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A B S T R A C T   

Grain boundary energies in different elements are correlated. The proportional scaling constants relating the 
energies of crystallography-equivalent boundaries in any two f.c.c. elements are nearly constant, with the notable 
exception of aluminum where these constants are known to vary significantly. However, the origins of the 
exceptional behavior of aluminum are not understood. Previously, we reported that for fcc metals there is a 
preference for tilt boundaries to shift their tilt axis across the (110) plane towards [112] and to ultimately form 
low energy [112] core shifted boundaries (CSBs). By comparing grain boundary energies in copper and 
aluminum with different tilt axes in (110) plane, we now report the existence of a well-defined scaling behavior 
for the case of low angle boundaries. In contrast, the scaling constant for high angle boundaries is essentially 
fixed regardless of their tilt axis shift. This results in a gradual change in the scaling constants from low angle to 
high angle boundaries, which is responsible for the apparent exceptional scaling behavior found in aluminum. An 
analysis of structure evolution during core shifting points to the significance of boundary-core dissociation, a 
form of correlated relaxation of individual atoms at boundaries, in controlling the scaling of boundary energies.   

1. Introduction 

A fundamental goal of materials science is to understand the 
structure-property relationship, such as that between the macroscopic 
and microscopic structures of grain boundaries and their energies. The 
dependence of boundary energies on boundary geometrical parameters 
plays an important role in driving microstructure evolution in the bulk 
and close to surfaces [1–9]. Organizing data by examining scaling trends 
and correlation is interesting and useful, and important new insights can 
be gained by discovering the underlying physics for these correlations, 
which in turn can predict behaviors in related systems. For example, the 
universal equation of state for metals was discussed a long time ago, and 
the scaled binding energy for all metals can be brought onto the same 
curve as a function of scaled atom separation [10,11]. Later, EAM po-
tential based calculation revealed the scaling of elemental-metal 
grain-boundary energies with the shear modulus of metals [3]. 
Recently, much attention has been focused on energies for 
crystallography-equivalent (CE) boundaries, which have the same geo-
metric thermodynamic variables – 5 macroscopic degrees of freedom. 
The 5 degrees of freedom includes lattice rotation and bicrystal section. 
The former is defined by axis and (misorientation) angle. The latter is 
described by the sectioning plane. Atomic simulation reveals that the 

energies of CE boundaries in different elemental metals show near 
perfect proportional scaling [3–9], suggesting a functional relationship 
between boundary energies and the 5 geometric variables. The actual 
functional form was ultimately developed in year 2014 [7]. 

Among the many proportional relationships between pairs of fcc 
metals, the scaling of boundary energies involving Al always show sig-
nificant scatter from the proportional line and hence the behavior 
cannot be described by a well-defined scaling constant. Understanding 
the origins of this behavior is extremely challenging since 5 geometric 
thermodynamic variables and many material parameters are possibly 
involved [12] and hence it is difficult to distinguish different kinds of 
contribution. While it is established that Al is different from other fcc 
metals, with a low elastic anisotropy such as 2C44/(C11 − C12) and a high 
stacking fault energy Γ, the role these differences play in the observed 
scaling behavior has never been addressed. On the other hand, it is well 
known that grains can rotate in nanocrystalline materials, such as metal 
thin films and nanowires which are both of technological importance 
[13]. The change of the rotation axis or angle during grain rotation gives 
rise to boundary core shifting [14] and misorientation angle variations. 
Furthermore, recent progress on grain boundary kinetics also revealed 
the widespread existence of grain rotation in bulk polycrystal materials 
[15,16]. However, the effect of boundary core shifting on the physical 
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properties, such as boundary energies and their scaling behaviors, has to 
this point been completely ignored. 

Nonetheless the puzzling behavior of aluminum with other fcc 
metals is readily observed in the boundary-energy calculations with 
empirical potentials, which are capable of capturing important physical 
properties in metals, such as stacking fault energies and widths [3,5]. 
Advanced calculations, which more accurately reproduce these same 
physical properties, are expected to highlight the same behavior 
[17–20]. 

Here we studied the energy of Al boundaries with tilt axes from 
[110], through [111] and [112] to [001] in (110) plane, taking the 
corresponding Cu boundary energies as reference. We found that the 
scaling constant for low angle boundaries depends on the extent to 
which the tilt axes of these boundaries are shifted from the [112] di-
rection in the close packed plane, which we previously showed is always 
the lowest energy boundary for fcc metals regardless of the in-plane 
misorientation angle [14,21–24]. Tilt axes that are aligned along the 
[112] direction have cores that lie within single close packed (111)
planes, facilitating in the cases of low angle Cu and Al boundaries the 
maximum level of dissociation and relaxation, respectively, which yields 
the smallest possible scaling constant. 

2. Method 

Boundary structures and their energies are determined by boundary 
geometries, microscopic shifts and individual atomic relaxations [1]. 
The effect of microscopic shifts was eliminated through structural 
searches that explored hundreds of different possible shifts and only the 
lowest energy boundaries are considered [1,2]. We performed the 
structural searches through rigid body translation for the initial struc-
tures followed by structure optimization [8,25,26]. Hence, this allowed 
us to focus on the effect of individual atomic relaxations, and the 

influence of boundary microstructures on boundary energies. 
We begin by considering symmetric [111] tilt boundaries, shown in 

Fig. 1(b), with in-plane misorientation angle θ and (110) mean boundary 
plane [14,21–24]. The black and white crystal lattices are obtained from 
the median lattice (see Fig. 1a) by equal and opposite rotation ±θ/2, 
respectively, as illustrated in Fig. 1(b). We calculated the boundary 
energies in the bulk for copper, aluminum, nickel, gold, and platinum at 
different core shift angles ψ , which is the angular shift (inclination) of 
the boundary core or the composite rotation axis l away from [111] as 
the composite rotation axis shifts across the (110) boundary plane [21]. 
We exploit here our boundary analysis shown in Fig. 1(c) [21], which, in 
contrast to previous one [14], is based on the boundary-core orientation 
or tilt axis direction and greatly facilities the computation. The com-
posite rotation axis l and the core-shift angle ψ are shown in Fig. 1(c), 
which also shows the composite period vector p. 

The composite rotation results from two consecutive rotations [1,14, 
21,27]. As shown in Fig. 1(a) and (b), the first rotation is defined by 
[111] tilt axis, an in-plane misorientation angle θ, and mean boundary 
plane (110). Fig. 1(c) show the second rotation involves an out-of-plane 
rotation along the period vector of the previous boundary (x axis di-
rection in the figure), and gives rise to a tilt boundary with composite 
rotation axes l in the (110) plane, a composite misorientation angle γ and 
also a mean boundary plane (110) [1,14,21,27]. In summary, the 
composite rotation axis l is the rotation axis after two consecutive ro-
tations of the two lattices [14]. The second rotation shifts the axis away 
from [111]. Thus, there is a core shift angle ψ between the [111] and the 
composite rotation axis after out-of-plane rotation [21]. 

To clearly illustrate the boundary geometry discussed above, we 
show in Fig. 1(d) the cross-section view of one copper boundary plane 
(xz plane with its boundary normal along the y direction) with atoms on 
the +y side removed. The grain boundary cores are selected by the 

Fig. 1. Boundary geometry 
(a) median lattice adhering to the xyz coordination system. (b) black and white bicrystals and their own coordination systems are rotated ±θ /2 along axis z or [111] 
direction of the median lattice, respectively. (c) out-of-plane rotation φ, shifting the axis l of the composite rotation (l, γ) from [111] direction, where γ is the 
composite rotation angle (not shown in the figure). The composite period vector is p and the composite boundary normal is still along y. (d) cross-section view of one 
copper boundary plane (xz plane with its boundary normal along y direction) with atoms on the +y side removed. The grain boundary cores are selected by the 
centrosymmetry parameter and colored differently from red atoms at fcc sites, and lie along the composite rotation axis l. This boundary is obtained from GB13.17 
with rotation axis [111] and in-plane misorientation angle θ = 13.17∘, followed by an out-of-plane rotation tan(φ /2) = 1/(4

̅̅̅̅̅̅
38

√
). Its composite rotation axis l is 

[112] and its composite rotation angle γ is 13.96∘. The core-shift angle ψ is 19.47∘. 
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centrosymmetry parameter and colored differently from red atoms at fcc 
sites, and lie along the composite rotation axis l. This boundary is ob-
tained from GB13.17 with rotation axis [111] and in-plane misorienta-
tion angle θ = 13.17∘, followed by an out-of-plane rotation tan(φ /2) = 1 
/(4

̅̅̅̅̅̅
38

√
). Its composite rotation axis l is [112] and its composite rotation 

angle γ is 13.96∘ The core-shift angle ψ is 19.47∘ 

We performed these calculations for 20 different in-plane misorien-
tation angles θ [21] and for each in-plane misorientation angle 20 
different kinds of out-of-plane angles φ and hence 20 core shift angles ψ 
are considered. So that there are in total CE 400 tilt boundaries for each 
elemental metal. Calculations were performed with LAMMPS software, 
using molecular statics and the embedded-atom-method (EAM) inter-
atomic potentials and the third-generation charge-optimized-many--
body (COMB3) potential [19,20, 28-31]. The boundary structures are 
visualized with OVITO [32]. 

3. Core shift results 

The calculated grain boundary energy for copper and aluminum, 
with 17 different in-plane misorientation angles, as a function of core- 
shift angle are shown in Fig. 2(a) and 2(b), respectively. For clarity, 
results for three in-plane misorientation angles are not shown due to 
overlapping data [21]. Our calculated misorientation-dependent energy 
of boundaries with high-symmetry tilt axes along [001], [110] and 
[111] were carefully compared with published results and the consis-
tency and accuracy of our calculations was confirmed [8,33,34]. For 
each in-plane misorientation angle, 20 core-shift angles are considered. 
Core-shift angles 0, 19.47◦, 54.74◦ and − 35.26◦ correspond to tilt axes 
or boundary core along [111], [112], [001] and [110], respectively. 

Taking GB [111] 60◦ for example (on purple curves in Fig. 2) listed in 
Table 1, it is the incoherent twin boundary with the reciprocal of the 
density of coincident sites Σ = 3 and boundary normal [121] and [211]
for the black and white crystals, respectively [35,36]. From this 
boundary, the coherent twin boundary is obtained through core shifting, 
which has a composite tilt axis [110], a composite misorientation angle 
70.53◦ and boundary normal [111] and [111] for the black and white 
crystals, respectively [37]. In general, the composite misorientation 
angle is given by cos(γ /2) = cos(θ /2)⋅cos(φ /2) following the geometry 
analysis with the Rodrigues vector [14,21], where γ is the composite 
rotation angle, θ is the in-plane misorientation angle and φ is the 
out-of-plane angle [21,22]. From this boundary, Σ11 and single crystal 
can also be obtained. The composite tilt axis for the Σ11 boundary is 
[112], the composite misorientation angle is 62.96∘, and the boundary 

normal are [131] and [311] for the black and white crystal, respectively. 
For the purpose of energy scaling, we only consider data involving 

the composite tilt axes or boundary core between [552] to [113], or core 
shift angles from − 19.47∘ to 29.50∘ and mean boundary plane (110), in 
contrast to boundaries with [111] tilt axis and (112) mean boundary 
plane [38,39]. We select this subset of the data because we have pre-
viously shown that within this range the grain boundary energy varia-
tion is linear with the jog density within the cores [21], which we show 
below facilitates analysis of the scaling behavior. Within this range, 
Table 2 shows that the maximum composite misorientation angles after 
core shift for GB [111] 13.17∘ with boundary cores between [552] and 
[113] are still ~ 15∘. Table 2 also shows that the core-shift boundary 
from GB [111] 13.17∘ with boundary core along [001] has a composite 
misorientation angle 22.62∘, which is clearly out of the misorientation 
angle range for a low angle boundary. 

3.1. Pairwise comparisons 

We show the pairwise comparison of CE grain boundary energies for 
Al and Cu in Fig. 3(a). Clearly there is a poor scaling relationship with 
many data points off the fitted proportional line, which is consistent 
with previous publications [5,8]. The constant for these two groups of 
CE 200 grain boundaries is 1.71 close to the proportionality constant of 
1.783 derived from the data set calculated with the same EAM potentials 
by Tschopp et al. [8]. In contrast, the pairwise comparison of the same 
group of CE boundaries for Cu and Ni, that for Cu and Pt, shown in Fig. 3 
(b-c), and that for Cu and Au in Fig. S1, all show good proportionality 
relationship as reported previously [5]. In Fig. 3(d) we show the scaling 
of boundaries with [111] tilt axis or a core shift angle of zero. Clearly the 
scaling constant 1.63 for low angle boundaries (0 ∼ 15∘) and that 1.74 
for all [111] boundaries (0 ∼ 60∘) are different. 

3.2. Energy scaling for different in-plane misorientation angles 

To elucidate the dependence of the scaling behavior on the boundary 
structure at the atomic scale, we first classify all the data by the in-plane 
misorientation angle and show data points associated with different in- 
plane misorientation angles in Fig. 3(a)–(c) using different shapes and 
colors. Different points with the same shape and color correspond to a 
set of boundaries, obtained from the same in-plane misorientation angle 
followed by different out-of-plane rotations (see Fig. 1c), with different 
composite rotation axes in the (110) plane and core-shift angles. We 
classify as subgroups boundaries with the same in-plane misorientation 

Fig. 2. Core-shift angle dependent boundary energy. 
Grain boundary energy in copper and aluminum as a function of the core shift angle. Core-shift angles 0, 19.47∘, 54.74∘ and − 35.26∘ correspond to boundary core 
direction [111], [112], [001] and [110], respectively. GB [111] 60∘ is the incoherent twin boundary, from which the coherent twin boundary [37] (rotation axis 
[110], rotation angle 70.53∘, mean boundary plane (110)]) is obtained through core shifting. Different colors and shapes in the legend on the right are used to denote 
different in-plane misorientation angles. Three curves in each panel are drawn as a guide to eyes. 
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angle but different core-shift angles. A review of Fig. 3(a) shows that for 
the pairwise comparison of copper and aluminum each boundary sub-
group shows different slopes with different finite non-zero intercepts. In 
contrast, Fig. 3(b) and (c) shows the pairwise comparison of copper and 
nickel and copper and platinum, which do not exhibit this type of 
behavior. Moreover, in Fig. 3(a) there is a systematic scatter for low 
angle boundaries with in-plane misorientation angle less than 15∘ and 
for high angle boundaries with in-plane misorientation angle between 
15∘ and 32.20∘ On the other hand, for high angle GBs with in-plane 
misorientation angles above 32.20∘, the variation in the proportional 
scaling is considerably reduced. Fig. 3(d) shows data points that exclude 
core shift in the (110) plane, so that all boundaries have [111] tilt axes, 
and from which the proportionality constant for all and low angle 
boundaries are 1.74 and 1.63, respectively. This means that when 
exclusively low and even high angle [111] boundaries with in-plane 
misorientation angle between 15∘ and 32.20∘ are considered, there is 
still a dependence of the scaling constant on the in-plane misorientation 
angle. A similar fit to the high angle boundary data yields a scaling 
constant of 1.80, as shown in Fig. 3(e). Remarkably, this scaling constant 
value (1.80) sets the upper limit for the combined low angle and high 
angle (with in-plane misorientation angle between 15∘ and 32.20∘) GB 
data sets, as shown in Fig. 3(f). 

We now focus on the CE boundary energies for subgroups with in- 
plane misorientation angles of 3.89∘ and 16.43∘. These boundaries are 
representative of the behavior of low angle boundaries and their scaling 
behavior are detailed in Fig. 4(a) and (b), respectively. For each in-plane 
misorientation angle, we consider 10 different core-shift angles within 
the (110) plane. Clearly the boundary energies vary according to the 
composite rotation axes and in both cases the energy reaches its mini-
mum when the tilt axis lies along [112], which lies in the close packed 
(111) plane [21]. Since low angle boundaries are known to dissociate, 
this behavior reflects the effect of dislocation dissociation on boundary 
energies as the composite rotation axis shifts into and out of the close 
packed plane. 

Fig. 4(c) shows the slope and intercepts for all subgroups with low 
and high angles with in-plane misorientation angle between 15∘ and 
32.20∘. Each subgroup exhibits a different slope and intercept, consistent 
with the earlier analysis by Tschopp et al. [8]. Low angle boundaries can 
be viewed as an array of dislocations, whose dissociation is sensitive to 
the core-shift angle within the (110) plane. On the other hand, high 
angle boundaries do not dissociate and hence show no dependence on 
core-shift angle. In this scissor-shaped diagram there is a strong initial 
positive (negative) dependence of the slope (intercept) with increasing 
in-plane misorientation angle, followed by an abrupt switch in this trend 

Table 1 
Geometrical specification of GB [111] 60.00∘ with different core shift angles. 
Starting from the composite rotation axes, we calculated the boundary normal, period vectors and the composite misorientation angles due to the core shift process. 
Both before and after the core shift, the mean boundary normal keeps [110]. The composite angle is given by cos(γ /2) = cos(θ /2)⋅cos(φ /2). It can also be calculated 
from the Miller’s indexes for two period vectors since it is the symmetrical tilt grain boundaries. The Miller indexes for the composite rotation axes are rewritten in 
Cartesian coordinate system with three unit vectors e1 = [112]/

̅̅̅
6

√
, e2 = [110]/

̅̅̅
2

√
, and e3 = [111]/

̅̅̅
3

√
.  

Composite 
rotation axis 
l 

tanψ Core-shift 
angle 
ψ(◦) 

tan(φ /2) =

tanψ⋅sin
θ
2  

cos
γ
2  

Composite 
rotation angle 
γ(◦) 

Composite 
boundary normal 
n2b 

n2w 

Composite 
period vector 
p2b 

p2w 

[110]
e3 −

̅̅̅
2

√

/2e1 

−

̅̅̅
2

√

2 
− 35.26 

−
1

2
̅̅̅
2

√

̅̅̅
2

√

̅̅̅
3

√
70.53 [1 1 1]

[1 1 1]
[1 1 2]
[1 1 2]

[111] 
e3 

0 0 0 ̅̅̅
3

√

2 
60 [1 2 1]

[2 1 1]
[101]
[011]

[112] 
e3 +

̅̅̅
2

√

/4e3 

̅̅̅
2

√

4 
19.47 ̅̅̅

2
√

8 

̅̅̅
8

√

̅̅̅̅̅̅
11

√
62.96 [131]

[311]
[714]
[174]

[001] 
e3 +

̅̅̅
2

√

/1e1 

̅̅̅
2

√

1  
54.74 1̅

̅̅
2

√
1̅
̅̅
2

√
90 [0 1 0]

[1 0 0]
[100]
[010]

Table 2 
Geometrical specification of GB [111] 13.17∘ with different core shift angles. 
Before the core-shift, the rotation axis is [111], the rotation angle is tan(θ /2) = 1/5

̅̅̅
3

√
and the mean boundary normal is [110]. The Miller indexes for the composite 

rotation axes are rewritten in Cartesian coordinate system with three unit vectors e1 = [112]/
̅̅̅
6

√
, e2 = [110]/

̅̅̅
2

√
, and e3 = [111]/

̅̅̅
3

√
.  

Composite 
rotation axis 
l 

tanψ Core-shift 
angle 
ψ(◦) 

tan(φ /2) =

tanψ⋅sin
θ
2  

cos
γ
2  

Composite 
rotation 
angle 
γ(◦) 

Composite 
boundary normal 
n2b 

n2w 

Composite 
period vector 
p2b 

p2w 

[110]
e3 −

̅̅̅
2

√
/2e1 

−

̅̅̅
2

√

2 
− 35.26 − 1

̅̅̅̅̅̅̅̅̅
152

√

̅̅̅̅̅̅
50

√

̅̅̅̅̅̅
51

√
16.10 [5 5 1]

[5 5 1]
[1 1 10]
[1 1 10]

[552]
e3 −

̅̅̅
2

√
/4e1 

−

̅̅̅
2

√

4 
19.47 − 1

̅̅̅̅̅̅̅̅̅
608

√

̅̅̅̅̅̅̅̅̅
200

√

̅̅̅̅̅̅̅̅̅
203

√
13.96 [29 31 5]

[31 29 5]
[29 11 100]
[11 29 100]

[111] 
e3 + 0 e1 

0 0 0 ̅̅̅̅̅̅
75

√

̅̅̅̅̅̅
76

√
13.17 [7 8 1]

[8 7 1]
[325]
[235]

[112] 
e3 +

̅̅̅
2

√
/4e1 

̅̅̅
2

√

4 
19.47 1

̅̅̅̅̅̅̅̅̅
608

√

̅̅̅̅̅̅̅̅̅
200

√

̅̅̅̅̅̅̅̅̅
203

√
13.96 [9 11 1]

[11 9 1]
[23 17 20]
[17 23 20]

[113] 
e3 + 2

̅̅̅
2

√

/5e1 

2
̅̅̅
2

√

5 
29.50 ̅̅̅

2
√

5
̅̅̅̅̅̅
19

√
25

̅̅̅
3

√

2
̅̅̅̅̅̅̅̅̅
477

√
15.11 [11 14 1]

[14 11 1]
[43 32 25]
[32 43 25]

[001] 
e3 +

̅̅̅
2

√
/1e1 

̅̅̅
2

√

1  
54.74 1̅̅

̅̅̅̅
38

√

̅̅̅̅̅̅
25

√

̅̅̅̅̅̅
26

√
22.62 [2 3 0]

[3 2 0]
[3 2 0]
[2 3 0]
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at θ = 19.65◦ and subsequently followed by an angle-independent 
behavior beyond θ = 38.21◦. In addition, we note the slope and inter-
cept plots exhibit cusps at delimiting boundaries [4,1] and [3,1] in the 
structural unit model, reflecting the importance of atomic structures 
within the boundary cores [40,41]. The slope of 1.80 and zero intercept 
found for the subgroup with even greater in-plane misorientation angles 
than 38.21∘ shown in Fig. 4(c) are consistent with the fixed scaling 

constant for high angle boundaries found in Fig. 3(e) regardless of core 
shift angle. 

3.3. Core-shift angle dependent proportionality constant 

Since the core-shift angle and the composite rotation axes are related 
to the jog density along boundary cores [21] and hence the degree to 

Fig. 3. Comparison of grain boundary energies in Cu and Al. 
(a) Comparison of grain boundary energies calculated for copper and aluminum and proportional fit of all the data points. Data points are coloured by the in-plane 
misorientation angles. 20 different in-plane misorientation angles are listed in the legend. Multiple data point of the same colour and shape reflect the different core- 
shift angles. The slope of 1.71 is a best fit to all CE 200 boundaries. The 1.80 slope is the scaling for high angle boundaries. (b-c) Comparison of grain boundary 
energies calculated for nickel and platinum. (d) Comparison of grain boundary energies with composite rotation axis along [111] only (grain boundaries without out- 
of-plane rotation, as shown in Fig. 1b). The in-plane misorientation angles are shown next to corresponding grouping of data points. Proportional fit of low angle 
boundaries (black and blue data points) shown as a red line (slope 1.63). (e) Proportional fit of high angle boundaries energies with in-plane misorientation angles 
above 32.20. (f) Comparison of grain boundaries energies with in-plane misorientation angle less than 32.20∘. 

Fig. 4. Dependence of the linear fitting on in-plane misorientation angle. 
(a) Comparison of grain boundary energies with in-plane misorientation angle 3.89∘ and different core-shift angles together with a linear fit (slope 4.09). (b) 
Comparison of grain boundary energies with in-plane misorientation angle 16.43∘ and different core-shift angles together with a linear fit (slope 5.76). (c) the 
dependence of the slope and intercept on in-plane misorientation angles from the linear fitting of all in-plane misorientation angles up to 42.10◦. 

X. Zhang and J.J. Boland                                                                                                                                                                                                                     



Acta Materialia 265 (2024) 119606

6

which dislocations can dissociate, we reclassify the data again into small 
groups according to their core-shift angle. Fig. 5(a) shows data points for 
all 20 in-plane misorientation angles and 4 representative core-shift 
angles, − 19.47∘, 0∘, 19.47∘ and 29.50∘ that span the vast range of 
core-shift angles considered in this work. The corresponding composite 
rotation axes in (110) plane are [552], [111], [112] and [113], 
respectively. Axis [552] is the far shift away from [111] toward [110] 
that we have considered. Axis [112] is in the close-packed plane (111). 
Axis [113] is the far shift away from [111] toward [001]. For clarity, 
data points associated with the core-shift angles in-between are not 
shown. While Fig. 5(a) shows evidence of scatter, the scaling behavior of 
GBs with the same core-shift angle is markedly better. To this end, Fig. 5 
(b) shows the data for the 7 low angles boundaries that comprised Fig. 5 
(a) and from which the excellent scaling with core-shift angle is now 
evident. The proportionality constants for core-shift angles − 19.47∘, 0∘, 
19.47∘ and 29.50∘ are 1.77, 1.63, 1.31 and 1.54, respectively. The lowest 
energy boundaries are associated with a [112] composite rotation axis 
with a core-shift angle of 19.47∘ and these same boundaries exhibit the 
lowest possible scaling constant 1.31. Fig. 5(c) shows the scaling con-
stants for the low angle boundaries for each of the 10 core-shift angles 
considered in this study, with four data points taken from Fig. 5(b) 
highlighted. The dashed line corresponds to the scaling constant 1.80 
(see Fig. 3e) observed for high angle boundaries that is approached by 
low angle boundaries at increasingly negative core-shift angles. There is 
a monotonic variation of the scaling constant on either side of the 19.47∘ 

core-shift angle, which is associated with a [112] composite rotation 
axis lying in the close-packed plane (111). In the two sides of [112] in 
the (110) plane, the decomposition of the tilt axes is different [21]. On 
the side of [110], the tilt axes are decomposed into [112] segments and 
[110] segments. On the other side, the tilt axes are decomposed into 
[112] segments and [001] segments. Hence there is a change in the 
trend of the scaling constant. 

To gain a better understanding of the dependence of the proportional 
scaling constant on the core-shift angle, we examined the atomic 
structure variation of CE boundaries in copper and aluminum with an in- 
plane misorientation angle of 3.89∘ at each of the 10 core-shift angles 
(Fig. 6). The atoms are selected by the centrosymmetry parameters and 
colored according to atomic energy [42]. The grain boundaries are 
projected along their period vectors. Clearly, the copper dislocations are 
fully dissociated at the [112] composite rotation axis with two partials 
and stacking faults in-between. Atoms at the two partials have higher 
energy than those that comprise the stacking faults. In contrast, the 
aluminum dislocation at a [112] composite rotation axis is not dissoci-
ated, with the full dislocation core having the highest energy atoms at its 

center. This demonstrates that even without the confinement introduced 
by jogs that emerge at non-[112] composite rotation axes, stacking 
faults in aluminum are not dissociated [43]. In summary, the atoms in 
the copper boundary core are correlatively relaxed through the forma-
tion of extended stacking faults while the atoms in the aluminum 
boundary core are only locally relaxed. Even through the partial dislo-
cation core in aluminum still can be identified, the two strongly-coupled 
partials are so close that the strain field and even the bonding distortion 
of two partials overlap, as shown in Fig. 6(b). The fact that the composite 
rotation axis lies in the close packed plane allows the formation of 
extended relaxed stacking fault structures in copper compared to the 
locally relaxed boundary core in aluminum and is responsible for the 
lowest possible proportional scaling constant. Alternatively, with 
regards to the Al boundary, the dislocation dissociation in the copper 
boundary, as an additional way to reduce boundary energy, decreases 
the proportional scaling constant. 

When the composite rotation axis shifts away from [112] toward 
[552], the jog density in the copper boundary increases. The introduc-
tion of each jog shifts the boundary core from one close-packed (111)
plane to a neighbouring (111) plane. This breaks up the extended 
relaxation along the core, while the distance between the two partials 
decreases and narrows the width of the stacking fault ribbon. Gradually 
the dislocation become undissociated. In these cases, boundary-core 
atoms in both copper and aluminum are locally relaxed and thus the 
proportional scaling constant approaches the 1.802 value associated 
with high angle boundaries, where the stacking fault effects are dimin-
ished (or eliminated). A similar analysis also applies when the composite 
rotation axis shifts towards [113]. 

For the case of boundaries with in-plane misorientation angles from 
15∘ to 32.30∘, as shown in Fig. 6(a), the dislocations are physically closer 
together so that their interaction increases in strength and the width of 
the splitting between partial becomes narrow so that a localized 
boundary core appears. Therefore, the relaxation mechanism of indi-
vidual boundary atoms in copper and aluminum gradually become very 
similar, as shown in Fig. 3(e), so that the individual atomic relaxation is 
no longer important and only the crystallography plays a role, which 
yield a perfect proportional scaling. In this instance, the dependence of 
proportionality constants on the core-shift angle gradually disappears 
and the overall scaling approaches that of high angle boundaries. 

4. Discussion 

In this work we have explored the possible origin of the anomalous 
scaling of Al grain boundary energies. The unusual behavior of 

Fig. 5. Core shift dependent proportionality constant. 
(a) Comparison of grain boundary energies for all in-plane misorientation angles with specified composite rotation axes or the core-shift angles referenced to [111]. 
(b) Proportional fitting of data points associated with seven low angle grain boundaries with composite rotation axis [552], [111], [112] and [113]. (c) Core-shift 
angle dependent proportional scaling constants as a function of core shift angle with the upper limit 1.80 (associated with large angle boundaries) shown as a 
dash line. 
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aluminum is usually attributed to its high stacking fault energy and low 
elastic anisotropy [5]. However, nickel also has a high stacking fault 
energy, as shown in Table 3, and still exhibits well defined proportional 
scaling relationships with respect to other fcc metal as shown in Fig. 3(b) 
and in the literature [5,43]. Hence the value of stacking fault energy 
cannot be the sole criterion. Considering the anisotropy of the Young’s 
modulus, the shear modulus, and Poisson ratio, the quantification of the 

elastic anisotropy in terms of a single parameter is over simplified and 
unable to describe many physical properties [44], such as the differences 
in the proportionality constants for different boundaries in one element. 

Since the core-shift angle dependent scaling highlights the impor-
tance of the dissociation of dislocations, we explore the possibility that 
the dissociation width plays a role in scaling. The stacking fault width in 
isotropic materials is proportional to the ratio of the shear modulus to 
the stacking fault energy. Assuming the shear modulus can be described 
by C44, closely related to the shear modulus in the dislocation model for 
the grain boundaries [45], we compared the ratio C44/Γ for different 
elements and potentials and found that this ratio is possibly the most 
relevant for determining the scatter observed in the proportional scaling 
constant data [5,45]. For example, the ratio for Al and Pt-COMB3 are 
0.22 and 0.26 (see Table 3), respectively. This suggests that the COMB3 
potential for Pt, which is known to accurately describe the stacking fault 
energy and hence dissociation width in this metal, should show a similar 
behavior to that found in Al [20]. In contrast, the ratio for Cu, Ni and, in 
particular, Pt EAM potentials are 1.7, 1.0 and 4.7, respectively. Hence 
for these materials, there are wider stacking faults in bulk and corre-
spondingly less scatter in the pairwise scaling. 

To demonstrate that a similar C44/Γ ratio compared to Al yields 
similar scaling, we undertook a pairwise comparison of the CE boundary 
energies in copper using the EAM potential and platinum using the 
COMB3 potential. The full comparison is shown in Fig. 7. As was the case 
with Al, Fig. 7(a) shows that high angle grain boundaries exhibit better 
proportional scaling than low angle and high angle boundaries with in- 
plane misorientation angle between 15∘ and 32.20∘. In addition, Fig. 7(c) 
shows that the low angle boundaries in platinum also exhibit core-shift 

Fig. 6. Structural difference of GB3.89 in Cu and Al. 
(a) Variation of grain boundary structures in copper, projected along the boundary period vector, with different core-shift angles and the corresponding composite 
rotation axis. (b) Variation of grain boundary structures in aluminium. Non-fcc copper atoms are selected by centrosymmetry parameters greater than 0.39 and 
aluminium atoms greater than 0.49 [42]. All atoms are coloured by energy. The length of each stacking fault ribbon is 3 times of the length of the corresponding 
vector below graph (a). The jog sites along the tilt axis [335] for copper and aluminium are highlighted by red arrows. 

Table 3 
Calculated material properties from each potential for f. c. c. metal.   

Au 
Foiles  
[31] 

Cu 
Mishin  
[29] 

Ni 
Mishin  
[30] 

Al 
Mishin  
[30] 

Pt 
Foiles  
[31] 

Pt 
COMB3  
[20] 

Cohesive 
energy 
(eV) 

− 3.93 − 3.54 − 4.45 − 3.36 − 5.77 − 5.77 

Lattice 
constant 
(A) 

4.08 3.615 3.52 4.05 3.92 3.92 

Bulk 
modulus 
(GPa) 

166.9 138.4 181.2 80.0 283.1 228 

C11(GPa) 183.2 169.9 247.9 113.8 303.1 283 
C12(GPa) 158.8 122.6 147.8 61.6 273.1 198 
C44(GPa) 44.7 76.2 124.8 31.6 68.3 82 
SF energy Γ 4.7 44.4 125.2 145.5 14.61 321 
C44/Γ 9.5 1.7 1.0 0.22 4.7 0.26 
Zener 

anisotropy 
index 

3.7 3.2 2.5 1.2 4.6 1.9  
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angle dependent proportional scaling constants, the detailed analysis of 
which is shown for four different core-shift angles in Fig. 7(d). The core- 
shift angle dependent scaling constant in Fig. 7(e) exhibits the same kind 
of variation as was found for Al in Fig. 5(c). Clearly the detailed pairwise 
scaling of Cu and Pt using the COMB3 potential is strikingly similar to 
that found in Al, hence confirming the ratio C44/Γ is a good predictor of 
the expected scaling behaviour. 

Apart from local relaxation and dislocation dissociation, there are 
many other kinds of boundary relaxation phenomena such as structural 
unit formation, faceting, 9R-phase or stacking fault related boundary 
dissociation, and interface phase (complexion) transitions [38,46–48]. 
We believe that all these different types of relaxation should be reflected 
in the pairwise comparison [1,49]. Our calculation shows that [100] 
boundaries in copper and aluminum show good scaling behavior but 
[110] boundaries show complex behavior and poor scaling in the pair-
wise comparison, which is likely related to the stacking fault related 
boundary dissociation in copper [50–52], instead of simple structural 
units [40,53,54]. 

5. Conclusion 

The scatter in the pairwise comparison of Cu and Al exhibits both an 
in-plane misorientation angle and core-shift angle dependence, which 
indicates that in addition to crystallography, different varieties of indi-
vidual atom relaxation make an important contribution to grain 
boundary energy and hence the scaling constants. The dislocation 
dissociation mechanism that correlates individual atomic relaxation in 
copper does not exist in aluminum, which is responsible for the large 
scatter in the pairwise comparison of CE boundaries, in particular low 
angle boundaries, where relaxation via dislocation dissociation in 

copper is dominant. 
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