and ALS groups 
combined). The coloured areas correspond to areas of significant neural activation: red for higher and blue for lower than 
the average within-state. The TDE-HMM model captures distinct neural activation patterns in most of the states within the 
overall group. The lack of significant neural activity in states 3 and 11 may indicate that these states rely more on the functional 
connectivity between different brain regions than localised activation. Benjamini & Hochberg FDR was applied (q<.01). 

  



 

 

 

Spectral power Coherence 

State 2 

State 7 

State 10 

Figure 26: Significant spectral power and functional connectivity for states 2, 7 and 10. In terms of spectral power, the color 
scheme differentiates higher values in red from lower ones in blue, both relative to the within-state average. Concerning 
functional connectivity, we focus on connections that are not only significantly above the within-state average, but also limit 
the display to the top 1% of these  

 



 

 

to facilitate visualisation. Benjamini & Hochberg FDR was applied (q<.01).   

Examining states 2, 7, and 10, Figure 26 visualises neural activity that significantly deviates 

from the average within-state activity. In this figure, higher activity is denoted in red, while 

lower activity is indicated in blue. 

State 2 exhibits activation within the inferior frontal region, possibly indicating a connection 

with the ventral attention network. In State 7, significant activation is mainly observed in the 

occipital area, implying activation of the visual network. State 10 demonstrates activation in 

regions corresponding to the posterior default mode network, including the bilateral posterior 

cingulate cortex and precuneus (Table 8). 

 

Table 8: Summary of the brain regions showing significant neural activity (spectral power) in each state of interest in the 
combined healthy controls and ALS group. Each state is characterised by distinct significant higher neural activity in some 
brain regions relatively to the average neural activity within-state (non-parametric statistical testing, q<.01). The brain 
regions listed, suggest association of brain states 2, 7 and 10, respectively with the ventral attention network, the visual 
network and the posterior default mode network.   

State 2  

Ventral attention network 

State 7  

Visual network 

State 10  

Posterior default mode network 

Rectus L/R  

Frontal Sup Orb L 

Frontal Inf Orb L 

Temporal Pole Sup L 

Temporal Pole Mid L 

Olfactory L/R 

Precuneus R 

Occipital Sup L   

Occipital Mid L    

Cuneus L  

Precuneus L/R 

Parietal Inf R 

SupraMarginal R 

Occipital Inf L 

Calcarine L/R    

Lingual L/R     

Fusiform L/R   

Temporal Mid L/R   

Heschl R    

Temporal Sup R 

Temporal Inf R    

Cingulum Mid L    

Cingulum Post L/R 

 

Regarding functional connectivity, the patterns are remarkably consistent across the three states 

of interest (as depicted in Figure 26). In each instance, there is a tendency of high functional 

connectivity within subcortical areas. In addition to this, our observations revealed that state 

10 had lower spectral power and total coherence when compared to state 2 (ventral attention 

network) and 7 (visual network) (Figure 27). Overall, the spectral power demonstrated largest 

differences between states than the coherence.  



 

 

 

 

 
Figure 27: Separability of states 2,7 and 10 in relation to power and coherence. The total coherence of a given region with 
all the others regions in relation to power is observed, across three states of interest. Within the broad frequency range of 1-
45 Hz, it is within the spectral power domain that the most pronounced differences emerge among states 2, 7, and 10.  

 

4. Discussion 

The study examined dynamical patterns of brain states in individuals with ALS compared to  

healthy controls. Through the application of a data-driven TDE-HMM method combined with 

a multiple autoregression, twelve distinct transient and recurring brain states were identified in 

the combined ALS and HC group, which were characterized by unique patterns of spectral 

power and coherence. Brain state activation probabilities over time were obtained for each 

participant. 

The average duration of brain states was 98.7 ms, which is in the same magnitude as the average 

duration of the transient and recurring states observed at sensor level (see Chapter VII for more 

details). The observations of brain state dynamic on a milliseconds timescale are consistent 

with those of EEG microstate and fMRI resting-state networks (Damoiseaux et al., 2006; 

Khanna et al., 2015). Collectively, they endorse an emerging understanding of brain function 

based on a limited set of networks being activated in sequence to coordinate brain activity. 



 

 

While these recurring brain patterns have been majoritively observed during periods of rest, 

they have also been reported during task-based MEG (Vidaurre, Abeysuriya, et al., 2018).   

The fractional occurrence observed per states (Figure 24) raises the question of whether the 

actual number of states is fewer than 12, given that approximately four states demonstrated low 

fractional occurrence. This consideration highlights the need for further analyses evaluating 

the stability and generalisability of the identified states, possibly suggesting that the true 

number of distinct states might be lower than initially presumed. 

A key finding arised when comparing the temporal dynamics of these brain states between the 

ALS and HC groups. Analysis of the timecourses provided various temporal properties, 

including the duration of state occurrences, intervals between occurrences, fractional 

occupancy, and switching rates. Figure 24 represents the distributions of these properties for 

each state within the two groups. ALS patients showed considerably extended durations of 

brain state 10 compared to the HC group. Furthermore, individuals with ALS demonstrated 

reduced gaps between occurrences of state 10, as shown by the shorter time intervals between 

the occurrences of state 10.  No significant differences were observed in switching rates or 

fractional occupancy between the ALS and HC groups. While the temporal properties of brain 

state 10 differ between the two groups, other aspects of state dynamics remain similar. 

Moving on to the analysis of wideband distinct spectral measures across brain states, the study 

revealed that these identified brain states exhibited unique neural activity and functional 

connectivity patterns. Figure 25 visually presents significant neural activity, across a broad 

frequency range (1-45Hz), for each state, relative to the average within-state. A closer 

examination of states 2, 7, and 10 is depicted in Figure 26. This visualization shows neural 

activity and functional connectivity that significantly differs from the average within-state 

measure. State 2 was linked to the ventral attention network. In contrast, State 7 displays 

significant occipital lobe activation, suggesting an association with the visual network. State 

10, which showed significantly different temporal properties between ALS and HC groups, 

exhibits activation in areas aligning with the posterior default mode network.  

The distinct patterns in neural activity across the identified states suggest a connection with 

specific functional neural networks. By decomposing EEG source-reconstructed timecourses, 

recurring functional networks can be identified, that align with fMRI resting-state networks, 

including the visual or default mode networks. These preliminary findings show potential to 

link ALS domains of impairment with the disruptions of these specialised functional networks, 

similar to what has been accomplished for neuropathic pain or major depression (Fauchon et 

al., 2022; Zhang et al., 2022). These associations would enhance our comprehension of the 



 

 

fundamental neural processes impacted by ALS, and might offer potential targets for 

therapeutic interventions. 

In terms of functional connectivity, a consistent pattern emerged across the three states of 

interest (as seen in Figure 26), characterized by high connectivity within subcortical areas. The 

eventual lack of reliability of subcortical signals reconstruction may represent a limitation to 

the present study. This area is susceptible to higher uncertainties (Barzegaran & Knyazeva, 

2017), which calls for careful consideration when interpreting its role within the identified 

states. Although the current study did not utilize any of the following methods – higher-density 

electrodes (256-channels), participant-specific MRI headmodel, or Finite Element Model 

reconstruction – which could potentially enhance the accuracy of deep source localization 

(Piastra et al., n.d.; Seeber et al., 2019; Van Den Broek et al., 1998), their implementation could 

result in improved outcomes. The observed prevalence of subcortical functional connectivity 

in our brain states (Figure 26) could be attributed to an excessive assignement of neighboring 

regions' sources to subcortical areas. Exploring model variations when excluding the 

subcortical region, as applied by precedent studies (Fauchon et al., 2022; Vidaurre, Hunt, et 

al., 2018), could provide a clearer perspective on its contribution.  

Additionally, differences among the states of interest were more pronounced in spectral power 

compared to coherence, as evident from Figure 27. This distinction emphasizes the importance 

of spectral power in delineating the brain states. Furthermore, the relationship between changes 

in coherence and changes in power warrants attention. Since power dynamics could influence 

changes in coherence to some extent (Guevara & Corsi-Cabrera, 1996), modelling the data 

based solely on changes in power may represent an interesting complementary option. 

Further analyses are required to confirm the reproducibility of the identified states. 

Additionally, the potential coexistence of multiple networks, which would only be 

distinguishable at slower time scales, prompts caution against oversimplification. Alternative 

representations of the data could exist.  

5. Conclusion 

In conclusion, the examination of the identified brain states offers valuable insights into their 

temporal differences in ALS and HC groups, and the distinct neural networks they reflect. This 

study demonstrates altered properties of functional networks in ALS. Acknowledging the 

limitations of reproducibility, subcortical involvement, and potential alternative data 

representations, this study paves the way for a deeper understanding of ALS-related disruptions 



 

 

in neural networks and their implications for clinical applications, by investigating the 

relationship between alterations in EEG signals and specific functional domains in ALS. 

IX. Discussion  

This chapter provides a comprehensive overview and interpretation of the findings, discusses 

how these results are relevant for understanding and quantifying cognitive impairment in ALS, 

acknowledges the limitations of the project, and outlines future research directions. 

Section 1 offers a condensed summary of the results. Section 2 elaborates on the benefits of 

using resting-state EEG measures to monitor dysfunction in cognitive networks among ALS 

patients. In section 3, we explore the potential implications and clinical applications of this 

research. The limitations of this study are outlined in section 4, and section 5 outlines 

prospective work that can extend the impact of this project. Finally, section 6 provides a concise 

conclusion regarding the entire thesis. 

1. Summary of the result chapters  

1.1. Longitudinal neural activity and functional connectivity results 

 
In this project, up to five recordings of resting-state high-density EEG signals were conducted 

from individuals diagnosed with ALS. Prior to this study, our research team had already 

characterised altered functional connectivity in ALS patients at the sensor level, which 

persisted longitudinally (Nasseroleslami et al., 2019). The team had also identified cross-

sectional alterations in spectral measures at source level (Dukic et al., 2019). Building upon 

this foundation, the current project started with a longitudinal analysis of the resting-state 

signals after source reconstruction. 

 
1.1.1. Longitudinal neural activity changes in subgroups with distinct neuropsychological 

profiles 

This study revealed significant longitudinal alterations in neural activity within the fronto-

temporal region. These changes manifest as a decline in lower frequency (𝜃-band) and an 

increase in higher frequency (𝛾-band) spectral power. To delve deeper into the potential 

relationship between these longitudinal frontotemporal changes and cognitive or behavioural 

impairments, I investigated distinct categories of individuals with ALS, each characterised by 

specific cognitive and behavioural profiles. 



 

 

In the ALSci subgroup, referring to individuals with ALS and cognitive impairment, we 

observed a widespread increase in co-modulation of brain activity over time. This increase 

showed a strong correlation with cognitive decline (correlation coefficient |ρ| > 0.5, statistical 

power 1-β > 0.8). Within the ALSbi subgroup, which represents individuals with ALS and 

behavioural impairment, we found that higher rates of change in fronto-parietal co-modulation 

of brain activity were associated with increased rates of change in behaviour as reported by 

BBI scores (correlation coefficient |ρ| = 0.4, statistical power 1-β = 0.9).  

In the ALSncbi subgroup, which comprises individuals with ALS but without cognitive or 

behavioural impairment, there was a widespread decrease in β-band synchrony over time and 

we also observed a correlation between motor decline and changes in neural activity 

(correlation coefficient |ρ| = 0.4, statistical power 1-β > 0.8). 

In all subgroups, survival was strongly associated with the rate of changes in functional 

connectivity between specific brain regions (correlation coefficients |ρ| > 0.5, statistical power 

1-β > 0.9). 

These longitudinal findings within various ALS subgroups provide valuable insights into the 

heterogeneity of  ALS progressions. 

1.1.2. Longitudinal neural activity patterns in ALS: a data-driven analysis 

Cognitive phenotypes in ALS were characterised by distinct longitudinal changes of functional 

network disruptions. I further explored whether a data-driven classification of these 

longitudinal neural activity trajectories corresponds to the clinical profiles. The clustering 

results showed statistical significance and exhibited high levels of robustness and consistency, 

suggesting that our findings can be reproduced.  

While examining longitudinal neural activity patterns, distinct clusters were identified, 

indicating consistent trajectory patterns across various subgroups of ALS patients. Specifically, 

three stable clusters were observed in the δ-band, two in the α-band, five in the β-band, and 

three in the 𝛾 -band.  

Additionally, distinct patterns of significant neural activity progression were observed among 

the different ALS subgroups identified. In the β-band, one cluster displayed a significant 

temporal activity decrease over time. In the α-band, one cluster, labelled cluster 1, exhibited a 



 

 

notable decrease in temporal activity, while another, labelled cluster 2, demonstrated an 

increase in central/parietal activity.  

Except for α-band cluster 2, most subgroups exhibited a decreasing spectral power in lower 

frequency bands and an increasing spectral power in higher frequencies, specifically in the γ-

band. As explained in section 1.1.1, I observed a longitudinal decrease in θ-band spectral power 

and an increase in γ-band spectral power within the overall ALS group.  

The analysis of clinical profiles using functional scores revealed additional distinct 

characteristics of 𝛼-band Cluster 2 compared to the other 𝛼-band cluster. Notably, significant 

differences in survival were observed, with Cluster 1 having the longest average survival of 

9.4 years and Cluster 2 the shortest at 3.4 years. Additionally, these two clusters showed 

significant differences in the longitudinal decline of subscores. Furthermore, Cluster 2 

exhibited a faster decline in all four ALSFRS-R functional subscores (related to upper limbs, 

lower limbs, bulbar, and respiratory symptoms) when compared to Cluster 1.  

These results highlight the heterogeneity within ALS and the importance of examining the 

long-term patterns of neural activity in specific subgroups of ALS patients. Longitudinal neural 

activity patterns can offer valuable insights into how the disease advances, affects survival and 

leads to functional deterioration. 

1.2. Decomposition of EEG signals into recurring, transient brain states 

Despite demonstrating abnormal spectral measures in both sensor and source space, which 

persisted longitudinally, there remains a limited understanding of the temporal dynamics of 

brain networks in ALS. 

i. Sensor-space patterns 
Analysing brain microstates, as discussed in Chapter II, offered us insights into the temporal 

dynamics of brain networks by identifying transient, recurring and quasi-stable electric field 

configurations known as microstates within EEG recordings. Our results indicated that the 

properties of EEG microstates can offer valuable insights into the prognosis of ALS, 

particularly in terms of the extent of cognitive deterioration over time.  

Differences in the standard properties (coverage, occurrence and duration) of microstate classes 

A, B, and D were observed between the ALS and control groups. Based on paradigm-based 



 

 

and source localisation studies, alterations of the properties of those specific microstates 

potentially indicate dysfunction within the somatosensory and attention networks.  

There were also notable differences in microstate transitions between the ALS and control 

groups, suggesting alterations in the usual fluctuations of neural activity in ALS. Furthermore, 

our study showed that as ALS progresses, there are further changes in neural dynamics, evident 

in the longitudinal alterations in the standard properties of microstates and their temporal 

dependencies. Participants in the late stages of the disease displayed greater symmetry and 

stability in their transition matrices, which could signify reduced neuronal adaptability, 

indicating less dynamic switching between brain microstates. 

Lastly, our examination of the correlations between microstate properties and ALS clinical 

measures (ALSFRS-R, ECAS, BBI) revealed that a longer duration of class B and a faster 

increase in class C coverage over time are linked to a slower decline in gross motor skills in 

ALS (correlation coefficients |ρ| = 0.3, statistical powers 1-β = 0.8). In patients with cognitive 

and behavioural impairments, lower transition probabilities from A to D, C to B, and C to D 

are specifically associated with cognitive decline (correlation coefficients |ρ| > 0.3, statistical 

powers 1-β > 0.75).  

These findings suggest that microstate properties have substantial potential as prognosis 

biomarkers for ALS and in particular for cognitive impairment in ALS. 

ii. Source-space patterns 

EEG microstates, revealed changes, with potential prognosis value, in functional brain network 

dynamics in ALS, at sensor level. Investigating the precise brain sources from which these 

microstates originate could deepen our understanding of the neurophysiological mechanisms 

behind them which are disrupted in ALS. However, exploring the brain regions generating 

these microstates presented challenges, widely discussed in the literature, notably due to a 

possible continuous nature of the microstate.  

We, therefore, opted for an alternative approach, which consisted of a direct examination of 

spectral patterns within brain networks, based on a combined HMM and multivariate 

autoregression approach.  



 

 

Dynamic brain state patterns were examined in a combined ALS and HC group, identifying 

twelve distinct transient and recurring brain states with unique spectral power and coherence 

patterns. These states had an average duration of 98.7 ms, consistent with previous findings in 

EEG microstate and fMRI resting-state networks. ALS patients showed extended durations and 

reduced intervals for brain state 10, while other state dynamics remained similar. Spectral 

measures across states revealed unique neural activity and functional connectivity patterns, 

linking specific states to functional neural networks, potentially shedding light on ALS 

domains of impairment. In particular, state 10, characterised by differences in its temporal 

characteristics between the ALS and HC groups, demonstrated activation in regions 

corresponding to the posterior part of the default mode network. 

Although additional analyses are necessary, this particular project serves as a proof of concept, 

demonstrating the importance of dynamic analyses in investigating disruptions within neural 

networks linked to ALS. These findings could hold clinical significance by revealing how 

alterations in EEG signals are connected to specific functional aspects of ALS. 

2. Advantages of the new resting-state EEG measures to track cognitive networks 

dysfunction in ALS? 

Detecting cognitive or behavioural impairments in individuals with ALS can pose significant 

challenges, primarily because they frequently rely on input from caregivers for identification. 

Nevertheless, these changes can be observed and measured, albeit with some limitations. 

Cognitive assessments are influenced not only by an individual's educational background but 

also by the degree of fatigue they may experience, which can be exacerbated due to other ALS 

symptoms. On the other hand, evaluating behavioural changes can be somewhat subjective, 

which in the past led to the dismissal of their significance in the context of ALS (C. Crockford 

et al., 2018; Pender et al., 2020). Recognizing these issues, there is a growing recognition of 

the need for more comprehensive assessments aimed at quantifying cognitive and behavioural 

impairments in ALS cases.  

2.1. Progressions of resting-state EEG measures over time 

EEG can be recorded using resting-state EEG or event-locked EEG. In this study, we 

exclusively concentrate on whole-brain resting-state EEG, which monitors brain activity when 



 

 

a participant is awake without involvement in a particular task or response to stimuli. The 

benefits of using resting-state EEG were elaborated upon in Chapter II, Section 1.2. 

In the ALS group, neural activity was observed to decrease over time in the lower frequency 

band (𝜃-band), while it increased in higher frequency bands (𝛾-band). These findings were 

consistent with the reduced spectral power observed in individuals with ALS compared to 

healthy controls in lower frequency bands ranging from θ to β (Dukic et al., 2019). When 

looking at the data from a cross-sectional perspective, a trend toward increased γ-band power, 

which falls into the higher frequency range, was also noted. 

In the ALSci subgroup, characterized by cognitive impairment, the observed increase in brain 

activity co-modulation over time was not only widespread but also strongly correlated with 

cognitive decline (correlation coefficients: 0.5 ≤ |𝜌| ≤ 0.7). Similarly, in the ALSbi subgroup, 

which comprises individuals with behavioural impairment, the study found a notable 

association between changes in fronto-parietal co-modulation of brain activity and alterations 

in behaviour, as measured by BBI scores (correlation coefficient: |ρ| = 0.4). These findings 

reinforce the link between EEG spectral measures and the cognitive and behavioural symptoms 

in individuals with ALS. In conclusion, this study sheds light on the heterogeneity of ALS 

progressions by revealing distinct neural activity patterns and their associations with cognitive 

and behavioural impairments within different subgroups of ALS patients.  

2.2. Dynamical analyses: sensor versus source space 

2.2.1. Sensor-space: association of microstate properties with cognitive decline 

While functional connectivity has shown promise as a biomarker for ALS, with supporting 

evidence from both sensor and source-space analyses as well as longitudinal studies (Dukic et 

al., 2019; Nasseroleslami et al., 2019), our understanding of the temporal dynamics of brain 

networks in ALS remains limited. To gain deeper insights into the alterations in temporal 

dynamics caused by ALS, we have examined brain microstates, as detailed in Chapter VIII. 

These microstates are transient configurations of the electric field, detected at the sensor level, 

which exhibit repetitive patterns.  

Alterations in the properties of specific microstate classes may be indicative of dysfunction 

within somatosensory and attention networks in ALS patients. This is a significant finding, as 

it links EEG microstate changes to specific neural networks that are known to be affected in 



 

 

ALS. Among other processes, the attention network plays a pivotal role in sustaining attention 

over time. In individuals with ALS, alterations in the brain regions responsible for sustaining 

attention were observed. Notably, changes in the activity of the inferior parietal lobule and 

insular regions showed strong discriminatory power (AUC > 0.75) in distinguishing between 

individuals with ALS and HC (McMackin et al., 2020). 

Additionally, the associations between specific microstate transition probabilities and cognitive 

decline in individuals with ALS and cognitive-behavioural impairments (correlation 

coefficients |𝜌| > 0.3) underscore the potential utility of EEG microstates in predicting cognitive 

outcomes in this population. 

2.2.2. Source-space: alterations in the temporal dynamics of functional brain networks 

EEG microstates offer a method to decompose intricate and constantly shifting EEG signals 

into distinct and understandable patterns. These patterns are based on stable electric field 

configurations that persist for a very short period, typically around 80-100 milliseconds. 

Similar rapid fluctuations in patterns of neural activity and functional connectivity in source 

space have been observed (Tewarie et al., 2019; Vidaurre et al., 2016). While functional 

networks have been extensively studied using fMRI, the lower temporal resolution of fMRI 

signals may obscure the detection of neuronal interactions occurring at faster timescales. To 

address this limitation, dynamical analyses conducted in source space provide a promising 

avenue for exploring the impact of ALS on various functional networks (Vidaurre, Hunt, et al., 

2018). These networks encompass areas relevant to cognition, sensorimotor processing, visual 

processing, and the default mode network. Although direct connections between specific brain 

states and cognitive functioning in ALS have not been definitively identified, the application 

of dynamic analyses represents a valuable approach for evaluating disruptions within these 

networks. Cognition is hypothesised to depend more on the dynamic changes of synchrony 

between signals than the synchrony itself (Breakspear et al., 2004). By further examining the 

dynamic interactions, we could uncover subtle changes that may underlie cognitive 

impairments and other neurological symptoms associated with ALS.  



 

 

2.3. Machine learning for the assessment of prognostic biomarkers and the 

stratification of the ALS group into subcategories 

Machine learning (ML) and nationwide databases provide unique opportunities to evaluate 

potential biomarkers, especially in the context of diseases like ALS, where ML can help 

identify meaningful EEG patterns that may serve as biomarkers for diagnosis, prognosis, 

monitoring, or prediction (Bede, 2017; Grollemund et al., 2019). In a recent systematic analysis 

conducted by Fernandes et al. (Fernandes et al., 2021), they examined 18 articles that assessed 

the efficacy of ML algorithms applied to biomedical signals (EMG, EEG, gait rhythm and 

MRI) for tasks such as ALS diagnosis/classification (72%), survival prediction (6%), and 

communication intermediation (22%). The study revealed consistent improvements in various 

models, achieving high accuracy rates, ranging from 71% to 100%, and, when reported, high 

levels of specificity and sensitivity (>90%). These results underscore the potential of machine 

learning to address critical inquiries in ALS. All the studies included in this review employed 

supervised machine learning methods, which involve training a model based on labelled data, 

as opposed to unsupervised methods which seek to uncover patterns or structures without 

specific target labels. 

2.3.1. Supervised vs. unsupervised learning 

Supervised learning includes classification, where models categorize features into predefined 

groups, and regression, where models predict continuous outcomes by establishing 

mathematical relationships between predictors and target variables (Hosseini et al., 2021). For 

instance, neuroimaging measures have been classified into ALS or other disease categories 

(Bede et al., 2021). In contrast, regression models, such as those used in ALS prognosis, utilize 

longitudinal EEG spectral data to forecast changes and link them to clinical observations 

(Chapter VI). 

On the other hand, unsupervised learning holds promise in the context of ALS, addressing the 

disease's heterogeneity not fully captured by clinical assessments. It can aid in patient 

stratification by revealing novel data patterns, providing researchers with novel insights. 

Unsupervised learning can also reduce the reliance on large, well-labeled datasets. For 

example, clustering algorithms can be applied to study longitudinal EEG spectral patterns 

(Chapter VI) or temporal dynamics in EEG signals (at sensor or source levels) (Chapter VIII, 



 

 

Chapter IX). However, further development is required to demonstrate the generalisability and 

performance of unsupervised methods. 

2.3.2. Overfitting 

In machine learning, a common challenge is overfitting, which occurs when a model becomes 

too focused on the training data, capturing even the noise and random fluctuations instead of 

just the underlying patterns. This results in a model that excels on the training data but performs 

poorly on new, unseen data. To detect overfitting, it is crucial to evaluate the model on data 

that has not been seen before, such as through cross-validation. While underfitting is a concern 

because it inadequately represents the data, overfitting poses a significant problem. An overfit 

model may seem like a perfect fit for the training data but fails to generalise effectively. The 

key to addressing this challenge lies in finding the right balance between model complexity, 

which reduces bias and prevents underfitting, and the model's ability to perform well on new, 

unseen data, which reduces variance and prevents overfitting (Grollemund et al., 2019). To 

mitigate overfitting, various techniques are employed, including regularisation and 

dimensionality reduction. Additionally, increasing the amount of training data available can 

also reduce the risk of overfitting. Dataset size is a critical factor that can significantly impact 

the performance and effectiveness of a model. In general, larger datasets tend to yield better 

model performance, as they provide more information for the model to learn from. 

Obtaining a sufficiently large number of EEG recordings from individuals with ALS for ML 

modelling is challenging due to potential participant discomfort and time constraints. Despite 

promising results seen in EEG modelling studies, notably in the field of epilepsy (Abbasi & 

Goldenholz, 2019), sample size remains a common limitation. 

3. Impact on treatment development and disease understanding  

3.1. Unraveling the Complexity of ALS: Insights from longitudinal cortical activity and 

altered temporal dynamics 

3.1.1. Progression of ALS: Insights from longitudinal changes in cortical activity 

The longitudinal studies, described in this thesis, revealed neural activity progressions in the 

fronto-temporal areas in individuals with ALS, highlighting the importance of recognising 

changes in non-motor regions. This observation aligns with the notion that ALS does not solely 

impact motor pathways, but involves a broader neural involvement (De Marchi et al., 2021; 



 

 

Dukic et al., 2019; Nasseroleslami et al., 2019). Fronto-temporal brain regions are particularly 

relevant in conditions like frontotemporal dementia (FTD), where degeneration in these areas 

leads to progressive cognitive and behavioural decline. The left frontal and temporal lobes 

(Broca's and Wernicke's areas), particularly, are integral to language comprehension and 

production. Damage to these regions may explain why fluency deficits are the most common 

form of cognitive impairment observed in ALS (Abrahams et al., 2000). A Japanese research 

group specifically associated decreased functional connectivity in the lingual/fusiform gyrus 

and increased connectivity in the left temporal gyrus with semantic deficits (Ogura et al., 2019).  

Furthermore, within ALS subgroups, distinct progressions emerge, particularly in individuals 

with cognitive-behavioural impairments, emphasizing the relevance of considering 

neuropsychological factors when assessing cortical activity changes.  

Interestingly, variations in neural activity patterns extend beyond neuropsychological 

characteristics, suggesting a multifaceted nature of ALS progression, as reported in Chapter VI 

and previously by Burgh et al. (Burgh et al., 2020). Specific groupings (or clusters) were 

observed that pointed to consistent trajectory patterns among different subsets of individuals 

with ALS. Notably, while most lower frequency band neural activities exhibited a decline, 

consistent with cross-sectional findings compared to healthy controls (Dukic et al., 2019), a 

noteworthy exception was observed in one α-band cluster, where activity in sensorimotor 

networks displayed an increase. These distinct findings highlight the complexity of ALS and 

the need for further investigation into the neurobiology of its heterogeneous presentation.  

3.1.2. Altered temporal dynamics 

The findings regarding differences in microstate transitions between individuals with ALS and 

control groups represent a step forward in understanding the neurobiology of ALS. These 

results suggest that ALS disrupts not only cortical activity and functional connectivity but also 

the typical patterns of neural activity fluctuations, which are hypothesised to be crucial to the 

organisation and adaptability of the functional networks of the brain (Van der Ville, 2010). The 

association of altered microstate classes with both sensory and higher-order cognitive networks 

reflects the complex clinical presentation of ALS. Furthermore, individuals in the late stages 

of ALS displayed greater symmetry and stability in their transition matrices. This finding 

suggests that as the disease advances, the brain becomes less capable of dynamically switching 

between different transient microstates. 



 

 

Moreover, the study presented in Chapter IX brought to light the dynamic changes occurring 

in the posterior Default Mode Network (DMN), a functional network typically associated with 

resting state activity. The observation of temporal alterations within the DMN dynamic adds a 

dimension to our understanding of ALS. While resting state activity in this network is a 

common finding, the documented changes further demonstrate the broader impact of ALS on 

functional networks, extending beyond the sensorimotor domains. These findings emphasize 

that ALS has far-reaching consequences on brain network dynamics. 

3.2. Treatment development: Potential prognosis biomarkers  

Several key requirements must be met to obtain reliable biomarkers, while balancing these 

considerations with the practical aspect of clinical trial accessibility, particularly in terms of 

ease of use. Firstly, accuracy is paramount, demanding precision and dependability in 

measurement. Secondly, sensitivity and specificity, often interlinked, must be rigorously 

evaluated.  Sensitivity reflects the ability of a biomarker to correctly identify true positive 

cases, while specificity gauges its capacity to accurately rule out true negatives. Striking the 

right balance between these two attributes is crucial to prevent false positives or negatives. 

Additionally, validation procedures should be conducted to assess reproducibility (Benatar et 

al., 2016).  

3.2.1. Validation of resting-state EEG spectral measures as potential prognostic 

biomarkers  

Previous research had identified increased co-modulation and decreased synchrony in both 

motor and non-motor networks as potential biomarkers due to their strong performance with 

an AUC greater than 0.7 (Dukic et al., 2019). However, it was crucial to further validate these 

findings. In Chapter V, we delve into the alignment between cross-sectional observations and 

the longitudinal progression of EEG spectral measures in individuals with ALS. Notably, we 

found that the decrease in spectral power in lower frequency bands and the concurrent increase 

in higher frequency band power were consistently observed over time. Similarly, the 

widespread increase in co-modulation, particularly in the β-band, persisted longitudinally. 

However, the decrease in synchrony observed in the cross-sectional analysis was only 

consistently observed longitudinally in the ALS subgroup without cognitive or behavioural 

impairment.  



 

 

3.2.2. Stratification of individuals with ALS based on resting-state EEG measures 

Differential progression of spectral EEG measures among ALS subgroups with distinct 

neuropsychological profiles was demonstrated (Chapter V). This divergence in the progression 

of EEG measures strongly implies the presence of underlying neurophysiological factors 

contributing to the heterogeneity of symptom progression seen in ALS. Furthermore, the 

association between functional connectivity, particularly the co-modulation of source-

reconstructed EEG signals, and clinical measures of cognitive impairment highlights the 

potential of EEG-based biomarkers to capture cognitive network dysfunction in ALS 

(correlation coefficients: 0.5 ≤ |𝜌| ≤ 0.7). The ALSncbi subgroup, consisting of ALS patients 

without cognitive or behavioural impairment, displayed a distinct pattern of decreasing β-band 

synchrony over time. This subgroup exhibited a correlation between motor decline and neural 

activity changes (correlation coefficient |ρ| = 0.4), emphasizing the relevance of motor-related 

neural alterations in the absence of cognitive or behavioural symptoms. One overarching 

finding across all subgroups was also the strong association between survival and the rate of 

changes in functional connectivity between specific brain regions (correlation coefficients |ρ| 

> 0.5). This underscores the critical role of neural network dynamics in influencing disease 

progression and prognosis. 

Prior research similarly demonstrated that cross-sectional EEG spectral measures can be used 

to classify individuals with ALS in subgroups, likely to represent subphenotypes of the disease 

(Dukic et al., 2022). The stable and robust classification of EEG spectral power progressions 

over time, as discussed in Chapter VI, allowed us to identify ALS subgroups that exhibited 

distinct survival and motor decline patterns. This suggests that EEG-based biomarkers can be 

valuable for stratifying patients and predicting their disease trajectories. A similar data-driven 

analysis of EEG co-modulation (which showed the strongest association with cognitive 

decline) may lead to the identification of ALS subgroups that align with clinically established 

neuropsychological profiles. This potential alignment between neuroelectrophysiological and 

neuropsychological characteristics could offer a more comprehensive understanding of the 

disease and further enhance the utility of EEG-based biomarkers in monitoring cognitive and 

behavioural symptoms in ALS. 

Collectively, these findings indicate that resting-state EEG spectral measures hold promise as 

valuable prognostic biomarkers of cognitive and behavioural impairment in ALS. They may 



 

 

enable clinicians to anticipate the progression of ALS and adjust treatment plans accordingly, 

ultimately improving patient care and resource allocation in clinical practice. Integrating EEG 

data into clinical trial protocols may provide valuable insights to assess their potential as 

predictive and monitoring biomarkers.  

3.2.3. New biomarker of cognitive-behavioural impairment candidates based on dynamic 

analysis of resting-state data 

Based on dynamic analysis, several novel biomarker candidates have been identified which 

display excellent discrimination of individuals with ALS from controls and were specifically 

associated with cognitive-behavioural impairment. Notably, based on the four canonical 

categories of microstates, which are labelled A to D. Microstate classes C and D have been 

linked to higher cognitive networks rather than somatosensory networks. Specifically, class C 

is associated with self-reflection or 'self-referential internal mentation' (Tarailis et al., 2023), 

while class D is associated with the attention network. In our study, we observed a reduction 

in the duration of class D microstates, with an area under the curve (AUC) of 0.6, in individuals 

with ALS in comparison to HC. 

Moreover, in patients who exhibited cognitive and behavioural impairments, we found that 

lower transition probabilities from class C to class D (TP CD) were associated with cognitive 

decline (correlation coefficient 𝜌 = 0.4). Similarly, lower TP CD values were also detected in 

individuals with ALS compared to HC, with an AUC greater than 0.7. This suggests the 

potential utility of TP CD as a novel biomarker for identifying cognitive impairment in ALS. 

4. Limitations  

 
4.1.  Potential non-random attrition 

The attrition rate is a concern in ALS research, particularly in longitudinal studies, as it can 

introduce bias. Individuals who discontinue their participation in the study may not accurately 

represent the original study group, resulting in a non-random loss of participants. Rapidly 

progressing disease symptoms can contribute to participant attrition. When examining 

cognitive and behavioural impairments, impairment such as apathy, may also lead to dropouts. 

The potential impact of this bias was discussed in the context of our longitudinal findings, 

specifically in Chapters V and VI. 



 

 

4.2. Potential limitations in cognitive and behavioral assessments 

In studies focused on cognitive and behavioural impairment in ALS, it is crucial to consider 

the impact of practice effects and measurement bias. The ALS group participating in EEG 

recordings largely does not exhibit cognitive impairment (~80%). Consequently, their 

performance reflects an average response to practice effects, but incorporating normative data 

from healthy controls would enhance precision. 

Additionally, ALS patients often experience symptoms like fatigue and motor or respiratory 

issues that can mimic cognitive impairment. To obtain a more accurate assessment of cognitive 

and behavioural impairment, a comprehensive neuropsychological battery is necessary, as 

screening tests like ECAS or BBI are designed for quick assessments. However, currently, this 

comprehensive battery is exclusively administered when suspicions arise regarding cognitive 

or behavioural issues. The selective use of these extensive data for some participants alone has 

the potential to introduce outcome measurement bias. Therefore, we opted to use consistent 

measures for all participants to minimise the risk of bias. 

4.3. Data sparsity 

EEG data from 121 individuals with ALS and 81 HC represent enough data for statistical 

comparison analyses and even sufficient sample size for most ML models. However, ALS 

subphenotypes such as ALS-FTD or ALS with thoracic onset are not well represented in our 

dataset. Multicenter protocols and international collaborations could solve this issue, while also 

demonstrating replicability between centers.  

Moreover, the curse of dimensionality implies that the complexity and challenges of working 

with high-dimensional data spaces become increasingly problematic as the number of 

dimensions (features or variables) grows. As the dimensionality increases, the amount of data 

required to adequately represent the space also increases exponentially, which can lead to data 

sparsity and difficulties in finding meaningful patterns. This curse makes tasks like clustering, 

classification, and regression more computationally intensive, often requiring larger datasets 

to maintain model accuracy and interpretability (Grollemund et al., 2019). In our case, when 

considering functional connectivity, for instance, the number of connections can be up to 90x90 

in 6 frequency bands, which makes the number of features higher than the number of samples. 



 

 

Dimensionality reduction techniques help to address this issue and extract relevant information 

from high-dimensional data. The computational power required remains high.  

4.4. Computational power 

The requirement for substantial computational power resulted in delays during the project 

based on the time-delayed embedded hidden Markov model (Chapter VIII). Recognizing that 

this model could not efficiently run on a standard workstation, I drafted a proposal to secure 

access to the high-performance computing resources at the Irish Centre for High-End 

Computing (ICheck). The later access to a high-performance workstation addressed the 

computational requirements, alleviating the delays. 

5. Future work  

 
5.1. Further longitudinal resting-state EEG data collection 

As discussed in section 2.3, the sample size plays a pivotal role in machine learning analyses 

and remains a primary obstacle to establishing robust and validated biomarkers (Grollemund 

et al., 2019). The collection of longitudinal resting-state EEG data from individuals with ALS 

has been an ongoing effort both before and throughout this project, and it will be pursued. This 

continuous data collection is particularly crucial, given that ALS, and especially its 

subphenotypes like ALS-FTD, are relatively rare conditions. 

Moreover, the acquisition of longitudinal RS EEG data from healthy controls is planned to 

ensure that any observed changes in the ALS population are not solely attributed to normal 

ageing. This additional data from HC subjects will serve as an additional means of validation, 

confirming the specificity of our findings in relation to ALS-related changes. 

5.2. Clustering of the longitudinal progressions of functional connectivity 

Our previous research has highlighted that the longitudinal increase in the co-modulation of 

EEG signals in individuals with ALS and cognitive impairment shows the most significant 

correlation with cognitive decline. Building on this insight, I plan to employ data-driven 

clustering analyses focused on co-modulation, akin to what we have previously done with 

spectral power. This approach holds the potential to uncover distinct subgroups within the ALS 

population, each associated with specific neuropsychological profiles. I intend to conduct an 



 

 

in-depth examination of clusters formed by the longitudinal changes in co-modulation. This 

analysis aims to validate the belief that there are subgroups within the ALS population that 

exhibit unique patterns of co-modulation changes over time. By doing so, I hope to gain a 

deeper understanding of the relationship between EEG signal co-modulation, cognitive 

function, and the heterogeneity that exists within the ALS population. 

5.3. Further analyses of dynamical patterns in ALS and other MND variants 

In Chapter IX, we conducted a dynamic analysis of patterns in spectral power and functional 

connectivity, revealing timecourses of both transient and recurring functional networks. These 

networks exhibit striking similarities to well-established fMRI resting-state networks 

(Damoiseaux et al., 2006; Vidaurre et al., 2016; Vidaurre, Hunt, et al., 2018). Extending this 

analysis to other motor neuron disease variants, like primary lateral sclerosis characterized by 

dominant upper motor neuron impairment, or other neurological conditions affecting motor 

function such as multiple sclerosis or post-polio syndrome, could yield valuable insights. My 

plan involves leveraging existing databases collected by colleagues working on separate 

projects to investigate whether individuals with various MND variants or different neurological 

disorders display distinct temporal dynamics within their functional networks. This exploration 

will study nuanced differences in the spectral, temporal and spatial EEG patterns of these 

conditions.  

6. Overall conclusion 

In the context of ALS research, the identification of cognitive and behavioural impairments 

poses significant challenges, often relying on qualitative input. Recognizing the need for more 

comprehensive evaluations, this thesis focused on EEG measures to reveal neural activity 

patterns linked to cognitive-behavioural impairment in ALS. 

The research demonstrated distinct longitudinal patterns of neural activity and functional 

connectivity within ALS subgroups exhibiting diverse neuropsychological profiles. 

Specifically, strong associations were established between cognitive-behavioural impairments 

in ALS and unique neural activity longitudinal patterns.  



 

 

Additional patterns were observed at both the sensor and source levels, capturing temporal 

dynamics in EEG signals. These comprehensive approaches have not only deepened our 

understanding of ALS but have also revealed novel potential biomarker candidates. 

I will further look into the clustering of functional connectivity patterns and extend my dynamic 

analyses to encompass other MND variants. By doing so, I aim to gain a more profound 

understanding of the alterations within the temporal dynamics of functional networks 

experienced by individuals affected by neurological conditions such as ALS, Primary Lateral 

Sclerosis (PLS), or others. Broadening the analysis beyond ALS to include other MND variants 

presents an opportunity to advance our understanding of the spectrum of motor neuron 

diseases, offering insights that are not only specific to each variant but also revealing 

commonalities that may inform clinical practice and therapeutic development. 

In sum, these findings not only contribute significantly to our comprehension of ALS but also 

hold promise as prognostic biomarker candidates for cognitive and behavioural impairment. 

This advancement has the potential to greatly enhance patient care and facilitate progress in 

treatment development by providing reliable stratification of individuals with ALS. 
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XI. Appendices 

 

1. Appendix – Chapter IV 

 



 

 

1.1. Supplementary note 1: Brain networks 

To define neurophysiologically-meaningful networks, we used the five anatomical lobes: 

frontal, temporal, centro-parietal, occipital and subcortical with the separation of the centro-

parietal lobe into parietal and motor networks as this last brain region is a hallmark of atrophy 

in ALS. Each network is described in terms of the AAL regions in Table 9.  

Table 9: Subgroups of brain regions according to the AAL atlas.  

Motor network  Precentral gyrus, 

Rolandic operculum,  

Supplementary motor area, 

Paracentral lobule 

Frontal lobe Superior frontal gyrus, dorsolateral, 

Superior frontal gyrus, orbital, 

Middle frontal gyrus, 

Middle frontal gyrus, orbital, 

Inferior frontal gyrus, opercular, 

Inferior frontal gyrus, triangular, 

Inferior frontal gyrus, orbital, 

Superior frontal gyrus, medial, 

Superior frontal gyrus, medial orbital, 

Gyrus rectus 

Temporal lobe Fusiform gyrus, 

Heschl gyrus, 

Superior temporal gyrus, 

Temporal pole: superior temporal gyrus, 

Middle temporal gyrus, 

Temporal pole: middle temporal gyrus 

Inferior temporal gyrus, 

Occipital lobe Calcarine fissure and surrounding cortex, 

Cuneus, 

Lingual gyrus, 

Superior occipital lobe, 

Middle occipital lobe, 

Inferior occipital lobe 

Parietal lobe Postcentral gyrus, 

Superior parietal gyrus, 

Inferior parietal gyrus, 

Supramarginal gyrus, 

Angular gyrus, 

Precuneus, 

Subcortical  Amygdala, 

Caudate nucleus,  



 

 

Cingulate gyrus, anterior part, 

Cingulate gyrus, mid part,  

Cingulate gyrus, posterior part, 

Hippocampus, 

Insula, 

Olfactory cortex,  

Pallidum,  

Parahippocampus, 

Putamen, 

Thalamus 

 

 

2. Appendix – Chapter V 

2.1. Supplementary note 2: Fixed-effects statistics of the EEG measures models 

Spectral power 

For each frequency band of the spectral power with ROI-specific significant changes over time 

(significance determined by bootstrapping analysis on the LME models per ROI), the F-tests 

were computed with the null hypothesis 𝐻  of all fixed-effects being null. The corresponding 

F-statistics can be observed in Table 10.  

Table 10: Spectral power model F-statistics performed for each frequency band of interest. Each rejected null hypothesis 

(p<0.05) reveals the existence of non-zero fixed-effects.  

 All ALSbi ALSncbi 

Frequencies δ γl 𝛾  𝛾  𝛽 

p-values 0.2 0.2 0.2 0.2 0.5 

F-statistics 1.8 1.5 1.5 1.6 0.5 

 

For each frequency-band model of interest, the fixed-effects and their related statistics are 

detailed in Table 11. It describes the estimated effects of time (since disease onset) on the EEG 

power. Depending on the frequency band, the effects differ, but no overall significant temporal 

effect was observed in any model.   

Table 11: ALSci - spectral power models fixed-effects and related t-statistics for each frequency band of interest. For each 

fixed-effect, is given the estimate and its standard error as well as the t-statistic with p-value and confidence intervals. 

Significant effects are represented in bold. No significant overall time effect was observed for any of the six frequency-band. 

 Freq Fixed-effect name Estimate SE tStat pValue Lower Upper 



 

 

All 

𝜃 
(Intercept) 0.082 0.0073 11 2E-29 0.068 0.096 

Time -0.0003 0.0002 -1.3 0.18 -0.0007 0.0001 

𝛾  
(Intercept) 0.1 0.012 8.9 6E-19 0.081 0.13 

Time 0.00033 0.00027 1.2 0.22 -0.0002 0.00085 

ALSbi 

𝜸𝒍 
(Intercept) 0.095 0.014 6.7 2E-11 0.067 0.12 

Time 0.00061 0.0005 1.2 0.22 -0.0004 0.0016 

𝜸𝒉 
(Intercept) 0.17 0.032 5.2 2E-07 0.1 0.23 

Time 0.0015 0.0011 1.3 0.2 -0.0008 0.0037 

ALSncbi 𝜸𝒍 
(Intercept) 0.11 0.015 7.2 7E-13 0.078 0.14 

Time 0.0002 0.0003 0.71 0.48 -0.0004 0.0007 

Amplitude envelope correlation (AEC) 

For each frequency band of the spectral power with ROI-specific significant changes over time, 

the F-tests were computed with the null hypothesis 𝐻  of all fixed-effects being null. The 

corresponding F-statistics can be observed in Table 12.  

Table 12: Co-modulation model F-statistics performed for each frequency band of interest. Each rejected null hypothesis 

(p<0.05) reveals the existence of non-zero fixed-effects.  

 ALSci ALSbi ALSncbi 

Frequencies δ θ α β 𝛼 𝛿 𝜃 

p-values 0.0009 0.01 0.4 0.6 0.7 0.2 0.09 

F-statistic 11 11 0.68 3.6 0.16 1.5 2.8 

 

For each frequency-band model, the fixed-effects and their related statistics are detailed in 

Table 13. It describes the estimated effects of time (since disease onset) on the EEG power. 

Depending on the frequency band, the effects differ but overall significant temporal effects 

were observed in the 𝛿 and 𝜃-bands, in ALSci patients.  

Table 13: Co-modulation models fixed-effects and related t-statistics for each frequency band of interest. For each fixed-

effect, is given the estimate and its standard error as well as the t-statistic with p-value and confidence intervals. Significant 

effects are represented in bold.  

 Freq Fixed-effect name Estimate SE tStat pValue Lower Upper 

ALSci 

𝜹 
(Intercept) -1.7 0.57 -3 0.0026 -2.8 -0.6 

Time 0.065 0.02 3.3 0.0009 0.027 0.1 

𝜽 
(Intercept) -1 0.33 -3 0.0026 -1.7 -0.35 

Time 0.042 0.01 3.3 0.0011 0.017 0.067 



 

 

𝜶 
(Intercept) -0.023 0.46 -0.05 0.96 -0.92 0.87 

Time 0.012 0.02 0.82 0.41 -0.017 0.042 

𝜷 
(Intercept) -0.44 0.4 -1.1 0.27 -1.2 0.35 

Time 0.03 0.02 1.9 0.057 -0.0009 0.061 

ALSbi 𝜶 
(Intercept) 0.16 0.34 0.47 0.64 -0.5 0.82 

Time -0.0053 0.01 -0.4 0.69 -0.03 0.021 

ALSncbi 

𝜹 
(Intercept) -0.048 0.5 -0.096 0.92 -1 0.93 

Time 0.016 0.013 1.2 0.23 -0.0097 0.041 

𝜽 
(Intercept) -0.4 0.5 -0.79 0.43 -1.4 0.58 

Time 0.025 0.015 1.7 0.094 -0.0043 0.054 

Imaginary coherence (iCoh) 

Significant fixed-effects were observed for non-cognitively impaired patients in 𝛽-band, in the 

synchrony model (Table 14).  

Table 14: Synchrony model F-statistics performed for each frequency band of interest. Each rejected null hypothesis (p<0.05) 

reveals the existence of non-zero fixed-effects.  

 ALSci ALSbi ALSncbi 

Frequencies 𝛽 𝛿 𝛼 𝛿 𝜷 γh 

p-values 0.9 0.2 0.4 0.1 0.003 0.2 

F-statistic 0.02 1.9 0.7 2.3 8.8 1.4 

 

For each frequency-band model, the fixed-effects and their related statistics are detailed in 

Table 15. It describes the estimated effects of time (since disease onset) on the EEG power. 

Depending on the frequency band, the effects differ, but whole brain 𝛽-band synchrony 

significantly decreased over time in ALSncbi patients.   

Table 15: Synchrony models fixed-effects and related t-statistics for each frequency band of interest. For each fixed-effect, is 

given the estimate and its standard error as well as the t-statistic with p-value and confidence intervals. Significant effects 

are represented in bold. A significant overall time effect was observed in 𝛽-band for ALSncbi patients. 

 Freq Fixed-effect name Estimate SE tStat pValue Lower Upper 

ALSci 𝜷 
(Intercept) -0.6 0.89 -0.68 0.5 -2.3 1.1 

Time 0.0073 0.007 1 0.3 -0.007 0.021 

ALSbi 
𝜹 

(Intercept) -0.27 0.21 -1.3 0.2 -0.69 0.14 

Time 0.0067 0.006 1.1 0.29 -0.006 0.019 

(Intercept) -0.15 0.18 -0.9 0.4 -0.51 0.2 



 

 

𝜶 Time 0.0046 0.005 0.85 0.39 -0.006 0.015 

ALSncbi 

𝜹 
(Intercept) -0.3 0.14 -2.2 0.028 -0.57 -0.033 

Time 0.0074 0.005 1.5 0.13 -0.002 0.017 

𝜷 
(Intercept) 0.45 0.16 2.8 0.005 0.14 0.77 

Time -0.013 0.004 -3 0.003 -0.021 -0.0043 

𝜸𝒉 
(Intercept) 0.23 0.2 1.1 0.25 -0.16 0.61 

Time -0.0054 0.005 -1.2 0.23 -0.014 0.0035 

 

2.2. Supplementary note 3: Longitudinal models of motor and cognitive clinical 

measures 

We estimated the longitudinal changes in functional clinical scores (ALSFRS-R and 

neuropsychological scores) using linear mixed-effects models. The goodness-of-fit was 

estimated using the negative log-likelihood of the fitted model: the lower the value, the best 

the model fits the dataset. On average across participants, an ALSFRS-R score decreases by 

0.72 points per month. The estimated variance of the random slope 𝜎  was of 0.5 and that of 

random intercept 𝜎  was 8. The ALSFRS-R subscores and neuropsychology models can be 

interpreted similarly. For the ECAS scores models questionnaire version fixed-effects and level 

of education random-effects were additionally estimated.  

Table 16: Longitudinal models of the clinical measures of functional disability and neuropsychology. Fixed- and random-

effects of the linear mixed-effects models describing clinical scores (ALSFRS, ECAS, BBI) progressions over the time of the 

disease. Standard errors were added in parenthesis. *p < 0.05; ***p < 0.001 

 ALSFRS-R Neuropsychology 

 total ALSFRS-

R 

upper limbs total 

ECAS 

fluency BBI 

Negative log-likelihood -3120 -2107 -1200 -950 -993 

Fixed-effects 

Intercept 50 (0.8) *** 
12 (0.3) *** 

102 (2) 

*** 

16 (0.7) 

*** 

11 (1.6) 

*** 

Version B  - - 2 (0.9) 0.4 (0.4)  - 

Version C - - 1 (1)  0.6 (0.5) - 

Time (per months) -0.7 (0.05) *** -0.2 (0.01) 

*** 

0.2 (0.07) 

* 

0.04 (0.02)  -0.05 

(0.05) 

Random-effects 

Participant Intercept variance 8 3 14 4 12 

Time variance (per 

months2) 

0.5 0.2 0.2 0.01 0.07 



 

 

Education Intercept variance 

- - 

8 2 

- Time variance (per 

months2) 

0.02 0.04 

Residual  2 1 5 2 8 

 

The linearity of ALSFRS-scores progression has been discussed, with the hypothesis of a 

curvilinear evolution proposed (Gordon et al., 2010), but a linear regression remains a valid 

estimation. In our model, while the rate of disease progression was expected to be participant-

specific, the variability in the initial ALSFRS-R score across participants was larger than 

predicted. This may be due to uncertainty in the estimated onset time. Similarly, the ECAS 

scores (total and fluency) have already been demonstrated to have a linear progression over 

time (Costello et al., 2021), and our results supported this hypothesis.  

2.3. Supplementary note 4: Checks for potential confounding factors 

To evaluate the effect of age, gender or medication on the observed EEG measures 

progressions, additional statistical tests were performed.  

 

 
(a) Gender distributions in different recording sessions (T1-T5). Fisher’s exact test (𝛼=0.05, two-tailed)  

did not reveal any non-random association between gender and recording sessions. 



 

 

 
(b) Age distributions in patients' different recording sessions (T1-T5). Kruskal-Wallis's one-way 

analysis of variance revealed no statistical difference in age distribution between recording 
sessions. (Bechtold, 2016/2022) 

 

(c) Medication distributions in different recording sessions (T1-T5). Fisher’s exact test (𝛼=0.05, two-tailed) 
did not reveal any non-random association between medication and recording sessions T1 to T4. 

Unfortunately, the sample size for T5 was too small to be conclusive.  
 

2.4. Supplementary note 5: Additional analyses on the linearity of the EEG measures  

To test whether the longitudinal changes of the EEG measures can be estimated by a linear 

model, we applied a quadratic model to the participants with more than two recording sessions 

(N=37). For each observed longitudinal change, we assessed potential quadratic time effects, 

(i.e. EEG ~ Time + Time2, expressed in Wilkinson notation). For connectivity measures, the 

inverse normal transformation was used to transform EEG data to a standard normal 

distribution. The linearity assumption was verified for the majority of the participants (q<.05). 



 

 

In case of a significant quadratic effect, we inspected the patterns of change over time to ensure 

that despite the non-linearity, the patterns were still monotonic. 

 

2.5. Supplementary note 6: Localisation of significant longitudinal changes of EEG 

spectral power and functional connectivity in participants with normal and impaired 

cognition/behaviour 

 



 

 

Figure 28: Left. 

Longitudinal changes of 

EEG spectral power in 

participants with normal 

and impaired 

cognition/behaviour. The 

significant temporal 

spectral power variations, 

in terms of the time fixed-

effect and the time ROI-

specific random-effects 

(Bootstrapping, p<0.05), 

were mapped to get a 

spatial visualisation. 

Middle-Right. 

Localisation of 

longitudinal changes of 

EEG co-modulation and 

synchrony in ALS, ALSci, 

ALSbi and ALSncbi 

groups. The significant 

temporal connectivity 

changes were mapped to 

get a spatial visualisation 

of their magnitudes. The 

temporal variations represent the combined estimated slope (significance by bootstrapping, q<0.1). The dashed lines represent a decrease while the solid lines represent an increase in connectivity. 

A filled node represents significant intra-lobe connectivity. 
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3. Appendix – Chapter VI 

 
3.1. Supplementary note 1: Longitudinal analysis of the clinical assessments 

Table 17: Model parameter estimates from longitudinal analyses of clinical scores. Fixed and random-effects of the models 
describing clinical scores (ALSFRS, ECAS, BBI) progressions over the time of the disease. Standard errors were added in 
parenthesis. *p < 0.05; ***p < 0.001. 

 bulbar 
ALSFRS 

lower limbs 
ALSFRS 

upper limbs 
ALSFRS 

respiratory 
ALSFRS 

total 
ECAS 

BBI 

log-likelihood -1883 -2125 -2107 -2259 -1200 -1053 
Fixed-effects 
Intercept 12 (0.2) *** 12 (0.3) *** 12 (0.3) *** 12 (0.3) *** 102 (3) 

*** 
11 (1.5) 
*** 

Version B  - - - - 1 (1) - 
Version C - - - - 0.2 (1)  - 
Time (per months) -0.1 (0.01) 

*** 
-0.2 (0.01) 
*** 

-0.2 (0.01) 
*** 

-0.1 (0.01) 
*** 

0.2 (0.06) 
* 

-0.06 
(0.05)  

Random-effects 

Subject 

Intercept 
variance 

2 4 3 3 13 11 

Time variance  
(per months2) 

0.1 0.1 0.2 0.1 0.1 0.07 

Education 

Intercept 
variance 

- - - - 

8 

- 
Time variance  
(per months2) 

0.02 

Residual  0.9 2 1 1 5 8 

 
 


