
Few-Shot Learning and Learnable Frontends for Remote

Monitoring of Bird Populations

Mark William Anderson

A dissertation submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

Trinity College Dublin, the University of Dublin

2024

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any

other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or allow

the Library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College

Library conditions of use and acknowledgement.

I consent to the examiner retaining a copy of the thesis beyond the examining period, should

they so wish (EU GDPR May 2018).

Mark William Anderson

May 2, 2024

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Mark William Anderson

May 2, 2024

Acknowledgements

The submission of this thesis marks the end of an almost decade-long journey here at Trinity

College, and specifically the Department of Electronic & Electrical Engineering. I have many

many people to thank!

First, I would like to thank my supervisor Dr. Naomi Harte, for providing continuous

guidance and support throughout my PhD. Naomi your patience, knowledge and good

humour have enabled me to develop as a researcher, and to stay sane while doing so! I am

incredibly grateful for the opportunity to collaborate with you over these past few years.

I want to thank Dr. Tomi Kinnunen for hosting me during a productive and enlightening visit

to the University of Eastern Finland. Our long, very nerdy chats at lunch, covering topics

such as signal processing, AI, and music, are cherished memories.

I would also like to thank the academic, technical and administrative staff of the department,

for both encouragement during my research, and outside of it. Special thanks to Dr.

Sébastien Le Maguer, my partner in productive procrastination, to Dr. Anil Kokaram for

engaging discussions on signal processing, cinema, and cricket, and to Dr. Harun Šiljak, for

not discussing research at all. Thank you to Shane Hunt, Mark Linnane, Cormac Molloy,

Eugene O’Rourke, John Squires and Michael O’Riordan, not only for all your help throughout

the years, but also for plenty of good humour and chat.

Thank you and good luck to all my fellow PhD researchers in Sigmedia (and our neighbours

in Dr. Arman Farhang’s lab). I want to wish the best of luck to Sam Kotey, Ed Storey, Sam

O’Connor Russell, Clément Bled, Darren Ramsook, Vibhoothi, Meegan Gower, Xin Shu,

Conall Daly, Uditangshu Aurangabadkar, Julien Zouein and Zhaofeng Lin. A special thank

vii

viii

you and good luck to my dear friend Ayushi Pandey, who embarked on this journey alongside

me. Ayushi, no matter what happens, I think you can truly call yourself a Dubliner at this

point.

I would also like to express my gratitude to (now Dr.) DJ Ringis. Your ability to easily

distract me and your infectious enthusiasm for sports, games, and politics has been a joy the

last half decade. Thank you!

This wouldn’t have been possible without the love and support of my parents, Barbara &

David. Their encouragement and patience with a young “engineer”, occupying space and

breaking more things than he got to work, helped lead me to pursuing engineering and

ultimately, finishing this work. Their willingness to hear me complain (when needed) for four

years has helped immensely.

Finally I want to thank Ellie. You have supported and helped me more than you know, and in

more ways than I could ever put into words (but I’m going to keep trying). Thank you for

everything.

Abstract

In response to changing ecological and environmental factors, automated monitoring of bird

populations has become imperative for conservation efforts and as an indicator of change in

its own right. This is particularly crucial in remote areas where manual observation is

challenging. Bird vocalisations are highly suitable for population monitoring, particularly in

environments where visual analysis is impractical. Automating the detection of bird activity

would allow ornithologists and conservationists more time for in-depth analysis of the data.

Essential to this effort is the development of high-performing, efficient systems capable of

operating on low-resource devices which are suitable for field deployment. However, the

limited availability of extensive, temporally detailed, fully annotated datasets for bird audio

poses a challenge for generalisation. Few-shot learning, especially in the context of sound

event detection, emerges as a promising solution to address the scarcity of data. It offers a

potentially lightweight approach to monitoring bird populations through their vocalisations.

Additionally, in the age of deep learning, the predominant input features to systems are

time-frequency representations of the audio. Recent advancements in learnable frontends

have enabled systems to learn from raw waveforms, learning new filterbanks for

time-frequency representations or learnable compression which is applied to existing

representations. The incorporation of learnable frontends into deep learning systems enables

the learning of improved audio representations directly from the audio data.

This thesis seeks to advance automatic and remote bird population monitoring through the

development of activity detection models and the integration of learnable frontends into bird

audio analysis. Features and classifiers are explored to determine their suitability for bird

ix

x

audio monitoring, considering both performance and computational efficiency. This includes

development of the AMPS feature set, derived from amplitude modulation, pitch and

spectral features, which is suitable for use with low-resource classifiers. Additionally, a

few-shot learning system for bioacoustic activity detection is developed as a system that can

generalise from few labelled examples and is potentially suitable for field deployment. We

incorporate learnable frontends into this system, yielding a relative 25% increase in F1-score

over static time-frequency representations.

Furthermore, this thesis benchmarks traditional fixed-parameter frontends against a new

generation of learnable frontends when applied to bird audio. We observe that Per-Channel

Energy Normalisation is the best overall performer and that in general learnable frontends

significantly outperform traditional methods. While the integration of learnable frontends

enhances overall performance, those employing learnable filterbanks exhibit sensitivity to

initialisation. We characterise the sensitivity of a learnable filterbank to its initialisation using

several strategies on two audio tasks: voice activity detection and bird species identification.

The limited movement of the filters from their initialisation suggests that alternative

optimisation strategies may allow a learnable filterbank to reach better overall performance.

To address this, we propose two mitigation strategies which modify the training strategy to

encourage filter movement. While yielding inconclusive results, these attempts serve as a

preliminary step for future research on the filterbank initialisation problem.

Contents

List of Tables xv

List of Figures xix

Chapter 1 Introduction 1

1.1 Monitoring Bird Populations through Audio 1

1.1.1 The Importance of Monitoring Bird Populations 1

1.1.2 Difficulties with Monitoring Bird Populations through their Vocalisations 2

1.2 Thesis Statement . 3

1.3 Thesis Outline . 4

1.4 Contributions . 7

1.5 Publications . 9

Chapter 2 Literature Review 11

2.1 Bird Vocalisations . 12

2.1.1 Production of Bird Vocalisations . 12

2.1.2 Vocalisation Structure . 14

2.1.3 Difference from Human Speech . 15

2.1.4 Importance of Vocalisation . 17

2.2 Automatic Monitoring of Birds . 17

2.2.1 Recording Hardware & Challenges . 18

2.2.2 Tasks in Bird Audio Monitoring/Bioacoustics 20

2.3 Few-Shot Learning . 26

xi

xii

2.3.1 Approaches to Few-Shot Learning . 28

2.3.2 Few-Shot Learning with Audio . 36

2.4 Learnable Frontends . 38

2.4.1 Frequency-Domain-Based Learnable Frontends 40

2.4.2 Time-Domain-Based Learnable Frontends 43

2.4.3 Learnable Compression . 45

2.5 Datasets . 46

2.6 Relevance to this Work . 48

Chapter 3 Low Resource Bird Activity Detection with AMPS 51

3.1 Preprocessing and Feature Extraction . 52

3.1.1 Identifying a Frequency Range for Bird Vocalisations 52

3.1.2 Preprocessing . 54

3.1.3 Feature Extraction . 56

3.2 Experimental Setup . 63

3.2.1 Data . 63

3.2.2 Feature Extraction and Classification 64

3.3 Results and Discussion . 67

3.4 Moving towards Few-Shot Learning . 70

Chapter 4 Bioacoustic Event Detection with Prototypical Networks 71

4.1 Few-Shot Learning and Prototypical Networks 72

4.1.1 Protonets . 73

4.1.2 Episodic Training . 76

4.1.3 Loss Function . 77

4.2 DCASE2021 Few-Shot Bioacoustic Sound Event Detection Challenge 78

4.2.1 Challenge Task . 79

4.2.2 Challenge Data . 80

4.2.3 Implementation . 85

4.2.4 Experimental Results . 91

4.2.5 Challenge Results . 94

Contents xiii

4.3 Investigation following the DCASE2021 Challenge 97

4.3.1 Analysis of Embedding Space using t-SNE 97

4.3.2 Triplet Loss to Improving Clustering and Increase Separation 101

4.3.3 Multiple Representations and Introduction of the Background Class . . 103

4.3.4 Results and Discussion . 104

Chapter 5 Learnable Frontends and the Filterbank Initialisation Problem 109

5.1 Non-learnable Frontends . 110

5.1.1 Mel-Frequency Cepstral Coefficients 110

5.1.2 Spectrogram based features . 111

5.1.3 Other Features . 115

5.2 Learnable Frontends . 116

5.2.1 Spectro-Temporal Filters . 119

5.2.2 Time-Domain Filter Banks . 121

5.2.3 Per-Channel Energy Normalisation . 124

5.2.4 (Efficient) Learnable Audio Frontend 127

5.3 Evaluating Learnable Acoustic Frontends on a Bird Activity Detection Task . . 130

5.3.1 Dataset . 132

5.3.2 Model . 133

5.3.3 Evaluation and Testing . 133

5.3.4 Results & Discussion . 136

5.4 The Filterbank Initialisation Problem . 141

5.4.1 Frontend initialisation . 143

5.4.2 Experimental Setup . 145

5.4.3 Results & Discussion . 150

Chapter 6 Mitigating the Filterbank Initialisation Problem and Returning to FSL157

6.1 Mitigation Strategies for the Filterbank Initialisation Problem 158

6.1.1 Alternating Training . 159

6.1.2 Separate Optimisation . 161

6.1.3 Experimental Setup . 161

xiv

6.1.4 Results & Discussion . 163

6.2 Returning to Few-Shot Learning . 173

6.2.1 Few-Shot Learning for Bioacoustics since 2021 174

6.2.2 Experimental Setup . 176

6.2.3 Results & Discussion . 178

Chapter 7 Conclusion 183

7.1 Architectures for Monitoring Bird Populations with Low Resource Hardware . . 184

7.2 Learnable Frontends in Audio Deep Learning 185

7.3 Future Work . 187

7.3.1 Few-Shot Learning for Bioacoustics . 187

7.3.2 Causes of the Filterbank Initialisation Problem and Mitigation Strategies187

7.3.3 Learnable Frontends . 188

7.4 Final Remarks . 189

List of Tables

3.1 Final hyperparameter values for Logistic, Support Vector Machines (SVM) and

Random Forest classifiers. These were determined using a grid search over the

relevant parameters. Below are the parameters used in the feature extraction

of amplitude modulation, pitch and spectral features. 66

3.2 Bird Audio Detection with AMPS features, evaluated using a Logistic Classifier,

Support Vector Machines, Random Forests and a Stacking Classifier. Best

results for each metric are marked in bold. 67

3.3 Random forest classification using AMPS features, broken down by the two

classes in the activity detection task: Bird Absent and Bird Present. 68

3.4 Comparison of the AMPS feature set to MFCCs when using Random Forests,

and to the pruned and quantised CNN model using mel-spectrograms. Best

results for each metric are marked in bold. 68

3.5 Number of operations for pruned and quantised CNN versus Random Forest

system. 69

4.1 Details of the DCASE2021 Few-Shot Learning Task training dataset. This

table includes overall statistics about the training dataset, as well as details on

the subsets which comprise the training set. Positive event means an event

matching one of the labels. 81

4.2 Details of the DCASE2021 Few-Shot Learning Task validation dataset. This

table includes overall statistics about the dataset, as well as details on the

subsets within the set. Positive event means an event matching one of the labels. 83

xv

xvi

4.3 Details of the DCASE2021 Few-Shot Learning Task evaluation dataset. This

table includes overall statistics about the dataset, as well as details on the

subsets within the set. Positive event means an event matching one of the labels. 84

4.4 Encoder architecture for the submitted prototypical network and ConvBlock ar-

chitecture. The input to the network fθ is a Time-Frequency (TF)-representation

of a segment of audio X ∈ RT×F , which is transformed to a 128-dimensional

vector, i.e. fθ : X → R128. 88

4.5 Results of the baseline protonet from the challenge organisers, our protonet

system (A), our system plus data augmentation (B), and our system plus data

augmentation and PCEN features (C) experiments on the validation dataset.

Best results in bold. 92

4.6 Breakdown of results using Data Augmentation and PCEN by validation data

subset. 93

4.7 DCASE 2021 Few-Shot Bioacoustic Event Detection Challenge team rankings,

as reported by the challenge organisers. This table contains each team’s best

submission and includes the results on the challenge evaluation set, the valida-

tion set used in training, and the results per data source in the evaluation set

(DC: Dawn Chorus, ME: Meerkat, ML: Macaulay Library). Best Results for

each in bold. 95

4.8 Results on the challenge evaluation set for the originally submitted system,

trained using prototypical triplet loss, the system trained using multiple rep-

resentations, and the system trained using prototypical triplet loss + multiple

representations. Best results in bold. 104

5.1 Details of datasets included from the DCASE2018 Bird Audio Detection Chal-

lenge. Positive in this context are recordings with a bird present. Negative are

recordings where no bird is present. 132

5.2 Hyperparameters and initial settings of each frontend. 134

5.3 Accuracy of EfficientNet-B0, broken down by frontend, on the full test dataset.

The best result is marked in bold. 137

List of Tables xvii

5.4 Significance tests on pairwise-comparisons using Tukey’s HSD. Cells marked

with ■ indicate statistically significant results (p < 0.05) on the entire test

set. Cells marked with □ indicate statistically significant results on at least one

dataset. 137

5.5 Details of dataset and classifier for the Voice Activity Detection (VAD) and Bird Species

Identification (BSID) tasks. 147

5.6 Results on hold-out test set for VAD and BSID tasks. Includes results using

learnable frontends with fixed filterbanks (Fixed) and using learnable frontends

with learnable filterbanks (Learn). Results between each fixed/learn pair are

statistically significant. Best results for the learnable frontend are marked in

bold. 151

6.1 Results on hold-out test set for VAD and BSID tasks. The Baseline, Alt. Train,

Diff LR and Both strategies are evaluated across different initialisations (Lin-

ear, Mel, Bark & Random). The values presented are the mean and standard

deviation of each metric over three runs. Best results for each task per initiali-

sation are highlighted in bold. Best overall results for each task are marked in

red. 164

6.2 Results on the challenge evaluation set for the original submitted system,

employing prototypical triplet loss + multiple representations (Modified Sys-

tem), and when utilizing learnable frontends (Per-Channel Energy Normalisa-

tion (PCEN) and Efficient Learnable Audio Frontend (eLEAF)). The F1-Score

of the top-ranked system from the 2021 challenge is included for comparison,

however, precision and recall values are unavailable. The best results for each

metric are marked in bold. 178

List of Figures

2.1 A Schematic drawing of an avian syrinx: (1)Cartilaginous Tracheal Ring, (2)Tra-

chea, (3)First Group of Syringeal rings, (4)Pessulus, (5)Membrana Tympani-

formis Lateralis (MTL), (6)Membrana Tympaniformis Medialis (MTM), (7)Sec-

ond Group of Syringeal rings, (8)Main Bronchus, (9)Bronchial Cartilage. “Sy-

rinx” by Uwe Gille, licensed under CC BY-SA 3.0. 13

2.2 Spectrogram Representation of Eurasian Wren song, labelling elements, sylla-

bles and phrases. 15

2.3 Temporal and Spectrogram representations of clean bird vocalisations (Eurasian

Wren) and clean Human Speech. Spectrograms are calculated using the same

window sizes (25 ms) and overlap (50%). 16

2.4 Two examples of Automatic Recording Units: the Wildlife Acoustics SM4 (left)

and the Cornell SwiftOne (right). Images sourced from the respective product

pages of each unit. 19

2.5 Activity detection can be clip-level (A), or temporal (B). Clip-level annotation

discerns the presence or absence of bird vocalisations in a clip of audio, with no

consideration as to where or for how long. Temporal activity detection provides

information of event onset and offset times. 21

xix

https://commons.wikimedia.org/wiki/File:Syrinx.jpg
https://commons.wikimedia.org/wiki/File:Syrinx.jpg
https://commons.wikimedia.org/wiki/User:Uwe_Gille
https://creativecommons.org/licenses/by-sa/3.0/
https://www.wildlifeacoustics.com/products/song-meter-sm4
https://www.birds.cornell.edu/ccb/swift-one/

xx

2.6 Simplified categorisation of Few-Shot Learning (FSL) approaches by Parnami

et al. The authors categorise approaches to Few-Shot Learning (FSL) as meta-

learning-based Few-Shot Learning (FSL) and non-meta-learning-based Few-

Shot Learning (FSL). Meta-learning-based approaches are further broken down

into metric, optimisation and model-based methods. Approaches using a com-

bination of meta-learning and other techniques are categorised as ‘hybrid’ ap-

proaches. 29

3.1 Flowchart of the feature extraction pipeline, with preprocessing steps. Common

to all feature extraction algorithms is band limiting and normalisation, whereas

pitch and spectral features are subject to additional activity detection and

noise reduction. Activity detection and noise reduction applied before AM

feature extraction will change the envelope of the signal. Blocks in blue indicate

preprocessing operations, and green blocks indicate feature extraction operations. 53

3.2 Histogram of F0 values throughout the entire nips4b training set. Although

there exist some occurrences below 800 Hz, we have decided to make the low

frequency cutoff point 800 Hz to avoid contamination by human activity, or

other environmental noise. 54

3.3 Flowchart of Amplitude Modulation Feature Extraction, adapted from the IOA

method. Whether AM is detected or not is dependent on meeting criteria for

‘valid AM frequency’, ‘AM prominence’ and ‘AM depth’. These comprise the

extracted AM features used in the classifier. 59

3.4 Example of an audio file in the NIPS4BPlus dataset containing bird vocali-

sations and the extracted envelope prior to removal of the DC component.

Spectrograms of the audio and envelope are also shown. 61

List of Figures xxi

4.1 Prototypical Networks in a Few-Shot Learning (FSL) scenario with a three class

problem. It is important to note that the axes, labelled as ‘Axis 1’ and ‘Axis

2’, are arbitrary and do not hold specific or meaningful units. This simplified

representation is used for illustrative purposes only. Prototypes for each class,

denoted by a white ‘X’, are computed as the mean of embedded support points

for each class. As query points are classified based on distance to class proto-

types, the decision boundaries of each class are also shown. 74

4.2 t-Distributed Stochastic Neighbour Embedding (t-SNE) projection of the embedding

space learned by the prototypical network. This figure contains the embeddings of

the training data, which is multiclass. ‘GIG’, ‘GRN’ and ‘SQT’ refer to 3 types of

Hyena vocalisation from the HT data. ‘AGGM’, ‘CCMK’, ‘SOCM’ and ‘SNMK’ refer

to 4 types of Meerkat vocalisation from the MT data. The remaining classes are 12

different species of bird belonging to the BV and JD data. 99

4.3 t-Distributed Stochastic Neighbour Embedding (t-SNE) projection of the embedding

space learned by the prototypical network. This figure contains the embeddings of the

evaluation data, which is a binary classification problem indicating whether a segment

contains bioacoustic activity from the class of interest. Although global structure is

not maintained, the prototype representations for both positive and negative classes

are marked by a white ‘X’. 99

4.4 t-Distributed Stochastic Neighbour Embedding (t-SNE) projection of the the

test data embeddings learned by the prototypical network trained using protyp-

ical triplet loss. The prototype representations for both positive and negative

classes are marked by a white ‘X’. 105

4.5 t-Distributed Stochastic Neighbour Embedding (t-SNE) projection of the the

test data embeddings learned by the prototypical network trained using multiple

representations and the inclusion of an background class label. The prototype

representations for both positive and negative classes are marked by a white ‘X’.105

xxii

4.6 t-Distributed Stochastic Neighbour Embedding (t-SNE) projection of the the

test data embeddings learned by the prototypical network trained using protyp-

ical triplet loss plus multiple representations and the background class. The

prototype representations for both positive and negative classes are marked by

a white ‘X’. 107

5.1 Traditional Feature extraction for speech and audio machine learning employed

separate pipelines, extracting known features based on a set of predefined pa-

rameters. These features were then fed into the ML system. The modern

approach is to transform the audio into a spectrogram representation, apply

compression, and allow the convolutional layers of a CNN to extract features.

Blocks in green are trainable. 112

5.2 A mel spectrogram of audio containing birdsong from BirdVox-DCASE-20k.

The spectrogram energies are compressed logarithmically. The mel filterbank

matrix is configured as 40 filters with a frequency range between 500 Hz – 16

kHz. 114

5.3 Contrasted to the modern approach of feature extraction, learnable frontends

usually aim to compute or modify a Time-Frequency representation in a data

driven manner, which is optimised alongside the network. Blocks in green are

trainable. 117

5.4 Examples of learned STRF filter kernels learned as part of the bird activity

detection task outlined in Section 5.3. This figure shows the weights of 16

randomly selected filters. Each filter is provided with a receptive field of 9

frequency channels in the frequency domain and 1.1s in the time domain. . . . 120

5.5 Time-Frequency (TF)-representation generated by Time-Domain Filter Banks

(TD), after training, of audio containing birdsong from BirdVox-DCASE-20k.

Time-Domain Filter Banks (TD) applies logarithmic compression of magnitude

by default. Note the absence of specific frequencies, as learned filters do not

have centre frequencies and are not well ordered. 123

List of Figures xxiii

5.6 (A) shows a log-mel spectrogram of human speech (‘libri2’ example from Li-

brosa) with additive white noise. (B) shows the uncompressed mel spectrogram

energy. (C) shows a smoothed version of (B), based on Equation 5.20, s = 0.05.

(D) is the output of the AGC operation of Per-Channel Energy Normalisation

(PCEN) defined by Equation 5.21, with α = 0.98. (E) is the result of the DRC

defined by Equation 5.22, δ = 2 and r = 0.5, and the final Per-Channel Energy

Normalisation (PCEN) output (Equation 5.23). 126

5.7 Signal flow from input audio to final Time-Frequency representation in LEAF.

Blocks in green are trainable. 127

5.8 Time-Frequency (TF)-representation generated by Learnable Audio Frontend

(LEAF), after training, of audio containing birdsong from BirdVox-DCASE-20k.

Learnable Audio Frontend (LEAF) includes a trainable Per-Channel Energy Nor-

malisation (PCEN) layer, which is the method of dynamic range compression

utilised in this Time-Frequency (TF)-representation. Note the absence of spe-

cific frequencies on the y-axis, as the learned filters are not well ordered. 129

5.9 Total Accuracy on the test set, by frontend. Accuracy is also broken down by

dataset. 138

5.10 The frequency response of each filterbank initialisation. Centre frequency is

represented by the solid line and bandwidth by the shaded area. In this study

four initialisation types are employed: ‘linear’ (equally spaced, constant band-

width), ‘mel’ & ‘bark’ (psychoacoustic pitch scales) and ‘random’ (ordered by

frequency). 144

5.11 Average DFTs of all audio in both the TIMIT and BirdCLEF2021 datasets

reveal the difference in frequency distribution between them. In TIMIT, the

majority of information lies below 3 kHz, while in BirdCLEF2021, the informa-

tion is more broadband with a large portion situated between 2 kHz – 5 kHz. . 145

5.12 Jensen-Shannon distance of each filter from its initialisation for the VAD and

BSID tasks, by initialisation strategy. The mean of the final distances is also

shown in each plot’s title. 153

xxiv

5.13 The frequency response of the learned filterbanks after training on each task

(Voice Activity Detection (VAD) and Bird Species Identification (BSID)). Cen-

tre frequency is represented by the solid line and bandwidth by the shaded area. 154

6.1 The proposed mitigation strategies involve alternate training (top) and using

separate optimisation (bottom) of the frontend and backend. Alternate training

involves optimising only one section of the model at a time for a specified period

(e.g. one epoch). Separate optimisers involve the usage of two optimisers. This

can include the use of different optimisation algorithms and learning rates;

however, in these experiments, only the learning rates differ. The following

experiments also employ a combination of both strategies. 159

6.2 Time-Frequency (TF)-representations of each initialisation method before train-

ing using portions of audio from both the TIMIT (with no additive noise) and

BirdCLEF2021 datasets. Per-Channel Energy Normalisation (PCEN) parame-

ters are initialised using s = 0.05, α = 0.98, δ = 2 and r = 0.5. 162

6.3 Jensen-Shannon distances of each filterbank from its initialisation for the Voice

Activity Detection (VAD) task. This figure is ordered by initialisation horizon-

tally, and by training strategy vertically. 166

6.4 In each subplot in this figure, the frequency responses of the trained filterbanks

for the Voice Activity Detection (VAD) task are depicted. These subplots

illustrate the frequency responses for each training strategy: Baseline, Alt.

Train, Diff LR and Both. The solid line represents the center frequency, while

the shaded area represents the bandwidth. 167

6.5 Jensen-Shannon distances of each filterbank from its initialisation for the Bird

Species Identification (BSID) task. This figure is ordered by initialisation hori-

zontally, and by training strategy vertically. 170

6.6 In each subplot in this figure, the frequency responses of the trained filterbanks

for the Bird Species Identification (BSID) task are depicted. These subplots

illustrate the frequency responses for each training strategy: Baseline, Alt.

Train, Diff LR and Both. The solid line represents the center frequency, while

the shaded area represents the bandwidth. 171

List of Figures xxv

6.7 t-Distributed Stochastic Neighbour Embedding (t-SNE) projection of the test

data embeddings learned by the prototypical network trained using Per-Channel

Energy Normalisation (PCEN) as the frontend. The prototype representations

for both positive and negative classes are marked by a white ‘X’. 180

6.8 t-Distributed Stochastic Neighbour Embedding (t-SNE) projection of the test

data embeddings learned by the prototypical network trained using Efficient

Learnable Audio Frontend (eLEAF) as the frontend. The prototype represen-

tations for both positive and negative classes are marked by a white ‘X’. 180

List of Acronyms

AGC Automatic Gain Control

ANOVA Analysis of Variance

ARU Automatic Recording Units

AUC Area Under Receiver Operating Curve

BAD Bird Activity Detection

BSID Bird Species Identification

CNN Convolutional Neural Networks

CQT Constant-Q Transform

CRNN Convolutional Recurrent Neural Networks

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DNN Deep Neural Network

DRC Dynamic Range Compression

eLEAF Efficient Learnable Audio Frontend

FFT Fast Fourier Transform

FSL Few-Shot Learning

FWHM Full-Width at Half Maximum

xxvii

xxviii

GAN Generative Adversarial Networks

GMM Gaussian Mixture Models

HMM Hidden Markov Models

JSD Jensen-Shannon distance

LEAF Learnable Audio Frontend

MFCC Mel-Frequency Cepstral Coefficients

PCA Principal Component Analysis

PCEN Per-Channel Energy Normalisation

SGD Stochastic Gradient Descent

STA-VAD Spectro-Temporal Voice Activity Detection

STFT Short-Time Fourier Transform

STRF Spectro-Temporal Filters

SVM Support Vector Machines

t-SNE t-Distributed Stochastic Neighbour Embedding

TD Time-Domain Filter Banks

TF Time-Frequency

TIM Transductive Information Maximization

VAD Voice Activity Detection

Chapter 1

Introduction

1.1 Monitoring Bird Populations through Audio

1.1.1 The Importance of Monitoring Bird Populations

Human impact on the Earth’s ecosystems has led to the eradication and modification of

natural habitats [204]. This impact has accelerated the extinction of numerous species,

resulting in a reduction in biodiversity [29]. Long-term monitoring of bird populations is of

increasing importance both for scientific research and conservation as ecological and

environmental factors change [83, 196]. Moreover, it serves as an indicator of change in its

own right [55]. Automatic identification of bird activity and species is crucial for effective

conservation.

Traditionally, monitoring bird populations involves labour-intensive fieldwork conducted by

teams of ornithologists and related experts. This approach is not only expensive and

time-consuming but also potentially disruptive to natural habitats. Although visual inspection

is used, identification of activity and species has utilised bird audio since the 1950’s [194].

Audio analysis is particularly suitable for monitoring bird populations, as many species are

distinguishable by their vocalisations [26]. Therefore, even when visual identification is

impractical, audio analysis remains a sufficient tool for monitoring populations.

The widespread application of soundscape analysis to bird audio can enable automatic

1

2

analysis and assist ornithologists, ecologists, and conservationists in their endeavours.

Research in bioacoustics, including bird vocalisation analysis, has experienced significant

growth in the last decade, primarily driven by the advent of deep learning [184]. The

development of high-performing, efficient systems capable of running on constrained devices

suitable for field deployment is crucial for enhancing conservation efforts, considering both

raw material and computational power constraints [113].

1.1.2 Difficulties with Monitoring Bird Populations through their

Vocalisations

Monitoring of bird populations through their vocalisations presents challenges. While large

deep learning models are effective, there is a growing need to deploy systems on edge devices

with hardware constraints, which is crucial for the widespread adoption of computational

bioacoustic monitoring [113]. In certain deployment scenarios, a communication link may be

impractical, preventing the uploading of extensive data to the cloud for analysis.

Additionally, some processing may be preferable on-device, even with a viable connection or

sufficient storage space, serving as an initial step in filtering relevant data and providing

preliminary analysis to researchers. Designing systems capable of running on constrained

hardware necessitates compromises, such as opting for smaller models, extensive

optimisation, or embracing new approaches like Few-Shot Learning (FSL).

A persistent challenge in bioacoustic projects, including those focused on bird audio, is the

scarcity of large labelled datasets [184]. Many available datasets stem from citizen science

initiatives or public repositories, introducing variations in equipment, audio quality, recording

conditions, and types of recordings. These range from purposeful, directed recordings of one

bird to omni-directional soundscape recordings, in addition to variations in near-field or

far-field subjects. Moreover, numerous datasets lack adequate temporal resolution, often

having low-resolution annotations or clip-level annotations with no temporal details.

Unbalanced datasets, with an abundance of examples for certain classes and very few for

others, are common. This imbalance is particularly noticeable in datasets containing rare or

endangered species, which are the species most in need of monitoring.

Chapter 1. Introduction 3

Environmental noise poses a significant challenge in the analysis of bird audio, particularly

non-stationary noise sources that complicate consistent analysis. Eliminating noise without

compromising bird audio proves difficult, especially when faced with in-band noise like

insects, wind, and non-target species. While some datasets are curated to maintain a certain

signal-to-noise ratio (SNR), many sourced from public repositories are not curated in this

way. Moreover, hand-picked low-noise examples may not accurately reflect real-world

situations, where birds coexist with other animals and variable weather conditions exist.

Although low-noise datasets are beneficial in training, the inclusion of low SNR audio in the

model is crucial for eventual deployment.

Another challenge lies in feature extraction and representation. Bird audio analysis,

influenced by human speech analysis, often adopts mel scale-derived features like

Mel-Frequency Cepstral Coefficients (MFCC) or more recently, log-mel spectrograms.

However, the reliance on the mel scale, rooted in human perception, may not be optimal for

bird audio tasks, as highlighted in studies on bird audio monitoring literature [7, 216]. While

there is an understanding of how birds perceive songs [25], there is currently no equivalent of

the mel scale for songbirds, and such a scale would likely be species-specific.

Monitoring birds through audio brings about challenges: the demand for systems compatible

with modest or low-resource hardware; issues related to dataset annotation and recording

consistency; and environmental noise contamination. Section 1.2 below states the goals and

research questions of this thesis in the context of the importance of monitoring birds through

their audio, and the problems discussed above.

1.2 Thesis Statement

This thesis seeks to advance automatic and remote monitoring of bird populations using their

vocalisations. This is accomplished by exploring and developing low-resource models and

integrating learnable frontends into the analysis of bird audio. Rather than serving as an

engineering constraint, the development of low-resource classifiers is a guiding principle that

facilitates future work on the deployment of such systems. To achieve these objectives, the

thesis poses the following research questions:

4

RQ1 What machine learning approaches are appropriate for automatic and remote

monitoring of bird populations on low-resource hardware?

RQ1.1 What features and classifiers are suitable for bird audio monitoring, considering

both accuracy and computational efficiency?

RQ1.2 How can few-shot learning approaches be effectively applied to bird audio

monitoring?

RQ2 What is the effectiveness of learnable frontends in audio deep learning systems,

particularly in the context of bird audio?

RQ2.1 How do different learnable frontends impact the performance of deep learning

with bird audio?

RQ2.2 To what extent are learnable frontends sensitive to their intialisation?

The first part of this thesis, Chapters 3 and 4, primarily addresses RQ1 and its two

sub-questions. These chapters explore low-resource classifiers using a feature set grounded in

an understanding of bird vocalisation production, and the usage of few-shot learning

approaches. Findings in Chapter 4 suggest that improving a few-shot activity detector would

be best achieved by focusing on improved feature representation. This leads into the second

part of the thesis, Chapters 5 and 6, which address RQ2 and its sub-questions, as well as

returning to RQ1.2. Chapter 5 evaluates the effectiveness of learnable frontends on a bird

audio task, as well as identifying and characterising the sensitivity of learnable filterbanks to

their initialisation. Chapter 6 proposes some mitigation strategies for this problem, and

returns to few-shot learning with the addition of learnable frontends. More detailed outlines

of each chapter can be found below in Section 1.3.

1.3 Thesis Outline

This thesis is outlined as follows.

Chapter 1. Introduction 5

Chapter 2: Literature Review

This chapter offers an introduction to many key topics. Section 2.1 covers birdsong

production and perception, including its signal structure and properties. Section 2.2 provides

insights into recording methods used and introduces some tasks in bird audio monitoring.

Chapters 4 and 6 utilise Few-Shot Learning, so Section 2.3 provides an overview of FSL

concepts, approaches, and applications in audio and bioacoustics. In Chapters 5 and 6,

learnable frontends are investigated, and Section 2.4 covers frequency-domain-based and

time-domain-based filterbanks, common problems with learnable filterbanks, and learnable

compression. Finally, Section 2.5 covers the datasets used in this thesis, and Section 2.6

discusses how the literature connects to this work.

Chapter 3: Low Resource Bird Activity Detection with AMPS

This chapter explores low-resource classifiers and features for bird activity detection on

embedded devices used in long-term bird population monitoring. These features include

low-level spectral parameters, statistical moments on pitch samples, and features based on

amplitude modulation (see Section 3.1.3). In particular, this chapter introduces amplitude

modulation-based features inspired by work from the Institute of Acoustics, drawing upon the

correlation between a bird species’ vocalisation frequency range and their trill rate.

Performance is assessed on several lightweight classifiers using the NIPS4Bplus dataset,

compared against both a CNN-based detector, and MFCC features (Section 3.3). The

experiments show that random forest classifiers perform best on this task, achieving an

accuracy of 0.721 and an F1-Score of 0.604. The findings demonstrate that equal or better

performance can be attained with lower computational demands.

Chapter 4: Bioacoustic Event Detection with Prototypical Networks

This chapter covers participation in the DCASE2021 Few-Shot Bioacoustic Sound Event

Detection Challenge. Section 4.2.1 outlines the challenge itself. Prototypical Networks are

employed as our chosen FSL method, with a more detailed explanation of their operation in

Section 4.1. The chapter discusses the network architecture, feature extraction methods, and

data augmentation applied to the challenge dataset. It also includes comparisons with the

6

challenge’s baseline networks (Section 4.2.4) and the other challenge entries (Section 4.2.5).

Furthermore, the chapter conducts additional analysis of the resulting embedding space and

proposes and evaluates methods for enhancing system performance in Section 4.3. This

analysis led to the conclusion that more significant improvements are achievable by

enhancing data representations, rather than making marginal adjustments to network

architecture and training.

Chapter 5: Learnable Frontends and the Filterbank Initialisation Problem

The choice of acoustic frontend directly impacts system performance. In this chapter, we

compare traditional fixed-parameter frontends with new learnable frontends for bird audio

detection using data from the DCASE2018 BAD Challenge (Section 5.3). Section 5.2

provides detailed explanations of the frontends. Results in Section 5.3.4 show that

Per-Channel Energy Normalisation is the best overall performs the best with 89.9%, and

generally, learnable frontends outperform traditional methods. However, previous studies

have noted that frontends using learnable filterbanks do not differ substantially from their

initialisation. In Section 5.4 we investigate filterbank initialisation and the sensitivity of a

learnable filterbank to its initialisation on two audio tasks: voice activity detection and bird

species identification. Analysing both Jensen-Shannon distance and filterbank shape before

and after training (Section 5.4.3), we show that although performance is overall improved,

the filterbanks exhibit strong sensitivity to their initialisation.

Chapter 6: Mitigation Strategies for the Filterbank Initialisation Problem and

Returning to Few-Shot Learning

This chapter proposes mitigation strategies to combat the filterbank initialisation problem.

Results from Section 5.4.3 are compared to results using three mitigation strategies: an

alternating training method, where the frontend and classifier are trained alternately;

separate optimisation, where a higher learning rate is used to train the frontend; and a

strategy combining both of these methods. The results indicate that a higher learning rate of

the frontend compared to the classifier can increase performance, but that the sensitivity to

initialisation remains. We also apply learnable frontends to the Prototypical Network in

Chapter 1. Introduction 7

Chapter 4, leading to a significant increase in performance. This adaptation results in a 25%

relative improvement in F1-Score compared to the original system.

Chapter 7: Conclusion

This chapter draws together conclusions from the previous chapters, and discusses their

significance and impact. Challenges which remain and have been introduced as a result of

the work done are discussed and possible directions for future work are outlined.

1.4 Contributions

As outlined in Section 1.2, this thesis aims to advance automatic and remote monitoring of

bird populations using their vocalisations. Section 1.2 introduces two primary research

questions, each accompanied by two sub-questions, providing the foundation for the original

contributions to knowledge within this thesis. After outlining the thesis structure in

Section 1.3, which provides context for the organisation of the thesis, these contributions to

knowledge can be summarised as follows:

1. The AMPS Feature Set

AMPS, tailored for low-resource classifiers like random forests, leverages the

relationship between amplitude modulation and frequency modulation in birdsong,

alongside incorporating low-level spectral features. AMPS surpasses MFCCs on a

species agnostic bird activity detection task, and addresses RQ1.1. This contribution

arises from Chapter 3, which presents the feature extraction pipeline and comparative

evaluation against alternative methods, and was presented [4] in SiPS 2021.

2. Dedicated Evaluation of Learnable Frontends for Bird Audio

With the rise of audio deep learning systems using ‘off-the-shelf’ learnable frontends,

evaluating existing approaches and their application to bird audio was essential.

Addressing RQ2.1, the work in Section 5.3, and the associated publication [3]

presented in IWAENC 2022, is the most comprehensive investigation to date on the

suitability of learnable frontends in bird audio. The evaluation indicates a general

8

performance boost with learnable frontends. Per-Channel Energy Normalisation

outperforms all other methods and is the recommended learnable frontend for bird

audio currently, especially over static compression methods such as logarithmic

compression.

3. Characterisation of the Filterbank Initialisation Problem

Existing literature on learnable frontends with learnable filterbanks notes a lack of

learning in the filterbank component. The same literature tends to be dismissive of this

issue, attributing it to the belief that the initialisation was already well-suited for the

task. Section 5.4 presents a systematic study which characterises and quantifies the

filterbank initialisation problem, originally presented [5] in ICASSP 2023. The results in

Section 5.4 provide novel insights into the shortcomings of learnable filterbank-based

frontends, revealing their sensitivity to initialisation, addressing RQ2.2.

4. Mitigation Strategies for the Filterbank Initialisation Problem

Two modifications to the training strategy are proposed to combat the effects of the

filterbank initialisation problem. These strategies involve alternating training between

the frontend and backend parameters, as well as employing separate optimisers for each

parameter group. Section 6.1 provides a comprehensive evaluation of these strategies

using the same tasks employed to characterise the initialisation problem. Using separate

optimisers with a higher learning rate for the frontend enhances performance and filter

movement in human speech tasks, offering greater flexibility in training. However, the

effectiveness of these strategies on other tasks and models is inconclusive, and they

serve as a starting point for future work on the filterbank initialisation problem.

5. Few-Shot Learning with Learnable Frontends for Bioacoustic Activity Detection

We developed a prototypical network-based [177] few-shot learning system for

bioacoustic activity detection, the first to successfully incorporate fully-trainable

frontends within the model. Chapter 4 details the initial development and evaluation of

the system, initially submitted [2] as an entry to the DCASE2021 Few-Shot

Bioacoustic Sound Event Detection Challenge. Section 6.2 delves into the

Chapter 1. Introduction 9

incorporation of learnable frontends into the model, and discusses the performance

increases from doing so. This system addresses RQ1.2, as a low-resource, few-shot

learning-based approach to bird audio monitoring.

1.5 Publications

As mentioned above, portions of the work described in this thesis have appeared in the

following publications [2, 3, 4, 5]. These publications are listed here for convenience and are

discussed in relevant sections.

• M. Anderson, J. Kennedy, and N. Harte, “Low Resource Species Agnostic Bird Activity

Detection,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS), 2021, pp.

34–39.

• M. Anderson and N. Harte, “Bioacoustic Event Detection with Prototypical Networks

and Data Augmentation,” DCASE2021 Challenge, Tech. Rep., Jun. 2021

• M. Anderson and N. Harte, ”Learnable Acoustic Frontends in Bird Activity Detection,”

in 2022 International Workshop on Acoustic Signal Enhancement (IWAENC), 2022,

pp. 1–5.

• M. Anderson, T. Kinnunen, and N. Harte, “Learnable Frontends that do not Learn:

Quantifying Sensitivity to Filterbank Initialisation,” in ICASSP 2023 - 2023 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023,

pp. 1–5.

Chapter 2

Literature Review

This literature review introduces concepts central to this thesis, including discussions on bird

vocalisations, challenges in automatic monitoring, and technical insights into Few-Shot

Learning and learnable frontends. The chapter is structured as follows: Section 2.1 provides

an overview of bird vocalisation, encompassing its production, structure, and significance in

communication. Additionally, a brief discussion is included on how the analysis of bird audio

draws inspiration from speech analysis but bird audio differs fundamentally from human

speech. Section 2.2 discusses hardware used in recording bird audio and the challenges faced

while making field recordings. This section also incorporates explanations and reviews of the

primary tasks in monitoring birds through their audio: activity detection and species

identification. Section 2.3 offers a comprehensive review of FSL, detailing methods and

various techniques, with a subsequent discussion on the application of FSL in audio. In

Section 2.4, an in-depth review of learnable frontends is presented, covering learnable

filterbanks and compression techniques. Finally, Section 2.5 provides a succinct overview of

the datasets utilised in this work, while Section 2.6 discusses the relevance of the literature

reviewed in this chapter to this thesis.

11

12

2.1 Bird Vocalisations

Bird vocalisation takes many forms, typically broken down into calls and songs [26]. Calls are

concise and straightforward vocal expressions used by both male and female birds to convey

various messages related to actions or circumstances, such as flight, threats, alarms, and

territorial disputes. On the other hand, songs are typically characterised as more extensive

and intricate vocalisations, primarily performed by male birds during the breeding season to

attract potential mates. There are many exceptions to this, as numerous bird species, both

male and female, produce complex, song-like vocalisations throughout the year. There is also

overlap between calls and songs, and birds tend to be identifiable by both. In this work, we

will refer to both bird calls and songs collectively as ‘bird vocalisations’ when discussing

avian communication.

This section outlines the characteristics of bird vocalisations from a signal perspective,

drawing parallels to human speech while highlighting their unique characteristics.

Section 2.1.1 provides a brief overview of the biological aspects of bird vocal production,

offering a comparative analysis with human vocal production. Section 2.1.2 outlines the

structure of bird calls and songs. In Section 2.1.3, the disparities between human speech

signals and bird vocalisations are briefly explored. Finally, Section 2.1.4 briefly addresses the

significance of vocalisation as a communication method for birds and its relevance to

conservation efforts.

2.1.1 Production of Bird Vocalisations

The vocal system of birds is sufficiently similar to that of humans to justify comparisons

between the two [11, 49]. The syrinx is the sound producing element in birds, functioning

similarly to a human larynx, and contains membranes which vibrate when air from the lungs

is forced over them. A primary difference between the two systems is location: whereas the

human larynx is located on top of the trachea, a bird’s syrinx is located at the bronchial

junction (as illustrated in Figure 2.1). This leads to the interesting conclusion that birds have

two potential sound sources, one at the top of each bronchus. This allows for complex,

two-voiced song to be produced.

Chapter 2. Literature Review 13

Figure 2.1: A Schematic drawing of an avian syrinx: (1)Cartilaginous Tracheal Ring, (2)Tra-
chea, (3)First Group of Syringeal rings, (4)Pessulus, (5)Membrana Tympaniformis Lateralis
(MTL), (6)Membrana Tympaniformis Medialis (MTM), (7)Second Group of Syringeal rings,
(8)Main Bronchus, (9)Bronchial Cartilage. “Syrinx” by Uwe Gille, licensed under CC BY-SA
3.0.

Both the human larynx and the avian syrinx produce a harmonic signal, with strong energy

at the fundamental frequency F0, and relatively smaller amplitudes in the higher harmonics.

This harmonic signal is produced by the vibrations of the Membrana Tympaniformis, both

Lateralis (MTL) and Medialis (MTM) (designated as 5 and 6 in Figure 2.1), and the

Pessulus (labelled as 4 in Figure 2.1). Modulations in the vocal tract, including those in the

trachea as depicted in Figure 2.1, and within the mouth, influence the resulting vocalisations.

Similar to humans, birds employ their vocal tract and mouths to serve as filters and

resonators, shaping the sound emanating from the syrinx before it is heard as a

vocalisation [10]. The vocal tract may act as a lowpass filter, which combined with the

higher F0 of bird vocalisations and the consequent wider interval between harmonics, can

result in pure tones in their vocalisations. Bird vocalisations may also include more harmonic

vocalisations, polyphonic vocalisations (thanks to the two-voiced syrinx) or even

non-periodic, unvoiced noisy sounds.

The beak also plays some role in sound production, facilitating the adjustment of the vocal

https://commons.wikimedia.org/wiki/File:Syrinx.jpg
https://commons.wikimedia.org/wiki/User:Uwe_Gille
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

14

tract’s length. Similar to humans, birds need to modify their vocal tract’s length to produce

higher or lower-pitched sounds. Additionally, to produce a high frequency sound, a bird must

open their bill wide, whereas to produce a low frequency sound a bird must close their

bill [25]. There exists a physical limitation on how rapidly a bird can open and close its bill,

resulting in a trade-off between the bandwidth of a vocalisation and the rate at which it can

be repeated. This trade-off sets a ‘performance limit’ on bird vocalisations, a

species-dependent characteristic that follows a triangular distribution [145, 146].

These parallels between the human vocal system and avian vocal systems have generated

considerable interest in bird audio research within the field of speech analysis. The first

application of the source-filter model to birds was proposed by Nowicki in [132], and has

been backed up by further research in [10, 95, 158]. The source-filter model is widely

acknowledged as an appropriate framework for understanding sound production in birds (as

well as humans). Consequently, many features developed for speech analysis have found

extensive application in the analysis of bird vocalisations [46, 148].

2.1.2 Vocalisation Structure

Bird vocalisations, especially songs, share a linguistic structure akin to human speech, with

hierarchical units such as elements, syllables, and phrases [193]. Elements are the basic

building blocks of bird vocalisations, encompassing individual notes, chirps, harmonic sounds

or whistles, which combine to form more complex structures. Syllables, comprised of one or

more elements in a specific sequence, amalgamate to create a phrase, an extended

vocalisation conveying a specific message. Phrases, in turn, can be strung together to

compose a song [26]. Figure 2.2 illustrates how the song of a Eurasian Wren can be

deconstructed into these units, highlighting elements, syllables, and phrases.

Moreover, birds often possess a repertoire of several songs, each characterised by the order,

types, and number of phrases employed, contributing to the diversity of a bird’s vocal

expressions [27]. Repertoire size varies by species, while some birds may only have one song

and a few calls, species such as the brown thrasher are known for their repertoire of over

1000 songs. Whilst the size of a species repertoire may pose issues in generalising recognition

Chapter 2. Literature Review 15

Figure 2.2: Spectrogram Representation of Eurasian Wren song, labelling elements, syllables
and phrases.

of that species, it is worth noting that even the most complex songs are constructed out of

the limited set of syllables and phrases available to a bird, with songs being complex

combinations of these elements.

Distinct from songs, bird calls are shorter and less complex vocalisations, contextualised for

specific situations such as alarm, flight or feeding [26]. While calls may be constructed from

the same linguistic units as songs, they serve specific purposes within their context,

communicating information related to actions or signalling territorial disputes to fellow

members of the population. Calls contain both voiced and unvoiced sounds, whereas songs

predominantly consist of voiced elements.

2.1.3 Difference from Human Speech

Despite the similarities in production between bird vocalisations and human speech, there are

significant differences between the two signals, both acoustically and linguistically. Although

this may be stating the obvious, it warrants a brief discussion, given the implications of these

differences on the design of systems utilising these signals. Human speech is characterised by

16

Figure 2.3: Temporal and Spectrogram representations of clean bird vocalisations (Eurasian
Wren) and clean Human Speech. Spectrograms are calculated using the same window sizes
(25 ms) and overlap (50%).

greater harmonic richness, longer and more prolonged syllables/phonemes, significantly lower

pitch, and the absence of trill rate and frequency modulation features prominent in bird

vocalisations. Figure 2.3 provides a direct comparison between a clean example of human

speech and a bird call, both normalised and aligned on the same time/frequency scale. We

can see that human speech does indeed differ from bird vocalisations in the manner discussed

above.

The perception of each species vocalisations is also important to note. The mel frequency

scale, based on human audio perception, is well-suited for analysing music and voice intended

for human ears. However, bird vocalisations, although audible to humans within our hearing

range (on average, birds hear best between 1 and 5 kHz, with exceptions [47]), are not

intended for human reception.

It is with these differences in mind that we feel that perceptual scales, such as the mel scale

and features derived from these scales, such as MFCC are not optimal for bird audio [65].

While Mel-based features have proven their worth and shown promising results in various

Chapter 2. Literature Review 17

studies, investigating features more tailored to the unique characteristics of bird vocalisations

may offer a more effective approach.

2.1.4 Importance of Vocalisation

Bird vocalisations play a crucial role in facilitating communication among members of the

same species, different species, and are important to conservation and monitoring efforts by

humans. Birds vocalise to communicate with members of their own species and can discern

neighbours from both their own and other species through their calls and songs [120]. These

vocalisations convey information about species, sex, actions, threats, and sources of food.

Vocalisations serve as an incredibly efficient means of communication for birds. Vocalisations

can be heard day or night, and require less energy than physical movement. They are

especially effective in environments with limited visibility, such as canopies or forests,

providing safety for birds while maintaining communication. Songs, in particular, play a

pivotal role in species recognition and mate selection [26]. Some argue that differences in

songs between bird populations can serve as a more reliable indicator of species distinction

than morphological characteristics [133, 156, 197].

In terms of monitoring bird populations for ecological, zoological, and conservation purposes,

the effectiveness of vocalisations also carries over. Collecting vocalisation data offers

practical advantages over methods like catch-and-release, as sound recording is more

straightforward and cost-effective, enabling the collection of large datasets [39]. Moreover,

given that birds are often concealed or in low-visibility environments and may be disturbed by

human presence, audio data becomes a valuable tool for monitoring and identification, even

when visual identification is challenging. The importance and effectiveness of bird

vocalisations in their communication, coupled with their applicability in monitoring scenarios,

drives the motivation to monitor bird populations through their vocalisations.

2.2 Automatic Monitoring of Birds

The use of Automatic Recording Units (ARU) in ecological studies has increased [39, 45,

188]. Their advantages include minimising subject disturbance and temporal bias, recording

18

over extended periods, and deployment in challenging environments where field recording may

pose difficulties [121]. These attributes make them an attractive choice for ecological studies

on birds. It is worth providing context into the type of hardware that is used for recording of

bird vocalisations, the expected quality of recordings, and the environments and methods

used. Automatic systems capable of continuous operation in remote areas of interest are a

crucial initial step in species identification and population monitoring tasks [154].

This section also outlines the two primary tasks in monitoring bird populations through

vocalisations. Section 2.2.1 briefly outlines the type of hardware used and the capabilities of

ARUs, along with challenges in monitoring bird populations using audio. Section 2.2.2 gives

insight into the two major tasks involved in monitoring bird populations: activity detection

and species identification.

2.2.1 Recording Hardware & Challenges

Recording hardware typically comprises a recording unit and one or more microphone

capsules. Although they do not perform any classification tasks, they can be programmed to

record during specific periods (such as dawn or evening chorus), under certain conditions

(e.g., sound level or SNR above a specified threshold), and to exclude recordings lacking

sufficient energy in a specific frequency band. ARUs such as the Wildlife Acoustics SM41

and the Cornell SwiftOne2 (pictured in Figure 2.4) are equipped with such features, along

with the ability to export metadata, including latitude and longitude. They are typically

designed for multi-channel audio recording, utilising sensitive microphones that can be

deployed away from the unit via cables. As an improvement on the scrubbing features

already found on these units, bird activity detection methods could further decrease the

amount of data stored, reducing it to only data that requires subsequent processing.

Many examples of bird vocalisations used for bird species research have been contributed by

the public to repositories like Xeno-Canto3, utilising equipment of varying quality. These

recordings constitute a portion of many datasets, ranging from those captured on

1https://www.wildlifeacoustics.com/products/song-meter-sm4
2https://www.birds.cornell.edu/ccb/swift-one/
3https://xeno-canto.org/

https://www.wildlifeacoustics.com/products/song-meter-sm4
https://www.birds.cornell.edu/ccb/swift-one/
https://xeno-canto.org/

Chapter 2. Literature Review 19

Figure 2.4: Two examples of Automatic Recording Units: the Wildlife Acoustics SM4 (left)
and the Cornell SwiftOne (right). Images sourced from the respective product pages of each
unit.

smartphones with limited dynamic range and sensitivity, to those recorded with

professional-grade audio equipment. This variability in recording hardware, affecting

everything from sensitivity to noise level to frequency response and directionality, poses

challenges to monitoring birds through their audio.

Several challenges accompany the acoustic monitoring of bird populations, briefly outlined

here. Recordings obtained in areas with diverse sources of non-stationary noise present

difficulties in consistent analysis and species recognition, as eliminating noise sources without

compromising bird audio proves challenging (insects, wind, and non-target species add to the

complexity).

Due to sound wave attenuation with distance, particularly for higher frequencies emitted by

birds, and additional attenuation from the environment, capturing weak signals from target

species becomes challenging. These far-field recordings have posed issues for certain

detection methods.

While proper surveying techniques fall under the purview of ornithologists and ecology

researchers, understanding these challenges is crucial for effectively processing bird audio.

The quality of raw data from field recordings significantly influences the efficacy of

recognition methods.

https://www.wildlifeacoustics.com/products/song-meter-sm4
https://www.birds.cornell.edu/ccb/swift-one/

20

2.2.2 Tasks in Bird Audio Monitoring/Bioacoustics

Research into the automated recognition of bird vocalisations has paralleled developments in

several speech tasks such as automatic speech recognition and speaker verification [148].

This arises from the similarities in signal production and the applicability of the source-filter

model, as discussed in Section 2.1.1.

The predominant tasks in this domain are Species Recognition/Identification (along with the

related problem of Species Diarisation4) and Species Agnostic Bird Activity Detection

(BAD). Species recognition entails identifying an utterance as belonging to a specific species

within a closed set of candidate species. On the other hand, BAD focuses on identifying the

start and end times of a bird vocalisation, irrespective of species or call/song type. Whilst

the end result of BAD may seem less specific than species recognition, it addresses a more

general problem and serves as a crucial filtering step for obtaining data in species recognition.

This thesis predominantly centres on BAD, featured prominently in Chapters 3, 4 and 6.

However, species identification also appears in Chapters 5 and 6. Given the substantial

overlap between these two challenges, a review of literature covering both problems is

warranted. Notably, in 2016, the organisers of the BirdCLEF challenge declared the “arrival

of deep learning” for bird audio tasks [62]. Consequently, this review predominantly

concentrates on contributions to the field post-2016.

Activity Detection

Species agnostic BAD poses the problem of identifying bird activity without incorporating

any prior knowledge of species. It serves as an important initial step in filtering relevant data

from audio collected during monitoring operations, reducing manual checking of audio and

spectrograms by researchers. In a way, it aims to identify segments of audio that contain the

‘characteristic melody’ of bird vocalisations. Species/vocalisation agnostic activity detection

is a much more recent problem than the species identification task. It should be noted that

an activity detector can also be species specific, detecting only the species of interest [125].

While the output of such a recogniser is less specific than species recognition (a bird of

4The problem of ‘Who sang when?’

Chapter 2. Literature Review 21

Figure 2.5: Activity detection can be clip-level (A), or temporal (B). Clip-level annotation
discerns the presence or absence of bird vocalisations in a clip of audio, with no consideration
as to where or for how long. Temporal activity detection provides information of event onset
and offset times.

species X is vocalising) or diarisation (bird X is vocalising at time Y for duration Z), it

requires generalisation across many species and vocalisation types, adding complexity due to

environmental factors and noise. Bird vocalisations vary by species, sub-species and even

between different populations [70, 133] and as discussed in Section 2.1, vocalisation types

vary, making generalisation challenging.

BAD can be further categorised into two types of activity detection: clip-level and temporal.

The difference between these types is illustrated in Figure 2.5. Clip-level activity detection

(Figure 2.5(A)) is a basic form that discerns the presence or absence of birds in a sound clip,

providing a binary output. This is useful to detect whether a bird is present in a recording, or

segment of a recording, and can be used as the first step in further segmentation or

processing. Although useful for detecting bird presence, it lacks temporal resolution and

merges multiple events together. Temporal activity detection (Figure 2.5(B)), akin to Voice

Activity Detection in speech processing [100, 178], outputs the onset and offsets of events,

segmenting the audio into regions with events of interest. This type of activity detection is

more difficult, employing less data to make decisions and requiring consideration of onset and

offset time calculations. In the monophonic case, overlapping events are merged, but

temporal activity detection can extend to the polyphonic case, where multiple concurrent

events have their own onset and offset boundaries.

22

Energy-based detection, as employed by some studies [183], proves effective primarily in

low-noise recordings. However, in recordings with higher levels of noise, energy-based BAD

lacks robustness, necessitating the use of more advanced methods. Stowell et al. have

proposed challenges [183, 187] in recent years, specifically addressing the issue of BAD.

Many successful entries in these challenges leverage Convolutional Neural Networks (CNN) in

their detection systems.

Grill & Schlüter submitted the best performing system in the 2016/2017 challenge with their

system ‘bulbul’ [67], which used a wide receptive field (the entire audio clip, 10 s) to

determine whether there was bird activity. The ‘bulbul’ system achieved an Area Under

Receiver Operating Curve (AUC) of 0.899. They also proposed a local architecture to

counteract potential problems of differing temporal positions of calls, however this system

performed no better. The ‘bulbul’ system was later adapted and served as a baseline in the

2018 DCASE BAD challenge. Cakir et al. [23] explored the temporal context of bird

vocalisations using a Convolutional Recurrent Neural Networks (CRNN). The authors also

introduced separation of max-pooling into frequency-based pooling in the feature extractor

and temporal pooling after the recurrent layers. Incorporating this temporal context, the

system achieved results comparable to ‘bulbul’, with an AUC of 0.895.

In the 2018 challenge, Liaqat et al. [104] adopted an architecture similar to Grill & Schlüter’s

‘bulbul’ [67], incorporating data augmentation and domain adaptation. Their findings

provided some evidence that resolution in the temporal domain, is more important than high

resolution in the frequency domain. Liaqat et al.’s submission achieved an AUC of 0.839, but

failed to outperform the ’bulbul’ baseline, which achieved an AUC 0.885 on this data. Mario

Lasseck’s system [98] utilised deeper networks, data augmentation, and ensemble modelling

to outperform the ‘bulbul’ baseline, albeit with increased model size and complexity. This

system was the top performing system in the 2018 challenge, achieving an AUC of 0.890.

Across both challenges, systems often utilised log mel-spectrograms as input, and those not

employing deep learning were outperformed by their deep learning counterparts.

In 2019, Lostanlen et al. [117] demonstrated improved performance in a BAD task using

single-channel audio through the application of Per-Channel Energy Normalisation (PCEN).

Chapter 2. Literature Review 23

This finding is reproduced in our experiments assessing popular acoustic frontends on bird

audio (Section 5.3.4), where PCEN significantly enhances performance compared to log

mel-spectrograms, with a relative improvement of 25% in AUC. Section 2.4.3 provides a

discussion of PCEN as a learnable frontend, with a detailed explanation available in

Section 5.2.3. The authors in [117] also show that the incorporation of long-term

time-frequency summary statistics increases performance in the multi-channel or multi-sensor

case.

In 2018, Balestriero et al. [7] expanded on the work of Grill & Schlüter [67] by introducing a

learnable time-domain filterbank layer to the network. Using a spline-interpolation-based

filterbank, they learned the basis for a Time-Frequency (TF)-representation with constraints

on smoothness and boundary conditions. Their results demonstrated that this learnable

filterbank outperformed a mel-spectrogram baseline, with a modest relative enhancement of

2% in the AUC metric. In 2021, Zeghidour et al. [216] introduced Learnable Audio Frontend

(LEAF), further discussed in Section 2.4.2 and Section 5.2.4. As part of the author’s

evaluation of LEAF, they tested it on a BAD task using EfficientNet-B0 [190], revealing that

the usage of LEAF improved performance over log mel-spectrograms. Both studies [7, 216]

show that mel-derived features may not be the most suitable choice for bird, or more broadly,

bioacoustic audio, advocating for learning TF-representations directly from the data.

In recent years, FSL-based activity detection has gained popularity due to challenges

proposed by the DCASE community [125, 130]. This approach involves detecting activity

using only a few labelled examples of the target class. Research into FSL-based approaches is

an active area of research for both BAD and bioacoustic activity detection more generally.

While briefly mentioned here as part of the broader literature on BAD, a more detailed

discussion of FSL for bioacoustics can be found in Section 2.3.2.

Species Identification/Recognition

The objective of Bird Species Identification (BSID) is to identify a bird species from a sample

of their vocalisation. While there is some overlap between the two tasks, BSID is more

specific than a general BAD task, leveraging the unique qualities of one or more species’

24

songs to train specific models. BSID makes use of particular species characteristics in

vocalisation such as frequency range, trill rate, syllable and phrase structure etc.. Instead of

a characteristic melody of bird vocalisations, the specific features of each species vocalisation

is included in the model.

BSID is typically a multiclass task where the aim is to identify an audio clip as belonging to

one species in a set. It usually operates under the assumption that the audio in question

contains a bird vocalisation for one of the target species, necessitating BAD as an initial

filtering step. The combination of both tasks is bird audio diarisation [173]. However, some

systems may output an ‘unknown’ class, referring to either unknown species or no activity.

BSID presents its own set of challenges. One is the variability in song between different

populations [70, 133]. Additionally, environmental factors pose an issue. Several studies have

shown that birds engage in a spectrum sharing practice, depending on their environment and

the presence of other species [68, 174, 175]. They also adjust their amplitude to suit their

surroundings [20], potentially leading to changes in other aspects of the vocalisation due to

the Lombard effect [21]. Such changes may incorrectly identify a bird as not present, or as

another species.

The trajectory of BSID is closely related to research in Automatic Speech Recognition

systems, and has also taken inspiration from musical instrument and genre classification

tasks. Early approaches have employed the usage of Dynamic Time Warping with template

matching, and Hidden Markov Models (HMM) utilising features such as MFCC or Linear

Predictive Coding Coefficients [148]. However, these methods are susceptible to noise issues.

Other HMM-based approaches have made use of spectral peaks and frequency tracks to

construct models to recognise several species. Jančovič and Köküer have proposed several,

constantly improving systems using this method as a foundation [78, 79, 80], each time

increasing the amount of bird species that could be recognised successfully. Stastny et

al. [179] introduced a system recognising 18 species using Human Factor Cepstral

Coefficients. Stowell et al. [182] have also used HMMs to analyse the temporal structure of

songs within species.

Less commonly used classification methods include Support Vector Machines (SVM) and

Chapter 2. Literature Review 25

Gaussian Mixture Models (GMM). Fagerlund used SVMs in conjunction with decision trees,

achieving good accuracy within a limited species range [52]. GMMs have been used by

Fagerlund et al. in [53] using MFCC based features to identify 14 bird species. In recent

years, CNNs have gained popularity in BSID systems, demonstrating state-of-the-art

performance with the increasing adoption of deep learning approaches [62].

The BirdCLEF challenges, held annually since 2014, have played a crucial role in driving

BSID research. The 2021 edition [84] focused on detecting and identifying bird vocalisations

from 397 species in continuous soundscapes. This challenge provided one of the largest fully

annotated collections of bird audio, encompassing a diverse range of species. Top submissions

utilised pretrained CNN architectures fine-tuned on the data, coupled with post-processing of

model output, with the top submission achieving an F1-score of 0.6932 on the main task.

In the 2022 [86] edition, the number of bird species was reduced to 152, and the focus

shifted towards analysing rare and endangered species with limited labelled data. This edition

aimed for a Few-Shot Learning structure, although many teams addressed data scarcity by

employing extensive data augmentation. The top submission in 2022 achieved an F1-score of

0.8527.

The most recent 2023 edition [85] continued the theme of including species with few labelled

recordings but increased the number of species to over 1000. Notably, this challenge imposed

a computational limit on inference to encourage the efficient use of computational resources

on modest hardware available to conservationists. Consequently, the 2023 challenge

witnessed extensive optimisation efforts, aligning with the goal of reducing resource usage for

large-scale, widely deployed computation in ecology and environmental applications [184].

The top submission of BirdCLEF 2023 achieved a class-wise mean average precision (cmAP)

of 0.844.

In 2021, Kahl et al. [87] introduced BirdNET, currently the leading BSID model due to

continuous support and development. BirdNET is not only a sophisticated BSID system but

also a citizen science initiative with a smartphone app available on major platforms. This

unique approach has enabled BirdNET to evolve, recognising approximately 3000 of the

world’s most common bird species in 2023, up from 984 species in 2021. The architecture of

26

BirdNET is based on ResNet [71], incorporating knowledge distillation, data augmentation,

and high temporal resolution in spectrogram input (based on findings in [104]). As of the

2022 publication, BirdNET achieves an accuracy of 0.777 and an AUC of 0.974 on focal

recordings.

The success of BirdNET can be attributed to its extensive and curated training data, which

includes publicly available bird vocalisation datasets and datasets containing non-bird signals

to create a ‘non-event’ class. While this large data approach suits the citizen science context,

it may not adequately cover rare and underrepresented species, necessitating further expert

annotation.

Polyphonic BSID addresses scenarios with multiple, overlapping events, presenting a more

challenging task than monophonic or non-overlapping BSID. As many birds sing together in

choruses, and studies often use omni-directional instead of focal recordings, polyphonic BSID

becomes a natural progression as monophonic BSID performance improves. BirdCLEF

2021 [84] focused on polyphonic soundscape analysis, with the top entry achieving an

F1-Score of 0.6932 (baseline for the challenge was 0.4799 when all segments were marked as

non-events). BirdNET [87] has also been evaluated on a polyphonic soundscape task,

exhibiting drastically decreased performance from its monophonic, focal recording

performance, with AUC dropping from 0.974 to 0.596.

In 2022, Parilla and Stowell [140] trained a CRNN using progressively more overlapping data,

eventually handling 10 overlapping events. Results suggest that training with a similar

amount of polyphony as expected during inference yields optimal performance, whereas

training with too many overlapping events degrades performance on audio with low

polyphony. While polyphonic BSID and soundscape analysis remains challenging, training

models from low to high polyphony and further advancements in monophonic BSID

contribute to improvements in polyphonic BSID.

2.3 Few-Shot Learning

Few-Shot Learning (FSL) is a machine learning approach that trains models to generalise

effectively and make accurate predictions when provided with limited labelled data. In a FSL

Chapter 2. Literature Review 27

scenario, a small labelled support set (denoted as S) is provided, and the objective is to

classify the elements of the query set Q. This support set comprises N labelled examples, or

shots, for each class.

Lake et al. [97] state that a worthy goal would be to build an AI system that performs better

than a human, using the same amount and kind of training that a human may receive. FSL

draws inspiration from human learning and generalisation abilities, where humans can quickly

grasp new concepts, visually recognise objects, or identify audio with just a few examples.

FSL aims to equip machine learning models with similar capabilities by training them to

discern common patterns and relationships from a limited dataset, mimicking how humans

leverage prior knowledge and experience. This is particularly valuable for tasks where data is

scarce [209].

Wang et al. [207] provide a more precise definition of FSL, framing it as a machine learning

problem involving a task (e.g., image classification), an experience (labelled images), and a

performance metric. Notably, the experience contains only a limited number of examples for

the target task. The authors emphasise that the main challenge of FSL is in its potential to

act as an unreliable empirical risk minimiser [207]. This means that despite minimising

training data loss, a poorly designed FSL system might struggle to generalise to new, unseen

data due to overfitting issues arising from limited training data.

In the early days of FSL, one-shot learning (a specific case of FSL using only one example)

was explored by Fink [56] in 2004, and Fei-Fei et al. [54] in 2006. These studies focused on

object classification in images and introduced FSL as a machine learning paradigm. Notably,

these works predate the rise of deep learning systems and relied on less computationally

intensive machine learning methods, such as nearest neighbours classification [56] or

Bayesian modelling [54]. Fink [56] framed the learning problem as one of discovering a

distance function, where the distance between two instances of the same class is smaller than

the distance between any two instances from different classes. This is an example of a

meta-learning (i.e. ‘learning to learn’) strategy that remains popular and effective in

FSL [118, 139, 207].

Additional approaches to the FSL problem have emerged in the following two decades.

28

Parnami et al. [139] offer a useful taxonomy of these approaches, providing an overview of

systems within each category. They categorise FSL systems into two main groups: those

based on meta-learning and those not based on meta-learning. Meta-learning based

approaches are further broken down by what aspect of the model is subject to meta-learning.

This taxonomy, as well as the approaches themselves will be discussed in more detail below

in Section 2.3.1.

Wang et al. [207] propose a broader taxonomy of FSL that focuses on how each approach

impacts the hypothesis space. They classify FSL systems into three groups: data-based

systems that incorporate prior knowledge to enhance training data; model-based systems that

use prior knowledge to limit the hypothesis space; and algorithm-based systems that

integrate prior knowledge into the parameter search and optimisation strategy. It is

important to note that some overlap exists between these two taxonomies, as meta-learning

can be found in both the model and algorithm categories outlined in [207].

2.3.1 Approaches to Few-Shot Learning

As mentioned earlier, Parnami et al. [139] provide a useful taxonomy of FSL approaches,

visualised in Figure 2.6. Non-meta-learning approaches include transfer learning-based

methods, which are a simple and sometimes effective approach [195, 206], and transductive

methods (some of which will be elaborated on below). Meta-learning approaches are further

subdivided into metric-based, optimisation-based and model-based meta-learners:

• Metric-based: High dimensional data is transformed to a lower dimensional space

using some embedding function fθ. Metric-based meta-learning is tasked with either

learning the embedding function fθ given a distance function d (such as Euclidean

distance), or learning both the embedding function fθ1 and distance function dθ2

jointly. Metric based meta-learners are easily deployed, easily understood and have fast

inference. However, they tend to be less adaptive than other approaches. They are well

suited for use with simple, non parametric classifiers (such as nearest neighbours).

• Optimisation-based: Traditional gradient-based optimisation in machine learning is

not designed for use with few data, and will usually lead to overfitting.

Chapter 2. Literature Review 29

Figure 2.6: Simplified categorisation of FSL approaches by Parnami et al. [139]. The authors
categorise approaches to FSL as meta-learning-based FSL and non-meta-learning-based FSL.
Meta-learning-based approaches are further broken down into metric, optimisation and model-
based methods. Approaches using a combination of meta-learning and other techniques are
categorised as ‘hybrid’ approaches.

Optimisation-based meta-learning methods for FSL involve the design of optimisation

strategies that can achieve good generalisation using a small number of support

samples. This typically involves learning parameters for the optimiser which facilitate

quick and easy fine-tuning. Optimisation-based methods tend to be more adaptive

than metric-based or model-based methods, however they require additional

gradient-optimisation steps at inference time and can still overfit to the limited data.

• Model-based: Model-based meta-learning is the least commonly employed approach.

Model-based meta-learning involves the creation of architectures designed to learn and

adapt quickly. This is achieved in myriad ways, such as the usage of external memory

which the model has access to allowing it to store and read information, to networks

using ‘fast-weights’ where another neural network is designed to predict the weights of

the model. Model-based approaches eliminate the need to define metrics, or to

optimise further at inference time, however they are difficult to design and less

parameter efficient than their metric and optimisation-based counterparts.

30

Parnami et al. [139] also give examples of hybrid meta-learning approaches, which include

some element of meta-learning alongside other techniques such as generating additional data

to supplement the support set [205] or self-supervised learning techniques [30]. However

most meta-learning approaches to FSL fall into the three categories above, with the majority

being either metric or optimisation-based methods.

As previously mentioned, a subset of non-meta-learning-based FSL approaches known as

transductive inference learning methods, are also popular. Research from Tian et al. [195] in

2020 even suggests that a well-learned embedding model for FSL can be acquired without

resorting to meta-learning. Instead, leveraging techniques such as knowledge distillation and

data augmentation. However, it is essential to note that meta-learning methods find use in

the majority of FSL systems [139].

Below, an overview of various FSL systems is provided. The meta-learning based approaches

will be introduced first, starting with various metric-based meta-learners and their

developments. Following this, we will delve into descriptions of optimiser-based

meta-learners. Finally, the discussion will shift to non-meta-learning-based approaches,

covering techniques like fine-tuning/transfer learning and transductive inference-based

methods.

Meta-Learning Based Approaches

After early endeavours [54, 56, 96], which initially formulated the concept of one-shot

learning and by extension FSL, the topic went through a quiet phase until the emergence of

deep learning architectures and the growing demand for large amounts of labelled data. The

first to incorporate deep neural networks, specifically CNN architectures, were Siamese

Neural Networks, introduced by Koch et al. [92] in 2015.

Siamese Neural Networks, an early example of metric-based meta-learning using deep

learning, feature two identical sub-networks sharing the same parameters (referred to as

twins). When provided with a pair of images, one for each network, their goal is to determine

the degree of similarity or dissimilarity between these images. Each network generates an

embedding, and a learnable distance function quantifies the dissimilarity between these

Chapter 2. Literature Review 31

embeddings. For classification, a softmax function is applied to the distances between the

query image’s embedding and the support images’ embeddings.

Matching Networks, proposed by Vinyals et al. [203] in 2016, introduce the idea of episodic

learning to FSL, mirroring the inference-time scenario during training. This means each

training step is formulated as a N -shot K-way task, where N matches the number of ‘shots’

at inference time. A more detailed explanation of episodic learning is provided in

Section 4.1.2. These are also metric-based meta-learners, but focus on learning the

embedding function and utilise a fixed distance function, namely cosine distance, to measure

the query data’s similarity to support sets. They employ an attention mechanism to recall

relevant support set features and use the complete support set embeddings when

constructing each query embedding, achieved through an LSTM-based model.

In 2017, Snell et al. proposed Prototypical Networks [177], building upon the episodic

training training method introduced in [203]. Prototypical networks, often referred to as

protonets, operate on the principle that there is a mapping from the feature space to an

embedding space, where data points belonging to the same class tend to cluster around a

single prototypical representation of that class. In practice, this prototype embedding is

calculated as the mean of the support set embeddings. These characteristics make protonets

metric-based meta-learners, using a fixed distance function.

The authors make a compelling case for using Bregman Divergences [18] as the distance

functions used for protonets. This is empirically supported by comparing protonets trained

with cosine distance (as in Matching Networks [203]) and squared Euclidean distance (a

Bregman divergence, as discussed in [9] and Section 4.1.1). A more detailed explanation of

how protonets are implemented, and why Bregman divergences are suitable choices in

distance function can be seen in Section 4.1.1.

Protonets are appealing in the context of FSL due to their straightforward mechanisms and

ease of training. They surpass Matching Networks in performance across various tasks and

have become one of the most widely used FSL frameworks. An enhanced variation of

protonets utilising Semi-Supervised Learning was proposed by Ren et al. [155] in 2018.

Although this approach improves upon the results of the original protonet [177], it introduces

32

greater complexity into the training process, necessitating additional refinement.

Oreshkin et al. [136] argue that the performance gap between cosine distance and squared

Euclidean distance in [177] results from the scale of these distances and its impact on the

cost function (negative log probability via softmax over distances). They propose leveraging

the relationship between the distance function and cost function, introducing metric scaling

to enhance metric-based meta-learners’ performance. Metric scaling was shown to effectively

close the performance gap between cosine and squared Euclidean distances, but it

necessitates fine-tuning using cross-validation techniques, increasing development time.

Relation Networks, introduced by Sung et al. [189] in 2018, share similarities with protonets.

Relation Networks utilise episodic learning [203] and prototype representations [177] from

Matching Networks and Prototypical Networks, respectively. However, what sets Relation

Networks apart is the trainable network acting as the distance function (referred to as the

relation module). This feature harkens back to earlier FSL attempts [56, 92]. Despite the

inclusion of a learned distance function, Relation Networks offer only slight performance

improvements over Prototypical Networks when a higher number of shots are used. However,

in comparative studies, Relation Networks have shown the capability to outperform

Prototypical Networks when a shallower backend model is employed [31].

More recently, metric-learning approaches have incorporated parametric classifiers and

transfer learning. Meta-Opt, proposed by Lee et al. [99] in 2019, incorporates non-linear,

parametric classifiers (previously not utilised to focus on learning a good embedding function

from few data). This is achieved by introducing a differentiable quadratic programming

solver to the network, enabling the optimisation of of SVMs with few data. Other systems

such as Meta-Baseline, proposed by Chen et al. [32] in 2021, utilise a two-stage training

approach. The first stage involves supervised classification, trained conventionally, followed

by a meta-learning refinement step to adapt the embedding function for FSL applications.

Meta-Baseline also combines elements such as episodic learning [203], prototype

representation [177] and metric scaling [136].

The systems mentioned above are primarily metric-based meta-learners, but several

optimisation-based meta-learners have also demonstrated state-of-the-art results. For

Chapter 2. Literature Review 33

instance, Meta-LSTM [152] (proposed by Ravi et al. 2016) and Meta-SGD [103] (by Li et al.

in 2017) focus on meta-learning model initialisations and optimiser parameters that enable

rapid generalisation from limited data. Both methods aim to maximise the meta-learner’s

ability to generalise across the tasks encountered during training. As their names suggest,

Meta-SGD achieves this through a modification of the Stochastic Gradient Descent (SGD)

algorithm, targeting parameters that allow SGD to adapt the model to new tasks with

minimal data. On the other hand, Meta-LSTM employs an LSTM network to learn a

learning rate schedule for the same purpose. Although both methods outperformed Matching

Networks in an image classification task, they were surpassed by Prototypical Networks [177],

which were also introduced in 2017.

Among optimiser-based meta-learning approaches, the most influential system is MAML [57].

MAML, introduced by Finn et al. in 2017, is a framework which encourages learning a model

applicable to a wide range of tasks during training and requires only a small number of

update steps at inference time. MAML optimises over all tasks in a distribution during

training to learn a generalised model, which is then specialised for a specific task during

fine-tuning, using the support set relevant to that task. MAML has been found to achieve

better performance than its contemporary, Protoypical Networks, however it does not adapt

as well to domain shifts [31].

This overview of meta-learning-based approaches to FSL has primarily concentrated on

metric-based approaches. While optimiser-based approaches show potential, the necessity for

retraining and adaptation during inference makes them less appealing compared to

metric-based learners, which require no gradient updates at inference time. Despite

metric-based learners’ limited adaptability, it is precisely this lack of adaptation and their

ease of implementation that makes them an interesting prospect.

Non-meta-learning Based approaches

Meta-learning based approaches do not encompass the entire landscape of FSL. We will now

look at some non-meta-learning-based FSL systems. Although these have been less prevalent

in the literature, they are gaining popularity as the role of meta-learning in FSL is being

34

re-evaluated [94, 195]. The two most utilised non-meta-learning based approaches are

embedding models trained in a standard way using cross-entropy, adapted for use with FSL

and transductive inference.

In 2019, Wang et al. [206] introduced SimpleShot, a straightforward FSL method designed to

serve as a reproducible baseline for comparison with other approaches. It employs an

SGD-trained network to minimise the cross-entropy loss across all training set classes. The

classifier layers are then omitted, leaving only the embedding function. Few-shot inference is

conducted similarly to Prototypical Networks [177], where a prototype embedding is

computed as the mean of support set embeddings, and a query point is assigned to the class

with the closest prototype based on a distance function. SimpleShot also utilises data

augmentation and feature transformations such as centring and L2-normalisation.

SimpleShot achieves competitive results, especially when using larger backbones, sometimes

even surpassing other methods mentioned above.

The Baseline and Baseline++ methods, introduced by Chen et al. [31] in 2019 and influenced

by Dhillon et al.’s work [44], follow a similar approach. They involve training a new classifier

using the support set of each class while keeping the embedding function fixed. Baseline

employs a linear classifier, while Baseline++ utilises a cosine distance-based classifier. These

networks, particularly Baseline++, seem to outperform many meta-learning-based

approaches, especially when using larger backbones similar to SimpleShot [206].

Similar results emerge from the work of Tian et al. [195], who advocate for training the

embedding function using a standard classification task with cross-entropy, avoiding

meta-learning entirely. In contrast to SimpleShot [206], which utilises feature transformations

to achieve performance similar to meta-learning approaches, Tian et al. utilise self-distillation

alongside data augmentation to enhance performance. When using the same backbone

network as popular meta-learning methods, their networks achieve comparable performance

levels. This demonstrates that when combined with a sufficiently large training set and

additional techniques, training embedding functions using cross-entropy, without

meta-learning, can produce competitive results.

Another class of methods that typically avoids the use of meta-learning is transductive

Chapter 2. Literature Review 35

inference. Transductive methods avoid learning a general model, common in meta-learning

setups. Instead, they rely solely on the available data, which can include both labelled data

(the support set) and unlabelled data (the query set, but also possibly additional data) to

classify query points. These transductive methods can complement meta-learning based

approaches [109], but they can also be used in conjunction with simpler cross-entropy-based

methods outlined earlier [159], eliminating the need for meta-learning. However, transductive

methods inherently require additional inference time adjustments, akin to optimisation-based

meta-learning, and are slower compared to metric-based meta-learning methods.

The first to use transductive inference for FSL was Liu et al. [109], through their

introduction of label propagation. In this approach, the authors combine a popular inductive

meta-learning-based method, Prototypical Networks [177], with their transductive label

propagation. Label propagation leverages both labelled and unlabelled data, utilising a

graph-based approach to assign or propagate labels to unlabelled instances based on their

neighbours. This propagation is performed iteratively until convergence, and the propagated

labels are employed for classifying the query points. Embedding propagation, proposed by

Rodriguez et al. [159] in 2020, extends this concept by also propagating the embeddings in a

similar manner, followed by label propagation. Both approaches show marginally higher

5-shot classification performance than inductive methods, and substantially better one-shot

performance.

In 2020, Boudiaf et al. [17] introduced Transductive Information Maximization (TIM), a

method that maximises the mutual information between query features and their predicted

labels while minimising the cross-entropy loss on the support set, akin to fine-tuning

methods. This approach has further refinements [16, 38, 202] that address class imbalances

during inference using the Kullback-Liebler Divergence. These systems do not rely on

meta-learning or episodic training methods; instead, they involve fine-tuning steps applied to

embedding functions trained using standard cross-entropy loss. The performance of TIM and

its successors surpasses that of the aforementioned meta-learning-based approaches, as well

as the simple fine-tuning-based methods.

To summarise, systems implementing a simple baseline trained using cross-entropy loss can

36

match the performance of meta-learning-based approaches when provided with sufficient

data. Transductive methods enhance this further, leveraging both the support set (labelled

data) and query set (unlabelled data) to improve classification performance and surpass

meta-learning methods. However, they require additional inference time updates and the

availability of all data at inference time, which may not be suitable for real-time applications.

All the systems described above have all been evaluated using image classification tasks and

datasets. In Section 2.3.2, we discuss FSL and its application in audio, particularly in

bioacoustics.

2.3.2 Few-Shot Learning with Audio

FSL with audio introduces distinct challenges compared to image classification. While the

Short-Time Fourier Transform (STFT) can convert an audio channel from a 1-dimensional

time series into a 2-dimensional spectrogram akin to an image, spectrograms cannot be

treated identically to images. Spectrograms cannot be subject to arbitrary transformations

such as cropping, rotation, and scaling, as any changes in the horizontal or vertical dimension

directly affect the time and frequency content of the signal. Consequently, methods relying

heavily on data augmentation [195, 205, 206] may not be suitable. There are also the issues

of signal-to-noise ratio, and polyphonic, multi-label data [208], which may influence how the

FSL task is set up.

Moreover, FSL for audio presents a different perspective on the concept of ‘shots’. In image

classification, the number of shots pertains to the images in the support set, all sharing the

same size and dimensions. In the context of audio, the number of shots may refer to labelled

events, each possibly varying in length. Depending on feature length (i.e. the portion of the

signal covered by a single spectrogram), this may result in more than N spectrograms

representing N events. For instance, if the 5 shots collectively span 5 seconds and each

spectrogram represents 250 ms of audio, there will be at least 20 spectrograms representing

the 5 events, comprising the support set.

FSL with audio has found application in acoustic scene classification [147, 172] and activity

detection [131, 209]. In 2019, Pons et al. [147] found that models pretrained on

Chapter 2. Literature Review 37

Audioset [60] and then fine-tuned exhibit strong performance in acoustic scene classification.

They also observed that Prototypical Networks [177] trained from scratch, while performing

slightly worse, still offer good few-shot learning results and outperform many baseline

methods. The authors note that when data distributions do not match, using Prototypical

Networks trained from scratch is a better choice than using a pretrained network.

Shi et al. [172] evaluated various meta-learning-based approaches, including Prototypical

Networks [177], Meta-Opt [99] and MAML [57], alongside fine-tuning-based methods in a

common acoustic classification task. Their results indicated that fine-tuning-based methods

had the lowest performance, followed by MAML and Meta-Opt, with Prototypical Networks

proving to be the top performer in their experiments.

In 2020, Wang et al. [209] applied different metric-based meta-learning methods, such as

Siamese Networks [92], Matching Networks [203], Prototypical Networks [177] and Relation

Networks [189], to sound event detection, specifically a keyword-spotting task.

Keyword-spotting, which can involve using a unique keyword per user in conjunction with

user voice characteristics, is well-suited for FSL, enhancing privacy without extensive

adaptation or additional data. Notably, this work was a binary classification task, a

‘one-vs-all’ scenario. The authors discovered that simple data augmentation, like

time-shifting (as opposed to time-warping), increased prediction robustness. In both binary

and multiclass tasks, Prototypical Networks emerged as the top-performing approach. These

findings in [147, 172, 209] begin to establish Prototypical Networks as the preferred FSL

approach for audio applications.

In the field of bioacoustics, FSL has gained popularity, particularly due to challenges

proposed by the DCASE community [125, 130]. A detailed description of the 2021 challenge

can be found in Section 4.2. These challenges involve implementing few-shot systems for

binary classification tasks. The specific task is to classify events (mammal or bird

vocalisations) in an audio recording containing a single class of interest. The support set is

constructed from the first five occurrences of the class of interest in each recording, with all

subsequent audio forming the query set. The system’s output comprises the onset and offset

boundaries of events corresponding to the class of interest in that recording.

38

According to broader findings presented in [131], prototype-based meta-learning methods

(Prototypical Networks and their variants) work effectively and are commonly employed

among submitted systems. However, transductive inference-based methods exhibit impressive

performance at the cost of increased complexity. The authors in [131] generally recommend

that a system includes inference-time adaptation for optimal performance, but that a system

without inference-time adaptation should be a widespread default.

2.4 Learnable Frontends

In speech and audio processing, researchers aim to extract information from audio signals for

analysis. As the techniques used in audio signal processing have advanced, so too have the

features extracted from audio signals. In the era of deep learning, systems capable of directly

learning features from data have emerged. Typically, thanks to increased computational

power and memory availability, and progress in image-processing tasks using deep learning,

spectrograms are employed in audio tasks. These spectrograms can be adapted to a specific

frequency scale like the mel scale or undergo compression, such as logarithmic compression,

to reduce the dynamic range. However, using spectrograms necessitates careful consideration

and tuning of hyperparameters, like window type, length and overlap. Alternatively, it may

involve the use of fixed filterbanks and static compression methods, which may not be suited

to the data. Learnable frontends aim to learn some or all of these aspects: filterbanks;

windowing; compression; and any associated hyperparameters.

To the best of our knowledge, Jaitly & Hinton [77] were the first to learn representations

from raw audio in 2011. They utilised Restricted Boltzmann Machines to model fragments of

speech signals and create features, which would then be used as the input to a phone

detection system. The authors acknowledged the difficulty in learning from raw waveforms,

due to their high dimensionality. Although these learned representations did not surpass mel

filterbank energies in performance, they did outperform other methods.

In 2012, Chu & Alwan [35] extend the Expectation-Maximisation algorithm to to estimate

acoustic model parameters, including centre frequencies and filter bandwidths for cepstral

coefficient calculation. Their work focused on bird species identification, highlighting the

Chapter 2. Literature Review 39

potential inadequacy of the widely used mel scale for this task, prompting the exploration of

alternative filterbanks.

From this point onward, deep learning becomes more prevalent. In 2013, Palaz et al. [137]

recognised that the the convolutional aspect of CNNs are well-suited to processing temporal

signals such as audio. The authors utilise CNNs to extract features from raw waveforms,

with the first convolutional layers acting as filters on the waveform. Despite the

unconstrained nature of these convolutions, which allowed for complex structures, they did

not surpass the performance of the MFCC used in a baseline system.

In 2013 Andén & Mallat [1] introduced the deep scattering transform, a signal processing

technique designed to extract translation-invariant features from data. This wavelet-based

method consists of a series of layers, with deeper layers capturing higher-level, more

translation-invariant features. When applied to audio, the first order scattering transform can

compute a time-domain approximation of a filterbank spectrogram. Details of this

approximation can be found in Section 5.2.2 and Equations 5.12– 5.17.

Following the introduction of the deep scattering transform and a method for time-domain

approximation of filterbank spectrograms, frontends employing learnable filterbanks typically

fall into two categories: frequency-domain-based and scattering transform-based [58].

Frequency-domain-based frontends apply their filters in the frequency domain, necessitating

a prior transformation of the audio into a spectrogram. This transformation requires specific

choices of hyperparameters, particularly concerning windowing and FFT length. The

advantage of frequency-domain-based filterbanks is that certain filter shapes, such as

rectangular or triangular filters, are more easily realisable in the frequency domain, as they

have infinite impulse responses in the time domain.

On the other hand, scattering transform-based approaches operate entirely in the

time-domain, and utilise the convolutional nature of CNNs, as noted by Palaz et al. [137].

Furthermore, as the first-order scattering transform approximates a filterbank spectrogram,

the hyperparameters controlling the STFT can also be learned. Other time-domain-based

approaches exist, which do not rely on the scattering transform. Instead, they adopt a

convolution-based approach, focusing solely on filtering without windowing. These simplified

40

time-domain approaches still require design decisions related to windowing, framesize, and

overlap. Both frequency-domain-based and time-domain-based methods have their

advantages, but recently, time-domain methods, particularly those based on the first-order

scattering transform, are becoming more prevalent.

Learnable frontends employing learnable filterbanks can be parameterised or learn filter

coefficients directly. Filterbanks which are parameterised are constrained to a known filter

shape, have less trainable parameters, and parameters have direct meaning, easing analysis.

Filterbanks where filter coefficients are learned directly offer a large degree of flexibility and

can improve performance, at the cost of increased complexity. More detailed discussion on

the domain of operation (time-/frequency-domain) and on the usage of

constrained/unconstrained filters can be found in Section 5.2.

An outline of the literature around frequency-domain-based (Section 2.4.1) and

time-domain-based frontends (Section 2.4.2) is provided below. This is followed by an

overview of some learnable compression methods in Section 2.4.3.

2.4.1 Frequency-Domain-Based Learnable Frontends

Frequency-domain-based learnable frontends involve the calculation of the STFT to

transform a signal into the Time-Frequency domain, followed by frequency axis warping using

filters implemented purely in the frequency domain. This is typically implemented via matrix

multiplication using a linear transformation matrix, projecting the Fast Fourier Transform

(FFT) bins in the STFT to some filterbank. In these frontends, the coefficients of the

filterbank are learned, either directly or via parameterisation, to optimise the

TF-representation of the data jointly with the classifier.

Early attempts at implementing frequency-domain-based frontends within deep learning were

undertaken by Sainath et al. [160] in 2013. The authors initialise the filterbank to a

triangular, mel filterbank with no constraints on filter shape, i.e. the filters are not

parameterised. Results indicate that learning the filterbank yielded some improvements in an

ASR task, with additional enhancements achieved through feature normalisation. Notably,

learned filters in the low-frequency regions remained similar to the mel initialisation, while

Chapter 2. Literature Review 41

mid-frequency filters exhibited multiple peaks, suggesting these frequencies are important to

the model. High-frequency filters acted as high-pass filters instead of the wide-bandwidth

bandpass filters they were initialised to. The authors also make the following keen

observation, applicable to learnable frontends in general, “... this [mel] filterbank is not really

an appropriate choice as it is not learned for the objective at hand” [160], summing up that

although perceptual scales have been useful, they are not optimised for the data or task.

In 2017, Seki et al. [168] introduced learnable Gaussian filters in the frequency domain,

parameterised by gain, bandwidth and centre frequency parameters for each filter. This

approach added fewer parameters to the model and resulted in more interpretable filters.

Comparisons were made between a fixed Gaussian filterbank, a triangular mel filterbank, and

the optimised Gaussian filters. The triangular filters exhibited better performance than the

fixed Gaussian filters, but the learned Gaussian filter outperformed both fixed filterbanks.

However, no comparison was made with learned triangular filters. The study noted that most

changes in filter properties were associated with the gain parameter, while the centre

frequency showed minimal change from its initialisation. Information regarding changes in

the bandwidth parameter was not provided, and the lack of deviation from initial centre

frequencies is a common occurrence.

In 2020, Cheuk et al. [34] attempt to learn FFT kernels directly with nnAudio. This library

was designed to allow GPU-based feature extraction, where operations could also be

optimised via backpropagation, including FFT kernels and filterbanks. Both can be utilised,

creating learned STFT representations and learned filterbank matrices. Strictly speaking,

nnAudio encompasses elements of both time-domain and frequency-domain methods. While

these learned kernels and filterbanks indeed outperformed their fixed counterparts in a pitch

detection task, the authors note the increased computational demands incurred during kernel

learning.

In 2021, López-Espejo et al. [111] found that learnable frequency-domain filterbanks did not

yield a statistically significant performance enhancement in a keyword spotting task. Similar

to the approach of Sainath et al. [160], these filters were not parameterised, and all

coefficients were learned directly. The resulting filters exhibited minimal deviation from their

42

initial state, as observed in [168], with minor changes in filter shape and gain. Nonetheless,

the authors highlighted that learned filterbanks might reduce redundant information and

facilitate improved performance, particularly in situations with hardware constraints and a

need for small-footprint models. Subsequent work in 2023 [110], revealed that using a

reduced number of learned filters, as compared to a larger number of fixed filters in the

filterbank, notably enhanced performance, especially in low SNR conditions.

FastAudio [58], introduced in 2021 by Fu et al., combines elements from Seki et al.’s

work [168], by returning to parameterised filterbanks and revisiting the question of filter

shape. The work again tests triangular vs. Gaussian filters, although it excludes the gain

parameter, which was the parameter which changed most and presumably contributed most

to the performance gains in [168]. Instead, FastAudio exclusively parameterises filters by

centre frequency and bandwidth. This frontend is partly a response to scattering

transform-based frontends such as LEAF (discussed below and in Section 5.2.4), which the

authors contend are time consuming and computationally intensive. While it is true that

scattering transform-based approaches consume more time, GPU hardware and CNNs are

well suited to these operations. Furthermore, scattering-transform-based approaches

eliminate the need for hyperparameter tuning regarding the STFT. FastAudio performs well

on a speaker verification task, and verifies the finding in [168] that triangular filters slightly

outperform Gaussian filters.

In 2022, Peng et al. [143] returned to directly learning filter coefficients. To address filter

shape and initialisation concerns, the authors imposed a sparsity constraint on the resulting

filterbank matrix. Two such constraints were applied: (1) each filter is expected to activate a

few frequency components and (2) reduce others to zero while maintaining differentiation

between filters. The filters were initially set to mel triangular filters, and the sparsity

constraints led to filters that outperformed the fixed mel filters. Some variations in center

frequency, bandwidth, and filter density in specific frequency ranges were observed, but the

most significant change was in filter shape. These changes remained interpretable due to the

sparsity constraints. Overall, this approach holds promise for frequency-domain-based

frontends.

Chapter 2. Literature Review 43

2.4.2 Time-Domain-Based Learnable Frontends

Time-domain-based approaches rely on convolution operations to create TF-representations

from the input audio. The rise of CNN-based architectures has enabled efficient GPU-based

convolutions. However, time-domain methods have certain limitations compared to their

frequency-domain counterparts. Some filter shapes, like rectangular and triangular filters,

cannot be feasibly implemented with a finite number of samples. Additionally, while

convolution operations are less computationally intensive on a GPU, frequency-domain

approaches often use matrix multiplication, which is more computationally efficient.

Nevertheless, time-domain approaches, especially scattering transform-based methods, are

gaining prominence, as they can also learn the necessary windowing function for creating a

TF-representation to be fed into the network’s backbone.

In 2015, Hoshen et al. [73] utilise the convolutional architecture to implement a bank of

unconstrained filters, originally initialised to a gammatone filterbank. These filters had centre

frequencies matching the mel scale, and using max pooling were used to learn features

directly from the audio waveform. The work was initially designed for multi-channel audio,

aiming to learn a set of bandpass beamformers with a perceptual, auditory-like frequency

scale. Later, Sainath et al. [162] revised it for single-channel audio, with a greater focus on

improving the audio’s feature representation rather than relying on a perceptual scale like the

mel scale. However, Sainath et al. observed that these learned features could match but not

surpass the baseline Log-Mel spectrogram results.

In 2018, Ravanelli & Bengio introduced SincNet [151]. They noted that when learning

directly from the waveform, the weights of the first convolutional layer were not intuitive,

and though they made sense to the neural network, they did not align with human

understanding of the signal or present an efficient representation. By constraining the first

layer to the difference of two sinc functions, each filter became a near-rectangular bandpass

filter, parameterised by the upper and lower cutoff frequencies. The only imposed constraints

are that the lower cutoff frequency f1 ≥ 0, and that the higher cutoff frequency f2 ≥ f1.

Compared to unconstrained, non-parameterised CNN filters, the SincNet filters offered

improved performance and faster convergence.

44

Zeghidour et al. [217] introduced Time-Domain Filter Banks (TD) in 2018, utilising the

scattering transform [1] to create a TF-representation of the signal. In their initial

experiments, the authors approximated a mel spectrogram before allowing the filterbank

(initialised as a mel filterbank) and a lowpass filter to be learned. Notably, the filterbank in

TD lacks parameterisation, with coefficients learned directly, offering increased flexibility at

the expense of longer training times and reduced interpretability. Subsequent work on

TD [218] further explores the lowpass filter in scattering transform-based approaches,

showing that it improves performance over usage of max or average pooling. Analysis of the

final learned filters in [217], reveals some changes from the mel initialisation, but the initial

filterbank structure remains intact. A more detailed overview of TD is included in

Section 5.2.2.

Inspired by SincNet [151], Noé et al. [129] propose the use of Gabor filters instead of

windowed sinc functions. They justify this choice by noting that a Gabor filter provides the

best compromise in time-frequency resolution. Gabor filters provide a Gaussian response in

the frequency-domain, which as shown in [58, 168], do not perform as well as triangular

filters, but they are more easily implementable in the time-domain. The Gabor filters show

improved performance compared to the approximated rectangular filters of SincNet [151].

The authors use a complex Gabor filter for phase information, however this does n0t offer

any advantage as the model only leverages the magnitude.

Zeghidour et al. introduced another scattering transform-based frontend in 2021 with

LEAF [216], an “all-in-one, off-the-shelf” learnable frontend. LEAF extends TD by

introducing a learnable PCEN layer for compression and normalisation (see Section 2.4.3).

This is in contrast to other methods which make use of log compression or non-linear

activation layers. LEAF also shifts from learning filter coefficients directly to a parameterised

filterbank. LEAF utilises a Gabor filterbank characterised by centre frequencies and

bandwidths, similar to [129]. The authors cite issues of instability, overfitting and lack of

interpretability as reasons for adopting a Gabor filterbank. LEAF outperforms both TD and

SincNet on a variety of speech, music and acoustic scene classification tasks, but is

outperformed by TD on a BAD task, a result replicated in our work in Section 5.3.4. In

2022, Schlüter & Gutenbrunner [166] developed an optimised implementation of LEAF.

Chapter 2. Literature Review 45

Similar to many other learnable frontends, LEAF is initialised to a mel filterbank. The

author’s note that the learned filterbank does not deviate substantially from this

initialisation. Zeghidour et al. [218] and Sainath et al. [162] credit this as the mel scale being

a strong initialisation, work in this thesis believes otherwise, that learnable frontends are

sensitive to their initialisation (See Section 5.4). For more detailed information about LEAF,

including the optimised implementation, refer to Section 5.2.4.

2.4.3 Learnable Compression

In contrast to learnable filterbanks, learnable compression remains a less explored area.

Typically, TF-representations of audio involve either no dynamic range compression or static

methods like logarithmic or n-th root compression. These static methods, particularly

logarithmic compression, have drawbacks, as discussed in detail in Section 5.1.2. In

summary, they tend to over-compress less informative parts of the signal, depend on signal

loudness, and (in the case of logarithmic compression) have a singularity at 0.

Per-Channel Energy Normalisation (PCEN), introduced by Wang et al. [211] in 2017,

addresses issues encountered in far-field keyword spotting. It serves as an alternative to static

compression methods and offers the advantage of joint optimisation with the model. The

authors found it to perform better on far-field sources compared to logarithmic compression.

Empirical findings by Lostanlen et al. [115] also demonstrate that PCEN Gaussianises

magnitude distributions and decorrelates frequency bands in the resulting TF-representation,

which can aid performance. PCEN is a popular compression choice, and has been utilised in

various tasks as well as being incorporated in other learnable frontends such as LEAF [216].

Section 5.2.3 provides an overview of PCEN’s operation, while a detailed asymptotic analysis

is provided in [115].

Liu et al. [108] attempt to learn channel-dependent power law-based compression, proposing

to make the parameter governing the compression curve trainable. This adds one additional

parameter per channel. Analysis of the compression parameters reveals that, on human

speech, additional compression is applied to the low and high frequency regions. Interestingly,

the final learned compression parameters remain similar, regardless of their initial values. The

46

channel-dependent strategy enhances performance in a speaker verification task, surpassing

static power law-based and logarithmic compression methods. However, being power-law

based, this approach is still susceptible to the problems mentioned above.

In 2022, Schlüter & Gutenbrunner [166] suggested replacing the PCEN component of LEAF

with trainable parameter-controlled logarithmic compression, coupled with median filtering

and batch normalisation along the temporal axis. This compression technique, labelled as

‘L-M-TBN’, is not proposed as a standalone learnable compression method or a complete

replacement for PCEN but is part of a suggested LEAF modification aimed at enhancing

throughput. The author’s find that on some tasks, the performance is similar between

L-M-TBN and PCEN, whereas for other tasks the performance suffers.

2.5 Datasets

This work employs several datasets. In this section, we present an introductory overview of

each dataset, including its origin, purpose, and role within this work. Further details will be

provided where relevant.

The majority of data of this work is bioacoustic data, bird audio in particular. As a result,

four datasets featuring bird and animal vocalisations are included. Three of these

bioacoustics datasets originate from various challenges, including DCASE [125, 187] and

BirdCLEF [84]. The fourth dataset is NIPS4BPlus [124]. NIPS4BPlus and the BirdCLEF

datasets are suitable for species identification tasks, while the DCASE datasets are ideal for

activity detection.

Additionally, two other datasets are used in this work for tasks related to human speech.

These datasets are TIMIT [59], which contains clean, read speech, and MS-SNSD [153], a

dataset that includes both speech and noise. In this work we only utilise the noise portion of

MS-SNSD as an additive noise source for TIMIT.

The following is a concise description of each dataset, with further details provided when

relevant throughout the work.

• DCASE2019 Challenge – The DCASE2019 Bird Audio Detection challenge

Chapter 2. Literature Review 47

dataset [187] includes data from three distinct sources, resulting in a total of 35,690

recordings. Each recording has a duration of 10 seconds and a sample rate of 44.1

kHz. Annotations at the clip level indicate whether bird activity is present or absent in

a recording, a binary classification task. There is a class imbalance, with approximately

60% of recordings containing bird activity. This dataset is utilised in Section 5.3 to

benchmark various learnable frontends on a BAD task.

• DCASE2021 Challenge – The DCASE2021 Few-Shot Bioacoustic Sound Event

Detection challenge dataset [125] comprises of training, validation and evaluation sets,

containing a variety of bioacoustic audio. The training set comprises four sets of data

from distinct sources and is designed as a multiclass dataset. In contrast, the validation

and evaluation sets employ binary annotations and stem from two and three different

sources, respectively. All sets are labelled for the onset and offset times of events within

their respective recordings. For comprehensive dataset details, refer to Section 4.2.2.

This data is utilised in Chapters 4 and 6 to train few-shot learning systems.

• NIPS4BPlus – The NIPS4BPlus dataset [124] is a richly annotated bird audio

dataset, incorporating detailed temporal annotations suited for species identification. It

consists of 687 recordings sampled at 44.1 kHz, amounting to one hour of audio

content. The dataset contains vocalisations from 51 different bird species, as well as

recordings containing no bird activity. This dataset is utilised in Chapter 3 to train a

low-resource bird activity detection system, with specific details on preprocessing and

feature extraction found in Section 3.2.

• BirdCLEF2021 – The BirdCLEF2021 training set [84] comprises high-quality

recordings of varying lengths sourced from Xeno-Canto, an online repository of

crowd-sourced bird recordings. Each recording has been annotated to identify the bird

species present, making it well-suited for bird species identification. There are 397

species present in the dataset from across the Americas. There is a significant class

imbalance, with 12 species having 500 recordings while 9 species have fewer than 25

recordings. This dataset is utilised in Section 5.4 to investigate the sensitivity of

learnable frontends to their initialisation. More details are provided in Section 5.4.2.

48

• TIMIT – The TIMIT corpus [59] consists of clean, read speech from 630 speakers

located in North America. This dataset has found applications in various aspects of

speech research, and in this study, it is utilised for a voice activity detection task. The

dataset undergoes additional preprocessing in this work, involving the introduction of

variable-length periods of silence and noise, sourced from MS-SNSD. Section 5.4

combines this dataset with MS-SNSD to explore the sensitivity of learnable frontends

to their initialisation. More details are provided in Section 5.4.2.

• MS-SNSD – The MS-SNSD noise dataset [153] consists of fourteen noise types,

encompassing both stationary and non-stationary noise profiles. This dataset is

coupled with TIMIT, where its primary purpose is to serve as an additive source of

noise. As with TIMIT, it is utilised in Section 5.4 to investigate the sensitivity of

learnable frontends to their initialisation, with more details provided in Section 5.4.2.

2.6 Relevance to this Work

This literature review serves an introduction to many key topics present in this work,

including the production and perception of bird vocalisations, challenges in recording and

monitoring, FSL and learnable frontends. The framework, development and methodology of

these aspects has been outlined and some common themes, issues and gaps in research have

been identified. This section discusses the relevance of these themes, issues and gaps to the

research presented here.

In recent years, significant strides have been made in species agnostic BAD through the

integration of deep learning, specifically leveraging CNN-based architectures [23, 67, 98, 104,

117, 216]. However, on-device inference and adaptation remains a desirable objective [184].

While large CNN-based models demonstrate impressive performance, their computational

demands are high. Although optimisation efforts can enhance their efficiency [85], the

challenge persists in enabling real-time operation on constrained hardware. When BAD is

conducted on-site, algorithms must facilitate real-time execution on embedded devices, such

as an ARU. CNNs may be unsuitable in a situation where computational and memory

resources are limited, even with extensive optimisation.

Chapter 2. Literature Review 49

To this end, this thesis explores lightweight classifiers, encompassing both deep

learning-based and traditional machine learning-focused approaches. Chapter 3 examines

leveraging specific attributes of bird vocalisations, such as the “performance limit” [145, 146]

between amplitude modulation and frequency modulation. This leads to the development of

the AMPS feature set, tailored for low-resource classifiers such as random forests. The

proposed system and experiments in that chapter demonstrate that comparable or superior

performance to a small CNN can be attained across most metrics using features and models

with reduced computational costs, which are suitable for edge deployment.

FSL has emerged as a promising avenue for BAD and BSID. A survey of the literature

identifies Prototypical Networks [177] as the most popular FSL method for audio

applications [131, 147, 172, 209]. This popularity in part stems from their simplicity in

training and deployment in the context of FSL. Most of the computational cost in

Prototypical Networks is due to the embedding function, implemented as convolutional

layers, while classification involves pairwise distance calculations from prototypes. This is an

efficient operation, compared to neural network-based classifiers. A small embedding

function could reasonably be implemented on constrained hardware; protypical networks have

been shown to work well with shallower networks [31]. Furthermore in a FSL framework, it

can be tuned for specific purposes with few labelled data.

Chapter 4 explores FSL in the context of the DCASE2021 Few-Shot Bioacoustic Sound

Event Detection Challenge [125], offering an overview of the challenge, analysis of the

submitted entry, and discussion of other high-ranking entries. Chapter 6 (Section 6.2) revisits

the FSL topic, integrating it with learnable frontends, as discussed later. The result is the

development of a few-shot learning system for bioacoustic activity detection, the first to

integrate fully-trainable frontends within the model.

Several studies in BAD literature [7, 216] point out the fact that the mel scale, rooted in

human perception, may not be optimal for bird audio tasks. This is echoed in broader

literature on learnable frontends, suggesting that while perceptual scales serve a purpose,

they may not always be ideal within a modelling framework [160]. In fact, there is no reason

to believe that the mel scale is optimal [66], even on tasks involving human speech.

50

Learnable frontends provide an avenue for directly extracting features from the raw waveform

or a spectrogram. Those featuring interpretable, parameterised filterbanks [58, 129, 151,

168, 216] are especially useful, as their learned parameters have direct meaning such as

distribution of centre frequencies and filter bandwidths. However, it is acknowledged that

less interpretable, unparameterised filters with more parameters can yield improved

performance [216, 217]. In addition to learnable filterbanks, frontends incorporating learnable

compression [107, 166, 211, 216] have also been shown to be useful in situations with

far-field sources and noise contamination, prevalent in bioacoustics [114, 117]. Chapter 5,

specifically Section 5.3, conducts the most up-to-date and comprehensive comparative

analysis of traditional (non-learnable) and learnable frontends using identical datasets, tasks,

and model architectures, focusing on a BAD task. Assessing the effectiveness of these

frontends and their application to bird audio was a crucial step in the development of the

previously mentioned few-shot learning system.

A recurring theme in learnable filterbank literature is the observed lack of movement from

the filters’ initialisation [24, 111, 166, 168, 216, 217]. This is contrary to what one might

expect of learnable filterbanks that are optimised for a certain domain and task. It may be

tempting to assume that if the learned filters closely resemble their initialisation (e.g. mel)

then the initialisation was already well-suited for the task (e.g. speech recognition).

Although this may hold true for certain tasks, it does not explain the same phenomena

occurring with different filterbank initialisations, whether pyschoacoustic (such as the bark

scale) or non-psychoacoustic (a linear initialisation). It also does not explain the lack of

change for radically different audio signals, such as bird vocalisations. It is more likely that

this is an issue with how these frontends are trained, or with the optimisation strategy. This

phenomenon is explored, characterised, and quantified in Chapter 5, specifically Section 5.4,

which presents new insights on the sensitivity of learnable filterbanks to their initialisation.

Proposed mitigation strategies to the filterbank initialisation problem are discussed in

Chapter 6 (Section 6.1).

Chapter 3

Low Resource Bird Activity

Detection with AMPS

As discussed in Chapter 1, automatic and remote long-term monitoring of bird populations is

of increasing importance for scientific research and conservation as ecological and

environmental factors change in the coming years [83, 196]. As automated monitoring may

take place over long periods of time and in remote areas, it is reasonable to assume that the

processing power available to any remote recording station will be limited, and that

connection to cloud based computing may not always be possible. As the usage of ARUs

increase [188], the deployment of such devices operating continuously in remote areas of

interest is an essential first step in species identification and population monitoring

tasks [154]. This motivates the task of activity detection as a filtering step, marking areas of

interest in audio that could then be sent for further analysis, with a specific focus on

optimising these methods for embedded applications. If bird activity detection is to be

performed on-site, any algorithms must be capable of running in real-time on an embedded

device such as an ARU.

While deep learning-based approaches constitute the current state-of-the-art for this task

(see Section 2.2.2), these models may be unsuitable for use with constrained hardware.

Although such models perform well, their computational cost is high when compared with

51

52

the models and features proposed in this chapter. Instead, the work in this chapter utilises

more lightweight models which are less computationally expensive, while aiming to limit loss

in performance.

Specifically, this chapter introduces features based on amplitude modulation which have been

previously deployed by the Institute of Acoustics (IOA) for the long-term monitoring of wind

farms [76]. These features draw upon a correlation between a bird species’ vocalisation

frequency range and their trill rate, or amplitude modulation within a given call or sequence

of calls [146]. This relationship motivates the use of these features. Additionally, the system

makes use of spectral parameters [52, 53] and pitch based features. This feature set is

denoted as AMPS (Amplitude Modulation, Pitch, and Spectral features).

This chapter is structured as follows: Firstly, Section 3.1 outlines the preprocessing and

feature extraction pipeline, and provides details on their implementation. Subsequently,

Section 3.2 provides details regarding the experimental setup, which includes an overview of

the dataset, the machine learning methods employed, and the hyperparameters used in both

feature extraction and classification stages. The results of these experiments are presented

and discussed in Section 3.3, and are followed by some concluding remarks on this work in

Section 3.4. The feature set, experiments and analysis in this chapter, were originally

presented [4] in SiPS 2021.

3.1 Preprocessing and Feature Extraction

In this section, the preprocessing and feature extraction pipeline is described, alongside

implementation details for each process. This section also contains a brief analysis on the

range of frequencies in bird vocalisations, which informs certain design decisions. A visual

representation of this pipeline can be seen in Figure 3.1, showing the signal path from input

audio file, to extracted feature vector.

3.1.1 Identifying a Frequency Range for Bird Vocalisations

As a preliminary step in the development of this bird activity detection system, an

investigation into the “typical range of bird vocalisations” was conducted. Specifically we are

Chapter 3. Low Resource Bird Activity Detection with AMPS 53

Figure 3.1: Flowchart of the feature extraction pipeline, with preprocessing steps. Common to
all feature extraction algorithms is band limiting and normalisation, whereas pitch and spectral
features are subject to additional activity detection and noise reduction. Activity detection and
noise reduction applied before AM feature extraction will change the envelope of the signal.
Blocks in blue indicate preprocessing operations, and green blocks indicate feature extraction
operations.

interested in identifying a typical range of F0 values, as the pitch and amplitude modulation

features will be affected by the chosen range of values. This investigation also aimed to

establish context for certain design choices in preprocessing and noise reduction, all of which

require the definition of a relevant frequency band. The methods and findings which inform

these decisions are briefly presented here. It is important to note that this analysis is

indicative in nature, providing some understanding of the frequency ranges involved and

justifying design decisions.

This analysis was carried out using YIN-bird, a modification of the YIN pitch tracking

algorithm [41] proposed by O’Reilly et al. [134] in 2016. YIN-bird incorporates an adaptive

frequency threshold for more accurate pitch tracking in bird audio. The parameters of

YIN-bird were set in line with the original implementation outlined in [134].

Pitch analysis was conducted on the NIPS4BPlus dataset [124] utilised in these experiments

and details of this dataset can be found in Section 3.2.1. Histograms were computed for each

segment of audio containing bird activity, based on the estimated pitch samples generated by

YIN-bird. The range of pitches defining the band of interest for subsequent preprocessing

and feature extraction steps was informed by this histogram, shown in Figure 3.2.

This analysis revealed that many of the vocalisations in the dataset exhibit a fundamental

frequency between 3.2 kHz and 4 kHz, with the mode centred on the bin spanning 3.6 kHz –

54

Figure 3.2: Histogram of F0 values throughout the entire nips4b training set. Although there
exist some occurrences below 800 Hz, we have decided to make the low frequency cutoff point
800 Hz to avoid contamination by human activity, or other environmental noise.

3.8 kHz. Consequently, the decision was made to define the broadband range of F0 values

for bird vocalisations as spanning 800 Hz and 9 kHz. This choice encompasses the majority

of bird vocalisations while removing potentially unwanted sources of environmental noise. It

also corroborates with other sources, which indicate fundamental frequency ranges from 1

kHz – 9 kHz for songbirds [158] and 100 Hz – 12 kHz for birds across all orders [63].

3.1.2 Preprocessing

Field recordings can be susceptible to contamination by various sources of noise including

weather conditions, insects, and human activity. To enhance the quality of extracted features

and improve classifier performance, some preprocessing of the audio is performed based on

prior knowledge or assumptions about the data. These preprocessing steps encompass several

processes, namely: band-limiting, normalisation, rudimentary activity detection, and noise

reduction via filterbanks. As shown in Figure 3.1, the rudimentary activity detection and

noise reduction steps are only performed prior to the extraction of pitch and spectral

parameter-based features. Applying these processes before extracting AM features will

contaminate the amplitude envelope of the signal, and corrupt the AM features.

Chapter 3. Low Resource Bird Activity Detection with AMPS 55

Band limiting of the signal is implemented using a bandpass FIR filter, with the filter

coefficients determined using the window method and a window size of 1024 samples. The

cutoff frequencies of this bandpass filter are specified as 800 Hz for the high-pass frequency

and 10 kHz for the low-pass frequency. This aligns with the decision outlined in Section 3.1.1

and allows for additional harmonic content to be included in the calculation of AM (see

Section 3.1.3). Additionally, normalisation of the audio is incorporated to address the

variation in audio levels within the recordings. As the recordings lack calibration for sound

pressure level, the normalisation process involves rescaling the signal to span the entire

dynamic range, or 0 dBFS. This normalisation is applied after band-limiting the signal.

Furthermore, an initial ‘first-pass’ activity detection is carried out on the signal. This method

relies on calculating the short-time energy within a specified frequency band, which is then

compared to the energy across the entire signal. The signal x is divided up into frames of

length N . Each frame is a sequence xslice defined in Equation 3.1. This frame is windowed

with the windowing function w, and the energy of the frame exslice
is then calculated as in

Equation 3.2. In these experiments: N = 4410, equivalent to 0.1 s, and w is a Hann

window [69]. A Hann window with 50% overlap between frames is utilised in both activity

detection and noise reduction processes to ensure unity gain.

xslice = {x[n], ..., x[n+N]} (3.1)

exslice
=

N−1∑
m=0

(
xslice[m]w[m]

)2
(3.2)

The frequency band of interest can be isolated using the bandpass filter h, seen in

Equation 3.3. If the ratio ϕ (Equation 3.5) between the energy in this specified band

(Equation 3.4) and the energy contained in the rest of the signal (Equation 3.2) is above a

certain threshold Φ (Equation 3.6), then that frame is marked as containing activity. The

value of Φ is determined experimentally, alongside other preprocessing parameters. The

resulting sequence of decisions undergoes median filtering with a window size of 5,

incorporating a hysteresis effect, and the signal is reconstructed using frames marked as

containing activity.

56

y[n] =

N−1∑
m=0

xslice[m]h[n−m] (3.3)

ey =

N−1∑
m=0

(
y[m]w[m]

)2
(3.4)

ϕ =
ey
exslice

(3.5)

dslice =


1 ϕ > Φ

0 ϕ ≤ Φ

(3.6)

Noise reduction is achieved using a filterbank comprising 20 1/6th-octave filters, with a

reference frequency of 2 kHz, covering the range of F0 values found in Section 3.1.1. The

signal is once again partitioned into frames of length N = 11025, equivalent to 0.25 s, and

windowed using a Hann window [69]. On a per-frame basis, the normalised filterbank

energies of the signal are calculated. The signal is then reconstructed from the three

filterbanks with the highest normalised energy. This technique, while crude, effectively

eliminates most noise while preserving the integrity of bird vocalisations.

It is crucial that the activity detection and noise reduction processes are only applied prior to

pitch and spectral feature extraction. Unlike band-limiting, which merely filters out

information outside the specified frequency range of interest, the initial activity detection and

noise reduction operations significantly modify the amplitude envelope of the signal.

Applying these preprocessing steps prior to AM feature extraction would corrupt the AM

features due to the altered amplitude envelope, as previously mentioned.

3.1.3 Feature Extraction

This system makes use or three categories of features: as illustrated in Figure 3.1: pitch

features, spectral features and amplitude modulation features. Within the feature extraction

process, four pitch features, four spectral features, and three AM features are computed.

Chapter 3. Low Resource Bird Activity Detection with AMPS 57

The features and extraction methods employed are outlined in dedicated sections below.

These features combined create an 11x1 feature vector for each 1-second frame of data. This

feature vector serves as input to the classifier, used to determine whether the frame contains

bird activity or not.

Pitch Features

The pitch features extracted are derived from pitch values collected over the 1-second

analysis interval. The pitch extraction algorithm employed is YIN-Bird [134]. It is worth

noting that prior to YIN-Bird, the unmodified YIN [41] pitch detection algorithm has been

shown to be a more accurate pitch detection algorithm for birdsong than other popular

methods [134]. The modification made by O’Reilly et al. to create YIN-Bird is the addition

of adaptive parameterisation to identify a suitable minimum pitch value, or minimum

frequency threshold. This adaptation method utilises information from the signal’s

spectrogram to dynamically adjust the minimum frequency threshold. This modification

addresses the wider bandwidth and frequency modulation present in bird vocalisations, which

differs from human speech.

During the 1-second analysis window, 50 samples of the fundamental frequency are

extracted. This corresponds to a window length of 20 ms. The features obtained from this

process are computed based on statistical moments pertaining to these pitch samples. The

first four moments are computed: sample mean, sample variance, sample skewness and

sample kurtosis. These moments collectively describe the shape and distribution of the

sampled pitch values, offering an overall characterisation of pitch within the analysis window.

It is important to note that by computing these moments, temporal information is discarded,

as it is not utilised in the classification process.

In cases where there is no fundamental frequency, such as silence from the first pass activity

detector or unvoiced sounds, those samples are represented as NaN. These NaN values are

not included in the calculation of moments, instead, they are excluded from the analysis.

This approach is adopted to prevent these values from artificially skewing the computed

statistics, a situation that might occur if these samples are given a value of zero.

58

Spectral Parameters

Descriptive, low-level measures taken from the spectral domain are also used as input

features. These descriptive measures aim to further characterise the sound within an analysis

window, by providing insight into the energy distribution. Similar to the pitch feature

extraction process, these features are computed within frames contained within the analysis

window. The sample mean and sample variance values across the entire analysis window are

then presented as features to the classifier. The same window length used in the pitch

extraction process is utilised here, meaning that there are 50 samples within a given analysis

window.

In these experiments, spectral centroid and spectral rolloff are employed. The spectral

centroid represents the weighted mean of frequencies present in a frame, effectively depicting

the ‘center of mass’ of the spectral frame. Given that the STFT of the entire signal is

calculated, this corresponds to a weighted mean of each column, yielding a vector of spectral

centroids for the entire signal. From this vector, the sample mean and variance for each

overlapping analysis window can be calculated. Spectral rolloff is the frequency below which

a specified percentage of energy is contained (e.g. 95%). It provides insights into the signal’s

bandwidth and can serve as an indicator of harmonic content when it deviates from the

fundamental frequency. Per 1-second analysis window, the sample mean and sample variance

of spectral rolloff is also calculated. The algorithms used to calculate both spectral centroid

and spectral rolloff are detailed in [171].

Amplitude Modulation Features

The method for calculating AM and deriving features from it takes inspiration from the work

IOA AM Working Group, whose research focused around detecting amplitude modulation

caused by wind turbines [76]. This algorithm, which detected and characterised AM, has

been adapted to suit this application. Notable changes to the calculation of AM in this use

case include the use of shorter window lengths (10 ms instead of 100 ms to account for the

higher rate of AM) and the frequency bands for which AM is calculated. For this application,

AM based features are computed across four two-octave bands: 500 Hz-2 kHz, 1 kHz-4 kHz,

Chapter 3. Low Resource Bird Activity Detection with AMPS 59

Figure 3.3: Flowchart of Amplitude Modulation Feature Extraction, adapted from the IOA
method. Whether AM is detected or not is dependent on meeting criteria for ‘valid AM
frequency’, ‘AM prominence’ and ‘AM depth’. These comprise the extracted AM features
used in the classifier.

60

2 kHz-8 kHz, and 4 kHz-16 kHz (band pass filtering has removed most information above 10

kHz). This allows for total coverage of frequencies which the signal had previously been

band-limited to in Section 3.1.2. The band which exhibits the most AM, is the band where

the features are taken from.

The algorithm for extracting AM-based features is presented in the flow chart in Figure 3.3.

These features are AM Frequency, the prominence of the fundamental frequency of AM in

relation to the surrounding frequency bins, and the modulation depth of AM as calculated

from a reconstructed signal. Information indicating the presence or absence of AM in a given

window is provided by non-zero values within these features. If all features are 0, then no

AM was found in the signal. Consequently, this algorithm yields three features.

Let each 1-second window of data be denoted by x. First, the sequence xi is calculated for

each of the two-octave span frequency bands. The sequence xi results from filtering the

signal x with the bandpass filter hi (Equation 3.7). For each xi, the sequence is squared and

the expected value taken over a period of M samples. In these experiments, M = 441. This

results in a downsampled sequence of energy values, the square root of which is the AM

envelope sequence for each band xi
env as in Equation 3.8. This slice of data corresponds to

the band-limited, 1-second window on which AM features are calculated.

An example of bird audio, and the extracted envelope of the signal in the 500 Hz-2 kHz

band, can be seen in Figure 3.4. This figure also includes spectrograms of the two signals.

Note the high energy at 0 Hz in the spectrogram of the extracted envelope. The 0 Hz

component of this time series xi
env is removed via subtracting the mean value of the signal,

as the 0 Hz frequency component is not included in the feature extraction process.

xi[n] =
∑
k

x[n− k]hi[k] (3.7)

xienv[n] =

√√√√ 1

M

M−1∑
m=0

x2i [nM +m] (3.8)

Subsequently, this envelope time series xi
env is transformed into a power spectrum P ienv, as

Chapter 3. Low Resource Bird Activity Detection with AMPS 61

Figure 3.4: Example of an audio file in the NIPS4BPlus dataset containing bird vocalisations
and the extracted envelope prior to removal of the DC component. Spectrograms of the audio
and envelope are also shown.

described in Equation 3.9, and peak detection is performed to identify the index of the

frequency bin containing the most energy, Ki
p. This index corresponds to the fundamental

frequency of the amplitude envelope (Equation 3.10).

Xi
env = F(xienv)

P ienv[k] =
1

N2
|Xi

env[k]|2 (3.9)

Ki
p = argmax

k

(
P ienv[k]

)
(3.10)

To mitigate the possibility of misidentifying AM activity, a peak prominence criterion is

employed. This criterion calculates the ratio of the peak’s amplitude to the expected value of

the three surrounding bins, as detailed in Equation 3.11. If this calculated peak prominence

62

exceeds a certain threshold, the frequency associated with that index is considered the

fundamental frequency of amplitude modulation.

Qipeak =
P ienv[K

i
p]

1
|N |

∑
n∈N P

i
env[K

i
p + n]

(3.11)

where, N = {±1,±2,±3}

Usage of this criterion helps to identify pronounced peaks in the frequency domain, as

indistinct peaks could be classified as noise. If this peak is particularly prominent, the second

and third harmonics are also checked using the same method. Should these harmonics also

be deemed prominent by the process above, they are included in the reconstruction of the

envelope employed to calculate the depth of modulation. The set of the frequency indices

used in reconstruction of the signal is denoted as Ki
peaks.

All valid peaks, which encompass the fundamental frequency and potentially the second and

third harmonics, are kept whilst all the other frequency bins are set to a value of zero. This

new spectrum is transformed back into the time domain as the signal yi as shown in

Equation 3.12. While this can introduce ringing artefacts to the reconstructed signal,

potentially altering the modulation depth from that of the original signal, it is important to

note that since this process is applied to all AM features, it is not expected to have any

impact on classification. It is from this reconstructed signal that the amplitude modulation

depth Di is calculated:

yi = R
{
F−1(Xi

env[K
i
peaks])

}
(3.12)

Di = P95(y
i)− P5(y

i) (3.13)

This value is calculated from the 95th and 5th percentile values of the reconstructed signal,

as per the IOA method. Thus Di represents the modulation depth of AM for band i. If AM

is not detected in an analysis window, a value of zero is assigned to AM Frequency, AM

Chapter 3. Low Resource Bird Activity Detection with AMPS 63

Prominence and AM Depth. Once again, the frequency band which exhibits the most AM, is

the band where the features are drawn from.

3.2 Experimental Setup

The following experiments involve a Bird Activity Detection (BAD) task. As previously

mentioned, BAD plays a crucial role as an initial filtering step for any potential off-site

analysis of bird audio recordings (Section 2.2.2). In this specific context, the task of activity

detection involves binary classification, aiming to determine whether a 1-second segment of

audio contains bird vocalisations or not. It should be noted that BAD is a species agnostic

task, meaning that the system is expected to generalise its performance to various species

and types of vocalisations that may not have been encountered in the training dataset.

This section is divided into two subsections. Firstly, in Section 3.2.1, a description of the

dataset used throughout these experiments is provided, namely NIPS4BPlus [124]. Secondly,

Section 3.2.2 provides an outline of the classifiers employed in these experiments, details of

feature extraction and classifier hyperparameters, and introduces a compact CNN-based

system for comparative analysis.

3.2.1 Data

The dataset employed in this study is the NIPS4BPlus dataset, a richly annotated birdsong

audio dataset released by Morfi et al. [124] in 2019. This dataset combines previously

released training data in the form of bird vocalisations, from bird classification

challenges [61], and incorporates detailed temporal annotations centred around the species

identification task. These finely grained, temporal annotations make this dataset highly

suitable for this work, where the aim is to detect activity in windows of one second. Many

alternative datasets lack these fine-grained temporal annotations and instead provide activity

labels at the clip level.

This dataset comprises 687 recordings sampled at 44.1 kHz, encompassing one hour of audio

content featuring vocalisations from 51 different bird species. The dataset also contains

recordings in which no birds are present (100 files), as well as human and animal activity

64

throughout. Vocalisations span a broad range of fundamental frequencies, with the majority

of energy contained between 1 kHz and 8 kHz (see Section 3.1.1). These recordings took

place across 39 locations in France and Spain, starting 30 minutes after sunrise and

continuing for an additional 3 hours.

As part of this work, the labels have been converted to indicate bird activity in 1-second

windows with 50% overlap. The result of this segmentation is 9 windows per file, covering

each 5-second audio clip. The labels represent a binary classification, discerning whether

there is bird activity within that window, regardless of vocalisation type or bird species. The

resulting labels resemble those in datasets such as freefield1010 and warblrb10k, both

released by Dan Stowell as part of the DCASE Bird Audio Detection Challenges [187].

However, in these datasets, labels are provided at the clip level, with a single label assigned

per 10-second audio clip. Bird activity is present in approximately 40% of the 1-second

windows. The results provided in this chapter include a breakdown of selected metrics for

both the ‘bird present’ and ‘bird absent’ classes.

3.2.2 Feature Extraction and Classification

Feature extraction follows the procedures detailed in Section 3.1.3, yielding an 11x1 feature

vector for each analysis window. As previously mentioned, this feature set is denoted as

AMPS, representing Amplitude Modulation, Pitch, and Spectral features. The parameters

governing feature extraction can be found in Table 3.1 within the relevant section of the

table. Details are provided under the relevant headings in Section 3.1.3. AM features will

have a fundamental frequency between 1-10 Hz, the peak of the fundamental frequency is

required to be three times that of the surrounding bins, and the feature must have a

minimum modulation depth of 0.01. Pitch features and spectral features are computed using

the same window length and overlap, utilising Hann windows. The parameters influencing

feature extraction were determined through factorial experiments following hyperparameter

tuning of the classification models.

Classifier selection was driven by the suitability of each algorithm for embedded applications,

with an emphasis on low memory and computational resource requirements. Consequently,

Chapter 3. Low Resource Bird Activity Detection with AMPS 65

logistic classification, SVM, and Random Forest classifiers were evaluated. During model

training, the primary objective was to maximise the F1-Score. However, when evaluating the

performance of the classifiers, other metrics such as accuracy are also reported.

Logistic classification serves as a baseline classifier, with the classifier’s threshold adjusted to

optimise the F1-score. SVMs have been used previously by Fagerlund [52], and our model

has been configured similarly. Random forest classifiers, known for their effectiveness in

birdsong analysis as demonstrated by Stowell and Plumbley [186], were configured with 500

trees. However, it is worth noting that performance is not significantly reduced with smaller

forests, allowing for potential computational savings.

Additionally, a stacking classifier [212] is also implemented, an ensemble technique that

combines the outputs of the logistic, SVM, and Random Forest classifiers. Predictions from

each individual classifier are stacked together and serve as input to a final meta-classifier.

This meta-classifier, another instance of a SVM classifier, is trained using cross-validated

outputs from the stacked classifiers. The stacking method aims to reduce the bias of any one

classifier.

In contrast to these more traditional machine learning classifiers, a basic CNN-based system

specially tailored for this task is also evaluated. The architecture and training of this network

draw inspiration from the work of Grill and Schlüter [67]. This CNN utilises mel-frequency

spectrograms as the input feature. The construction of the mel-frequency spectrogram is

guided by the same parameters as specified in [67]. This results in a Time-Frequency

representation composed of 80 frames and 80 mel filters, effectively rendering the

spectrogram as a feature matrix of dimensions R80×80.

To assess classifier performance, an 80/20 split of the dataset is performed, creating training

and test sets. Classifier hyperparameters and decision thresholds undergo tuning via grid

search techniques five-fold cross-validation on the training set. Threshold adjustments for the

Logistic Classifier were made in increments of 0.01 and through tuning, was decreased to

0.45. Decision thresholds for the SVM and Random Forest classifier were not tuned and kept

fixed at 0.5. It is acknowledged that fine-tuning the thresholds of these classifiers could have

potentially enhanced the performance of both methods. Class balance is maintained with

66

Classifier Hyperparameter Value

Logistic Classifier Threshold 0.45
Solver LBFGS

SVM Kernel RBF
Regularisation Param. 1.0
Gamma 0.5

Random Forest Criterion KL Divergence
Max. Depth 8
Min. Samples 8
Features per Node 4
N. Trees 500

Feature Hyperparameter Value

AM Features Min. Modulation Freq. [Hz] 1
Max. Modulation Freq. [Hz] 10
Prominence Cutoff 3
Depth Threshold 0.01

Pitch Features Window Length [s] 0.02
Window Overlap [s] 0.01
Threshold 0.3

Spect. Features Window Length [s] 0.02
Window Overlap [s] 0.01

Table 3.1: Final hyperparameter values for Logistic, SVM and Random Forest classifiers. These
were determined using a grid search over the relevant parameters. Below are the parameters
used in the feature extraction of amplitude modulation, pitch and spectral features.

Chapter 3. Low Resource Bird Activity Detection with AMPS 67

Classifier Acc. F1-Score Prec. Recall

Logistic Classifier (θ = 0.45) 0.538 0.611 0.462 0.900
SVM 0.704 0.574 0.685 0.493
Random Forest 0.721 0.604 0.706 0.527
Stacking Classifier 0.713 0.594 0.693 0.520

Table 3.2: Bird Audio Detection with AMPS features, evaluated using a Logistic Classifier,
Support Vector Machines, Random Forests and a Stacking Classifier. Best results for each
metric are marked in bold.

approximately 40% positive instances and 60% negative instances (see Section 3.2.1), both

in the dataset split and within each fold used for cross-validation. In Table 3.1, a detailed

breakdown of the hyperparameters for each classifier is provided. These hyperparameters are

optimised to maximise the F1-Score of models, although other metrics are taken into

consideration later in Section 3.3. Reported results are based on the performance of each

model on the test set.

3.3 Results and Discussion

Table 3.2 reports the performance of the Random Forest, SVM and the baseline Logistic

Classifier. In this work, F1-Score is prioritised, as both precision and recall are valued. To

this end, values for precision, recall and F1-Score are reported, in addition to model accuracy.

The Logistic Classifier achieves the highest F1-Score (0.611) when using a threshold

parameter of θ = 0.45. However, it exhibits poor accuracy (0.538) and precision (0.462)

rendering it unsuitable for this binary classification task. The Logistic Classifier demonstrates

a strong bias toward the positive ‘bird present’ class, leading to numerous false positives in

its classification output. The SVM exhibits a lower F1-Score (0.574), but performs

significantly better in terms of accuracy (0.704) and precision (0.574). However, it suffers

from poor recall (0.493).

The Random Forest emerges as the top-performing classifier overall, with the highest

accuracy (0.721), precision (0.706) and only marginal degradation in F1-Score when

compared with the Logistic Classifier (0.604 for the Random Forest vs. 0.611 for the Logistic

68

Class F1-Score Precision Recall

Bird Absent 0.785 0.727 0.852
Bird Present 0.604 0.706 0.527

Weighted Average 0.712 0.719 0.721

Table 3.3: Random forest classification using AMPS features, broken down by the two classes
in the activity detection task: Bird Absent and Bird Present.

Feature Set Accuracy F1-Score Precision Recall

MFCCs 0.691 0.561 0.655 0.491
CNN 0.674 0.643 0.677 0.612
AMPS 0.721 0.604 0.706 0.527

Table 3.4: Comparison of the AMPS feature set to MFCCs when using Random Forests, and
to the pruned and quantised CNN model using mel-spectrograms. Best results for each metric
are marked in bold.

Classifier). Nevertheless, the Random Forest also suffers from poor recall (0.527). The

stacking classifier delivers respectable performance relative to the individual classifiers but

does not surpass the Random Forest.

Of the evaluated classifiers, Random Forests yield the best overall performance with the

AMPS feature set. Furthermore, Table 3.3 shows class-specific metrics for the Random

Forest with AMPS features. Given the dataset’s slight imbalance towards the negative class,

these results allow for a more thorough analysis of the classifier’s performance for each class.

The higher scores for the ‘Bird Absent’ class align with expectations due to the larger

number of training examples for this class. However, the scores for the ‘Bird Present’ class

and the overall metric averages, show the Random Forest classifier’s capability to distinguish

between the two classes.

In instances the classifier incorrectly labelled a window as ‘Bird Absent’, the audio typically

contained ‘unvoiced’ calls, characterised by little harmonic content or had significant

amounts of noise, attributed to factors such as wind, insects, or human activity. This issue of

noise affecting features is a recurring theme in bird audio and bioacoustics more generally,

and is discussed in more detail in Chapter 5.

At the time this work was carried out, prevailing state-of-the-art methods involved the use of

Chapter 3. Low Resource Bird Activity Detection with AMPS 69

Classifier No. of Ops

Random Forest 16k CMPs
CNN 187k FLOPs

Table 3.5: Number of operations for pruned and quantised CNN versus Random Forest system.

Mel-Frequency Cepstral Coefficients (MFCC) features or employing CNNs with spectrograms

as input. Consequently, Table 3.4 presents a comparison of the Random Forest classifier’s

performance when using the AMPS feature set versus MFCCs as input. Specifically, the first

13 MFCCs were used, with the algorithm outlined in [171]. Additional information regarding

MFCCs can also be found in Section 5.1.1. The AMPS features outperform MFCCs on this

task, across all metrics. MFCCs are susceptible to corruption from additive noise, which is

prevalent in remote field recordings.

The CNN has a higher F1-Score, but the performance is not dramatically higher, as might

initially be anticipated. A closer examination of the CNN’s predictions reveals that the CNN

performs better on the ’unvoiced’ vocalisations and signals containing in-band noise. In

contrast, the AMPS features, when coupled with Random Forest classification, demonstrate

better performance on fainter, far-field signals which are uncorrupted by noise. Both systems

encounter difficulties on recordings with very poor SNR.

The computational cost of each model is considered in Table 3.5. Measurement of CNN

complexity in terms of floating point operations required is in line with the work of Tan et al.

in [190]. Additionally, for edge computing applications, the model undergoes pruning and

quantisation, achieved through TensorFlow’s built-in pruning, quantisation and optimisation

functions. Random forests’ complexity is measured by the number of comparisons conducted

during classification, employing 500 trees, a maximum tree depth of eight, and four features

per node. This results in a worst-case scenario of 16k comparisons, in contrast to 187k

FLOPs for the pruned CNN-based approach.

The difference in efficiency between these two operations (CMP vs various other

floating-point operations) is contingent on the processor architecture. However, a MAC

Operation will be greater than, or equal to, a CMP operation in terms of machine cycles.

70

Therefore, the model is at least 10 times less expensive computationally. Thus, overall this

approach offers a huge computational saving, with a limited sacrifice in performance.

3.4 Moving towards Few-Shot Learning

This chapter introduced an approach to species-agnostic bird activity detection, using

low-resource classifiers, in conjunction with the AMPS feature set. It also outlines a method

of calculating AM-based features, to complement the features drawn from pitch data and

spectral representations. The algorithms used are well within the capabilities of embedded

devices, delivering performance that is only slightly below that of a small CNN but at a

fraction of the computational expense. This approach demonstrates promise as an initial

filtering step, aiding ornithologists in remotely monitoring bird populations, and reduces the

amount of data to be stored and processed off-site.

This research was conducted at the start of this PhD. At the time, low-resource activity

detection capable of running directly on ARUs held significant potential. It continues to be

an attractive area of study, as developing systems capable of autonomous operation offers

many advantages. However, as this work was concluding, few-shot learning for bioacoustics

began to emerge as a cutting-edge technology.

Few-shot learning is particularly appealing for bioacoustics due to the limited availability of

large, fully annotated datasets and its capacity for test-time adaptation and generalisation.

Some, though not all, few-shot learning frameworks also offer the potential for computational

efficiency, providing an additional advantage. This approach is consistent with the guiding

principle in this thesis of developing low-resource systems, in this case applicable to both

data and processing power. Moreover, few-shot learning enables the use of neural

architectures, with the hope of achieving higher performance.

As a result, the focus of this PhD research shifted toward the exploration of few-shot

learning, which is detailed in Chapter 4. This work on few-shot learning further underscored

the significance of feature representation and the impact of noise and dynamic range on

input features. These insights serve as the foundation for the subsequent chapters on

learnable frontends, discussed in Chapters 5 and 6.

Chapter 4

Bioacoustic Event Detection with

Prototypical Networks

The emergence of powerful computing devices, large labelled datasets and advanced

architectures have made deep learning highly successful in various tasks. This is also true in

the realm of bioacoustics [127, 184], where the flexibility of deep learning can be applied to

many tasks including activity detection and species identification. However, traditional

supervised learning techniques rely on large amounts of labelled data to attain high

performance, and many techniques do not generalise from few examples. FSL is a paradigm

which aims to learn from a limited number of supervised examples [207].

This thesis chapter is organised as follows: First, Prototypical Networks [177] are explained

in Section 4.1 and details provided on their training and operation in FSL scenarios. This will

be followed by an overview of the DCASE2021 Few-Shot Bioacoustic Sound Event Detection

Challenge [125] in Section 4.2, which was entered into by the author of this thesis using a

protonet-based entry. This section also includes details of the submitted system, which

ranked 5th overall. The top performing systems are also discussed briefly with reference to

the submitted system. The results presented until this point were published in [2]. Further

analysis of the submitted system and attempts to improve performance are discussed in

Section 4.3.

71

72

4.1 Few-Shot Learning and Prototypical Networks

Section 2.3 provides an overview of FSL including some approaches to classification in a

few-shot setting. These approaches aim to generalise to new classes not present in the

original training set, given only a few examples of each new class. The challenge faced by

these approaches is the risk of overfitting to the new data given so few examples, hindering

their ability to generalise to other samples of the same class during inference.

Among the various proposed methods, Protoypical Networks (or protonets) were introduced

by Snell et al. [177] in 2017 to address this fundamental issue of overfitting. These networks

incorporate a simple inductive bias, similar to that found in k-nearest neighbours

classification. This bias is based upon the concept of learning an embedding space, where

points belonging to a particular class cluster around a prototype representation of that class.

As discussed in Section 2.3.2, protonets have found widespread usage in audio

applications [147, 172, 209], outperforming other FSL methods. Protonets stand apart from

other methods due to their straightforward, intuitive mechanisms and ease of training, which

sets them apart from transductive methods which require additional test-time adaptation.

Furthermore, protonets also have no restrictions on model size or architecture, which allows

for low-complexity architectures to be employed. Additionally, protonets employ a

meta-learning approach called episodic training [203]. This technique simulates the test time

scenario by exposing the network to a limited number of examples, promoting efficient

learning from few data while also mitigating the risk of overfitting by presenting the model

with a diverse range of tasks.

The combination of the straightforward inductive bias, intuitive training strategy, efficiency,

and the absence of restrictions on model architecture have contributed to the appeal of

protonets as a promising approach for FSL with audio. These qualities have motivated the

use of protonets as the method of choice for FSL tasks in this thesis.

In this section, a detailed explanation of how protonets operate is provided in Section 4.1.1.

Furthermore, the training process, which encompasses episodic training and the loss function,

is discussed in Sections 4.1.2 and 4.1.3.

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 73

4.1.1 Protonets

Prototypical Networks, as opposed to being a specific model architecture, serve as a

framework designed specifically for FSL tasks. In a few-shot classification scenario, a small

support set (denoted as S) consisting of N labelled examples per class is provided, and the

objective is to classify the elements of the query set Q. To explain further, let Sk denote the

subset of examples belonging to class k. Protonets utilise a non-linear mapping via an

embedding function fθ, where the feature vector x ∈ RD is mapped to a M -dimensional

vector, i.e. fθ : RD → RM , where θ are the learnable parameters of the network. Typically,

the model architecture of fθ is a convolutional encoder.

ck =
1

|Sk|
∑

Xi∈Sk

fθ(Xi) (4.1)

p(y = k|X) =
exp(−d(fθ(X), ck))∑
k′ exp(−d(fθ(X), ck′))

(4.2)

The prototype representation ck of a class k is constructed from its support set Sk and

represents the mean vector of the support embeddings, as defined in Equation 4.1. To

determine the probability distribution of a query point X belonging to class k, the distances

from the embedded query point to each class prototype are computed. This computation

involves utilising some distance function d(·, ·) and applying the softmax operation over the

distances, as described in Equation 4.2. An illustration of the construction of prototypes

from elements of the support set and classification of query points, as shown by the decision

boundaries and shaded regions in the figure, can be seen in Figure 4.1. This figure presents a

scenario involving three classes, where the learned embedding function effectively clusters

data points of the same class together while maintaining separation from other classes.

Although any distance function may be chosen for d(·, ·), there are strong arguments for

choosing Bregman divergences [18, 28]. Let Φ : Ω → R be a continuously differentiable,

strictly convex function defined on the convex set Ω, the Bregman divergence for the

function Φ for x, y ∈ Ω is defined by Equation 4.3. Bregman divergences are not true

metrics, although they satisfy many properties of metrics such as non-negativity and a

74

Figure 4.1: Prototypical Networks in a FSL scenario with a three class problem. It is important
to note that the axes, labelled as ‘Axis 1’ and ‘Axis 2’, are arbitrary and do not hold specific or
meaningful units. This simplified representation is used for illustrative purposes only. Proto-
types for each class, denoted by a white ‘X’, are computed as the mean of embedded support
points for each class. As query points are classified based on distance to class prototypes, the
decision boundaries of each class are also shown.

unique zero (i.e. the divergence is only equal to zero when x = y) [9]. The mean or class

prototype of a set of points, specifically the support points of a class, is the point that

minimises the sum of the Bregman divergences between itself and the other points in the

set [8]. Essentially, this mean point minimises the sum of dissimilarities from the other points

based on the chosen convex function Φ.

DΦ(x,y) = Φ(x)− Φ(y)− ⟨x− y,∇Φ(y)⟩ (4.3)

Consequently, the mean point takes on the role of the prototypical point, serving as the

reference point for classifying query instances as belonging to that class. Several Bregman

divergences exist, among them the Squared Error (L2 loss) and the Kullback-Leibler

Divergence. The original implementation of protonets utilises the squared Euclidean distance,

the simplest and most widely used of the Bregman divergences.

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 75

The squared Euclidean distance can be shown to be a Bregman divergence by the following

proof. First, it must be acknowledged that the squared Euclidean norm corresponds to the

dot product of a vector x with itself. Subsequently, the dot product of x with itself is

equivalent to the inner product of x with itself, as shown in Equation 4.4.

∥x∥2 = x · x = ⟨x,x⟩ (4.4)

Because the squared Euclidean norm is both differentiable and strictly convex, it is a suitable

candidate for the function Φ. From the definition of a Bregman divergence, we require three

terms: Φ(x), Φ(y) and ∇Φ(y). Expressions for Φ(x) and Φ(y) are provided in

Equations 4.5 and 4.6, these are both the inner product of the relevant vector with itself.

Additionally, the gradient of Φ(y) is determined to be 2y, as shown in Equation 4.7.

Let, Φ(x) = ⟨x,x⟩ (4.5)

Φ(y) = ⟨y,y⟩ (4.6)

∇Φ(y) =
d

dy
⟨y,y⟩

= ⟨1,y⟩+ ⟨y,1⟩

= ⟨1,y⟩+ ⟨1,y⟩ (Symmetry)

= ⟨2,y⟩ (Linearity in first argument)

= 2y (4.7)

Substituting the three terms 4.5, 4.6 and 4.7 into Equation 4.3 yields the equation seen in

Equation 4.8. This can be expressed equivalently as the inner product of the vector x− y

with itself (Equation 4.9), which, as defined in Equation 4.4 is the squared Euclidean norm of

x− y. Equivalently, this is the squared Euclidean distance between points x and y.

76

dΦ(x,y) = ⟨x,x⟩ − ⟨y,y⟩ − ⟨x− y, 2y⟩ (4.8)

=

n∑
i=1

x2i −
n∑
i=1

y2i −
n∑
i=1

(xi − yi)(2yi)

=

n∑
i=1

(x2i − 2xiyi + y2i)

=

n∑
i=1

(xi − yi)(xi − yi)

= ⟨x− y,x− y⟩ = ∥x− y∥2 (4.9)

Interpreting the M -dimensional vector, which is the output of the embedding function fθ, as

a Euclidean vector holds both intuitive geometrical meaning as well as mathematical

meaning. The employment of Bregman divergences, along with the selection of the mean of

support points as the class prototype, minimises dissimilarity among support points, resulting

in a suitable ‘representative’ point in RM space. Employing the squared Euclidean distance

allows calculation of the ‘closest’ prototype to a query point, which implies that the query

point is most likely associated with that specific class.

4.1.2 Episodic Training

Episodic training, proposed by Vinyals et al. in 2016 [203], is a meta-learning training

strategy specifically designed for FSL. The core principle of episodic training is to ensure that

the training conditions closely resemble the test conditions in FSL. At test time, the model

must adapt to new classes based on a small number of labelled examples for those classes.

To emulate these test conditions during training time, the training process is organised into

episodes, where each step represents one such episode. Instead of generating regular data

batches, these episodes simulate the test time scenario.

Each episode is formulated as a N -shot K-way task. The value of K can be smaller than the

number of unique labels, which offers certain advantages such as reduced learning

complexity, faster training time and potentially increased generalisation. However, smaller

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 77

values of K might result in reduced class diversity, less separation between classes and

reduced task complexity, potentially leading to poor discrimination during testing and

inference. The number of shots N , should be the same across both training and test

time [177], as this mimics the test time scenario.

During episodic training, the training data labels are first sampled uniformly, with K classes

selected, forming a subset of labels L. Each batch constructed for episodic training consists

of a support set S and a query set Q, i.e BE = {S,Q}, from the labelled examples, which

mirrors the setup during test time. As previously described in Section 4.1.1, Sk and Qk

represent the subsets containing the examples belonging to class k ∈ L in the support set and

query set, respectively. During training, both sets contain labelled feature vectors. As both S

and Q contain labelled examples, a subset of each for class k can be represented as follows:

Sk = {(xsk,1, ysk,1), ..., (xsk,N , ysk,N)} where N is the number of examples in the support set

(i.e. ‘shots’) and Qk = {(xqk,1, y
q
k,1), ..., (x

q
k,M , y

q
k,M)} where M is the number of examples in

the query set for class k, and x denotes the feature vector.

By structuring batches as episodes/tasks, the model ‘learns to learn’ from a few labelled

examples, aiming to circumvent the overfitting issue encountered in other fine-tuning or

few-shot approaches by emulating the test time scenario. Each model update is based on the

performance of the model on a specific episode/task. The support set is employed to create

class prototypes, given the model’s current state, and the model parameters are updated

based on the classification loss between the prototypes and the query instances.

4.1.3 Loss Function

Given the distribution over classes for a query point, formulated in Equation 4.2 and the

episodic batch sampling strategy, learning in a prototypical network proceeds by minimising

the negative log-probability that a query point x belongs to the true class k. This loss

function is expressed formally in Equation 4.10.

L(θ) = − log
(
pθ(y = k|x)

)
(4.10)

78

Each batch is randomly constructed, so each training episode in an epoch should be unique.

Episodes are constructed as described above in Section 4.1.2. A subset of examples in each

episode serve to construct the class prototypes, and the loss is calculated for all other points

in the episode. The overall loss for an episode is the mean of each query point’s loss.

As the probability distribution over classes is based on a softmax over distances to class

prototypes, this loss function encourages the network to move query points closer to their

correct class prototype. However it has no direct influence on producing tight clusters or

increasing distance between prototypes.

4.2 DCASE2021 Few-Shot Bioacoustic Sound Event Detection

Challenge

FSL holds great promise as a framework for bioacoustic sound event detection especially in

the context of monitoring animal populations using bioacoustics. These monitoring projects

often generate extensive, lengthy acoustic data, wherein large portions of the recordings may

not contain the events of interest. Manually labelling and segmenting such datasets can be

extremely time-consuming, diverting valuable resources away from analysing the relevant

data. In contrast, FSL enables users to provide a limited number of exemplar examples of the

target event (perhaps extracted from from the beginning of the recording) to the model,

which can then identify similar events’ onset and offset boundaries. Moreover, the key

advantage of FSL lies in its ability to perform well on classes and data not present during

training time, either through model weight adaptation or meta-learning. This property is

desirable in many applications, including bioacoustics.

As part of their efforts to advance FSL in audio applications, the “Detection and

Classification of Acoustic Scenes and Events“ (DCASE) community introduced the Few-Shot

Bioacoustic Event Detection Challenge in 2021 [125]. This challenge has run each year since

2021, as the field of FSL in audio applications advances further. The challenge marks the

starting point into this work’s investigation into FSL for bioacoustics.

This section provides an overview of the task in Section 4.2.1, followed by a description of

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 79

the challenge datasets in Section 4.2.2. Additionally, it presents implementation details of

the submitted system in Section 4.2.3 and details of experiments conducted for the 2021

challenge in Section 4.2.4. Subsequently, results and discussion comparing the submitted

entry to other challenge entrants, can be found in Section 4.2.5.

4.2.1 Challenge Task

The challenge task is a sound event detection task. An audio recording containing a single

class of interest, either a mammal or bird vocalisation, and the onset and offset times for

each of the first five sound events in that recording are provided. Using those first five sound

events, the task is to identify the onset and offset times for all other sound events belonging

to that class within the recording. This can be achieved by classifying slices of the recording

as either containing activity related to the class of interest or not, and then inferring the

onset and offset times of activity based on these classifications. For more detailed

information on this method, please refer to Section 4.2.3.

It is important to note the usage of external models and datasets required prior approval of

the task coordinators. Certain external datasets, such as AudioSet [60] and ESC50 [144], and

models like ECAPA-TDNN [43], were approved from the beginning of the challenge. The

task coordinators also provide two baseline systems for entrants to compare with when

developing their own entries. These two baseline systems were:

• Template Matching - This approach utilises a spectrogram based cross-correlation

technique with normalised cross-correlation to identify instances of templates in a

spectrogram. These templates used in this method are derived from the support set.

Cross-correlation is computed along the time-axis for each template in the support set.

Subsequently, peak-picking is performed to determine the centre of a matched event,

and its length based on the template’s length.

• Prototypical Network - This system represents a more modern, deep learning based

approach to bioacoustics analysis. The system is based on the work of Snell et

al. [177], which is detailed in Section 4.1 above. The submitted system is also a

protonet based system. Additional details of this system can be found in Section 4.2.3.

80

Regarding the testing scenario, it is a binary classification task requiring generalisation to

classes unseen during training time using a FSL framework. This binary classification task

entails two labels: positive, indicating the detection of the event of interest, and negative,

indicating anything else. During training, the model is trained in a multiclass fashion. While

during the testing and validation phases, the model serves as a binary classifier to make the

final predictions on activity detection.

4.2.2 Challenge Data

The challenge organisers provide a development set1 for the task, which is split into training

and validation sets. The training set consists of four sets of data from different sources, and

the validation set consists of two sets of data from different sources. This section provides an

overview of the training, validation and evaluation sets. There is no overlap between the

training set and validation set classes. The evaluation dataset used to rank the performance

of entries was released after the completion of the challenge2.

The challenge dataset comprises a diverse range of bioacoustic audio, encompassing not only

bird sounds but also other types of bioacoustic data. While the core focus of this PhD

research revolves around tasks involving bird audio, the decision to participate in this

challenge, which centres on FSL in bioacoustics, was made due to its relevance to the

specific domain of automated bird monitoring through vocalisations.

Training Data

The training set is comprised of four sources, these are also summarised in Table 4.1:

• BV - A dataset containing five audio files containing bird vocalisations, recorded from

four locations in the state of New York. Each recording is two hours long and are all

recorded using the same hardware, the Cornell Lab of Ornithology’s Recording and

Observing Bird Identification Node [163]. The dataset has been annotated for the

presence of flight calls from 11 different species of bird. The average call duration is

approximately 150 ms with estimated fundamental frequencies between 2 kHz and 10

1https://doi.org/10.5281/zenodo.4543504
2https://doi.org/10.5281/zenodo.4864755

https://doi.org/10.5281/zenodo.4543504
https://doi.org/10.5281/zenodo.4864755

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 81

Overall Number of Audio Recordings 11
Total Duration 14h20m
Total Classes 19
Total Positive Events 4686

BV Number of Audio Recordings 5
Total Duration 10h
Total Classes 11
Total Positive Events 4686
Sampling Rate 24 kHz

HT Number of Audio Recordings 3
Total Duration 3h
Total Classes 3
Total Positive Events 435
Sampling Rate 6 kHz

JD Number of Audio Recordings 1
Total Duration 10m
Total Classes 1
Total Positive Events 355
Sampling Rate 22.05 kHz

MT Number of Audio Recordings 2
Total Duration 1hr10m
Total Classes 4
Total Positive Events 1234
Sampling Rate 8 kHz

Table 4.1: Details of the DCASE2021 Few-Shot Learning Task training dataset. This table
includes overall statistics about the training dataset, as well as details on the subsets which
comprise the training set. Positive event means an event matching one of the labels.

kHz. There are 2662 labelled positive events in the dataset and the audio was recorded

at a sampling rate of 24 kHz.

• HT - A dataset of hyena vocalisations recorded in Kenya as part of a project on

multi-species communication and behaviour. The dataset contains three audio

recordings and has a duration of 3 hours. The vocalisations were recorded using

custom GPS/acoustic collars deployed on female hyenas. This dataset contains 3

classes referring to different vocalisation types and there are 435 positive events in the

dataset. The audio in this dataset was recorded at a sampling rate of 6 kHz.

• JD - A single recording of one male jackdaw during breeding season, recorded in

82

Seewiesen, Germany. This recording is 10 minutes in duration and recorded using a

small ‘backpack’. The dataset has one class, the presence/absence of the jackdaw

vocalising and there are 355 positive events. This audio was recorded with a sampling

rate of 22.05 kHz.

• MT - A dataset of meerkat vocalisations recorded at the Kuruman River Reserve,

South Africa. This dataset contains two audio recordings with a total duration of 1

hour 10 minutes. This dataset comes from the same project as HT, mentioned above,

and made use of similar GPS/acoustic collars. The dataset contains 4 classes, also

referring to different vocalisation types and there are 1234 positive events in the

dataset. The audio in this dataset was recorded at a sampling rate of 8 kHz.

Training set annotations are multiclass. Each entry in the annotation file contains the audio

filename, the onset and offset times in seconds and positive (POS), negative (NEG) and

unknown (UNK) values for each class. UNK indicates uncertainty and for the purposes of

the challenge, are treated as the same as NEG.

Validation Data

The validation set is comprised of two sources and is summarised in Table 4.2:

• HV - This dataset is taken from the same project as HT in the training set. They are

recorded using the same equipment as HT and in the same location There is no

overlap between the vocalisations in the two datasets. The audio in this dataset is also

recorded at a sampling rate of 6 kHz.

• PB - A dataset of six, 30 minute bird vocalisations recorded along the Polish Baltic

Sea coast. Recordings were made in 2016, 2017 and 2018 during migration season and

were all recorded using the same hardware. Each recording contains only one target

class; three recordings target song thrush calls, and the other three recordings target

blackbird calls. The audio in this dataset is recorded at a sampling rate of 44.1 kHz.

Validation set annotations are binary, however, the class distribution is heavily imbalanced

and most segments of audio belong to the negative class. Each entry in the annotation file

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 83

Overall Number of Audio Recordings 8
Total Duration 5h
Total Classes 2 (Binary)
Total Positive Events 310

HV Number of Audio Recordings 2
Total Duration 2h
Total Positive Events 50
Sampling Rate 6 kHz

PB Number of Audio Recordings 6
Total Duration 3h
Total Positive Events 260
Sampling Rate 44.1 kHz

Table 4.2: Details of the DCASE2021 Few-Shot Learning Task validation dataset. This table
includes overall statistics about the dataset, as well as details on the subsets within the set.
Positive event means an event matching one of the labels.

contains the audio filename, the onset and offset times in seconds and positive (POS),

negative (NEG) and unknown (UNK) values for each class. UNK indicates uncertainty and

for the purposes of the challenge, are treated as the same as NEG. When constructing the

support set using validation or testing data, the first 5 positive events are used. As these are

audio events of varying duration, the first 5 positive events may result in a different amount

of support audio.

Evaluation Data

After the challenge deadline, details and ground truth labels for the evaluation dataset were

released by the challenge organisers. It comprises of three sources and is summarised in

Table 4.3:

• DC - A dataset of bird vocalisations produced during the dawn chorus. The

vocalisations are taken from the Dawn Chorus Project, a worldwide citizen science

project. In particular the vocalisations used in this dataset were recorded on Zoom H2

recorders, at three locations in southern Germany. The dataset contains 12 recordings

of varying length, and each recording contains one of three target species. There are

1192 positive events across all files. The audio in this dataset is recorded at a sampling

84

Overall Number of Audio Recordings 31
Total Duration 2h 20m
Total Classes 2 (Binary)
Total Positive Events 2302

DC Number of Audio Recordings 12
Total Duration 1h 41m
Total Positive Events 1192
Sampling Rate 44.1 kHz

ME Number of Audio Recordings 2
Total Duration 19m
Total Positive Events 73
Sampling Rate 48 kHz

ML Number of Audio Recordings 17
Total Duration 20m
Total Positive Events 1037
Sampling Rate 44.1 kHz

Table 4.3: Details of the DCASE2021 Few-Shot Learning Task evaluation dataset. This table
includes overall statistics about the dataset, as well as details on the subsets within the set.
Positive event means an event matching one of the labels.

rate of 44.1 kHz.

• ME - This dataset is taken from the same project as MT in the training set. It

contains meerkat vocalisations recorded at the Kuruman River Reserve in South Africa.

Unlike MT, the recordings in ME are of one meerkat followed using a directional

microphone at a distance of less than 1m. The dataset contains 2 recordings, with 73

positive events across the two files. They are also recorded at a sampling rate of 48

kHz, as opposed to the 8 kHz recordings present in MT.

• ML - A dataset of mammal and bird vocalisations curated from the Macaulay Library,

a digital archive maintained by the Cornell Lab of Ornithology. This dataset contains

17 recordings, each labelled for vocalisation activity from one species. The dataset

contains 14 mammals (not including hyena or meerkat) and 3 birds (not including

songbirds). Each recording contains only one target class. There are 1037 positive

events across the entire dataset. The audio in this dataset is recorded at a sampling

rate of 44.1 kHz.

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 85

4.2.3 Implementation

Data Preparation

In both the development and evaluation sets, all audio files undergo a series of preprocessing

steps. Firstly, they are resampled to 22050 Hz and normalised to −2 dBFS. Subsequently,

they are transformed into mel spectrograms. Considering the diverse range of species present

in the data, no band-pass filtering is applied to the audio signals before the transformation

into a TF representation. This decision was made to enable the network to generalise

effectively to new, unseen classes after training, as band-pass filtering could potentially

eliminate valuable information relevant to classification. The mel spectrogram transformation

is configured to use 128 mel bins, a FFT size of 1024 samples, and a hop of 256 samples,

which aligns with the configuration used in the challenge’s baseline systems.

Given the high noise content and varying dynamic range present in wildlife field recordings,

certain experiments utilise a fixed parameter PCEN [211] transformation. PCEN has been

proposed as a method of improving robustness to channel distortion in keyword spotting

tasks and is discussed in detail in Section 5.2.3, where various modern learnable frontends are

evaluated on a shared bioacoustics task. For the purposes of this chapter, the formulation of

PCEN is shown in Equation 4.11.

PCEN(t, f) =

(
E(t, f)

(M(t, f) + ϵ)α
+ δ

)r
− δr (4.11)

M(t, f) = (1− s)M(t− 1, f) + sE(t, f) (4.12)

PCEN’s input is a TF representation E(t, f) and it consists of two operations: Automatic

Gain Control (AGC) and Dynamic Range Compression (DRC). The smoothed spectrogram

M(t, f) (Equation 4.12, smoothing implemented through an IIR filter parameterised by s),

serves as an estimate of the background noise. AGC is performed through division of E(t, f)

by M(t, f) raised to the power of α, with an epsilon value to prevent division by zero. This

process emphasises changes relative to the recent spectral history along the temporal

86

axis [115]. The DRC is governed by the parameters (δ, r). While PCEN can be made

trainable, in these experiments, fixed values shared across all frequency bins are used. Similar

to the reasoning for not applying band-pass filtering, setting PCEN’s parameters to suit all

examples in the dataset proves challenging due to the dataset’s varied and multi-species

audio content. The fixed parameter values are based on the guidelines set out in [115].

PCEN is employed to reduce noise in the spectrogram and provide normalisation, gain

control and compression to the audio’s TF representation. Although PCEN does reduce the

noise present in the spectrogram, non-stationary sources of noise still pose an issue and may

affect the features.

Once the spectrogram has been calculated for an audio file, it is divided into segments, each

associated with the relevant class label. These segments are set to be 200 ms long, with a

hop of 50 ms. Considering these segment hyperparameters coupled with the spectrogram

hyperparameters, the input feature x to the protonet becomes a 2-dimensional TF

representation of 17 time frames and 128 frequency bins, i.e. x ∈ R17×128. In the following

experiments, the protonet systems are trained and tested using both log-mel spectrograms

and PCEN-mel spectrograms.

Data Augmentation

To enhance the model’s performance and create an embedding space capable of generalising

to loss of information, temporal and frequency shifts, as well as new unseen classes, various

data augmentation techniques are employed on the extracted spectrogram representations

utilised in system development. These data augmentations draw inspiration from the

methodologies presented by Park et al. [138] in SpecAugment and Mario Lasseck [98] in their

technical report on a previous DCASE bird audio detection challenge. These augmentations

are implemented using PyTorch’s Audio toolset, Torchaudio [215], which incorporates many

of the techniques specified in [138]. The following augmentations are applied to the

development data:

• Time stretching - A time stretch is applied to each spectrogram, resulting in either its

shortening or lengthening without any change in pitch info. This causes a warping

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 87

along the horizontal axis of the spectrogram based on a specified factor. For these

experiments, a stretching factor of 5% is chosen, leading to augmented spectrograms

at approximately 0.95x and 1.05x the playback speed of the original audio file.

• Time masking - Time masking is implemented by masking T consecutive time steps,

with all frequency information set to 0 within that interval. The starting time step and

interval are randomly chosen from a uniform distribution, following Torchaudio’s

implementation. This masking is applied to each 5s chunk of audio before

reconstructing it as one spectrogram during dataset construction.

• Frequency masking - Similar to time masking, frequency masking applies

augmentation along the vertical, or frequency axis of the spectrogram. It involves

random, uniform sampling to determine the frequency to begin masking from and the

number of consecutive frequency bins to mask. To increase the variability in the

augmented data, this augmentation is also applied in 5s chunks.

The data augmentation artificially increase the amount of data in the support set, effectively

creating additional ‘shots’ for the FSL problem. These augmentations also help the system

handle various variations present in the data and enable better classification performance in

the face of unseen classes and other challenges. By applying these data augmentation

techniques, the model’s ability to generalise to different scenarios and improve performance is

increased.

Model Architecture and Training

The architecture of the encoder, serving as the embedding function fθ, is a simple

convolutional architecture, illustrated in Table 4.4. This architecture closely resembles the

baseline protonet [125], employing convolutional blocks of 128 filters. However, it differs by

featuring a reduced network depth and additional pooling after the convolutional layers to

achieve the target number of dimensions in the output vector. This reduces model complexity

and adheres to the guiding principle of using low-resource classifiers throughout this thesis.

This architecture takes the input TF feature, X ∈ R17×128, and transforms it to a

128-dimensional vector, fθ : X → R128. Subsequently, this 128-dimensional vector is utilised

88

Encoder Architecture

Layer 1 ConvBlock128
Layer 2 ConvBlock128
Layer 3 ConvBlock128
Layer 4 Flatten/Reduce (128 dims)

ConvBlock128 Architecture

Sub-Layer 1 Conv2D(128 filters, kernel size = (3, 3))
Sub-Layer 2 BatchNorm
Sub-Layer 3 ReLU
Sub-Layer 4 MaxPool2D(pool size = (2, 2))

Table 4.4: Encoder architecture for the submitted prototypical network and ConvBlock archi-
tecture. The input to the network fθ is a TF-representation of a segment of audio X ∈ RT×F ,
which is transformed to a 128-dimensional vector, i.e. fθ : X → R128.

to determine p(y = k|X) using Equation 4.2, and consequently the classification of the

feature vector X.

Training of the prototypical network involves minimising the negative log-probability of the

vector belonging to its correct class. This is achieved using the SGD algorithm with an initial

learning rate of 0.01 and a momentum factor of 0.85. To improve the training process, the

learning rate is scheduled to halve when a plateau is reached, with a patience of 5 epochs

and a threshold of 0.01. Based on our experiments, this configuration provided a favourable

training environment. All models are trained for 150 epochs, although the best-performing

model achieved the minimum loss at epoch 126. Random Over-Sampling is employed to

address the issue of class imbalance during training, implemented using the Python imblearn

package [101]. This is necessary due to the significant skew in the class distribution of the

data.

Using the episodic batch sampling strategy discussed above in Section 4.1.2, the protonet is

trained as a 10-way 5-shot system with the number of shots fixed at 5 to mirror the test time

conditions faced by the network. The system is trained using K = 10 ways to facilitate

better generalisation, even though the inference time use case is binary classification. Using a

small K may result in an embedding function that does not generalise well. This aligns with

the findings of Wang et al. [210], who hypothesise that training a model in a binary

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 89

“one-vs-all” scenario hinders its ability to generalise to the ‘all’ scenario. To create each

episode, we randomly generate support and query sets from the available data. Prototypes

are computed from the support samples, and the loss is then computed based on the

classification of the query points, as calculated using Equation 4.10. The aim of this training

process is to optimise the prototypical network to effectively handle the FSL task and achieve

robust performance in the challenge.

Post-Processing and Model Evaluation

During the testing and validation phases, support samples are fed into the model and a

prototype representation is calculated. It is important to note that the spectrogram segments

have a duration of 200 ms with a hop of 50 ms. Given that the first five audio events form

the support set, it is worth noting that the support set may consist of more than five data

points. In the context of audio, the term ‘shots’ pertains to labelled events, each potentially

varying in duration. Consequently, this variability might lead to a scenario where more than

N spectrograms represent N events, as elaborated in Section 2.3.2. This raises a

consideration related to the “training conditions should match test conditions” aspect of

episodic training. Moreover, since the negative class encompasses all other audio content in

the recording, there is an abundance of support points for the negative class. Given that the

evaluation follows a “one-vs-all” binary classification scenario, restricting the number of

support samples for the negative class to 5 may not allow for the creation of a suitable class

prototype. In these experiments, 50 examples from the negative class’s support set are

chosen to calculate the negative class prototype. This is chosen as a compromise between

not having enough support points to represent the negative class, and using many more

points than exist in the support set.

Evaluation of the model involves calculating the probability of a query point belonging to the

positive class. As shown in Section 4.1.1 and Equation 4.2, this is accomplished through a

softmax operation on the distances between query points and class prototypes. The chosen

class corresponds to the one with the highest probability, indicating the likelihood of the

query point belonging to that specific class.

90

In the context of binary event detection, probability thresholding is applied. The probability

threshold is set at 0.5, though its value could be adjusted based on the application’s

requirements and the relative importance of recall versus precision.

For an audio recording, this classification process results in labeling each 200 ms segment as

either positive or negative. With a feature hop of 50 ms, each 50 ms audio interval is

designated as containing the class of interest or not. Since individual segments are classified

without temporal modeling, a median filtering procedure with a window length of 5 samples

is employed to mitigate the effect of abrupt transitions that might occur due to incorrect

segment classification.

To calculate onset and offset times from the frames, a 1D edge detection operation is applied

using the kernel defined in Equation 4.13. This kernel is convolved (as shown in Equation

4.14) with the classification results after the median filtering stage. The outcome of this

convolution determines the points where events begin (onset), indicated by a convolution

output of 1, and where they end (offset), marked by a convolution output of −1.

k[n] = [1,−1] (4.13)

(y ∗ k)[n] = y[n]− y[n− 1] (4.14)

By utilising the indices of these values and considering the feature hop size (50 ms), the

onset and offset times are calculated. Subsequently, a post-processing technique endorsed by

the challenge organisers in their deep learning baseline is employed to refine these onset and

offset times. Any positive instances shorter than 60% of the shortest positive labelled

instance are eliminated from the final results. The evaluation demonstrates that this

post-processing step reduces false positive events with little change in the amount of true

positives.

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 91

4.2.4 Experimental Results

Performance is evaluated on the validation data, provided in the development set released as

part of the challenge. To assess the FSL model, the challenge organisers provided evaluation

code3 which draws inspiration from the mir eval project [150]. This code calculates an

event-based, macro-averaged F1-score across all data sources, which is employed as the

evaluation metric. The F1-score, a measure of the model’s precision and recall trade-off, for

each audio file is calculated as the harmonic mean of precision and recall. The mean of these

individual F1-scores is then computed to obtain the macro-averaged F1-score reported. This

is achieved by calculating the Intersection over Union of the predicted event onset and offset

times with the provided ground truth predictions. Since predictions are generated following

the first five positive events, the evaluation process exclusively considers events occurring

after the offset of the fifth positive event. The evaluation code further generates confusion

matrices for each file and computes precision, recall, and the F1-score per file.

It is important to highlight that the distribution of positive and negative events within the

evaluation set is significantly skewed toward the negative class. The specific distribution

varies across audio files, but for context, in the DC data, positive events occur approximately

30% of the time, in the ME data, they occur approximately 1% of the time, and in the ML

data, they occur approximately 18% of the time.

Given the resemblance between the proposed system and the baseline, the challenge baseline

results were reproduced to facilitate comparison with the proposed system, using the code

provided by the challenge organisers. Despite the challenge description indicating a baseline

F1-score of 0.415, these results could not be replicated; the reproduced results attained a

maximum F1-score of 0.304. Results in this section are also reported using our system,

separately for log-mel spectrograms only, followed by the application of data augmentation,

and subsequently, data augmentation along with PCEN.

Table 4.5 presents the performance of each system on the validation dataset, reporting

F1-score, precision and recall across the entire dataset. From this we can see that the

3Evaluation metric code for the DCASE Few-Shot Bioacoustic Detection Challenge is available at https:
//github.com/c4dm/dcase-few-shot-bioacoustic/tree/main/evaluation_metrics

https://github.com/c4dm/dcase-few-shot-bioacoustic/tree/main/evaluation_metrics
https://github.com/c4dm/dcase-few-shot-bioacoustic/tree/main/evaluation_metrics

92

Model F1-Score Precision Recall

Baseline Reproduction 0.304 0.456 0.228
(A) Log-mel Spectrograms 0.166 0.108 0.355
(B) Data Augmentation 0.205 0.143 0.360
(C) Data Aug. + PCEN 0.262 0.200 0.381

Table 4.5: Results of the baseline protonet from the challenge organisers, our protonet system
(A), our system plus data augmentation (B), and our system plus data augmentation and
PCEN features (C) experiments on the validation dataset. Best results in bold.

baseline reproduction outperforms our proposed systems on this data.

Comparing the baseline system to our proposed systems as a group, it becomes apparent

that the baseline system prioritises precision over recall. The baseline system demonstrates

superior precision but inferior recall compared to any of our proposed systems. Whenever the

baseline system predicts a positive event, it tends to be more accurate than the positive

event predictions from the other systems. However, due to the baseline reproduction’s lower

recall, it misses more of the positive events and has a higher count of false negatives

compared to our proposed systems.

It can also be seen in Table 4.5 when comparing systems A and B that the introduction of

data augmentation to our system during training leads to an enhancement in the F1-score.

This enhancement primarily stems from improved precision in System B (with a gain of 0.035

over System A), while the increase in recall remains marginal (improved by 0.005 over

System A). Introducing data augmentation to the feature extraction pipeline allows the

model to more accurately identify positive events, reducing the occurrence of false positives

in the results while maintaining the same level of true positive event detection. However, no

further studies have been conducted to identify the specific data augmentation methods

responsible for the observed increase in performance. Findings presented in [138] suggest

that all three augmentation methods have an impact, with time/frequency masking playing

the most prominent role in performance improvement.

The results of adding PCEN to the feature extraction stage are observed in System C. Here,

a noticeable increase in the F1-score is evident across both subsets of the validation dataset.

The improvement is primarily seen in the precision of the system, an improvement of 0.057 in

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 93

Data Subset F1-Score Precision Recall

PB 0.222 0.201 0.249
HV 0.320 0.199 0.825

Table 4.6: Breakdown of results using Data Augmentation and PCEN by validation data
subset.

System C over System B, which is an overall improvement of 0.092 over System A.

Furthermore, a more substantial improvement in recall is noted, with a gain of 0.021 over

System B and a gain of 0.026 over System A. The application of PCEN outperforms

traditional logarithmic compression, underlining the superiority of PCEN in handling noisy

data, as suggested in [115]. Notably, the PCEN implementation used in these experiments

involved fixed parameters rather than fully learnable per-channel parameters. Further

investigation using learnable PCEN will be seen in Chapter 5.

System C is the best performing of the proposed systems and predictions from this model

were used as the entry to the challenge. In comparison to the baseline reproduction, there

were significant improvements to recall, with the system capable of identifying 38% of

positive events within the validation set. However, this comes at the expense of precision, as

a number of false positives are observed in the predicted output. The integration of PCEN

features over traditional log-mel spectrograms proved pivotal to this improvement, lending

credence to claims in [117] that PCEN can significantly outperform log-mel scaling when

used on noisy data, with no significant increase in computational complexity. Table 4.6

provides a breakdown of system C’s performance by subset in the validation set. On both

datasets, recall is higher than precision, with recall on the HV dataset being much higher at

0.825. This could be attributed to the HV dataset containing less events less often (45

positive events to classify, 2 hour duration) than the PB dataset (255 positive events to

classify, 3 hour duration).

From the overall results in Table 4.5 and the results by subset in Table 4.6, it is apparent

that the model is prone to false positives while still permitting a considerable number of false

negatives, particularly evident in the PB dataset. The model is a poor discriminator between

the classes, and although an embedding space has been learned according to the training

94

procedure, it is a poor performer on this task. Despite the advancements introduced within

the feature extraction pipeline, the system entered into the challenge did not surpass the

baseline (as stated in either the challenge description or the reproduced results) on the

validation dataset. In the following section (Section 4.2.5), the results of the challenge will

be discussed alongside a brief overview of some other entries to the challenge, as well as

comparing the performance and model complexity of those entries relative to this entry.

4.2.5 Challenge Results

The 2021 edition of the DCASE Few-Shot Bioacoustic Event Detection Challenge had 25

entries, including the baseline systems, from 8 teams, including the challenge organisers

themselves. The evaluation process utilised the same event-based, macro-averaged F1-score

employed during the validation phase. The entry detailed above achieved an F1-score of

0.350, with a confidence interval of ±0.020. This placed the entry 5th among 26 entries in

the challenge, and in the team ranking was placed 3rd. The overall rankings of the challenge

can be found in Table 4.7, this table contains both baselines proposed by the challenge

organisers. It is worth highlighting the gap in performance between submissions below the

fourth place position. Also of interest is that the F1-score on the validation set does not

precisely mirror the overall ranking exhibited by the evaluation set. The Johannsmeier [82]

system excelled on the validation set, yet it ranked second-to-last in the overall standings.

Conversely, the template matching baseline performed poorly on the validation set but

exhibited a comparable overall performance to our submission on the evaluation set, and the

protonet baseline performs worse despite an F1-score of 0.415 on the validation set. Within

Section 4.2.4, our system was unable to outperform the prototypical network on the

validation set (where the baseline reproduction achieved an F1-score of 0.304, whereas our

protonet system attained an F1-score of 0.262). However, it is important to note that this

difference in performance is not accurately reflected in the final system rankings, where our

system surpasses both the protonet baseline and the template matching baseline.

While the assessment results only considered the F1-score on the evaluation dataset, the

challenge organisers aimed to gather insights regarding architecture types, employed FSL

frameworks, and model complexity. Among the submissions, our system was the least

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 95

Rank Team Eval. F1 Val. F1 DC F1 ME F1 ML F1

1 Zou [214] 0.384± 0.022 0.553 0.206 0.680 0.673
2 Tang [192] 0.383± 0.022 0.514 0.256 0.615 0.433
3 Anderson (Ours) [2] 0.350± 0.020 0.262 0.199 0.566 0.568
4 Template Match Baseline [125] 0.348± 0.022 0.020 0.322 0.471 0.295
5 Cheng [33] 0.238± 0.019 0.463 0.106 0.535 0.788
6 Protonet Baseline [125] 0.201± 0.019 0.415 0.085 0.727 0.557
7 Zhang [220] 0.168± 0.013 0.544 0.081 0.451 0.299
8 Johannsmeier [82] 0.152± 0.015 0.586 0.065 0.643 0.358
9 Bielecki [14] 0.084± 0.013 0.518 0.031 0.563 0.514

Table 4.7: DCASE 2021 Few-Shot Bioacoustic Event Detection Challenge team rankings, as
reported by the challenge organisers [125]. This table contains each team’s best submission
and includes the results on the challenge evaluation set, the validation set used in training,
and the results per data source in the evaluation set (DC: Dawn Chorus, ME: Meerkat, ML:
Macaulay Library). Best Results for each in bold.

complex out of all submissions, comprising a model with 132k parameters and a

straightforward prediction mechanism relying on squared Euclidean distance (typical in

Prototypical Networks). The system closest in complexity with better performance is the

submission by Tang et al. [192], which leveraged a ResNet [71] based system combined with

Embedding Propagation [159]. Given that the submissions by Yang et al. [214] and Tang et

al. [192] outperformed the implementation outlined in this chapter and significantly

outperformed the remaining entries, a short discussion about these submissions in relation to

ours is appropriate.

The top submission from Yang et al. [214] (referred to as ‘Zou’ in Table 4.7) employs a

transductive inference-based approach to FSL, contrasting with the meta-learning strategy

used by protonets. This submission achieved an F1-score of 0.384. The authors drew

inspiration from TIM, proposed by Boudiaf et al. [17] in 2020. TIM, a modular framework

suitable for use with various architectures, initially trains the model without meta-learning

techniques to establish a base feature extractor, denoted as fθ. For each few-shot task, a

new classifier is trained, and the query set elements are assigned labels according to the

current state of the model (creating pseudo-labels for the query set). Subsequently, the

model is refined using both the labelled support set and the pseudo-labelled query set. This

refinement involves cross-entropy loss with labelled support samples and maximising mutual

information between query samples and their pseudo-labels for the query set. Both [17, 214]

96

have found that keeping the feature extractor parameters fixed yields optimal performance.

Yang et al. also employed the Kullback-Leibler Divergence, guided by the further work of

Boudiaf et al. [16], to predict the positive and negative event proportions based on

predictions from previous iterations.

Tang et al.’s [192] top-performing submission utilises the protonet framework and a

meta-learning system to tackle the FSL challenge. This submission obtained an F1-score of

0.383. Their best-performing entry employs a readily available model, specifically

ResNet12 [71], trained on the ‘animal’ subset of AudioSet [60], as a feature extractor. They

incorporate embedding propagation [159] to enhance the model’s generalisation capacity

towards unseen classes. Embedding propagation, an unsupervised, non-parametric

regularisation technique, produces interpolated points from network output vectors, each

point representing a weighted sum of its neighbours. This technique effectively eliminates

undesirable noise from feature vectors and enhances prototype construction. Similar to our

approach, this system also integrates static PCEN during feature extraction.

The difference in performance between the two systems is marginal. However, when

comparing their performance on individual datasets in Table 4.7, it is apparent that the Zou

submission outperforms the Tang submission on all datasets except for the dawn chorus

dataset (DC). The Zou submission is also less complex than the Tang submission, with

significantly fewer parameters (468k parameters in the Zou system compared to 4M

parameters in the Tang system). Nonetheless, the Zou system’s approach requires additional

training steps per task to train the classifier and undergoes some generality loss through

fine-tuning. On the other hand, the Tang system, being protonet-based, requires no

additional training, and inference relies solely on the squared Euclidean distance between

query points and class prototypes, an attractive trait for protonets as new task classification

does not require additional training. Both systems offer distinct advantages, and the choice

between them depends on factors such as memory constraints and the acceptability of

classifier fine-tuning. When contrasting these two systems with our entry, their performance

stems from advanced feature extraction and regularisation (Tang) or information

maximisation (Zou), while our system stands apart through distinct feature extraction and

data augmentation strategies. These modifications contribute to enhanced robustness and

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 97

generalisation within the learned embedding space when handling limited data scenarios, as

encountered in FSL scenarios.

Following the challenge’s conclusion, further investigation and analysis of the submitted

system was undertaken, in order to inform what modifications could be made to increase

performance further. This was done with a view to equal or better the performance to the

top entry, while maintaining the low model complexity of the submitted system.

4.3 Investigation following the DCASE2021 Challenge

After the conclusion of the challenge, further analysis of the submitted entry was undertaken

with the aim of identifying potential areas for improvement. Given that a protonet learns a

complex, non-linear mapping of a feature vector from a high-dimensional space RD to a

lower-dimensional embedding space in RM , and performs classification via the squared

Euclidean distance between a query point and a class prototype, an in-depth investigation

into the properties and characteristics of this embedding space provides insight into this

mapping and the protonets ability to discriminate between positive and negative events. This,

in turn, can allow for potential improvements to be made, such as architectural adjustments,

innovative training methodologies, or modifications to the feature extraction pipeline.

In the following sections, analysis of the network is undertaken, uncovering certain issues that

have been identified as contributors to the sub-optimal results. Subsequently, modifications

to the system aiming to address these issues are proposed and evaluated. This is motivated

by the goal of refining the system’s performance and achieving higher levels of performance

while maintaining the system’s current simplicity.

4.3.1 Analysis of Embedding Space using t-SNE

The vectors inside the embedding space of the model are analysed using t-Distributed

Stochastic Neighbour Embedding (t-SNE) [200]. The embedding space is a 128-dimensional

space, which, due to their high dimensionality, cannot be visualised without the aid of a

suitable projection technique. t-SNE is a dimensionality reduction and data visualisation

technique utilising machine learning, and is a suitable choice for visualisation. Its

98

fundamental objective is to transform data points from their original high-dimensional space

into a lower-dimensional one, preserving the pairwise similarity relationships that exist among

these data points in the higher-dimensional space.

t-SNE achieves this objective by constructing two probability distributions, one for the

high-dimensional space and another for the low-dimensional space and subsequently

minimises the Kullback-Leibler divergence between these distributions. Through this process,

t-SNE projects data points from the higher-dimensional embedding space to a

two-dimensional visualisation space.

A characteristic of t-SNE is its ability to preserve local structure in the data. Moreover, the

balance between preserving local and global structure can be fine-tuned by adjusting the

perplexity hyperparameter. it is crucial to recognise that t-SNE, in contrast to other

dimensionality reduction techniques such as Principal Component Analysis (PCA) [141], is

non-linear. This non-linearity makes t-SNE adept at capturing intricate and complex

structures which may not be captured by PCA. PCA (by design) cannot capture local

structure, instead it captures the global structure of the data.

For the purposes of visualising the embedding space, the preservation of local structure is

desirable. This is because, in the context of the embedding space, data points that are

spatially close to each other in the high-dimensional space retain their proximity in the

lower-dimensional visualisation space. Global structure preservation is of secondary concern,

as the current analysis does not involve comparisons between clusters or structures. The

focus here is judging how discriminative the embedding space is, specifically, its ability to

neatly cluster points belonging to the same class while minimising the risk of points being

inadvertently assigned to other class. This analysis helps in addressing the false positive and

false negative issues discussed in Section 4.2.5.

These analyses utilise scikit-learn’s [142] implementation of t-SNE. Unlike PCA, t-SNE

requires some hyperparameter tuning for optimal results. It was initially thought [200] that

t-SNE would be robust to hyperparameter values; however, subsequent research [22, 51] has

shown this to not be the case. Whilst implementations strive to offer sensible defaults,

optimal results for t-SNE can only be achieved through fine-tuning. Fortunately, many

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 99

Figure 4.2: t-SNE projection of the embedding space learned by the prototypical network. This figure
contains the embeddings of the training data, which is multiclass. ‘GIG’, ‘GRN’ and ‘SQT’ refer to
3 types of Hyena vocalisation from the HT data. ‘AGGM’, ‘CCMK’, ‘SOCM’ and ‘SNMK’ refer to 4
types of Meerkat vocalisation from the MT data. The remaining classes are 12 different species of bird
belonging to the BV and JD data.

Figure 4.3: t-SNE projection of the embedding space learned by the prototypical network. This figure
contains the embeddings of the evaluation data, which is a binary classification problem indicating
whether a segment contains bioacoustic activity from the class of interest. Although global structure
is not maintained, the prototype representations for both positive and negative classes are marked by a
white ‘X’.

100

guidelines exist to streamline the hyperparameter tuning process, potentially minimising or

even circumventing the need for extensive tuning.

Given that this work primarily focuses on the analysis of the embedding space rather than its

visualisation, the guidelines provided by Gove et al. in [64] are utilised as a starting point.

Subsequently, the perplexity hyperparameter is manually tuned, setting it to 30, along with

exaggeration = 1 and learning rate = 40.

Figures 4.2 and 4.3 show the t-SNE visualisation for all the training data (Figure 4.2) and a

singular audio recording from the test set (Figure 4.3). These visualisations are of the

embeddings produced by the submitted protonet system described above. In all subsequent

visualisations, the same file from the test set is used, a recording from the DC dataset

containing bird vocalisations during the dawn chorus.

Figure 4.2 shows that, for numerous classes, data points belonging to a specific class tend to

coalesce. Nonetheless, some contamination and overlap between classes persist, signifying

that, for certain classes, the embedding function is a poor discriminator.

Figure 4.3 offers insight into the embedding space in a binary classification scenario, where

the protonet is presented with 5 occurrences of the class of interest to calculate a positive

prototype, while a negative prototype is constructed from randomly sub-sampled data from

the negative class. These prototypes are denoted by white ‘X’s in the figure. Every other

point belongs to the query set, with colour-coded labels based on their ground truth.

From Figure 4.3, it becomes apparent that the positive and negative classes fail to form

distinct clusters. The negative class exhibits more consistent clustering; however, a number

of positively labelled query points are located within this cluster. This consistent clustering

within the negative class suggests that, although it encompasses all entities apart from the

class of interest, the network’s learned embedding function is able to generalise to this class.

However, the notable absence of substantial distance between the positive and negative

classes within the embedding space, despite t-SNE not inherently preserving global structure,

indicates minimal separation between these classes. This lack of distance leads to both false

positives and false negatives when classifying query points, given the close proximity of class

prototypes and a decision boundary that offers limited discrimination between them. This

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 101

represents one of the issues brought to light through the visualisation of embeddings.

As mentioned above, many query points belonging to the positive class are located within

the negative cluster. This phenomenon can be attributed to various factors: the recording

conditions; far-field recordings; or the presence of substantial amounts of noise.

Consequently, a degree of similarity exists between these query points and the negative class.

Although PCEN does offer some noise reduction capabilities and dynamic range compression

for far-field recordings, it is important to acknowledge that the efficacy of the currently

implemented PCEN layer (fixed parameters, non-learnable) limits the amount of and

suitability of noise reduction or dynamic range compression. PCEN does yield performance

improvements over logarithmically scaled features (as demonstrated in Table 4.5).

Nevertheless, the issues surrounding noise and far-field dynamic compression are not entirely

mitigated. This issue of noisy data represents the second issue identified by visualisation of

the embeddings via t-SNE.

These two issues, query points in close proximity to the negative cluster and the influence of

noisy data on embedding quality, lead to sub-optimal clustering and separation of the two

classes during test time. In response to these two issues, two potential solutions were

explored. The first addresses the lack of distinct clusters by implementing a modified loss

function that actively promotes tighter grouping of embedding points originating from the

same class while simultaneously maximising separation between distinct classes through the

utilisation of a triplet loss function. The second approach aims to combat the detrimental

effects of noisy data on embeddings. It involves training the embedding function using

multiple representations of the same input feature, diversifying the embedding space. The

results of employing these methods are detailed in Section 4.3.4.

4.3.2 Triplet Loss to Improving Clustering and Increase Separation

Triplet loss, first proposed by Schroff et al. in [167], represents a class of loss functions

widely employed in systems aiming to group similar items together in an embedding space

while keeping dissimilar items further away. This makes triplet loss a prime candidate as a

loss function in a prototypical network, which aims to learn an embedding space for use in a

102

FSL scenario. Triplet loss may then provide a method for refining the embeddings and

improving separation between classes during training, ultimately contributing to the

development of a more diverse and versatile embedding space.

Triplet loss functions operate by creating triplets of data points, each comprising an anchor

point Xa, a positive point Xp and a negative point Xn. The anchor point signifies the data

point for which embedding learning is sought, the positive point corresponds to a data point

belonging to the same class as the anchor. In contrast, the negative point belongs to a

different class. The objectives of triplet loss functions are twofold: to minimise the distance

between the anchor point and the positive point; and to maximise the distance between the

anchor point and the negative point. Any pair-wise distance d(·, ·) can employed in the

triplet loss function. In the context of Prototypical Networks, the squared Euclidean distance

is still chosen as the distance function as it is a Bregman divergence (see Section 4.1.1).

Mathematically, the loss function is expressed through Equation 4.15, where the α term

represents the margin parameter. α enforces a minimum separation between positive and

negative examples and is typically set to a value such as 1. It can also be adjusted as a

tunable hyperparameter.

L(Xa,Xp,Xn) = max
(
0, d(Xa,Xp)− d(Xa,Xn) + α

)
(4.15)

In contrast to the original prototypical loss function, which seeks to minimise the negative

log likelihood of query points belonging to the target class after prototype construction,

indirectly encouraging clustering, the triplet loss takes a different approach. It actively

adjusts embeddings to promote both inter-cluster separation and intra-cluster cohesion. This

approach may lead to enhanced model performance by facilitating the learning of a more

complex and diverse embedding function.

A specific formulation of triplet loss suited for Prototypical Networks has been put forward by

Doras et al. [48] within the context of few-shot music cover detection. This formulation

utilises triplet loss and incorporates semi-hard negative triplet mining. Semi-hard triplet

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 103

mining is a strategy where triplets are selected such that the negative point is close to the

positive point. This approach provides valuable training information without making the task

overly challenging. The formulation of this loss closely resembles the original triplet loss

function. However, it employs representations of positive and negative prototypes instead of

individual data points. This further improves samples clustering around their respective class

prototypes.

4.3.3 Multiple Representations and Introduction of the Background Class

PCEN has the effect of ‘whitening’ noise [115] and emphasising events with sharp onsets.

These attributes are advantageous when representing positive events containing the class of

interest. However, when applied to environmental noise present in an audio recording, they

may lead to sub-optimal representations of such noise. In contrast, log-mel spectrograms can

accentuate the noise floor relative to the signal, and log-scaling lacks the noise-reducing

characteristics of PCEN. Consequently, log-mel features are ‘noisier’ compared to their PCEN

counterparts and might offer a more useful representation of the negative class.

To this end, we propose utilising multiple representations during the training process,

alongside the introduction of a background class into the training dataset. This newly

introduced background class comprises audio segments extracted from all training data files,

mirroring the concept of negative features employed during testing. These segments are

chosen from sections of recordings that do not contain any positive events. By incorporating

both PCEN features and log-mel features, as well as introducing the background class, it is

hoped that the learned embedding space will be more diverse. This approach is aimed at

further separating the clusters corresponding to positive and negative classes at test time,

ultimately improving classification performance during inference.

While it is evident that negative query points cluster together (as seen in Figure 4.3), the

presence of positive points within the negative cluster adversely impacts classification

performance. Although the PCEN features of the negative class exhibit clustering and are

similar to each other, training with a wider range of features and the explicit incorporation of

a background class could potentially allow for further separation between the positive and

104

System F1-Score Precision Recall

Original Submission 0.350 0.488 0.272
Triplet Loss 0.351 0.491 0.273
Mult. + BG Class 0.352 0.494 0.274
Triplet Loss + Mult. + BG Class 0.368 0.522 0.284

Table 4.8: Results on the challenge evaluation set for the originally submitted system, trained
using prototypical triplet loss, the system trained using multiple representations, and the system
trained using prototypical triplet loss + multiple representations. Best results in bold.

negative classes, resulting in enhanced performance.

Although trained using multiple representations, only PCEN features are employed during

inference. Determining whether a feature should be represented using PCEN or a log-mel

spectrogram a priori is not possible (otherwise, the need for detecting bioacoustic events in

the audio would be unnecessary). Given that PCEN has increased overall performance (refer

to Table 4.2.5), it serves as the feature of choice during inference.

4.3.4 Results and Discussion

Experiments in this section follow the architecture, training strategy, and post-processing

techniques outlined in Section 4.2.3, with modifications to the loss function and adaptations

for incorporating multiple feature representations and background class modelling.

Evaluation is carried out on the evaluation set, the full details of which were released after

the challenge results were made available. The evaluation process and metrics mirror those

employed by the challenge organisers, as described in Section 4.2.4. The original submitted

protonet system is used as a baseline in the following results.

Table 4.8 provides performance comparisons between our original protonet system and the

systems incorporating the aforementioned modifications. As in previous results, the reported

metrics are F1-Score, precision, and recall. Table 4.8 can be compared with Table 4.7, as

both report performance on the evaluation set.

Comparing the performance across all systems, it is evident that there is only marginal

improvement in the overall F1-score when utilising any of the modifications to the initial

submission. The improvements when using prototypical triplet loss, or multiple

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 105

Figure 4.4: t-SNE projection of the the test data embeddings learned by the prototypical
network trained using protypical triplet loss. The prototype representations for both positive
and negative classes are marked by a white ‘X’.

Figure 4.5: t-SNE projection of the the test data embeddings learned by the prototypical
network trained using multiple representations and the inclusion of an background class label.
The prototype representations for both positive and negative classes are marked by a white
‘X’.

106

representations along with background class modelling in isolation could plausibly be

attributed to variances in the non-deterministic training procedure.

Although there is only marginal overall improvement in F1-score with the utilisation of any

individual modification, combining both modifications results in a relative improvement of 5%

in F1-score, 7% in precision, and 4% in recall. However, these enhancements still fall short of

matching the performance achieved by the next highest ranked challenge entry, which

attained an F1-score of 0.383 (as seen in Table 4.8). It is important to note that the system

remains more lightweight than the next highest entry, and the performance gap has narrowed.

Further analysis of how the modifications impact the model and, consequently the

embedding space can be achieved by looking at the embeddings generated by the protonet.

Figures 4.4, 4.5 and 4.6 show t-SNE visualisations of protonets trained with prototypical

triplet loss, multiple representations plus background class modelling, and both modifications

combined, respectively. With reference to these figures and Table 4.8, the effects of each

modification individually and combined will be discussed.

For the network trained using prototypical triplet loss, similar to the reported results, there

appears to be minimal deviation in the overall structure of the embedding points, as seen in

Figure 4.4. While there may be tighter clustering of both classes, many positive query points

remain situated away from the primary positive cluster and are closer to the negative cluster.

This proximity to the negative cluster results in a higher number of false negatives. The

marginal improvement in precision, which may be attributed to a reduction in false positives,

can likely be ascribed to the non-deterministic elements of training. Therefore, it can be

inferred that the utilisation of prototypical triplet loss in isolation does not lead to

performance enhancement of this network on this bioacoustic data.

Moving to the network trained using multiple feature representations and background class

modelling, shown in Figure 4.5, there is a some shift in the overall structure, albeit with

relatively less separation between the classes. The increase in F1-score is again marginal,

with the primary improvement being in precision. As the performance gains are so small, it is

still difficult to attribute them to the modification of the system. Similar to prototypical

triplet loss, the adoption of multiple feature representations and the modelling of a

Chapter 4. Bioacoustic Event Detection with Prototypical Networks 107

Figure 4.6: t-SNE projection of the the test data embeddings learned by the prototypical
network trained using protypical triplet loss plus multiple representations and the background
class. The prototype representations for both positive and negative classes are marked by a
white ‘X’.

background class do not result in performance improvements for this specific model and task.

The usage of prototypical triplet loss in conjunction with multiple feature representations and

background class modelling shows the greatest improvement over the original submission,

with an F1-score of 0.368. As previously mentioned, this configuration shows a relative

improvement of 5% in F1-score, 7% in precision and 4% in recall. While this denotes a step

forward from the original system, it remains challenging to confirm its statistical significance

without further analysis.

Importantly, this outcome still falls short of surpassing the next highest-ranking entry, which

achieved an F1-score of 0.383. Examining the t-SNE visualisation (Figure 4.6) reveals no

marked improvement in cluster cohesion or class separation over the original system

(Figure 4.3). In comparison to Figure 4.6, it demonstrates a similar degree of separation of

separation between positive and negative clusters, especially when contrasted with Figure 4.5,

as would be expected using prototypical triplet loss. Overall, the usage of both modifications

108

may improve the results of this system on this task, but this cannot be confirmed without

further statistical analysis. This analysis has not been carried out due to the marginal nature

of the improvements. Conducting such an analysis would require additional effort without

yielding any improvement or additional insights, and this effort is better focused elsewhere.

Instead, the initial analysis of the submitted systems embedding space strongly suggests that

the tendency of query points from the positive class to cluster with those from the negative

class can be attributed to the presence of noise and far-field conditions in the recordings.

These issues are prevalent in many audio tasks, especially in bioacoustic recordings. Thus,

rather than concentrating on incremental refinements to the training regimen or network

architecture, effort was concentrated on better feature representations, in particular the

possibility of learning better feature representations from the data itself.

The quality of input features is of paramount importance in machine learning, and this

extends to FSL, particularly in meta-learning scenarios such as protonets, where models must

“learn to learn” and generalise to potentially new and unseen classes at inference time using

only a few labelled examples. Bioacoustic audio is marked by challenging recording

conditions; recorded in remote environments with omnidirectional microphones, it is

particularly susceptible to noise and contains far-field sources, which can detrimentally affect

feature quality. Therefore, motivated by the experience of FSL for bioacoustics, the next

chapter of this thesis tackles the use of learnable frontends in bioacoustics.

Chapter 5

Learnable Frontends and the

Filterbank Initialisation Problem

In speech and audio processing, researchers aim to extract information from audio signals for

analysis or to perform a task (such as activity detection). As the techniques used in audio

signal processing have advanced, so too have the features extracted from audio signals. This

trend continues in the era of deep learning, as systems capable of learning features directly

from data have emerged. Chapter 5 presents work evaluating the effectiveness of recent

learnable frontends on a bioacoustics task. Additionally, this chapter explores the sensitivity

of learnable filterbanks to their initialisation, known as the filterbank initialisation problem.

The use of learnable frontends offers potential improvements in performance for tasks using

challenging audio, while the promise of learnable filterbanks implies that a system could learn

optimal filters for the task, without relying on human-designed scales such as the mel scale.

This thesis chapter is organised as follows: First, a brief introduction is provided in

Section 5.1, on the features and representations of audio utilised in non-learnable feature

extraction techniques. This will be followed by a discussion on the limitations of these

approaches, which learnable frontends seek to overcome. Four learnable frontends, which

have been evaluated on a common bioacoustics task, are then described in Section 5.2. The

experimental setup is presented, followed by the results and discussion of those experiments

109

110

in Section 5.3. The results presented until this point were originally presented [3] in IWAENC

2022. Subsequently, Section 5.4 explores and quantifies the sensitivity of learnable filterbanks

to initialisation. Efficient Learnable Audio Frontend (eLEAF) [166, 216] is used to

demonstrate this phenomenon, and we investigate the sensitivity of a learnable filterbank to

initialisation using various initialisation strategies on two audio tasks: Voice Activity

Detection and Bird Species Identification. This work was presented [5] in ICASSP 2023.

Further investigation of the filterbank initialisation problem, and suggested mitigation

strategies are discussed later in Chapter 6.

5.1 Non-learnable Frontends

Historically, non-learnable frontends, or more precisely non-learnable feature extractors, have

been widely used for extracting features from audio data. These frontends operate based on

a predetermined set of hyperparameters to extract the relevant features from the audio. A

brief description of common extracted features is provided below. In the case of

non-learnable approaches, feature extraction is typically performed before the feature is fed

into the model, although it is also possible to compute these features during the forward pass

of a neural network.

5.1.1 Mel-Frequency Cepstral Coefficients

Until the rise of deep learning, Mel-Frequency Cepstral Coefficients (MFCC) [40] were the

most popular extracted feature for acoustic analysis involving speech [91, 128] and also in

bioacoustics [65, 184]. MFCCs enable the compression of spectral information into a small

number of coefficients. The process involves segmenting the signal into short frames using a

windowing function and estimating the spectral density of each frame. This is achieved by

applying the Discrete Fourier Transform (DFT) to each frame (Equation 5.1) and passing it

through a mel scale based filterbank, inspired by psychoacoustic principles [135, 180]. The

mel scale is a perceptual scale where pitches are judged by listeners to be of equal distance

from one another. The reference frequency in the mel scale is 1000 Hz (i.e. 1000 mel is

equivalent to 1000 Hz). Conversion between frequency f hertz to m mels is described by a

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 111

formula from [135] (refer to Equation 5.2, and the inverse expression in Equation 5.3).

Taking the logarithm of the output of this M-channel filterbank (denoted as

log ŷm,m = 1, . . . ,M) and passing it through a Discrete Cosine Transform (DCT)

(Equation 5.4) decorrelates the features. The resulting MFCC vector is obtained by retaining

the first 12–20 coefficients, with coefficient c0, the energy of the frame, often dropped from

the feature vector. MFCCs were widely used in modelling with GMMs and HMMs, but their

popularity has declined with the rise of deep learning methods.

Xk =
N−1∑
n=0

xne
− j2π

N
kn (5.1)

m = 1127 ln(1 +
f

700
) (5.2)

f = 700(e
m

1127 − 1) (5.3)

cn =
M∑
m=1

log ŷm cos

[
πn

M

(
m− 1

2

)]
(5.4)

5.1.2 Spectrogram based features

The emergence of deep learning, particularly CNNs, has led to significant advances in

computer vision tasks such as image classification surpassing traditional methods that relied

on engineered features [93]. A similar paradigm shift can be observed in audio data analysis,

where the audio signal is transformed into a two-dimensional TF-representation using the

STFT and treated similarly to an image. This paradigm shift is reflected in Figure 5.1,

showing the differences in extracting known features into a feature vector, and allowing the

CNN to learn features directly from the spectrogram. Recent studies in both speech and

bioacoustics tasks predominantly use the magnitude spectrogram as an input feature.

However, creating a spectrogram involves several crucial hyperparameter choices [69], which

can significantly impact the performance of a model. Parameters such as the window

function type, frame length, and frame overlap require consideration. The frame length for

example determines the trade-off between time and frequency resolution (higher time

resolution at the expense of frequency resolution and vice versa), while the window function

112

Figure 5.1: Traditional Feature extraction for speech and audio machine learning employed
separate pipelines, extracting known features based on a set of predefined parameters. These
features were then fed into the ML system. The modern approach is to transform the audio
into a spectrogram representation, apply compression, and allow the convolutional layers of a
CNN to extract features. Blocks in green are trainable.

used affects frequency selectivity, resolution, spectral leakage, and dynamic range. Although

the magnitude spectrogram obtained from the STFT can be utilised as is, additional

considerations for dimensionality reduction and dynamic compression will be discussed below.

Mel Spectrogram

The STFT generates a TF-representation that is uniformly sampled both in time and

frequency. However, the uniform sampling in frequency may not be ideal as human

perception of pitch is non-linearly related to frequency. To address this, a common approach

is to convert the frequency axis of the spectrogram from a linear scale to the mel frequency

scale, similar to the mel scale used in MFCCs as discussed earlier in Section 5.1.1.

The transformation from the linear spectrogram to the mel frequency spectrogram involves

several steps. Starting with the STFT of the signal x[n] using a windowing function w[n]

with Fast Fourier Transform (FFT) length N, the representation X is produced. The mel

filterbank is defined by the matrix Ψm, using M triangular filters, with centre frequencies

linearly spaced on the mel scale between the minimum and maximum frequency range of the

filterbank. The matrix Ψm is a linear transformation matrix projecting the FFT bins from

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 113

the STFT onto mel frequency bins. The resulting mel spectrogram matrix Mx is calculated

by applying Equation 5.5, where the squared magnitude of X yields a linear spectrogram,

and the matrix Ψm provides a frequency warping via linear transformation.

X ∈ RT×N

Ψm ∈ RN×M

Mx = X|·|2Ψm
|·|2 (5.5)

Mx ∈ RT×M (5.6)

This results in a mel spectrogram characterised by a frequency axis that is logarithmic for

frequencies above 1000 Hz and reduced in dimensionality (T ×M) compared to the original

TF-representation (T ×N), where M < N . This reduction is beneficial in reducing the

memory and computational requirements of network. Furthermore, shifts in harmonic signals

appear to be linear shifts when scaled logarithmically, which may be a good match for CNNs,

which detect linearly-shifted features reliably. When using the mel spectrogram as an input

feature to a machine learning system, additional design choices include determining the

number of filters in the filterbank and the desired frequency range. However, it is worth

noting that the applicability of the mel scale in bioacoustics is debatable, as it is a perceptual

scale based on human hearing and humans are rarely the intended recipients of such audio.

An example of a mel spectrogram using 40 mel filters and logarithmic compression (see

below) can be seen in Figure 5.2.

Spectrogram Dynamic Range Compression

A choice made in all TF-representations of audio is whether to compress the dynamic range

of the representation. Compressing the spectral magnitudes can result in loudness

equalisation, ensuring quieter events have similar prominence in the TF-representation as

louder events. Dynamic range compression also helps in normalising the values before feeding

them into a neural network, which is standard practice in machine learning. There are many

114

Figure 5.2: A mel spectrogram of audio containing birdsong from BirdVox-DCASE-20k [116].
The spectrogram energies are compressed logarithmically. The mel filterbank matrix is config-
ured as 40 filters with a frequency range between 500 Hz – 16 kHz.

methods of static dynamic range compression:

• Logarithmic Compression

• Cubed Root Compression

• Tenth Root Compression

Cube root [72] and tenth root [165] compression involve taking the relevant root of each

element in the TF-representation. These methods are designed to emulate the power laws of

human hearing, replicating the non-linear relationship between sound intensity and perceived

loudness. These root laws are more commonly used in analysis, and to enhance speech

intelligibility to human listeners [119]. The most widely used compression method by far is

logarithmic compression, which also aims to mimic the behaviour mentioned above.

However, these static compression methods have shortcomings:

1. The log function exhibits a singularity at 0, causing time-frequency bins with no energy

to have infinite values after logarithmic transformation. Common approaches to

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 115

address this issue include the using the clipped logarithm (log(max(ϵ, x))) or the

stabilised logarithm (log(x+ ϵ)). However, there is no consensus on whether one

approach should be preferred.

2. The logarithmic and root transformations predominantly compress the dynamic range

of low-level parts of the signal, such as segments containing near-silence. However,

these low-level segments are typically the least informative part of the signal. There is

also an added effect of accentuating the noise floor relative to the signal. This issue is

less present when using tenth root compression [119], however in this case the overall

dynamic range suffers.

3. The logarithmic and root transformations are dependent on the loudness of the signal.

The values produced for two utterances will differ depending on how close the source is

to the microphone. This can pose issues when far-field and near-field sources are both

present in the recording.

5.1.3 Other Features

Constant-Q Transform

The Constant-Q Transform (CQT) [19] is related to, but different from, the DFT and can be

used to create a TF-representation similar to a spectrogram. While the DFT samples

frequencies uniformly, the CQT employs a logarithmic frequency sampling approach. The

quality factor Q of a filter is defined as the ratio between the centre frequency and

bandwidth of that filter (Q = fk
δfk

). Unlike the DFT where Q decreases with increasing

frequency, the CQT maintains a constant Q value at all frequencies. As a result, the CQT

provides high frequency resolution and low time resolution at lower frequencies, while offering

lower frequency resolution and high time resolution at higher frequencies. This characteristic

mirrors the auditory system of humans and many other animals. Additionally, the CQT

allows for centring at a desired frequency, and each octave consists of an equal number of

filters. These properties make the CQT a commonly used feature in instrument recognition

and related music tasks, and it has also found applications in bioacoustics. However, it is not

as widely utilised as other techniques.

116

Sinusoidal Tracking

Sinusoidal tracking [81], sometimes referred to as frequency tracking, involves identifying

sinusoidal components in a signal and estimating their amplitude, frequency and possibly

phase. It encompasses the detection of fundamental frequency (F0) as well as the tracking of

harmonic content. Sinusoidal tracking has been employed in bird species detection as an

alternative feature to MFCCs [79, 80]. It is typically used in conjunction with HMMs, similar

to MFCCs, and has been found to be more noise robust than MFCCs when modelling bird

vocalisations [79]. By employing HMMs, temporal modelling of the harmonic content and

intensity of the signal becomes possible, enabling the identification of bird species from this

modelling. Despite recent utilisation of sinusoidal tracking in certain studies on bird species

identification [80], this feature remains less commonly employed compared to

spectrogram-based features.

5.2 Learnable Frontends

In recent years, a number of promising frontends which learn from the data directly have

been proposed. These learnable frontends turn what were previously hyperparameters in the

non-learnable case, into learnable parameters. Some of the shortcomings of non-learnable

frontends are the need to tune hyperparameters or utilise fixed filterbanks and static

compression. These can be addressed by learnable frontends. This shift away from the

contemporary method of extracting spectrograms, using fixed hyperparameters, from the

audio and allowing the network to extract features, toward the approach of learnable

frontends where all features are learned directly from the data, can be seen in Figure 5.3.

While the use of learnable frontends may incur additional computational costs, they can

provide a representation of the input signal that is tailored to a specific task, architecture,

and audio domain. In many cases, this representation is a TF-representation of the signal,

similar to the one produced by the Short-Time Fourier Transform (STFT). Other frontends

do not provide TF-representations of the audio signal, but instead learn interpretable

spectro-temporal features [157].

Learnable frontends which provide TF-representations encompass a wide range of

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 117

Figure 5.3: Contrasted to the modern approach of feature extraction, learnable frontends
usually aim to compute or modify a Time-Frequency representation in a data driven manner,
which is optimised alongside the network. Blocks in green are trainable.

functionality. These functions include filterbanks [24, 161, 216, 217], temporal

downsampling [216, 217] and magnitude compression [166, 211]. Some frontends specialise

in one particular aspect, whereas others combine these elements in a pipeline (such as

LEAF [216]). Many learnable frontends incorporate learnable filterbanks. The authors

in [166] categorise frontends utilising learnable filterbanks based on two criteria: (1) the

domain of operation, i.e. whether processing takes place in the time or frequency domain;

and (2) whether filter responses are learned directly or via a parameterised function.

1. The domain of operation has a large impact on the type of filtering that can be carried

out. Certain types of filters are more easily implemented in the frequency domain, such

as rectangular and triangular filters. Furthermore, time-domain filtering requires more

operations (achieved via convolution and on the order of O(n2)) than filtering in the

frequency-domain using overlap-add methods [181] (on the order of O(n log n) [36]).

Frequency-domain filtering in the context of CNNs requires computation of the STFT

instead of the FFT. Usage of the STFT requires additional design choices, such as

windowing function and frame/overlap settings. Deep learning applications benefit

from the use of GPUs and other specialised hardware, making convolution more

practical due to increased parallelism. Convolutional layers in CNNs efficiently

118

implement a cross-correlation operation (this mixup of nomenclature does not effect

results in practice), which is equivalent to a convolutional operation if the time-domain

response of a filter is even (h[n] = h[−n]) or the time-domain response is pre-reversed.

While there are many examples of learnable filterbanks implemented in the frequency

domain, such as those in [24, 35, 58, 164], time-domain filterbanks have become more

prevalent in recent years due to their easy implementation within CNNs, as seen

in [137, 151, 216, 217].

2. The direct learning of filter coefficients, as demonstrated in [217], offers significant

flexibility in terms of filter properties and has the potential to improve performance [3].

However, this freedom comes at the cost of increased training time and an increase in

the number of model parameters. Additionally, while the learned filters may be highly

suitable for the audio data and task, analysing the resulting filter properties or

frequency response may not be straightforward. Although this does not affect raw

performance, conducting further analysis on the filters can provide valuable insights

about the data and what aspects of it the neural network deems important for

classification.

On the other hand, coefficients generated through a parameterised function [151, 216]

not only reduce the number of parameters but these parameters have an interpretable

meaning with regards to the filter (typically centre frequency and bandwidth). These

parametric functions can be implemented in either the time or frequency domain and

have been extensively studied. Although there might be a slight degradation in

performance, having fewer parameters that carry direct meaning can be beneficial, as it

paves the way to explainability in the system.

Regardless of form, learnable filterbanks require an intialisation strategy to set the initial

values of the filters. Typically, the filters are initialised based on a static filterbank, with the

mel scale [135, 180] being a common choice, especially for tasks involving human speech. In

Section 5.4, we discuss other initialisation strategies which may be utilised.

What follows in this section is an overview of four learnable frontends, which are

implemented as layers within a neural network. These learnable frontends include

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 119

Spectro-Temporal Filters (STRF) [157], Time-Domain Filter Banks (TD) [217], Per-Channel

Energy Normalisation (PCEN) [211] and Learnable Audio Frontend (LEAF) [216]. A

technical explanation of each frontend is provided, and in Section 5.3 each frontend

described is evaluated on a shared bioacoustics task. Detailed information regarding this

experiment can be found in Section 5.3, with results and discussion in Section 5.3.4.

5.2.1 Spectro-Temporal Filters

Spectro-Temporal Filters (STRF) were proposed by Riad et al. [157] in 2021 as a general

purpose acoustic frontend. STRF consists of a set of learnable two-dimensional Gabor filters

designed to detect spectro-temporal modulations within a spectrogram. A primary objective

of the work was to guide neural networks in a more biologically inspired direction by imposing

limitations on the extracted features from a TF-representation. To achieve this, the filters are

constrained to the space of Gabor functions, denoted as g(t, f), as defined by Equation 5.7.

These Gabor filters are composed of a sinusoidal plane wave s(t, f) as defined in

Equation 5.8, and modulated by a Gaussian function w(t, f) as defined by Equation 5.10.

The sinusoidal plane wave s(t, f) is parameterised by F , which determines the frequency of

the wave and Rγ (Equation 5.9), which controls the orientation of the sinusoid in

two-dimensional space. The Gaussian window w(t, f) is always centred in the middle of the

filter and is solely governed by the standard deviations of the Gaussian in the time dimension

σt and frequency dimension σf . Consequently, each filter (denoted by k), is characterised by

four values represented as Fk, γk, σfk , σtk .

gk(t, f) = sk(t, f) · wk(t, f) (5.7)

sk(t, f) = ej(2π(FkRγk
)) (5.8)

where, Rγk = t cos(γk) + f sin(γk) (5.9)

wk(t, f) =
1

2πσtkσfk
e
−(1

2
(t2/σ2

tk
+f2/σ2

fk
))

(5.10)

As previously mentioned, the input to the STRF is an existing TF-representation denoted by

120

Figure 5.4: Examples of learned STRF filter kernels learned as part of the bird activity detection
task outlined in Section 5.3. This figure shows the weights of 16 randomly selected filters. As
in [157], each filter is provided with a receptive field of 9 frequency channels in the frequency
domain and 1.1s in the time domain.

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 121

E(t, f). Unlike the other frontends detailed in this section, STRF does not construct or

modify a TF-representation. Instead, it limits the filter kernels to yield a more interpretable

and biologically inspired set of features. Examples of these learned filter kernels can be found

in Figure 5.4, which presents the weights of 16 out of 64 learned filters. Each filter is

provided with a receptive field of 9 frequency channels in the frequency domain and 1.1s in

the time domain. This characteristic sets it apart from the other evaluated frontends in this

study. For this particular study and in similar works, the number of Gabor filters used is 64.

The resulting features are represented as Z and defined by Equation 5.11.

Z(t, f, k) =
∑
u,v

E(u, v)gk(t− u, f − v) (5.11)

The parameters associated with each learned STRF filter Fk, γk, σfk , σtk have direct

relationships to amplitude modulation ωk and frequency modulation Ωk where

ωk = Fk cos(γk) and Ωk = Fk sin(γk). This observation highlights that STRF is designed to

capture patterns in spectral and temporal modulation, as it encourages the learning of such

characteristics.

5.2.2 Time-Domain Filter Banks

Time-Domain Filter Banks (TD) were introduced by Zeghidour et al. [217] in 2018 as a

learnable alternative to the widely used mel spectrogram. In their work, the authors propose

a collection of learnable filterbanks which are first initialised to a known scale and

subsequently fine-tuned in conjunction with the rest of the model. This fine-tuning process

aims to optimise the filters specifically for a given application, task, or audio type. The TD

approach builds upon previous work by Andén and Mallat [1], who presented an

approximation of the mel frequency spectrum in the time domain. The frequency-domain

calculation of the mel spectrogram has been discussed above in Section 5.1.2.

Consider the mel spectrogram as a continuous representation in both time and frequency

domains, Equation 5.13 describes the averaging of spectrogram energy x̂ϕ(t, ω)

122

(Equation 5.12) with mel-scale filters ψ̂f where f is the centre frequency of each filter

ψ̂f (ω). The window function ϕ(t) has a length of T , and Q denotes the quality of the filter.

x̂ϕ(t, ω) =

∫
x(τ)ϕ(τ − t)e−jωτ dτ (5.12)

Mx(t, f) =
1

2π

∫
|x̂ϕ(t, ω)|2|ψ̂f (ω)|2 dω (5.13)

=

∫
|xϕ ∗ ψf |2(v) dv (Parseval–Plancherel identity) (5.14)

=

∫ ∣∣∣∣∫ x(u)ϕ(u− t)ψf (v − u) du

∣∣∣∣2 dv (5.15)

If, f ≫ QT−1 then

Mx(t, f) ≈
∫ ∣∣∣∣∫ x(u)ψf (v − u) du

∣∣∣∣2 |ϕ(v − t)|2 dv (5.16)

= |x ∗ ψf |2 ∗ |ϕ|2(t) (5.17)

This time-domain approximation is the basis for the TD frontend. the formulation of TD

(Equation 5.18) is identical to the time-domain approximation in Equation 5.17. In TD, the

window function ϕ(t) is specified as a Hanning window and can be fixed, however the

coefficients for this windowing function can also be learned alongside the filterbank. The

number of filters can be adjusted as a hyperparameter, with the original implementation using

N = 40 filters spanning 64 Hz to 8 kHz. Each filter ψn is initialised with a Gabor wavelet (as

described in Equation 5.19), which is parameterised by the desired centre frequency ηn of the

respective filter and a parameter inversely proportional to the desired bandwidth σn.

TD(t, n) = |x ∗ ψn|2 ∗ |ϕ|2(t) (5.18)

ψn(t) = e2πjηnt
1√
2πσn

e
− t2

2σ2
n (5.19)

Although initialised by the Gabor wavelet specified above, TD learns the impulse responses of

each filter directly. The learnable parameters in TD are not centre frequency and bandwidth,

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 123

Figure 5.5: TF-representation generated by TD, after training, of audio containing birdsong
from BirdVox-DCASE-20k [116]. TD applies logarithmic compression of magnitude by default.
Note the absence of specific frequencies on the y-axis, as the learned filters do not have centre
frequencies and are not well ordered.

but each sample or coefficient in the filter impulse response ψf . While this approach can

result in a well-performing filterbank that is highly adapted to a specific task, it entails

increased computational costs and a larger memory footprint. Moreover, the resulting filters

may also be more difficult to analyse post hoc. An example of TDs output after training on

a birdsong task can be seen in Figure 5.5.

TD offers additional features such as options for learnable pre-emphasis of the signal and a

learnable windowing function (mentioned above). However, the original implementation

paper [217] reports that these features did not offer reliable increases in performance. The

authors also note that the learned window functions were nearly identical to their

initialisation, and many of the learned filters exhibited similarities to the initial filters. TD

does not include learnable compression. In its default configuration a logarithmic

compression is used. It is worth noting that TD forms the background for the design of

another frontend evaluated in this study, LEAF.

124

5.2.3 Per-Channel Energy Normalisation

Per-Channel Energy Normalisation (PCEN) was introduced by Wang et al. [211] in 2017 as a

solution addressing challenges in far-field keyword spotting. Noting how the usage of DNNs

had improved the performance of automatic speech recognition, robustness to far-field

recordings and noise were still an issue. Keyword spotting, a task similar to automatic speech

recognition, often involves far-field audio as input.

The authors identify that the log-mel spectrogram is perhaps the most commonly used input

feature in DNN-based acoustic modelling. However, they also note three shortcomings

associated with using the log-mel spectrogram, particularly in regard to using logarithmic

dynamic range reduction in the spectrogram. These shortcomings, which have been

discussed in Section 5.1.2, are summarised here for convenience.

1. The log function exhibits a singularity at 0, causing time-frequency bins with no energy

to have infinite values after logarithmic transformation. Common approaches to address

this issue include the using the clipped logarithm (log(max(ϵ, x))) or the stabilised

logarithm (log(x+ ϵ)), but the choice between these seems arbitrary and ad-hoc.

2. The logarithmic transformation predominantly compresses the dynamic range of

low-level parts of the signal, such as segments containing near-silence. However, these

low-level segments are typically the least informative part of the signal. There is also

an added effect of accentuating the noise floor relative to the signal.

3. The logarithmic transformation is dependent on the loudness of the signal. while it

reduces the dynamic range, it does no provide a means to compress near-field and

far-field sources to equal loudness.

PCEN is introduced as a viable alternative to log compression, offering the advantage that it

can be optimised alongside the model. PCEN comprises two key operations, namely AGC

and DRC, both of which are learned per frequency channel. A detailed asymptotic analysis of

PCEN is provided by Lostanlen et al. in [115], while this thesis provides a brief overview of

PCEN’s operation.

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 125

M(t, f) = (1− s)M(t− 1, f) + sE(t, f) (5.20)

G(t, f) =
E(t, f)

(M(t, f) + ϵ)α
(5.21)

The input to PCEN is a TF-representation, often an uncompressed mel spectrogram,

although other spectrogram-like TF-representations are also valid input [216]. This input

TF-representation is denoted as E(t, f), an example can be found in Figure 5.6(B). The

smoothed spectrogram M(t, f) (defined in Equation 5.20, smoothing is implemented

through an IIR filter), serves as an estimate of the background noise and is learned per

frequency band. An example of a smoothed spectrogram M(t, f) can be seen in

Figure 5.6(C). Equation 5.20 is effective for stationary noise sources, any audio which

exhibits a temporal or frequency modulation lower than the cutoff frequency of the smoother

will be subject to gain reduction in the AGC step. The AGC stage is described by

Equation 5.21 and involves dividing the input TF-representation E(t, f) by the smoothed

TF-representation M(t, f), thereby highlighting changes relative to the recent spectral

history along the temporal axis [115]. Example output of this AGC operation can be found in

Figure 5.6(D). The AGC operation is controlled by two parameters, s and α, both of which

can be learned on a per-channel basis. In Figure 5.6, these parameters are set to s = 0.05

and α = 0.98. It should be noted that ϵ could also be parameterised, although in most

scenarios it is typically set as a hyperparameter as its primary purpose is to prevent division

by 0. Typically, ϵ is set to 10−6, representing an arbitrarily small number.

PCEN(t, f) = (G(t, f) + δ)r − δr (5.22)

⇒ PCEN(t, f) =

(
E(t, f)

(M(t, f) + ϵ)α
+ δ

)r
− δr (5.23)

The second operation of PCEN involves DRC, which is achieved by the addition of a positive

offset δ to G(t, f) and can be seen in Equation 5.22. The result is then an element-wise

126

Figure 5.6: (A) shows a log-mel spectrogram of human speech (‘libri2’ example from Librosa)
with additive white noise. (B) shows the uncompressed mel spectrogram energy. (C) shows
a smoothed version of (B), based on Equation 5.20, s = 0.05. (D) is the output of the AGC
operation of PCEN defined by Equation 5.21, with α = 0.98. (E) is the result of the DRC
defined by Equation 5.22, δ = 2 and r = 0.5, and the final PCEN output (Equation 5.23).

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 127

Figure 5.7: Signal flow from input audio to final Time-Frequency representation in LEAF.
Blocks in green are trainable.

exponential operation, followed by removal of the bias parameter. The parameter δ

corresponds to the threshold parameter in dynamic compression, while the parameter r

corresponds to the compression ratio after this threshold. Higher values of r correspond to

less compression and a more linear transfer function. This is also the final output of PCEN,

and an example of this output can be seen in Figure 5.6(E), with DRC parameters of r = 0.5

and δ = 2.

The complete formulation of PCEN can now be seen in Equation 5.23 and is based on the

set of parameters s, α, δ, r where each parameter is learned per-channel. The output of

PCEN is a TF-representation of the signal, preserving the same dimensions as the input

TF-representation. PCEN has demonstrated its effectiveness in various tasks, including

keyword spotting [6, 169] and bioacoustics [37, 42, 114, 117].

5.2.4 (Efficient) Learnable Audio Frontend

Learnable Audio Frontend (LEAF) was proposed by Zeghidour et al. [216] in 2021 as a

learnable frontend that incorporates both learnable filterbanks and learnable compression. It

combines elements from TD (learnable filterbanks and learnable low-pass filtering) and

PCEN (the entire PCEN compression layer). Therefore LEAF consists of three learnable

layers, and one fixed operation. The signal flow in LEAF is shown in Figure 5.7.

The operation of LEAF can be described as follows. The input audio signal x is convolved

with a set of band-pass filters ψ (described in Equation 5.24) of length W (|t| ≤ W
2) in the

time-domain. These filters take the form of Gabor wavelets and are parameterised by their

centre frequency (ηn ∈ [0, 1]), and the standard deviation of the Gaussian envelope in the

time domain (σnbw
∈ (0, Fs

W+1)). Notably, the standard deviation of the Gabor wavelet in the

time domain (i.e. the width of the filter kernel), is inversely proportional to the bandwidth of

128

the filter in the frequency domain. This relationship holds true due to the Fourier transform

of a Gaussian function also being a Gaussian function. The output of the band-pass filtering

operations (xψ) yields time sequences with the same temporal resolution as the input signal

x. To ensure that the output of the filterbank is analytic (i.e. the frequency responses

contains no negative frequency components), the squared modulus of these time sequences

are calculated (as indicated in Equation 5.25 for both the convolution and squared modulus

operations).

ψn(t) = e2πjηnt
1√

2πσnbw

e
− t2

2σ2
nbw (5.24)

xψn(t) = |x ∗ ψn|2(t) (5.25)

In order to create an uncompressed TF-representation of the signal, the time sequences must

be downsampled. LEAF applies a learnable low-pass filter (one per frequency band) to the

time sequences xψ. These learnable low-pass filters are Gaussian filters (described in

Equation 5.26) and have a similar form to the filters used in TD, as can be observed by

comparing Equation 5.18 and Equation 5.27. This is followed by sub-sampling via strided

convolution to generate a TF-representation. The final component of LEAF is a fully

learnable PCEN layer which is defined above by Equation 5.23 and its operation has been

explained in Section 5.2.3. Equation 5.28 represents the resulting TF-representation, which

serves as the output of ‘Learnable Audio Frontend’. An example of this output, with LEAF

having been trained on a bird audio task, can be seen in Figure 5.8.

ϕn(t) =
1√

2πσnlp

e
− t2

2σ2
nlp (5.26)

X̂(t, n) = xψn ∗ |Φn|2(t)

= |x ∗ ψn|2 ∗ |ϕn|2(t) (5.27)

LEAF(t, n) = PCEN(X̂(t, n)) (5.28)

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 129

Figure 5.8: TF-representation generated by LEAF, after training, of audio containing birdsong
from BirdVox-DCASE-20k [116]. LEAF includes a trainable PCEN layer, which is the method
of dynamic range compression utilised in this TF-representation. Note the absence of specific
frequencies on the y-axis, as the learned filters are not well ordered.

An optimised implementation of LEAF named Efficient Learnable Audio Frontend (eLEAF)

has been developed by Schlüter and Gutenbrunner [166] in 2022. The primary goal of eLEAF

is to increase throughput during training (this includes both the forward and backward

passes) and inference when compared with the original LEAF implementation. This is

accomplished through two key modifications to LEAFs internal workings:

1. Dynamic sizing of convolution window sizes and stride lengths for subsets (or ‘groups’)

of filters. By adjusting the size of the filters, the computational complexity of the

convolution operations within the network is reduced. As the bandwidth in the

frequency domain of a filter increases, the width of the filter kernel in the time domain

decreases, concentrating filter energy in fewer coefficients. To optimise the filterbank,

filter length is truncated based on the calculated value Lf = bσnbw
, where b is a

hyperparameter. A similar process is applied to determine stride lengths Ls = dπ/v,

where v is the centre frequency of the filter and d is a hyperparameter. This technique

can be further improved by applying it to g groups of subsequent filters, with the

largest filter length and smallest stride to be used for the whole group. Through a

130

hyperparameter grid-search, the authors in [166] found that values of b = 6, d = 16

and g = 8 provide improved efficiency while maintaining good performance.

2. Replacement of the PCEN layer with a more easily implemented layer. The PCEN layer

requires the calculation of an exponential moving average along the temporal

dimension, which is not well-suited to massive parallelism of a GPU. The authors

in [166] replicate some of the effects of PCEN by incorporating a per-channel learnable

logarithmic compression, subtraction of the median along the temporal axis, and batch

normalisation.

By implementing these modifications, eLEAF achieves a substantial 37x increase in

throughput compared to classic LEAF. However, in this work, when eLEAF is employed a

PCEN compression layer is used instead of the modified compression layer. The

modifications to the filterbank layer contribute more to eLEAF’s increase in throughput than

the modified compression layer. Furthermore, PCEN is much more widely understood and

analysed [115] compression layer which has seen widespread use.

5.3 Evaluating Learnable Acoustic Frontends on a Bird Activity

Detection Task

The learnable frontends discussed previously have been extensively evaluated on various

speech datasets and tasks [6, 157, 169, 216, 217]. Some of them have even been evaluated

on a bioacoustics task such as bird species identification. However, prior to work by the

author of this thesis in [3], there was no dedicated comparative assessment of these methods

specifically for bird activity detection. The study in [3] aimed to compare traditional (i.e.

non-learnable) with learnable frontends using the same datasets, task and model

architecture. Evaluating existing approaches and their applicability to bird audio was crucial,

as an increasing number of deep learning systems are incorporating ‘off-the-shelf’ learnable

frontends, presuming that the features learned from the data are optimal.

To evaluate each frontend, independent supervised models were trained on a Bird Activity

Detection (BAD) task. The BAD task has been described elsewhere in Section 2.2.2, but is

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 131

restated here for ease of reading. BAD serves as a crucial initial step for any subsequent

population analysis and crucial for assessing the suitability of these learnable frontends in

bird bioacoustics research. In this specific case, the activity detection task involves binary

classification, determining whether a 10-second clip of audio contains bird vocalisations or

not. It is important to note that BAD is a species agnostic task, meaning the system is

expected to generalise to different species and vocalisation types not encountered during

training.

The performance of the four described learnable frontends, along with three non-learnable

spectrogram baselines, was measured and compared in terms of their ability to detect

species-agnostic bird activity. The evaluation aimed to provide insights into the effectiveness

and suitability of these frontends for bird activity detection tasks.

The list below presents the non-learnable and learnable frontends used in this evaluation.

• Non-learnable Frontends

– Linear Spectrogram (spect)

– Mel Spectrogram (mel)

– Log-Mel spectrogram (logmel)

• Learnable Frontends

– Spectro-Temporal Filters (STRF)

– Time-Domain Filter Banks (TD)

– Per-Channel Energy Normalisation (PCEN)

– Learnable Audio Frontend (LEAF)

The datasets involved in testing contain a large variety of bird species and call types, as well

as many noise sources (e.g. wind, traffic, human activity and speech). In the following

sections the datasets used will be described in detail, followed by a brief description of the

backend model used in classification. Evaluation and testing methods are then described,

followed by the presentation and discussion of the results of this experiment. The study

132

Dataset Pos. (Bird Present) Neg. (Bird Absent) Total

BirdVox-DCASE-20k 10017 9983 20000
freefield1010 5755 1935 7690
warblrb10k 6045 1955 8000

Totals 21817 13873 35690

Table 5.1: Details of datasets included from the DCASE2018 Bird Audio Detection Challenge.
Positive in this context are recordings with a bird present. Negative are recordings where no
bird is present.

described in this section was originally published as [3].

5.3.1 Dataset

The datasets used in this study were obtained from the DCASE2018 Bird Audio Detection

Challenge [187]. The challenge organisers provided annotated datasets from three different

sources, as described in Table 5.1. The inclusion of multiple datasets aimed to ensure a

degree of generality.

One dataset, BirdVox-DCASE-20k [116], consists of passively recorded data collected from

remote monitoring projects. The other two datasets, freefield1010 [185] and warblrb10k1,

are actively recorded and crowdsourced recordings contributed by the freesound project and

users of the Warblr bird recognition app, respectively.

In total, the three datasets comprise 35690 recordings. Each recording is 10 seconds in

length and is sampled at 44.1 kHz. The audio data has been normalised to −2 dBFS. The

datasets provide clip-level annotations indicating the presence (positive label) or absence

(negative label) of bird activity. Bird activity could be localised to a few milliseconds or span

the entire clip. The class distribution is unbalanced, with a ratio of 60% positive labels to

40% negative labels. No class balancing was performed prior to training.

Among the datasets, BirdVox-DCASE-20k is considered more challenging due to the high

presence of environmental noise and far-field recordings. The freefield1010 and warblrb10k

contain near-field recordings but still contain large amounts of human-generated noise. For

the training, validation, and test datasets, a split of 70% for training, 15% for validation, and

1Accessible via: https://archive.org/details/warblrb10k public

https://archive.org/details/warblrb10_public

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 133

15% for testing was used. When splitting the datasets, the relative proportions and class

balance of each dataset were maintained.

5.3.2 Model

The network architecture for all experiments in this section is EfficientNet-B0 [190], with one

head node providing classification output. The most popular model architectures for

bioacoustics work are ResNet or VGG-based [184]. However, EfficientNet based models offer

a good compromise between computational resources and accuracy, and can be deployed on

edge-based systems. Pre-trained weights are not used to initialise the network. Each model is

trained from scratch using Binary Cross Entropy loss and the ADAM optimiser [90] with an

initial learning rate of 10−3. The learning rate is adaptive, with a 10x reduction when the

validation loss reaches a plateau.

The relevant hyperparameters and initial settings for each frontend are detailed in Table 5.2.

We utilise a window length of 10 ms in all our FFTs with an overlap of 75% (i.e. a hop

length of 2.5 ms). This allows for increased time resolution at the expense of frequency

resolution, which is will be reduced by the introduction filterbanks in most of the tested

frontends. STRF utilises 64 filters, this is the default number of filters used by Riad et

al. [157] in their original implementation. The number of filters used in all filterbank-based

frontends is 40, the default number of filters used in LEAF. Each filterbank spans between

500 Hz and 16 kHz, with centre frequencies linearly spaced along the mel scale. This aligns

with the typical frequency range of bird vocalisations [63, 158]. PCEN parameters are

initialised based on defaults from Lostanlen et al. [115]. While the mel/logmel filterbanks

remain fixed, TD and LEAF are only initialised to these values and are permitted to optimise

over the course of training.

5.3.3 Evaluation and Testing

To evaluate the performance of each frontend, the following analysis is conducted. First, the

accuracy of the model using a particular frontend is reported when evaluated on the entire

test set. Accuracy is further broken down by each individual dataset. Accuracy is reported as

both the positive and negative class are of equal importance in this task, this is in spite of

134

spect Nfft 128
Window Length 10 ms
Hop Length 2.5 ms
Window Function Hamming Window

mel/logmel Nfft 128
Window Length 10 ms
Hop Length 2.5 ms
Window Function Hamming Window
No. Filters 40
Min Freq. 500 Hz
Max. Freq 16000 Hz

STRF No. Filters 64

TD Window Length 10 ms
Hop Length 2.5 ms
Filterbank Init. Mel
No. Filters 40
Min Freq. 500 Hz
Max. Freq 16000 Hz

PCEN s 0.025
Init. α 0.8
Init. δ 10.0
Init. r 4.0

LEAF Window Length 10 ms
Hop Length 2.5 ms
Filterbank Init. Mel
No. Filters 40
Min Freq. 500 Hz
Max. Freq 16000 Hz
PCEN Settings As above

Table 5.2: Hyperparameters and initial settings of each frontend.

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 135

the class imbalance.

To assess the statistical significance of the results, 30 random independently distributed

subsets created with replacement of the test set are created and their accuracy evaluated per

model. One-way Analysis of Variance (ANOVA) and Tukey’s Honestly Significant Difference

test (HSD) [199] are employed to determine if there are significant differences in model

performance (and consequently, frontend performance). These statistical tests rely on three

assumptions:

1. The observations (accuracy per subset) are independent.

2. Homogeneity of variances between groups (the largest sample variance in a group is

less than twice the variance of the smallest sample variance in a group).

3. The distribution of the residuals are normal (i.e. the observations are normally

distributed).

Assumption (1) is satisfied due to the sampling strategy used to create the subsets of test

data. Assumption (2) is easily evaluated using the sample means and variances from each

group, and is found to be satisfied. Assumption (3) can be tested using a normality test,

such as the Shapiro-Wilk [170] test.

The Shapiro-Wilk test assesses the null hypothesis that a collection of samples x is drawn

from a normal distribution. If the p-value is less than 0.05, the null hypothesis is rejected,

indicating that the samples were not drawn from a normal distribution. The number of

samples is equal to the number of independently distributed subsets created (i.e. N = 30).

The normality tests indicate that all data are distributed normally, which allows for the use of

one-way ANOVA testing.

One-way ANOVA testing is employed to determine if the mean accuracy of at least one of

the models significantly differs from the others. Verifying this allows for a post-hoc pairwise

comparison to identify which models have significantly different results from each other.

Tukey’s HSD is used to identify pairs of distributions which differ significantly from each

other. This analysis determines whether the test set results’ distributions significantly differ

between the different frontends. If there is no significant difference between two frontends on

136

the whole test set, then further analysis will be carried out by comparing their accuracy per

dataset.

It is important to note that if there is no significant difference between two frontends, this

result may only apply to this specific task. There could be other considerations beyond

overall performance that need to be taken into account.

These statistical tests are also employed in Section 5.4, but are less robust compared to

training and evaluating multiple models and assessing statistical significance based on their

collective performance. Employing multiple models captures variability in training,

optimisation, and batch composition, providing a better representation of performance and

whether the results are reproducible. Chapter 6 utilises this approach after discussions with

fellow researchers highlighted some concerns about variability in training.

5.3.4 Results & Discussion

The overall results are presented in Table 5.3 and Figure 5.9. Table 5.3 reports the

performance of each frontend on the test data, allowing for an overall system ranking. From

this we can see that PCEN is the best overall performer with an accuracy on the test set of

89.9%. Using the same dataset (but not the same training, validation or testing splits),

Liaqat et al. [104] attain an accuracy of 89.0% by employing a system based on ‘bulbul’ [67].

They employ a log-mel spectrogram with 160 filters, resulting in a significantly larger feature

with finer frequency resolution compared to the 40 filters used here, in addition to extra

audio preprocessing and domain tuning. Figure 5.9 details performance per dataset, providing

insight into how each frontend performs under the differing conditions of each dataset.

Table 5.4 presents the results of the pair-wise significance testing. It can be observed that

the majority of the pair-wise testing results are statistically significant. However, some results

are only statistically significant when considering the individual datasets within the test set

separately. While the mean values for the entire test set may not differ significantly, the

mean values for specific datasets considered individually do show significant differences.

These particular comparisons are marked with a different square symbol (□) to differentiate

them. Most of these comparisons involve frontends that use a mel spectrogram (either Mel

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 137

Frontend Test Set Accuracy (%)

spect 78.4
mel 71.7
logmel 70.4
STRF 71.3
TD 87.6
PCEN 89.9
LEAF 83.7

Table 5.3: Accuracy of EfficientNet-B0, broken down by frontend, on the full test dataset.
The best result is marked in bold.

spect mel logmel STRF TD PCEN

spect N/A
mel ■ N/A
logmel ■ □ N/A
STRF ■ □ N/A
TD ■ ■ ■ ■ N/A
PCEN ■ ■ ■ ■ ■ N/A
LEAF ■ ■ ■ ■ ■ ■

Table 5.4: Significance tests on pairwise-comparisons using Tukey’s HSD. Cells marked with
■ indicate statistically significant results (p < 0.05) on the entire test set. Cells marked with
□ indicate statistically significant results on at least one dataset.

Spectrogram or Log-Mel spectrogram). Interestingly, the pairwise comparison of STRF and

logmel also exhibits this behaviour. The underlying reasons for the STRF–logmel pairwise

comparison’s lack of statistical significance are likely similar to the reasons behind why the

STRF–mel comparison is not statistically significant.

There is no significant difference in performance between the STRF and logmel results across

all datasets, indicating comparable performance. This can be attributed to the fact that

STRF operates differently and serves a different purpose compared to the other learnable

frontends tested. Instead of producing or enhancing a TF representation, STRF imposes

biologically inspired constraints on the interpretation of the input TF-representation. The

features learned from STRF are then input into the larger EfficientNet-B0 backend. By

default, the input to STRF is a Log-Mel spectrogram. Although Log-Mel spectrogram +

STRF + EfficientNet does not outperform Log-Mel spectrogram + EfficientNet, the

138

Figure 5.9: Total Accuracy on the test set, by frontend. Accuracy is also broken down by
dataset.

interpretable parameters within STRF (discussed in 5.2.1) may be of interest for analysis.

Among the non-learnable frontends, uncompressed linearly scaled spectrograms (spect)

achieve the highest overall performance with a test set accuracy of 78.4%. Uncompressed

mel filterbank energies (mel) are the next best performer, with an accuracy of 71.7% on the

entire test set. Compared to spect, mel performs similarly on freefield1010 but exhibits lower

performance on the warblrb10k and BirdVox-DCASE-20k datasets. This outcome is

unsurprising, since the conversion from a full linear frequency spectrogram into a mel

sepctrogram with 40 filters reduces the available information for the network.

Log-compressed mel spectrograms (logmel) exhibit the lowest performance among the

traditional frontends, with a test set accuracy of 70.4%. This is mainly due to its poor

performance on the BirdVox-DCASE-20k dataset. The logarithmic amplitude scaling applied

in logmel, particularly in the presence of far-field recordings and environmental noise,

potentially amplifies the noise floor and results in a lower effective signal-to-noise ratio

compared to the learnable compression in PCEN, for example. However, logmel performs

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 139

well on cleaner datasets, surpassing the performance of some learnable frontends. The

improved performance of logmel over spect on freefield1010 and warblrb10k, despite the

reduction in information, can likely be attributed to the dynamic compression achieved by

logarithmic scaling of spectrogram amplitudes. As previously mentioned in Section 5.3.1,

freefield1010 and warblrb10k are directed, near-field recordings which contain fewer non-bird

recordings than BirdVox-DCASE-20k. This suggests that on clean data, the benefits of a

learnable compression layer may have diminishing returns.

On the whole, the learnable frontends outperform the non-learnable frontends, with the

exception of STRF. STRF achieves a test set accuracy of 71.3%, similar to logmel with test

set accuracy of 70.4%. Table 5.4 confirms that there is no significant difference in their

results across all datasets. The minor differences in results can likely be attributed to slight

variations in model weights and do not provide evidence of any performance advantages for

STRF.

Among the learnable frontends, TD demonstrates the second-best overall performance with a

test set accuracy of 87.6%. This indicates that frontends using learnable filterbanks can

enhance performance compared to the static frequency bins of STFT based approaches. The

consistent results across all datasets show strong performance even on the challenging

BirdVox-DCASE-20k data. However, the TF-representation generated by TD is less

interpretable due to the unconstrained filterbanks. While the frequency responses of the

filters can be obtained through the FFT, assigning meaningful parameters such as centre

frequency, bandwidth, shape becomes more challenging. The original authors of TD analyse

the filter impulse responses [217], noting that they become asymmetric in a similar manner

to estimates of human and animal auditory filters [176]. The authors also investigate

whether the filters are analytic but do not provide specific information about centre

frequencies or bandwidths. While this may not pose a problem for systems aiming for the

highest performance, the unconstrained filters in TD limit researchers’ ability to gain insights

about the data through the network.

It is worth noting that TD is initialised to approximate an equivalent mel filterbank and

utilises logarithmic compression, making it approximate to logmel. This calls for additional

140

comparison between the two frontends. On the entire test set, TD (87.6%) significantly

outperforms logmel (70.4%). When evaluating performance on individual datasets, TD

exhibits lower performance on the cleaner datasets of freefield1010 and warblrb10k but

surpasses logmel on BirdVox-DCASE-20k. Since BirdVox-DCASE-20k accounts for 56% of

the training data, it can be hypothesised that the learned filterbank in TD is better suited to

the characteristics of the BirdVox-DCASE-20k data compared to the other two datasets.

This may explain the ability for TD to improve performance on BirdVox-DCASE-20k in

contrast to the performance of logmel on the same data. It may also explain the decrease in

performance on freefield1010 and warblrb10k.

As mentioned earlier, PCEN demonstrates the highest overall performance with a test set

accuracy of 89.9% and consistent results across all three datasets. PCEN offers similar

performance gains to logmel on the cleaner data of freefield1010 and warblrb10k. PCEN also

performs well on the more challenging BirdVox-DCASE-20k dataset, where static logarithmic

compression (as used in logmel) led to reduced performance. The success of PCEN can be

attributed to the AGC and DRC, which are tuned to enhance the dynamic range of the

target signal while mitigating the impact of noise on the resulting spectrogram. Note that in

these experiments, a per-channel smoother (governed by the parameter s) could not be

trained due to issues with model convergence, so a fixed value for s is used. Making s a

learnable parameter can lead to better normalisation and noise reduction. This issue was

later resolved in subsequent experiments using PCEN after identifying a source of instability

(specifically in the IIR filter) in the implementation. As the IIR filter is governed by s,

appropriate clamping is applied to ensure the smoothing filter is always stable.

In contrast, LEAF performs less effectively with a test set accuracy of 83.7% compared to

PCEN (89.9%) and TD (87.6%), despite incorporating elements from both approaches.

LEAF offers the advantage of learnable filters that are more interpretable than TD as they

are parameterised by centre frequency and inverse-bandwidth, as well as using a PCEN layer

for compression of the resulting magnitudes. However, it performs worse than PCEN or TD

on all datasets. Two potential reasons for this are the learned filterbanks or the learned

lowpass filters. Given the strong performance of TD, it would be beneficial to understand

why LEAF did not perform as well or better, especially considering that LEAF is

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 141

computationally less expensive. It is more likely that the parameterised filterbank of LEAF,

compared to the unconstrained filterbank in TD, is the reason for this decline in

performance. While the parameterised filterbanks in LEAF allow for easier analysis and

interpretation of the learned filters and TF-representation, they are limited to the space of

Gabor wavelets with Gaussian frequency responses. On the other hand, TD utilises

unconstrained filters, and although interpreting and analysing the learned filterbanks may be

challenging, the absence of constraints on filter type and shape leads to better performance.

These results indicate that learnable compression of spectrogram magnitudes yields the most

performance improvements. Logarithmic compression performs well on clean data but

struggles when applied to noisy data. No compression at all proves to be more consistent

than logarithmic compression, while learnable compression is both consistent and performs

better in most circumstances. The usage of a learnable compression layer such as PCEN is a

general recommendation for any audio tasks requiring the analysis of acoustic scenes.

Learnable filterbanks, like the one used in TD, can enhance performance but to a lesser

extent than learnable compression. However, when comparing PCEN vs. LEAF, learnable

filterbanks seem to have reduced performance. The complexity of bird audio, especially in a

species agnostic task, may pose challenges for learning filterbanks that are constrained to a

specific space (such as the space of Gabor functions in the case of LEAF). While this

constraint is imposed for interpretability, it negatively impacts performance on challenging

data.

Additionally, examination of the learned filterbanks in both TD and LEAF indicate that the

learned filters do not differ substantially from initialisation. Considering the bioacoustics task

they were evaluated on, one would anticipate significant deviation from the initial mel scale.

However, the observation that the filterbanks remain largely unchanged is not exclusive to

this study and will be discussed in more detail in the next section of this chapter.

5.4 The Filterbank Initialisation Problem

A recurring finding, independently reported in multiple studies on learnable filterbanks [24,

111, 166, 168, 216], reveals that the filters after training do not differ substantially from

142

their initialised values. This is not what one might intuitively expect of learnable filterbanks

that are optimised for a certain domain and task. One would expect a bespoke filterbank,

tailored for the task and training data. As discussed earlier in Section 5.2, learnable frontends

utilising learnable filterbanks are commonly initialised based on a static filterbank, often one

linearly spaced on the mel scale. This initialisation choice is well-founded, given the

prevalence and psychcoacoustic motivation of the mel scale, particularly in speech-related

tasks such as keyword spotting, speaker identification and emotion recognition [166, 216].

It may be tempting to assume that if the learned filters closely resemble their initialisation

(e.g. mel) then the initialisation was already well-suited for the task (e.g. speech

recognition). Although this may hold true for certain tasks, it does not explain the same

phenomena occurring with different filterbank initialisations, whether pyschoacoustic (such as

the bark scale) or non-psychoacoustic (a linear initialisation). Moreover, there is no reason to

believe that the mel scale is optimal [66], even on tasks involving human speech. This

observation is likely an optimisation problem similar to the sensitivity of EM algorithms to

initial values [15, 123], leading to convergence towards local optima. The initial

representation can be seen as ‘good enough’, causing the filterbank to converge on a local

optima with minimal deviation from the initialised parameters.

Motivated by the above, the objective of this study was to answer the following question:

Are modern learnable frontends with trainable filterbanks sensitive to filterbank initialisation?

To accomplish this, a systematic study of the sensitivity of learnable filterbanks to their

initialisation is carried out, involving experiments on two distinct audio tasks: VAD and

BSID. These tasks and domains complement each other as the frequency range of bird

vocalisations (∼ 800 Hz – 8 kHz) significantly differs from that of human speech (most

energy concentrated around 300 Hz – 3.4 kHz), anticipating differences in filterbank learning.

By evaluating two tasks using two different datasets and network architectures, these

experiments can verify whether this phenomena is task, dataset or model architecture

specific. Four initialisation strategies are explored for both tasks, including an intentionally

sub-optimal Random initialisation for reference purposes. For each task, the differences

between the initialised and final filters are evaluated.

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 143

Some of the same studies [24, 166, 216, 217] which report a lack of learning have been

dismissive of this lack of learning in filterbank based frontends. However, as in any

optimisation problem, it is crucial to investigate the sensitivity to initialisation to avoid

sub-optimal solutions. This section presents the experiments designed to characterise and

quantify this lack of learning. The Jensen-Shannon distance is employed and additional

analysis of the final filterbanks is conducted. This work was originally published in [5]. The

main novelty of the study lies in the detailed quantification and interpretation of the

differences between initialised and final filters for multiple initialisation strategies, as well as

determining whether each initialisation led to a local optima.

5.4.1 Frontend initialisation

In this study, four different initialisation strategies are utilised. Two of these strategies are

based on psychoacoustic scales, namely Mel [135] and Bark [198]. Both Mel and Bark are

well suited to human speech [40, 135, 198]. However, when it comes to bird audio, previous

research does not provide a consensus [184] on the preferred use of Mel or Bark compared to

other scales. Some studies favour Mel [65], while others find Mel to be sub-optimal for bird

audio [35]. The remaining two initialisation strategies used in these experiments are referred

to as Linear and Random. The Linear initialisation is considered sub-optimal for both

tasks [65, 88], while the Random initialisation is intentionally designed to be sub-optimal for

both tasks.

For Mel and Bark strategies, the centre frequencies of the filterbank are linearly spaced

according to their respective scales. The bandwidth parameter σnbw
is set to match the

Full-Width at Half Maximum (FWHM) of an equivalent triangular filter, corresponding to

the −3 dB point. In the Linear initialisation, the centre frequencies are also linearly spaced,

and bandwidth is constant per filter, with σnbw
set in the same manner as before.

In the Random initialisation, the centre frequencies of the filters are determined by uniform

sampling of valid frequency values within the range of 80 Hz – 8000 Hz. In order to cover

the entire desired frequency range, these centre frequencies are sorted, and σnbw
is set to

ensure the bandwidth covers at least the FWHM of the neighbouring filters. It is important

144

Figure 5.10: The frequency response of each filterbank initialisation. Centre frequency is rep-
resented by the solid line and bandwidth by the shaded area. In this study four initialisation
types are employed: ‘linear’ (equally spaced, constant bandwidth), ‘mel’ & ‘bark’ (psychoa-
coustic pitch scales) and ‘random’ (ordered by frequency).

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 145

Figure 5.11: Average DFTs of all audio in both the TIMIT [59] and BirdCLEF2021 [84]
datasets reveal the difference in frequency distribution between them. In TIMIT, the majority
of information lies below 3 kHz, while in BirdCLEF2021, the information is more broadband
with a large portion situated between 2 kHz – 5 kHz.

to note that in later chapters of this thesis, this constraint of having a well-ordered in

frequency filterbank is relaxed when initialising the Random filterbank, allowing for a more

‘random’ initialisation with no requirement of covering the entire frequency range or that the

filters be well ordered. This will be mentioned in the relevant section (Section 6.1.3). To

ensure reproducible results, the same random seed is used in all relevant experiments.

Figure 5.10 illustrates the filterbank for each initialisation strategy in the frequency domain.

5.4.2 Experimental Setup

To verify that the filterbank initialisation problem is not task, dataset or architecture specific

two distinct audio tasks are used in this analysis: Voice Activity Detection (VAD) and Bird

Species Identification (BSID). These tasks differ in several aspects. The VAD task is a

balanced binary classification task involving near-field human speech with additive noise,

whilst the BSID task is an imbalanced multiclass classification task using far-field recordings

of various bird species with in-recording noise. A detailed description of both tasks is

provided below, and Table 5.5 offers a summary of the tasks. Different model architectures

are employed for each task, and the signals of interest have vastly different characteristics.

Figure 5.11 illustrates the difference in frequency content in the two datasets, showing the

average DFT of all files in each dataset and is indicative of frequencies the learned filters

146

should move towards. It is evident that in the VAD task, using TIMIT [59] data, most of the

frequency content lies below 1 kHz, with very little frequency content beyond 3 kHz. In

contrast, for the BSID task, using data from BirdCLEF2021 [84], there is a broader spectrum

of frequency content primarily between 2 kHz and 5 kHz.

The frontends are configured in a manner similar to those outlined in Section 5.3.

Throughout the experiments, 40 filters are utilised in the learnable frontend. Regardless of

initialisation, these filters aim to encompass the frequency range spanning from 80 Hz – 8

kHz. As a baseline, log-mel spectrograms with 40 mel filters (Static Log-Mel) are used, also

spanning the range of 80 Hz – 8 kHz.

While the data used in Section 5.3 has a sampling rate of 44.1 kHz, all the data in the

current experiments is sampled at 16 kHz. Given that the filterbanks in Section 5.3 covered

the frequency range between 500 Hz – 16 kHz, this means there is half as much frequency

content in the audio of the current experiments compared to Section 5.3. Nevertheless, we

use 40 filters in the learnable frontend, as this is the default number of filters used in

LEAF [216]. Furthermore, we utilise a window length of 10 ms in both the learnable frontend

and the log-mel baseline, with an overlap of 75% (i.e. a hop length of 2.5 ms).

Figure 6.2 displays example TF-representations for each initialisation method using portions

of audio from both tasks. It is important to note that in Chapter 6, the constraint on the

Random initialisation being well ordered is relaxed, resulting in a TF-representation that

differs from how it would appear in these experiments.

Fixed filterbank models are trained for each initialisation using eLEAF. In these experiments,

the PCEN and learnable low-pass filter layers remain trainable, while only the filterbank layer

is fixed. Notably, the implementation of PCEN has been updated to enable training of all

parameters per channel, whereas in the experiments presented in Section 5.3, the parameter

s was fixed. This fully learnable PCEN layer is stable and allows for model convergence.

The method used to quantify the difference between learned and initial filterbanks, the

Jensen-Shannon distance, is also detailed below in Section 5.4.2. This metric enables the

quantification of the sensitivity of learnable filterbanks to their initialisation.

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 147

Voice Activity Detection (VAD)

Dataset Name TIMIT [59]
Sample Rate 16 kHz
No. Speakers (Train) 630
No. Speakers (Test) 168
Sentences per speaker 10
Test Set Dedicated
Normalisation −6 dBFS

Classifier Model STA-VAD [100]
Initial Learning Rate 0.001
Optimiser ADAM [90]
Scheduler Cosine Annealing [112]
Metrics F1, AUC

Bird Species Identification (BSID)

Dataset Name BirdCLEF2021 [84]
Sample Rate 16 kHz (Resampled)
No. Species 397
Recordings per species Variable
Test Set Hold-out (15%)
Normalisation −6 dBFS

Classifier Model EfficientNet-B0 [190]
Initial Learning Rate 0.001
Optimizer ADAM [90]
Scheduler Cyclic
Metrics F1, Acc.

Table 5.5: Details of dataset and classifier for the VAD and BSID tasks.

148

Voice Activity Detection (VAD)

For the VAD task, the TIMIT corpus [59] is utilised in conjunction with the

Spectro-Temporal Voice Activity Detection (STA-VAD) model [100]. TIMIT provides a

‘clean’ corpus with separate train and test speakers sampled at 16 kHz, and is easily

augmented with additive noise. STA-VAD is noise-robust and lightweight VAD system

proposed by Lee et al. in 2019, incorporating both spectral and temporal attention. Similar

to [100], the class imbalance between speech and non-speech is addressed by including

additional silence before and after each utterance. The duration of this silence is randomly

chosen to be between 0.5 seconds and 1 second.

The clean corpus is augmented with additive noise (between −10 dB and 30 dB) from the

MS-SNSD dataset [153], which consists of fourteen noise types, including both stationary

and non-stationary noise. The MS-SNSD noise dataset also provides test data with the same

noise categories, which is used to augment the test set of TIMIT. During training, the SNR

of the input signal is adaptively adjusted. This is implemented through a callback which

increases the maximum allowed SNR by 5 dB (starting from −10 dB) when the validation

loss during training plateaus, following a similar approach to the PyTorch

ReduceLROnPlateau() callback. Each epoch involves shuffling the data and equally splitting

it based on the available SNR values. The data are then augmented with randomly selected

noise at the corresponding SNR values. The power of the added noise is calculated based

only on segments containing speech, excluding silence. Both TIMIT and MS-SNSD are

sampled at 16 kHz.

The STA-VAD model is trained using a 90% training and 10% validation split. The training

regime includes the utilisation of a cosine annealing learning rate scheduler [112], which is set

to restart approximately when new SNR values are introduced. During the validation stage,

the noise levels are randomly selected from the currently available SNR values, following a

uniform distribution. The test data is from the TIMIT test set and augmented with

additional silence and additive noise at a SNR of 15 dB. As mentioned earlier, the additive

noise in the test set is randomly selected from all noise categories in the MS-SNSD test set.

In line with [100, 166, 216], the experiments report accuracy and AUC.

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 149

Bird Species Identification (BSID)

In the BSID task, the publicly available training dataset from BirdCLEF2021 [84] is used in

conjunction with EfficientNet-B0 [190]. Both the dataset and model were chosen to allow for

a comparative analysis with the results from [166]. EfficientNet-B0 has also been used

extensively in the original LEAF implementation paper [216] for evaluating various tasks.

The BirdCLEF2021 dataset consists of high-quality focal recordings of variable lengths

sourced from Xeno-Canto, an online repository of crowd-sourced bird recordings. These

recordings have been normalised to −6 dBFS. As Xeno-Canto is a crowd sourced repository,

the original sampling rates of recordings vary, with many recorded at 44.1 kHz. Additionally

the recordings are in a variety of codecs, such as MP3 or Ogg Vorbis. All recordings are

resampled and converted to 16 kHz WAV files to match the specifications of TIMIT [59].

There are 397 species present in the dataset, from across North & South America. There is a

significant class imbalance, with 12 species having 500 recordings while 9 species have fewer

than 25 recordings.

Due to the unavailability of a test set for the BirdCLEF2021 dataset, a test set is generated

by subsampling the existing data. To this end, a 70:15:15 dataset split, with consideration

for the class imbalance, is employed for training, evaluation, and testing. In these

experiments, both accuracy (as utilised in the evaluation of eLEAF [166]) and F1-Score

(official metric of BirdCLEF2021) are reported.

Evaluation of Frontend Sensitivity using the Jensen-Shannon distance (JSD)

To assess the sensitivity of learnable filterbanks to initialisation, it is necessary to employ a

suitable metric that quantifies the difference between the initialised and final filterbanks. In

this study, the Jensen-Shannon distance (JSD) is utilised as the metric for quantifying this

difference. The JSD, defined by Equation 5.29, offers a means of measuring the similarity or

dissimilarity of two probability distributions. It is derived from the Kullback-Leibler

divergence (defined by Equation 5.30), and compares each distribution P and Q to a mixture

distribution M . The JSD is a true metric [50] that satisfies all related axioms: a distance of

0 when comparing a distribution to itself, the positivity axiom, the symmetry axiom and the

150

triangle inequality. When a logarithmic base of 2 is employed in Equation 4.32, the JSD is

bounded within the range of [0, 1].

DJS(P,Q) =

√
1

2

[
DKL(P ||M) +DKL(Q||M)

]
(5.29)

Where, M =
P +Q

2

And, DKL(A||B) =
∑
x

A(x) log

(
A(x)

B(x)

)
(5.30)

In LEAF, the frequency response of each filter is a sampled Gaussian kernel and can be

interpreted similarly to a probability distribution. Typically used to compare between a

ground truth distribution and a distribution of simulated values, in this context it compares

between an initial distribution and a final distribution. As the JSD is bounded,

DJS(P,Q) = 1 means that the initial and learned filters are completely dissimilar to each

other. However, an issue arises in the subsequent analysis of the filterbanks when dealing

with filters having narrow bandwidths. Even slight changes in centre frequency can result in

significant distance variations, despite the overall position and shape of the filter remaining

relatively unchanged. To address this challenge, the final learned filters are also evaluated in

terms of changes in centre frequency and bandwidth relative to their initialisation.

5.4.3 Results & Discussion

Table 5.6 reports the performance of each task on their respective test set, although these

results are not the focus of this study. Instead, they demonstrate that each model has been

trained successfully and allow for comparisons between fixed filterbanks and learnable

filterbanks. It is evident that fully learnable frontends outperform their fixed filterbank

counterparts. The fixed filterbank learnable frontends also exhibit better performance than

the log-mel spectrogram baseline features, except for the Random initialisation, which is

intentionally sub-optimal. In the VAD task, the AUC metric is an exception where fixed

filterbanks outperform learnable filterbanks. Although learnable filterbanks with Random

initialisation show improvement compared to their fixed counterparts, they perform worse

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 151

VAD BSID

F1-Score AUC F1-Score Acc.

Filterbank Fixed Learn Fixed Learn Fixed Learn Fixed Learn

Linear 0.841 0.862 0.839 0.858 0.663 0.674 0.716 0.734
Mel 0.826 0.858 0.778 0.840 0.660 0.668 0.714 0.718
Bark 0.834 0.860 0.816 0.846 0.660 0.665 0.708 0.716
Random 0.802 0.807 0.765 0.759 0.653 0.662 0.681 0.715

Log-Mel 0.847 — 0.881 — 0.646 — 0.697 —

Table 5.6: Results on hold-out test set for VAD and BSID tasks. Includes results using
learnable frontends with fixed filterbanks (Fixed) and using learnable frontends with learnable
filterbanks (Learn). Results between each fixed/learn pair are statistically significant. Best
results for the learnable frontend are marked in bold.

than learned filterbanks initialised with other strategies. This can be attributed to the

sub-optimal nature of the random initialisation, which hampers learning and consequently

affects the final performance of the model.

The most significant performance improvements from static baseline features to learnable

features are observed in the BSID task. This can likely be attributed to the PCEN

compression layer, as discussed in Section 5.3.4 and in the accompanying paper [3]. Unlike a

static logarithmic compression, which performs well on cleaner data with subjects in close

proximity, PCEN enhances the dynamic range of the signal and reduces noise, particularly in

far-field and noisy recording conditions.

Regarding the VAD task, performance improvements when using learnable filterbanks are

more evident. Previous work [65, 88] suggests that a fixed Linear filterbank is sub-optimal,

with some studies favouring the Mel initialisation for both tasks. However, in both fixed and

learnable scenarios, the Linear initialisation performs best for both VAD and BSID tasks. A

generalisation cannot be made that Linear is the best initialisation to use with learnable

filterbanks. However, it can be speculated that by not prioritising certain frequencies in the

spectrum, as Mel and Bark do, the model as a whole can learn more from the data. This

may especially be true in the case of the bird audio task as many bird species vocalise above

1000 Hz, below which most of the energy in the Mel and Bark filterbanks are contained.

This speculation holds true whether the filterbank is further tuned in training, or is fixed.

152

In the VAD task, the best result was achieved using learnable filterbanks with linear

initialisation (F1-Score 0.862, AUC 0.858). Whilst a direct comparison is challenging due to

a difference in the testing dataset, our performance aligns with the performance reported

in [100] (Mean AUC 0.886). This indicates that the model was trained correctly, with

differences arising due to the different test sets. The AUC of the baseline log-mel

spectrogram is higher than that of the learnable frontend, with the log-mel spectrogram

achieving an AUC of 0.881, compared with the next highest AUC of 0.858 in the learnable

Linear filterbank. This suggests that the model using the log-mel spectrogram baseline may

generalise better, but in terms of classification performance, the learned Linear filterbank

performs best.

In the BSID task, again the best results are achieved using trainable filterbanks with linear

initialisation (F1 0.674, Acc. 0.734). Direct comparison of accuracy is possible, with the

performance of this study being in line with [166], who reported an accuracy of 0.722 on this

task. Once again, this indicates that the model was trained correctly, and that investigation

into the state of the filterbanks can be undertaken with confidence.

The more pertinent findings of this study can be seen in Figures 5.10, 5.12 and 5.13.

Figures 5.10 and 5.13 show the frequency responses of each filterbank before and after

training, while Figure 5.12 depicts the filterbank movement from initial values over time,

using the JSD. The triangle inequality property of the JSD allows for the plotting of this

figure. In Figure 5.12, for the VAD task there is very little movement from the Linear and

Bark initialisations (0.07 and 0.10 respectively), with no filters moving substantially. The

Mel initialisation (0.13) displays movement in the lower frequency filters, showing a shift to

lower centre frequencies while maintaining the same bandwidth (as seen in Figure 5.13,

although the change is subtle). This shift results in a large distance due to the small

bandwidth of the low frequency filters, any change in centre frequency for low bandwidth

filters represents a substantial change in distance when using the JSD. The intentionally

sub-optimal Random initialisation shows more movement, with mean distance of 0.23.

Despite the greater movement compared to the learned Linear filterbanks, other initialisation

strategies do not provide as good a solution. Contrasting these distances with the final

learned filters in Figure 5.13, we observe that the overall state of the filterbanks have not

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 153

Figure 5.12: Jensen-Shannon distance of each filter from its initialisation for the VAD and
BSID tasks, by initialisation strategy. The mean of the final distances is also shown in each
plot’s title.

changed substantially from their initialisation, with no sign of movement towards a general,

optimum solution.

Comparing these findings to the BSID task, in Figure 5.12 we see more movement between

initial and final filters compared to the VAD task. The Mel and Bark initialisations move

least (0.22 and 0.30 respectively), both showing movement in the lower and higher frequency

filters. The Linear initialisation (0.43) has more movement than either of the psychoacoustic

initialisations, with movement across most frequency channels. Similar to the VAD task, the

Random initialisation shows the most movement (0.51). However, when contrasting again to

Figure 5.13, we do not see change in the overall state of the learned filterbanks with the

exception of Random, which moves towards a linear-like state. Similar to VAD, although the

learned filterbanks in the BSID task exhibit some movement they do not achieve similar

performance to the best performing filterbank (Linear initialisation). If the optimisation

strategy was functioning as intended, all learned filters would achieve similar performance.

This study demonstrates the sensitivity of learnable filterbanks to initialisation, and quantifies

154

Figure 5.13: The frequency response of the learned filterbanks after training on each task
(VAD and BSID). Centre frequency is represented by the solid line and bandwidth by the
shaded area.

Chapter 5. Learnable Frontends and the Filterbank Initialisation Problem 155

the change from initialisation in the final learned filters. The findings indicate a lack of

learning in learnable filterbanks, which is consistent across two different tasks and four

initialisation strategies. While performance can be improved with learnable filterbanks, it

comes at additional computational cost. These results have implications in considering the

trade-off between training time and model utility.

This section introduced a methodology for quantifying the lack of filter movement in

learnable filterbank-based audio frontends, offering novel insights into their shortcomings.

However, for learnable filterbanks to be merited, they must offer reliable performance

increases. Ideally, learnable filterbanks should move from their initialisation to a set of

optimal filters. This should happen with any reasonable initialisation, such as Mel, Bark or

Linear. The inconsistency in the performance of the learned filters, coupled with the lack of

movement from initial filterbank values, demonstrates a shortcoming in the overall

optimisation strategy. Chapter 6 builds upon this work, with the development of tangible

mitigation strategies to these shortcomings. Furthermore, it applies the insights gained from

this chapter and the first section of Chapter 6 to integrate learnable frontends into the FSL

system developed in Chapter 4.

Chapter 6

Mitigating the Filterbank

Initialisation Problem and Returning

to FSL

Chapter 5 demonstrated that learnable frontends can offer performance increases over static,

non-learnable counterparts despite some limitations. In particular, the use of learnable

compression, such as PCEN [211], substantially enhances performance compared to using

logarithmic compression, or no dynamic range compression at all (refer to Table 5.3 and

Figure 5.9). Learnable frontends incorporating filterbanks also have the potential to improve

performance (see Table 5.6), however they are sensitive to their initialisation. This sensitivity

manifests in two ways: firstly, the filters exhibit reluctance to move from their initialisation in

terms of centre frequency or bandwidth; secondly, differing performance across initialisations,

even after training. Ideally, optimisation of the filterbank should yield consistent performance

regardless of the initialisation, within reasonable limits. This chapter proposes two mitigation

strategies for the filterbank initialisation problem, along with the application of both

learnable compression (PCEN) and an ‘all-in-one’ learnable frontend (eLEAF) to the

prototypical network discussed in Chapter 4. These proposals aim to address the filterbank

initialisation problem and further explore FSL as a means of implementing BAD.

157

158

This thesis chapter is separated into two sections: Firstly, Section 6.1 outlines two strategies

to counteract the filterbank initialisation problem as seen at the end of Chapter 5

(Section 5.4). Section 6.1.1 and Section 6.1.2 detail the two suggested modifications to the

training strategy. Section 6.1.3 describes the experimental setup, while Section 6.1.4 presents

and discusses the results of these experiments. Subsequently, Section 6.2 revisits FSL, this

time incorporating learnable frontends. Section 6.2.1 briefly discusses the advancements in

FSL for bioacoustics since the 2021 DCASE challenge. Section 6.2.2 recaps the experimental

setup from Chapter 4 and finally Section 6.2.3 presents and discusses the results of these

experiments.

6.1 Mitigation Strategies for the Filterbank Initialisation

Problem

Section 5.4.3 demonstrated that learnable frontends using learnable filterbanks exhibit

sensitivity to their initialisation. The learned filters do not differ substantially from their

initialisation, indicating a lack of learning. The choice of initialisation impacts performance,

and the learned filters fail to compensate for this choice. While learnable filterbanks do

enhance performance, these increases should be reliable and not contingent on their

initialisation, the filters should move from any reasonable initialisation to a set of optimal

filters. Determining whether the learned filters are optimal remains challenging; nevertheless,

regardless of their intialisation, the learned filters should exhibit similarity post-training.

Additionally, observed changes in the frontend appear to be model-dependent; the learned

filterbanks with EfficientNet-B0 [190] exhibit more deviation from their initialisation

compared to those in the STA-VAD [100] network. This points to a shortcoming in the

optimisation strategy, as not only do the filters not move from their initialisation, but their

movement is both data and model dependent.

These shortcomings lead to the belief that the best optimisation strategy for the backend

may not necessarily be the most effective for the frontend. Two improvements to the

training method are proposed, which aim to mitigate some of the effects of the initialisation

problem. These two improvements are: alternate training (alternating training between the

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 159

Figure 6.1: The proposed mitigation strategies involve alternate training (top) and using
separate optimisation (bottom) of the frontend and backend. Alternate training involves
optimising only one section of the model at a time for a specified period (e.g. one epoch).
Separate optimisers involve the usage of two optimisers. This can include the use of different
optimisation algorithms and learning rates; however, in these experiments, only the learning
rates differ. The following experiments also employ a combination of both strategies.

frontend and the backend), and separate optimisation of the frontend and backend. These

methods are depicted in Figure 6.1, with further details provided in Section 6.1.1 and

Section 6.1.2 below.

6.1.1 Alternating Training

Alternating training is inspired by alternating optimisation methods. Bezdek and

Hathaway [12, 13] formulate alternating optimisation as an iterative procedure, which

minimises some function g(θ) jointly over all parameters θ by alternating minimisation over

non-overlapping subsets of θ. Applying this principle to a deep learning context, we wish to

minimise the loss function used to train the model, L(fθ(X), ŷ), jointly over the model

parameters θ by alternating minimisation over the parameters of the backend θb and the

parameters of the frontend θf . These parameters are non-overlapping and form the complete

set of parameters in the model θ = {θf , θb}. Alternate training has some differences to

alternating optimisation, but is inspired by this idea of minimising parameters separately.

160

Alternating optimisation-based methods have been deployed in deep learning [219],

particularly in the problem of Blind Super-Resolution [75, 102]. In some cases, it is utilised as

an alternative to gradient descent-based optimisation [219], whereas others utilise gradient

descent-based minimisation in conjunction with an alternating optimisation-based framework.

Gradient-descent-based optimisation is used in the training of our models. Luo et al. [75]

used this hybrid approach in their work on super resolution of images, optimising sections of

their model alternately such that they work in tandem towards an optimum. This is the most

similar to our alternate training method.

This method allows the model to initially optimise the backend layers based on the frontend’s

initialisation, enabling the backend to learn certain features and a classifier. After this initial

learning phase, the backend is frozen, and the frontend layers are subsequently optimised to

enhance the TF-representation of the signal. This process is repeated according to a

predefined schedule (e.g., optimising each set of parameters on alternating epochs), and

training concludes upon reaching convergence. In this way, it is hoped that the filterbank is

forced to move away from it’s initialisation by restricting the available parameters for loss

minimisation to those within the frontend.

Practically, this alternate training approach is implemented by grouping frontend and

backend parameters into separate lists. According to a specified schedule, a flag determining

whether these parameters should be included in the backwards pass of the model (calculating

gradients and optimising weights) is alternately set to true or false. In the following

experiments, these flags are simply toggled every epoch. During even epochs (starting from

epoch 0), the backend is optimised while the frontend layers remain frozen. On odd epochs,

the frontend is optimised while the backend layers are frozen. This is depicted by the top

section of Figure 6.1. An early stopping method is employed to check for model convergence.

Although this simple even/odd toggling system is used, more intricate scheduling options

could be explored. However, these alternatives are not tested in this work due to limitations

in experiment runtime.

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 161

6.1.2 Separate Optimisation

Separate optimisation involves employing several optimisers to train specific segments of the

model, which can be done within the same backwards pass, as opposed to alternating

optimisation. The change in the filterbank between its initialisation and the end of the

training stage varies between models (refer to Figure 5.12 and Figure 5.13). With the belief

that a stable learning rate for the backend might be too conservative for the frontend

(especially the filterbank), isolating parameters for these sections and employing separate

optimisers presents a promising approach to addressing the lack of movement.

While conceptually simpler than alternating optimisation, separate optimisation provides

considerable flexibility during training. In its simplest form, two learning rates are employed,

with the backend’s rate typically configured for less aggressive, more stable updates, and the

frontend allowed to make more aggressive parameter changes. This simple case, where only

the learning rate differs between the optimisers, is depicted in the lower part of Figure 6.1.

However, this method allows for using different optimisation methods, differing optimisation

hyperparameters, or applying different regularisation methods depending on the layer type.

Separate optimisation is widely implemented in some form in many deep learning tasks and

architectures, such as Generative Adversarial Networks (GAN) [149], but more typically in

cases where there are separate encoder/decoder architectures.

Practically implementing separate optimisers is straightforward, facilitated by the support for

multiple optimisers for different parameter groups in deep learning frameworks like PyTorch

and TensorFlow. This is an easy and flexible addition to existing code and still enables

running the entire model with the same learning rate and optimisation algorithm, all specified

in a configuration file.

6.1.3 Experimental Setup

The tasks, models and data used in the following experiments are the same as those detailed

in Section 5.4 for characterising the filterbank initialisation issue. For more details on the two

tasks (VAD and BSID), datasets, and models used, refer to Section 5.4.2 and Table 5.5. The

same metrics and analysis methods, including JSD and examination of learned filterbank

162

Figure 6.2: TF-representations of each initialisation method before training using portions of
audio from both the TIMIT [59] (with no additive noise) and BirdCLEF2021 [84] datasets.
PCEN parameters are initialised using s = 0.05, α = 0.98, δ = 2 and r = 0.5.

properties, are applied. The frontend employed is still eLEAF [166, 216] with a fully trainable

PCEN [211] compression layer.

The experiments involve alternating training (Alt.Train.), separate optimisation with different

learning rates (Diff LR), and a combination of both (Both) applied to the model’s training.

A Baseline method is also trialled, simply training the learnable frontends in an ‘off-the-shelf’

manner. These Baseline results include the original models trained in Section 5.4. There is

an exception to this, the Random initialisation has been modified so that it is no longer

well-ordered in frequency. Subject to some constraints on centre frequency, bandwidth and

spectrum coverage, this initialisation is now more random than the previous Random

initialisation. Consequently, the previous Random results from Chapter 5 have been

discarded.

Figure 6.2 displays sample TF-representations for each initialisation method using portions of

audio from both tasks. This enables us to observe the characteristics of the TF-representation

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 163

for each filter initialisation. Mel and Bark initialisations better capture the harmonics and

formants of human speech due to more filters at lower frequencies. In contrast, Linear

initialisation captures the high-frequency components of bird audio without any distortion or

warping of the frequency axis. Additionally, the TF-representation for Random initialisation

illustrates the absence of well-ordered centre frequencies in this initialisation.

There are 16 configurations in total, applied to both tasks, training models using each

initialisation (Linear, Mel, Bark and Random) and strategy (Baseline, Alt.Train., Diff LR and

Both). Results are presented as the sample mean of a metric ± the sample standard

deviation over three training runs, as in the original LEAF and eLEAF papers [166, 216].

Further analyses of the learned filters are taken from the model with the best F1-Score of the

three trained models for each initialisation/strategy combination.

Alt.Train. switches parameter groups to be optimised every epoch, while separate

optimisation uses the same optimiser (ADAM [90]) for both sets of parameters. The learning

rate for the frontend is set to 10−2, representing a 10× increase over the backend learning

rate. Backend optimisers are subject to learning rate schedules, as outlined in Table 5.5, and

an early stopping callback halts training after 10 epochs of convergence on a minimum, as in

Section 5.4.

6.1.4 Results & Discussion

This section begins by discussing model performance, focusing on the optimal initialisations

and strategies for each task. Discussion is provided for each task individually, followed by

overall observations. Subsequently, an in-depth analysis of the learned filters for each

strategy is presented. This section concludes with some general remarks on method

suitability and recommendations for filterbank initialisation.

Performance

Table 6.1 details the performance of each task for different initialisation and strategy

combinations. Generally, the use of the additional optimisation strategies increases

performance, especially in the VAD task. In contrast to the findings in Chapter 5, where

164

Initialisation Strategy
VAD BSID

F1 AUC F1 Accuracy

Linear Base 0.862± 0.003 0.857± 0.002 0.672± 0.002 0.729± 0.003
Linear Alt. Train. 0.788± 0.004 0.788± 0.004 0.655± 0.005 0.694± 0.002
Linear Diff LR 0.866± 0.002 0.860± 0.002 0.666± 0.004 0.714± 0.002
Linear Both 0.837± 0.005 0.823± 0.002 0.650± 0.003 0.688± 0.004

Mel Base 0.855± 0.003 0.839± 0.002 0.667± 0.003 0.717± 0.005
Mel Alt. Train. 0.824± 0.009 0.823± 0.003 0.668± 0.004 0.726± 0.002
Mel Diff LR 0.870± 0.002 0.861± 0.001 0.618± 0.005 0.643± 0.003
Mel Both 0.828± 0.009 0.848± 0.004 0.503± 0.008 0.615± 0.005

Bark Base 0.856± 0.004 0.844± 0.002 0.664± 0.003 0.711± 0.005
Bark Alt. Train. 0.726± 0.005 0.711± 0.004 0.518± 0.003 0.634± 0.004
Bark Diff LR 0.867± 0.002 0.859± 0.003 0.516± 0.003 0.630± 0.004
Bark Both 0.839± 0.007 0.850± 0.001 0.658± 0.006 0.694± 0.004

Random Base 0.833± 0.007 0.825± 0.003 0.455± 0.002 0.562± 0.002
Random Alt. Train. 0.837± 0.006 0.843± 0.002 0.448± 0.004 0.553± 0.004
Random Diff LR 0.869± 0.004 0.872± 0.002 0.463± 0.004 0.572± 0.002
Random Both 0.793± 0.007 0.793± 0.009 0.430± 0.003 0.532± 0.003

Table 6.1: Results on hold-out test set for VAD and BSID tasks. The Baseline, Alt. Train,
Diff LR and Both strategies are evaluated across different initialisations (Linear, Mel, Bark
& Random). The values presented are the mean and standard deviation of each metric over
three runs (as in [166, 216]). Best results for each task per initialisation are highlighted in
bold. Best overall results for each task are marked in red.

Linear initialisation performed best on both tasks (refer to Table 5.6), this is no longer the

case for the VAD task. When employing mitigation strategies in the VAD task, Mel and

Random initialisations yield better results.

For the VAD task, the best F1-Score result comes from using Mel-Diff LR (0.870),

employing a more aggressive frontend optimisation. Random-Diff LR produces the best

results on the AUC metric (0.872). Random initialisation should not be considered a valid

initialisation due to dependency on the seed and generation algorithm. However, these

results suggest that a well-ordered initialisation might not be essential for good performance,

depending on the backend model and task. Regardless of the initialisation strategy, using

separate optimisers with a higher learning rate for the frontend layers consistently improves

performance over the baseline model.

On the BSID task, Linear-Baseline yields the best results (0.672 for F1-Score and 0.729 for

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 165

accuracy). Linear initialisation remains the overall best performer on the BSID task.

Alt.Train. improves the performance of the Mel initialisation, whereas Diff LR improves the

results of the Random initialisation. Both Linear and Bark initialisations do not benefit from

using either of these strategies.

In the VAD task, Random initialisation does not significantly impact performance. When

coupled with Diff LR, it improves from the baseline and competes with other initialisations.

Conversely, in the BSID task, Random initialisation performs significantly worse than other

methods. Alongside the practical concerns associated with Random initialisation, the success

of learning from the resulting TF-representation appears task and model-dependent.

Considering the issues related to seeding and implementation of the random number

generator and generator, it is advisable to avoid random initialisation, even if the model can

learn from the TF-representation.

Overall, the use of separate optimisers with a more aggressive learning rate has improved the

performance on the VAD task. Additionally, Mel initialisation remains a sensible starting

point for tasks involving human speech. It should also be noted that with the exception of

the AUC metric using a Random initialisation, the Diff LR strategy results show similar

performance, varying by at most 0.008 in F1-Score and 0.006 in AUC.

Contrast this to the BSID task, where there is no agreement on whether one strategy is best.

However, it seems that no mitigation strategy (i.e. Baseline) may be preferable. In

Section 5.4.3, it was noted that learned filterbanks in the BSID task differ more from their

initialisation compared to the VAD task. The effectiveness of a strategy such as Diff LR may

also be model and data-dependent. Both Alt.Train. and Diff LR perform well on Mel and

Random initialisations, while Baseline works best with Linear and Bark initialisations.

Considering the best performance is achieved using Linear-Baseline, it is recommended to use

a linear initialisation with bird audio.

Analysis of Learned Filterbanks

Examining the learned filterbanks in the VAD task, Figure 6.3 illustrates the filterbanks’

movement over time, while Figure 6.4 presents the frequency responses of each filterbank.

166

Figure 6.3: Jensen-Shannon distances of each filterbank from its initialisation for the VAD
task. This figure is ordered by initialisation horizontally, and by training strategy vertically.

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 167

Figure 6.4: In each subplot in this figure, the frequency responses of the trained filterbanks
for the VAD task are depicted. These subplots illustrate the frequency responses for each
training strategy: Baseline, Alt. Train, Diff LR and Both. The solid line represents the center
frequency, while the shaded area represents the bandwidth.

168

Similar to Section 5.4.3, the learned filters using the Baseline strategy exhibit little

movement overall, with more pronounced shifts in filters with narrow initial bandwidth,

notably in Mel and Bark initialisations. Again this is attributed to the small bandwidth and

the nature of the JSD, which compares distributions. Slight changes in centre frequency lead

to significant changes in distance. Alt.Train. similarly displays limited movement, allowing

the same amount of movement over a shorter time period by restricting optimisation to only

the frontend’s parameters. Figure 6.4, reflects this lack of movement, with little change from

the initial filters for both Baseline and Alt.Train. Despite some differences in the learned

filterbanks between Baseline and Alt.Train., the latter performs worse than Baseline on every

initialisation in the VAD task.

Diff LR was shown in Table 6.1 to allow for the best and most consistent performance in the

VAD task. The filters in this task also exhibit the most movement, as seen in Figure 6.3 and

Figure 6.4. However, attention should be drawn to the training duration —- unlike models

trained using Baseline, Alt.Train. or Both strategies, Diff LR creates an unstable training

scenario resulting in training being interrupted (with the exception of Mel-Diff LR although

this is likely by chance). The increased learning rate and aggressive optimisation lead to NaN

values in the TF-representation which propagate through the model, causing an undefined

loss and halting training. More robust parameter clamping and NaN handling in the frontend

could address this issue. Nevertheless, Diff LR yields the best results on all initialisations,

suggesting potential performance gains with modifications.

In the two psychoacoustic initialisations (Mel and Bark), most movement occurs in the low

and middle frequency filters, consistent with Baseline and Alt.Train., albeit on a larger scale.

The speech energy in TIMIT is primarily located below 1 kHz, with little information past 3

kHz. These lower and middle frequency filters adjust during training to capture pertinent

information close to their initialisation. Figure 6.4 highlights these changes from

initialisation. However despite achieving similar results with all initialisations in Table 6.1,

the learned filterbanks have not converged on a common arrangement.

The Both strategy seems to counteract the unstable training of Diff LR, allowing the model

to train longer and while still showing movement in the filterbanks, as illustrated by both

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 169

Figure 6.3 and Figure 6.4. Despite stability and increased movement, models trained with

Both perform worse than those using the less stable Diff LR or the simple Baseline strategies.

For the BSID task, Figure 6.5 illustrates the movement of filterbanks over time, while

Figure 6.6 displays the frequency responses of each filterbank after training. Similar to

Section 5.4.3, Baseline shows some movement, but not a radical change from the

initialisation (see Figure 6.6). Referring to Figure 6.5, movement in the Mel and Bark

initialisations is primarily observed in low and high frequencies, while the Linear initialisation

shows small changes across all frequencies. The Random initialisation increases the

bandwidth of some filters with minimal change to centre frequencies. This strategy provides

the best overall performance on the task using the Linear initialisation (F1-Score 0.672,

accuracy 0.729), and also provides the best performance using the Bark initialisation.

However, as the filterbank undergoes minimal changes from its initialisation, it is believed

that the performance improvements are primarily from the PCEN compression layer.

Alt.Train. provides more movement than Baseline, contrary to its behaviour in the VAD task.

However, this often leads to decreased performance, with the exception of the Mel

initialisation. The JSD (Figure 6.5) indicates significant movement in low-frequency filters

and some in mid-frequency filters, particularly in the Bark initialised filterbank. Figure 6.6

illustrates that these changes result in higher centre frequencies and wider filter bandwidths,

aligning with findings in Section 3.1.1 regarding the typical range of fundamental frequencies

for bird vocalisations. While the learned Mel filterbank does become more ‘bark-like’, it is

this filterbank that delivers the best performance. The Linear initialisation exhibits

considerable movement across all frequencies, with slightly worse performance than Baseline

(0.666 vs. 0.672). Random initialisation shows little movement and also poor performance

when using the Alt.Train. strategy.

Unlike in the VAD task, Diff LR does not yield performance gains on any initialisation except

for Random. As discussed earlier, the Random initialisation is not recommended and is solely

used to test the mitigation strategies. On all other initialisations, performance decreases.

Diff LR allows for substantial filter movement (Figure 6.5), although training is more stable

on the BSID task. This is likely due to the higher fundamental frequency of bird

170

Figure 6.5: Jensen-Shannon distances of each filterbank from its initialisation for the BSID
task. This figure is ordered by initialisation horizontally, and by training strategy vertically.

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 171

Figure 6.6: In each subplot in this figure, the frequency responses of the trained filterbanks
for the BSID task are depicted. These subplots illustrate the frequency responses for each
training strategy: Baseline, Alt. Train, Diff LR and Both. The solid line represents the center
frequency, while the shaded area represents the bandwidth.

172

vocalisations, preventing the learned filters from going ‘out-of-bounds’. The final learned

filterbanks have similar characteristics to the Alt.Train filterbanks, except for the Linear

initialisation, which exhibits more movement using this strategy.

The Both strategy generally performs poorly on all initialisations, except for Bark

initialisation. Inspection of the resulting filterbank in Figure 6.6 suggests that wide bandwidth

filters (in filters 0–8) covering a significant portion of the middle and high frequency ranges

contribute to the relatively better performance. The learned Mel filterbank also shows

similarities to its Alt.Train. and Diff LR counterparts, but achieves very poor performance.

The Alt.Train., Diff LR and Both strategies encourage substantial movement in the

low-frequency filters, particularly evident in the two psychoacoustic initialisations of Mel and

Bark, as depicted in Figures 6.5 and 6.6. It is worth highlighting the average DFT of the

BirdCLEF2021 dataset, illustrated in Figure 5.11, where a substantial amount of information

is present between 2 kHz -– 5 kHz. In the psychoacoustic Mel and Bark initialisations the

lower-frequency filters are initially positioned below 1 kHz, during training they expand

towards higher centre frequencies and larger bandwidths in an effort to enhance their utility.

General Remarks

The overall poor performance of Alt.Train. (with the one exception in the BSID task)

suggests that alternate training is an ineffective mitigation strategy for the filterbank

initialisation problem and may even hinder performance. Additionally, Both also appears to

be an ineffective mitigation strategy, primarily tempering the more aggressive optimisation of

Diff LR. Diff LR serves as a promising starting point for formulating a mitigation strategy,

delivering increased and consistent performance on the VAD task (the same is not seen in

the BSID task). Additionally, the ease of implementation means that a general

recommendation can be made to use separate optimisers.

Grouping frontend and backend parameters separately and applying the same optimisation

algorithm and learning rate to both sets of parameters, is equivalent to employing one

optimiser for all parameters in the model. This approach provides flexibility to optimise the

frontend differently, utilising a distinct optimisation algorithm (with associated

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 173

hyperparameters), learning rate, scheduler, or a combination of these.

Concerning filterbank initialisation, it is unsurprising that a mel filterbank proves to be the

best starting point for human speech, although a linear filter also performs well. Mel

initialisation is appropriate owing to the large amount of filters below 1 kHz, effectively

capturing a significant portion of the information present in human speech (refer to

Figure 5.11). For bird vocalisations, linear initialisation appears to be the most effective.

Linear initialisation does not prioritise frequencies below 1 kHz, where the frequency content

of bird vocalisations rarely occurs (refer to Figure 5.11 and additionally Figure 3.2), offering

greater flexibility when learning filterbanks. It also demonstrates good performance in the

non-learnable case, as indicated in Table 5.6. The root cause of the filterbank initialisation

problem, additional mitigation strategies, and the optimisation of filterbanks in general

remain topics for future work. This is elaborated upon in Section 7.3 with possible lines of

investigation discussed.

6.2 Returning to Few-Shot Learning

In the final paragraphs of Section 4.3.4, it was concluded that enhancing the performance of

the FSL system discussed in Chapter 4 would be best achieved by focusing on improving

feature representation. This decision was informed by an analysis of the embedding space,

suggesting that the clustering of positive and negative class query points was influenced by

noise and far-field conditions in the recordings. Improvements in feature representation would

also have wider impact in tasks outside of an FSL context.

These improvements to feature representation involve the incorporation of learnable

frontends, enabling the direct learning of features from the data. Chapter 5 explored various

popular learnable frontends, some of which are proposed as ‘off-the-shelf’ replacements for

the log-mel spectrogram. Section 5.3 evaluated these frontends in a bioacoustics task

(species agnostic BAD), and found that learnable frontends do increase performance,

particularly learnable compression such as PCEN [211]. While frontends employing learnable

filterbanks such as LEAF [216] and TD [217] did not preform as well, their potential lies in

the direct learning of filterbanks from the data, addressing the potential unsuitability of the

174

mel scale for bird audio.

After the investigations of Chapter 5 and the first part of the current chapter, we now revisit

FSL. We use the same prototypical network (protonet) [177] architecture previously used in

our submission [2] to the DCASE2021 Few-Shot Bioacoustic Sound Event Detection

Challenge [125], with the addition of learnable frontends.

As this work focuses on feature representation and not improvements to the training regimen

or model architecture, Section 6.2.1 provides a brief overview of advances in FSL for audio,

particularly bioacoustics, since the conclusion of the 2021 challenge. Section 6.2.2 recaps the

2021 challenge task and data, and provides a description of the changes made to the

protonet. Finally Section 6.2.3 presents and discusses the results of adding learnable

frontends to the system.

6.2.1 Few-Shot Learning for Bioacoustics since 2021

As mentioned above, the protonet used in the following experiments was initially developed

in early 2021 for the DCASE challenge. In the interest of direct comparison with other

experiments presented in Chapter 4, and to focus solely on the impact of learnable frontends,

this configuration remains unchanged. However, the DCASE Few-Shot Bioacoustic Sound

Event Detection Challenge also occurred in 2022 and 2023, with advancements in the field

with each edition.

In this section, an overview is provided of FSL in bioacoustics since 2021 to summarise

advancements in the field parallel to this work. Due to changing datasets each year, reported

metrics are not directly comparable across different years. Nonetheless, discussion will

include each submission’s ranking within its respective year to provide context of the

submission’s relative performance.

In the 2022 challenge, many entrants leveraged the methodology proposed by Yang et

al. [214], employing transductive inference for addressing the FSL problem. The leading

submission, presented by Tang et al. [191], achieved an F1-Score of 0.602 on that year’s

evaluation set. This submission noted the significance of support set construction to

classification performance, emphasising that audio at event boundaries might poorly represent

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 175

the corresponding event. The author’s hypothesis posited that audio from the middle of

events serves as a better representation of the class. This approach involved using such audio

for support set creation, employing adaptive window sizes during feature generation, and

training the encoder with cross-entropy loss, similar to other non-meta-learning-based FSL

systems [31, 195, 206]. Despite its effectiveness, this entry’s model complexity was notably

high, comprising 12M parameters, making it one of the largest models of that year.

The second-highest ranked system, submitted by Liu et al. [105], achieved an F1-Score of

0.482. This submission incorporated background class modelling, similar to our approach in

Section 4.3.3, to better represent potential negative classes during inference. Additionally, it

used transductive inference and a large pretrained CNN as the embedding function, requiring

additional inference time training of the model and increasing model complexity.

The third place entry by Martinsson et al. [122] employed a protonet-based system trained

with cross-entropy loss, achieving a F1-Score of 0.480. This submission used ensemble

modelling and adaptive embedding functions based on the minimum length of a support set

event. While the best results with this model involved ensemble modelling, pushing model

complexity to 25 million parameters, the use of adaptive embedding functions alone yielded

improvements over the baseline protonet model.

In 2023, the highest-ranking system was once again submitted by Tang et al. [213], with an

F1-Score of 0.638. This was achieved through the use of a transformer-based

architecture [201], capitalising on the temporal information of the audio, with a parameter

count of approximately 21M parameters. The training process involved cross-entropy

training, and akin to SimpleShot [206], the FSL problem was transformed into a fine-tuning

problem using limited data, supplemented by data augmentation.

The second-highest ranked system in 2023, presented by Moummad et al. [126] achieved an

F1-Score of 0.427. This entry utilised a supervised contrastive learning strategy [89], an

extension of the triplet loss discussed in Section 4.3.2. Supervised contrastive learning aims

to minimise the distance between similar instances while maximising the distance between

dissimilar instances. Contrasting with triplet learning, which involves triplets of points

(anchor, positive, and negative), supervised contrastive learning focuses solely on pairs of

176

points, whether similar or dissimilar. Triplet loss focuses on preserving relative distances

between triplets, while supervised contrastive loss aims to learn discriminative representations

by bringing similar samples close and separating dissimilar samples based on class labels.

The third place entry submitted by Liu et al. [106] achieved an F1-Score of 0.425. This

protonet-based approach utilised a similar architecture to our system but incorporated

Squeeze-and-Excitation (SE) blocks [74] to enhance performance. These SE blocks capture

dependencies and global relationships between convolutional filters, generating scaling factors

that manipulate and control the importance of each filter in the encoder network. This

introduces an attention-like mechanism without significantly increasing computational

complexity, maintaining a small model size of 724k parameters. While larger than our

system’s 132k parameters, SE blocks offer architectural performance improvements without a

substantial increase in parameter count or relying on additional inference-time adaptation.

In summary, the top-performing systems in both 2022 and 2023 employ large architectures,

yielding impressive results at the expense of complexity. Many approaches also incorporate

transductive inference or other inference-time adaptations to the model. These approaches

are computationally intensive and potentially unsuitable for deployment on low-resource

hardware.

Nonetheless, there are other techniques from these entries that do not rely on large models

and inference-time adaptation. Transitioning from prototypical loss functions to supervised

contrastive learning [106] or cross-entropy can improve performance. The inclusion of SE

blocks [106] represents an architectural improvement with relatively low increased

computational complexity, especially when compared to other entries. Improved support set

construction [191] contributes to the development of more robust class prototypes. The

application of these methods to a low-resource system, while also incorporating learnable

frontends, is suggested as future work.

6.2.2 Experimental Setup

The experimental setup closely mirrors that in Section 4.2, although a brief overview of the

task, training data and evaluation data is provided here for convenience. The DCASE

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 177

challenge [125] entails an activity detection task, wherein each recording contains a single

class of interest, either a mammal or bird vocalisation. The objective is to accurately identify

onset and offset boundaries for events corresponding to the class of interest given the positive

and negative support sets. The model’s support set consists of the first five instances of the

class of interest in each recording and the model is required to generalise to classes unseen

during training time. Training involves multiclass training, while inference operates as a

binary classifier predicting the presence of the class of interest in an audio segment.

For detailed information on training and evaluation data, refer to Section 4.2.2, and the

summaries in Table 4.1 and Table 4.3. The training set annotations are multiclass,

containing the audio filename, onset and offset times, and positive (POS), negative (NEG),

and unknown (UNK) values for each class. Evaluation set annotations are binary with a

skewed class distribution, primarily negative. Support sets are constructed from the first five

positive events and the preceding audio segments for the negative class. As these audio

events are of varying duration, the first 5 entries for both classes will result in a different

amount of support audio.

The architecture of the prototypical network remains unchanged from Chapter 4 (see

Table 4.4), except for the addition of a learnable frontend before the encoder. The primary

changes pertain to data loading: the raw waveform is now segmented into 200 ms events

with a 50 ms hop, eliminating the use of precomputed mel spectrograms and static PCEN

compression. No data augmentation is performed, but Random Over-Sampling is still

employed to address the issue of class imbalance.

Two learnable frontends, a fully trainable PCEN compression layer [211] and eLEAF [166,

216] (with PCEN), are chosen based on their performance in Section 5.4. PCEN expects a

TF-representation, computed from the raw waveform’s STFT with 128 frequency bins. No

frequency warping is performed, based on the results from Section 5.4.3 and Section 6.1.4

where a linear frequency scale yielded the best performance. eLEAF is configured similarly,

with 128 filters and linear initialisation. Both frontends produce a TF-representation of

R17×128, the same size as the original TF-representations. No strategy from Section 6.1 is

utilised during training of the frontends, as this task closely resembles the BSID task, which

178

System F1-Score Precision Recall

Original Submission [2] 0.350 0.488 0.272
Modified System (Section 4.3) 0.368 0.522 0.284
PCEN 0.438 0.497 0.392
eLEAF 0.430 0.481 0.389

2021 Challenge Winner [214] 0.384 N/A N/A

Table 6.2: Results on the challenge evaluation set for the original submitted system, employing
prototypical triplet loss + multiple representations (Modified System), and when utilizing
learnable frontends (PCEN and eLEAF). The F1-Score of the top-ranked system [214] from
the 2021 challenge is included for comparison, precision and recall values are unavailable. The
best results for each metric are marked in bold.

performed best using no mitigation strategy.

Training employs the prototypical triplet loss [48], detailed in Section 4.3.2, and follows the

same procedure outlined in Section 4.2.3 with SGD optimisation, an initial learning rate of

0.01, and a momentum factor of 0.85. Learning rate is scheduled to halve when a plateau is

reached, with a patience of 5 epochs and a threshold of 0.01.

6.2.3 Results & Discussion

Table 6.2 presents a comparative analysis of the performance of our original protonet system,

the system incorporating modifications outlined in Section 4.3, and protonets featuring

learnable frontends (PCEN and eLEAF). For reference, the performance of the top-ranking

entry [214] from the 2021 challenge is also included for comparison, although no precision

and recall values were provided. Table 6.2 can be cross-referenced with Table 4.7 and

Table 4.8, which also report on the evaluation set, and entries relevant to this discussion

have been included for ease of comparison.

Comparing the performance across all systems, it is evident that learnable frontends

substantially improve the the prototypical network’s performance. The use of either PCEN or

eLEAF yields better performance in both precision and recall compared to both the system

with modifications from Section 4.3 and the top ranking system from the 2021 challenge.

The 2021 top-ranking system by Yang et al. [214], is a transductive inference based system,

requiring additional training steps during inference time and requiring 468k parameters. In

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 179

contrast, our prototypical network-based system requires no extra training and has a

maximum of 133k parameters (using 128 filters, PCEN adds 512 parameters, while eLEAF

adds 896).

Using a PCEN frontend yields a relative improvement of 25% in F1-Score, 2% in precision

and 44% in recall. On the other hand, an eLEAF frontend offers a relative improvement of

22% in F1-Score, 43% in recall, but a relative deterioration of 1.5% in precision. Notably,

both learnable frontends exhibit decreased precision compared to the modified system.

Overall the adoption of learnable frontends has substantially increased recall with a marginal

sacrifice in precision, resulting in an overall higher F1-Score. This means a reduction in false

negatives, the prevalence of which was attributed to noisy and far-field audio in

Section 4.3.4, motivating the use of learnable frontends. However, this comes at the expense

of increased false positives, which will be further discussed in the subsequent analysis of the

embedding space for both the PCEN and eLEAF networks.

Between PCEN and eLEAF, PCEN outperforms in all three metrics, aligning with earlier

findings in this work (Section 5.3.4), where PCEN exhibited superior performance in a BAD

task that also included LEAF. The performance gap between PCEN and eLEAF has

seemingly decreased, which may be due to the more aggressive optimisation of the protonets

compared to the EfficientNet-based model from Section 5.3. However, a direct comparison is

challenging due to differences in model and paradigm between these instances and those

discussed in Section 5.3.4.

Examining the impact of learnable frontends involves an analysis of the embeddings generated

by the network. As in Chapter 4, t-SNE is employed to reduce the dimensionality of the

embedding space, utilising the same hyperparameters as in Section 4.3.1. Figures 6.7 and 6.8

depict t-SNE visualisations of protonets using PCEN and eLEAF, respectively. As the original

challenge submission and the modified system are also included for comparison in Table 6.2,

this discussion will also refer to Figures 4.3 and 4.6, which show the t-SNE visualisations of

the embedding spaces for the original challenge submission and the modified system.

When comparing all four visualisations, the overall structure is not radically changed. This is

expected. Despite the improved performance with learnable frontends, the network still

180

Figure 6.7: t-SNE projection of the test data embeddings learned by the prototypical network
trained using PCEN as the frontend. The prototype representations for both positive and
negative classes are marked by a white ‘X’.

Figure 6.8: t-SNE projection of the test data embeddings learned by the prototypical network
trained using eLEAF as the frontend. The prototype representations for both positive and
negative classes are marked by a white ‘X’.

Chapter 6. Mitigating the Filterbank Initialisation Problem and Returning to FSL 181

exhibits type 1 (false positive) and type 2 (false negative) errors due to insufficient clustering

and separation between classes. However, both networks with learnable frontends enhance

the recall metric, reducing the number of false negatives. In Figures 4.3 and 4.6, these false

negatives are clearly seen, with many positive query points near the negative prototype and

within the negative cluster. In contrast, Figures 6.7 and 6.8 show a reduction in these false

negatives near the negative prototype, contributing to the increased recall and overall

performance improvement. The primary contributor to this enhanced performance is

suspected to be the PCEN compression, leading to similar overall structures in the

embedding spaces of models using PCEN and eLEAF.

False positives remain an issue, and learnable frontends have not improved on the precision

metric. These false positives can be attributed to non-stationary background noise, sound

events related to but not belonging to the class of interest, and insufficient modelling of

background classes. Although there is some deterioration of the precision metric compared to

the modified protonet from Section 4.3, it is not substantial, especially considering the gain

in recall. Further research may be needed to model the background class, enhance feature

representations further, or develop more discriminative embedding spaces, perhaps taking

inspiration from ideas discussed in Section 6.2.1.

Both frontends demonstrate comparable performance, and the majority of this performance

is attributed to the introduction of a fully trainable PCEN layer, with the learnable filterbank

having minimal impact. Learnable compression of the spectrogram magnitudes using PCEN

contributes the most to performance improvements, a trend observed in the wider evaluation

of learnable frontends in Section 5.3. Despite eLEAF’s improved throughput compared to the

original implementation, generating a TF-representation with eLEAF’s filterbank is slower

than calculating the STFT of the same audio signal. Coupled with the reduced performance

compared to PCEN, suggests that PCEN is the more suitable learnable frontend for this task.

These experiments show that learnable frontends also improve performance in an FSL

setting, as they do in a conventional classification setting (Section 5.3.4). Concurrently, the

field of FSL for bioacoustics has progressed, and additional techniques are available to

improve performance further. As mentioned earlier in Section 3.4, while FSL is attractive for

182

bioacoustics due to the limited availability of fully annotated datasets, its capacity to

generalise to unseen classes and potential computational efficiency are also attractive. Some

systems in Section 6.2.1 rely on methods requiring additional inference-time training or

network architectures unsuitable for low-resource deployment. However, there are applicable

methods and techniques, such as those discussed in the final paragraph of Section 6.2.1.

The further application of learnable frontends to newer, more effective architectures and

techniques, while continuing to consider low-resource applications, is left for future work.

This, along with other future work specific to learnable frontends mentioned in Section 6.1.4,

constitutes the discussion in Section 7.3.

Chapter 7

Conclusion

This thesis presents features and models designed to advance the automatic and remote

monitoring of birds based on their vocalisations, with an emphasis on prioritising potential

deployment to low-resource hardware. Additionally, it explores the efficacy of learnable

frontends in bioacoustic tasks and addresses a prevalent issue identified in learnable

filterbank literature. With the anticipated changes in climate and environment in the coming

decades, the long-term monitoring of bird populations has become increasingly vital for

scientific research, conservation efforts, and ecological considerations. Manual monitoring,

being labour-intensive, poses a challenge as the time spent collecting data could be better

utilised for analysis. Therefore, the development of high-performing, efficient systems capable

of operating on low-resource devices suitable for field deployment is crucial.

This chapter summarises the contributions and findings of each section (explicitly laid out in

Section 1.4), aligning with the two research questions proposed in the introduction

(Section 1.2). These research questions focus on the development of low-resource automatic

monitoring systems and the applicability of learnable frontends to bird audio and bioacoustics.

Additionally, this chapter discusses potential avenues for future work on FSL for bioacoustics

and for learnable frontends more broadly, as well as some final remarks on this thesis.

183

184

7.1 Architectures for Monitoring Bird Populations with Low

Resource Hardware

To address RQ1 and its two sub-questions, RQ1.1 and RQ1.2, Chapters 3 and 4 present

approaches for species-agnostic activity detection in bird monitoring. This is a vital first step

in the monitoring process and can function as a pre-filtering step on low-resource hardware to

save storage or minimise the volume of data to be analysed off-site.

Chapter 3 delves into addressing RQ1.1 by developing an original approach to

species-agnostic BAD using low-resource classifiers such as random forests, alongside AM,

spectral and pitch-based features. This feature set, named AMPS, capitalises on an

understanding of the relationship between a bird’s ability to modulate amplitude and

frequency. AMPS, with random forests, exhibits promising results as an initial filtering step,

achieving a balance between accuracy on bird audio tasks and computational efficiency.

AMPS is the primary contribution from Chapter 3. The algorithms used are within the

capabilities of embedded devices, offering performance only slightly below that of a small

CNN, at a fraction of the computational cost at inference time. Performance using AMPS

also surpasses that of other features such as MFCCs.

However, despite the promising aspects of the AMPS feature set, which is more grounded in

signal processing than machine learning, there are issues related to feature corruption due to

noise, similar to MFCCs. Consequently, low SNR recordings are prone to misclassification,

and the model’s limited generalisation to unseen species in the test set poses issues. While

suitable for deployment on low-resource devices, the potential issues with feature corruption

and generalisation mean that AMPS with random forests do not definitively address RQ1.

As large, temporally detailed, fully annotated bird audio datasets necessary for generalisation

are limited, the emergence of FSL for bioacoustics prompted the inclusion of RQ1.2.

Chapter 4 presents a protonet FSL system submitted to the DCASE2021 challenge and

analyses the system through an examination of the embedding space. This analysis identified

key areas for further development, namely background class modelling and improving both

inter-cluster separation and intra-cluster cohesion of the embeddings. Neither of these

Chapter 7. Conclusion 185

strategies improved performance of the system substantially, with further analysis suggesting

that research effort would be better spent on improving feature representations by learning

from the data itself. This motivates the exploration of RQ2, regarding the use of learnable

frontends in bioacoustics.

In Chapter 6, FSL is revisited to apply findings from investigations into learnable frontends

and their applicability to bioacoustics. The proposed system is the first to successfully

incorporate fully learnable frontends within the few-shot learning model. The experiments in

this chapter conclusively demonstrate that learnable frontends significantly enhance

performance, outperforming the top submission from the 2021 challenge. Although the

results are favourable given the class imbalance and the field’s relative immaturity, we

acknowledge the need for further research to enhance the system’s performance. Further

application of learnable frontends to FSL and the development of more reliable FSL-based

activity detection are areas for future research and we believe FSL has continued promise in

bioacoustic activity detection more generally.

7.2 Learnable Frontends in Audio Deep Learning

To address RQ2 and its two sub-questions, RQ2.1 and RQ2.2, chapters 5 and 6 provide

insights into the use and characteristics of learnable frontends. This includes an evaluation of

various learnable frontends in the context of a shared bird audio task, a detailed examination

of the shortcomings of learnable filterbank-based frontends — specifically, the filterbank

initialisation problem — and the introduction of training-based strategies to mitigate this

issue. The chapters also offer general recommendations on the use of learnable frontends in

bioacoustics.

In Chapter 5, a benchmark of traditional and ‘off-the-shelf’ learnable acoustic frontends is

conducted for audio classification, focusing on a bioacoustics task, specifically

species-agnostic BAD. This is the most comprehensive investigation to date on the suitability

of learnable frontends in bird audio. The results demonstrate significant improvements in

model accuracy using learnable frontends compared to traditional STFT or mel spectrogram

features. PCEN emerges as the top performer overall, a finding corroborated in Chapter 6.

186

The benchmarking and application of learnable frontends address RQ2.1, providing insights

into their impact on bird audio tasks and concluding that PCEN with a linear scale

TF-representation is recommended for optimal performance in terms of metrics and

computation.

The latter section of Chapter 5 characterises the filterbank initialisation problem, addressing

RQ2.2. To justify the use of learnable filterbanks, they should yield reliable performance

increases. Ideally, learnable filterbanks should move from their initialisation to a set of

optimal filters. The methodology and results in Section 5.4 provide novel insights into

quantifying the shortcomings of learnable filterbank-based frontends. The sensitivity of

learnable filterbanks to initialisation is demonstrated, and the change from initialisation to

final learned filters is quantified through the JSD and analysis of frequency responses. The

lack of learning in learnable filterbanks was consistent across two different tasks and four

initialisation strategies and while performance was improved with learnable filterbanks, there

was additional computational cost. This conclusively answers RQ2.2, indicating that

learnable frontends are highly sensitive to their initialisation, but the underlying reasons

remain a subject for future work.

The inconsistency in the performance of the learned filters, coupled with the lack of

movement from initial filterbank values, demonstrates a shortcoming in the overall

optimisation strategy. Attempts to address these shortcomings in Chapter 6, derived from

the conclusions arising from RQ2.2, yielded mixed results, with some strategies performing

consistently well in one task but not the other. This emphasises the need for further research

into the root causes of the filterbank initialisation problem to develop effective mitigation

strategies. Nevertheless, it is recommended to use separate optimisers for frontend and

backend parameters for flexibility, and a higher frontend learning rate promotes filterbank

movement. While learnable filterbanks show promise and merit further research, they cannot

currently be recommended for effective, practical systems. However, PCEN compression

yields impressive results, and is the recommended choice for bioacoustics, particularly in bird

audio applications.

Chapter 7. Conclusion 187

7.3 Future Work

The results, discussions, conclusions and limitations of this work, alongside developments

concurrent to this work, suggest a number of avenues for future work. Three of these areas

of future work are discussed here.

7.3.1 Few-Shot Learning for Bioacoustics

FSL for bioacoustics is still a young field with considerable potential, applicable to scenarios

involving the availability of compute power, to low-resource applications. Each iteration of

the DCASE FSL challenge shows improvement with more diverse data and an increasing

need for generalisation. However, the performance of these systems still falls short and

necessitates further refinement before practical deployment in real-world settings.

The incorporation of recent techniques discussed in Section 6.2.1, in conjunction with

learnable frontends, which are shown to increase performance (Section 6.2.3), would be a

good starting point for future work. While approaches like transductive inference or other

methods requiring extensive inference-time adaptation may offer significant performance

boosts over metric-learning methods like protonet, they should be avoided if the objective is

real-time classification and deployment on low-resource hardware. Similarly, the utilisation of

large systems with millions of parameters, despite the potential for pruning and quantisation,

should be avoided.

In addition to advancing FSL, realising the full potential of FSL as a low-resource activity

detector requires the implementation of such networks on embedded hardware. This step is

crucial for ensuring practical deployment in scenarios where computational resources are

limited. In general, the application of deep learning systems for bioacoustics to low-resource

hardware is an under-researched area in the field.

7.3.2 Causes of the Filterbank Initialisation Problem and Mitigation

Strategies

The underlying causes of the learnable filterbank initialisation problem remain undiscovered.

Due to time constraints, this aspect was not extensively researched or presented in this

188

thesis. A more comprehensive understanding of the root causes of this problem would serve

as the foundation for more effective mitigation strategies for existing learnable filterbanks or

the design of a frontend that addresses this issue.

As discussed above the primary focus, with regards to learnable filterbanks, in this work has

been on time-domain filterbanks and the flexibility provided by the scattering transform in

transforming hyperparameters into trainable parameters. Specifically, the attention has been

on parameterised time-domain filterbanks such as LEAF. Neural networks optimised through

gradient-based methods require the calculation of gradients for each layer, and in a

parameterised time-domain filterbank, these gradients exhibit a sinusoidal component. This

sinusoidal component makes the filterbank more susceptible to getting trapped in local

minima. This is actually a strike against parameterised time-domain filterbanks specifically,

as unconstrained time-domain filterbanks such as TD do not possess sinusoidal gradients,

though they still share sensitivity to initialisation (albeit to a lesser extent). Future research

should explore the impact of different optimisation algorithms on learnable filterbanks and

conduct a more thorough investigation of their gradients.

7.3.3 Learnable Frontends

More generally, learnable frontends are an area with huge potential for further development.

Learnable compression, exemplified by effective techniques like PCEN, is a well established

approach that is gaining increased adoption. While initially only one aspect of PCEN was

trainable, incremental improvements have now enabled the training of all parameters.

However, as pointed out by Schlüter and Gutenbrunner [166], PCEN is not suited for parallel

hardware, due to the smoother component, which is implemented as an IIR filter. Further

development of compression layers that provide similar effects on the time-frequency

representation as PCEN may be beneficial, although it may not be the most rewarding

direction for future work, as PCEN is not a major bottleneck.

The mitigation strategies proposed in Section 6.1 were derived empirically and based on

insights gained while characterising the filterbank initialisation problem in Section 5.4.

However, these strategies lack insight from a rigorous investigation into the root causes.

Chapter 7. Conclusion 189

Among the proposed strategies, only Diff LR consistently improved performance, and even

then, it was effective on only one task/architecture while introducing stability issues. While a

recommendation is made to incorporate Diff LR into models employing learnable frontends,

it is acknowledged that more suitable mitigation strategies or entirely new learnable

filterbank architectures will emerge from a thorough investigation into the root causes of the

initialisation problem.

A suggestion is to make use of a hybrid approach, utilising the frequency-domain

representation of the filterbank as part of training. This idea draws inspiration from Peng et

al.’s [143] work, where a sparsity constraint on their frequency-domain learnable filterbank

encouraged sensible movement of the filters. In their work variations in center frequency,

bandwidth, and filter density were observed and the resulting filters remained interpretable

due to the sparsity constraints. This approach could be applied to the creation of

time-domain filterbanks by using the center frequency and bandwidth from these filters as

parameters for a parameterised time-domain filterbank. This approach would circumvent the

need to employ the STFT in feature creation. Instead, it would harness the frequency

domain representations of filters to generate sensible data-driven filters, different from their

initialisation.

7.4 Final Remarks

It is hoped that the findings presented in this thesis, along with the associated publications,

will serve to encourage further research in two areas of audio processing. Firstly, the further

development of high-performing, efficient monitoring systems capable of running on

constrained devices suitable for remote deployment is crucial for conservation. While many

approaches demonstrate impressive results by utilising more data and larger models, these

models are complex and unsuitable for large-scale deployment. Automatically monitoring

potentially rare and at-risk populations in remote locations will only occur if the tools

available to ornithologists are easily deployed, readily available and match their hardware

budget. Additionally it is hoped that readers will approach learnable filterbanks in a more

analytical way, aiming to design filterbanks that can generate an optimal set of filters for a

190

given task and domain. In numerous tasks, including bioacoustics, the mel scale may not be

ideal or suitable, and the hope is that through learning directly from the data related to a

specific task, suitable filterbanks can be learned.

Bibliography

[1] Joakim Andén and Stéphane Mallat. “Deep Scattering Spectrum”. In: IEEE

Transactions on Signal Processing 62.16 (2014), pp. 4114–4128.

[2] Mark Anderson and Naomi Harte. Bioacoustic Event Detection with Prototypical

Networks and Data Augmentation. Tech. rep. DCASE2021 Challenge, June 2021.

[3] Mark Anderson and Naomi Harte. “Learnable Acoustic Frontends in Bird Activity

Detection”. In: 2022 International Workshop on Acoustic Signal Enhancement

(IWAENC). 2022, pp. 1–5. doi: 10.1109/IWAENC53105.2022.9914694.

[4] Mark Anderson, John Kennedy, and Naomi Harte. “Low Resource Species Agnostic

Bird Activity Detection”. In: 2021 IEEE Workshop on Signal Processing Systems

(SiPS). 2021, pp. 34–39. doi: 10.1109/SiPS52927.2021.00015.

[5] Mark Anderson, Tomi Kinnunen, and Naomi Harte. “Learnable Frontends That Do

Not Learn: Quantifying Sensitivity To Filterbank Initialisation”. In: ICASSP 2023 -

2023 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). 2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10095474.

[6] Sercan O. Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky,

Chris Fougner, Ryan Prenger, and Adam Coates. Convolutional Recurrent Neural

Networks for Small-Footprint Keyword Spotting. 2017. arXiv: 1703.05390 [cs.CL].

[7] Randall Balestriero, Romain Cosentino, Hervé Glotin, and Richard Baraniuk. “Spline

Filters for End-to-End Deep Learning”. In: International Conference on Machine

Learning. PMLR. 2018, pp. 364–373.

191

https://doi.org/10.1109/IWAENC53105.2022.9914694
https://doi.org/10.1109/SiPS52927.2021.00015
https://doi.org/10.1109/ICASSP49357.2023.10095474
https://arxiv.org/abs/1703.05390

192

[8] A. Banerjee, Xin Guo, and Hui Wang. “On the Optimality of Conditional Expectation

as a Bregman Predictor”. In: IEEE Transactions on Information Theory 51.7 (2005),

pp. 2664–2669. doi: 10.1109/TIT.2005.850145.

[9] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh.

“Clustering with Bregman Divergences”. In: Journal of Machine Learning Research

6.58 (2005), pp. 1705–1749. url:

http://jmlr.org/papers/v6/banerjee05b.html.

[10] G. J. L. Beckers, R. A. Suthers, and C. Ten Cate. “Pure-tone Birdsong by Resonance

Filtering of Harmonic Overtones”. In: Proceedings of the National Academy of

Sciences of the United States of America 100.12 (2003), pp. 7372–7376.

[11] G.J.L. Beckers. “Bird Speech Perception and Vocal Production: A Comparison with

Humans”. In: Human Biology 83.2 (2011), pp. 191–212. doi:

10.3378/027.083.0204.

[12] James C Bezdek and Richard J Hathaway. “Convergence of Alternating

Optimization”. In: Neural, Parallel & Scientific Computations 11.4 (2003),

pp. 351–368.

[13] James C Bezdek and Richard J Hathaway. “Some Notes on Alternating

Optimization”. In: Advances in Soft Computing—AFSS 2002: 2002 AFSS

International Conference on Fuzzy Systems Calcutta, India, February 3–6, 2002

Proceedings. Springer. 2002, pp. 288–300.

[14] Radoslaw Bielecki. Few-Shot Bioacoustic Event Detection with Prototypical

Networks, Knowledge Distillation, and Attention Transfer Loss. Tech. rep.

DCASE2021 Challenge, June 2021.

[15] Christophe Biernacki, Gilles Celeux, and Gérard Govaert. “Choosing Starting Values

for the EM Algorithm for getting the Highest Likelihood in Multivariate Gaussian

Mixture Models”. In: Computational Statistics & Data Analysis 41.3 (2003). Recent

Developments in Mixture Model, pp. 561–575. doi:

https://doi.org/10.1016/S0167-9473(02)00163-9.

https://doi.org/10.1109/TIT.2005.850145
http://jmlr.org/papers/v6/banerjee05b.html
https://doi.org/10.3378/027.083.0204
https://doi.org/https://doi.org/10.1016/S0167-9473(02)00163-9

Bibliography 193

[16] Malik Boudiaf, Hoel Kervadec, Ziko Imtiaz Masud, Pablo Piantanida,

Ismail Ben Ayed, and Jose Dolz. Few-Shot Segmentation Without Meta-Learning: A

Good Transductive Inference is All You Need? 2021. arXiv: 2012.06166 [cs.CV].

[17] Malik Boudiaf, Imtiaz Ziko, Jérôme Rony, José Dolz, Pablo Piantanida, and

Ismail Ben Ayed. “Information Maximization for Few-shot Learning”. In: Advances in

Neural Information Processing Systems 33 (2020), pp. 2445–2457.

[18] L.M. Bregman. “The Relaxation Method of Finding the Common Point of Convex

Sets and its Application to the Solution of Problems in Convex Programming”. In:

USSR Computational Mathematics and Mathematical Physics 7.3 (1967),

pp. 200–217. issn: 0041-5553. doi:

https://doi.org/10.1016/0041-5553(67)90040-7.

[19] Judith C. Brown. “Calculation of a Constant Q Spectral Transform”. In: The Journal

of the Acoustical Society of America 89.1 (Jan. 1991), pp. 425–434. doi:

10.1121/1.400476.

[20] H. Brumm. “The Impact of Environmental Noise on Song Amplitude in a Territorial

Bird”. In: Journal of Animal Ecology 73.3 (2004), pp. 434–440.

[21] H. Brumm and A. Zollinger. “The Evolution of the Lombard effect: 100 years of

Psychoacoustic Research”. In: Behaviour 148.11-13 (2011), pp. 1173–1198.

[22] T Tony Cai and Rong Ma. “Theoretical Foundations of t-SNE for Visualizing

High-dimensional Clustered Data”. In: The Journal of Machine Learning Research

23.1 (2022), pp. 13581–13634.

[23] E. Cakir, S. Adavanne, G. Parascandolo, K. Drossos, and T. Virtanen. “Convolutional

Recurrent Neural Networks for Bird Audio Detection”. In: 25th European Signal

Processing Conference, EUSIPCO 2017 2017-January (2017), pp. 1744–1748. doi:

10.23919/EUSIPCO.2017.8081508.

[24] Emre Cakir, Ezgi Can Ozan, and Tuomas Virtanen. “Filterbank Learning for Deep

Neural Network Based Polyphonic Sound Event Detection”. In: 2016 International

Joint Conference on Neural Networks (IJCNN). 2016, pp. 3399–3406. doi:

10.1109/IJCNN.2016.7727634.

https://arxiv.org/abs/2012.06166
https://doi.org/https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1121/1.400476
https://doi.org/10.23919/EUSIPCO.2017.8081508
https://doi.org/10.1109/IJCNN.2016.7727634

194

[25] C. K. Catchpole. “Production and Perception”. In: Bird Song: Biological Themes and

Variations, Second Edition. 2008, pp. 19–48.

[26] C. K. Catchpole. “The Study of Birdsong”. In: Bird Song: Biological Themes and

Variations, Second Edition. 2008, pp. 1–18.

[27] C. K. Catchpole. “Themes and Variations”. In: Bird Song: Biological Themes and

Variations, Second Edition. 2008, pp. 203–234.

[28] Yair Censor and Arnold Lent. “An Iterative Row-action Method for Interval Convex

Programming”. In: Journal of Optimization Theory and Applications 34 (1981),

pp. 321–353.

[29] F Stuart Chapin III, Erika S Zavaleta, Valerie T Eviner, Rosamond L Naylor,

Peter M Vitousek, Heather L Reynolds, David U Hooper, Sandra Lavorel,

Osvaldo E Sala, Sarah E Hobbie, et al. “Consequences of Changing Biodiversity”. In:

Nature 405.6783 (2000), pp. 234–242.

[30] Da Chen, Yuefeng Chen, Yuhong Li, Feng Mao, Yuan He, and Hui Xue.

“Self-Supervised Learning for Few-shot Image Classification”. In: ICASSP 2021-2021

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE. 2021, pp. 1745–1749.

[31] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and

Jia-Bin Huang. “A Closer Look at Few-shot Classification”. In: arXiv preprint

arXiv:1904.04232 (2019).

[32] Yinbo Chen, Zhuang Liu, Huijuan Xu, Trevor Darrell, and Xiaolong Wang.

“Meta-baseline: Exploring Simple Meta-learning for Few-shot Learning”. In:

Proceedings of the IEEE/CVF international conference on computer vision. 2021,

pp. 9062–9071.

[33] Hao Cheng, Chenguang Hu, and Miao Liu. Prototypical Network for Bioacoustic

Event Detection via i-Vectors. Tech. rep. DCASE2021 Challenge, June 2021.

[34] Kin Wai Cheuk, Hans Anderson, Kat Agres, and Dorien Herremans. “NNaudio: An

On-the-fly GPU Audio to Spectrogram Conversion Toolbox using 1D Convolutional

Neural Networks”. In: IEEE Access 8 (2020), pp. 161981–162003.

Bibliography 195

[35] Wei Chu and Abeer Alwan. “FBEM: A Filter Bank EM algorithm for the Joint

Optimization of Features and Acoustic Model Parameters in Bird Call Classification”.

In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). 2012, pp. 1993–1996. doi: 10.1109/ICASSP.2012.6288298.

[36] James W Cooley and John W Tukey. “An Algorithm for the Machine Calculation of

Complex Fourier Series”. In: Mathematics of computation 19.90 (1965), pp. 297–301.

[37] Aurora Linh Cramer, Vincent Lostanlen, Andrew Farnsworth, Justin Salamon, and

Juan Pablo Bello. “Chirping up the Right Tree: Incorporating Biological Taxonomies

into Deep Bioacoustic Classifiers”. In: ICASSP 2020-2020 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020,

pp. 901–905.

[38] Wentao Cui and Yuhong Guo. “Parameterless Transductive Feature Re-representation

for Few-shot Learning”. In: International Conference on Machine Learning. PMLR.

2021, pp. 2212–2221.

[39] Kevin Darras, Péter Batáry, Brett J. Furnas, Ingo Grass, Yeni A. Mulyani, and

Teja Tscharntke. “Autonomous Sound Recording Outperforms Human Observation

for Sampling Birds: A Systematic Map and User Guide”. In: Ecological Applications

29.6 (2019), e01954. doi: https://doi.org/10.1002/eap.1954.

[40] S. Davis and P. Mermelstein. “Comparison of Parametric Representations for

Monosyllabic Word Recognition in Continuously Spoken Sentences”. In: IEEE

Transactions on Acoustics, Speech, and Signal Processing 28.4 (1980), pp. 357–366.

doi: 10.1109/TASSP.1980.1163420.

[41] A. De Cheveigné. “YIN, a Fundamental Frequency Estimator for Speech and Music”.

In: Journal of the Acoustical Society of America 111.4 (2002), pp. 1917–1930. doi:

10.1121/1.1458024.

[42] Tom Denton, Scott Wisdom, and John R Hershey. “Improving Bird Classification

with Unsupervised Sound Separation”. In: ICASSP 2022-2022 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022,

pp. 636–640.

https://doi.org/10.1109/ICASSP.2012.6288298
https://doi.org/https://doi.org/10.1002/eap.1954
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1121/1.1458024

196

[43] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. “ECAPA-TDNN:

Emphasized Channel Attention, Propagation and Aggregation in TDNN Based

Speaker Verification”. In: Proc. Interspeech 2020. 2020, pp. 3830–3834. doi:

10.21437/Interspeech.2020-2650.

[44] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. “A

Baseline for Few-shot Image Classification”. In: arXiv preprint arXiv:1909.02729

(2019).

[45] A. Digby, M. Towsey, B. D. Bell, and P. D. Teal. “A Practical Comparison of Manual

and Autonomous Methods for Acoustic Monitoring”. In: Methods in Ecology and

Evolution 4.7 (2013), pp. 675–683.

[46] X. Dong and J. Jia. “Advances in Automatic Bird Species Recognition from

Environmental Audio”. In: Journal of Physics: Conference Series 1544.1 (2020). doi:

10.1088/1742-6596/1544/1/012110.

[47] Robert Dooling. “Audition: Can Birds Hear Everything they Sing?” In: Nature’s

Music: The Science of Birdsong. Ed. by P. Marler and H Slabbekoor. 2004,

pp. 206–225. isbn: 978-0-080-47355-0.

[48] Guillaume Doras and Geoffroy Peeters. “A Prototypical Triplet Loss for Cover

Detection”. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). 2020, pp. 3797–3801. doi:

10.1109/ICASSP40776.2020.9054619.

[49] Allison J Doupe and Patricia K Kuhl. “Birdsong and Human Speech: Common

Themes and Mechanisms”. In: Annual review of neuroscience 22.1 (1999),

pp. 567–631.

[50] D.M. Endres and J.E. Schindelin. “A New Metric for Probability Distributions”. In:

IEEE Transactions on Information Theory 49.7 (2003), pp. 1858–1860. doi:

10.1109/TIT.2003.813506.

[51] Mateus Espadoto, Rafael M Martins, Andreas Kerren, Nina ST Hirata, and

Alexandru C Telea. “Toward a Quantitative Survey of Dimension Reduction

https://doi.org/10.21437/Interspeech.2020-2650
https://doi.org/10.1088/1742-6596/1544/1/012110
https://doi.org/10.1109/ICASSP40776.2020.9054619
https://doi.org/10.1109/TIT.2003.813506

Bibliography 197

Techniques”. In: IEEE Transactions on Visualization and Computer Graphics 27.3

(2019), pp. 2153–2173.

[52] S. Fagerlund. “Bird Species Recognition using Support Vector Machines”. In: Eurasip

Journal on Advances in Signal Processing 2007 (2007). doi: 10.1155/2007/38637.

[53] S. Fagerlund and A. Härmä. “Parametrization of Inharmonic Bird sounds for

Automatic Recognition”. In: 13th European Signal Processing Conference, EUSIPCO

2005 (2005), pp. 1039–1042.

[54] Li Fei-Fei, Robert Fergus, and Pietro Perona. “One-shot Learning of Object

Categories”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.4

(2006), pp. 594–611.

[55] Wolfgang Fiedler. “Chapter 9 - Bird Ecology as an Indicator of Climate and Global

Change”. In: Climate Change. Ed. by Trevor M. Letcher. Elsevier, 2009, pp. 181–195.

isbn: 978-0-444-53301-2. doi:

https://doi.org/10.1016/B978-0-444-53301-2.00009-9.

[56] Michael Fink. “Object Classification from a Single Example Utilizing Class Relevance

Metrics”. In: Advances in Neural Information Processing Systems 17 (2004).

[57] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-learning for

Fast Adaptation of Deep Networks”. In: International Conference on Machine

Learning. PMLR. 2017, pp. 1126–1135.

[58] Quchen Fu, Zhongwei Teng, Jules White, Maria E. Powell, and Douglas C. Schmidt.

“FastAudio: A Learnable Audio Front-End For Spoof Speech Detection”. In: 2022

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE. 2022, pp. 3693–3697. doi: 10.1109/ICASSP43922.2022.9746722.

[59] John Garofolo, L Lamel, W Fisher, Jonathan Fiscus, D Pallett, and Nancy Dahlgren.

DARPA-TIMIT Acoustic-Phonetic Continuous Speech Corpus. en. Feb. 1993.

[60] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,

R. Channing Moore, Manoj Plakal, and Marvin Ritter. “Audio Set: An Ontology and

Human-labeled Dataset for Audio Events”. In: 2017 IEEE International Conference on

https://doi.org/10.1155/2007/38637
https://doi.org/https://doi.org/10.1016/B978-0-444-53301-2.00009-9
https://doi.org/10.1109/ICASSP43922.2022.9746722

198

Acoustics, Speech and Signal Processing (ICASSP). 2017, pp. 776–780. doi:

10.1109/ICASSP.2017.7952261.

[61] H Glotin, Y LeCun, T Artieres, S Mallat, O Tchernichovski, and X Halkias. “Neural

Information Processing Scaled for Bioacoustics, from Neurons to Big Data”. In:

Workshop. 2013.

[62] Hervé Goëau, Hervé Glotin, Willem-Pier Vellinga, Robert Planqué, and Alexis Joly.

“LifeCLEF Bird Identification Task 2016: The Arrival of Deep Learning”. In: CLEF:

Conference and Labs of the Evaluation Forum. 1609. 2016, pp. 440–449.

[63] Franz Goller and Tobias Riede. “Integrative Physiology of Fundamental Frequency

Control in Birds”. In: Journal of Physiology-Paris 107.3 (2013), pp. 230–242.

[64] Robert Gove, Lucas Cadalzo, Nicholas Leiby, Jedediah M. Singer, and

Alexander Zaitzeff. “New Guidance for using t-SNE: Alternative Defaults,

Hyperparameter Selection Automation, and Comparative Evaluation”. In: Visual

Informatics 6.2 (2022), pp. 87–97. issn: 2468-502X. doi:

https://doi.org/10.1016/j.visinf.2022.04.003.

[65] Martin Graciarena, Michelle Delplanche, Elizabeth Shriberg, Andreas Stolcke, and

Luciana Ferrer. “Acoustic Front-end Optimization for Bird Species Recognition”. In:

2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

2010, pp. 293–296. doi: 10.1109/ICASSP.2010.5495923.

[66] Donald D Greenwood. “The Mel Scale’s Disqualifying Bias and a Consistency of

Pitch-difference Equisections in 1956 with Equal Cochlear Distances and Equal

Frequency Ratios”. In: Hearing research 103.1-2 (1997), pp. 199–224.

[67] T. Grill and J. Schluter. “Two Convolutional Neural Networks for Bird Detection in

Audio Signals”. In: 25th European Signal Processing Conference, EUSIPCO 2017

2017-January (2017), pp. 1764–1768. doi: 10.23919/EUSIPCO.2017.8081512.

[68] W. Halfwerk and H. Slabbekoorn. “A Behavioural Mechanism Explaining

Noise-dependent Frequency Use in Urban Birdsong”. In: Animal Behaviour 78.6

(2009), pp. 1301–1307.

https://doi.org/10.1109/ICASSP.2017.7952261
https://doi.org/https://doi.org/10.1016/j.visinf.2022.04.003
https://doi.org/10.1109/ICASSP.2010.5495923
https://doi.org/10.23919/EUSIPCO.2017.8081512

Bibliography 199

[69] F.J. Harris. “On the use of Windows for Harmonic Analysis with the Discrete Fourier

Transform”. In: Proceedings of the IEEE 66.1 (1978), pp. 51–83. doi:

10.1109/PROC.1978.10837.

[70] N. Harte, S. Murphy, D.J. Kelly, and N.M. Marples. “Identifying New Bird Species

from Differences in Birdsong”. In: Proceedings of the Annual Conference of the

International Speech Communication Association, INTERSPEECH (2013),

pp. 2900–2904.

[71] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning

for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV].

[72] Hynek Hermansky. “Perceptual Linear Predictive (PLP) Analysis of Speech”. In: The

Journal of the Acoustical Society of America 87.4 (Apr. 1990), pp. 1738–1752. issn:

0001-4966. doi: 10.1121/1.399423.

[73] Yedid Hoshen, Ron J Weiss, and Kevin W Wilson. “Speech Acoustic Modeling from

Raw Multichannel Waveforms”. In: 2015 IEEE international conference on acoustics,

speech and signal processing (ICASSP). IEEE. 2015, pp. 4624–4628.

[74] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation Networks”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2018,

pp. 7132–7141.

[75] Yan Huang, Shang Li, Liang Wang, Tieniu Tan, et al. “Unfolding the Alternating

Optimization for Blind Super Resolution”. In: Advances in Neural Information

Processing Systems 33 (2020), pp. 5632–5643.

[76] G. Irvine, M. Cand, B. Davis, D. Coles, S. Miller, T. Levet, J. Shelton, J. Bass,

D. Sexton, and G Leventhall. IOA Noise Working Group (Wind Turbine Noise),

Amplitude Modulation Working Group: A Method for Rating Amplitude Modulation

in Wind Turbine Noise. 2016.

[77] Navdeep Jaitly and Geoffrey Hinton. “Learning a Better Representation of Speech

Soundwaves using Restricted Boltzmann Machines”. In: 2011 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2011,

pp. 5884–5887.

https://doi.org/10.1109/PROC.1978.10837
https://arxiv.org/abs/1512.03385
https://doi.org/10.1121/1.399423

200

[78] P. Jancovic and M. Kokuer. “Automatic Detection of Bird Species from Audio Field

Recordings using HMM-based Modelling of Frequency Tracks”. In: 25th European

Signal Processing Conference, EUSIPCO 2017 2017-January (2017), pp. 1779–1783.

doi: 10.23919/EUSIPCO.2017.8081515.

[79] Peter Jancovic and Munevver Kokuer. “Automatic Detection and Recognition of

Tonal Bird Sounds in Noisy Environments”. In: EURASIP J. Adv. Sig. Proc. 2011

(Jan. 2011). doi: 10.1155/2011/982936.

[80] Peter Jancovic and Munevver Kokuer. “Bird Species Recognition using Unsupervised

Modeling of Individual Vocalization Elements”. In: IEEE/ACM Transactions on

Audio, Speech, and Language Processing 27 (2019), pp. 932–947.

[81] Peter Jancovic and Munevver Kokuer. “Detection of Sinusoidal Signals in Noise by

Probabilistic Modelling of the Spectral Magnitude, Shape and Phase Continuity”. In:

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings. June 2011, pp. 517–520. doi: 10.1109/ICASSP.2011.5946454.

[82] Jens Johannsmeier and Sebastian Stober. Few-Shot Bioacoustic Event Detection via

Segmentation using Prototypical Networks. Tech. rep. DCASE2021 Challenge, June

2021.

[83] A. Johnston, M. Ausden, A.M. Dodd, R.B. Bradbury, D.E. Chamberlain, F. Jiguet,

C.D. Thomas, A.S.C.P. Cook, S.E. Newson, N. Ockendon, M.M. Rehfisch, S. Roos,

C.B. Thaxter, A. Brown, H.Q.P. Crick, A. Douse, R.A. McCall, H. Pontier,

D.A. Stroud, B. Cadiou, O. Crowe, B. Deceuninck, M. Hornman, and

J.W. Pearce-Higgins. “Observed and Predicted Effects of Climate Change on Species

Abundance in Protected Areas”. In: Nature Climate Change 3.12 (2013),

pp. 1055–1061. doi: 10.1038/nclimate2035.

[84] Stefan Kahl, Tom Denton, Holger Klinck, Hervé Glotin, Hervé Goëau,

Willem-Pier Vellinga, Robert Planqué, and Alexis Joly. “Overview of BirdCLEF 2021:

Bird Call Identification in Soundscape Recordings”. In: Working Notes of CLEF 2021

- Conference and Labs of the Evaluation Forum. 2021.

https://doi.org/10.23919/EUSIPCO.2017.8081515
https://doi.org/10.1155/2011/982936
https://doi.org/10.1109/ICASSP.2011.5946454
https://doi.org/10.1038/nclimate2035

Bibliography 201

[85] Stefan Kahl, Tom Denton, Holger Klinck, Hendrik Reers, Francis Cherutich,

Hervé Glotin, Hervé Goëau, Willem-Pier Vellinga, Robert Planqué, and Alexis Joly.

“Overview of BirdCLEF 2023: Automated bird species identification in Eastern

Africa”. In: Working Notes of CLEF (2023).

[86] Stefan Kahl, Amanda Navine, Tom Denton, Holger Klinck, Patrick Hart,

Hervé Glotin, Hervé Goëau, Willem-Pier Vellinga, Robert Planqué, and Alexis Joly.

“Overview of BirdCLEF 2022: Endangered Bird Species Recognition in Soundscape

Recordings”. In: Working Notes of CLEF (2022).

[87] Stefan Kahl, Connor M. Wood, Maximilian Eibl, and Holger Klinck. “BirdNET: A

Deep Learning Solution for Avian Diversity Monitoring”. In: Ecological Informatics 61

(2021), p. 101236. issn: 1574-9541. doi:

https://doi.org/10.1016/j.ecoinf.2021.101236.

[88] Terri Kamm, Hynek Hermansky, and Andreas Andreou. “Learning the Mel-scale and

Optimal VTN Mapping”. In: Technical Report, JHU/CLSP Workshop (1997).

[89] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,

Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. “Supervised Contrastive

Learning”. In: Advances in Neural Information Processing Systems 33 (2020),

pp. 18661–18673.

[90] Diederik P Kingma and Jimmy Ba. “ADAM: A Method for Stochastic Optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[91] Tomi Kinnunen and Haizhou Li. “An Overview of Text-independent Speaker

Recognition: From Features to Supervectors”. In: Speech Communication 52.1

(2010), pp. 12–40. doi: https://doi.org/10.1016/j.specom.2009.08.009.

[92] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. “Siamese Neural

Networks for One-shot Image Recognition”. In: ICML deep learning workshop. Vol. 2.

1. Lille. 2015.

[93] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with

Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing

Systems. Ed. by F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger. Vol. 25.

https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/https://doi.org/10.1016/j.specom.2009.08.009

202

Curran Associates, Inc., 2012. url: https://proceedings.neurips.cc/paper_

files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[94] Steinar Laenen and Luca Bertinetto. “On Episodes, Prototypical Networks, and

Few-Shot Learning”. In: Advances in Neural Information Processing Systems. Ed. by

M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan.

Vol. 34. Curran Associates, Inc., 2021, pp. 24581–24592. url:

https://proceedings.neurips.cc/paper_files/paper/2021/file/

cdfa4c42f465a5a66871587c69fcfa34-Paper.pdf.

[95] R. Laje and G. B. Mindlin. “Modeling Source-Source and Source-Filter Acoustic

Interaction in Birdsong”. In: Physical Review E - Statistical, Nonlinear, and Soft

Matter Physics 72.3 (2005).

[96] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. “One

Shot Learning of Simple Visual Concepts”. In: Proceedings of the annual meeting of

the cognitive science society. Vol. 33. 33. 2011.

[97] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman.

“Building Machines that Learn and Think like People”. In: Behavioral and brain

sciences 40 (2017), e253.

[98] M. Lasseck. “Acoustic Bird Detection with Deep Convolutional Neural Networks”. In:

Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018

Workshop (2018). url: http://dcase.community/documents/challenge2018/

technical_reports/DCASE2018_Lasseck_76.pdf.

[99] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto.

“Meta-learning with Differentiable Convex Optimization”. In: Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition. 2019,

pp. 10657–10665.

[100] Younglo Lee, Jeongki Min, David K. Han, and Hanseok Ko. “Spectro-Temporal

Attention-Based Voice Activity Detection”. In: IEEE Signal Processing Letters 27

(2020), pp. 131–135. doi: 10.1109/LSP.2019.2959917.

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/cdfa4c42f465a5a66871587c69fcfa34-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/cdfa4c42f465a5a66871587c69fcfa34-Paper.pdf
http://dcase.community/documents/challenge2018/technical_reports/DCASE2018_Lasseck_76.pdf
http://dcase.community/documents/challenge2018/technical_reports/DCASE2018_Lasseck_76.pdf
https://doi.org/10.1109/LSP.2019.2959917

Bibliography 203

[101] Guillaume Lemâıtre, Fernando Nogueira, and Christos K. Aridas. “Imbalanced-learn:

A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning”.

In: Journal of Machine Learning Research 18.17 (2017), pp. 1–5. url:

http://jmlr.org/papers/v18/16-365.

[102] Feng Li, Yixuan Wu, Huihui Bai, Weisi Lin, Runmin Cong, Chunjie Zhang, and

Yao Zhao. “Learning Detail-Structure Alternative Optimization for Blind

Super-Resolution”. In: IEEE Transactions on Multimedia (2022).

[103] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. “Meta-SGD: Learning to Learn

Quickly for Few-shot Learning”. In: arXiv preprint arXiv:1707.09835 (2017).

[104] Sidrah Liaqat, Narjes Bozorg, Neenu Jose, Patrick Conrey, Antony Tamasi, and

Michael T. Johnson. Domain Tuning Methods for Bird Audio Detection. Tech. rep.

DCASE2018 Challenge, Sept. 2018.

[105] Haohe Liu, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Wenwu Wang, and

Mark D Plumbley. Surrey System for DCASE 2022 Task 5: Few-Shot Bioacoustic

Event Detection with Segment-Level Metric Learning. Tech. rep. DCASE2022

Challenge, June 2022.

[106] Junyan Liu, Zikai Zhou, Mengkai Sun, Kele Xu, Kun Qian, and Bian Hu.

SE-Protonet: Prototypical Network with Squeeze-and-Excitation Blocks for

Bioacoustic Event Detection. Tech. rep. DCASE2023 Challenge, June 2023.

[107] Xuechen Liu, Md Sahidullah, and Tomi Kinnunen. “Learnable MFCCs for Speaker

Verification”. In: 2021 IEEE International Symposium on Circuits and Systems

(ISCAS). IEEE. 2021, pp. 1–5.

[108] Xuechen Liu, Md Sahidullah, and Tomi Kinnunen. “Learnable Nonlinear Compression

for Robust Speaker Verification”. In: ICASSP 2022-2022 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022,

pp. 7962–7966.

[109] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sungju Hwang, and

Yi Yang. “Learning to Propagate Labels: Transductive Propagation Network for

Few-shot Learning”. In: International Conference on Learning Representations. 2019.

http://jmlr.org/papers/v18/16-365

204

[110] Iván López-Espejo, Ram C. M. C. Shekar, Zheng-Hua Tan, Jesper Jensen, and

John H. L. Hansen. “Filterbank Learning for Noise-Robust Small-Footprint Keyword

Spotting”. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). 2023, pp. 1–5. doi:

10.1109/ICASSP49357.2023.10095436.

[111] Iván López-Espejo, Zheng-Hua Tan, and Jesper Jensen. “Exploring Filterbank

Learning for Keyword Spotting”. In: 2020 28th European Signal Processing

Conference (EUSIPCO). IEEE. 2021, pp. 331–335.

[112] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm

Restarts. arXiv:1608.03983. 2016. doi: 10.48550/ARXIV.1608.03983. url:

https://arxiv.org/abs/1608.03983.

[113] Vincent Lostanlen, Antoine Bernabeu, Jean-Luc Béchennec, Mikaël Briday,

Sébastien Faucou, and Mathieu Lagrange. “Energy Efficiency is Not Enough: Towards

a Batteryless Internet of Sounds”. In: Proceedings of the 16th International Audio

Mostly Conference. AM ’21. virtual/Trento, Italy: Association for Computing

Machinery, 2021, pp. 147–155. isbn: 9781450385695. doi:

10.1145/3478384.3478408.

[114] Vincent Lostanlen, Kaitlin Palmer, Elly Knight, Christopher Clark, Holger Klinck,

Andrew Farnsworth, Tina Wong, Jason Cramer, and Juan Bello. “Long-distance

Detection of Bioacoustic Events with Per-channel Energy Normalization”. In:

Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019

Workshop (DCASE2019). New York University, NY, USA, Oct. 2019, pp. 144–148.

[115] Vincent Lostanlen, Justin Salamon, Mark Cartwright, Brian McFee,

Andrew Farnsworth, Steve Kelling, and Juan Pablo Bello. “Per-Channel Energy

Normalization: Why and How”. In: IEEE Signal Processing Letters 26.1 (2019),

pp. 39–43. doi: 10.1109/LSP.2018.2878620.

[116] Vincent Lostanlen, Justin Salamon, Andrew Farnsworth, Steve Kelling, and

Juan Pablo Bello. “BirdVox-Full-Night: a Dataset and Benchmark for Avian Flight

Call Detection”. In: Proc. IEEE ICASSP (Calgary, Canada). Apr. 2018.

https://doi.org/10.1109/ICASSP49357.2023.10095436
https://doi.org/10.48550/ARXIV.1608.03983
https://arxiv.org/abs/1608.03983
https://doi.org/10.1145/3478384.3478408
https://doi.org/10.1109/LSP.2018.2878620

Bibliography 205

[117] Vincent Lostanlen, Justin Salamon, Andrew Farnsworth, Steve Kelling, and

Juan Pablo Bello. “Robust Sound Event Eetection in Bioacoustic Sensor Networks”.

In: PLOS ONE 14.10 (Oct. 2019), pp. 1–31. doi:

10.1371/journal.pone.0214168.

[118] Xu Luo, Hao Wu, Ji Zhang, Lianli Gao, Jing Xu, and Jingkuan Song. “A Closer Look

at Few-shot Classification Again”. In: arXiv preprint arXiv:2301.12246 (2023).

[119] James G Lyons and Kuldip K Paliwal. “Effect of Compressing the Dynamic Range of

the Power Spectrum in Modulation Filtering-based Speech Enhancement”. In: Ninth

Annual Conference of the International Speech Communication Association. 2008.

[120] Peter R. Marler. “A Comparative Approach to Vocal Learning: Song Development in

White-Crowned Sparrows”. In: Journal of Comparative and Physiological Psychology

71 (1970), pp. 1–25.

[121] Tiago A. Marques, Len Thomas, Stephen W. Martin, David K. Mellinger,

Jessica A. Ward, David J. Moretti, Danielle Harris, and Peter L. Tyack. “Estimating

Animal Population Density using Passive Acoustics”. In: Biological Reviews 88.2

(2013), pp. 287–309. doi: https://doi.org/10.1111/brv.12001.

[122] John Martinsson, Martin Willbo, Aleksis Pirinen, Olof Mogren, and Maria Sandsten.

Few-Shot Bioacoustic Event Detection using a Prototypical Network Ensemble with

Adaptive Embedding Functions. Tech. rep. DCASE2022 Challenge, June 2022.

[123] Volodymyr Melnykov and Igor Melnykov. “Initializing the EM algorithm in Gaussian

Mixture Models with an Unknown Number of Components”. In: Computational

Statistics & Data Analysis 56.6 (2012), pp. 1381–1395. issn: 0167-9473. doi:

https://doi.org/10.1016/j.csda.2011.11.002.

[124] V. Morfi, Y. Bas, H. Pamula, H. Glotin, and D. Stowell. “NIPS4Bplus: A Richly

Annotated Birdsong Audio Dataset”. In: PeerJ Computer Science 2019.10 (2019).

doi: 10.7717/peerj-cs.223.

[125] Veronica Morfi, Ines Nolasco, Vincent Lostanlen, Shubhr Singh,

Ariana Strandburg-Peshkin, Lisa Gill, Hanna Pamu la, David Benvent, and

Dan Stowell. “Few-Shot Bioacoustic Event Detection: A New Task at the DCASE

https://doi.org/10.1371/journal.pone.0214168
https://doi.org/https://doi.org/10.1111/brv.12001
https://doi.org/https://doi.org/10.1016/j.csda.2011.11.002
https://doi.org/10.7717/peerj-cs.223

206

2021 Challenge”. In: Proceedings of the 6th Detection and Classification of Acoustic

Scenes and Events 2021 Workshop (DCASE2021). Barcelona, Spain, Nov. 2021,

pp. 145–149. isbn: 978-84-09-36072-7.

[126] Ilyass Moummad, Romain Serizel, and Nicolas Farrugia. Supervised Contrastive

Learning for Pre-Training Bioacoustic Few Shot Systems. Tech. rep. DCASE2023

Challenge, June 2023.

[127] Leah Mutanu, Jeet Gohil, Khushi Gupta, Perpetua Wagio, and Gerald Kotonya. “A

Review of Automated Bioacoustics and General Acoustics Classification Research”.

In: Sensors 22.21 (2022), p. 8361.

[128] Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled Shaalan.

“Speech Recognition using Deep Neural Networks: A Systematic Review”. In: IEEE

Access 7 (2019), pp. 19143–19165. doi: 10.1109/ACCESS.2019.2896880.

[129] Paul-Gauthier Noé, Titouan Parcollet, and Mohamed Morchid. “CGCNN: Complex

Gabor Convolutional Neural Network on Raw Speech”. In: ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE. 2020, pp. 7724–7728.

[130] Ines Nolasco, S Singh, E Vidana-Villa, E Grout, J Morford, M Emmerson, F Jensens,

H Whitehead, Ivan Kiskin, A Strandburg-Peshkin, et al. “Few-shot Bioacoustic Event

Detection at the DCASE 2022 Challenge”. In: arXiv preprint arXiv:2207.07911

(2022).

[131] Inês Nolasco, Shubhr Singh, Veronica Morfi, Vincent Lostanlen,

Ariana Strandburg-Peshkin, Ester Vidaña-Vila, Lisa Gill, Hanna Pamu la,

Helen Whitehead, Ivan Kiskin, et al. “Learning to Detect an Animal Sound from Five

Examples”. In: Ecological Informatics 77 (2023), p. 102258.

[132] S. Nowicki. “Vocal Tract Resonances in Oscine Bird Sound Production: Evidence

from Birdsongs in a Helium Atmosphere”. In: Nature 325.6099 (1987), pp. 53–55.

[133] C. O’Reilly, K. Analuddin, D. J. Kelly, and N. Harte. “Measuring Vocal Difference in

Bird Population Pairs”. In: Journal of the Acoustical Society of America 143.3

(2018), pp. 1658–1671.

https://doi.org/10.1109/ACCESS.2019.2896880

Bibliography 207

[134] C. O’Reilly, N.M. Marples, D.J. Kelly, and N. Harte. “YIN-bird: Improved Pitch

Tracking for Bird Vocalisations”. In: Proceedings of the Annual Conference of the

International Speech Communication Association, INTERSPEECH

08-12-September-2016 (2016), pp. 2641–2645. doi:

10.21437/Interspeech.2016-90.

[135] D. O’Shaughnessy. Speech Communication: Human and Machine. Addison-Wesley

series in electrical engineering. Addison-Wesley Publishing Company, 1987. isbn:

9780201165203.

[136] Boris Oreshkin, Pau Rodŕıguez López, and Alexandre Lacoste. “TADAM: Task

Dependent Adaptive Metric for Improved Few-shot Learning”. In: Advances in Neural

Information Processing Systems 31 (2018).

[137] Dimitri Palaz, Ronan Collobert, and Mathew Magimai-Doss. “Estimating Phoneme

Class Conditional Probabilities from Raw Speech Signal using Convolutional Neural

Networks”. In: Proc. Interspeech 2013. 2013, pp. 1766–1770. doi:

10.21437/Interspeech.2013-438.

[138] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,

Ekin D. Cubuk, and Quoc V. Le. “SpecAugment: A Simple Data Augmentation

Method for Automatic Speech Recognition”. In: Interspeech 2019 (Sept. 2019). doi:

10.21437/interspeech.2019-2680.

[139] Archit Parnami and Minwoo Lee. “Learning from Few Examples: A Summary of

Approaches to Few-shot Learning”. In: arXiv preprint arXiv:2203.04291 (2022).

[140] Alberto Garćıa Arroba Parrilla and Dan Stowell. “Polyphonic Sound Event Detection

for Highly Dense Birdsong Scenes”. In: arXiv preprint arXiv:2207.06349 (2022).

[141] Karl Pearson. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space.

Nov. 1901. doi: 10.1080/14786440109462720.

[142] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine

https://doi.org/10.21437/Interspeech.2016-90
https://doi.org/10.21437/Interspeech.2013-438
https://doi.org/10.21437/interspeech.2019-2680
https://doi.org/10.1080/14786440109462720

208

Learning in Python”. In: Journal of Machine Learning Research 12 (2011),

pp. 2825–2830.

[143] Junyi Peng, Rongzhi Gu, Ladislav Mošner, Oldrich Plchot, Lukás Burget, and

Jan Černocký. “Learnable Sparse Filterbank for Speaker Verification”. In: Proc.

Interspeech 2022. 2022, pp. 5110–5114.

[144] Karol J. Piczak. “ESC: Dataset for Environmental Sound Classification”. In:

Proceedings of the 23rd Annual ACM Conference on Multimedia. Brisbane, Australia:

ACM Press, Oct. 13, 2015, pp. 1015–1018. isbn: 978-1-4503-3459-4. doi:

10.1145/2733373.2806390.

[145] J. Podos. “A Performance Constraint on the Evolution of Trilled Vocalizations in a

Songbird Family (Passeriformes: Emberizidae)”. In: Evolution 51.2 (1997),

pp. 537–551.

[146] Jeffery Podos and Stephen Nowicki. “Performance Limits on Birdsong”. In: Nature’s

Music: The Science of Birdsong. Ed. by P. Marler and H Slabbekoor. 2004,

pp. 318–342. isbn: 978-0-080-47355-0.

[147] Jordi Pons, Joan Serrà, and Xavier Serra. “Training Neural Audio Classifiers with Few

Data”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE. 2019, pp. 16–20.

[148] Nirosha Priyadarshani, Stephen Marsland, and Isabel Castro. “Automated Birdsong

Recognition in Complex Acoustic Environments: A Review”. In: Journal of Avian

Biology 49.5 (2018), jav–01447. doi: https://doi.org/10.1111/jav.01447.

[149] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks”. In: arXiv

preprint arXiv:1511.06434 (2015).

[150] Colin Raffel, Brian McFee, Eric J Humphrey, Justin Salamon, Oriol Nieto,

Dawen Liang, Daniel PW Ellis, and C Colin Raffel. “MIR EVAL: A Transparent

Implementation of Common MIR Metrics.” In: ISMIR. Vol. 10. 2014, p. 2014.

https://doi.org/10.1145/2733373.2806390
https://doi.org/https://doi.org/10.1111/jav.01447

Bibliography 209

[151] Mirco Ravanelli and Yoshua Bengio. “Speaker Recognition from Raw Waveform with

SincNet”. In: 2018 IEEE Spoken Language Technology Workshop (SLT). 2018,

pp. 1021–1028. doi: 10.1109/SLT.2018.8639585.

[152] Sachin Ravi and Hugo Larochelle. “Optimization as a Model for Few-shot Learning”.

In: International conference on learning representations. 2016.

[153] Chandan KA Reddy, Ebrahim Beyrami, Jamie Pool, Ross Cutler, Sriram Srinivasan,

and Johannes Gehrke. “A Scalable Noisy Speech Dataset and Online Subjective Test

Framework”. In: Proc. Interspeech 2019 (2019), pp. 1816–1820.

[154] R. S. Rempel, C. M. Francis, J. N. Robinson, and M. Campbell. “Comparison of

Audio Recording System Performance for Detecting and Monitoring Songbirds”. In:

Journal of Field Ornithology 84.1 (2013), pp. 86–97. doi: 10.1111/jofo.12008.

[155] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky,

Joshua B Tenenbaum, Hugo Larochelle, and Richard S Zemel. “Meta-learning for

Semi-supervised Few-shot Classification”. In: arXiv preprint arXiv:1803.00676 (2018).

[156] Frank E Rheindt, Janette A Norman, and Les Christidis. “DNA Evidence shows

Vocalizations to be a better indicator of Taxonomic Limits than Plumage Patterns in

Zimmerius Tyrant-Flycatchers”. In: Molecular Phylogenetics and Evolution 48.1

(2008), pp. 150–156.

[157] Rachid Riad, Julien Karadayi, Anne-Catherine Bachoud-Lévi, and Emmanuel Dupoux.

“Learning Spectro-Temporal Representations of Complex Sounds with Parameterized

Neural Networks”. In: The Journal of the Acoustical Society of America 150.1

(2021), pp. 353–366. doi: 10.1121/10.0005482.

[158] T. Riede, R. A. Suthers, N. H. Fletcher, and W. E. Blevins. “Songbirds Tune their

Vocal Tract to the Fundamental Frequency of their Song”. In: Proceedings of the

National Academy of Sciences of the United States of America 103.14 (2006),

pp. 5543–5548.

[159] Pau Rodŕıguez, Issam Laradji, Alexandre Drouin, and Alexandre Lacoste. Embedding

Propagation: Smoother Manifold for Few-Shot Classification. 2020. arXiv:

2003.04151 [cs.CV].

https://doi.org/10.1109/SLT.2018.8639585
https://doi.org/10.1111/jofo.12008
https://doi.org/10.1121/10.0005482
https://arxiv.org/abs/2003.04151

210

[160] Tara N Sainath, Brian Kingsbury, Abdel-rahman Mohamed, and

Bhuvana Ramabhadran. “Learning Filter Banks within a Deep Neural Network

Framework”. In: 2013 IEEE workshop on automatic speech recognition and

understanding. IEEE. 2013, pp. 297–302.

[161] Tara N. Sainath, Brian Kingsbury, Abdel-rahman Mohamed, and

Bhuvana Ramabhadran. “Learning Filter Banks within a Deep Neural Network

Framework”. In: 2013 IEEE Workshop on Automatic Speech Recognition and

Understanding. 2013, pp. 297–302. doi: 10.1109/ASRU.2013.6707746.

[162] Tara N. Sainath, Ron J. Weiss, Andrew Senior, Kevin W. Wilson, and Oriol Vinyals.

“Learning the Speech Front-end with Raw Waveform CLDNNs”. In: Proc. Interspeech

2015. 2015, pp. 1–5. doi: 10.21437/Interspeech.2015-1.

[163] Justin Salamon, Juan Pablo Bello, Andrew Farnsworth, Matt Robbins, Sara Keen,

Holger Klinck, and Steve Kelling. “Towards the Automatic Classification of Avian

Flight Calls for Bioacoustic Monitoring”. In: PLOS ONE 11.11 (Nov. 2016),

pp. 1–26. doi: 10.1371/journal.pone.0166866.

[164] Susanta Sarangi, Md Sahidullah, and Goutam Saha. “Optimization of Data-driven

Filterbank for Automatic Speaker Verification”. In: Digital Signal Processing 104

(2020), p. 102795. issn: 1051-2004. doi:

https://doi.org/10.1016/j.dsp.2020.102795.

[165] R. Schluter, I. Bezrukov, H. Wagner, and H. Ney. “Gammatone Features and Feature

Combination for Large Vocabulary Speech Recognition”. In: 2007 IEEE International

Conference on Acoustics, Speech and Signal Processing - ICASSP ’07. Vol. 4. 2007,

pp. IV-649-IV–652. doi: 10.1109/ICASSP.2007.366996.

[166] Jan Schlüter and Gerald Gutenbrunner. EfficientLEAF: A Faster LEarnable Audio

Frontend of Questionable Use. arXiv.2207.05508. 2022. doi:

10.48550/ARXIV.2207.05508. url: https://arxiv.org/abs/2207.05508.

[167] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A Unified

Embedding for Face Recognition and Clustering”. In: 2015 IEEE Conference on

https://doi.org/10.1109/ASRU.2013.6707746
https://doi.org/10.21437/Interspeech.2015-1
https://doi.org/10.1371/journal.pone.0166866
https://doi.org/https://doi.org/10.1016/j.dsp.2020.102795
https://doi.org/10.1109/ICASSP.2007.366996
https://doi.org/10.48550/ARXIV.2207.05508
https://arxiv.org/abs/2207.05508

Bibliography 211

Computer Vision and Pattern Recognition (CVPR). 2015, pp. 815–823. doi:

10.1109/CVPR.2015.7298682.

[168] Hiroshi Seki, Kazumasa Yamamoto, and Seiichi Nakagawa. “A Deep Neural Network

Integrated with Filterbank Learning for Speech Recognition”. In: 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE. 2017, pp. 5480–5484.

[169] Changhao Shan, Junbo Zhang, Yujun Wang, and Lei Xie. Attention-based End-to-End

Models for Small-Footprint Keyword Spotting. 2018. arXiv: 1803.10916 [cs.SD].

[170] S. S. Shapiro and M. B. Wilk. “An Analysis of Variance Test for Normality”. In:

Biometrics 52.3-4 (Dec. 1965), pp. 591–611. issn: 0006-3444. doi:

10.1093/biomet/52.3-4.591.

[171] G. Sharma, K. Umapathy, and S. Krishnan. “Trends in Audio Signal Feature

Extraction Methods”. In: Applied Acoustics 158 (2020). doi:

10.1016/j.apacoust.2019.107020.

[172] Bowen Shi, Ming Sun, Krishna C Puvvada, Chieh-Chi Kao, Spyros Matsoukas, and

Chao Wang. “Few-shot Acoustic Event Detection via Meta Learning”. In: ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE. 2020, pp. 76–80.

[173] Roman Shrestha, Cornelius Glackin, Julie Wall, and Nigel Cannings. “Bird Audio

Diarization with Faster R-CNN”. In: International Conference on Artificial Neural

Networks. Springer. 2021, pp. 415–426.

[174] H. Slabbekoorn. “Songs of the City: Noise-dependent Spectral Plasticity in the

Acoustic Phenotype of Urban Birds”. In: Animal Behaviour 85.5 (2013),

pp. 1089–1099.

[175] H. Slabbekoorn and M. Peet. “Birds Sing at a Higher Pitch in Urban Noise”. In:

Nature 424.6946 (2003), p. 267.

[176] Evan C Smith and Michael S Lewicki. “Efficient Auditory Coding”. In: Nature

439.7079 (2006), pp. 978–982.

https://doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1803.10916
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1016/j.apacoust.2019.107020

212

[177] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical Networks for Few-shot

Learning”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.

Vol. 30. Curran Associates, Inc., 2017. url:

https://proceedings.neurips.cc/paper_files/paper/2017/file/

cb8da6767461f2812ae4290eac7cbc42-Paper.pdf.

[178] Jongseo Sohn, Nam Soo Kim, and Wonyong Sung. “A Statistical Model-based Voice

Activity Detection”. In: IEEE Signal Processing Letters 6.1 (1999), pp. 1–3. doi:

10.1109/97.736233.

[179] J. Stastny, M. Munk, and L. Juranek. “Automatic Bird Species Recognition based on

Birds Vocalization”. In: Eurasip Journal on Audio, Speech, and Music Processing

2018.1 (2018). doi: 10.1186/s13636-018-0143-7.

[180] Stanley S Stevens and John Volkmann. “The Relation of Pitch to Frequency: A

Revised Scale”. In: The American Journal of Psychology 53.3 (1940), pp. 329–353.

[181] Thomas G. Stockham. “High-Speed Convolution and Correlation”. In: Proceedings of

the April 26-28, 1966, Spring Joint Computer Conference. AFIPS ’66 (Spring).

Boston, Massachusetts: Association for Computing Machinery, 1966, pp. 229–233.

isbn: 9781450378925. doi: 10.1145/1464182.1464209.

[182] D. Stowell, L. Gill, and D. Clayton. “Detailed Temporal Structure of Communication

Networks in Groups of Songbirds”. In: Journal of the Royal Society Interface 13.119

(2016).

[183] D. Stowell, M. Wood, Y. Stylianou, and H. Glotin. “Bird Detection in Audio: A

Survey and a Challenge”. In: IEEE International Workshop on Machine Learning for

Signal Processing, MLSP 2016-November (2016). doi:

10.1109/MLSP.2016.7738875.

[184] Dan Stowell. Computational Bioacoustics with Deep Learning: a Review and

Roadmap. 2021. arXiv: 2112.06725 [cs.SD].

https://proceedings.neurips.cc/paper_files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://doi.org/10.1109/97.736233
https://doi.org/10.1186/s13636-018-0143-7
https://doi.org/10.1145/1464182.1464209
https://doi.org/10.1109/MLSP.2016.7738875
https://arxiv.org/abs/2112.06725

Bibliography 213

[185] Dan Stowell and Mark D. Plumbley. “An Open Dataset for Research on Audio Field

Recording Archives: freefield1010”. In: CoRR abs/1309.5275 (2013). arXiv:

1309.5275. url: http://arxiv.org/abs/1309.5275.

[186] Dan Stowell and Mark D. Plumbley. “Automatic Large-scale Classification of Bird

Sounds is Strongly Improved by Unsupervised Feature Learning”. In: PeerJ 2 (July

2014), e488. issn: 2167-8359. doi: 10.7717/peerj.488.

[187] Dan Stowell, Michael D. Wood, Hanna Pamu la, Yannis Stylianou, and Hervé Glotin.

“Automatic Acoustic Detection of Birds through Deep Learning: The First Bird Audio

Detection Challenge”. In: Methods in Ecology and Evolution 10.3 (2019),

pp. 368–380. doi: https://doi.org/10.1111/2041-210X.13103.

[188] Larissa Sayuri Moreira Sugai, Thiago Sanna Freire Silva, Jr Ribeiro José Wagner, and

Diego Llusia. “Terrestrial Passive Acoustic Monitoring: Review and Perspectives”. In:

BioScience 69.1 (Nov. 2018), pp. 15–25. issn: 0006-3568. doi:

10.1093/biosci/biy147.

[189] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and

Timothy M Hospedales. “Learning to Compare: Relation Network for Few-shot

Learning”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2018, pp. 1199–1208.

[190] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks”. In: International Conference on Machine Learning.

PMLR. 2019, pp. 6105–6114.

[191] Jigang Tang, Zhang Xueyang, Tian Gao, Diyuan Liu, Xin Fang, Jia Pan, Qing Wang,

Jan Du, Kele Xu, and Qinghua Pan. Few-Shot Embedding Learning and Event

Filtering for Bioacoustic Event Detection. Tech. rep. DCASE2022 Challenge, June

2022.

[192] Tiantian Tang, Yunhao Liang, and Yanhua Long. Two Improved Architectures Based

on Prototype Network for Few-Shot Bioacoustic Event Detection. Tech. rep.

DCASE2021 Challenge, June 2021.

https://arxiv.org/abs/1309.5275
http://arxiv.org/abs/1309.5275
https://doi.org/10.7717/peerj.488
https://doi.org/https://doi.org/10.1111/2041-210X.13103
https://doi.org/10.1093/biosci/biy147

214

[193] Nicholas S. Thompson, Kerry Ledoux, and Kevin Moody. “A System for Describing

Bird Song Units”. In: Bioacoustics-the International Journal of Animal Sound and Its

Recording 5 (1994), pp. 267–279.

[194] W. H. Thorpe. “The Process of Song-learning in the Chaffinch as studied by Means

of the Sound Spectrograph”. In: Nature 173.4402 (1954), pp. 465–469.

[195] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola.

“Rethinking Few-shot Image Classification: A Good Embedding is All You Need?” In:

Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August

23–28, 2020, Proceedings, Part XIV 16. Springer. 2020, pp. 266–282.

[196] D. Tilman, M. Clark, D.R. Williams, K. Kimmel, S. Polasky, and C. Packer. “Future

Threats to Biodiversity and Pathways to their Prevention”. In: Nature 546.7656

(2017), pp. 73–81. doi: 10.1038/nature22900.

[197] Joseph A Tobias, Nathalie Seddon, Claire N Spottiswoode, John D Pilgrim,

Lincoln DC Fishpool, and Nigel J Collar. “Quantitative Criteria for Species

Delimitation”. In: Ibis 152.4 (2010), pp. 724–746.

[198] Hartmut Traunmüller. “Analytical Expressions for the Tonotopic Sensory Scale”. In:

The Journal of the Acoustical Society of America 88.1 (1990), pp. 97–100. doi:

10.1121/1.399849.

[199] John W. Tukey. “Comparing Individual Means in the Analysis of Variance”. In:

Biometrics 5.2 (1949), pp. 99–114. issn: 0006341X, 15410420. url:

http://www.jstor.org/stable/3001913 (visited on 05/30/2023).

[200] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE.” In:

Journal of machine learning research 9.11 (2008).

[201] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is All You Need”. In:

Advances in Neural Information Processing Systems 30 (2017).

[202] Olivier Veilleux, Malik Boudiaf, Pablo Piantanida, and Ismail Ben Ayed. “Realistic

Evaluation of Transductive Few-shot Learning”. In: Advances in Neural Information

Processing Systems 34 (2021), pp. 9290–9302.

https://doi.org/10.1038/nature22900
https://doi.org/10.1121/1.399849
http://www.jstor.org/stable/3001913

Bibliography 215

[203] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu koray, and

Daan Wierstra. “Matching Networks for One Shot Learning”. In: Advances in Neural

Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,

and R. Garnett. Vol. 29. Curran Associates, Inc., 2016. url:

https://proceedings.neurips.cc/paper_files/paper/2016/file/

90e1357833654983612fb05e3ec9148c-Paper.pdf.

[204] Peter M Vitousek, John D Aber, Robert W Howarth, Gene E Likens,

Pamela A Matson, David W Schindler, William H Schlesinger, and David G Tilman.

“Human Alteration of the Global Nitrogen Cycle: Sources and Consequences”. In:

Ecological applications 7.3 (1997), pp. 737–750.

[205] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. “Low-shot

Learning from Imaginary Data”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2018, pp. 7278–7286.

[206] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens Van Der Maaten.

“Simpleshot: Revisiting Nearest-neighbor Classification for Few-shot Learning”. In:

arXiv preprint arXiv:1911.04623 (2019).

[207] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. “Generalizing from a

Few Examples: A Survey on Few-shot Learning”. In: ACM computing surveys (csur)

53.3 (2020), pp. 1–34.

[208] Yu Wang, Nicholas J. Bryan, Justin Salamon, Mark Cartwright, and

Juan Pablo Bello. “Who Calls The Shots? Rethinking Few-Shot Learning for Audio”.

In: 2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

(WASPAA). 2021, pp. 36–40. doi: 10.1109/WASPAA52581.2021.9632677.

[209] Yu Wang, Justin Salamon, Nicholas J Bryan, and Juan Pablo Bello. “Few-shot Sound

Event Detection”. In: ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 81–85.

[210] Yu Wang, Justin Salamon, Nicholas J. Bryan, and Juan Pablo Bello. “Few-Shot

Sound Event Detection”. In: ICASSP 2020 - 2020 IEEE International Conference on

https://proceedings.neurips.cc/paper_files/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://doi.org/10.1109/WASPAA52581.2021.9632677

216

Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 81–85. doi:

10.1109/ICASSP40776.2020.9054708.

[211] Yuxuan Wang, Pascal Getreuer, Thad Hughes, Richard F. Lyon, and Rif A. Saurous.

“Trainable Frontend for Robust and Far-field Keyword Spotting”. In: 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

2017, pp. 5670–5674. doi: 10.1109/ICASSP.2017.7953242.

[212] David H. Wolpert. “Stacked Generalization”. In: Neural Networks 5.2 (1992),

pp. 241–259. issn: 0893-6080. doi:

https://doi.org/10.1016/S0893-6080(05)80023-1.

[213] Genwei Yan, Ruoyu Wang, Liang Zou, Jun Du, Qing Wang, Tian Gao, and Xin Fang.

Multi-Task Frame Level System for Few-Shot Bioacoustic Event Detection. Tech. rep.

DCASE2023 Challenge, June 2023.

[214] Dongchao Yang, Helin Wang, Zhongjie Ye, and Yuexian Zou. Few-Shot Bioacoustic

Event Detection = A Good Transductive Inference is All You Need. Tech. rep.

DCASE2021 Challenge, June 2021.

[215] Yao-Yuan Yang, Moto Hira, Zhaoheng Ni, Anjali Chourdia, Artyom Astafurov,

Caroline Chen, Ching-Feng Yeh, Christian Puhrsch, David Pollack, Dmitriy Genzel,

Donny Greenberg, Edward Z. Yang, Jason Lian, Jay Mahadeokar, Jeff Hwang,

Ji Chen, Peter Goldsborough, Prabhat Roy, Sean Narenthiran, Shinji Watanabe,

Soumith Chintala, Vincent Quenneville-Bélair, and Yangyang Shi. “TorchAudio:

Building Blocks for Audio and Speech Processing”. In: arXiv preprint

arXiv:2110.15018 (2021).

[216] Neil Zeghidour, Olivier Teboul, Felix de Chaumont Quitry, and Marco Tagliasacchi.

“LEAF: A Learnable Frontend for Audio Classification”. In: CoRR abs/2101.08596

(2021). arXiv: 2101.08596. url: https://arxiv.org/abs/2101.08596.

[217] Neil Zeghidour, Nicolas Usunier, Iasonas Kokkinos, Thomas Schaiz, Gabriel Synnaeve,

and Emmanuel Dupoux. “Learning Filterbanks from Raw Speech for Phone

Recognition”. In: 2018 IEEE International Conference on Acoustics, Speech and

https://doi.org/10.1109/ICASSP40776.2020.9054708
https://doi.org/10.1109/ICASSP.2017.7953242
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
https://arxiv.org/abs/2101.08596
https://arxiv.org/abs/2101.08596

Bibliography 217

Signal Processing (ICASSP). 2018, pp. 5509–5513. doi:

10.1109/ICASSP.2018.8462015.

[218] Neil Zeghidour, Nicolas Usunier, Gabriel Synnaeve, Ronan Collobert, and

Emmanuel Dupoux. “End-to-End Speech Recognition from the Raw Waveform”. In:

arXiv preprint arXiv:1806.07098 (2018).

[219] Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. “Global Convergence of

Block Coordinate Descent in Deep Learning”. In: International Conference on

Machine Learning. PMLR. 2019, pp. 7313–7323.

[220] Yue Zhang, Jun Wang, Dawei Zhang, and Feng Deng. Few-Shot Bioacoustic Event

Detection using Prototypical Network with Background Class. Tech. rep. DCASE2021

Challenge, June 2021.

https://doi.org/10.1109/ICASSP.2018.8462015

	List of Tables
	List of Figures
	Chapter Introduction
	Monitoring Bird Populations through Audio
	The Importance of Monitoring Bird Populations
	Difficulties with Monitoring Bird Populations through their Vocalisations

	Thesis Statement
	Thesis Outline
	Contributions
	Publications

	Chapter Literature Review
	Bird Vocalisations
	Production of Bird Vocalisations
	Vocalisation Structure
	Difference from Human Speech
	Importance of Vocalisation

	Automatic Monitoring of Birds
	Recording Hardware & Challenges
	Tasks in Bird Audio Monitoring/Bioacoustics

	Few-Shot Learning
	Approaches to Few-Shot Learning
	Few-Shot Learning with Audio

	Learnable Frontends
	Frequency-Domain-Based Learnable Frontends
	Time-Domain-Based Learnable Frontends
	Learnable Compression

	Datasets
	Relevance to this Work

	Chapter Low Resource Bird Activity Detection with AMPS
	Preprocessing and Feature Extraction
	Identifying a Frequency Range for Bird Vocalisations
	Preprocessing
	Feature Extraction

	Experimental Setup
	Data
	Feature Extraction and Classification

	Results and Discussion
	Moving towards Few-Shot Learning

	Chapter Bioacoustic Event Detection with Prototypical Networks
	Few-Shot Learning and Prototypical Networks
	Protonets
	Episodic Training
	Loss Function

	DCASE2021 Few-Shot Bioacoustic Sound Event Detection Challenge
	Challenge Task
	Challenge Data
	Implementation
	Experimental Results
	Challenge Results

	Investigation following the DCASE2021 Challenge
	Analysis of Embedding Space using t-SNE
	Triplet Loss to Improving Clustering and Increase Separation
	Multiple Representations and Introduction of the Background Class
	Results and Discussion

	Chapter Learnable Frontends and the Filterbank Initialisation Problem
	Non-learnable Frontends
	Mel-Frequency Cepstral Coefficients
	Spectrogram based features
	Other Features

	Learnable Frontends
	Spectro-Temporal Filters
	Time-Domain Filter Banks
	Per-Channel Energy Normalisation
	(Efficient) Learnable Audio Frontend

	Evaluating Learnable Acoustic Frontends on a Bird Activity Detection Task
	Dataset
	Model
	Evaluation and Testing
	Results & Discussion

	The Filterbank Initialisation Problem
	Frontend initialisation
	Experimental Setup
	Results & Discussion

	Chapter Mitigating the Filterbank Initialisation Problem and Returning to FSL
	Mitigation Strategies for the Filterbank Initialisation Problem
	Alternating Training
	Separate Optimisation
	Experimental Setup
	Results & Discussion

	Returning to Few-Shot Learning
	Few-Shot Learning for Bioacoustics since 2021
	Experimental Setup
	Results & Discussion

	Chapter Conclusion
	Architectures for Monitoring Bird Populations with Low Resource Hardware
	Learnable Frontends in Audio Deep Learning
	Future Work
	Few-Shot Learning for Bioacoustics
	Causes of the Filterbank Initialisation Problem and Mitigation Strategies
	Learnable Frontends

	Final Remarks

