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Summary 

The term ‘QoS architecture’ is used to describe middleware that provides applications 

with mechanisms for specification and enforcement of quality of service (QoS) 

requirements. These architectures administer the resources provided by the underlying 

system with the intent of fulfilling the QoS requirements imposed by applications. 

Substantial work on QoS architectures can be found in the literature. However, the 

architectures proposed so far consider only part of the overall problem of delivering 

QoS in open systems.  

The QoS architectures currently available are able to provide applications in a particular 

application area with the guarantees supported by the specific network architecture and 

the operating system to which they are bound. Most of these architectures, moreover, 

require QoS to be specified by using a low-level format that is not appropriate for 

applications that have a more high-level notion of QoS. Due also to their close 

integration with the underlying system, these architectures cannot be deployed over 

multiple computing platforms. Since they target a specific area of application, the area 

in which these architectures can be used is limited. In most cases the underlying system 

is not made completely transparent for the application, which still has to deal with low-

level issues. In addition, most QoS architectures ignore dynamic resource adaptation, 

which can occur due to factors such as resource failure or system reconfiguration. 

This thesis describes the design and implementation of Quartz, a QoS architecture for 

QoS specification and enforcement in open systems, designed with the aim of solving 
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the limitations of previous proposals in this area. Quartz is able to handle the differences 

between the multiple platforms that may be present in open systems due to its flexible 

and extensible structure based on replaceable components. Quartz can also adapt itself 

by rearranging its internal components, in order to provide mechanisms for QoS 

specification and enforcement suitable for different areas of application. These 

requirements are interpreted by Quartz and used to enforce QoS by employing the 

resource reservation mechanisms provided by the network and operating system. By 

adopting this strategy, Quartz makes the underlying resource reservation mechanisms 

transparent to applications requiring QoS enforcement. Furthermore, Quartz provides 

support for QoS adaptation by tracking resource adaptations that occur at lower levels 

and initiating QoS adaptation whenever needed. 

This thesis presents a prototype implementation of the Quartz architecture and a series 

of applications built on top of it, including a complete framework for the development 

of multimedia applications based on the CORBA architecture. The experience gained by 

writing these applications shows the usefulness and efficiency of Quartz as a tool for 

supporting QoS specification and enforcement for diverse areas of application in open, 

heterogeneous environments. 
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1  
Introduction 

This thesis is concerned with the study of mechanisms for the provision of quality of 

service (QoS) in open, heterogeneous and distributed environments. In order to 

overcome a series of limitations that were identified in similar work previously 

developed in this area of research, we have designed and implemented the Quartz QoS 

architecture. In essence, Quartz describes middleware that supports the specification and 

enforcement of QoS in open systems.  

Quartz provides support for applications that require QoS-constrained services from the 

underlying system by interacting with resource reservation protocols present at the 

lower level. Applications supported by Quartz do not necessarily come from a single 

application domain. Moreover, the architecture does not depend on the use of a specific 

underlying operating system or network infrastructure. By supporting heterogeneity and 

distribution, the Quartz architecture is made suitable for open systems.  

This chapter begins by introducing the problem of supporting QoS in open systems and 

describing the issues that should be addressed by middleware that is responsible for 

providing mechanisms for the specification and enforcement of QoS. In sequence, we 

briefly describe our proposed QoS architecture and outline its contribution to this field 

of research in comparison with other work in the same area. Finally, a roadmap of the 

remainder of this thesis is given. 
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1.1 Delivering QoS in Open Systems 

With the popularisation of the Internet, the demand for distributed applications has 

increased considerably. These applications can be very complex to implement due to the 

necessity of dealing with network protocols, addresses, system heterogeneity and any 

other factor incurred from the topology of the computing platform. Distributed 

applications are often built on top of distributed computing middleware, which handles 

the complexity that originates from the distributed nature of the application on behalf of 

the programmer, makes applications easier to implement, increases their portability, and 

allows them to interoperate with other applications. 

Some distributed applications can function properly on the currently available 

networking platforms and operating systems. However, there exists a category of 

computer applications that is not satisfied by the best-effort resource management 

policies provided by the majority of the computing platforms that are currently 

available. For these applications, the availability of resources provided by the 

underlying system is required to be predictable. These applications are said to have 

quality of service (QoS) requirements, and include applications varying from real-time 

control systems to distributed multimedia systems.  

Applications that require a certain level of QoS must specify their requirements in a 

clear and accurate manner by using QoS parameters. The values of these parameters 

reflect the requirements imposed by the application, and can be stored in pre-defined 

user profiles containing the QoS constraints imposed on the behaviour of the application 

or can be obtained by the application through direct interaction with the user.  

The achievement of the specified level of QoS is typically made possible through the 

reservation of the resources managed by the underlying system that are necessary to 

provide the network and operating system services used by the application with the 

requested level of quality. These resources include network bandwidth, processing time, 

physical memory, and access to multimedia hardware.  

Several operating systems and network protocols incorporate mechanisms that allow 

applications to retain resources for their exclusive use. These mechanisms, called 

resource reservation protocols, are the key elements that support the provision of QoS 

guarantees. Unfortunately, most applications do not benefit from these mechanisms 
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because the distributed computing middleware on which they rely is still being adapted 

to make use of such mechanisms. Furthermore, multiple resource reservation protocols 

coexist in open systems. Consequently, allowing applications to reserve resources via a 

middleware layer implies that the differences between reservation protocols have to be 

handled by the middleware. 

Middleware components, usually referred as QoS architectures, are responsible for 

providing mechanisms for specification and enforcement of QoS that make use of the 

resource reservation protocols provided by the underlying system. QoS architectures 

deal with issues such as the translation of QoS parameters comprehensible at the 

application-level into the parameters understood by the underlying reservation protocols 

that control access to the resources provided by the system. Without the services 

provided by a QoS architecture, these issues would have to be dealt with by the 

application.  

Research on QoS architectures has resulted in several proposals that can be found in the 

literature (see [4] for a survey and [139] for an analysis of the open issues in this area of 

research). During an extensive surveying of the area, four main limitations that prevent 

the use of the existing QoS architectures in open systems have been identified by us. 

These limitations are: 

• most architectures require QoS to be specified by using a low-level format that is 

not appropriate for applications with a more high-level notion of QoS, or use a 

format appropriate for a specific area of application, limiting the use of the 

architecture;  

• QoS enforcement often occurs at either network or operating system level, instead 

of both, and in some cases the underlying system is not made completely 

transparent for the application, which still has to deal with low-level issues;  

• the use of most architectures in open, heterogeneous systems is prevented due to 

their close integration with the underlying system; and 

• most QoS architectures ignore the possibility of dynamic resource adaptation, 

which can occur due to factors such as resource failure or system reconfiguration. 

By solving the limitations described above we would have a QoS architecture that, 

besides handling the complexity that originates from the necessity of obtaining QoS-
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constrained services from the underlying platform on behalf of applications, would 

make applications easier to implement and would increase their portability between 

different underlying platforms. In addition, this QoS architecture would allow 

application programmers to use the same high-level interface for specifying QoS 

requirements for applications inserted in different application contexts and making use 

of different networking infrastructures and operating systems. 

1.2 The Quartz QoS Architecture 

In this thesis we propose a generic architecture for the specification and enforcement of 

QoS in open systems. This architecture provides mechanisms necessary for building 

applications with QoS requirements in open systems, since the QoS architectures 

currently available are typically dependent on a specific underlying system and are 

useful only in limited application contexts. Besides, they often expose the application to 

lower-level details and ignore the need of support for resource adaptation. These 

characteristics tend to limit the application portability, make them more difficult to 

implement, constrain the way applications express their QoS requirements, and prevent 

their use in open, heterogeneous systems.  

The Quartz QoS architecture provides support for different application fields and is able 

to interact with the multiple resource reservation protocols that may be available in an 

open environment. This is achieved by adopting a flexible and extensible component-

based design. The design of Quartz is based on a common core in which components 

are plugged in order to handle the particular characteristics of different applications and 

resource reservation protocols.  

The Quartz QoS architecture allows users to specify their QoS requirements according 

to the notion of QoS present at the application level (e.g. requesting audio with CD 

quality instead of specifying the bandwidth needed to transmit the encoded audio over 

the network). This information is interpreted by Quartz, allowing it to perform resource 

reservations at a lower level of abstraction in order to fulfil the QoS requirements 

imposed by the application. No strong assumptions are made about the characteristics of 

the lower-level system, therefore allowing the deployment of the architecture on top of 

heterogeneous systems with different resource reservation capabilities.  
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The architecture, furthermore, supports resource reservation protocols that allow the 

availability of resources to changes dynamically due to factors such as resource failure, 

hardware reconfiguration or mobility. This is achieved through the use of resource 

adaptation techniques. Adaptation may occur at system level and be masked from the 

application, or may require the application to be notified in order to adjust its QoS 

requirements. 

QoS enforcement and QoS adaptation at system level occur in a transparent manner 

from the application’s point of view. Consequently, the application need not be aware of 

the resource reservation protocol used at the lower level. Despite providing 

transparency, Quartz allows the application to control the behaviour of resource 

reservation protocols whenever necessary, and notifications are sent to the application 

when the requested QoS requirements cannot be fulfilled.  

1.3 Contribution 

The Quartz QoS architecture provides a combination of features that are not present in 

other proposals of QoS architectures that are found in the literature.  

One of the main features provided by Quartz is the possibility for applications to specify 

their QoS requirements according to their own notion of QoS. Being generic, Quartz 

does not require QoS to be specified in a standardised format, which would likely be 

unsuitable for a wide range of applications. Instead, Quartz allows the application to 

specify its QoS requirements by using its own notion of QoS, and employs a component 

that is able to interpret this information and convert it into the format that is used 

internally by Quartz. The internal format of QoS parameters used by Quartz is 

completely transparent to the application.  

Quartz is also able to carry forward the translation of the QoS requirements specified by 

the application into a format that is suitable for performing resource reservation using 

the protocols provided by both the network and the operating system. During this 

process, QoS requirements are mapped into resources provided by the underlying 

system, which are then reserved in order to enforce the requirements of the application. 

Since network and operating system resources may be interchangeable, a balancing 

process has to be performed by the architecture at this point.  
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Quartz provides support for resource adaptation to occur at the lower level. Adaptation 

is handled by rearranging the balancing of resources internally or, when this is not 

feasible, by informing the application that its QoS requirements cannot be fulfilled and 

have to be adapted if they are to be satisfied with the resources that are currently 

available. 

Due to its component-based design, Quartz is able to support multiple resource 

reservation protocols and application areas. The differences found in the surrounding 

environment are handled by plugging new components into the architectural core. These 

components can be selected from a library or provided by application developers, who 

are, therefore, able to extend the architecture according to their particular needs. 

Furthermore, application simplicity is increased by the use of Quartz. By handling the 

QoS-related issues on behalf of the application, Quartz allows the programmer to 

concentrate on the functional aspects of the application. Due to its capacity to handle the 

differences between multiple resource reservation protocols present in heterogeneous 

platforms, Quartz also increases the portability of applications. 

1.4 Analysis 

We have implemented a prototype of the Quartz QoS architecture in order to evaluate 

its behaviour and validate its applicability in open systems and in different application 

scenarios. Some test applications that make use of Quartz have been written, including a 

complete framework for the development of multimedia applications that integrates 

Quartz into a CORBA-based environment.  

The Quartz prototype and the applications built on top of it allowed us to conclude that 

the architecture fulfils the goals imposed on it during the design process. In order to 

evaluate the achievement of these goals, we have: 

• Implemented applications inserted in different application contexts and that 

consequently have different ways of expressing their QoS requirements; Quartz has 

been shown to be able to interpret this information and identify the resources that 

have to be allocated in order to fulfil the requirements of the application.  

• Observed through the application examples implemented by us that the QoS 

requirements of the application are enforced by Quartz through reserving resources 
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provided by both the network and the operating system; in addition, regardless of 

the resource reservation protocols in use, the process of resource reservation was 

shown to become transparent to applications built on top of Quartz.   

• Used multiple resource reservation protocols for reserving resources for the same 

application, without the necessity of rewriting the application code that specifies its 

QoS requirements, showing that Quartz is able to handle the differences between 

different underlying systems without any side-effects for the application. 

• Simulated the occurrence of dynamic resource adaptation and observed that Quartz 

is able to perform QoS adaptation in order to reflect the new distribution of 

resources; this process occurs either transparently at system level by rearranging the 

balance of interchangeable resources, or by notifying the application to perform 

adaptation of its QoS requirements when adaptation at system level is not feasible.  

In addition, with the experience obtained by writing applications that make use of 

Quartz, we have noticed an increase in their portability and the simplicity of their code, 

since the differences between underlying platforms are handled by the architecture. 

Performance measurements have shown that the impact caused by Quartz on the overall 

performance of applications that use it to specify and enforce their QoS requirements is 

very small. We believe that this small overhead will be accepted by application 

programmers that can benefit from the services provided by the Quartz architecture. 

We have also analysed the characteristics of Quartz in the light of other work in the area 

of QoS architectures and frameworks. To the best of our knowledge, there is no QoS 

architecture that combines a similar set of features. Most architectures found in the 

literature are able to provide a similar set of features but are highly dependent on a 

particular platform. In general, their mechanisms for specification of QoS are not 

flexible enough to support a wide variety of applications, forcing them to deal with a 

notion of QoS that is not suitable for their needs. Quartz, on the other hand, is able to 

provide efficient tools for specification and enforcement of QoS in open systems, which 

are intrinsically distributed and heterogeneous, and still fulfil the needs of diverse areas 

of application due to its extensibility and flexibility.  
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1.5 Roadmap 

The remainder of this thesis is organised as follows. Chapter 2 provides some necessary 

background to the thesis and presents the technology currently available in the area. 

Chapter 3 describes the state-of-the-art work developed in the areas of middleware for 

distributed multimedia and QoS architectures, analysing their characteristics and 

limitations. The Quartz architecture is introduced and described in detail in Chapter 4. 

Chapter 5 describes a prototype implementation of Quartz, and Chapter 6 shows how 

this prototype can be used together with CORBA in order to provide a framework for 

the development of multimedia applications. Chapter 7 presents a complete validation 

and evaluation study of the Quartz architecture, introducing examples of applications 

that demonstrate the suitability of the architecture as a tool for obtaining QoS-aware 

services in open systems. Finally, Chapter 8 presents some conclusions, summarises the 

contributions of this thesis and unveils some opportunities for future work in this area.    
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2  
Overview of the 

Research Area 

This chapter provides some background on the area of research with which this thesis is 

concerned. The following sections introduce the key concepts and technologies present 

in the areas of multimedia and real-time applications, open systems, distributed object 

computing, quality of service and resource reservation protocols.  

The technologies used by us for implementing a QoS architecture and a multimedia 

framework, which will be presented in chapters 5 and 6 respectively, are also described 

in detail. These technologies include the Common Object Request Broker Architecture 

(CORBA), Asynchronous Transfer Mode (ATM), the new generation of Internet 

Protocols, with special attention to the Resource Reservation Protocol (RSVP) and the 

real-time capabilities provided by Windows NT.  

The technologies described in this chapter are seen as important tools for building an 

environment for QoS specification and enforcement in open systems such as the one 

targeted by this thesis. 
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2.1 Multimedia Applications 

Interactions between computers and other processor-based equipment are based on the 

exchange of data represented by electrical signals. This data follows a well-defined 

encoding scheme that represents some kind of information (e.g. a text file might be 

encoded using the ASCII character set, or a compressed file might be encoded in zip 

format). However, computer systems are evolving towards becoming not only 

responsible for handling computer data, but also media such as audio, video and 

animated graphics.  

Media data is represented using digital encoding schemes as is other data, although the 

characteristics of multimedia data distinguish it clearly from regular computer data. 

Multimedia typically requires a higher amount of data to be processed and transmitted, 

presents a higher complexity to encode and decode, and often requires that time and 

synchronisation rules are obeyed during reproduction [53]. 

Multimedia systems are able to handle multiple kinds of media data in order to support 

multimedia applications, i.e. programs that, often employing special hardware, are able 

to encode, transfer, decode and reproduce multimedia data. During the last few years a 

rapid growth in the demand for multimedia applications has been observed. 

Nevertheless, the performance of these applications is still poor due to limitations in 

processing power and, in the distributed case, due to limited network bandwidth.  

Hardware support for multimedia is increasing fast. Almost every desktop computer 

sold nowadays comes with some sort of support for multimedia. Devices such as sound 

cards, 3D graphics accelerators and digital cameras are becoming more common every 

day. The latest generations of processors include special instruction subsets designed to 

improve the performance of media processing (such as Intel’s MMX) and for rendering 

3D graphics (such as AMD’s 3D Now!) [120].  

Moreover, a fact that has to be taken into account when studying multimedia 

applications is the increasing popularity of portable devices, inexpensive gadgets that 

are small enough to fit in a pocket. Devices such as laptop computers, cellular phones, 

pagers, and video games are now converging into a single unit, called a personal digital 

assistant (PDA) or palmtop computer. Users are likely to expect to have the same 

functionality on these devices as they have on their desktop computers. This leads to 
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greater demand for computing power, but at the same time, the size, weight, and power 

consumption of these devices must remain limited. For example, these devices are 

typically the size of a cigarette pack, weigh from 150 to 300 grams (4 to 8 ounces), have 

only 2 to 8 Mb of memory, and are expected to run on the same set of batteries for 

about a week [85]. Complete operating systems (such as Palm Computing’s PalmOS 

[117] and Microsoft’s Windows CE [17]) provide a fully functional platform for the 

execution of common software applications such as text editors, e-mail readers, web 

browsers and personal information managers (PIM). A complete networking 

infrastructure based on modems and infrared communications is also provided for such 

devices, but complete support for multimedia is still being introduced.  

Another important factor that influences multimedia applications is network 

performance. The networking infrastructure currently available for the typical end-user 

(i.e. local area networks such as Ethernet and personal computers with modems 

interconnected by the Internet) satisfies the common needs of most network 

applications.  

Applications such as Web browsing and chatting require low bandwidth and can even 

tolerate some degree of network congestion. On the other hand, multimedia applications 

demand higher bandwidth and behaviour in the distribution of network resources that is 

not provided by the networking infrastructure in place at the present. Solutions for this 

problem have started to emerge in the form of reservation protocols (discussed in 

Section 2.6) and middleware with support for QoS specification and enforcement (such 

as the proposals introduced in Chapter 3), but the application of these solutions is yet to 

reach most users [141]. 

2.1.1 Distributed Multimedia 

Distribution is yet another fact that has to be considered in the study of multimedia 

applications. Due to the interactive nature of some multimedia applications, information 

has to be exchanged through the network, characterising them as distributed multimedia 

applications.  

Distributed multimedia applications have well-defined requirements based on the 

characteristics of the kind of media that is to be transmitted. Besides, the technique used 

for transferring media has to be taken into account. Some kinds of pre-produced media, 
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such as short movies, songs or news reports, have less strict timing requirements than 

other categories of media. This is because pre-produced media can be buffered after 

transmission and reproduced only when available locally. On the other hand, live media 

and long video streams that are reproduced while they are still being transferred through 

the network require the media transfer and rendering process to be more predictable 

than that obtained in best-effort systems. This last class of media, which is called 

continuous media, is discussed in detail in the next section. 

2.1.2 Continuous Media 

In the face of increasing interest in the transmission of digital media over computer 

networks, the usual communication mechanisms adopted for data transmission have 

been shown to be unsuitable in some particular cases. This unsuitability derives from 

the distinct characteristics of continuous media.  

Continuous media can be defined as media where there is a timing relationship that 

must be observed during the rendering of the media in order to reproduce it correctly. 

This timing relationship must be followed otherwise the integrity of the media is 

destroyed, i.e. the information that was intended to be presented can be lost or 

misunderstood [132]. In the particular case where media is transmitted over the network 

and reproduced at a different location, this implies that the destination must reproduce 

the timing relationship that existed at the source. This contrasts with the usual approach 

adopted for data transmission in which information is usually retrieved and delivered 

upon request. This kind of media does not have an implicit temporal dimension, and is 

also termed discrete media. The required bandwidth for discrete media depends on the 

nature of the task to be accomplished, ranging from a couple of bits per second in case 

of simple sensors, to very large volumes of data if we consider a world-wide banking 

system or a massively distributed file system. The acceptable delay is also related to the 

application, being for example very small in manufacturing and control systems and 

more relaxed in an airline reservation system or an FTP session. Traffic is usually 

bursty and the timing relation present at the origin typically does not need to be 

reconstructed at the destination. The reliability of data is generally a critical factor in all 

of these systems. 
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The requirements of different kinds of continuous media can be classified according to 

the following parameters: 

• Bandwidth required; 

• Acceptable end-to-end transmission delay and delay variation (jitter); 

• Transmission reliability (data loss); 

• Distribution of traffic during time (burstiness or bit-rate distribution); 

• Importance of keeping the original timing relation during the reproduction of media. 

In the following paragraphs we analyse different classes of continuous media according 

to these parameters. In sequence, Table 1 provides a comparison of the bandwidth 

required by typical encoding schemes of different classes of continuous media. 

Audio. Audio is usually encoded as a constant bit-rate (CBR) signal in the majority of 

communication systems currently available. However, digital techniques have been 

adopted to allow compression of audio with very low loss of quality, resulting in 

variable bit-rate (VBR) traffic. Compression techniques based on data redundancy and 

forward prediction are difficult to apply for audio, and as a consequence compression 

algorithms for audio usually have a lower efficiency if compared to compression 

algorithms for video. The reproduction of audio with reasonable quality is basically 

related to the sampling rate and the number of bits used to represent the signal in a 

digital stream. The frequency range is limited by the capacity of the human ear, limiting 

the number of bits needed to encode the signal and the bandwidth necessary to transfer 

it through the network. Furthermore, the original timing relationship observed during 

the generation of the sound must be reproduced at the destination. Some data loss can 

be tolerated by audio applications, and delay and jitter can be compensated by using 

buffering techniques.  

Voice. The human voice, despite being a particular category of audio, must be studied 

separately due to its importance in communication systems. Voice requires low 

bandwidth when compared with full audio signals because of its limited frequency 

range and the low sampling rate necessary for its comprehension. In addition, voice 

media is sensitive to delay and delay variations, but a delayed sample may be discarded 

without serious loss of comprehension by the listener. Apart from the lower bandwidth 
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necessary for voice media, its traffic characteristics are very similar to those of audio 

signals. Voice can also be encoded as CBR or VBR signals, and compression is usually 

more efficient than for other categories of audio because of the presence of silent 

periods. 

Video. A video signal can be encoded digitally as CBR or VBR data, depending on the 

method used to encode it. The bandwidth required is very high when compared with 

other sorts of media, and increases considerably when slightly better resolution is 

desired. If we consider the capacity of the human eye, a rate of 30 frames per second is 

sufficient to allow a comfortable sensation of movement. The loss of one frame in a 

long sequence is usually not perceptible, and delayed frames need not be exhibited. A 

low delay variation is tolerable, and the reconstruction of the timing relation present at 

the source time during rendering at the destination must be carried out. Like for audio, 

delay and jitter can be compensated by using buffering techniques.  

Media Description Bandwidth 

Voice Low quality (4 bits/sample; 8 kHz sample frequency) 32 Kbps 

 Phone quality (8 bits/sample; 8 kHz sample frequency) 64 Kbps 

Audio CD quality (16 bits/sample; 44.1 kHz sample frequency) 1.4 Mbps 

 MPEG audio with approx. CD quality 200 to 300 Kbps 

Video VHS quality (352x240pix;24bits/pix; 30 frames/s) 60 Mbps 

 MPEG video with approx. VHS quality 1.5 to 2 Mbps 

 Pal/Secam quality (544x480pix; 24bits/pix; 30fr/s) 188 Mbps 

 MPEG video with approx. Pal/Secam quality 4 to 6 Mbps 

 HDTV quality (~1200 lines; 24bits/pix; 30fr/s) 1 Gbps 

 MPEG video with approx. HTDV quality  20 to 60 Mbps 

Table 1 – Typical Bandwidth of Different Classes of Continuous Media  

2.1.3 Multimedia Technology 

There is currently a major research effort being carried out on the development of 

distributed multimedia systems and platforms. Unfortunately, most proposals do not 

adopt an approach that allows them to handle media in open systems.  

Standards for distributed multimedia such as the Multimedia System Services (MSS) 

[67] that was proposed by the International Multimedia Association (IMA) have started 
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to emerge. MMS has as its main purpose to provide support for interaction between 

multimedia applications in open environments. IMA members include the main 

software and hardware suppliers and consumers around the world. MSS, as a reference 

model for design and programming of distributed multimedia applications, is targeted at 

complex, scaleable, extendible and interoperable applications running in an open 

environment. Being just a reference model, MSS does not specify how the multimedia 

services are obtained from the system.  

Another proposal in this area is the MHEG standard [95], defined by the Multimedia 

and Hypermedia Experts Group (MHEG) of the International Organisation for 

Standardisation (ISO). Like MSS, MHEG still does not provide a complete solution for 

supporting multimedia applications with QoS requirements in open systems since it is 

basically a reference model.  

Some software development kits such as Microsoft’s DirectX [98] and the Apple 

QuickTime architecture [2] consist in useful solutions for the development of 

multimedia applications. However, these technologies lack mechanisms for QoS 

specification and enforcement, and have limited platform coverage.  

A series of state-of-the art proposals of support for multimedia programming will be 

presented in chapter 3, but these frameworks and architectures still lack complete 

support for QoS specification and enforcement in open, heterogeneous systems. 

This thesis aims to provide mechanisms in order to overcome the limitations found in 

supports for the development of multimedia applications. Further in this thesis we will 

introduce a QoS architecture that is used in a media streaming framework. This 

framework provides support for the development of multimedia applications with QoS 

requirements in open systems.  

2.2 Real-Time Applications 

Real-time systems include those responsible for the control of manufacturing plants, 

aircraft, nuclear plants and so on. Most of these control applications must avoid critical 

failures that can lead to catastrophic errors, in which the occurrence of an error can be 

much more damaging than the benefit provided by the system. For example, a plane 

crash is much more damaging for an airline than the completion of a flight safely. 
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Furthermore, real-time data is not considered valid only by being semantically correct. 

A delay in the provision of a data item can be much more damaging than the provision 

of an inaccurate value. So, real-time data must not only be semantically correct, but also 

timely correct (i.e., the data must be available when it is required by the system). 

Like multimedia applications, real-time applications are not satisfied by best-effort 

networking and processing policies. Real-Time applications are time critical by 

definition, and cannot tolerate unpredictable variations in the behaviour of the system 

without the possibility of causing catastrophic errors.  

So far, real-time systems have been isolated from external influence by using special 

software and hardware designed for this purpose. However, aiming to reduce costs and 

simplify maintenance, real-time systems are evolving towards a more open approach, in 

which real-time data would flow side by side with non-real-time traffic. In this case, a 

complex approach for avoiding interference between the two classes of traffic must be 

adopted. 

Real-time applications typically require less bandwidth than multimedia applications. 

The transfer of the encoded data read by a temperature sensor may account for just a 

few bytes, for example. However, this data may be required to activate alarms that will 

prevent a fire, and is therefore of more importance for network transmission and 

processing than other information that is being transferred through the network and 

processed by the same computational system.  

Research on real-time systems has focused mainly on two areas of research: 

• Real-time operating systems, languages and middleware [23][122], which provide 

mechanisms for implementing real-time applications; and 

• Real-time scheduling algorithms [3][83], which select the order of execution of the 

activities performed by the system based on priorities and deadlines associated to 

them. 

Despite the solid knowledge obtained with intense research in the area of real-time 

systems, the techniques employed for supporting real-time computing do not integrate 

gracefully with the technology currently available for best-effort applications. The 

integration of these technologies has emerged as an important research topic, and 

constitutes a challenge for scientists in this area of research.  
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2.2.1 Real-Time Technology 

Current real-time platforms are mainly focused on embedded hardware and specialised 

software. Several successful real-time environments for embedded systems can be 

found in the literature and commercial, off-the-shelf solutions can be found in the 

market.  

One of the most influential experimental real-time environments originated from the 

MARS project [84], developed at the University of Vienna. MARS provides tools for 

the analysis and deployment of hard real-time systems. Its architecture employs 

redundancy with self-checking procedures for enabling fault tolerance, including a 

redundant network bus. At the software level, the MARS real-time operating system 

(O.S.) provides tools for the analysis of worst-case execution times and static (prior to 

execution) real-time scheduling. Communication is based on the time-triggered protocol 

(TTP), which provides a predictable, fault-tolerant communication system. 

In the field of commercial products for real-time systems two products share the status 

of market leaders: QNX Software Systems’ QNX real-time O.S. [62] and WindRiver’s 

VxWorks [151]. Both are microkernel-based, extensible, and POSIX-compatible 

operating systems, and can be scaled up or down according to the necessities of the 

target system. Another product with a strong presence in the market is the Chorus O.S. 

[142], developed by Chorus Microsystems, now a division of Sun Microsystems. 

Chorus OS provides real-time guarantees such as QNX and VxWorks, and offers a very 

rich set of tools for developing and testing real-time applications.  

Despite the common use of real-time operating systems in embedded environments, the 

possibility of their integration with open systems is somewhat limited. Research in this 

field has been divided into two directions: the integration of real-time capabilities into 

commercial operating systems and the provision of communication paths between real-

time and non-real-time operating systems. 

Operating systems such as Sun’s Solaris 2.X and Microsoft’s Windows NT provide a 

set of mechanisms that allow real-time activities to be performed. The approach adopted 

in both cases encompasses a real-time scheduling class which has priority over the 

regular activities performed by the system. In addition, these operating systems provide 
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mechanisms that support higher predictability in the execution of code by reducing 

interference caused by memory paging, I/O operations and interrupts. 

On the other hand, software vendors are starting to provide communication paths 

between embedded real-time software and applications running on non-real-time 

operating systems. Iona Technologies provides implementations of its CORBA-

compatible Orbix ORB for VxWorks and QNX. Chorus has its own implementation of 

CORBA, called COOL (Chorus Object-Oriented Layer), which provides a 

communication path between non-real-time ORBs and applications running on top of 

the Chorus O.S.. 

The technology available in the area of real-time systems is still very low-level for the 

application programmer, and its close integration with the computing platform limits its 

use in open, heterogeneous systems. One of our goals in this thesis is to provide 

middleware with mechanisms for the specification of real-time requirements. These 

mechanisms would hide the complexity present at the low-level from the programmer 

of real-time applications, and would allow these applications to interact with different 

low-level supports through the middleware. This middleware, which will be described 

further in this thesis, allows not only real-time applications but also other applications 

with timing constraints (such as multimedia applications) to specify their constraints in 

the form of QoS parameters, which are then enforced by the QoS mechanisms provided 

by the middleware. 

2.3 Open Systems 

Computational systems are said to be “open” when they allow external components to 

take part of the computation by using a well-known interface. By specifying their 

interfaces, software components are allowed to interoperate with their peers, 

independently of the vendor that provides the component [38].   

The concept of open systems implies that distribution and heterogeneity are key 

characteristics in these systems. Distribution originates from the fact that a program is 

not constrained to a single machine or address space, but can communicate through the 

network with other software elements. Heterogeneity is present because programs can 

be written in different languages, and run on different operating systems built on top of 
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different computer architectures, but can still interoperate via standardised interfaces to 

other software.  

The heterogeneity of hardware and software and the complexity of developing 

distributed applications to run on top of systems with the characteristics mentioned 

previously require the use of open computing architectures.  

A key requirement in open architectures is to provide the programmer with mechanisms 

to support distribution and heterogeneity transparency so that the handling of these 

issues is simplified. These mechanisms include standard services that are needed by 

applications in an open environment, such as naming and location services, and a 

standardised communication mechanism that allows software to communicate with each 

other. In addition, mechanisms for describing, storing and retrieving the interface of a 

component must be provided in order to allow software to know how to contact their 

peers. 

2.3.1 Open Systems Technology 

Middleware providing support for open systems, which make the intrinsic distribution 

and heterogeneity present in open systems transparent to the application, is widely 

available and used by programmers nowadays.  

Reference models such as the ISO Open Systems Interconnection [68] and Open 

Distributed Processing [69] models represent an important contribution to this area of 

research at a theoretical level. However, the most important step for the proliferation of 

support for open systems was the wide adoption of products based on standards such as 

OSF DCE [114], Microsoft’s DCOM [97], and OMG’s CORBA [108]. These products 

allow distributed programs to interact in open environments in order to carry out 

cooperative tasks. This is done by providing a standard way of specifying the interfaces 

supported by programs, describing the routines (or methods in object-oriented systems 

such as CORBA and DCOM) that can be called remotely and their respective 

parameters. In addition, a communication protocol that allows client programs to 

remotely invoke the routines supported by other programs acting as servers is defined 

by each of these standards. 

Despite the wide availability of standards for open distributed environments, and 

despite the intense research efforts focused in this area, the integration of multimedia 
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and real-time support into middleware for open distributed systems is a problem that 

still lacks a satisfactory solution [31][141]. We intend to overcome this deficiency by 

proposing an architecture that provides support for the specification and enforcement of 

the requirements present in multimedia and real-time applications built in open, 

heterogeneous and distributed systems. This architecture will be described in detail 

further in this thesis. 

2.4 Distributed Object Computing 

In the last decade the development of software, which was typically based on the use of 

structured design and procedural languages, has rapidly migrated towards the adoption 

of object-oriented design and programming techniques. Procedural programming 

languages such as C and Fortran are being replaced by object-oriented languages such 

as C++ and Java. Meanwhile, modelling tools that employ object-oriented design, 

especially the tools that are based on the Unified Modelling Language (UML) [22], 

have been widely employed by programmers for the analysis and design of object-

oriented software. 

The adoption of object-based approaches to distributed computing that occurred 

subsequently was a natural evolution. The use of object orientation in distributed 

systems was further reinforced by the introduction of standards for interaction between 

distributed objects. 

In a distributed object environment, objects are used to represent parts of the 

computation that may be running on different machines dispersed over the computer 

network. These objects interact with each other in order to execute cooperative 

computation. Interaction between objects occurs in the way of remote object 

invocations, i.e. by calling methods on remotely located objects. To allow remote 

invocation, a remote object has to know the interface of the target object and call one of 

its methods, passing the parameters of the call and possibly receiving a return value. 

Moreover, remote objects can be written in different languages and run on different 

platforms. In order to allow interaction between different remote objects a common 

invocation model must be agreed upon. 

The interfaces of an object can be specified at different phases of its lifetime: 
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• Statically: i.e. at compile time, by describing the interfaces supported by the object 

using an Interface Definition Language (IDL); or 

• Dynamically: i.e. at run-time, by availing of metadata obtained directly from the 

object or through an interface repository.  

Invocation models have to specify communication protocols and message formats to be 

used for calling methods remotely. An invocation model can support one or more 

calling semantics. Three well-known types of calls classified according to calling 

semantics are: 

• Synchronous calls: block waiting for the target object to conclude the processing of 

the call and send the result of the operation; 

• Asynchronous calls: non-blocking, with the execution of the caller continuing right 

after the call is dispatched through the network; and 

• Deferred synchronous calls: asynchronous call with the possibility of a posterior 

synchronisation, in which the result of the operation can be retrieved. 

Distributed object computing models are supported by middleware, which hides the 

complexity resulting from network communication, handling of network addresses, 

conversion between data formats and so on.  Distributed object middleware provides the 

programmer with powerful tools for the development of distributed applications.  

2.4.1 CORBA 

With the widespread adoption of object-oriented design and programming techniques 

for application development, it was natural that this approach reached the area of 

distributed computing. The adoption of object-based approaches in distributed systems 

was reinforced by the availability of standards proposed by the Object Management 

Group (OMG), a consortium created by software vendors, developers and end-users to 

promote object technology for the development of distributed computing systems.  

The OMG has proposed a set of standards for distributed object computing, which 

compose the Object Management Architecture [105]. The OMA is a framework of 

standards and concepts for open systems, centred in the Object Request Broker (ORB). 

In this architecture, methods of remote objects can be invoked transparently in a 

distributed and heterogeneous environment using the services provided by an ORB. 
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The Common Object Request Broker Architecture is the standard ORB defined by the 

OMG [108]. The CORBA specification establishes the role of each component of the 

ORB and defines their interfaces. By introducing a common architecture, the OMG 

makes transparent for applications the differences between distinct CORBA 

implementations and lower-level systems. The components of the CORBA architecture 

are shown in Figure 1. 
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Figure 1 – The CORBA Architecture 

In the CORBA environment, each object implementation has its interface specified in 

IDL (Interface Definition Language). Remote method invocations are issued by clients 

calling methods in local stub objects that are generated by the IDL compiler and have 

the same interface as the corresponding remote objects. Alternatively, the client can 

build the request using the Dynamic Invocation Interface (DII). The ORB Core 

transmits the request and transfers the control to the object implementation (i.e., the 

server) using an IDL skeleton and the corresponding object adapter. The object 

implementation is unaware of the invocation method used by the client to issue the 

request. 

Dynamic skeletons allow servers to receive calls on methods that are not specified in 

their IDL interfaces, and therefore are not accepted by the IDL skeleton supported by 

the object. The dynamic skeleton interface (DSI) is usually adopted to build gateways. 

The ORB Interface offers some general-purpose services to CORBA objects through a 

well-defined interface. Object implementations can also use services provided by their 

corresponding object adapters. OMG specifies the interfaces of a general-purpose Basic 

Object Adapter (BOA) which covers the requirements of a wide range of object 

systems. However, this does not prevent object adapters with more specialised 
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capabilities being added to the support in order to fulfil the needs of applications with 

requirements that are not covered by the BOA.  

When the client and the object implementation are located in ORBs that use different 

protocols for remote communication, a communication protocol called IIOP (Internet 

Inter-ORB Protocol) is used to allow interoperability. In addition, the OMG has 

approved mappings of the IDL interfaces for the main programming languages in order 

to allow objects written in different languages to interoperate. 

CORBA has become a de facto standard for distributed object computing. Several 

legacy applications in sensitive areas such as banking and telecommunications have 

been ported to CORBA platforms, and new applications have been built based on 

CORBA in order to obtain easy interoperability with other applications.  

2.4.2 CORBAservices 

The CORBA Services Specification [107] intends to provide the OMA architecture and 

CORBA with a set of standard mechanisms that are often necessary in a distributed 

environment.  

In particular, the following services of major importance to distributed systems were 

proposed by the OMG:  

• a Naming Service;  

• a Life Cycle Service;  

• an Event Service; 

• a Transaction Service; and 

• a Security Service. 

Naming Service. A naming service allows components to discover other components in 

the distributed environment with which they can interact and execute cooperative tasks. 

It is basically a location service that associates identifiers to handles (i.e. references) 

that provide a way to contact the desired component in the distributed system. 

The CORBA Naming Service binds names, inserted into hierarchically organised name 

contexts, to CORBA objects.  
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Life Cycle Service. A life cycle service is basically a configuration service. It defines 

services and conventions for creating, deleting, copying and moving components in a 

distributed system.  

The CORBA Life Cycle Service defines the interface to a ‘Factory’ object that allows 

the creation of objects using factories, as well as a ‘LifeCycle’ interface with remove, 

copy, and move operations. 

Event Service. An event service implements a decoupled communication model, based 

on the publish/subscribe paradigm. In this communication model, one or more 

publishers (or suppliers) can send messages related to a specific topic, while a group of 

subscribers (or consumers) receive the messages asynchronously. Through this 

mechanism, suppliers can generate events without knowing the identities of consumers, 

and consumers can receive events without knowing who supplied them. 

The CORBA event service is used by applications whose interaction model can be more 

easily modelled as events than as method invocations. Despite providing a useful 

alternative to the traditional invocation mechanism implemented by CORBA, the event 

service cannot be used by applications with constraints on the latency of events. In order 

to overcome this limitation, the OMG has introduced the notification service [11], an 

extension of the event service that allows QoS constraints to be associated to events.  

Transaction Service. A transaction service organises interactions between distributed 

objects establishing delimiting transactions and commitment points. The CORBA 

transaction service not only supports multiple transaction models, but it also allows 

interoperability between different transaction models. 

Security Service. A security service controls identification of human or software 

entities in order to verify that they have authorisation to execute a requested action. The 

CORBA security service allows identification and authentication of distributed objects 

and implements access control, in order to verify if a particular entity has authorisation 

for calling a specific operation (method) of an object. Furthermore, it allows secure 

communication over insecure network links, with protection of the integrity and 

confidentiality of messages transferred between objects. 

Additional Services. In fact, a complete set of services useful in some specific 

applications was defined by OMG. Other important services are: 
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• Time Service: supplies time information and allows the definition of periodic (i.e. 

recurrent time-triggered) calls. 

• Licensing Service: controls the utilisation of specific objects in the distributed 

system, inhibiting improper use of intellectual property. 

• Properties Service: provides the ability to dynamically associate properties (any IDL 

value) with objects. 

• Relationship Service: allows the definition of relationships between CORBA 

objects. 

• Query Service: allows users and objects to invoke query operations on collections of 

objects. 

• Persistency Service: provides mechanisms used for retaining and maintaining the 

state of persistent objects. 

• Concurrency Control: allows the co-ordination of multiple access to shared 

resources through the provision of several lock modes, and permits flexible 

resolution of access conflicts. 

• Externalisation Service: defines conventions and protocols for representing state 

information related to an object in the form of a stream of data, allowing this 

information to be stored or transferred to other locations. 

2.4.3 CORBA A/V Streams 

Despite its adequacy for transmission of best-effort data, CORBA, like its counterparts, 

originally did not have support for streaming continuous media. The immediate solution 

for the implementation of multimedia applications would be the use of CORBA for 

transmission of control data, while the stream data would have to be transferred using a 

lower-level network protocol that provides mechanisms for QoS specification or 

resource reservation. However, it is not reasonable to use high-level middleware to 

provide protocol and distribution transparency for transmitting best-effort data, and on 

the other hand expose the programmer to the lower-level protocols used for 

transmission of stream data.  
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It is highly desirable that distributed object middleware provide the same kind of high-

level abstraction, which is available for best-effort data, to deal with continuous media. 

To make CORBA suitable for continuous media, OMG has defined streaming 

mechanisms to be introduced at application level in the CORBA architecture [109].  

The CORBA streaming mechanism defines a set of abstractions to deal with stream data 

in multimedia systems. These abstractions are illustrated by Figure 2.  
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 Figure 2 – Overview of the CORBA A/V Streams Mechanism 

Virtual device objects abstract multimedia devices (i.e. cameras, speakers, etc) used by 

multimedia applications. A stream control object allows the user to control the media 

flow (i.e., start and stop it) as well as add and remove parties from a multi-party 

connection.  

Stream endpoints transfer stream data through the network, getting data from and 

delivering data to virtual devices. Each endpoint has one or more media flows, which 

are abstracted as flow endpoint objects located at each end of the flow. Flow endpoints 

are classified as producers and consumers according to the role performed by them in 

the transfer of data. 

A binding operation establishes a stream between two virtual devices and defines the 

QoS parameters associated to the stream. Two binding semantics are allowed. The 

simple local binding uses the virtual device and returns a stream control object. Besides, 

in the third-party binding mechanism, a stream control object can bind two remote 

virtual devices and keep control over the data flow.  

A set of QoS parameters for audio and video streams is defined by the specification (for 

example, the number of bits per sample and the number of channels for audio, or the 

resolution and the colour depth for video). The QoS parameters associated with a stream 
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can be modified through the stream control object, through the stream endpoint or 

through individual flow endpoints. 

Figure 2 shows an application scenario in which a video streaming application is built 

using the CORBA streaming mechanism. The image generated by a video camera is fed 

by a virtual device to a flow producer, which establishes a connection with the flow 

consumer and then feeds the virtual device associated to the video screen with the image 

produced by the camera. The characteristics of the media stream, i.e. the number of 

flows of audio and video and the QoS parameters associated to them, are specified when 

the devices are bound. The stream endpoint handles the network connection between the 

two or more partners, and the control of the media flow and of the membership of the 

connection is done through the stream control object. 

With the introduction of the stream mechanism, the CORBA architecture becomes 

suitable for the provision of the communication services necessary for multimedia 

applications, and can be adopted as the common middleware for control and transfer of 

media. However, the mechanisms used for QoS enforcement are not defined by the 

CORBA A/V streams specification. In order to solve this deficiency, this thesis 

proposes middleware that provides QoS mechanisms that, when integrated with 

CORBA, can provide a full framework for the development of distributed multimedia 

applications.  

2.5 Quality of Service 

Despite the evolution of computer hardware, resources such as network bandwidth, 

processing time and memory are becoming scarce because of the complexity of a 

special category of applications. We are experiencing the proliferation of applications 

with very different sets of requirements, ranging from real-time embedded control 

systems to multimedia applications running on desktop computers connected to the 

Internet. With the migration of real-time systems from specialised architectures to open 

environments, guaranteed services and limited response times with very low (or even 

zero) error rates are required to allow consistent real-time behaviour. On the other hand, 

multimedia applications such as multi-party conferencing, audio and video broadcast, 

and distributed cooperative applications are becoming common for the end-user. This 

class of application can tolerate some error, but requires limited response times and 
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specific throughput. At the moment, the quality of the output generated by these 

applications is inadequate due to the existing limitations of bandwidth and processing 

power experienced by the networks and computing systems currently available.  

The main problem faced by this category of applications is to guarantee that the services 

executed by the underlying system on behalf of the application will be performed 

respecting all the necessary requirements. A myriad of resources may have to be 

provided by the system to allow these requirements to be fulfilled, ranging from local 

resources such as memory and CPU to network bandwidth and other remotely located 

resources.  

Quality of Service, or QoS for short, is the keyword used to represent the set of 

requirements imposed by a user (human being or software component) on the 

performance of the services provided to an application.  

2.5.1 Definitions 

QoS is defined by the ISO OSI/ODP group as ‘a set of qualities related to the collective 

behaviour of one or more objects’ [70]. Other authors try to clarify this definition. For 

example, Vogel et al. [146] state that QoS ‘represents the set of quantitative and 

qualitative characteristics of a distributed multimedia system necessary to achieve the 

required functionality of an application’.  

In this thesis we adopt a very similar definition, with the main difference residing in the 

fact that we do not constrain the application of QoS to distributed multimedia systems, 

but also extend it to incorporate any system with constraints related to response time, 

performance, and output quality.  

ISO, along with the concept of QoS, defines a complete terminology for dealing with 

QoS. However, they consider the application of QoS only for the specification of 

communication services at network level. We adopt their terminology slightly modified 

to encompass diverse application fields.  

According to ISO, a QoS characteristic is ‘a quantifiable aspect of QoS’ such as 

bandwidth or memory usage. A QoS measure is defined as ‘one or more observed 

values relating to a QoS characteristic’ such as the measured value of bandwidth or 

memory being used by an application at an instant in time.  
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A QoS information is any ‘information related to QoS’. QoS information can be 

classified as a QoS requirement, when expressing ‘a requirement to manage one or more 

QoS characteristics’, or as QoS data, if the information is a measured value, a warning, 

or any QoS information used by the system in an enquiry. QoS information is further 

classified as QoS parameters, when exchanged between entities, or QoS context, when 

retained in an entity.  

A QoS operating target is ‘QoS information that represents the target values of a set of 

QoS characteristics, derived from QoS requirements’, such as the necessary value of 

bandwidth to be provided to an application to allow it reach its requirements. ‘A group 

of user requirements that leads to the selection of a set of QoS requirements’ is called a 

QoS category. One example of QoS category is a user requirement such as ‘VHS 

quality’ for a video session, leading to the selection of QoS requirements for frame size, 

number of frames per second, colour scheme, and so on. 

QoS mechanisms are responsible for the establishment, maintenance, enquiry and 

management of QoS. QoS establishment creates the conditions to attain the desired set 

of QoS characteristics for an activity before it occurs; QoS maintenance keeps the set of 

QoS characteristics at the desired values while the activity is in progress; and QoS 

enquiry consists in ‘the use of QoS mechanisms to determine properties of the 

environment related to QoS’.  

QoS management is a set of activities performed by the system to support QoS 

monitoring, control and administration. QoS monitoring is the use of QoS measures to 

estimate the values of QoS characteristics, while QoS control and administration 

(usually referred as ‘QoS control’ for short) are responsible for providing conditions so 

that a desired set of QoS characteristics is attained.  

QoS management functions allow a specific QoS requirement to be met. QoS alerts are 

messages issued when limits or thresholds are crossed.  

Finally, a QoS policy is defined as ‘a set of rules that determine the QoS characteristics 

and QoS management functions’ to be used by the system in a particular case.  

The concepts defined by ISO are widely accepted, but are commonly used more freely. 

QoS characteristics, parameters, data and information are commonly used as synonyms, 

while the study of QoS mechanisms is mainly focused on QoS establishment, with 
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maintenance, enquiry and management often being relegated to a second plan despite 

their important role in the achievement of QoS.  

2.5.2 QoS Specification 

The desired quality of service has to be conveyed to QoS mechanisms in the form of 

QoS parameters. Parameters can be expressed in very different formats, varying 

according to the application field, the corresponding abstraction level, or even personal 

taste.  

QoS mechanisms should be flexible enough to accept different formats of QoS 

parameters and interpret them correctly. For example, a QoS parameter such as 

‘frequency range’ for an audio application would be completely meaningless for an 

application based on data transfer. The same could be said about a parameter such as 

‘window size’, which is useful for video but unintelligible for audio.  

Two main abstraction levels can be identified in systems subject to QoS specification: 

the application level and the system level. Parameters specified at different levels are 

related, but differ strongly in meaning. An application parameter is generally related to 

an idea present only at this level, for example, the number of frames of video shown per 

second in a video broadcast application. At system level this corresponds to network 

bandwidth to transfer data, maximum error and delay, processing time to compress and 

decompress the information, memory, access to specialised hardware, etc.  

The application fields and the system components in which QoS mechanisms can be 

utilised vary enormously. Any attempt to define a common set of parameters for QoS 

specification to be employed by the user to specify its QoS requirements would likely 

constrain his expressiveness and make the process of QoS specification more difficult. 

Therefore, a compromise must be achieved between the needs of different application 

fields regarding the manner in which QoS requirements are expressed and the 

generalisation necessary for specifying QoS parameters to be enforced by QoS 

mechanisms. 

2.5.3 QoS Mapping and Translation 

QoS parameters have to be translated between different levels of abstraction to be 

meaningful for the mechanisms present at that level. Translation implies that a mapping 
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exists between parameters at different levels. Mappings are not always one-to-one 

between parameters, but may be one-to-many, many-to-one or many-to-many.  

One-to-One One-to-Many Many-to-One Many-to-Many 

Error  
Rate 

⇓ 
ATM Cell  
Loss Ratio 

Deterministic  
Guarantee 

⇓ 
Deterministic Scheduling;  
Deterministic Transport; 
Memory Paging Blocked 

Video Resolution; 
Colour Depth 

⇓ 
Network  

Bandwidth 

Network Bandwidth; 
Packet Size 

⇓ 
Token Bucket Size; 
Token Bucket Rate 

Table 2 – Examples of Parameter Mapping 

Table 2 shows some examples of parameter mappings. Although the mapping may be 

complex, the process of translation usually consists in simple arithmetic operations over 

a limited set of variables.  

Mappings and translation mechanisms have to be bi-directional in order to allow the 

transfer of QoS information from the bottom layers of the system to the top ones, 

reporting QoS measures to the application using QoS parameters comprehensible at this 

level of abstraction.  

For the particular case in which several different application fields and lower-level 

components must be supported, the translation process has to deal with different sets of 

parameters appropriate for the environment in which it is being used. Since the creation 

of direct (one-step) translators for N application fields deployed on top of M low-level 

components would need the definition of N * M translators, this solution seems to be 

unacceptable.  

To allow support for diverse application fields and resource reservation protocols, a way 

of extending the mapping and the translation mechanisms must be provided. The 

addition of support for a new application field or reservation protocol should be as easy 

as possible. In other words, the addition of support for a new kind of application should 

not imply writing one translator for every reservation protocol supported by the 

architecture, and vice-versa.  

2.5.4 QoS Enforcement 

After obtaining the QoS requirements of the application in the form of QoS parameters 

and translating them into a format that is appropriate at a lower level of abstraction, 
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mechanisms for QoS enforcement have to be used in order to fulfil these QoS 

requirements. 

QoS enforcement is necessary in order to guarantee that the QoS requirements imposed 

by the application will be fulfilled. This can be achieved by controlling and monitoring 

the use of the resources provided by the underlying system, either directly by the QoS 

mechanism or indirectly by means of a resource reservation protocol [103]. Since the 

handling of resources would add even more complexity to QoS mechanisms, the second 

solution is the most widely adopted. Resource reservation protocols are discussed in 

more detail in item 2.6. 

The allocation of system resources is even more complex if we consider that multiple 

resource reservation protocols can be present in the platform. Since one of our main 

goals in this thesis is to provide support for heterogeneous systems, the presence of 

multiple reservation protocols must be taken into account during the design of the 

mechanisms for QoS enforcement being proposed by this thesis. 

2.5.5 QoS Architectures 

QoS architectures consist in middleware components that are responsible for integrating 

mechanisms for QoS specification and enforcement in computational systems. The 

mechanisms provided by QoS architectures are used by applications in order to have 

their QoS requirements observed by the underlying system.  

To allow the utilisation of the features provided by networks and operating systems with 

reservation capabilities at user level, several QoS architectures have been defined in the 

literature [4][24][27][102][156]. However, most of the QoS architectures proposed so 

far target only a specific configuration of operating system software and communication 

infrastructure. This tight dependency on a specific environment constrains their 

application in open systems, where heterogeneity is always present. ATM-based 

systems combined with real-time operating systems are the most popular platforms for 

the development of QoS architectures, because of their suitability for the 

implementation of QoS mechanisms based on the reservation of system resources. 

Some architectures are also targeted at very specific application fields, with video 

conferencing being the one where the technology is more mature because of several 

research projects that explored this topic.  
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2.5.6 ISO QoS Framework 

The ISO QoS framework [70] consists of a model that “defines the architectural 

principles, the concepts and the structures that underlie the provision of QoS” in the 

basic reference model of Open Systems Interconnection (OSI).  

The OSI basic reference model is provided with QoS entities that take part in QoS 

management. Two classes of entities are defined within the ISO QoS framework: 

• System QoS entities: entities which have a system-wide role, i.e. are cross-layer; 

and 

• Layer QoS entities: entities associated with the operation of a particular subsystem 

present in a specific layer. 

System QoS entities interact with layer QoS entities in order to monitor and control the 

performance of the system.  

The following layer QoS entities are defined by ISO: 

• N-Layer Policy Control Function (N-PCF): receives the QoS requirements and 

determines the policy that is to apply to the operation of the N subsystem; 

• N-Layer QoS Control Function (N-QCF): selects the entities that will participate in 

the provision of communication services by taking into account the QoS 

requirements received from N-PCF; and 

• N-Layer Protocol Entity (N-PE): checks if the QoS requirements imposed on a 

communication service can be supported, possibly renegotiating them with peer N-

PEs or indicating a failure when a requirement cannot be accepted.  

At the system (cross-layer) level, the ISO QoS framework defines two functions and a 

set of entities. They are: 

• a System Quality Control Function: a system-wide capability for tuning the 

performance of the various protocol entities that are in operation;  

• a System Policy Control Function: a function that ensures system-wide consistency 

to  the policies implemented by each individual N-PCF in a layer; and 
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• Management Entities: responsible for supporting OSI system management and 

general management operations and notifications necessary for QoS management 

(such as QoS data metrics and time management, for example). 

As can be easily seen, the ISO QoS framework only defines a reference model for QoS 

specification and management at the network level. This follows the approach 

undertaken by ISO for the definition of the OSI reference model. Despite being a good 

starting point for understanding the structure of middleware that provides support for 

QoS specification and enforcement, the ISO QoS framework covers QoS only at the 

network level and lacks a more detailed architectural specification.  

2.6 Resource Reservation 

The deployment of a distributed application on fast machines interconnected by a 

network with sufficient bandwidth does not necessarily guarantee that an application 

will behave as expected.  

The services available at the network and operating system level have to take into 

account the requirements of the application that is using these services during their 

execution. This does not mean that low-level details have to be accessible at application 

level, introducing more complexity to be dealt with by the programmer. Instead, we 

consider that resource reservation mechanisms will have to be provided to allow 

applications to easily control and manage the use of network and operating system 

resources. This strategy allows the communication support to guarantee the availability 

of bandwidth for the application and to impose an upper limit on the communication 

delays, for example. In the same way, the operating system is able to guarantee the 

availability of resources such as processing power and memory for the use of the 

application.  

In order to achieve the desired system performance, QoS mechanisms have to guarantee 

the availability of the shared resources needed to perform the services requested by 

users. The concept of resource reservation provides the predictable system behaviour 

necessary for applications with QoS constraints.  

Aiming to provide more guaranteed availability of resources for applications, networks 

and operating systems are incorporating mechanisms for resource reservation. 
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Reservation mechanisms have to keep track of the use of the limited set of resources 

provided by the system, and receive requests from new users interested in using these 

resources. New requests are subject to admission tests based on the usage of the 

resources and the guarantee levels that satisfy the user. Reservations are then accepted, 

if there are resources available, or rejected if not. The problem of allocating limited 

resources becomes even more complex if we consider that current computational 

systems are basically heterogeneous, subject to mobility and constant reconfiguration, 

but still have to provide a dependable and accurate service in a limited response time.  

The concept of resource reservation, like QoS, originated from work on communication 

networks and was subsequently extended to other components of computational 

systems.  

In the area of computer networks, we can mention the development of ATM as a 

significant advance towards the provision of QoS-constrained communication services. 

Aiming to provide similar behaviour, but working at the logical network level, the IETF 

is proposing a new suite of protocols for the Internet. The suite of protocols is based on 

IP version 6 (IPv6) in conjunction with a reservation protocol (RSVP) and a new 

transport protocol named RTP. Both ATM and the new Internet protocol suite will be 

described in detail later. 

At the operating system level, some work has been developed to extend conventional 

operating systems in order to provide more predictable behaviour suitable for 

applications with QoS constraints. Microkernel-based operating systems such as Mach 

[145] have been extended to provide time-constrained services. Conventional 

commercial versions of UNIX, such as Sun’s Solaris and IBM’s AIX, are also being 

adapted to provide behaviour suitable for applications with QoS constraints. In addition, 

some experimental operating systems [59][89][123] provide mechanisms for resource 

reservation that can be used by applications that need to have guaranteed access to 

system resources.  

Each existing reservation protocol has its own interface and its own set of parameters or 

reservation messages for the specification of the resources to be reserved for use by the 

application. The handling of differences between multiple reservation protocols by QoS 

mechanisms then becomes a complex task that has to be considered carefully in the 

design of middleware that is intended to provide QoS constrained services.  
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2.6.1 Resource Adaptation 

One important trend in research into resource reservation protocols is resource 

adaptation [52].  

Some authors consider resource reservation as a guaranteed method of delivering a 

specified QoS to an application during its entire lifetime [36][88][101]. Another school 

of thought proposes the development of adaptive applications capable of dealing with 

changes in resource availability during the provision of service [25][26][30]. A third 

idea based on resource adaptation, which mixes both approaches mentioned previously, 

has been considered as a viable and necessary alternative to either.  

Several drawbacks appear in efforts to provide guaranteed resource reservation services 

for the following reasons:  

• the physical structure of the whole computer system may change due to hardware 

reconfiguration and computer mobility, and changes in the distribution of resources 

may become necessary;  

• monitoring services may detect that the QoS requested by an application is not being 

achieved with the resources that were allocated for it, and then decide to allocate 

new resources;  

• the system may reclaim resources that are not being utilised or that are necessary for 

more important activities.  

On the other hand, adaptation is very limited for services with strong requirements, and 

does not solve the problems that applications with QoS requirements face when they try 

to use the best-effort systems currently available.  

Resource reservation combined with adaptation entails a more flexible approach for 

providing QoS to applications [52]. In this approach, resources can be seen by 

applications as being guaranteed during some time, but their availability can vary over 

long periods. Applications are responsible for estimating their initial resource 

requirements and for negotiating their reservation with resource providers. During run-

time the application has to be able to adapt its behaviour based on feedback received 

from the system.  
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QoS mechanisms have to be aware of the possibility of resource adaptation, making it 

transparent to the application whenever possible. When the agreed QoS is not reachable 

with the resources available, the application has to be informed that the previously 

agreed QoS has to be renegotiated. Applications have to be ready to handle this kind of 

situation without disruptions in the service being provided to the user. In other words,  

applications holding resources that are subject to changes in their availability because of 

resource adaptation have to be able to degrade gracefully when it occurs.  

2.6.2 ATM 

Asynchronous Transfer Mode (ATM) [16][113] is a communications standard proposed 

by the Telecommunication Standardisation Section of the International 

Telecommunications Union (ITU-T) as the transport mode for the Broadband Integrated 

Services Digital Network (B-ISDN) [71].  

ATM networks aim to integrate traffic with different flow characteristics and service 

requirements. The type of traffic to be supported by ATM networks ranges from real-

time data such as voice and high-resolution video, which can tolerate loss of data but 

not delay, to non-real-time traffic such as computer data and file transfer, which can 

tolerate delay but not loss of information. 

The flow can vary from CBR traffic as required by non-compressed audio or video, to 

the bursts of data typical of computer systems where the average arrival time between 

bursts may be quite large and randomly distributed.  

The main idea behind ATM is to transmit small data packets (ATM cells) 

asynchronously without error recovery at the network level. Each ATM cell consists of 

53 bytes of data, of which 5 bytes are used by the ATM header. The adoption of an 

asynchronous approach allows better performance in the presence of bursts of data with 

low latency. Error correction and data recovery can be implemented at higher levels if 

necessary, according to the characteristics of the data being transmitted.  

The transmission of data is completely connection-oriented, with data flowing through 

ATM channels. Each channel is identified by a channel number, which is composed of a 

Virtual Channel Identifier (VCI) and a Virtual Path Identifier (VPI). The channel 

number appears in the header of each ATM cell. 
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ATM supports point-to-multipoint and multipoint-to-multipoint connections in addition 

to the usual point-to-point communication. New members – either senders or receivers – 

can be added dynamically to multipoint connections by using the ATM signalling 

protocol. It is important to notice that communication is always unidirectional in 

multicast connections (i.e., data flows from senders to receivers only), and traffic 

characteristics and service requirements (QoS) must be the same for every member. 

Some manufacturers of ATM equipment still do not provide full support for multipoint 

communication. 

There is no defined mapping between ATM and the seven layers of the OSI Reference 

Model [68]. The ATM Reference Model goes beyond the OSI model, introducing the 

concept of planes subdivided in layers in a three-dimensional structure. The use of 

planes allows the representation of features such as control and management in parallel 

with data transfer. The structure of the ATM architecture is shown in Figure 3 and 

described below.  

Physical Layer

ATM Layer

ATM Adaptation Layer ATM Adaptation Layer

High-Level Layers High-Level Layers
Control Plane User Plane

Layer Management
Plane Management

 

Figure 3 – The ATM Architecture 

The three planes defined by the ATM architecture are: 

• User Plane: for transporting user information.  

• Control Plane: deals with channel control, connection control, and signalling 

information.  

• Management Plane: implements layer management and plane management.  

The layers are divided as follows: 

• Physical Layer: performs bit-level functions, adapting the cell-based approach to the 

transmission medium.  The physical layer is subdivided into:  
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• Physical Medium (PM): contains only the medium dependent functions. It 

provides bit transmission and alignment, performs line coding and also 

electrical/optical conversion when necessary. PM layers for optical fibre, and 

coaxial and twisted pair cables are defined in the reference model. This layer 

also includes bit-timing functions such as insertion and extraction of timing 

information.  

• Transmission Convergence (TC): takes care of generation, recovery and 

adaptation of transmission frames, adapting the cell flow according to the 

transmission system. TC also performs the cell delineation function, enabling the 

receiver to recover the cell boundaries, and calculates and verifies the header 

checksum (HEC), allowing correction of header errors. TC also inserts idle cells 

in the medium in order to adapt the rate of the ATM cells to the capacity of the 

transmission system, and suppresses all idle cells received.  

• ATM Layer: is the core of the ATM network architecture. This layer performs the 

following functions:  

• Cell header generation/extraction: adds the appropriate ATM cell header (except 

for the HEC value) to the cell received from the ATM adaptation layer (AAL) in 

the transmit direction, and does the opposite (i.e., removes the cell header) in the 

receive direction. Only cell data fields are passed to the AAL.  

• Cell multiplexing and demultiplexing: multiplexes cells from individual virtual 

paths (VPs) and virtual channels (VCs) into a single cell stream in the transmit 

direction. It divides the arriving cell stream into individual cell flows (VC or 

VP) in the receive direction.  

• VPI and VCI translation: performed at the ATM switching and/or cross-connect 

nodes. The values of VPI and VCI fields of each incoming cell are translated 

into new VPI and VCI values in the outgoing cell according to the characteristics 

and the state of the ATM switch.  

• Generic Flow Control (GFC): supports control of the ATM traffic flow in a 

customer network. This is defined only at the user-to-network interface (UNI); 

GFC does not exist in the network-to-network interface (NNI) cell.  
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• ATM Adaptation Layer (AAL): performs the adaptation of higher layer protocols. 

AAL is divided into two sub-layers:  

• Segmentation and Reassembly (SAR): performs segmentation of the higher layer 

packets of data into a suitable form for the payload of the ATM cells of a virtual 

connection; at the receive side, it reassembles the contents of the cells of a 

virtual connection into data units to be delivered to the higher layers.  

• Convergence Sublayer (CS): performs message identification and time/clock 

recovery. This layer is further divided into a Common Part Convergence 

Sublayer (CPCS) and a Service Specific Convergence Sublayer (SSCS).  

Four classes of service (namely A, B, C and D) were originally identified by the ITU-T, 

each one providing a data flow appropriate to a different set of applications with similar 

traffic characteristics. For each class of service a corresponding adaptation layer (AAL1 

for class A traffic, AAL2 for class B, and so on) was defined. Table 3 summarises the 

original relationship between classes and AAL types.  

Class of Service A B C D 

Original AAL AAL1 AAL2 AAL3 AAL4 

Timing Relation  Preserved Not Preserved 

Bit Rate Constant Variable 

Connection Mode Connection Oriented Connectionless 

Original  
Target 

Applications 

Circuit emulation, 
non-compressed 
audio and video. 

Compressed  
audio and  

video. 

Virtual circuit 
services (X.25, 

Frame Relay, etc.). 

Datagram service, 
IP over ATM, 

LAN emulation. 

Table 3 – Original ATM Classes of Service and Adaptation Layers 

However, during the specification process it was recognised that this approach needed 

to be modified. As a result, new AAL types and classes of traffic were defined, and 

different combinations between them were allowed when appropriate. Table 4 shows 

the resulting classes of services and AAL types. 

AALs 3 and 4 were merged because of their similarities, giving rise to AAL3/4. 

Nevertheless, the 4-byte per cell overhead required by the headers and trailers necessary 

to provide connectionless service multiplexed over a single ATM channel constrained 

AAL3/4 adoption to class D services, and AAL5 was created to provide a more efficient 

interface for class C services. AAL5 is also used by the ATM signalling protocol (ITU-
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T Q.2931) and by a new class Y, known as available bit-rate (ABR), which is suitable 

for delay-tolerant applications.  

Class A B C Y Q.2931 X D 

AAL AAL1 AAL2 AAL5 AAL0 AAL3/4 

Time  Preserved Not Preserved 

Bit Rate Constant Variable 

Conn. Mode Connection Oriented Conn-less 

Examples of 
Application 

Circuit 
emulation 

Compressed 
audio/video 

Conn-oriented 
services 

Available 
Bit Rate 

Signalling Cell-relay Conn-less 
services 

Table 4 – Resulting ATM Classes of Service and Adaptation Layers 

A class X, or unassigned bit-rate (UBR), was also introduced for provision of cell-relay 

service for applications with minimum QoS requirements, i.e., delay-tolerant and 

subject to cell loss. Class X employs a null AAL (also known as AAL0) to access the 

cell-relay service provided by the ATM layer.  

Class B service is not currently available, because there is no standard or vendor-

specific proposal for AAL2.  

ATM is a technology under development. Despite not being completely standardised, 

this technology is evolving rapidly and being widely accepted in the computer network 

market, with applications in both local and wide area networks. A large number of 

vendors are providing ATM hardware, with a reasonable degree of interoperability 

between equipment from different vendors. 

QoS and Resource Reservation. During the connection establishment process, the 

application can specify the desired QoS for an ATM channel based on parameters such 

as maximum number of cells per second, statistical variation of the volume of data 

being transmitted, maximum end-to-end delay, and maximum jitter allowed. A 

connection is refused when the network cannot support the required QoS level. The 

acceptance or refusal of a QoS specification is determined during an admission process, 

and rejection may occur due to lack of network resources. 

The API used for requesting QoS varies from vendor to vendor, and also depends on the 

abstraction layer at which the specification is taking place. The format of QoS 

parameters can also vary considerably. A common approach for QoS specification uses 

extensions to the sockets API based on ioctl() calls. 
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2.6.3 Internet Protocols 

The next version of the Internet suite of protocols, known as Internet Next Generation, 

provides resource reservation and guaranteed end-to-end QoS at application level.  

The work carried out by the IETF (Internet Engineering Task Force) is orthogonal to the 

subnetwork-specific solutions for broadband integrated services networks (such as 

ATM) because it targets the logical network.  

All this effort to adapt the Internet to a new communication framework is being 

developed in parallel with the new version of the IP network protocol, known as IPv6 

(version 6) [34][40][64]. IPv6 is designed to support a larger set of addresses (128 bits 

instead of 32) while maintaining compatibility with the current version. Additionally, 

IPv6 has the following characteristics: 

• IP packets can be associated to a flow through the use of a field in the IP header; 

• multicast communication is improved through the addition of a scope definition 

field in the IP header, limiting the geographical amplitude of multicast messages;  

• a new communication paradigm, called anycast, has been introduced;  anycast 

supports groups of receivers to which messages are sent only to the nearest member 

of the group;  

• packet options are implemented in a more flexible and extensible way, using 

multiple option fields outside the area of the IP header; and  

• support for authentication and QoS specification is allowed through the definition of 

traffic flows with particular requirements and characteristics.  

The new suite of Internet protocols being developed by the IETF is illustrated by  

Figure 4. 

At the network layer, the IETF has two parallel activities underway. The first is 

addressing the provision of a Stream Transport Protocol (ST-II). The alternative activity 

is based on a Resource Reservation Protocol (RSVP) running over IP. Both solutions 

support multicast communication, resource reservation, bandwidth management and 

QoS specification, but the approach adopted in their design differs in several 

fundamental points. 
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Figure 4 – Internet Next Generation Protocols  

ST-II [41] is a connection-oriented network protocol, designed to coexist with IP, which 

allows resource reservation determined by the origin of the flow. New receivers 

interested in participating in an ongoing connection have to contact the origin to request 

their inclusion. An associated control message protocol, SCMP, is responsible for 

initiating and modifying connections, allowing resource specifications to be changed to 

fulfil the requirements of a specific receiver.  The main disadvantage of the approach 

adopted by ST-II is related to the bottleneck imposed by the excess of tasks assigned to 

the source of the media, which constrains the scaling of receiver groups.  

On the other hand, RSVP [19] is based on the establishment of flows over a 

connectionless network service (IP version 4 or 6), allowing reservation of resources for 

a specific flow when necessary. The multipoint communication service is designed to 

scale to very large groups through the use of flow specifications defined by receivers.  

Sender

Receiver #1 Receiver #2 Receiver #3

Router #1

Router #2

Path message

Reservation message

 

Figure 5 – Propagation of RSVP Messages 
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Figure 5 shows the exchange of RSVP messages in a multicast flow. Each receiver 

interested in a communication flow enters the corresponding multicast group and waits 

for a path message that describes the composition of the flow. The receiver then decides 

in which part of the flow it is interested (e.g. only the black and white component of a 

coloured video flow, only the audio of a film, etc.) and generates a filter. A flow 

specification (flowspec) describing the required characteristics of the flow is also 

generated by the receiver. It then arranges both the filter and the flowspec in a 

reservation message, which is propagated periodically in the direction of each individual 

origin of the flow. Routers along the path are responsible for reserving the resources 

needed for the flow described by the reservation message. Reservation messages are 

short-lived, having to be periodically refreshed by the receivers. This results in soft state 

information being stored by the routers along the path. In the absence of refresh 

messages, the reservation expires. The storing of soft state is an appropriate approach 

for implementing reservation of resources in the Internet, which was originally designed 

as a stateless infrastructure in order to tolerate failure and to scale gracefully.   

At transport level, the usual Internet transport layers, TCP and UDP, are being adapted 

to take advantage of the new characteristics of IPv6. Furthermore, a new protocol called 

Real-Time Protocol (RTP) has been proposed. 

RTP [131] provides higher level services such as encapsulation, multiplexing and 

demultiplexing, encoding, synchronisation, error detection and encryption. RTP can 

make use of the other transport protocols (TCP or UDP) or access the network layer 

directly (IP or ST-II). A transport control protocol named RTCP is responsible for 

group management, connection control, and QoS monitoring. 

An application protocol developed by Netscape Corporation and Real Networks was 

accepted by IETF as a draft standard. The Real-Time Streaming Protocol (RTSP) offers 

a “WWW-based and HTTP-friendly” interface to allow on-demand delivery of real-time 

media over the Internet [132]. RTSP is built on top of the currently available transport 

protocols (RTP, TCP and UDP). The protocol provides mechanisms to request delivery 

of real-time data, specify the transport layer to be used and the destination for the 

delivery, request information about the encoding format, control the flow of data 

through the stream, and to access portions of data when applicable (i.e., in case of 

recorded media). 
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With the introduction of these protocols, the IETF intends to provide a complete suite of 

mechanisms for the transmission of continuous media and real-time data through the 

Internet. 

QoS and Resource Reservation. The most common method used by Internet 

applications for specifying their requirements is by using RSVP, and it implies defining 

a token bucket model [19] for the data traffic generated by the application. According to 

this model, the transmission capacity of the network is modelled by a bucket that is 

filled with tokens in a constant rate; for each data unit transferred through the network, a 

token must be taken from the bucket; the size of the bucket limits the occurrence of 

network bursts. 

A series of calls to the sockets API is necessary to set up RSVP and then perform 

reservations of network resources by specifying parameters such as the size of the token 

bucket, the token rate, packet size, etc. Like ATM, RSVP performs an admission 

process that determines whether the requirements can be met by the network or not. In 

addition to the token bucket style of reservation, RSVP also provides other methods for 

specifying resource reservations. However, these new methods are still in the process of 

being defined by the IETF and added to the RSVP API. 

2.6.4 Real-Time Capabilities of Windows NT 

The Microsoft Windows NT operating system provides a set of mechanisms that make 

it possible to be used by applications with timing constraints. By definition, Windows 

NT is a general-purpose O.S. with soft real-time capabilities and not a hard real-time 

O.S. that provides deterministic response times [96]. Despite lacking support for hard 

real-time computing, Windows NT still consists of a useful platform for the deployment 

of multimedia applications and non-critical real-time applications [144]. 

The real-time mechanisms provided by Windows NT consist of: 

• A real-time scheduling class, which isolates real-time tasks from the ones satisfied 

by the best-effort scheduling policy that is used by default by the system scheduler; 

• Mechanisms for blocking memory paging, which makes the access times to the 

physical memory more predictable; 
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• Asynchronous I/O, which allows applications to queue an I/O operation and 

continue processing without having to either wait or respond to an end-of-I/O event;   

• Bounded latency for handling interrupts; and 

• Synchronisation mechanisms such as timers, events, mutexes and semaphores. 

These mechanisms are accessible for the application programmer either through the 

Windows 32-bit (Win32) API or through the Windows Sockets (WinSock) API. In 

particular, WinSock extends the sockets API by providing alternative versions of the 

original API calls with additional parameters, which allow the user to execute 

asynchronous I/O and to specify QoS requirements in the form of a traffic descriptor, 

for example.  

Later in this thesis we will make use of the real-time mechanisms provided by Windows 

NT in order to build middleware that provides support for applications with timing 

constraints imposed on their computation. 

2.7 Summary 

This chapter has situated the area of research in which this thesis is inserted. Concepts 

in the fields of multimedia and real-time applications, open systems, distributed object 

computing, QoS and reservation protocols have been presented. 

The immediate goal of this thesis is, by using the knowledge gathered in these area of 

research, to provide an environment in which QoS can be achieved in the deployment of 

critical applications (such as multimedia and real-time applications) in open systems. 

Technologies such as resource reservation and distributed object computing have a key 

role in providing a solution for this problem. 

In this chapter we have also presented a series of well-established technologies which 

can be used for building a QoS architecture suitable for open systems. On the one hand 

we have reference models such as MSS and the ISO QoS Framework that provide a 

series of insights that can be used for designing the QoS Architecture. On the other 

hand, technologies such as CORBA, real-time operating systems, ATM and the new 

Internet protocols indicate the sort of support that a QoS architecture can rely upon.  
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3  
State of the Art 

The following sections present a number of frameworks and architectures that provide 

QoS mechanisms for applications with QoS requirements. During this surveying study, 

we have identified a series of limitations that prevent the use of state-of-the-art 

technology to provide support for QoS specification and enforcement in open systems. 

These limitations are targeted by a new proposal of QoS architecture, which will be 

described in the next chapter of this thesis. 

3.1 XRM and Xbind (Univ. of Columbia) 

The eXtended Reference Model (XRM) and the Xbind platform [88] have been 

designed and implemented by the Comet group at the University of Columbia.  

XRM models the communication architecture of networking and multimedia computing 

platforms using three components: the broadband network, the multimedia network, and 

the services and applications network.  

The broadband network is defined as the physical network. Upon this physical 

infrastructure resides the multimedia network, whose primary function is to provide 

support for services with end-to-end QoS guarantees. The user has contact only with the 

service abstractions provided by the services and applications network.  
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The services visible at the multimedia network level are provided by Xbind, a 

programming platform for creating, deploying and managing multimedia services. 

Xbind is basically a conceptual framework for creation, deployment and management of 

multimedia services on ATM networks, which allows the specification and control of 

end-to-end QoS.  

Xbind adopts an open signalling concept called “hardware independent signalling”. The 

main idea entails creating a separation between switching software and hardware. This 

allows, for example, the installation of signalling software on an ATM switching 

platform from a third party vendor, simplifying the service creation, deployment and 

management.  

Functionally, Xbind consists of a kernel that provides end-to-end QoS over broadband 

networks, including software components for implementing mechanisms for distributed 

network resource allocation, broadband signalling, real-time switch control, multimedia 

transport and device management.  

The associated binding architecture presents the service provider with a set of open 

binding interfaces with multimedia and QoS capabilities. Additionally, the Binding 

Interface Base (BIB) allows an easy integration of control (connection establishment 

and resource allocation), network management and service management.  

The Xbind kernel has been ported and tested on several operating systems and different 

types of ATM equipment. The CORBA architecture was adopted as the lower level for 

implementing the binding architecture, providing interoperation between multiple 

platforms.  

Xbind is an example of a multimedia programming framework that provides network-

level QoS mechanisms. Some degree of system heterogeneity is provided by the use of 

CORBA and by the different versions of the Xbind kernel that were built on different 

platforms. However, it lacks some features that are required by applications with QoS 

requirements deployed in open systems. Heterogeneity at the resource reservation 

protocol level is not supported due to the tight integration of the system with the 

network protocol (i.e. ATM). Low-level details regarding the network transport are not 

hidden completely from the programmer. In addition, Xbind does not provide support 

for QoS adaptation, and there is no mechanism for extending the programming 

framework.  
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3.2 ReTINA Project (ACTS) 

Real-Time TINA [18] is a cooperative project sponsored by the European ACTS 

program that was carried out by Chorus Systems, Alcatel, Siemens, HP, CSELT, France 

Telecom, British Telecom, Telenor, APM, O2 Technology and Broadcom.  

The main goal of the ReTINA project was to develop a distributed processing 

environment (DPE) with support for interactive real-time and multimedia services, 

following standards such as CORBA [108] and ODP [39]. Support for real-time and 

multimedia traffic is obtained with the encapsulation of multiple communication 

protocols within an ORB, providing flexible bindings and interaction models, and with 

fine-grained control of resources in order to provide QoS guarantees. 

ReTINA adopts a binding protocol based on the ODP reference model for establishing 

connections (i.e. bindings) between objects. This protocol introduces binding factory 

objects responsible for the provision of binding models appropriate for real-time and 

multimedia applications, such as third-party and multiple bindings, and with 

specification of QoS for bindings. In order to provide QoS guarantees for bindings, the 

resources necessary to achieve the desired QoS must be reserved for the use of the 

‘ODP capsule’ (address space) of the corresponding object.  

In addition to the core of the DPE, which encompasses the ReTINA ORB, several 

peripheral services make up the ReTINA environment. These services are based on the 

CORBA services defined by the OMG, including trading, notification and events, 

security, replication and transaction services as well as telecommunication-specific 

services such as connection managers and QoS providers. 

Stream abstractions are supported by means of extensions to the IDL language that 

allow stream interfaces to be specified. Stream interfaces have operations responsible 

for transferring frames of media and do not have return values or argument 

directionality specification. Arguments specify the format of the frames transmitted 

through the stream. Stream interfaces are referenced via regular CORBA object 

references that may be passed as arguments of operations or stored by the CORBA 

name service. 

The ReTINA environment is based on a multi-platform ORB, which runs with a real-

time ‘profile’ over the Chorus micro-kernel [142] and with a non-real-time ‘profile’ 
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over generic operating systems. Furthermore, ReTINA provides a set of application 

development, configuration and management tools aimed at facilitating the process of 

deploying applications on top of the ReTINA environment. 

ReTINA combines support for real-time and multimedia applications, but QoS 

specification mechanisms still are not user-extensible. Like Xbind, it enforces QoS only 

at network level, and important features that are necessary in an open environment such 

as support for QoS adaptation are still missing.  

3.3 DIMMA (APM-ANSA)  

The DIMMA (Distributed Interactive MultiMedia Architecture) project [116] proposes 

to extend currently available distributed computing architectures in order to incorporate 

real-time and multimedia capabilities. This research project was carried out by the 

APM-ANSA Laboratories. 

The main objectives of the DIMMA project were: 

• to extend distributed computing object models such as CORBA for supporting real-

time and interactive multimedia applications; 

• to incorporate support for new paradigms of communication best suited for 

multimedia and real-time systems such as streams (e.g. audio/video communication) 

and signals (real-time processing) in distributed systems; 

• to identify extensions needed to support distributed services management, fine-

grained control and monitoring of resource usage and management (e.g. explicit 

binding); 

• to define an architecture for QoS negotiation, management and control; and 

• to investigate of the interworking of distributed object models (e.g. CORBA vs. 

ODP) at the computational level (e.g. IDL translations) and at the engineering level 

(e.g. transport protocols).  

The adopted approach consists in using a set of distributed computing environments 

(ANSAware [91], DCE [114], and various ORBs) and operating systems (ranging from 

desktop to real-time operating systems) as a basis for constructing a higher-level API. 
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DIMMA adopts several partial models for structuring the distributed environment. An 

object model incorporates features appropriate to real-time and multimedia 

environments. An interaction model adds the concept of streams and group 

communication to the traditional client-server model. In addition, a control model 

regulates both synchronous and asynchronous communication. Implicit and explicit 

bindings are provided through the adoption of binding managers at both client and 

server sides. The QoS model addresses the requirements present in multimedia and real-

time environments, allowing specification and control of end-to-end quality of service. 

Finally, the scheduling model provides resource allocation, priority scheduling 

mechanisms and deadline control. 

DIMMA provides a stub generator toolset that supports several kinds of IDLs and the 

generation of client and server stubs for multiple platforms (e.g. ODP, CORBA). The 

toolset is built around the Abstract Syntax Tree concept (AST), as a syntax-free way to 

capture the semantics of interfaces. The stubs generated are, whenever possible, 

independent from the engineering details such as transport used, and marshalling 

algorithms. The AST also serves as a data interchange format between the tools and 

services in the DIMMA development and runtime environment (type and scope checker, 

interface repository, and trader).  

The AMBER project [86], also carried out at APM-ANSA Laboratories, provides a 

CORBA-compliant environment suitable for distributed multimedia and 

telecommunication applications by applying solutions proposed by APM in the 

DIMMA project and also from TINA and ODP. The approach adopted is based on the 

incorporation of the concept of stream interfaces to the CORBA IDL and the extension 

of object adapters in order to support streams.  

DIMMA and AMBER, like the other systems presented before in this chapter, still have 

limited support for QoS specification and enforcement. Despite their wide platform 

coverage, these architectures do not take into account the possibility of having multiple 

reservation protocols in open systems. In addition, mechanisms for the application 

programmer to extend the QoS mechanisms are not provided by both architectures, 

which also lack support for QoS adaptation.  
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3.4 SUMO (Univ. of Lancaster)  

The SUMO Project (SUpport for Multimedia in Operating systems) [35] was developed 

by the Distributed Multimedia Group at Lancaster University and by CNET at France 

Telecom. SUMO is a microkernel-based system that aims to provide facilities to support 

distributed real-time and multimedia applications in ODP-based platforms.  

The SUMO project provides the application programmer with a QoS-driven API, a 

connection-oriented communication system with connection-dedicated resources and 

facilities for monitoring and controlling the QoS of multimedia applications. 

A set of key architectural principles was adopted in the design of SUMO. They are:  

• upcall-driven application structuring, whereby communications events are initiated 

by the system rather than by the application;  

• split-level system structuring, which means that key system functions are carried out 

cooperatively between kernel and user level components; and  

• decoupling of control and data transfer, i.e. the control is carried out asynchronously 

with respect to the transfer of data.  

The Chorus microkernel [142] was used as a vehicle for providing the operating system 

level services as well as basic real-time support. The design of the SUMO distributed 

real-time/multimedia support system was implemented partly in kernel space and partly 

as a user-level library that is linked to native Chorus applications. 

In parallel with the development of SUMO over Chorus, the necessary requirements to 

support synchronisation of continuous media in open distributed processing 

environments were investigated by the creators of SUMO [36]. Sophisticated support 

for synchronisation was proposed as a result of this work. The coordination of 

multimedia presentations, and the maintenance of timing relationships between distinct 

data transmissions and of event-based synchronisation points is allowed through the 

cooperation of invocation mechanisms with new services introduced at system level, 

called streams and synchronisation managers. These services allow the verification of 

synchronisation constraints imposed on the exhibition of distributed media. 

The use of the SUMO system as a support infrastructure for CORBA was also 

investigated [37]. The developers of SUMO have proposed extensions to the CORBA 



53 

computational model in order to incorporate interfaces for multimedia streaming, and 

QoS ‘annotations’ (i.e. specifications) on interfaces along the lines suggested by the 

ISO Reference Model for Open Distributed Processing (RM-ODP) [69].  

SUMO concentrates on providing QoS at operating system level only. Its use is limited 

in open systems due to the lack of support for multiple reservation protocols; its area of 

application is limited to multimedia; mechanisms for extending the run-time support are 

not provided; and it lacks support for QoS adaptation.  

Other research initiatives related to multimedia and group communication, as well as 

end-to-end QoS over integrated services networks, are also being undertaken by the 

Distributed Multimedia Group at Lancaster University.  

The experience gained with the SUMO project was employed by the research group for 

developing the QoS-A architecture, which is described in section 3.8. Conclusions of 

this project also contributed for the MMN project, described in section 3.12.  

3.5 TAO (Washington University at St. Louis) 

The TAO project intends to optimise the performance of CORBA implementations for 

performance-sensitive applications such as hard real-time systems (e.g. avionics) and 

constrained latency systems (e.g. teleconferencing).  

Earlier studies and performance measurements [127][128] identified severe bottlenecks 

in the currently available CORBA implementations, which limit their utilisation for 

building applications with real-time requirements. To allow the development of a 

CORBA-compliant platform suitable for this kind of application, several changes in the 

way that the ORB processes remote method invocations were proposed in order to take 

real-time constraints into account. In addition, support for high-speed networks (e.g. 

ATM) and mechanisms for QoS specification and enforcement were identified as 

aspects that have to be added to the ORB.  

Aiming to overcome the limitations that constrain the use of CORBA technology in 

performance-sensitive systems, a real-time ORB called TAO (also known as “the ACE 

ORB”) has been designed and implemented [129][130].  

The proposed approach to solving the observed performance problems introduces a real-

time object adapter, responsible for processing real-time requests, and an ORB 
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scheduler which implements both dynamic and offline real-time scheduling algorithms. 

Changes are introduced at protocol level in order to allow application programmers to 

plug customised communication protocols into the ORB.  

Other improvements at the protocol level include the introduction of scheduling queues 

for processing requests and optimisations in data copying, marshalling operations, and 

in the multiplexing of requests over communication links. At the system level, TAO 

employs a highly optimised real-time I/O subsystem and a high-speed networking 

infrastructure. 

TAO is an example of real-time middleware that provides real-time applications with 

mechanisms for imposing QoS constraints at operating system level. Being compatible 

with CORBA, TAO allows applications to interact in an open environment 

Nevertheless, it does not have support for enforcing end-to-end network-level QoS 

constraints, and depends heavily on an optimised O.S. kernel. In addition, TAO lacks 

important features such as platform transparency, extensibility and support for 

adaptation.  

3.6 Arcade (CNET and ENST) 

The Arcade project [42] was proposed by CNET (France Telecom Research Centre) and 

the Department of Informatics at the École Nationale Supérieure des Télécomunications 

(i.e. the French National Superior School of Telecommunications). Arcade is 

conceptually a platform that aims to provide support for distributed multimedia 

applications. Its main concern is the area of system-level QoS.  

Arcade provides a scheduling framework that automatically derives scheduling 

information from temporal QoS constraints. This framework allows the description of 

high-level temporal QoS constraints in the form of arithmetic equations using a 

language called QL (QoS Language). These equations are translated automatically into 

scheduling information used by a user-level scheduler. This scheduler works together 

with the operating system scheduler, to make a best effort at allowing applications to 

meet their deadlines.  

In this framework, both schedulers follow the Earliest Deadline First (EDF) policy. 

Temporal QoS equations are translated into deadlines and used as parameters for the 



55 

scheduling of system threads. An application is implemented as a multithreaded process 

with one or more objects, and each invocation of a method of an object creates or 

activates a thread.  

A library of lightweight user-level threads is employed for implementing the 

framework, allowing that switches between threads of the same application occur 

without interaction with the system kernel. Arcade is based on a variation of the Chorus 

kernel with extensions to support the EDF policy.  

Like TAO and SUMO, Arcade is not able to enforce QoS at network level, since it 

concentrates on providing QoS at the O.S. level. Its main difference is the definition of 

more complex specification and translation mechanisms based on the QL language. 

Nevertheless, Arcade still suffers from the same limitations that prevent the use of the 

systems described previously for providing QoS in open systems. 

3.7 OMEGA and The QoS Broker (Univ. of Pennsylvania) 

The OMEGA Architecture [101] is a QoS architecture for provision of real-time 

guarantees in distributed multimedia systems. In order to provide service guarantees, the 

research effort focused on local and global resource management in distributed systems.  

The QoS Broker [102] is the main component of the OMEGA Architecture. It is 

basically a middleware component responsible for the negotiation of QoS levels to be 

delivered to the application by the underlying system. The requirements specified by the 

application are translated by the QoS Broker and result in the negotiation of resource 

allocations with the operating system and the network.  

Resource reservation is based on QoS parameters associated to the specific media 

device, and handled internally by the QoS Broker. A translator is employed to obtain 

lower-level QoS requirements from the application-level parameters specified by the 

user, adopting a fixed set of translation relations for each media type. The translation is 

bi-directional, allowing dynamic changes in resource reservations to be reported to the 

user as application-level QoS parameters. The obtained parameters result in the 

reservation of network and operation system resources, both local and remote. 

Consequently, a local QoS Broker aiming to perform reservations of remote resources, 

called a ‘buyer’, is responsible for interacting with other QoS Brokers located remotely, 
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known as ‘sellers’ of resources. A ‘buyer/seller protocol’ is provided by the architecture 

to allow sellers to advertise their services and buyers to contact sellers and therefore 

avail of their resources.  

The QoS Broker employs orchestration services (i.e. mechanisms for balancing resource 

usage) and relies on information stored in resource databases to achieve a balance 

among the resources taken from multimedia devices, operating systems and the 

network. The underlying operating system is assumed to have real-time capabilities, 

allowing that its temporal behaviour be predicted by the QoS Broker and used to 

perform the orchestration of resources.  

In addition to the QoS Broker, the OMEGA Architecture provides a communication 

model that consists of two protocols at distinct abstraction levels. The Real-Time 

Application Protocol (RTAP) is responsible for tasks such as call management, device 

management, synchronisation, and media delivery at application level; and the Real-

Time Network Protocol (RTNP) implements functions for connection management, 

error correction, rate control, and network access at the transport level. These protocols 

provide guaranteed communication services over specified communication channels, 

which are obtained by applications and configured by them through the QoS Broker.  

The OMEGA architecture and the QoS Broker were validated through two practical 

experiments [104]. In the first application, a robot interconnected to a dedicated ATM 

network was operated and monitored remotely by workstations running the AIX 

operating system with real-time extensions. In the second example, a video-on-demand 

application with lip synchronisation was implemented on a platform composed by SGI 

Indy machines running the IRIX operating system, interconnected by a 10Mbps 

Ethernet LAN.  

OMEGA has more complete QoS enforcement mechanism than the architectures 

described in the previous sections. Besides being able to perform reservations at both 

operating system and network levels, OMEGA provides a complete QoS translation 

mechanism that makes the underlying platform transparent for the application. 

However, OMEGA does not allow the application programmer to extend the 

architecture, does not offer provision for multiple reservation protocols, and its support 

for adaptation consists of simple notification mechanisms. 
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3.8 QoS-A (Univ. of Lancaster) 

The Distributed Multimedia Research Group at Lancaster University have developed a 

QoS Architecture, called QoS-A [24], which offers a framework for specifying and 

implementing the required performance properties of multimedia applications over 

high-performance ATM-based networks.  

The architecture incorporates the following notions to an environment composed of 

machines interconnected by an ATM network:  

• flow: single media streams that represent the production, transmission and 

consumption of media data;  

• service contract: agreement between users and service providers regarding the QoS 

level to be achieved; and  

• flow management: monitoring and maintenance of the contracted QoS levels.  

QoS-A makes possible the provision of data flows with an associated level of QoS 

through the tight integration between devices, end-system and network. QoS-A provides 

‘system-wide’ QoS, including end-systems, communications systems and networks, 

through the use of QoS mechanisms that span across all architectural layers.  

A structure of layers and planes integrated with the layers and planes of the ATM 

architecture (see Figure 3 in Section 2.6.2) provides a QoS-configurable communication 

mechanism, while thread scheduling algorithms based on QoS constraints provide the 

desired behaviour at system level. In addition, devices are built with the intent of taking 

advantage of both scheduling and communication with QoS capabilities.  

Three planes compose the QoS-A architecture:  

• the Protocol Plane is responsible for data transfer. It is subdivided into a user plane, 

for transmission of media data, and a control plane, responsible for control data, 

because of the essentially different requirements of these distinct categories of data.  

• the QoS Maintenance Plane is responsible for monitoring and maintaining the QoS 

levels specified by the user in the service contracts that are accepted by the 

architecture. Based on the information monitored from the system, this layer 
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configures the available resources aiming to provide the QoS levels agreed with the 

user.  

• the Flow Management Plane executes flow establishment procedures (including 

admission control and resource reservation), QoS renegotiation, QoS mapping and 

translation, and QoS adaptation.  

The first two planes are subdivided into layers as follows:  

• the distributed systems platform provides services for multimedia communication 

and QoS specification.  

• the orchestration layer is responsible for media synchronisation and jitter correction.  

• the transport layer provides a basic QoS-configurable communication service.  

• the lower layers – network, data link and physical layer – provide the basis for the 

communication service.  

QoS-A is implemented over an enhanced Chorus micro-kernel and enhanced protocols 

for multimedia built on a local ATM network. Like OMEGA, it is able to translate QoS 

requirements and reserve resources provided by both the network and the operating 

system. Its QoS adaptation mechanism is more complex than the one provided by 

OMEGA, since it is able to perform transparent QoS adaptation (i.e. without involving 

the application) and not only notify the application when QoS changes. However,  

QoS-A still has limitations similar to the ones present in OMEGA and that make both 

architectures unsuitable for open environments. QoS-A is not able to interact with 

different resource reservation protocols due to its tight integration with the underlying 

system. In addition, its area of application is constrained to multimedia systems, and its 

QoS mechanisms cannot be extended by the application programmer. 

3.9 QuO (BBN Systems and Technologies) 

The Quality of Service for CORBA Objects (QuO) architecture [156] provides QoS 

abstractions that can be used by CORBA objects distributed in a wide area network. 

QuO extends CORBA’s Interface Description Language (IDL) with a QoS Description 

language (QDL).  
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The QDL language allows QoS to be described at object level (i.e. methods per second) 

instead of at communication level (i.e. bits per second). By using QDL, users describe: 

• QoS contracts between a client and a server object in terms of usage of the server 

and the QoS requirements imposed on services provided by the server; 

• the internal structure of objects and the amount of resources they require; and  

• the resources available in the system and their status.  

QoS regions can also be described with QDL, allowing the application to adapt to 

changing conditions by changing from one QoS region to another.  

QuO defines architectural components that are responsible for dealing with QoS 

enforcement, measurement and adaptation on behalf of the application. These 

architectural components are regular CORBA objects that are generated based on the 

IDL and QDL descriptions.  

QuO provides a complete framework for application development that reduces the 

programming effort required for writing applications with QoS requirements. However, 

it still has limitations similar to the ones present in OMEGA and QoS-A. Despite being 

compatible with CORBA, its use in open systems is limited by the fact that there is no 

support for multiple reservation protocols. In addition, its efficiency as a programming 

support is limited by the fact that the CORBA object model is not suitable for most real-

time and multimedia applications. 

3.10 QUANTA (Old Dominion University) 

The Quality of service Architecture for Native TCP/IP over ATM networks (QUANTA) 

[43] is an architecture that provides mechanisms for QoS specification and enforcement 

for applications by using communication services based on Internet protocols running 

over ATM.  

Basically, it allows applications that need a network service with predictable 

performance to specify a region of operation (ROP) in terms of user-level QoS 

parameters. Applications are characterised according to classes of service, such as the 

classes defined for ATM. Each class has a translator that converts parameters specific to 

that class into generic network QoS parameters, such as throughput, delay, loss, etc. 
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These generic parameters are then translated into end-system protocol-dependent 

control parameters by a protocol-dependent translator. These parameters are used to 

configure the lower-level network service.  

QUANTA supports TCP/IP and UDP/IP over AAL5/ATM, and AAL5/ATM directly. 

The communication protocols are optimised in order to apply scheduling algorithms on 

the delivery of packets, according to the class of service of the application.  

Feedback is received from the network by a resource manager, which uses this 

information for performing adaptation at network and application levels. The resource 

manager is a global component that maintains information about all the resources in the 

system. Whenever necessary, the resource manager modifies the parameters of the 

packet scheduling algorithm in order to fulfil the QoS requirements of the application. 

Ultimately, it is capable of degrading the performance of applications by changing their 

region of operation.  

QUANTA was implemented on an infrastructure consisting of Sun workstations with 

ATM cards connected to two Fore Systems ASX-100 switches, which provide a 

maximum bandwidth of 100 Mbps. The necessary alterations at protocol level are made 

possible by using the Streams package provided by Sun Microsystems. 

Despite providing support for QoS enforcement only at network level, QUANTA offers 

a solid platform for the development of applications with QoS requirements situated in 

different application areas and running on diverse network and reservation protocols. 

Nevertheless, its support for adaptation is limited, and the architecture cannot be 

extended by the application programmer in order to use different resource reservation 

protocols. 

3.11 ERDoS (SRI International) 

ERDoS (End-to-End Resource Management of Distributed Systems) [26][27][143] is a 

middleware infrastructure capable of providing QoS support for applications with soft 

QoS requirements. By using the support provided by ERDoS, applications with soft 

QoS requirements such as multimedia applications are able to run on top of non real-

time systems. This is achieved by using QoS adaptation techniques that minimise the 

adverse effects of the non real-time behaviour of the system on the application.  
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ERDoS is a three-layer architecture that separates applications from the computing, 

storage and communication resources that constitute the system. At the higher layer, 

application agents translate application-specific QoS requirements into end-to-end QoS 

metrics understood by ERDoS. The middle layer is composed by the system manager, 

which houses the adaptive resource management algorithms. These algorithms, based 

on the global view of the system and on the requirements of the applications, decide 

which applications to degrade in case of resource shortage. At the bottom layer, 

resource agents monitor the behaviour of the resources present in the system and notify 

the system manager when the QoS of an application is missed. Whenever the 

occurrence of resource shortage is detected, the system manager selects one or more 

applications that are requested to adapt their requirements, allowing other applications 

to meet their QoS requirements. 

ERDoS provides a development toolkit together with an instantiation environment and a 

run-time support. This infrastructure helps the programmer to write new applications on 

top of ERDoS and to instantiate applications stored in an application repository. 

Resource agents have been implemented on Solaris, QNX and Real-Time Mach. 

ERDoS distinguishes itself from the other QoS architectures presented before in this 

chapter by the use of purely adaptive techniques instead of relying on QoS enforcement 

mechanisms. Purely adaptive techniques provide only best-effort QoS guarantees, since 

they do not use admission control policies. Consequently, ERDoS is unsuitable for 

applications with more severe QoS constraints, such as hard real-time applications and 

some commercial multimedia applications (e.g. pay-per-view). ERDoS also has better 

support for open systems than the architectures described previously in this chapter due 

to the use of multiple protocols and due to the capacity of extending its QoS 

specification and adaptation mechanisms. However, it is unclear if the application 

programmer can write new application and resource agents in order to extend the 

architecture or if only the developers are able to do it.  

3.12 MMN Project (BT-URI)  

The Management of Multiservice Networks (MMN) project [147] is a British Telecom 

University Research Initiative (BT-URI) concerned with the provision of support for 

QoS management within distributed multimedia middleware environments using 
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integrated services networks (i.e. ATM). The project comprises a five-year plan for six 

research institutions in the United Kingdom (University College London, University of 

Cambridge, Imperial College, University of Lancaster, Loughborough University and 

Oxford Brookes University).  

Applications with QoS requirements are supported by MMN through the adoption of a 

CORBA-based object model together with mechanisms for the streaming of continuous 

media. Extensions to CORBA are proposed in the form of an enhanced object model 

[37]. Streams are implemented as binding objects (inspired on the binding objects used 

by the Xbind architecture) and defined by using augmented interface definitions. 

At the highest level of abstraction, a Component Definition Language (CDL) is used by 

MMN to define the overall composition and configuration of objects within the 

distributed environment. CDL encapsulates the IDL interfaces and incorporates the 

features introduced by MMN, such as QoS specifications and streams. 

At the lower level, mechanisms for resource management are provided by the 

Distributed Resource Management Architecture (DRMA) [150]. DRMA uses resource 

capacity regions to describe the resources that have to be allocated by the architecture in 

order to guarantee the QoS requirements imposed by applications. In order to control 

the use of these resources, DRMA provides a set of resource adaptation mechanisms. 

These mechanisms are responsible for monitoring the use of the resources provided by 

both the network and the operating system, and for initiating resource adaptation 

whenever the boundary of a resource capacity region is reached.  

A framework for building communication protocols from reusable components is also 

part of the MMN project. Components may be primitive or constructed from other 

components. The flexible structure of the communication system allows protocol layers 

to be added to or removed dynamically from the protocol stack during the lifetime of a 

communication session in order to react to changing levels of QoS.  

A set of graphical tools, textual notations and design methods for configuring systems is 

also proposed for the management of the network services, including QoS mechanisms. 

Configuration management tools provided by the framework aim to simplify the 

specification of distributed services, and are able to instantiate components, bind 

interfaces, and allocate components to nodes. Dynamic configuration allows protocol 

developers to redefine the component structure of the communication system and to 
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recover from component failures. In addition, developers can group objects in domains 

and divide configuration management responsibility. 

The different experiments that make up the MMN project are being performed using a 

number of different distributed programming platforms, including Darwin/Regis, 

AnsaWare, Xerox Parc ILU and Orbix. The final objective of MMN is to fully integrate 

all the proposed features into a CORBA-compatible architecture suitable for multimedia 

applications. 

MMN is an ongoing project, and most of its results still remain to be validated. 

Nevertheless, the design principles adopted in the MMN project make us believe that, 

despite providing support for heterogeneity through the configurable and extensible 

component-based communication system, its applicability is constrained to a limited 

area of application. This occurs due to the adoption of resource adaptation techniques in 

detriment of QoS enforcement mechanisms together with QoS specification 

mechanisms and an object model that is suitable only for applications with soft QoS 

requirements. 

3.13 Analysis of the State of the Art Technology 

Our study of the state-of-the-art revealed that several partial solutions for the provision 

of services at the middleware level for applications with QoS constraints are available in 

the literature. However, a generic middleware for QoS-aware applications in open 

systems still remains to be proposed. Table 5 shows the features desired to be present in 

QoS architectures in four different areas: QoS specification, QoS enforcement, support 

for heterogeneity and support for QoS adaptation. These features are then compared 

with the ones provided by state-of-the-art QoS architectures and frameworks. 

We have identified middleware that efficiently targets limited application areas such as 

distributed multimedia (e.g. Xbind) and real-time processing (e.g. TAO), and are 

typically concerned only with constraints found at either network (e.g. DIMMA and 

QUANTA) or operating system levels (e.g. SUMO and Arcade). In addition, most of 

the work in this area of research limits its target platform by adopting architectural 

designs highly dependent on a particular platform, with the most common case being 

ATM networks.  
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QoS 
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Extensible          

� �  
Network Reservation � � �    

� � � �   
O.S. Reservation    � � � � � �    

QoS 
Enforcement 

Transparent      
� � � � � � � 

Multiple Protocols          � � � Support for 
Heterogeneity Extensible           � � 

Notification       
� � � � � � Support for 

Adaptation Transparent        
�    � 

Table 5 – Features Provided by State-of-the-art QoS Architectures 

The lack of support for multiple reservation protocols and of support for extending the 

QoS mechanisms present in architectures such as QoS-A and OMEGA constrain their 

use in open systems. Furthermore, adaptation mechanisms can be limited (e.g. in QuO) 

or completely absent (e.g. in ReTINA). When adaptation mechanisms are available, 

they often try to replace the use of QoS enforcement mechanisms, such as in ERDoS 

and MMN, resulting in a support suitable only for applications with soft (i.e. best-effort) 

QoS requirements.   

The features necessary for providing support for diverse applications with QoS 

requirements in open systems were taken into account during the development of a new 

QoS architecture, called Quartz, which is presented in the next chapter of this thesis. 
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4  
Design of the Quartz 

QoS Architecture 

This chapter introduces Quartz, a generic QoS architecture designed specifically to 

address the requirements of supporting diverse applications with QoS constraints in 

open systems. We begin by describing the main requirements imposed on the 

architecture. We then describe in detail the architectural design adopted to address these 

requirements. The approach adopted in the design of Quartz results in a very flexible 

and extensible architecture, capable of supporting multiple areas of application and 

different underlying systems as required to provide QoS-constrained services in an 

open, distributed and heterogeneous environment.  

4.1 Requirements 

A complex combination of requirements has to be addressed by a QoS architecture in 

order to provide support for applications that require QoS-constrained services in an 

open environment. The fulfilment of these requirements represents an important 

challenge in the development of QoS architectures.  
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4.1.1 Requirements on the Specification of QoS 

As discussed in section 2.5.2, a QoS architecture must allow high expressive power in 

the specification of QoS requirements. QoS requirements should be specified according 

to the notion of QoS understood by the user at his level of abstraction. Any limitation 

constraining the expressiveness of the user would force him to deal with a notion of 

QoS with which he is not familiar, and would reduce the applicability of the 

architecture.  

Furthermore, since different notions of QoS might be present at the application level 

because of the multiplicity of application areas that are targeted by the architecture, 

Quartz must be able to interpret a potentially infinite set of QoS parameters. This might 

be achieved by adopting mechanisms that would allow the architecture to be extended 

in order to understand new QoS parameters. 

The parameters specified by the user must be interpreted accordingly by the architecture 

in order to perform the reservation of resources at the lower level of abstraction. This 

implies translating the parameters from their original format into parameters that are 

understood internally by the architecture. The architecture has also to map these 

parameters into resources available at the lower level and then interact with a suitable 

reservation protocol in order to allocate the corresponding resources for use by the 

application. This mapping process might not always be one-to-one (i.e. one QoS 

parameter resulting in one kind resource to be reserved) but can be one-to-many, many-

to-one or many-to-many (Table 2 in section 2.5.3 shows examples of parameter 

mappings). This implies that resources might be interchangeable, and that finding an 

appropriate balance between requirements and resources is another task that has to be 

performed by the architecture. 

These requirements imply that a sophisticated mechanism for specification of QoS 

parameters and interpretation of this information must be adopted by the Quartz 

architecture in order to fulfil the QoS requirements imposed by applications. 

4.1.2 Requirements on the Enforcement of QoS  

After feeding the QoS architecture with information to identify itself together with its 

QoS requirements, applications are not obliged to use directly any QoS mechanism 

available at the lower-level. Applications can rely on the QoS architecture, which will 
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enforce the required QoS by interpreting the QoS requirements specified by the 

application and then use the reservation protocols provided by the network and the 

operating system in order to reserve resources.   

In addition, the QoS architecture must provide transparency of reservation mechanisms 

from the application’s point of view. Transparency is necessary in order to reduce the 

amount of work needed for applications to impose requirements on services that they 

avail from the underlying system.  

Adopting this strategy for QoS enforcement, we hide from the application the 

differences between the way different lower-level systems allow resources to be 

reserved in order to fulfil QoS requirements. This has the important effect of increasing 

the portability of applications across different platforms. 

4.1.3 Support for Heterogeneity 

The QoS architecture is expected to provide features that make it appropriate to be used 

in open, distributed and heterogeneous environments. This implies that the architecture 

is required to be able to use the different protocols and hardware that coexist in an open 

environment.  

For example, if the application is able to transfer data using both ATM and TCP/IP, the 

QoS architecture has to be able to perform QoS reservations for both protocols. This 

should be done by the application by adapting itself internally instead of requiring a 

different implementation of the architecture to be linked to the application code. In 

order to achieve this goal, the Quartz architecture is not only required to be portable to 

different platforms, but it has also to able to handle QoS for an application when the 

underlying reservation system changes (for example, in case of hardware 

reconfiguration or failure) without requiring a recompilation. This level of flexibility 

might be achieved by using an architectural design based on interchangeable 

components, in which components able to handle QoS for different reservation 

mechanisms can be plugged into the architecture dynamically.  

In addition, by concentrating the task of dealing with a reservation protocol within a 

single component, support for new reservation protocols can be added to the 

architecture without the necessity of porting the whole infrastructure. Instead, this is 

achieved by providing a new component that is able to handle the new reservation 
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protocol. This adds to the architecture the capacity of interacting with the new 

reservation protocol, and providing the resources made available through this protocol 

to applications built on top of the architecture. 

4.1.4 Support for QoS Adaptation 

The QoS architecture is required to allow dynamic changes in the distribution of 

resources to be performed by the system in order to interact properly with any adaptive 

protocols that might be present at lower level. This must occur without causing loss of 

service consistency at application level.  

As discussed in section 2.6.1, the reservation of resources might change because of 

dynamic changes in the structure of the system, resource failure or the usage of 

prioritised policies for the distribution of resources. Resources might also be claimed 

back by the system when an irregular resource usage pattern is detected by monitoring 

mechanisms. 

Any change in the reservation of resources at lower-level must be made known to the 

application by using QoS parameters that are understood at its level. This implies that 

the QoS architecture has to perform a reverse translation of parameters and then inform 

the application that its QoS has changed. 

Since in some cases resources are interchangeable, dynamic changes may be overcome 

at lower level by requesting additional resources managed by a different resource 

reservation protocol. In this case, all the adaptation is masked at the lower level and the 

QoS seen by the application remains the same. 

4.2 The Quartz Architecture 

This section describes the QoS architecture proposed in this thesis. The following sub-

sections identify the main architectural components and define their role in the 

provision of services subject to QoS requirements. The interfaces of the components of 

the architecture and the messages exchanged between them are also described.  
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4.2.1 Overview of the Architecture 

The Quartz QoS architecture is composed of a QoS Agent running on top of the several 

resource reservation protocols available in the host system. Applications use the 

services provided by the QoS Agent to obtain the desired level of QoS from the system.  

Figure 6 situates the Quartz architecture in a computational system. At the application 

level, applications with QoS requirements (such as multimedia applications, real-time 

applications, or any other application with QoS requirements) interact with Quartz 

through interfaces that are specialised for the corresponding area of application.  

Application
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System
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Resources

O.S.
Resources
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Resources

Network
Resources

Quartz QoS Agent
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Figure 6 – Overview of the Quartz QoS Architecture 

The QoS Agent, which is the major component of the Quartz architecture, receives the 

QoS requirements specified by applications and interacts with the underlying system in 

order to enforce these requirements. 

The location of the QoS Agent in the distributed environment is an implementation 

issue. In most implementations of Quartz, the QoS Agent is likely to be located on the 

same machine as the application, and may be either linked to the application (i.e. one 

QoS Agent per application) or running as a system service (i.e. one QoS Agent per 

node). The mechanism used by the application to interface with the QoS Agent is also 

implementation-dependent, and can be one of sockets, local or remote method calls, 

RPC, etc. Communication between different QoS Agents is not necessary, since the 

tasks that require a deeper knowledge of the capabilities of the (possibly distributed) 

application or that require a global view of the underlying system are solved at their 

corresponding levels of abstraction, and are outside of the scope of the architecture. 

Consequently, issues such as QoS negotiation between peers (e.g. in a client-service 
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style interaction between applications) and service degradation due to resource 

adaptation are handled directly by the application, while other issues such as interaction 

with other resource providers (e.g. along a network path) are dealt with by the 

reservation protocol. 

The underlying system contains resources that are used by the application. It is typically 

composed by several sub-systems, which can be grouped in two main areas: the 

network infrastructure (e.g. ATM or Internet protocols) and the operating system (e.g. a 

real-time or desktop operating system with reservation capabilities). Networks and 

operating systems are seen as resource providers by the QoS Agent. The resources 

themselves are not represented in the figure because the manner in which they are 

structured varies significantly, and this would be impossible to represent. Each resource 

provider allows its resources to be allocated through a resource reservation protocol. 

The QoS Agent must know how to interact with each of the resource reservation 

protocols present in the system, using their interfaces in order to allocate resources on 

behalf of applications.  

There are no severe assumptions on the behaviour of the reservation mechanisms 

provided by the resource providers present in the underlying system. In case a particular 

resource provider does not supply a resource reservation protocol but provides simple 

mechanisms for accessing resources, similar behaviour might be achieved by placing a 

resource management layer between the QoS Agent and the resource provider ([92] is 

an example of how this can be done). This layer would be responsible for controlling 

and administering the resources made available by the corresponding resource provider. 

In addition, it would monitor the availability of resources and issue notifications when 

thresholds that prevent the QoS requirements of the application to be fulfilled are 

reached. Similarly, any lack of functionality in a particular resource reservation protocol 

can be complemented or masked by a management layer placed on top of the 

reservation protocol.  

4.2.2 Internal Structure 

The QoS Agent is a placeholder into which other components can be plugged in order to 

interact with the surrounding environment. In general, the QoS Agent is responsible for 

giving access to the underlying QoS mechanisms necessary for providing services with 
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the quality requested by the application. The QoS requirements imposed by the 

application are enforced by reserving resources provided by the underlying system. The 

sub-systems present in the underlying system provide the actual means of organising the 

access to its resources by offering a resource reservation protocol. Because of the 

intrinsically open nature of the target environment, several component-specific 

reservation protocols may be available. 

The QoS Agent is responsible for two main tasks:  

• Interpreting the QoS requirements specified by the application in the form of QoS 

parameters, translating them from the format understood by the application into a 

format suitable for performing resource reservations; and  

• Interacting with the underlying resource reservation mechanisms in order to allocate 

the resources necessary to perform the service subject to QoS requirements.  

Being a placeholder for other components, the QoS Agent does not perform these tasks 

directly. Instead, it relies on other components that are specialised for translation of QoS 

parameters and interaction with resource reservation protocols. Since the translation 

process depends directly on the application and on the resource being used, and since 

the interaction with the reservation protocol depends on the interface provided by this 

particular protocol, specialised components will be used for performing each of these 

tasks. These components will be plugged into the QoS Agent whenever necessary. The 

resulting internal structure of the QoS Agent is represented in Figure 7.  

The translation of QoS parameters between the different formats used at different levels 

in the architecture is performed by the translation unit. In addition, the translation unit 

balances the usage of interchangeable resources provided by the different sub-systems 

(i.e. the network and the operating system) present in the underlying system.  

The translation unit contains QoS Filters and a QoS Interpreter. QoS Filters can be 

subdivided into application and system filters, one for each application field and for 

each sub-system present at the lower-level, respectively. Filters are responsible for 

translating between QoS parameters understood internally by Quartz and any external 

format. The QoS Interpreter handles parameter formats used internally by Quartz at 

different abstraction levels and balances requirements between sub-systems present at 

the lower level.  
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Figure 7 – Detailed Structure of the QoS Agent 

The QoS Agent also encapsulates multiple system agents, which are responsible for 

interacting with reservation protocols administering the use of the resources provided by 

the underlying system. The system-specific agents get the values of QoS parameters 

determined by the translation unit and perform the reservation of the resources provided 

by the corresponding sub-system (i.e. the network or the operating system) by using the 

associated reservation protocol.  

The following sections detail the role played by each component of the architecture and 

specify their external interfaces.  

4.2.3 The Translation Unit 

A translation mechanism based on the use of a set of generic parameters is adopted by 

Quartz to encompass the problem of specification of QoS requirements in an 

environment composed of multiple application areas and different reservation protocols.  

In order to avoid having a translator for each combination of application field and 

reservation protocol, we have adopted a three-step translation process. Users specify 

their application-specific QoS parameters, which are first translated into a set of generic 

application-level parameters defined by Quartz. These parameters are further translated 

into a set of generic system-level parameters and balanced between the network and the 
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operating system. Finally, generic system-level parameters are translated into system-

specific QoS parameters understood by each of the reservation protocols used by the 

application.  

Despite the definition of two standard sets of generic parameters, the expressiveness of 

users is not affected because they deal only with QoS parameters understood at they 

level of abstraction and meaningful for his application field. This is made possible by 

the adoption of application-specific filters that handle QoS parameters understood at 

application level. The same occurs at the system level, where system-specific QoS 

parameters are used in order to provide a bridge between the generic parameters used 

internally by Quartz and the parameters understood by the reservation protocols present 

at the lower level. 

The translation unit – and the components that form it – implement two paths of 

translation:  

• the direct path of translation, which goes from the application to the lower layers of 

the architecture and that is used when the application requests the provision of QoS-

constrained services; and  

• the reverse path of translation, which goes from the lower layers towards the 

application and is used to inform the application of changes in QoS caused by 

dynamic adaptation of the resources allocated by the underlying system. 

The translation paths are illustrated in Figure 8. 
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Translation
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of
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Figure 8 – Translation Paths 

The components that form the translation unit – i.e. application and system filters and 

the QoS interpreter – accept two types of message through their public interfaces, 

illustrated by Figure 9. The first one, TranslateQoSDownwards, results in upper-

level parameters being translated into lower-level ones. This message is issued by a 
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component situated a level of abstraction above the component receiving the message, 

following through the direct path of translation. The second type of message, 

TranslateQoSUpwards, implements the reverse path of translation and is used when 

Quartz needs to inform the application that the QoS parameters have changed due to 

resource adaptation. This message is issued by a component located a layer below the 

component that receives the message. 

TranslateQoSDownwards

TranslateQoSUpwards

Translation Component

 

Figure 9 – Interface of Translation Components 

4.2.4 Application Filters 

An application filter is associated with a particular area of application. Applications that 

have similar notions of QoS are expected to employ the same application filter, 

specifying QoS requirements by using the same set of application-level QoS 

parameters. On the other hand, applications that have different ways of expressing QoS 

requirements use different sets of application-level QoS parameters, and consequently 

require different application filters. 

Application filters obtain QoS parameters understood at application-level for the 

particular area of application, interpret them, and determine the values of a pre-defined 

set of generic application-level QoS parameters, which are used internally by Quartz. 

The reverse translation process – i.e. from generic application-level QoS parameters 

into application-specific QoS parameters – is also implemented by application filters.  

For the application filter, receiving a message of type TranslateQoSDownwards 

results in translating the application-specific QoS parameters carried by the message 

into generic application-level QoS parameters. The second type of message, 

TranslateQoSUpwards, performs the reverse process of translation. 
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4.2.5 The QoS Interpreter 

The translation between parameters related to different levels of abstraction is executed 

by the QoS Interpreter provided by the architecture. By using a fixed (but still user-

replaceable) component for the main translation step, we simplify the work done by 

application and system filters, making it easier for the application programmer to write 

replacement filters whenever they become necessary. 

The QoS interpreter also balances parameters between the sub-systems present at the 

lower level, i.e. the network and the operating system. This is performed by a balancing 

unit encapsulated within the QoS interpreter. The balancing process is necessary 

because resources present at lower-level may be interchangeable, and a trade-off has to 

be reached between using more or less network resources in comparison to operating 

system resources. Resource balancing at this level is made possible because of the 

definition of generic parameters that are used by Quartz internally. The trade-off 

between requirements that are interchangeable for a particular application (e.g. the 

decision of performing data compression and then require less bandwidth and more 

processing power) has to be handled directly by the application. Alternatively, this 

decision can be made by the application filter. Similarly, the trade-off between 

interchangeable O.S. resources and between interchangeable network resources has to 

be decided by either the resource reservation protocol or by the corresponding system 

filter, since only them have the knowledge necessary to perform balancing at this level.  

The interface of the QoS interpreter is the same as the other translation components. 

Whenever it receives a TranslateQoSDownwards message, the QoS interpreter 

translates generic application-level QoS parameters into generic system-level QoS 

parameters, balancing them between the network and the operating system. On the other 

hand, a TranslateQoSUpwards message results in generic system-level parameters 

being translated into generic application-level parameters. The QoS parameters carried 

by the TranslateQoSUpwards message do not necessarily reach the application 

because transparent QoS adaptation can be performed by Quartz, compensating the 

resources lost during adaptation with resources obtained from another resource 

provider. The process of QoS adaptation is described in detail in item 4.4.1. 
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4.2.6 System Filters 

System filters are associated with sub-systems present in the underlying system. These 

filters can be subdivided into network filters and operating system filters, according to 

the sub-system with which they interact. Since sub-systems that can be present in the 

underlying system use different forms of representation for QoS parameters, a different 

system filter is provided in order to interpret these parameters. 

In order to obtain the value of the system-level QoS parameters understood by the 

underlying reservation mechanisms, system filters translate the generic system-level 

parameters used internally by Quartz. In case of a dynamic change of system-level QoS 

parameters caused by resource adaptation, these parameters are translated upwards by 

the system filter.  

Direct and reverse translation are performed by system filters upon receipt of the 

TranslateQoSDownwards and TranslateQoSUpwards messages respectively. 

4.2.7 System Agents 

Quartz is able to handle the differences between multiple reservation protocols by using 

system agents.  

Different resource reservation protocols provide distinct interfaces for applications 

using them. Consequently, applications targeting heterogeneous systems have to be able 

to handle these different interfaces in order to reserve the resources provided by the 

system. In Quartz, each different reservation protocol is associated with a corresponding 

system agent, which hides differences among protocols by providing a common 

interface to the rest of the architecture.  

A system agent allocates the resources necessary for the application to fulfil its QoS 

requirements by using the resource reservation protocol associated with it. The QoS 

requirements specified by the application in the form of QoS parameters meaningful at 

application level are interpreted by the translation unit and passed on to the system 

agents corresponding to the reservation protocols present in the underlying system. The 

system agent then uses the interface provided by the associated resource reservation 

protocol in order to allocate the resources that are necessary to fulfil the requirements 

specified by the application. 
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In addition to enforcing QoS requirements by means of resource reservation, system 

agents receive notifications from the lower-level system whenever a resource fails or is 

claimed back by the system. This notification is carried towards the upper layers of the 

architecture, passing by the reverse translation path provided by the translation unit until 

potentially reaching the application.  

QoSRequest
  QoSReport

Protocol-Specific Interface

System Agent

Resource Reservation Protocol
 

Figure 10 – Interface of Component Agents 

The interface of the system agent is illustrated in Figure 10. Interfacing with system 

agents takes place via two different types of message: QoSRequest and QoSReport. 

The first message is sent to the system agent in order to request the provision of QoS-

constrained services, and carries the QoS parameters corresponding to the requirements 

imposed by the application translated into the parameter format understood by the 

system agent. The second type of message is produced by the system agent in order to 

indicate that QoS has changed at lower-level, and carries the new level of QoS 

supported by the system after the changes.  

4.2.8 The User Interface 

The QoS Agent provides a very simple interface to the QoS Application. The messages 

exchanged between the QoS Agent and the application and the interface between the 

QoS Agent and the reservation protocols provided by the underlying system are 

represented in Figure 11.  

To request a service with a specific level of QoS to be provided by the environment, the 

application issues a QoSRequest message. This message carries a list of variables 

identifying the QoS parameters and setting their respective values.  
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Figure 11 – User Interface of the QoS Agent  

The application is notified about changes in the QoS provided by the system through 

QoSReport messages. This message is originated by the system agent when it receives 

a QoS notification from the reservation protocol through the protocol-specific interface, 

informing that resource adaptation has occurred. The QoS parameters resulting from the 

adaptation are translated upwards and delivered in the form of a QoSReport message to 

the application. The application is then responsible for adapting the service to the new 

QoS provided by the system, allowing a graceful degradation of the service provided to 

the user.  

It is important to notice that the same format of messages is accepted by the individual 

system agents. The main difference is that these messages carry parameters 

comprehensible at application level, obtained directly from the application when QoS is 

requested or after the translation process performed by the translation unit when a 

dynamic adaptation occurs. Despite the differences in parameter formats, the user can 

interact directly with an individual system agent by using the same message syntax. 

4.3 QoS Parameters 

As described before, the Quartz QoS Architecture deals with four distinct classes of 

QoS parameters depending on the level abstraction. Two of them are generic classes and 

are standardised by the architecture: the generic application-level QoS parameters and 
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the generic system-level QoS parameters. The other two classes of parameters are 

defined according to the application area or the resource reservation protocol.  

4.3.1 Parameter Formats 

Parameters are described as <name,value> pairs. To allow the easy identification of the 

corresponding abstraction level and consequently identify the translation process to 

which the parameter has to be submitted, we have adopted a scoped namespace. 

Parameters are scoped with the name of the abstraction level in which they are 

meaningful.  

Generic QoS parameters are scoped with App:: and Sys:: for application- and 

system-level parameters respectively. System-level parameters are further subdivided 

into two sets: a set of QoS parameters scoped with Net:: related to the network, and 

another scoped with OS:: for parameters related to the resources which are provided by 

the operating system. This is necessary to identify when the network and the operating 

system share the responsibility for the fulfilment of a requirement (parameters scoped 

with Sys::) or is related to only one of them (and scoped with Net:: or OS::). For 

example, a certain delay seen at application level is usually a global value which results 

from the composition of two partial delays: one derived from the network and the other 

from the operating system. A bandwidth requirement is applicable only to the network, 

while a requirement such as the class of service guarantee provided by the system (e.g. 

best-effort, unloaded or deterministic) is valid for both the network and the O.S..  

A similar strategy is adopted for application- and system-specific parameters. For 

example, parameters for an MPEG rendering application could be scoped with Mpeg::, 

subsequently translated into generic application parameters scoped with App::,  then 

into system parameters scoped with Sys::, and finally into system-specific parameters 

scoped with Rsvp:: (for resource reservation protocol) and Posix:: (for POSIX-

compliant operating systems) for example.  

In general, users specify parameters at their own abstraction level. In cases where they 

want to specify the QoS to be provided by the system at a lower level, parameters can 

be specified using the scoped name corresponding to the appropriate abstraction level. 

These parameters will be ignored by the first translation steps and then caught by the 

corresponding translation component.  
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When a parameter is described without a scope, the architecture assumes that it 

corresponds to the current abstraction level.  

In addition to scopes, parameter names can also be suffixed with the modifiers Min and 

Max for specifying limit values.  

4.3.2 Application-Specific QoS Parameters 

These parameters are specific to the application area in which Quartz is being used. For 

example, Quartz can be used in a multimedia environment in which QoS parameters 

such as ‘video frame rate’ and ‘resolution’ are adequate and require an application filter 

able to understand them and translate them into the format used internally by Quartz 

(i.e. generic application-level QoS parameters).  

However, in a different application scenario, such as in real-time systems, an 

application would be more likely to express its QoS requirements in the form of 

deadlines for the processing and for the transmission of data. In this case, a different 

application filter, which understands different application parameters and translates 

them into generic application-level QoS parameters, is adopted by Quartz. 

The different sets of application-specific QoS parameters that are used by the 

application examples built on top of Quartz will be described in section 7.1. 

4.3.3 Generic Application-Level QoS Parameters 

Table 6 describes the generic application-level QoS parameters defined by the QoS 

Architecture and recognised by the translation unit of the QoS Agent.  

Parameter Name Modifiers Description 

App::DataUnitSize Min,Max Size of data units produced by the application (in bytes) 

App::DataUnitRate Min,Max Rate of data units produced by the application (in units/s) 

App::EndToEndDelay Min,Max Time between data production and consumption (in msec) 

App::ErrorRatio Max Acceptable error (in bits per million) 

App::Guarantee — Level of service guarantee (best-effort, unloaded, etc.) 

App::Cost Max Financial cost (currency per second) 

App::SecurityLevel — Security mechanism (none, encrypted, etc.) 

Table 6 – Generic Application-Level QoS Parameters 
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Generic application-level QoS parameters represent the overall QoS requirements of the 

application as they are seen at application level. At this level there is no distinction 

between the sub-systems that are providing resources to the application.  

The set of application-level QoS parameters has been chosen by observing the notion of 

QoS present at the application level in different areas of application and then finding a 

common way of representing QoS requirements at this level. As a result, we have 

obtained a small set of QoS parameters that can be easily mapped into the different 

forms of specifying QoS that are used in different areas of application. 

4.3.4 Generic System-Level QoS Parameters 

System-level parameters are subdivided into two groups: network and operating system 

parameters. Table 7 lists and describes these parameters.  

Parameter Name Modifiers Description 

Net::Bandwidth Min,Max Bandwidth provided by the network (in bytes/s) 

Net::PacketSize Min,Max Size of data packets (in bytes) 

Net::Delay and OS::Delay Min,Max Transmission and processing delays (in seconds) 

Net::ErrorRatio Max Acceptable transmission error (bits per million) 

Sys::Guarantee  — 
Levels of service guarantee provided  
(best-effort, unloaded, deterministic, etc.) 

Net::Cost and OS::Cost Max Financial cost (currency per second) 

Net::SecurityLevel — Security mechanism (none, encrypted, etc.) 

Table 7 – Generic System-Level QoS Parameters 

At the system level, the division of requirements between sub-systems (i.e. the network 

and the operating system) becomes clearly represented by the definition of network and 

operating system parameters, reflecting what is present in the underlying system. The 

set of generic system-level parameters has been defined based on the parameters used 

by resource reservation protocols present at lower level. The generic system-level 

parameters are easily mapped into the QoS parameters used by a large number of 

reservation protocols that may be present at network and operating system levels in an 

open, heterogeneous environment.  
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4.3.5 System-Specific QoS Parameters 

Different resource reservation protocols accept reservations based on different formats 

of QoS parameters. For example, despite both being network reservation protocols with 

similar capabilities, RSVP uses token bucket specifications compared to the bandwidth-

driven approach used by ATM. A similar situation occurs with reservation protocols 

provided by operating systems. Different scheduling algorithms and resource allocation 

schemes result in different ways to express QoS requirements at this level.  

Due to the different ways in which resource reservation protocols are used to express 

QoS requirements, different formats of QoS parameters have to be used at the lower 

layers of the architecture. In order to accommodate these differences, Quartz employs 

multiple sets of QoS parameters, which are specific for a particular reservation protocol. 

These parameters have to be derived from the generic system-level QoS parameters 

generated by the QoS interpreter. System filters are responsible for this translation step.  

The different sets of system-specific QoS parameters defined by us to be used with the 

resource reservation protocols that are supported by the prototype of Quartz will be 

described in Chapter 5. 

4.3.6 Translation Rules Between Generic Parameters 

There is a clear mapping between the two generic sets of QoS parameters defined 

previously. Table 8 describes the relationship between them. The mapping between 

generic parameters also takes into account the limit values (i.e. maximum and minimum 

values) specified by the application. 

At Application Level  At System Level 

App::DataUnitSize * App::DataUnitRate ⇒ Net::Bandwidth 

App::DataUnitSize ⇒ Net::PacketSize 

App::EndToEndDelay ⇒ Net::Delay + OS::Delay 

App::ErrorRatio ⇒ Net::ErrorRatio 

App::Guarantee ⇒ Sys::Guarantee 

App::Cost ⇒ Net::Cost + OS::Cost 

App::SecurityLevel ⇒ Net::SecurityLevel 

Table 8 – Relationship between Generic Parameters 
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The division of cost and delay between the network and the operating system is 

calculated by the balancing agent encapsulated by the QoS interpreter. This calculation 

is based on data structures kept by the balancing agent describing the state of the 

network and the operating system in terms of load, cost, and any other data useful to 

obtain a balance in the use of resources from the network and the operating system. By 

analysing this information, the QoS interpreter obtains the split factors that are used for 

dividing QoS requirements between the network and the operating system. 

4.4 Additional Features 

The following items detail two further important characteristics of the Quartz 

architecture: its support for dynamic resource adaptation and rebalancing of resources; 

and the capacity of the architecture to be reconfigured in order to support different 

application areas and resource reservation protocols.  

Dynamic resource adaptation is made possible by the monitoring of QoS notifications 

sent by the resource reservation protocols and by translating QoS parameters from the 

form used by each of the resource reservation protocols into the high-level format 

understood by the application.  

The reconfiguration of the architecture can take place by allowing the application 

programmer to select the appropriate components from a library or, in case they are not 

available, by allowing him to write new components that can be plugged into the QoS 

Agent.  

4.4.1 Dynamic Resource Adaptation and QoS Adaptation 

A common feature generally neglected by available QoS architectures is the provision 

of support for dynamic resource adaptation.  

Resource adaptation occurring at lower levels results in adjustments in the QoS 

provided by the system to the application. Consequently, in addition to performing 

reservations, a QoS architecture has to catch notifications issued by the resource 

reservation protocol informing it of dynamic resource adaptation, and then proceed with 

QoS adaptation at a higher level. 
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The QoS Agent catches notifications issued by resource reservation protocols through 

the corresponding system-specific agent and performs QoS adaptation when needed. 

QoS adaptation can be performed by Quartz at both system and application level.   

In some cases, resource adaptation can be accommodated by performing QoS adaptation 

at system level, without interfering with the QoS seen by the application. In the Quartz 

architecture, some QoS requirements such as cost and delay are fulfilled by the sum of 

resources provided by both the operating system and the network. The component 

responsible for dividing QoS requirements between sub-systems is the balancing agent, 

which is basically a resource trader that is encapsulated by the interpreter. 

When one of the operating system or the network reduces the resources allocated for the 

application, the balancing agent tries to execute a process called ‘rebalancing of 

resources’. This process tries to compensate for the loss of resources from one side by 

requesting more resources from the other. When this is possible, the resource adaptation 

is compensated by rebalancing generic system-level parameters, and the QoS seen by 

the application is not affected. In this case, the adaptation is completely transparent 

from the application’s point of view. However, rebalancing of resources is possible only 

with interchangeable resources, and it might fail in case additional interchangeable 

resources are not available and cannot be allocated to compensate the loss of resources 

that occurred due to adaptation. 

If QoS adaptation at system level does not succeed, Quartz must start QoS adaptation at 

application level. In this case, the QoS Agent tells the application to adapt its 

requirements in order to decrease the consumption of resources. It sends a message to 

the application indicating that its QoS requirements will not be fulfilled because the 

amount of resources originally allocated for it has been reduced. Consequently, it is 

necessary for the application to adapt its QoS requirements in order to adjust its 

behaviour to the resources available in the computing platform. This can be done by 

reducing the quality of a video stream or by changing the compression method used for 

data transfer for example. Alternatively, the degrading strategy can be implemented 

within the application filter, which then becomes responsible to decide how to degrade 

quality on behalf of the application. 

When the need to perform QoS adaptation at application level is reported to the 

application, the QoS Agent must indicate the new QoS provided to the application after 
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the dynamic change in the allocation of resources. Since the application is unaware of 

low-level details regarding the allocation of resources, the new QoS must be expressed 

in the form of application-level QoS parameters. This is made possible by using the 

reverse translation path provided by the translation unit. In this case, a set of system-

specific QoS parameters is translated into application-specific QoS parameters.  
 

Figure 12 illustrates how QoS adaptation occurs at both system and application level. In 

this example, a user is in his office and has his laptop connected to the local area 

network. The user is taking part in a collaborative work session, and requests the 

application to establish a connection with a maximum delay of 70 milliseconds between 

partners. This is achieved by the application by obtaining a 40 ms delay from the 

network and allocating the remaining 30 ms for the operating system to perform data 

processing. When the user leaves his office and prepares to leave the building, his 

machine connects to the infrared network. However, this medium is unable to guarantee 

the same delay, which has to be raised to 50 ms.  
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Figure 12 – Example of QoS Adaptation 

Quartz is able to compensate for this loss by raising the usage of operating system 

resources, resulting in an O.S. delay of 20 ms. Consequently, the global delay is 

maintained and the user doesn’t notice any change in QoS. When the user leaves the 

building, the computer starts using the cellular network. In this case the network delay 

rises to a value (80 ms) that can no longer be compensated by the operating system, and 
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then Quartz asks the user to adapt its requirements in order to accommodate a higher 

delay.  

4.4.2 Extending the Architecture  

The structure of the QoS Agent is highly portable, reusable and extensible, because the 

particular needs of application fields and resource reservation protocols are 

encapsulated by application filters, and system filters and agents respectively. Changes 

at application or system level imply the replacement of filters and system-specific 

agents, or the plugging of new ones into the QoS Agent. Since these components have a 

standardised interface, they can be replaced in order to reflect changes in the 

environment without requiring any modification of the QoS Agent’s code or in the 

application. 

The component-based internal structure of the QoS Agent allows the architecture to be 

easily extended by the application programmer. This can be done by writing new 

components that are plugged into the QoS Agent when needed. Predefined and user-

defined components can be stored in a library and then used when the corresponding 

resource reservation protocol is in use, in case the component in question is a system 

filter or agent, or when the application can be classified into the application area 

corresponding to the application filter. The components can be combined freely, since 

there is no interdependence between them. 

The addition of support for a new resource reservation protocol requires that a new 

system agent and a new system filter be written by the programmer. The system agent is 

responsible for the interaction with the new reservation protocol, while the system filter 

is responsible for translating QoS parameters between the set of QoS parameters 

understood by this new protocol and the generic parameters used internally by Quartz. 

Adding support for a different area of application requires only that the component 

responsible for interpreting QoS parameters meaningful in this context (i.e. the 

corresponding application filter) be provided by the application programmer. 

Filters are simple and easy to implement because they deal with parameters described at 

the same level of abstraction, i.e., application filters translate user parameters specified 

at application level into generic application parameters, while system filters translate 

generic system parameters into system specific ones. The most complex translation step, 
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which involves mapping between different abstraction levels and balancing 

requirements between components, is executed by the QoS interpreter provided by 

Quartz. Since system agents are restricted to dealing with a single reservation protocol, 

the knowledge necessary to implement them is limited. 

4.5 Summary 

This chapter has described in detail the main contribution provided by this thesis, which 

is the Quartz QoS Architecture.  

After listing the requirements imposed on the architecture, we have introduced the 

component-based structure of the architecture. We have established the role of each 

component in the overall task of providing mechanisms for QoS specification and 

enforcement in open environments transparently from the resource reservation protocols 

present in the computing platform. In addition, we have specified the interfaces of the 

internal components of the Quartz architecture and the messages used by these 

components to interact with their peers.  

We have also described the sets of generic QoS parameters that are used internally by 

Quartz to represent the application- and system-specific QoS parameters. 

Furthermore, two important characteristics of Quartz have been described: its capacity 

to handle resource adaptation and its potential to be reconfigured by replacing 

components in order to adapt to changes in the surrounding environment. 
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5  
Implementation 

This chapter describes a functional prototype of the Quartz architecture that has been 

implemented as part of this thesis. The following sections describe the main core of the 

implementation (i.e. the components that are not system- or application-specific) and 

later introduce the components that are plugged into the core in order to interface with 

the resource reservation protocols supported by the target environment and to provide 

QoS mechanisms suitable for the application areas to be supported by Quartz.  

5.1 The Quartz Prototype 

A functional prototype of Quartz has been implemented in order to analyse its 

behaviour and validate the applicability of Quartz in the provision of QoS-constrained 

services for applications with QoS requirements. The computing platform supported by 

this prototype and the software model used for its implementation are described in the 

following sections. 

5.1.1 Supported Platforms 

The platform on which Quartz was deployed consisted of a network of PCs running the 

Windows NT operating system. This platform was chosen because of the fact that it is 

recognised as an industry de facto standard, in addition to its soft real-time capabilities 
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[96]. The real-time capabilities provided by Windows NT, despite being still limited 

[144], are similar to those provided by other commercial operating systems such as 

Sun’s Solaris. We have also taken into account for choosing the operating system that 

resource reservation protocols for Windows NT, including preliminary versions, are 

easy to obtain and experiment with, in most cases at no cost.  

Two different network-level resource reservation protocols are supported by the 

prototype: ATM and RSVP. These protocols were described in items 2.6.2 and 2.6.3 

respectively. We have opted for using ATM and RSVP due to the fact that they are the 

two most widely used network-level resource reservation protocols. 

We use the implementation of RSVP developed by Intel, called PC-RSVP, currently in 

beta version. For ATM, we use ForeRunner LE 155 Mbps PC cards and a Fore Systems 

ASX 100 switch. We also rely on the device driver and the Winsock2 service provider 

that are supplied by Fore Systems together with the hardware. 

The programming environment used for the implementation was Microsoft Visual C++ 

5.0. It was chosen because of its close integration with the computing platform in which 

the development took place. 

5.1.2 Software Model 

In the prototype that we have implemented, the components of the Quartz architecture 

and the messages exchanged between them are represented as C++ classes [46].   

Each component that makes up part of the Quartz prototype is implemented as a C++ 

object. All components are linked with the application within the same address space. 

As a result, the Quartz prototype runs only at user level and does not require any change 

to the O.S. kernel, making the architecture more portable and flexible.  

Messages are exchanged between components by means of method invocations. 

Consequently, each message recognised by a component corresponds to a public 

method that can be invoked by the other components. The contents of the message are 

passed as parameters to the method. 

Resource reservation protocols are typically implemented as Windows NT services. The 

reservation mechanisms provided by the operating system are integrated with the kernel.  
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5.2 The Quartz Core  

The Quartz Core consists of the components of the prototype that are independent of the 

underlying system and of the application area. These components are: the data structure 

used for specification of QoS parameters, the QoS Agent, the QoS Interpreter, and a 

default filter called the bypass filter. In addition, the core provides base classes for 

system agents, which are specialised as operating system agents and network agents. 

5.2.1 Specification of QoS Parameters 

The mechanisms for specification of QoS provided by Quartz are based on class QzQoS, 

which stores parameter names and their corresponding values. This class provides 

methods to set and retrieve the values of these parameters from its internal data store.  

Figure 13 shows the representation of class QzQoS in the Unified Modelling Language 

(UML) [22]. 

QzQoS

m_param : char [][]
m_value : unsigned long []
m_count : unsigned int = 0

SetParam( )
GetParam( )
GetCount( )
ClearAll( )

 

Figure 13 – UML of Class QzQoS 

Class QzQoS stores a list of parameters, which are represented by a parameter name and 

the corresponding value, and a parameter counter. An unsigned long field is used for 

storing the value of the parameter or the address of a data structure where more complex 

parameter values can be stored.  

Methods SetParam(), GetParam(), GetCount() and ClearAll() are provided for 

manipulating the list of parameters. These methods are used for setting a parameter, 

getting the value of a parameter, get the number of parameters stored by the class, and 

to clear all parameters respectively. 
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5.2.2 Basic Translation Components 

The base class for translation components is called QzTranslation. This class defines 

the methods that perform translation of QoS parameters in both directions of translation. 

These methods are TranslateQoSDownwards(), which implements the direct path of 

translation, and TranslateQoSUpwards(), which implements the reverse path.  

Two translation components derived from QzTranslation are included in the Quartz 

Core: the bypass filter and the QoS interpreter. The UML of the translation components 

is shown by Figure 14. 

The bypass filter is a default QoS filter that simply forwards QoS parameters without 

modifying them. By using this filter as the application filter, it is possible for the 

application to specify QoS requirements in the form of generic system-level QoS 

parameters. 

The QoS interpreter, implemented by class QzInterpreter, translates between the 

generic sets of QoS parameters defined by Quartz and balances requirements between 

the network and the operating system, performing adaptation when necessary.  

The execution of balancing and adaptation is delegated by the interpreter to the 

balancing unit, which is implemented by class QzBalancingUnit. This component 

stores split factors that are used to divide QoS requirements between the network and 

the operating system. Split factors have the same values for agents running on the same 

machine and reflect the current capacity of the network and the operating system to 

provide interchangeable resources. The values of split factors are defined according to 

the global state of the system and are modified every time adaptation occurs. 

QzBalancingUnit

m_delay_split : float
m_delay_var_split : float
m_cost_split : float
m_cost_max_split : float

Balance( )

QzBypassFilter QzInterpreter

m_balancing_unit : QzBalancingUnit

QzTranslator

TranslateQoSDownwards( )
TranslateQoSUpwards( )

Rebalance( )

 

Figure 14 – UML of Basic Translation Components 



92 

5.2.3 Basic System Agents 

Class QzSystemAgent defines the standard interface of a system agent and implements 

method QoSRequest() for specifying QoS and some additional methods needed for 

initialisation (method Init()) and for close control of the notification and adaptation 

process to be used by the application when necessary. These methods are 

QoSNotify() for notifying the application of resource adaptation and QoSAdapt() 

for initiating adaptation. In addition, agents contain pointers to the corresponding QoS 

filter, to the interface used to upcall the application and to the structure with the current 

QoS parameters. They have also a flag to identify the state of the QoS reservation (i.e. 

to indicate whether the QoS parameters are currently being enforced by the associated 

resource reservation protocol or not).   

Class QzSystemAgent is specialised by QzNetworkAgent and QzOSAgent, which 

are the base classes for network and operating system agents respectively. 

The application interfaces with only one component of the architecture: the QoS Agent, 

implemented by class QzQoSAgent, which like system agents is also derived from class 

QzSystemAgent. The QzQoSAgent class has a pointer to the network and operating 

system agents and for the interface used for upcalling the application.  

Figure 15 shows the UML representation of the basic system agents, the QoS Agent and 

the upcall interface. 

QzUpcall

QoSReport( )
QoSError( )
QoSWarning( )

QzSystemAgent

m_filter : QzTranslator *
m_upcall : QzUpcall *
m_active : bool = false
m_qos : QzQoS

Init( )
QoSRequest( )
QoSNotify( )
QoSAdapt( )

QzOSAgentQzNetworkAgent

QzQoSAgent

m_netagent : QzNetworkAgent *
m_osagent : QzOSAgent *
m_translator : QzTranslator *

 

Figure 15 – UML of Basic System Agents and Upcall Interface 
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The QoS Agent is a skeleton in which the components of the Quartz core are put 

together with the components that depend on the application area and the underlying 

system. These components can be plugged into and removed from the QoS Agent in 

order to reflect changes in the surrounding environment. The replacement of 

components encapsulated by the QoS Agent does not affect the interface with the user, 

which still sees the interface of the QoS Agent as the standard means of interaction with 

Quartz. 

The application has to support the upcalls defined by class QzUpcall which are used 

for reporting errors, warnings and dynamic changes of QoS parameters. These are 

implemented by methods QoSReport(), QoSError() and QoSWarning() 

respectively. Applications using Quartz must support this interface by inheritance or 

encapsulation. The QoS Agent also inherits from QzUpcall in order to receive 

notifications, errors and warnings from network and operating system agents, which are 

then forwarded to the application.  

5.2.4 Interaction Between Components 

The Quartz prototype is ready to be used by an application after the application 

initialises the QoS Agent and identifies itself. The QoS Agent is responsible for 

initialising the other components of the architecture. 

Figure 16 illustrates the interaction between the components of the Quartz prototype 

when QoS is requested (action [1]) and when adaptation takes place (action [2]).  

First, the application calls method QoSRequest() on the QoS Agent, passing its QoS 

requirements in the form of a QzQoS structure with application-level QoS parameters. 

Then, the QoS Agent calls the application filter and the interpreter, which translate and 

balance the QoS parameters, and requests QoS from both the O.S. agent and from the 

network agent. These agents ask their corresponding filters to translate the QoS 

parameters and, in the possession of system-specific QoS parameters understood by 

them, perform resource reservations by using their corresponding reservation protocols. 

With the reservations accepted by the reservation protocols, the resources become 

available for the application. 
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Figure 16 – Interaction Between Components 
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At some stage in the computation, the network or the O.S. might start resource 

adaptation (in the example, this is performed by the network). The new QoS parameters 

are then translated upwards by the corresponding system filter and reported to the QoS 

Agent in the form of a call to the QoSReport() method. The QoS Agent passes these 

parameters to the interpreter, who asks the balancing agent to try to rebalance them. If 

the rebalance succeeds (option [A] in the figure) the QoS Agent tries to get additional 

resources from the O.S.. If the rebalance fails (option [B]) the QoS Agent informs the 

application of the new QoS by calling QoSReport() on the application, which then has 

to adapt its requirements.  

5.3 The RSVP Sub-System 

The following sections present the system agent and the system filter for the RSVP 

protocol, together with the QoS parameters recognised by them.  

5.3.1 RSVP Parameters 

The QoS parameters defined for RSVP use a token bucket to model the data traffic. The 

parameters recognised and translated by the RSVP filter are listed in Table 9. In 

addition, three other parameters are also supported by RSVP. These parameters are very 

system-specific and do not have a form of representation at the application level. 

Consequently, they are not translated by the RSVP filter, but can be specified by the 

user to fine-tune the behaviour of the network support. These parameters are listed in 

Table 10. 

Parameter Name Description 

RSVP::TokenRate Rate at which tokens are produced (in bytes/s) 

RSVP::BucketSize Size of the bucket (in bytes) 

RSVP::PeakRate  Maximum data rate (in bytes/s) 

RSVP::MinPoliced Minimum amount of data subject to the policy (in bytes) 

RSVP::MaxPktSize  Maximum packet size (in bytes) 

RSVP::Rate Rate (in bytes/s; only for deterministic service) 

RSVP::SlackTerm Slack (in microseconds; only for deterministic service) 

RSVP::FlowType Type of data flow (deterministic, best-effort, etc) 

Table 9 – RSVP QoS Parameters 
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Parameter Name Description 

RSVP::DataTTL Time to live (in hops; local area by default) 

RSVP::ReservationStyle Style of reservation filter (fixed filter by default) 

RSVP::Policy Policy to be used by the policy control component 

Table 10 – Additional Parameters 

The meaning of the RSVP parameters is exactly the same as defined by the RSVP 

specification. Consequently, after the QoS parameters are translated into RSVP-specific 

parameters, the RSVP agent just has to arrange them in a suitable data structure and 

pass this structure to the RSVP protocol in order to perform a resource reservation. 

5.3.2 The RSVP Filter 

The system filter for RSVP is implemented by class QzRSVPFilter, which is 

responsible for translating QoS parameters understood by RSVP. It inherits from class 

QzTranslation and implements the translation methods defined by this class. The 

translation process occurs in two ways, downwards from the generic set of system-

specific QoS parameters defined by Quartz into RSVP-specific QoS parameters, and 

upwards from RSVP-specific parameters into generic system-level parameters. 

The translation between generic system-level parameters and RSVP parameters implies 

creating a token bucket in order to describe the traffic requirements specified by the 

application. The rules described below execute the mapping between generic system-

level parameters and RSVP parameters: 

• RSVP::TokenRate is equal to Net::Bandwidth. 

• RSVP::PeakRate and RSVP::Rate have the same value as 

Net::BandwidthMax. 

• If Net::BandwidthMax is not specified, it is considered to be equal to 

Net::Bandwidth. 

• RSVP::BucketSize is equal to Net::Bandwith or the difference between 

Net::BandwidthMax and Net::Bandwidth if higher. 

• The value of RSVP::MaxPktSize is the same as Net::PacketSizeMax, and 

RSVP::MinPoliced is equal to Net::PacketSizeMin. 
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• RSVP::FlowType is derived from Net::Guarantee. 

• The value of RSVP::SlackTerm is the same as Net::DelayVariation. 

Parameters Net::PacketSize, Net::Delay, Net::ErrorRatio, Net::Cost, and 

Net::SecurityLevel have no equivalent at the RSVP level. In order to allow the 

reverse translation from parameters at RSVP level into parameters at application level, 

these parameters are forwarded to the RSVP agent, which stores them and passes them 

upwards when a reverse translation occurs.  

5.3.3 The RSVP Agent 

The system agent for RSVP has been implemented as a class called QzRSVPAgent.  

Upon initialisation, details about the link that is subject to QoS  have to be specified by 

the application (or by middleware working on behalf of it) by calling the Init() 

method of the QoS Agent before requesting the provision of QoS-constrained service. 

Information such as the communication protocol (TCP or UDP), the host name or its IP 

address, the port, and the communication role (i.e. sender, receiver or both) is passed to 

the RSVP agent by using the Init() method. In addition, a pointer to the upcall 

interface that is to be called in order to report QoS adaptation, errors or warnings has to 

be passed to the RSVP agent upon initialisation. 

After initialisation, the RSVP agent performs resource reservations upon the receipt of a 

QoSRequest message (i.e. whenever method QoSRequest() is called) by interacting 

with the interface that it shares with the RSVP protocol. In addition, the RSVP agent 

issues QoSReport messages when adaptation occurs at lower-level (i.e. calls method 

QoSReport() on the upcall interface). 

5.4 The ATM Sub-System 

A system agent and a system filter for ATM have also been implemented in order to 

allow Quartz to perform reservations in ATM networks.  
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5.4.1 ATM Parameters 

The parameters defined for the ATM sub-system are listed in Table 11. These 

parameters correspond to the fields of the data structure used for performing resource 

reservations using Fore Systems’ ATM Service Provider for Winsock2. Consequently, 

the ATM Agent has just to collect this information, fill in a data structure and call the 

appropriate routine provided by Winsock2 in order to perform a reservation. 

Parameter Name Description 

ATM::PeakCellRate Max. rate in which cells are produced (in cells/s) 

ATM::SustainableCellRate Long-term cell rate (in cells/s) 

ATM::QoSClass  Type of data flow (CBR, VBR, best-effort, etc) 

ATM::MaxBurstSize Maximum cell burst (in ms) 

ATM::Tagging Tag non-compliant cells as subject to be discarded 

Table 11 – ATM QoS Parameters 

It is important to notice that these parameters differ significantly from those used for the 

RSVP protocol, but are similar to the generic system-level QoS parameters defined by 

Quartz. This happens because RSVP uses a token bucket model for QoS specification, 

while both Quartz and ATM adopt bandwidth-oriented QoS parameters. 

5.4.2 The ATM Filter 

The ATM filter is implemented by class QzATMFilter, which translates ATM 

parameters understood by the ATM Agent. Like other filters, the ATM Filter inherits 

from class QzTranslation. The translation process occurs in two ways, downwards 

from the generic set of generic system-level QoS parameters defined by Quartz into 

ATM-specific QoS parameters, and upwards from ATM-specific parameters into 

generic system-level parameters. 

The translation from generic system-level QoS parameters into ATM-specific QoS 

parameters is mainly concerned with bandwidth. Whenever the provision of QoS-

constrained services is requested, the reservation of the necessary bandwidth is 

performed. The value of ATM::PeakCellRate is taken from Net::BandwidthMax, 

while the value of ATM::SustainableCellRate corresponds to Net::Bandwidth. 

The QoS class is defined based on the characteristics of the bandwidth, i.e. if it is 
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constant or variable. ATM::MaxBurstSize and ATM::Tagging are specified directly 

by the application when it finds it necessary. The additional network parameters that 

have no equivalent at ATM level (i.e. cost, packet size, etc.) are forwarded to the ATM 

agent, which stores them and sends them back upwards when needed in order to 

perform the reverse translation.  

5.4.3 The ATM Agent 

The system agent for ATM is implemented by class QzATMAgent, which specialises 

class QzNetworkAgent. During the initialisation of the agent, the identity of the socket 

through which the QoS-constrained data will flow has to be specified.  

The ATM Agent gets the ATM QoS parameters from the translation unit and performs 

reservation of bandwidth by interacting with the ATM service provider for Winsock2. 

In addition, it reports any change in QoS occurring in the network to the application by 

translating QoS parameters upwards and then issuing upcalls through the QzUpcall 

interface provided by the application. 

5.5 The Windows NT Sub-System 

At the operating system level we have adopted Windows NT as the platform for the 

deployment of this prototype of Quartz. As a result, a system agent and a filter have 

been developed for this operating system.  

The provision of QoS in Windows NT is limited. We make use of the real-time priority 

class and of mechanisms for memory locking to provide a more predictable service, 

which is still non-deterministic. By using these mechanisms, we can guarantee unloaded 

behaviour to applications (i.e. shield the application from overload conditions) making 

use of the reservation mechanisms provided by operating system. 

5.5.1 Windows NT Parameters 

Only two QoS parameters are defined for Windows NT. They are: 

• WinNT::PriorityLevel 

• WinNT::MemoryPaging 
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WinNT::PriorityLevel defines the priority level at which the process executes. This 

is used by the operating system to schedule access to the processor. Processes in 

Windows NT are divided into two priority classes. These classes are the 

NORMAL_PRIORITY_CLASS, which is subject to the usual time-sharing policy 

implemented by Windows, and the REALTIME_PRIORITY_CLASS, which has 

precedence over the normal class and over system services. The NT scheduler handles 

threads directly, taking into account not only the priority class but also the thread 

priority, which is left for the user to assign. 

WinNT::MemoryPaging determines if the memory allocated by the process will be 

subject to paging operations, which introduce unpredictable delays and may degrade 

performance. Values allowed are true (i.e. 1) or false (0). 

5.5.2 The Windows NT Filter 

QzWinNTFilter translates QoS parameters understood to Windows NT. It inherits 

from class QzTranslation and implements the translation methods defined by this 

class. The translation process occurs in two ways, downwards from the generic set of 

system-level QoS parameters defined by Quartz into NT-specific QoS parameters, and 

upwards from NT-specific parameters into generic system-level parameters. 

Translation between generic system-level parameters and Windows NT parameters is 

quite simple, since only the parameter OS::Guarantee is taken into account. If best-

effort service guarantee is requested, the value of WinNT::PriorityClass is set to 

NORMAL_PRIORITY_CLASS and WinNT::MemoryPaging to true. If unloaded service 

guarantee is requested, WinNT::PriorityClass is set to 

REALTIME_PRIORITY_CLASS and WinNT::MemoryPaging to false. Deterministic 

behaviour is not supported by Windows NT, and unloaded behaviour is assumed if 

deterministic service is specified.  

Parameters OS::Delay and OS::Cost have no equivalent at Windows NT level. In 

order to allow the reverse translation, these parameters are forwarded to the Windows 

NT agent, which stores them and sends them back upwards when needed.  
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5.5.3 The Windows NT Agent 

The system agent for Windows NT has been implemented in C++ as a class called 

QzWinNTAgent. QzWinNTAgent inherits from class QzOSAgent, which is a subclass 

of QzSystemAgent. 

During initialisation of the QoS Agent, the process and the thread for which operating 

system resources will be allocated has to be identified by specifying the corresponding 

process and thread identifiers through the initialisation (Init()) method. By default, 

these values are assumed as being the current process and its main thread. 

Whenever it receives a request for enforcing QoS, the Windows NT agent sets the 

priority class of the application and the locking state of memory pages according to the 

value of the QoS parameters obtained after the translation process.  

5.6 Component Testing 

Before testing the whole prototype of the architecture, which will be done by using 

application examples and will be described in section 7.1, the translation components 

have been tested individually.  

The translation components have been tested with the assistance of an application that 

allows us to select application and system filters, and then perform the translation of 

parameters listed in a file. The translation can be performed in both directions (i.e. 

downwards or upwards). Filters and the direction of the translation are defined based on 

arguments passed to the application when it is called from the command line. The 

output of the application shows the transformation suffered by the QoS parameters 

contained in the input file during the three translation steps performed by the translation 

unit.  Several test cases have been studied with the help of this application, and we have 

observed that the mapping between parameters at different levels is correctly executed 

by the translation components.  

Table 12 shows an example of A/V streams parameters being translated into ATM and 

Windows NT parameters (Note: A/V streams parameters will be described in section 

6.4.2; for the moment, it is enough to know that they represent the horizontal and 

vertical resolution of a video screen, the number of bits used to represent the colour of 

each pixel, and the number of video frames generated per second).  
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Tests have shown that the translation unit is able not only to translate the parameters 

listed in Table 12 downwards, but it can also translate them upwards without any loss of 

information. 

Parameter Set Parameter Values 

Application-Specific  
QoS Parameters 

(A/V Streams App.) 

A/V::VideoResolutionHorz = 354 pixels/line 
A/V::VideoResolutionVert = 240 pixels/column 
A/V::VideoColourDepth = 24 bits/pixel 
A/V::VideoFrameRate = 30 frames/sec 

Generic Application-
Level QoS Parameters 

App::DataUnitSize = 253440 bytes/unit 
App::DataUnitRate = 30 units/sec 
App::Guarantee = Unloaded 

Generic System-Level 
QoS Parameters 

Net::Bandwidth = 7603200 bytes/sec 
Net::PacketSize = 253440 bytes 
Sys::Guarantee = Unloaded 

System-Specific 
QoS Parameters 

(ATM & Windows NT) 

ATM::PeakCellRate = 5280 cells 
ATM::SustainableCellRate = 5280 cells 
ATM::QoSClass = CBR 
WinNT::ProrityLevel = REALTIME_PRIORITY_CLASS 
WinNT::MemoryPaging = TRUE 

Table 12 – Example of Translation of QoS Parameters 

Parameter Set Parameter Values 

Generic Application-
Level QoS Parameters 

App::EndToEndDelay = 500 msec 
App::EndToEndDelayMin = 450 msec 
App::EndToEndDelayMax = 550 msec 
App::Cost = 6 pence/sec 
App::CostMax = 9 pence/sec 

Generic System-Level 
QoS Parameters 

Net::Delay = 300 msec 
Net::DelayMin = 270 msec 
Net::DelayMax = 330 msec 
OS::Delay = 200 msec 
OS::DelayMin = 180 msec 
OS::DelayMax = 220 msec 
Net::Cost = 4 pence/sec 
Net::CostMax = 6 pence/sec 
OS::Cost = 2 pence/sec 
OS::CostMax = 3 pence/sec 

Table 13 – Example of Balancing of QoS Parameters 

State Parameter Values Notes 

Normal Working State 
Net::Delay = 300 msec 
OS::Delay = 200 msec 

Total Delay = 500 msec 
Split Factor = 0.6 

After Resource 
Adaptation 

Net::Delay = 400 msec 
OS::Delay = 200 msec 

Total Delay = 600 msec 
Split Factor = 0.6 

After QoS Adaptation  
at System-Level 

Net::Delay = 400 msec 
OS::Delay = 100 msec 

Total Delay = 500 msec 
Split Factor = 0.8 

Table 14 – Example of Adaptation of QoS Parameters 
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The test cases also include simulations of QoS balancing and of QoS adaptation. In the 

first case, which is illustrated by Table 13, parameters delay and cost are balanced 

between the network and the O.S. supposing a split factor of 0.6 for delay (i.e. 60% of 

the delay is caused by the network and 40% by the O.S.) and of 0.66 for cost. In a 

second moment, illustrated by Table 14, we simulate the occurrence of resource 

adaptation, making the network increase its delay from 300 to 400 milliseconds. The 

translation unit then performs a rebalancing process, increasing the split factor to 0.8 

and causing the O.S. delay to decrease to 100 milliseconds. If this new delay is accepted 

by the O.S., the original total delay of 500 milliseconds is restored and the process of 

resource adaptation is contained at system level without involving the application; 

otherwise, the application is asked by Quartz to accept a higher delay.  

In order to complete the evaluation of the behaviour of individual components, we have 

also tested the correctness of each one of the system agents. The system agents have 

been tested individually by feeding them with sets of QoS parameters understood at this 

level (i.e. without interference from the translation unit). The agents have shown to be 

able to interpret these parameters and perform the corresponding resource reservations 

by using the associated reservation protocol.  

Adaptation has also been tested by simulating the receipt of notification messages from 

the resource reservation protocol. These messages are issued by the reservation protocol 

at run-time in order to indicate that the allocation of resources has changed. The system 

agents have been shown to recognise these messages and have performed the 

appropriate upcalls in order to trigger adaptation at the higher layers. 

5.7 Summary 

This chapter has presented a prototype implementation of the Quartz QoS architecture. 

This prototype provides support for Windows NT, RSVP and ATM, and can be easily 

extended in order to support other network infrastructures and operating systems. 

The prototype presented in this chapter was used as the basis for a framework for the 

development of multimedia applications and for a series of evaluation tests, which are 

described in the next two chapters. 
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6  
The Quartz/CORBA 

Framework 

In order to provide a complete support for multimedia applications, we have integrated 

Quartz into a framework based on the CORBA architecture. The Quartz/CORBA 

framework allows continuous media, which has intrinsic QoS requirements, to be 

transmitted between applications running in open systems. In this framework, the 

CORBA architecture provides mechanisms for the exchange of control and 

synchronisation messages, as well as for audio and video streaming. Quartz is 

responsible for enforcing the QoS requirements imposed by the application on the 

transmission of audio and video streaming data. 

A more detailed description of the Quartz/CORBA framework is presented in the next 

section. Further sections describe application scenarios in which the framework is used 

for transferring media streams with QoS constraints; the implementation of the 

Quartz/CORBA framework; and also the development of an application for music 

rehearsal over the Internet built on top of the framework. An analysis of the 

characteristics of the framework and a comparison with similar programming supports 

for multimedia conclude this chapter.  
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6.1 Motivation 

The use of multimedia applications for transmission of audio and video over the Internet 

has become a reality due to the accessible prices of multimedia hardware (such as audio 

cards and video cameras) and the increasing speed of network connections. Users of this 

sort of application, however, still face quality limitations in both sound and image, since 

the infrastructure on top of which the application is built (i.e., the Internet and desktop 

operating systems) provides only best-effort services. These limitations have 

constrained the effective use of these multimedia applications in areas such as business 

and telecommunications, where quality must be ensured in order to enable the service 

provider to charge for the service. Multimedia applications, in addition, suffer from 

limited compatibility with heterogeneous software and hardware platforms. 

Two distinct categories of data are handled by distributed multimedia applications. First 

we have the control data, which can tolerate some delay but has to be reliable. This 

behaviour can be provided by using best-effort logical networks such as TCP/IP 

directly, or by adopting middleware for distributed computing such as CORBA. On the 

other hand, continuous media are subject to QoS requirements, which are not possible to 

enforce by using middleware built on top of a best-effort networking infrastructure. The 

provision of QoS-constrained services for multimedia applications requires the use of 

QoS-aware middleware that use the QoS mechanisms present in the underlying system 

in order to enforce the QoS requirements of the application.  

Figure 17 shows a generic multimedia application with control and media data. The 

remote communication in an application like this may use the available network 

protocols directly, or may adopt a middleware platform that allows transparency 

regarding issues like remote communication and physical location of the partners.  

Multimedia Application

Control Data Media Data

Middleware

TCP

IP

Best-Effort Network

Middleware

RTP, etc.

IP with RSVP, etc.

QoS-aware Network
 

Figure 17 – Available Technology for Distributed Multimedia Applications 
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Since we do not want multimedia applications to have to interact directly with lower-

level network protocols, extending current middleware is required in order to allow 

distributed multimedia applications to impose QoS constraints on the transmission and 

processing of audio and video data.  

Another aspect that has to be taken into account by multimedia applications is media 

synchronisation [35]. The synchronisation mechanisms necessary in a multimedia 

system can be implemented at application level by using: 

• information carried in-band together with the encoded media (i.e. timestamps) that 

allows the reconstruction of the media sequence by the receiver (intra-stream 

synchronisation); and 

• events issued in order to define synchronisation points between distinct video 

streams (inter-stream synchronisation and event synchronisation). 

The application code is responsible for handling this information and rendering the 

media according to the corresponding synchronisation requirements. The 

synchronisation cannot be executed at support level because the differences between the 

processing and rendering times of different media at application level have to be taken 

into account.  

6.2 Description of the Quartz/CORBA Framework 

The CORBA architecture has been extended by the OMG in order to make it more 

suitable for application areas such as multimedia.  

The CORBA streaming mechanism, which was described in section 2.4.3, adds 

mechanisms for the transmission of continuous media and for the specification of QoS 

requirements to the CORBA architecture, making it suitable for handling both control 

and media data.  

The notification service [11] is an extension to the CORBA event service that allows 

objects to issue events with delivery constraints associated to them. It can be used by 

multimedia applications to issue events in order to define synchronisation points, which 

are then caught by the destination of the media to reconstruct the timing relation present 

at the source of the media.  
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However, despite having been extended in order to provide new communication 

mechanisms that make it suitable for multimedia applications, CORBA does not specify 

how QoS is enforced at lower level by these new communication mechanisms. Aiming 

to overcome this limitation, we have integrated Quartz into the CORBA environment in 

order to provide a framework for the development of multimedia applications with QoS 

requirements. 

The Quartz/CORBA framework is composed by the objects defined by the CORBA 

A/V Streams mechanism – virtual devices, stream control objects, stream and flow 

endpoints – put together with the QoS Agent, the ORB and the CORBA notification 

service. 

Virtual device objects abstract multimedia devices (i.e. cameras, speakers, etc) used by 

multimedia applications. A stream control object allows the user to control the media 

flow (i.e., start and stop it) as well as add and remove parties from a multi-party 

connection. Stream endpoints transfer stream data through the network, getting data 

from and delivering data to virtual devices. Each endpoint has one or more media flows, 

which are abstracted as flow endpoint objects (subdivided into flow producers and 

consumers) located at each end of the flow.  

Flow endpoints also issue synchronisation events through the notification service. The 

notification service is employed in the context of the Quartz/CORBA framework as the 

basis of a mechanism for imposing inter-stream synchronisation constraints. In this 

context, events issued by flow producers in order to define synchronisation points are 

caught by flow consumers to perform media synchronisation. 

The data delivery is subject to QoS requirements, which are agreed on by the devices 

during a negotiation process and then requested during the creation of the stream, i.e. 

during the binding of two or more virtual devices. After the binding takes place, the 

QoS parameters associated with a stream (such as video resolution, number of audio 

channels, etc.) can be modified through the stream control object. 

In the framework, the process of QoS translation and enforcement of QoS is delegated 

to the QoS Agent. This makes the middleware more portable and simplifies 

significantly the way in which the media streaming mechanisms are built due to the 

separation between QoS enforcement and media transfer.  
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Figure 18 – The Quartz/CORBA Media Streaming Framework 

Figure 18 shows an application scenario in which a video streaming application is built 

using the Quartz/CORBA framework. The application specifies the characteristics of 

the media stream, i.e. the number of flows of audio and video and their expected 

quality, which are obtained either from a user profile or through interaction with the 

user. The CORBA streaming mechanism handles the transmission of media between 

partners, and also controls the flow of media and the membership of the conference. The 

QoS Agent is informed of the QoS requirements associated to the media flows and 

handles them accordingly.   

The Quartz/CORBA framework simplifies the development of multimedia applications 

by offering a common middleware for the exchange of control and media data 

transparently through the network. The application programmer does not have to deal 

with details related to the kind of network protocol being used, the location of sources 

and destinations of data, or even the QoS requirements at network level. Instead, the 

programmer uses high-level abstractions that hide the complexity incurred from 

distribution and resource reservation, although having the possibility of interacting with 

the lower-level components if it becomes necessary.  

The framework allows the programmer to construct a multimedia application by using 

built-in classes of virtual devices and configuring them as necessary to provide the 

desired output quality (i.e., the QoS required by the application). Virtual devices have to 

be implemented according to the target platform based on the general structure provided 

by the A/V streams mechanism.  
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The platform-independent nature of the Quartz architecture makes the framework able 

to provide QoS to a wide range of applications running over several different 

reservation protocols. The framework also provides means to specify and enforce the 

synchronisation constraints that are necessary in some media presentations by using the 

CORBA notification service. 

6.3 Application Scenarios 

In the following sections we describe several application scenarios in the area of 

distributed multimedia, showing how the Quartz/CORBA framework could be 

employed as the basis for building multimedia applications.  

6.3.1 Media Broadcast 

One common application scenario in the area of distributed multimedia is the broadcast 

of audio and/or video. Figure 19 illustrates the use of the Quartz/CORBA framework to 

implement a broadcast application. In this scenario, a media source broadcasts a video 

signal through the network, to one (or more) receivers (i.e. media sinks). 

In the video broadcast application scenario, the media flow is built by using the 

abstractions provided by the CORBA A/V streams mechanism. The virtual device, the 

stream endpoint and the flow endpoint are present at both ends, while the control, made 

through the stream control object, is located at the media source. Provision of QoS is 

delegated to the QoS Agent, which is attached to both flow endpoints (i.e. the flow 

producer and the flow consumer). 

In a broadcast session, the quality of the broadcast is derived primarily from the media 

source. The source defines the maximum quality of audio or video that will be possible 

through the transmission, and the quality of the presentation at the receiver will be 

specified within the limits imposed by the media source.  

In a similar way, the flow of media is controlled by the source. The destination cannot 

influence the flow of media (e.g. stop or pause the broadcast signal).  

In order to be added to the stream and receive the broadcast signal, the user has to get a 

reference to the stream control object in the source and use this reference to call a bind 

operation.  
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Figure 19 – Video Broadcast 

An analogy between this situation and a TV or radio broadcast is applicable. In both 

cases the quality of the broadcast signal depends only on the source, but the quality of 

the rendered audio or video can be degraded according to the characteristics of the 

receiver equipment. In addition, the signal is continuously broadcast, independently of 

factors such as the number or receivers connected to it. 

6.3.2 On-Demand Media  

Another application scenario involving media transfer is the transmission of media on-

demand. In this case the receiver specifies its will to receive a specific audio or video 

signal from the source.  

The media sink should be able to control the QoS of the transmission, directly 

influencing the media source. The requested QoS may influence the billing of the 

service provided by the media source, in case of a private service subject to copyright. 

The media sink is also able to control the flow of data (e.g. stop or pause the flow) in 

the same way it does with locally stored media such as a videotape or an audio CD. 

In this category of application, the media sink creates a stream between the input and 

output devices. The corresponding stream control object, located at the sink, is used to 

specify the required QoS for the transmission and to control the flow of data.  
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Figure 20 – On-Demand Video 

Figure 20 shows the transmission of video on-demand from a media source (a video 

server). This scenario distinguishes itself from the previous one due to the location of 

the stream control object, which is now located at the media sink. 

6.3.3 Videoconference  

The names ‘media flow’ and ‘media sink’ are relative. A component of a multimedia 

application can be source and sink at the same time, when more than one flow is being 

transferred through the network. 

The most common example of this category of application is the videoconference. In 

this scenario, each partner has the components necessary to send and receive media 

(usually audio and video). Each user locally controls the quality of the signal being 

transmitted, and can also degrade the received signal during the rendering process. 

One particular case of videoconference is one in which only two partners are involved, 

often called digital video telephony. Figure 21 shows a video telephony system 

designed according to the Quartz/CORBA framework proposed by us. In this scenario, 

each partner has an input and an output flow, which are represented by a flow producer 

and a flow consumer respectively. As shown in the figure, the input and output flows 

can be modelled as a single stream composed by two flows, one in each direction, and a 

single virtual device can represent the whole video phone. Alternatively, the media flow 

could be represented as two streams each composed by a unidirectional flow, and the 

input and output devices could be represented separately.  
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Figure 21 – Video Telephony 

The control over the stream (represented by the stream control object) is held by the 

calling partner. This is justifiable if we make an analogy of this scenario with a 

telephone call. In a telephone call, the caller usually controls the connection and 

disconnection. This happens mainly because he is the one who is paying for the call.  

In the particular case of the video telephony application, the caller also controls and is 

charged according to the QoS requirements associated to the call. The privacy of the 

called partner is preserved because he has total control over his local devices, and can 

choose not to answer the call or to redirect it to a media recording device that behaves 

like an answering machine (or voice/video mail).  

In this application scenario, QoS is provided by the QoS Agents attached to each of the 

flow endpoint objects. Since two flow endpoints are present at each side of the call, one 

for input and another for output, two QoS Agents are needed in order to establish the 

QoS on both the input and the output flows.  

This scenario can easily evolve in order to become a multi-party conference by adding 

new partners to the scenario and connecting them to the flows. In this case, flow 

endpoints with support for multipoint communication should be employed. 

6.3.4 Media Session with Synchronisation 

In a complex application, in which multiple flows of media related to each other are 

being received by one particular destination, synchronisation between the media during 



113 

the exhibition may be necessary. In this situation, output devices have to rebuild the 

synchronisation patterns originally present when the media was produced.  

One common scenario in which synchronisation of media is necessary is the 

composition of multimedia documents with media received from different sources 

[140]. Figure 22 shows a scenario in which a movie is retrieved from a server. The 

image and the soundtrack are stored separately to allow the receiver to select between 

different languages, but without the necessity of duplicating the video. However, 

encoding video and audio separately obligates the receiver to execute the 

synchronisation between the audio and the video signals received from different sources 

possibly with different generation and transmission rates. 

In this scenario, each of the sources has a flow producer, while the sink has a flow 

consumer for each media. As occurred in the examples of on-demand video, the media 

sink controls the exhibition of the content of the multimedia document through the 

stream control object. This object interacts with the stream endpoints in order to control 

the flow of media data through the stream.  

In order to enable synchronisation, the media sources issue synchronisation events that 

are caught by the media sink in order to rebuild the original synchronisation pattern. 

These events are produced by the flow producers, transmitted by the notification 

service, and caught by the flow consumers.   
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Figure 22 – Multimedia Document with Synchronisation 
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6.4 Implementation of the Quartz/CORBA Framework 

The Quartz/CORBA framework has been implemented by integrating an existing 

implementation of the A/V streaming mechanism with the prototype of Quartz 

described in Chapter 5. In order to simplify the implementation, we have not included 

support for synchronisation in this prototype and in the application example that will be 

presented in section 6.5. 

6.4.1 Implementation of the CORBA A/V Streams Mechanism 

The CORBA A/V Streams mechanism adds to CORBA the ability to transfer 

continuous media between distributed objects. The specification of the CORBA A/V 

streams mechanism was described in detail in section 2.4.3. 

We have an in-house implementation of the A/V streams mechanism that supports the 

light profile of the standard defined by the OMG. This implementation was developed 

by David O’Flanagan and described in his M.Sc. dissertation [111]. The support was 

written in C++ using Iona’s Orbix 2.3 [73]. The implementation was carried out on top 

of Windows NT 4.0 using Microsoft’s Visual Development Studio 5.0. The 

implementations of the TCP/IP and UDP/IP protocols (including UDP multicast) 

provided by WinSock 2.0 [137] were used for the transmission of continuous media 

data. 

Figure 23 shows the UML of the light profile of the CORBA A/V Streams mechanism. 

This figure illustrates each of the interfaces described in IDL by the A/V streams 

specification.  

MMDevice

create_A()
create_B( )
bind( )
bind_mcast( )

VDev

set_peer()
set_format( )
set_dev_params( )
configure( )

Basic_StreamCtrl

start( )
stop( )
destroy( )
opname( )

StreamCtrl

bind( )
bind_devs( )

StreamEndPoint

connect( )
request_connection( )
start( )
stop( )
destroy( )
modify_QoS( )

StreamEndpoint_A

multiconnect( )

StreamEndpoint_B

multiconnect( )
 

Figure 23 – UML of the CORBA A/V Streams Mechanism 
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The MMDevice is the interface supported by the object responsible for initialising the 

multimedia application, creating the media partners (the ‘A’ partner, which initialises 

the connection, and the ‘B’ partner) and binding them. The VDev is the interface of the 

virtual multimedia device, which is extended according to the particular characteristics 

of the device. It provides mechanisms for configuration of the device and for setting the 

media format. The stream control object supports the interface StreamCtrl, which 

inherits from Basic_StreamCtrl. It provides operations for controlling the flow of 

data through the stream and additional binding operations. The stream endpoint is 

responsible for providing operations for connecting the flows, for controlling the flow 

of data through the stream, and for setting QoS parameters. The stream endpoint is 

specialised into interfaces for the ‘A’ and ‘B’ partners for providing operations that 

allow the creation of multipoint connections. 

A stream is composed by one or more media flows. The light profile of the CORBA 

A/V streams specification does not standardise how the individual flows are 

implemented (this is covered by the full profile, though). In this implementation of the 

standard, the structure described by the UML diagram shown in Figure 24 has been 

adopted for implementing individual flows. According to this structure, the flow 

endpoint interface provides operations for controlling the flow of data through the 

individual stream, for setting a routine that will interact with the virtual device (i.e. to 

feed or to be fed with data), and for transferring data through the network channel.  

FlowEndPoint

Start( )
Stop( )
SetStartRoutine( )
TransferData( )

QoSAgent

CFlowProducer

ConnectToPeer( )

IOSender

CFlowConsumer

GoToListen( )
ReserveQoS( )

IOReceiver

 

Figure 24 – UML of the Flow EndPoint  
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The flow endpoint is specialised as flow consumers and flow producers, which have 

operations specific to their corresponding communication roles and are associated to an 

I/O object that provides the actual communication channel (i.e. an IOSender for the 

flow producer and an IOReceiver for the consumer). In particular, the I/O objects 

provided by this implementation use TCP/IP for point-to-point communication and 

UDP/IP multicast for point-to-multipoint channels.  

The figure also shows that each flow endpoint is associated to a QoS Agent, which 

during this phase of the implementation of the A/V streams mechanism corresponded to 

a ‘dummy’ object. The next item explains how this object was replaced with the Quartz 

QoS Agent, leading to the integration of the A/V streams implementation with the 

Quartz architecture. 

6.4.2 Integration of A/V Streams and Quartz 

The implementation of the CORBA A/V streams mechanism described in the previous 

item was adapted in order to use Quartz for provision of QoS. This is done through the 

flow endpoint, which interacts with Quartz in order to specify the QoS requirements 

imposed by the application. By separating the support for QoS from the communication 

support (i.e., from the implementation of the A/V streams mechanism) we have made 

the middleware more portable and easier to implement, test and maintain. 

The interaction between flow endpoints and Quartz comprises the following tasks: 

• initialisation of Quartz, when are identified the communication port and the process 

that will avail of services on which QoS requirements will be imposed; 

• request for enforcement of QoS requirements, which is done by calling the 

QoSRequest() method of the QoS Agent during the establishment of a connection 

between flow endpoints; and 

• receipt of upcalls from the QoS Agent, which are issued in order to report QoS 

adaptation, errors or warnings. 

By performing these tasks, flow endpoints make the use of Quartz completely 

transparent for the application, which only have to specify their QoS requirements 

through the QoS specification mechanisms that are provided by CORBA A/V streams. 
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QzAVStreamsFilter

Import( )
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QzTranslator

TranslateQoSDownwards( )
TranslateQoSUpwards( )

 

Figure 25 – UML of the A/V Streams Filter 

Since the CORBA A/V streams specification defines its own mechanisms for 

specification of QoS, a filter had to be written in order to recognise the parameters 

defined by A/V streams. The Quartz A/V streams filter is implemented by class 

QzAVStreamsFilter, which is shown in Figure 25. This filter has additional methods 

to import and export from the format used by Quartz to store QoS parameters (i.e. the 

QzQoS structure) to the format used by the A/V streams mechanism (i.e. the 

AVStreams::QoS class). 

The A/V streams filter imports parameters and values from the AVStreams::QoS class 

defined by the A/V streams specification and translates them into generic application 

QoS parameters. Reverse translation is also executed by the filter in case of QoS 

adaptation. The A/V streams QoS parameters are listed by Table 15.  

The mapping from A/V streams parameters into generic application-level QoS 

parameters is shown by Table 16. Parameters A/V::AudioQuantisation and 

A/V::VideoColourModel, which define the encoding format used by the application, 

have no influence on the values of QoS parameters at lower abstraction levels.  

Parameter Name Description 

A/V::AudioSampleSize Size of audio sample (in bytes) 

A/V::AudioSampleRate Number of audio samples (in samples/second) 

A/V::AudioNumChannels Number of audio channels 

A/V::AudioQuantisation Quantisation (linear, u-law, A-law, GSM, etc.) 

A/V::VideoFrameRate Number of video frames (in frames/second) 

A/V::VideoColourDepth Number of bits representing colour for each pixel 

A/V::VideoColourModel Colour encoding (RGB, CMY, HSV, YIQ, etc.) 

A/V::VideoResolutionHorz Horizontal resolution of the image (in pixels) 

A/V::VideoResolutionVert Vertical resolution of the image (in pixels) 

Table 15 – A/V Streams QoS Parameters  



118 

CORBA Audio  
Streams Parameters 

CORBA Video  
Streams Parameters 

Generic Application-
Level Parameters 

A/V::AudioSampleSize * 
A/V::AudioNumChannels 

A/V::VideoColourDepth * 
A/V::VideoResolutionHorz * 
A/V::VideoResolutionVert 

App::DataUnitSize 

A/V::AudioSampleRate A/V::VideoFrameRate App::DataUnitRate 

Table 16 – Mapping between A/V Streams Parameters and Generic Parameters 

The A/V streams QoS parameters, after being translated by the A/V streams filter, are 

further translated by the Quartz translation unit and handed to the system agents 

corresponding to the reservation mechanisms present in the system. At this point, the 

RSVP protocol is used by the corresponding system agent in order to enforce QoS.  

6.5 Application: The Distributed Music Rehearsal Studio 

An application for music rehearsal over the network was written by John Segrave-Daly 

for his final year project [133]. The distributed music rehearsal studio allows musicians 

to play together by using instruments connected to networked computers. This 

application has strong QoS requirements, since users expect that factors such as network 

or computing delays or lack of network bandwidth do not interfere with their musical 

performance. 

The human ear is able to notice differences of more than about 30 milliseconds in the 

synchronisation of audio events. A difference higher than this amount between two 

audio sources is enough to allow a listener to notice that the music is out-of-sync. As a 

result, the distributed music rehearsal studio must keep the delay between the 

production and reproduction of audio signals within 30ms, otherwise the rehearsal 

session will lose integrity [133]. Consequently, packets with a lifetime exceeding this 

limit should be discarded. This phenomenon sets the application apart from traditional 

audio streaming and audio conference tools, which can tolerate much higher delays.  

Figure 26 shows a usage scenario of the distributed music rehearsal studio, in which 

three musicians participate in a rehearsal. Each user has an audio source object, 

responsible for broadcasting the audio produced by the instrument being played by him, 

and audio sinks for each musician participating in the rehearsal.  
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Figure 26 – Usage Scenario of the Distributed Music Rehearsal Studio 

Audio sinks are connected to a mixer object, which is similar to a mixing desk. The 

mixer object mixes the audio sent by each musician and reproduces the resulting audio, 

which is reproduced by the local machine and heard by the musician. This audio signal 

gives feedback to the musician, who must play his instrument in accordance with what 

the other musicians are playing.  

The distributed rehearsal studio was built on top of the Quartz/CORBA framework, 

which is responsible for enforcing the requirements imposed by the application. Audio 

sources and sinks are virtual devices in the context of the A/V streams mechanism. 

Sources and sinks are connected to flow producers and consumers respectively, which 

allow them to transfer the audio signal through the network. In addition, Quartz 

enforces the QoS constraints imposed by the applications in order to avoid audio 

packets being delayed by a possible lack of resources at network or operating system 

levels. Audio sampling and reproduction are performed by using, respectively, the 

waveIn API and the Microsoft DirectSound API, an integrated part of DirectX 3.0 [98]. 

Figure 27 shows the user interface of the distributed rehearsal studio. Through this 

interface, the musician can create audio sources and sinks, and can select the quality 

with which the audio is encoded. Audio controls such as volume and panning (balance) 

are also provided. 
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Figure 27 – Interface of the Distributed Music Rehearsal Studio 

Tests with the prototype implementation of the distributed music rehearsal studio have 

shown that delays still largely exceed the desired limit of 30 milliseconds. This is due to 

the unpredictable latency introduced by the waveIn API and by the audio drivers 

provided by the operating system. Unfortunately, the API and the drivers do not provide 

resource reservation mechanisms that allow us to limit the latency. This does not affect 

the role of the Quartz/CORBA framework, which is able to enforce QoS by reserving 

bandwidth for the application and by shielding the application from any interference 

caused by excessive CPU usage.  

6.6 Analysis of the Quartz/CORBA Framework 

With the adoption of the CORBA architecture support – both the client-server and 

stream interaction models – as the core of the distributed multimedia framework, 

multimedia applications are given the ability to handle control data and stream data 

uniformly using high-level abstractions. The object-oriented nature of CORBA provides 

a large set of benefits to the application development process (e.g. reusability, 

encapsulation, use of software engineering techniques, etc.). In addition, the adoption of 

the CORBA streaming mechanism together with network protocols with multicast 

capabilities makes efficient and scalable group communication feasible. Furthermore, 

the framework supports the provision of QoS requirements described as A/V Streams 

QoS parameters through the use of Quartz for translation and enforcement of QoS 

requirements imposed by applications.  
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Several other proposals of programming supports for the development of multimedia 

applications in open systems, which were presented in Chapter 3, aim to achieve similar 

results by adopting different approaches.  

The ReTINA project [18] has basically the same goals as our proposal, but the adoption 

of a binding model inherited from ODP introduces a new level of complexity that has to 

be handled by the application programmer. Our approach maintains the simplicity and 

transparency of the CORBA binding model, incorporating a binding paradigm 

appropriate for multimedia applications through the introduction of a stream abstraction, 

which allows connections with associated QoS specifications and multi-party 

connections. 

Furthermore, ReTINA proposes extensions to the CORBA IDL for the introduction of 

stream interfaces. Major changes in the IDL are not likely to be well accepted by the 

OMG and by the CORBA community, and may reduce the compatibility between 

different ORBs. On the other hand, the Quartz/CORBA framework for distributed 

multimedia applications that was proposed by us is entirely compatible with the current 

OMG specifications for ORBs and for the IDL language. 

The same considerations apply to the DIMMA [116] and Amber [86] projects 

developed by APM that had a strong influence on the ReTINA project. 

The XRM [88] project is a proposal for a framework that provides multimedia 

applications with QoS specification mechanisms together with an appropriate binding 

architecture, called Xbind, which is built upon CORBA. XRM and Xbind, however, do 

not provide some features that are provided by Quartz such as QoS enforcement at the 

operating system level and resource adaptation. 

The TAO project [129] proposes optimisations on the communication support to 

improve the performance achieved in method calls between clients and servers. Despite 

recognising that a better performance has to be provided by the CORBA 

communication protocols, we consider that this is not sufficient for the provision of 

transfer of media data, since high performance does not necessarily guarantee the QoS 

requirements imposed by distributed multimedia applications.  

Several other projects in the field of distributed multimedia, such as SUMO [35] and 

DAVE [49], do not adopt an approach based on standards for distributed object 
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computing, constraining their utilisation in open systems and limiting their acceptance 

by computer software developers. On the other hand, our multimedia framework adopts 

an approach based on standard solutions (i.e. CORBA) in order to provide and 

environment for development and execution of multimedia applications.  

6.7 Summary 

This chapter presented a framework for building multimedia applications. This 

framework shows how Quartz can be used by middleware platforms such as CORBA in 

order to allow applications to impose QoS constraints on the services provided by the 

underlying system. An implementation of the Quartz/CORBA framework was 

presented, together with a multimedia application that was built using the framework. 

We have also analysed the achievements of the framework and compared it to similar 

support for the development of multimedia applications. 
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7  
Validation and 

Evaluation 

This chapter presents a series of validation tests, which were executed in the form of 

application examples that were implemented using the Quartz prototype. In addition, we 

analyse the characteristics of Quartz, taking into account the requirements that were 

imposed on it during the design phase. Finally, we compare Quartz to other supports for 

QoS specification and enforcement that are described in the literature.  

7.1 Validation Tests 

We have implemented some applications on top of the prototype of Quartz in order to 

analyse whether or not Quartz meets the requirements imposed during the design phase. 

These applications – the remote copy application, the telephone exchange application, 

and a new version of the distributed music rehearsal studio that is built directly on top 

of the sockets API – are described in the following sections. Further in this chapter, we 

present some conclusions based on the experience obtained with these applications, and 

provide some performance measurements that quantify the overhead imposed by Quartz 

in the form of processing time. 
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7.1.1 The Remote Copy Application 

In order to evaluate the behaviour of Quartz in an environment with multiple network-

level reservation protocols, we have implemented a Windows-based version of the Unix 

remote copy command. The “rcp” command allows users to transfer files between 

machines interconnected by a network. Our “rcp” application goes beyond the Unix 

command by providing a graphical interface that allows the user to choose between 

multiple network protocols and to specify QoS requirements that are to be observed in 

the file transfer operation. This application uses Quartz to enforce its QoS requirements.  

By using the graphical interface, which is shown by Figure 28, the user is able to 

specify the name of the file to be transferred and select the protocol to be used for data 

transfer. The user can choose between three different communication protocols: TCP, 

UDP and ATM. In the first two cases, RSVP is used for resource reservation, while 

ATM is used directly in the latter case.  

The role played by the application (i.e. client or daemon/server) must be specified on 

startup. Information needed to establish the connection also has to be provided by 

clients. This information consists of the host name, IP or ATM address and the 

communication port of the destination. IP multicast is also supported. In this case, the 

user has to specify an IP multicast address in the ‘target address’ field for the (possibly 

multiple) clients and the daemons.  

 

Figure 28 – The Remote Copy Application 
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In addition, the graphical interface allows the user to specify QoS requirements such as 

the kind of guarantee (best-effort, unloaded or deterministic), the size of data packets, 

and the packet rate. These requirements are interpreted by the application filter for data 

packet transfer, which is implemented by class QzDataPacketFilter. The QoS 

parameters understood by this filter are listed by Table 17. 

Parameter Name Description 

DPkt::PacketSize [Min,Max] Size of packets (in bytes) 

DPkt::DelayBetweenPackets 

[Min,Max] 

Time between production of two consecutive 
packets (in milliseconds) 

DPkt::EndToEndDelay 

[Min,Max] 

Time between production and consumption of a 
packet (in milliseconds) 

DPkt::ErrorRatio [Max] Acceptable error ratio (in bits per million) 

DPkt::Guarantee Guarantee level (best-effort, deterministic, etc.) 

DPkt::SecurityLevel Security level (none, encrypted, etc.) 

Table 17 – Parameters Recognised by the Data Packet Filter 

The data packet filter performs the translation of these parameters into the generic set of 

application parameters defined by Quartz. This translation step is very straightforward, 

since these parameters are very similar to the generic application parameters used by 

Quartz. The parameters resulting from this first translation step are translated further 

into system parameters and passed to the system agents that perform the necessary 

reservation of resources at lower level. The application provides an interface for Quartz 

so that it can perform upcalls in order to report errors, warnings or dynamic changes in 

QoS. 

This application was based on the sample provided together with Intel’s implementation 

of RSVP. The addition of Quartz as a means for reserving resources simplified the 

application and allowed us to incorporate support for ATM without increasing 

complexity. According to the protocol selected by the user, the corresponding system 

filter and agent are plugged into the QoS Agent, and from this point the translation of 

parameters and the reservation of resources are handled directly by Quartz according to 

the selected protocol.  

The remote copy application shows us that Quartz is able to perform QoS reservations 

by using both ATM and RSVP without interfering with the way the application 
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specifies QoS and requests QoS to be enforced. In addition, the application code is 

simplified and made more portable by the use of Quartz due to the separation between 

data transfer, which is performed by the application directly, and QoS enforcement, 

which is executed by Quartz. 

7.1.2 The Telephone Exchange Application 

In order to show the use of Quartz in an environment distinct from the traditional 

computing environment – i.e. desktop machines interconnected by a computer network 

such as the Internet – we have implemented a software model of a telephone exchange. 

Telecommunications systems are subject to QoS requirements stipulated by government 

regulatory agencies (such as the FCC in the US, OFTEL in the UK and the ODTR in 

Ireland), international organisations (such as the ITU-T) and internal standards defined 

by telecom operators. Very strict limits on the time the system takes to process a phone 

call are defined by the companies and regulatory bodies. Consequently, real-time 

software has to be run on the telephone exchange so that the call set-up process can be 

time bound. When these requirements are not fulfilled, besides the degradation of the 

service provided to the consumer, it may result in hefty fines imposed by regulatory 

bodies and, ultimately, in the suspension of the license to operate the 

telecommunications service.  

The processing of a telephone call passes through well-defined stages [48], which are 

illustrated in the state transition diagram in Figure 29. Two of these stages, which are 

performed by a computerised telephone exchange and are subject to QoS requirements, 

are of particular interest for this study.  

The exchange is responsible, after the customer takes the phone off the hook, for 

reserving a path from the customer’s equipment to the exchange. After that the 

exchange has to perform an initialisation procedure. First, it has to identify the customer 

by mapping the phone line through which the off-hook signal was received to a 

directory number and a customer name, to whom the call will be charged afterwards. 

The exchange is also responsible for identifying the class of service to which the 

customer is subject. The class of service defines the way in which the call will be 

handled, including charging methods and rates, authorisation for long-distance calls and 

for using premium services, etc. After this is accomplished, a dial tone is sent to the 
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customer’s terminal. The time taken by this whole process is expected not to exceed the 

limits imposed by regulatory bodies or by the company’s own quality standards, 

characterising the first QoS requirement imposed on the call initialisation process. We 

refer to it as the “dial-tone deadline” from now on. In the figure, it is represented by the 

time taken to change from state � to state �. 

In a second phase, after the customer dials the phone number to which he wants to be 

connected, the exchange is responsible for routing the call to the destination, reserving 

lines along the way. When the lines are reserved, a ring tone is sent to the caller and a 

ringing signal is sent to the called phone. If an available route is not found because there 

are no lines available or because the called party is busy, a busy tone is sent to the 

caller. The time taken to route the call and send a calling tone (or busy tone) to the 

caller is also subject to limits, resulting in the second QoS requirement imposed on the 

call set-up process. We refer to this as the “ring tone deadline”. It corresponds to the 

time spent to change from state � to state � in Figure 29. 
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Figure 29 – State Diagram of a Telephone Call 
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The call clean-up process is not subject to QoS requirements from the exchange’s point 

of view. The quality of the phone line through which the conversation takes place is 

also subjected to requirements, but this does not interfere directly with the call 

initialisation and routing process. 

We have implemented a simplified software model of a telephone switch in order to 

evaluate the capacity of Quartz as a mechanism for enforcing the QoS requirements 

present in the call switching process, i.e. the dial tone and ring tone deadlines. In 

addition, Quartz also performs the allocation of telephone circuits.  

This application example is built on top of Windows NT and is totally written in C++.  

An application filter for circuit switching, a system filter and agent for deadline-based 

scheduling, and a system filter and agent for reservation of telephone circuits have been 

written by us.  

Class QzCircuitSwitchFilter implements the application filter for circuit 

switching. It recognises the parameters listed by Table 18, which are proper for 

applications such our telephone exchange simulator, and translates them into generic 

QoS parameters.  

Parameter Name Description 

CSw::CircuitType Type of circuit (POTS, ISDN, T1, E1, etc.) 

CSw::CircuitDelay [Min,Max] Total transmission delay (in milliseconds) 

CSw::SwichingDelay [Min,Max] Total switching delay (in milliseconds) 

CSw::ErrorRatio [Max] Transmission error (in %) 

CSw::Guarantee Guarantee level (best-effort, unloaded, etc.) 

CSw::CircuitCost [Max] Financial cost (in local currency per second) 

CSw::SecurityLevel Security level (none, encrypted, etc.) 

Table 18 – Parameters Recognised by the Circuit Switch Filter 

In order to simulate the allocation of phone lines, we provide a system agent for 

allocation of phone circuits implemented by classes QzPhoneCircuitAgent.  

The phone circuit agent is used together with a system filter for phone circuits, 

implemented by class QzPhoneCircuitFilter. This filter translates the system-

specific parameters listed in Table 19 into the generic QoS parameters defined by 

Quartz.  
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Parameter Name Description 

Phone::CircuitType Type of circuit (POTS, ISDN, T1, E1, etc.) 

Phone::CircuitDelay [Min,Max] Total transmission delay (in milliseconds) 

Phone::ErrorRatio [Max] Transmission error (in %) 

Phone::Guarantee Guarantee level (best-effort, unloaded, etc.) 

Phone::CircuitCost [Max] Financial cost (in local currency per second) 

Phone::SecurityLevel Security level (none, encrypted, etc.) 

Table 19 – Parameters Recognised by the Phone Circuit Filter 

Initially, the same operating system agent for Windows NT that was used in the other 

examples was used by this application. Later, a system agent and a system filter for 

deadline-based process schedulers were written in order to take into account the 

establishment of deadlines for the processing of switching tasks. The system agent and 

the system filter for deadline schedulers are implemented by classes 

QzDeadlineSchedAgent and QzDeadlineSchedFilter respectively. The system-

specific QoS parameters understood by these components are listed by Table 20. 

Parameter Name Description 

DlSched::Deadline [Min,Max] Processing deadline (in milliseconds) 

DlSched::Guarantee Guarantee level (best-effort, unloaded, etc.) 

Table 20 – Parameters Recognised by the Deadline Scheduling Filter 

Our model of a telephone exchange is able to process 10 phone calls concurrently. For 

each phone call, the exchange reserves the circuit from the customer’s equipment to the 

exchange and sets the dial tone deadline for the call initialisation process. After the 

customer dials the number of the called terminal, a new reservation is performed, which 

allocates a circuit from the exchange to the called terminal and sets the calling tone 

deadline for the routing process. 

Reservation of resources is simulated by the phone circuit agent, because the actual 

allocation of resources would require the presence of actual switching hardware.  

Similarly, the deadline-based scheduling agent only simulates the scheduling of the 

switching tasks, since the platform in which the application was implemented does not 

provide deadline-based scheduling mechanisms.  
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The telephone exchange application shows how QoS requirements very different from 

those present in traditional computer applications can be expressed using the 

specification mechanisms provided by Quartz. This example also shows that, despite the 

different nature of the platform that provides resources for the application, Quartz is 

able to interpret the high-level requirements and perform resource reservations at the 

low level. 

7.1.3 The Distributed Music Rehearsal Studio 

A new version of the distributed music rehearsal studio has been built in order to 

evaluate the use of Quartz as a mechanism for QoS enforcement that is used directly by 

a multimedia application, instead of being used indirectly by applications through 

multimedia middleware. This new version of the rehearsal studio uses sockets directly 

instead of the CORBA A/V streaming mechanism for transferring media data.  

Compared to the version described in section 6.5, the functionality of the application 

and the user interface remained the same. The only difference can be found at 

networking level, where the dependencies on CORBA have been removed. This made 

the application more lightweight, reducing the executable by approximately 10 times 

the original size, and less memory-hungry, reducing the memory allocated by the 

application in about 30%. Despite these advantages, there was no noticeable 

improvement in the overall performance of the audio transmission, since the problems 

with the latency originated from the waveIn API and from DirectSound.  

This example shows that multimedia applications, such as the music rehearsal studio, 

can avail of the QoS specification and enforcement mechanisms that are provided by 

Quartz in order to have their QoS requirements fulfilled.  

7.1.4 Results Achieved with the Validation Tests 

Table 21 summarises the applications built using Quartz for test purposes. These 

applications have been selected in order to demonstrate the fulfilment of the 

requirements imposed on the Quartz architecture during the design process, which were 

described in section 4.1 of this thesis.  
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Application App. Filter OS Agent & Filter Network Agent & Filter 

Remote Copy Data Packet WinNT RSVP, ATM 

Telephone 
Exchange 

Circuit Switch Deadline Scheduler, 
WinNT 

Phone Circuit 

Rehearsal Studio A/V Streams WinNT RSVP 

Table 21 – Applications Built Using Quartz 

An initial observation of the nature of the tests shows that Quartz can be used in 

different areas of application besides multimedia transfer, demonstrated previously by 

the Quartz/CORBA framework and the rehearsal studio application. The test 

applications show that Quartz is also suitable for specification and enforcement of QoS 

for data transfer applications (such as the remote copy example) and for real-time 

applications (such as the telephone exchange model).   

In addition, the tests described previously, including the rehearsal studio, show the 

adequacy of the mechanisms for specification of QoS provided by Quartz. In each of the 

examples, the QoS parameters seen by the application, either when it specifies its QoS 

requirements or when it receives a QoS notification, are in the form of application-

specific parameters which are suitable for the particular application area.  The 

Quartz/CORBA Framework (and consequently the rehearsal studio) uses parameters 

describing the quality of audio and video streams. The format of these parameters is 

defined by the A/V streams specification and is translated by the corresponding filter. 

On the other hand, the remote copy example uses a data packet filter that recognises 

parameters for applications transferring data packets, while the telephone switch 

application uses a different set of parameters appropriate for circuit switched lines and 

for deadline scheduling. An application filter translates application parameters into 

Quartz-defined generic parameters in each case.  

The remote copy example also shows that the resource provider can be changed without 

interfering with the application code. The remote copy application shows that even 

using a different network resource provider, which in this case could be either RSVP or 

ATM, the user can obtain similar QoS-constrained services. This shows that the lower-

level reservation protocols supported by the networking infrastructure are made 

transparent for the application. Consequently, applications using Quartz are highly 
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portable, since the code necessary for requesting QoS behaviour is kept unchanged 

independently of the underlying system that is providing resources for the application.  

On the other hand, the telephone exchange application shows that the component 

responsible for the reservation of resources provided by the operating system can be 

exchanged in a similar way. In this case, we use either a simulator for deadline 

scheduling or the same Windows NT agent used for the other examples for processing 

and routing phone calls. 

The multiplicity of operating system and network agents and filters used by the 

examples shows that Quartz can be used in different platforms, and that the filters can 

be combined freely in order to reflect the characteristics of the underlying system.   

7.1.5 Performance 

Performance tests have shown that the overhead added by Quartz to the application is 

very small. Table 22 shows typical values for the overhead imposed by Quartz for the 

remote copy application. This data was obtained on a Pentium Pro 200 MHz by using 

the profiling tools that accompany Microsoft Visual C++ 5.0. The complete results of 

the tests are shown in the appendix of this thesis. 

 ATM RSVP 

Initialisation of Reservation Protocols N/A 24.859 ms 

Initialisation of Quartz 346 μs 9.272 ms 

Overhead per Reservation 1.177 ms 1.220 ms 

composed of:  QoS Specification 93 μs 113 μs 

  QoS Translation 759 μs 991μs 

  QoS Reservation 325 μs 116 μs 

Table 22 – Overhead Imposed by Quartz 

The total overhead caused by Quartz in a single request (i.e. the time taken to specify, 

translate and interact with the resource reservation protocols) is about 1.2 millisecond 

for both ATM and RSVP. This value is considerably less that it takes to open a socket 

(about 10 ms) or to obtain the host name (which in our testbed varied from 5 to 40 ms).  

The initialisation of Quartz is also considerably fast even for RSVP, which takes 

relatively long to initialise due to the amount of state information that has to be gathered 
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by both WinSock and Quartz; since in ATM the reservation mechanism is integrated 

with the transport, no extra time is taken to initialise it. 

During the tests we have used the real-time scheduling class provided by Windows NT 

in order to reduce the influence of other processes in the results. The overhead, 

however, can still vary about ±4% for both RSVP and ATM under similar load 

conditions due to unpredictability introduced by the system services that are used by 

Quartz (i.e. the values shown in Table 22 have an error of  ±4%).  

The overhead caused by the initialisation of Quartz occurs only once, while the request 

overhead occurs every time the application requests a new set of QoS requirements to 

be enforced. There is no overhead imposed on the transmission of data, which depends 

only on the networking infrastructure and on the resources reserved for the session. 

7.2 Fulfilment of Requirements 

The following items explain how the requirements imposed during the design phase, 

which were listed in section 4.1, are fulfilled by the Quartz architecture. 

7.2.1 QoS Specification 

Quartz allows users to specify QoS requirements according to the notion of QoS 

understood by them. This is achieved by adopting a multi-step, extensible translation 

mechanism.  

The translation unit understands parameters specified at application level by using 

application filters, which can be selected from a library or written by the user. The 

examples presented show that these filters can handle a wide variety of formats of QoS 

parameters. These different sets of parameters, each one representing a different notion 

of QoS present at application level, can be easily translated into a generic format used 

internally by the translation unit as shown by the applications implemented using 

Quartz.  

Similarly, the system filters were shown to be able to perform the translation of generic 

parameters adopted by Quartz into QoS parameters meaningful at the lower level. These 

filters were implemented for different reservation protocols with different notions of 

QoS, such as ATM and RSVP at the network level, and for the Windows NT real-time 
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support and for deadline-based schedulers at the operating system level, showing the 

suitability of Quartz for handling QoS in heterogeneous systems. 

At the same time, the application and system filters are made easy to implement since 

the main translation step is performed by the interpreter. The interpreter handles the 

translation between different abstraction levels (i.e. translates parameters from the 

application level into the system level), balances requirements between the network and 

the operating system, and performs QoS adaptation whenever necessary. Consequently, 

these aspects do not have to be handled directly by the application or systems filters. 

A typical filter (such as the data packet filter and the RSVP filter) has less than 300 

lines of code, and should take an average programmer less than one working day to 

define the mapping between parameters, and then write and test the filter.  

7.2.2 QoS Enforcement 

The user interface defined by the Quartz QoS architecture hides from the user the details 

regarding the way in which resources provided by both the network and the operating 

system are reserved. This allows the application to have its QoS requirements enforced 

independently of the characteristics of the sub-system that is providing the resources.  

Quartz can be seen as a common interface to the diverse resource providers present in a 

computing system. It has a common form of specification and notification of QoS, 

despite the fact that the resources have to be reserved by using different specification 

methods. Consequently, the resource provider is made transparent for the user, which 

interacts only with Quartz in order to obtain resources from the system.   

Applications built on top of Quartz are able to have their QoS requirements enforced by 

using different supports without having to change the way their QoS requirements are 

specified. This is demonstrated by the remote copy example, which uses multiple 

reservation protocols at network level (i.e. ATM and RSVP), and by the telephone 

exchange application, which shows that the component responsible for the reservation 

of resources provided by the operating system can be exchanged in a similar way. This 

occurs because Quartz provides full transparency from the lower-level reservation 

protocols present at both network and operating system level in regard to the way they 

handle QoS reservations. 
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7.2.3 Heterogeneity 

The application examples show that Quartz can be used in conjunction with different 

reservation protocols on different platforms. The differences in the lower-level support 

are handled by Quartz without requiring the application to get involved. The application 

code, in addition, does not have to be modified when the resource reservation protocol 

present in the underlying system is replaced by a different one. 

Despite the limited range of lower-level resource reservation mechanisms covered by 

the prototype, we have deliberately chosen resource reservation mechanisms that are 

very different in nature so that we can assume that other system filters and agents can be 

written in order to support other mechanisms for resource reservation.  

Extension of the set of platforms supported is not a very complex task. Support for new 

reservation mechanisms can be added to Quartz by writing a system agent and filter. 

Like filters, simple system agents such as the ATM agent and the Windows NT agent 

have about 300 lines of code and can be implemented and tested in no more than one 

working day by a programmer that is familiar with the reservation mechanisms 

provided by the reservation protocol. Protocols with more complex APIs, however, can 

take longer to implement and test. The RSVP agent, for example, has about 1000 lines 

of code and we estimate that it would take about a week for a programmer to rewrite it. 

Similarly, different application areas have been covered by the examples implemented 

on top of Quartz. Support for different notions of QoS present at different areas of 

application was added by writing new application filters and then plugging these filters 

into the QoS Agent. As a result, we can assume that other different areas of application 

can be supported by Quartz without involving a high degree of complexity. 

7.2.4 Support for Adaptation 

Adaptation is supported by Quartz at two levels: 

• Adaptation at application level; and 

• Transparent adaptation at system level. 

Adaptation is initiated every time the allocation of resources changes at a lower level. 

However, depending on the level at which it is performed by Quartz, adaptation has a 

different effect from the application’s point of view.  
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Adaptation at system level occurs by rearranging the allocation of resources used by the 

application, so that the same QoS requirements are enforced by using a different set of 

resources. This process is transparent for the application, since the QoS seen at 

application level remains the same. This process is successful only when it is possible to 

rearrange the balance of resources so that the QoS requirements specified by the user 

are fulfilled. 

Adaptation at application level is initiated when adaptation at system level fails. In this 

case, Quartz requests the application to perform adaptation by sending a notification 

message to the application in the form of an upcall. The notification message carries 

parameters understood at the application level, which are obtained by using the reverse 

path of translation provided by the translation unit. Whenever an application receives a 

request for adaptation, it has to adapt its QoS requirements and issue a new request for 

QoS.  

By incorporating these two mechanisms for adaptation, Quartz provides a robust 

support for applications running on platforms in which the state of the resources might 

change dynamically. Some of the resource reservation protocols available at the 

moment allow changes in the state of resources to happen at run-time, and consequently 

it is important to make the QoS architecture able to handle this situation. 

7.3 Comparison with other QoS Architectures 

Most of the QoS architectures found in the literature and presented in Chapter 3, 

including Xbind [88] and QUANTA [43], are basically network-oriented (and mostly 

ATM-oriented) architectures, i.e., they do not cover system-level QoS constraints.  

The matter of translation and mapping is very simplified in Xbind and QUANTA 

because QoS is handled at network level only. In addition, the tight integration of the 

architecture with the communication system that occurs in Xbind and also in QoS-A 

[24] constrains the flexibility and limits the extensibility of the architecture. On the 

other hand, translation and mapping have a special role in Quartz, which is able to cover 

a wider range of QoS requirements specified at a higher level of abstraction.  

QUANTA and ERDoS [26][27] adopt translation mechanisms similar to the one 

proposed in this thesis, but there are a few differences that can be observed. First, the 
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introduction of two sets of generic QoS parameters with a translator from one generic 

set into the other reduces the work done by QoS filters, which can be added by the 

application programmer and are easy to implement due to their low complexity. On the 

other hand, QUANTA translators, equivalent to our system filters, involve a more 

complex translation procedure and are not accessible to the user. As a consequence, 

support for new areas of application or network protocols would require changes in the 

code of the middleware. ERDoS incorporates its translation mechanisms into the 

resource and application agents, which can be written by the user as in Quartz. 

However, due to the adoption of an approach for provision of QoS based on monitoring 

and adaptation, QoS enforcement through resource reservation is not provided by 

ERDoS.  

Like ERDoS, MMN [147] also uses adaptation mechanisms instead of resource 

reservation. This approach prevents the use of these architectures for implementing 

applications with strong QoS requirements due to the lack of support for service 

guarantees other than best-effort [52].  

Researchers at Lancaster say that a single QoS manager such as the QoS Broker in the 

OMEGA architecture [101][102] ‘requires a huge amount of mapping and management 

knowledge to support large-scale distributed applications, and that service management 

through a single entity is too centralised and severely inflexible’ [148]. We don't incur 

this problem because per-application QoS Agents encapsulate only the support 

necessary for specification of QoS capabilities for the corresponding application field 

and interaction with the reservation protocols supported by the end-system. Flexibility 

and extensibility are guaranteed by the use of filters and system-specific agents, instead 

of a monolithic structure such as adopted by the QoS Broker. Issues regarding resource 

reservation are handled by the corresponding protocol associated to the sub-system that 

provides the resources, with system agents being responsible only for interfacing with 

these protocols.  

QuO [156] and Arcade [42] are architectures that provide QoS languages for the 

specification of QoS requirements. We could simulate the same functionality by 

implementing application-level QoS filters that interpret the QoS languages used by 

QuO and Arcade and translate the QoS requirements expressed with this language into 

the generic application-level QoS parameters used by Quartz. 
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QuO is a network-oriented architecture that adds mechanisms for QoS specification to 

the client-server interaction model adopted by CORBA. Based on this approach, QoS 

requirements are specified in relation to method invocations issued between CORBA 

objects. However, the client-server interaction model is inappropriate for applications 

that use continuous media due to the necessity of modelling streams as a series of 

method invocations [37]. We believe that this approach is likely to impose limitations to 

the use of the QuO architecture.  

Arcade is an example of a purely system-level QoS architecture based on a specific 

platform, in this case the Chorus kernel. Quartz could be easily made able to interact 

with this operating system by writing a system agent and a system filter that interface 

with the QoS mechanisms provided by Chorus. In addition, Quartz allows the user to 

establish network QoS constraints.  

Table 23 is a new version of the table showed during the analysis of the state-of-the-art 

in the area of QoS architectures, which was presented in section 3.13. This new version 

of the table adds Quartz to the list of QoS architectures, and shows that our architecture 

has a number of features that is not matched by the other architectures found in the 

literature.  
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Adaptation Transparent        
�    � � 

Table 23 – Comparison of Quartz with other QoS Architectures 
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Quartz is suitable for open systems due to its capacity to interact with multiple 

reservation protocols at both network and operating system level. In addition, Quartz 

provides support for QoS specification and enforcement to applications situated in 

different application areas, and is able to handle resource adaptation either transparently 

or by notifying the application. Furthermore, Quartz can be easily extended by the 

application programmer in order to use other resource reservation protocols and to 

provide QoS specification mechanisms appropriate for different application areas.  

7.4 Summary 

This chapter showed that Quartz provides an efficient service for applications requiring 

QoS specification and enforcement in open distributed systems. Different areas of 

application and underlying systems are covered by Quartz, as shown by the validation 

tests implemented on top of the prototype of the architecture.  

This chapter has also shown that Quartz provides a number of improvements when 

compared to other architectures and frameworks for distributed multimedia that are 

found in the literature.  
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8  
Conclusions 

The research project presented in this thesis has resulted in the design of an innovative 

QoS architecture whose properties make it useful in an open environment where 

applications require QoS-aware services to be provided by the underlying system.  

This chapter summarises the characteristics of the Quartz architecture that make it 

particularly useful in open systems. In addition, it presents the achievements of this 

research project in the light of other work in this area of research, and suggests some 

future developments making use of the proposed QoS architecture. 

8.1 Background 

Analysing the requirements of distributed applications, researchers have found that an 

important class of applications is not satisfied with the best-effort approach to resource 

management offered by the computing platforms available today. Instead, these 

applications impose more strict requirements on the services provided by the computing 

platform, not only from the local machine but also the communication network and 

other remote services. These requirements are called the quality of service (QoS) 

required by the application.  
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The necessity of providing support for QoS enforcement drove the research community 

to improve the support for resource reservation available in networks and operating 

systems. In essence, this effort aims to make access to the resources provided to 

applications behave in a more predictable fashion, avoiding the typical best-effort 

resource management policies that are provided by most platforms.  

Despite the effort spent in the development of resource reservation protocols, there is 

still a gap between what the application sees at its level – i.e. its QoS requirements – 

and what is provided by the underlying system – i.e. protocols for reserving resources 

such as bandwidth, processing power, and so on. This gap has to be filled by a 

middleware layer in order to avoid application programmers having to deal with low-

level concepts necessary for interacting with resource reservation protocols. 

Research on middleware responsible for bridging the gap between applications and 

resource reservation protocols has resulted in proposals for what are now called ‘QoS 

architectures’. Examining the proposals for QoS architectures present in the literature 

concerning their ability to provide support for the deployment of applications with QoS 

requirements in open systems, we have identified several significant problems: 

• the way in which these architectures allow applications to specify their QoS 

requirements typically suits only a limited area of application, and often requires 

QoS to be expressed in a low-level format that is unsuitable for the application;  

• requirements are often enforced either at network or operating system level, instead 

of both, and the underlying system is not always made transparent to the application, 

forcing it to deal with low-level issues;  

• these architectures are usually closely tied to a particular platform, such as a 

particular networking infrastructure and/or operating system; and 

• dynamic resource adaptation is not always taken into account by architectures, 

which ignore the fact that the state of resources can change at run-time in some 

platforms. 

With these problems in mind, we have designed and implemented a novel architecture 

for QoS specification and enforcement. This architecture, called Quartz, addresses the 

limitations of previous proposals in this area.  
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8.2 The Quartz Architecture 

Our main objective while developing Quartz was to design an architecture that would 

provide QoS-constrained services for a wide range of applications running in open, 

distributed and heterogeneous systems. The solution adopted to deal with this situation 

was to design Quartz in a way that would make it possible for the architecture to 

reconfigure itself internally in order to fulfil the particular needs of the surrounding 

environment. This was achieved by adopting a component-based design, with each 

component being responsible for a particular task in dealing with a particular area of 

application or with a specific resource reservation protocol.  

In this design, an architectural core is populated with interchangeable components. 

Different components handle the different notions of QoS present at application level, 

allowing the architecture to understand the requirements of different applications. 

Similarly, other components are responsible for dealing with the different resource 

reservation mechanisms that may be present in the underlying system 

Quartz allows applications to specify their QoS requirements by using QoS parameters 

appropriate for their particular application area. The parameters specified by 

applications are handled internally by Quartz and translated into a format suitable for 

performing resource reservations. After translating QoS parameters, Quartz enforces 

QoS by reserving resources provided by the underlying system. The reservation of 

resources is done by interacting with resource reservation protocols provided by the 

network and the operating system.  

The implementation of the Quartz QoS architecture, together with a series of test 

applications that make use of the QoS mechanisms provided by Quartz, demonstrated 

that the requirements expected from the architecture prior to the design phase have been 

achieved. Validation tests have shown that Quartz allows QoS to be specified in high-

level formats appropriate for different application areas; enforces QoS transparently 

from the application’s point of view and at both network and operating system level; 

and is able to use multiple reservation protocols in order to enforce the QoS 

requirements of the application. Quartz also provides support for resource adaptation by 

either transparently adapting QoS or by notifying the application that it has to reduce its 
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requirements. Moreover, we have verified through performance tests that the overhead 

caused by Quartz is very small compared to related system activities.  

In our understanding, Quartz, due to its unique combination of features, consists in an 

important step forward in the design of architectures intended to bridge the gap between 

applications in need of QoS-constrained services and the mechanisms for resource 

reservation that are provided by underlying systems.  

8.3 Contribution 

The main advantages of Quartz are provided by its component-based architectural 

design, which makes it flexible and extensible and allows it to handle the different 

notions of QoS present at application level and the heterogeneity found at system level 

in open systems.  

The interfaces used by the application to specify its QoS requirements can be adapted in 

order to recognise the different formats of QoS parameters that are appropriate for 

different application areas. The application interface, however, is independent of the 

reservation protocols present in the underlying system, making them transparent for the 

application. The provision of transparency from the lower-level resource reservation 

protocols simplifies the task of building applications with QoS requirements and 

significantly increases their portability.  

Quartz is flexible enough to adapt itself to dynamic changes in the underlying system by 

replacing the components used internally by the architectural support. Whenever a new 

resource provider and an associated resource reservation protocol are added to the 

underlying system, a new component able to interact with the resource provider can be 

added to the architecture in order to perform resource reservations on behalf of 

applications. In this case, a component responsible for translating between the format 

used by the new reservation protocol to express QoS requirements and the generic QoS 

parameters used internally by Quartz must also be added to the translation unit of the 

architecture.  

Changes at application level can be also accommodated by Quartz. In order to 

understand the different ways used by applications to express their QoS requirements, 

Quartz allows a translation component to be replaced. This component, the application 
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filter, is responsible for translating between the QoS parameters used by the application 

and the generic QoS parameters used internally by Quartz.  

New components can be selected from a library or, in cases where no appropriate 

component is available, they can be written by the application programmer. Since each 

component performs a very particular role in the overall architecture, the knowledge 

necessary for implementing them is limited. Independence between components, which 

communicate through a set of well-defined interfaces, ensures that components can be 

combined freely.  

Transparent QoS enforcement is another feature provided by Quartz, since the 

architecture is designed in a way that the application is unaware of the mechanisms used 

for resource reservation at lower levels. The interaction with resource reservation 

mechanisms is performed by components of the architecture specialised for interacting 

with each of the resource reservation protocols present in the underlying system. 

Another important feature supported by Quartz is dynamic resource adaptation. 

Adaptation is supported at both system and application level. The architecture provides 

mechanisms to receive notifications of any change in the QoS supported by the 

platform. Whenever changes occur, the architecture tries to perform adaptation at 

system level, rearranging the balance of resources in order to compensate for any losses 

resulting from the dynamic adaptation. When adaptation at system level is not feasible 

due to the impossibility of compensating for the resources lost, the architecture informs 

the application, which has to degrade its QoS requirements. 

In addition, Quartz is able to enforce QoS at both network and system level, in 

comparison with other QoS architectures presented in the literature, which usually 

concentrate on only one of them.  

8.4 Perspectives for Future Work 

Since Quartz can be deployed on different platforms and can provide QoS for different 

areas of application, the possibilities of using the architecture are very diverse.  

One of the possibilities for future work that we envisage for Quartz is the porting of the 

prototype to a wider variety of computing platforms. At operating system level, it would 

be interesting to add support for real-time operating systems such as Chorus [142], 
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VxWorks [151] or QNX [62]. Support for new reservation protocols at network level, 

such as the Scalable Reservation Protocol (SRP) that is being developed by the IETF 

[1], could also be added in order to expand the platform coverage. This would be done 

by implementing new components of the architecture that interface with these 

reservation protocols.  

Being a component-based and extensible architecture, Quartz can also be modified in 

order to implement new resource balancing algorithms and adaptation policies. In fact, 

Quartz can be used as a toolkit for testing new policies and algorithms by writing new 

components and plugging them into the architecture.  

Another possibility for future work involving Quartz is in developing new applications 

that make use of the architecture for QoS specification and enforcement. We foresee 

several possibilities for Quartz and the Quartz/CORBA framework, more specifically in 

the fields of distributed multimedia, real-time applications, and telecommunications. 

In the area of distributed multimedia, we envisage the application of the 

Quartz/CORBA framework in the scenarios described in Chapter 6, i.e. media 

broadcast, media on demand and videoconference.  

In the field of real-time applications, two main areas are candidates to be explored: 

manufacturing control and avionics.  

In the area of telecommunications, it would be interesting to test the behaviour of the 

telephone exchange example in a real telecommunications platform. 
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Appendix 

This appendix contains the performance measurements that were obtained with the 

remote copy example, which was presented in section 7.1.1. This data was used to 

obtain the values for the overhead caused by the Quartz architecture that was analysed 

in section 7.1.5. 
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A.1 ATM  

 

The table below shows the performance measurements obtained with the remote copy 

application acting as a daemon and using the ATM protocol for transferring a 45Kb file 

over the network. Values shown are average times per connection, in milliseconds, 

obtained for a sequence of 100 connection establishments and QoS reservations. 

Total Time 
(Function+Child) 

Effective 
Function Time 

Hit 
Count 

Function Name 

3.33 3.33 1 _closesocket@4  

6.214 6.214 1 _gethostbyname@4  

33.988 33.988 1 _gethostname@8  

0.01 0.01 1 _inet_ntoa@4  

11.817 11.817 47 _send@16  

26752.07 0.002 1 _WinMain@16  

0.117 0.117 1 _WSAAsyncSelect@16  

0.008 0.008 1 _WSACleanup@0  

0.531 0.531 1 _WSAConnect@28  

0.503 0.503 1 _WSAConnect@28  w/o QoS 

0.341 0.341 2 _WSAEnumProtocolsA@12  

0.001 0.001 1 _WSAGetLastError@0  

0.132 0.132 1 _WSAIoctl@36  

1.127 1.127 1 _WSALookupServiceBeginW@12  

0.134 0.134 1 _WSALookupServiceEnd@4  

0.717 0.717 1 _WSALookupServiceNextW@16  

17.782 17.782 1 _WSASocketA@24  

7.622 7.622 2 _WSAStartup@8  

0.007 0.007 1 AfxGetApp()  

0.013 0.013 1 AfxGetModuleState()  

0.05 0.037 1 AfxInitialize()  

26752.07 19.104 1 AfxWinMain()  

0.01 0.01 3 CComboBox::~CComboBox()  

0.045 0.045 3 CComboBox::CComboBox()  

0.919 0.919 3 CComboBox::SetCurSel()  

0.002 0.002 1 CDialog::~CDialog()  

4.429 4.429 425 CDialog::AssertValid()  

0.037 0.037 1 CDialog::CDialog()  

0.045 0.045 1 CDialog::CheckAutoCenter()  

26730.39 78.174 1 CDialog::DoModal()  

0.326 0.326 426 CDialog::GetRuntimeClass()  

1.651 1.478 1 CDialog::OnCancel()  

41.222 1.38 125 CDialog::OnCmdMsg()  

4.818 1.016 1 CDialog::OnInitDialog()  

0.002 0.002 1 CDialog::OnSetFont()  

0 0 1 CDialog::PreInitDialog()  

73.325 25.569 184 CDialog::PreTranslateMessage()  

0.012 0.012 7 CEdit::~CEdit()  

0.169 0.169 7 CEdit::CEdit()  
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222.494 197.991 104 CEdit::LineScroll()  

0.004 0.004 1 CFile::~CFile()  

0.003 0.003 1 CFile::CFile()  

0.191 0.191 47 CFileException::~CFileException()  

0.555 0.555 47 CFileException::CFileException()  

0.108 0.108 2 CMenu::AppendMenuA()  

0.08 0.001 1 CSampleApp::~CSampleApp()  

0.184 0 1 CSampleApp::CSampleApp()  

26732.87 0.005 1 CSampleApp::InitInstance()  

0 0 340 CSampleDlg::_GetBaseMessageMap()  

0.23 0.063 1 CSampleDlg::~CSampleDlg()  

34.333 0.732 1 CSampleDlg::ATMSender()  

2.245 0.005 1 CSampleDlg::CSampleDlg()  

5.697 0.021 2 CSampleDlg::DoDataExchange()  

40.965 0.023 1 CSampleDlg::FillLocalAddress()  

0.52 0.179 1 CSampleDlg::FindProtocols()  

0.536 0.536 1143 CSampleDlg::GetMessageMap()  

7.612 0.004 1 CSampleDlg::InitWS2()  

5.149 0.028 1 CSampleDlg::OnAsyncSelectATM()  

0 0 1 CSampleDlg::OnCancel()  

37.914 1.235 1 CSampleDlg::OnConnect()  

58.686 0.037 1 CSampleDlg::OnInitDialog()  

0.23 0.006 2 CSampleDlg::OnPaint()  

3302.541 3003.988 47 CSampleDlg::OnTimer()  

299.147 0.225 52 CSampleDlg::PrintStatus()  

0.246 0.246 13 CString::~CString()  

0.006 0.006 8 CString::CString()  

0.083 0.083 5 CString::CString()  

0.001 0.001 1 CString::IsEmpty()  

0.083 0.083 1 CString::LoadStringA()  

0.061 0.061 55 CString::operator char const *()  

10.344 10.344 104 CString::operator+=()  

0.071 0.071 7 CString::operator=()  

0.08 0.08 1 CWinApp::~CWinApp()  

4.527 4.527 371 CWinApp::AssertValid()  

0.184 0.184 1 CWinApp::CWinApp()  

0.007 0.007 1 CWinApp::Enable3dControls()  

0.027 0.018 1 CWinApp::ExitInstance()  

0.465 0.465 371 CWinApp::GetRuntimeClass()  

0.003 0.003 1 CWinApp::InitApplication()  

1.905 1.905 1 CWinApp::LoadIconA()  

0.238 0.238 289 CWinThread::GetMainWnd()  

0.308 0.308 183 CWinThread::IsIdleMessage()  

89.245 12.291 184 CWinThread::PreTranslateMessage()  

1.022 0.969 102 CWinThread::ProcessMessageFilter()  

26553.78 23132.97 184 CWinThread::PumpMessage()  

0.374 0.374 661 CWnd::ContinueModal()  

98.274 34.241 833 CWnd::DefWindowProcA()  

14.102 13.813 1 CWnd::DestroyWindow()  

0.027 0.027 2 CWnd::DoDataExchange()  

0.023 0.023 1 CWnd::EndModalLoop()  

0.003 0.003 2 CWnd::GetSuperWndProcAddr()  

0.16 0.16 1 CWnd::GetSystemMenu()  
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0.111 0.111 185 CWnd::IsFrameWnd()  

0.009 0.009 2 CWnd::IsIconic()  

0.068 0.068 4 CWnd::KillTimer()  

0.048 0.047 2 CWnd::OnChildNotify()  

45.078 3.977 135 CWnd::OnCommand()  

0.215 0.011 2 CWnd::OnPaint()  

0.67 0.263 47 CWnd::OnTimer()  

3429.514 36.696 1151 CWnd::OnWndMsg()  

0 0 1 CWnd::PostNcDestroy()  

0.003 0.003 1 CWnd::PreSubclassWindow()  

2.637 0.072 2 CWnd::SetIcon()  

0.089 0.089 1 CWnd::SetTimer()  

66.82 66.463 56 CWnd::SetWindowTextA()  

1.934 0.013 1 CWnd::UpdateData()  

3455.938 0.878 1151 CWnd::WindowProc()  

0.003 0.003 2 DDV_MinMaxFloat()  

0.003 0.003 2 DDV_MinMaxInt()  

1.065 1.065 2 DDV_MinMaxLong()  

1.991 1.991 6 DDX_CBString()  

0.633 0.633 20 DDX_Control()  

0.806 0.779 8 DDX_Text()  

0.599 0.58 2 DDX_Text()  

0.235 0.22 2 DDX_Text()  

0.315 0.298 2 DDX_Text()  

0.389 0.389 31 operator delete()  

0.567 0.567 62 operator new()  

0.018 0.018 5 operator==()  

0.001 0 1 QzApplication::QzApplication()  

0.01 0 1 QzATMAgent::`scalar deleting destructor'()  

0.01 0 1 QzATMAgent::`vector deleting destructor'()  

0.001 0 1 QzATMAgent::~QzATMAgent()  

0.067 0.056 1 QzATMAgent::Init()  

0.015 0.002 1 QzATMAgent::InitWS2()  

0.545 0.043 1 QzATMAgent::QoSRequest()  

0.072 0.003 1 QzATMAgent::QzATMAgent()  

0 0 3 QzATMFilter::QzATMFilter()  

0.31 0.003 1 QzATMFilter::TranslateQoSDownwards()  

0.001 0.001 1 QzBypassFilter::QzBypassFilter()  

0.002 0.002 4 QzSystemAgent::~QzSystemAgent()  

0.006 0.006 4 QzSystemAgent::QzSystemAgent()  

0.001 0 1 QzDataPacketFilter::QzDataPacketFilter()  

0.118 0.029 1 QzDataPacketFilter::TranslateQoSDownwards()  

0.002 0.002 2 QzNetworkAgent::~QzNetworkAgent()  

0.003 0 2 QzNetworkAgent::QzNetworkAgent()  

0.001 0 1 QzOSAgent::~QzOSAgent()  

0.001 0 1 QzOSAgent::QzOSAgent()  

0.145 0.002 2 QzQoS::`scalar deleting destructor'()  

0.145 0.002 2 QzQoS::`vector deleting destructor'()  

0.128 0.003 3 QzQoS::~QzQoS()  

0.261 0.261 33 QzQoS::GetParam()  

0 0 12 QzQoS::GetParam()  

0.003 0.003 6 QzQoS::QzQoS()  

0.613 0.16 33 QzQoS::SetParam()  
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0.036 0 1 QzQoSAgent::`scalar deleting destructor'()  

0.036 0 1 QzQoSAgent::`vector deleting destructor'()  

0.028 0.004 1 QzQoSAgent::~QzQoSAgent()  

0.178 0.009 3 QzQoSAgent::AgentFactory()  

0.25 0.008 1 QzQoSAgent::Init()  

1.314 0.004 1 QzQoSAgent::QoSRequest()  

0.096 0.005 1 QzQoSAgent::QzQoSAgent()  

0.073 0.044 1 QzRSVPAgent::`scalar deleting destructor'()  

0.073 0.044 1 QzRSVPAgent::`vector deleting destructor'()  

0.018 0.003 1 QzRSVPAgent::~QzRSVPAgent()  

0.002 0.002 1 QzRSVPAgent::CleanUp()  

0.062 0.06 1 QzRSVPAgent::QzRSVPAgent()  

0 0 3 QzRSVPFilter::QzRSVPFilter()  

0.023 0.023 13 QzTranslation::QzTranslation()  

0.049 0.028 3 QzInterpreter::QzInterpreter()  

0.233 0.039 1 QzInterpreter::TranslateQoSDownwards()  

0.003 0.003 3 QzUpcall::QzUpcall()  

0.013 0.002 1 QzWinNTAgent::`scalar deleting destructor'() 

0.013 0.002 1 QzWinNTAgent::`vector deleting destructor'() 

0.002 0.001 1 QzWinNTAgent::~QzWinNTAgent()  

0.08 0.06 1 QzWinNTAgent::Init()  

0.337 0.236 1 QzWinNTAgent::QoSRequest()  

0.003 0.002 1 QzWinNTAgent::QzWinNTAgent()  

0.002 0.001 2 QzWinNTFilter::QzWinNTFilter()  

0.098 0.003 1 QzWinNTFilter::TranslateQoSDownwards()  

A.2 UDP + RSVP 

These are the results of the performance measurements obtained with the remote copy 

application using UDP for data transfer and RSVP for resource reservation. The same 

test scenario that was used for measuring the performance of the application when using 

the ATM protocol was applied in this case.  

Total Time 
(Function+Child) 

Effective 
Function Time 

Hit 
Count 

Function Name 

0.945 0.945 2 _closesocket@4  

19.917 19.917 4 _gethostbyname@4  

10.966 10.966 2 _gethostname@8  

0.112 0.112 52 _htons@4  

0.105 0.105 5 _inet_addr@4  

0.621 0.621 50 _inet_ntoa@4  

0.001 0.001 1 _ntohl@4  

23.274 23.274 47 _sendto@24  

12548.99 97.302 1 _WinMain@16  

0.014 0.014 1 _WSACleanup@0  

1.024 1.024 4 _WSAEnumProtocolsA@12  

11.533 11.533 3 _WSAIoctl@36  

18.695 18.695 2 _WSASocketA@24  

9.73 9.73 2 _WSAStartup@8  

0.06 0.06 1 AfxInitialize()  
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0.097 0.097 1 CSampleApp::~CSampleApp()  

0.241 0.241 1 CSampleApp::CSampleApp()  

12451.69 11943.65 1 CSampleApp::InitInstance() 

0 0 327 CSampleDlg::_GetBaseMessageMap()  

0.171 0.171 1 CSampleDlg::~CSampleDlg()  

3.054 3.052 1 CSampleDlg::CsampleDlg()  

7.279 7.279 2 CSampleDlg::DoDataExchange()  

20.641 0.028 1 CSampleDlg::FillLocalAddress()  

0.788 0.233 1 CSampleDlg::FindProtocols()  

0.902 0.902 1103 CSampleDlg::GetMessageMap()  

9.72 0.004 1 CSampleDlg::InitWS2()  

0 0 1 CSampleDlg::OnCancel()  

53.28 1.86 1 CSampleDlg::OnConnect()  

61.7 25 1 CSampleDlg::OnInitDialog()  

0.432 0.432 2 CSampleDlg::OnPaint()  

385.566 12.856 47 CSampleDlg::OnTimer() 

353.54 353.591 50 CSampleDlg::PrintStatus() 

49.473 0.469 1 CSampleDlg::UDPSender()  

0.002 0.001 1 QzApplication::QzApplication()  

0 0 2 QzATMFilter::QzATMFilter()  

0 0 1 QzBypassFilter::QzBypassFilter()  

0 0 3 QzSystemAgent::~QzSystemAgent()  

0.003 0.003 3 QzSystemAgent::QzSystemAgent()  

0 0 1 QzDataPacketFilter::QzDataPacketFilter()  

0.161 0.05 1 QzDataPacketFilter::TranslateQoSDownwards()  

0 0 1 QzNetworkAgent::~QzNetworkAgent()  

0.001 0 1 QzNetworkAgent::QzNetworkAgent()  

0 0 1 QzOSAgent::~QzOSAgent()  

0 0 1 QzOSAgent::QzOSAgent()  

0.136 0.019 2 QzQoS::`scalar deleting destructor'()  

0.136 0.019 2 QzQoS::`vector deleting destructor'()  

0.116 0.116 2 QzQoS::~QzQoS()  

0.186 0.186 43 QzQoS::GetParam()  

0 0 12 QzQoS::GetParam()  

0.002 0.002 5 QzQoS::QzQoS()  

0.725 0.725 32 QzQoS::SetParam()  

1.709 0.011 1 QzQoSAgent::`scalar deleting destructor'()  

1.709 0.011 1 QzQoSAgent::`vector deleting destructor'()  

1.698 0.006 1 QzQoSAgent::~QzQoSAgent()  

0.105 0.031 2 QzQoSAgent::AgentFactory(unsigned int,char 
*)  

9.163 0.007 1 QzQoSAgent::Init()  

21.176 0.007 1 QzQoSAgent::QoSRequest()  

0.109 0.003 1 QzQoSAgent::QzQoSAgent()  

1.683 0.014 1 QzRSVPAgent::`scalar deleting destructor'()  

1.683 0.014 1 QzRSVPAgent::`vector deleting destructor'()  

1.669 0.03 1 QzRSVPAgent::~QzRSVPAgent()  

1.64 0.004 1 QzRSVPAgent::CleanUp()  

5.214 0.008 1 QzRSVPAgent::FillLocalAddress()  

0.64 0.171 1 QzRSVPAgent::FindProtocols()  

9.079 0.297 1 QzRSVPAgent::Init()  

0.058 0.044 1 QzRSVPAgent::InitWS2()  

20.208 0.006 1 QzRSVPAgent::QoSRequest()  
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0.074 0.072 1 QzRSVPAgent::QzRSVPAgent()  

9.18 0.01 1 QzRSVPAgent::RSVPOpenSocket()  

9.825 0.011 1 QzRSVPAgent::RSVPRegister  

1.034 0.004 1 QzRSVPAgent::RSVPRelSender()  

0.757 0.018 1 QzRSVPAgent::RSVPSender  

0 0 3 QzRSVPFilter::QzRSVPFilter()  

0.413 0.075 1 QzRSVPFilter::TranslateQoSDownwards()  

0.015 0.015 12 QzTranslation::QzTranslation  

0.06 0.041 3 QzInterpreter::QzInterpreter()  

0.27 0.055 1 QzInterpreter::TranslateQoSDownwards()  

0.001 0.001 3 QzUpcall::QzUpcall()  

0.009 0.011 1 QzWinNTAgent::`scalar deleting destructor'() 

0.009 0.011 1 QzWinNTAgent::`vector deleting destructor'() 

0 0 1 QzWinNTAgent::~QzWinNTAgent()  

0.077 0.077 1 QzWinNTAgent::Init()  

0.461 0.313 1 QzWinNTAgent::QoSRequest()  

0 0.001 1 QzWinNTAgent::QzWinNTAgent()  

0 0 2 QzWinNTFilter::QzWinNTFilter()  

0.147 0.045 1 QzWinNTFilter::TranslateQoSDownwards()  

A.3 TCP + RSVP 

These are the results of the performance measurements obtained with the “rcp” 

application using TCP for data transfer and RSVP for resource reservation. The same 

test procedure that was used in the last two cases was applied here.  

Total Time 
(Function+Child) 

Effective 
Function Time 

Hit 
Count 

Function Name 

9.884 9.884 2 _closesocket@4  

0.687 0.687 1 _connect@12  

0.002 0.002 1 _GetCurrentProcess@0  

19.704 19.704 4 _gethostbyname@4  

10.708 10.708 2 _gethostname@8  

0.003 0.003 1 _GetModuleHandleA@4 

0.013 0.013 1 _GetStartupInfoA@4 

0.004 0.004 6 _htons@4  

0.118 0.118 5 _inet_addr@4  

0.046 0.046 3 _inet_ntoa@4  

76.114 76.114 47 _send@16  

0.285 0.285 1 _SetPriorityClass@8  

0.028 0.028 1 _setsockopt@20  

14111.97 26.879 1 _WinMain@16  

1.742 1.742 1 _WSAAsyncSelect@16  

0.016 0.016 1 _WSACleanup@0  

0.994 0.994 4 _WSAEnumProtocolsA@12  

0.003 0.003 1 _WSAGetLastError@0  

23.841 23.841 3 _WSAIoctl@36  

111.24 111.24 2 _WSASocketA@24  

9.591 9.591 2 _WSAStartup@8  

0.057 0.057 1 AfxInitialize()  

0.093 0.093 1 CSampleApp::~CSampleApp()  
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0.251 0.251 1 CSampleApp::CSampleApp  

14085.09 13281.14 1 CSampleApp::InitInstance()  

0.072 0.072 323 CSampleDlg::_GetBaseMessageMap()  

0.17 0.17 1 CSampleDlg::~CSampleDlg()  

2.516 2.514 1 CSampleDlg::CSampleDlg()  

8.13 8.13 2 CSampleDlg::DoDataExchange()  

20.833 0.034 1 CSampleDlg::FillLocalAddress()  

0.756 0.224 1 CSampleDlg::FindProtocols()  

1.27 1.27 1040 CSampleDlg::GetMessageMap()  

9.581 0.006 1 CSampleDlg::InitWS2()  

160.594 0.232 1 CSampleDlg::OnAsyncSelectTCP()  

0 0 1 CSampleDlg::OnCancel()  

121.013 1.875 1 CSampleDlg::OnConnect()  

67.974 30.347 1 CSampleDlg::OnInitDialog()  

0.159 0.159 1 CSampleDlg::OnPaint()  

448.215 11.75 47 CSampleDlg::OnTimer()  

477.656 476.973 51 CSampleDlg::PrintStatus()  

117.208 0.298 1 CSampleDlg::TCPSender()  

0.002 0.001 1 QzApplication::QzApplication()  

0.003 0.001 2 QzATMFilter::QzATMFilter()  

0.002 0.002 1 QzBypassFilter::QzBypassFilter()  

0 0 3 QzSystemAgent::~QzSystemAgent()  

0.004 0.004 3 QzSystemAgent::QzSystemAgent()  

0.004 0.003 1 QzDataPacketFilter::QzDataPacketFilter()  

0.195 0.09 1 QzDataPacketFilter::TranslateQoSDownwards()  

0.002 0.002 1 QzNetworkAgent::~QzNetworkAgent()  

0.002 0.001 1 QzNetworkAgent::QzNetworkAgent()  

0.001 0.001 1 QzOSAgent::~QzOSAgent()  

0.003 0.002 1 QzOSAgent::QzOSAgent()  

0.129 0.023 2 QzQoS::`scalar deleting destructor'()  

0.129 0.023 2 QzQoS::`vector deleting destructor'()  

0.108 0.108 3 QzQoS::~QzQoS()  

0.208 0.208 43 QzQoS::GetParam()  

0.009 0.009 12 QzQoS::GetParam()  

0.007 0.007 6 QzQoS::QzQoS()  

0.708 0.708 32 QzQoS::SetParam()  

9.525 0.013 1 QzQoSAgent::`scalar deleting destructor'()  

9.525 0.013 1 QzQoSAgent::`vector deleting destructor'()  

9.512 0.01 1 QzQoSAgent::~QzQoSAgent()  

0.117 0.028 2 QzQoSAgent::AgentFactory()  

9.149 0.009 1 QzQoSAgent::Init()  

119.025 0.016 1 QzQoSAgent::QoSRequest()  

0.13 0.01 1 QzQoSAgent::QzQoSAgent()  

9.487 0.017 1 QzRSVPAgent::`scalar deleting destructor'()  

9.487 0.017 1 QzRSVPAgent::`vector deleting destructor'()  

9.47 0.04 1 QzRSVPAgent::~QzRSVPAgent()  

9.429 0.006 1 QzRSVPAgent::CleanUp()  

5.257 0.008 1 QzRSVPAgent::FillLocalAddress()  

0.629 0.167 1 QzRSVPAgent::FindProtocols()  

9.061 0.287 1 QzRSVPAgent::Init()  

0.056 0.04 1 QzRSVPAgent::InitWS2()  

117.998 0.018 1 QzRSVPAgent::QoSRequest()  

0.082 0.08 1 QzRSVPAgent::QzRSVPAgent()  
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101.933 0.014 1 QzRSVPAgent::RSVPOpenSocket()  

14.519 0.016 1 QzRSVPAgent::RSVPRegister()  

8.375 0.009 1 QzRSVPAgent::RSVPRelSender()  

1.042 0.018 1 QzRSVPAgent::RSVPSender  

0 0 3 QzRSVPFilter::QzRSVPFilter()  

0.452 0.104 1 QzRSVPFilter::TranslateQoSDownwards()  

0.022 0.022 12 QzTranslation::QzTranslation()  

0.059 0.04 3 QzInterpreter::QzInterpreter()  

0.306 0.079 1 QzInterpreter::TranslateQoSDownwards()  

0.002 0.002 3 QzUpcall::QzUpcall()  

0.015 0.013 1 QzWinNTAgent::`scalar deleting destructor'() 

0.015 0.013 1 QzWinNTAgent::`vector deleting destructor'() 

0.003 0.002 1 QzWinNTAgent::~QzWinNTAgent()  

0.078 0.078 1 QzWinNTAgent::Init()  

0.449 0.013 1 QzWinNTAgent::QoSRequest()  

0.007 0.004 1 QzWinNTAgent::QzWinNTAgent()  

0.001 0.001 2 QzWinNTFilter::QzWinNTFilter()  

0.146 0.044 1 QzWinNTFilter::TranslateQoSDownwards()  

 


