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Abstract. Because of the changing nature of spam, a spam filtering 
system that uses machine learning will need to be dynamic. This 
suggests that a case-based (memory-based) approach may work well. 
Case-Based Reasoning (CBR) is a lazy approach to machine learning 
where induction is delayed to run time. This means that the case base 
can be updated continuously and new training data is immediately 
available to the induction process. In this paper we present a detailed 
description of such a system called ECUE and evaluate design 
decisions concerning the case representation. We compare its 
performance with an alternative system that uses Naïve Bayes (NB). 
We find that there is little to choose between the two alternatives in 
cross-validation tests on data sets. However, ECUE does appear to have 
some advantages in tracking concept drift over time.  

1 Introduction 

Spam classification is a challenging task for a number of reasons. Not least of these is 
the fact that something of an “arms race” has developed between spammers and the 
filtering systems developed to identify spam. The content and structure of spam 
messages is constantly changing as spammers attempt to bypass the techniques used 
by the filtering systems to catch the spam. This poses a difficult challenge as systems 
need to identify and learn new types of spam as this arms race continues.  

Lazy learning is good for dynamically changing situations. With lazy learning the 
decision of how to generalise beyond the training data is deferred until each new 
unseen instance is considered. In comparison to this, eager learning systems 
determine their generalisation mechanism by building a model based on training data 
in advance of considering any new unseen instances. In this paper we present E-mail 
Classification Using Examples (ECUE), a lazy learning system using CBR that 
seamlessly incorporates new training data.  

Another challenge facing effective spam filtering using machine learning is dealing 
with large amounts of training data. A dynamic system which integrates new training 
data will require some means of managing the training data. CBR research offers a 
number of case-base management techniques to remove noisy and redundant training 
data and so effectively manage the size of the training data or case base over time. 



ECUE incorporates an effective case-based editing technique [�1] which allows the 
number of training cases to remain at a manageable and efficient level.  

The existing research on using a memory or case-based based approach [�2,�3] has a 
number of limitations. Firstly the evaluation is based on a restrictive data set 
incorporating legitimate email messages sent to a linguistics mailing list and “old-
fashioned” spam emails that contain few of the obfuscations common in spam email 
today. Secondly all evaluations are static evaluations and do not take into account the 
changing nature of spam. In addition to static cross-validation tests, our evaluation of 
the approach presented in this paper includes dynamic evaluation of two independent 
datasets of over 10,000 email messages each received over the period of a year.  

This paper begins with an overview of other work using machine learning 
techniques in spam filtering in Section 2. Section 3 presents ECUE, our case-based 
spam filtering approach and describes the feature selection, case retrieval and case-
base management techniques we use. A preliminary evaluation of ECUE and 
comparison with NB is presented in Section 4. Section 5 outlines directions for future 
work while our conclusions are presented in Section 6.  

2 Spam Filtering and Machine Learning 

Existing research on using machine learning for spam filtering primarily uses NB as 
the technique of choice [�2,�4-�6] with many unpublished implementations reported on 
the Web. In addition to NB there has been work using Support Vector Machines [�7,�8], 
Latent Semantic Indexing [�9], and work using memory based classifiers [�2,�3,�10]. 
Sakkis et al. [�3] reported that their memory based classifier compared favourably to 
NB for spam filtering mailing lists and newsgroups while our preliminary findings 
[�10] suggested that CBR would outperform NB.  

Algorithms incorporating the NB classifier have proven to be among the most 
successful learners in the categorisation of text documents [�11] and are good for high 
dimension data, hence their popularity in spam classification. 

2.1 Naïve Bayes for Text Classification 

NB is a probabilistic classifier that can handle a large number of features that other 
machine learning techniques cannot. It is ‘naïve’ in the sense that it assumes that the 
features are independent. 

Consider a group of documents that are labelled as one of a set of classifications 
ci∈ C. Each document is described by a set of attributes {a1,a2,…,an} where ai. 
indicates the presence of that attribute in the document. The classification returned 
from a NB classifier for a new document is given in Equation 1.  
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Due to the significance of false positives (legitimate emails identified incorrectly 
as spam) in spam filtering, the NB classifier is not generally used in this simple 
argmax form. In practice the classification threshold is set to bias the classifier away 
from false positives (see Section �5.2). 

The conditional probabilities can be estimated by jijji nncaP =)|( where ijn  is the 
number of times that attributes ai occurs in those documents with classification cj and 



nj is the number of documents with classification cj. This provides a good estimate of 
the probability in many situations but in situations where nij is very small or even 
equal to zero this probability will dominate, resulting in an overall zero probability. A 
solution to this is to incorporate a small-sample correction into all probabilities called 
the Laplace correction [�12]. The corrected probability estimate is given by Equation 
2, where kin  is the number of values for attribute ai. Kohavi et al. [�13] suggest a value 
of f = 1/m where m is equal to the number of training documents. 
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3 Case-Based Spam Filtering 

This section describes ECUE, the case-based system we have implemented for 
spam filtering. The description includes details of the feature extraction and 
representation, feature selection, case retrieval and case-base editing techniques we 
have used. 

3.1 Feature Extraction  

In order to identify the possible lexical features from the training set of emails, each 
email was parsed and tokenised. No stop word removal, stemming or lemmatisation 
was performed on the text before tokenisation. Email attachments were removed 
before parsing but any HTML text present in the email was included in the 
tokenisation. The datasets used were personal datasets, i.e. all emails in each dataset 
were sent to the same individual. Hence it was felt that certain headers may contain 
useful information so a selection of header fields, including the Subject, To and From 
headers were included in the tokenisation.  

Three types of features were identified: 
• word features (i.e. sequences of characters separated by white space or 

separated by start and end HTML tag markers), 
• letter or single character features,  
• statistical features, e.g. the proportion of uppercase or lowercase 

characters.   
No domain specific feature identification was performed at this stage although 

work by Sahami et al. [�5] has indicated that the effectiveness of filters will be 
enhanced by their inclusion. 

3.2 Feature Representation 

In a CBR learner, examples in the training data are represented as cases in a case 
base. For the spam filtering domain, each training example is a case ei represented as 
a vector of feature values, ei = (f1,f2,…,fn,,s). In text classification the lexical features 
are normally represented in one of two ways: (a) binary i.e. if the feature exists in the 
email, fi = 1, otherwise fi = 0, or (b) numeric where fi is a number indicative of the 
frequency of occurrence of the feature in the email. Feature s represents the 
classification of the email, in our situation either spam or non-spam. 



For numeric features the standard way to determine the value of fi for feature xi  is 
to use the normalised frequency fi,j of the feature, see Equation 3, where freqi,j is the 
number of times that feature xi  occurs in email ej. 
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In the evaluation presented here we used this normalised frequency for word and 
letter features (separate normalisations for each type) and simply the proportion 
calculated for the statistical features (which is between 0 and 1 by definition). 

A binary representation for the different types of feature is not so straightforward. 
For word features we use the simple existence rule that if the word exist in the email 
the feature value fi = 1 otherwise fi = 0. However for letter features, almost all letters 
or characters will occur within an email so using the existence rule is not useful. For 
letter features we use the Information Gain [�14] value of the feature as calculated 
during the feature selection process (see Section �3.3) to determine whether to set        
fi = 1. If the normalised frequency of the letter feature is greater than or equal to the 
normalised frequency which returns the highest information gain for that letter then 
the feature value is set to 1 in the case representation, otherwise it is zero. Given that 
statistical features are also values between 0 and 1, this rule was also applied to 
features of this type to determine their binary representation.  

A series of experiments to evaluate whether features should be represented as 
binary or numeric features was performed (as discussed in Section �4.1). It is more 
normal in text classification for lexical features to carry frequency information but the 
results of our evaluations showed no significant improvements were demonstrated 
when using numeric features over binary features.  

In addition using binary features allowed use of an efficient case retrieval 
algorithm (discussed in Section �3.4) to improve performance.   

3.3 Feature Selection 

Tokenising 1000 emails results in a very large number of features, (tens of thousands 
of features). Feature selection is necessary to reduce the dimensionality of the feature 
space. Yang and Petersen’s [�15] evaluation of dimensionality reduction in text 
categorisation found that Information Gain (IG) [�14] was one of the top two most 
effective techniques for aggressive feature removal without losing classification 
accuracy. We calculated the IG of each feature and the top 700 features were selected. 
Our cross validation experiments, varying between 100 and 1000 features across 4 
datasets, indicated best performance at 700 features. 

3.4 Case Retrieval  

A CBR learner assigns a classification to a previously unseen example or target case 
by identifying and analysing the training cases that are most similar to it. Most of 
these classifiers use the k-NN algorithm to determine the k most similar training cases 
and then use these to classify the target case. The standard k-NN algorithm 
individually calculates the similarity of each case in a case base to the target case. 
This approach is quite inefficient in domains where there is feature-value redundancy 



and/or missing features in cases. Because our spam cases have both of these 
characteristics, and our feature representation was binary, we use an alternative 
similarity retrieval algorithm based on Case Retrieval Nets (CRNs) [�16]. 

A CRN is a memory structure which allows an efficient yet flexible retrieval of 
cases. They borrow ideas from neural networks and associative memory models. They 
are made up of the following components: 

• Case nodes represent stored cases. 
• Information Entity Nodes (IEs) represent feature-value pairs within cases 
• Relevance Arcs link case nodes with the IEs that represent them. They have 

weights that capture the importance of the IE.  
• Similarity Arcs connect IEs that refer to the same features, and have 

weights relative to the similarity between connected IEs.  
The idea behind the CRN architecture is that a target case is activated by 

connecting it to the net via a set of relevance arcs and this activation is then spread 
across the net. Each of the other case nodes accumulates an activation score 
appropriate to its similarity to the target case. The case nodes with the highest 
activation are the most similar cases to the target case. 

We implemented a CRN for case retrieval that was configurable for different k-
nearest neighbour classifiers. As the features in our case representation are binary 
(implemented as boolean values), IEs are only included for features with a true value 
and similarity arcs are not needed. The relevancy arcs are all weighted with a weight 
of 1.  

Fig. 1 depicts an example of our CRN for spam filtering. Our implementation of 
the CRN is similar in some respects to a Concept Network Graph (CNG) [�17] with 
thresholds set so that the activations are not spread beyond the first level of nodes.  
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Fig. 1. Case Retrieval Net 

3.5 Case Base Management  

Research to date on machine learning for spam filtering has focused on static 
evaluations on datasets of manageable size. For instance, the LingSpam corpus [�3,�9] 
contains 481 spam emails. Since a working spam filter could face this number of 
spam messages in a week there is a need to actively manage the training data. A key 
step in managing the training data is the case base editing process that deletes noisy 
examples and removes redundant cases from the case base. 



Case base editing techniques involve reducing a case base or training set to a 
smaller number of cases while endeavouring to maintain or even improve the 
generalisation accuracy. There is significant research in this area [�18-�20]. The case 
base editing technique that we used is Competence Based Editing [�1] that uses the 
competence properties of the cases in the case base to identify noisy and redundant 
cases to remove. 

The Competence Based Editing technique initially builds a competence model of 
the case base identifying for each case its usefulness (represented by the cases that it 
contributes to classifying correctly) and also the damage that it causes (represented by 
the cases that it causes to be misclassified).  These properties of each case are used in 
a two step process to identify the cases to be removed.  The first stage is the 
competence enhancement or noise reduction stage which removes mislabelled or 
exceptional cases. The second stage is the competence preservation or redundancy 
reduction stage. Redundant cases are those that are in the centre of a cluster of cases 
of the same classification and are not needed for classification.  

The advantage of our CBE technique applied to the spam domain is that it results 
in a conservative pruning of the case base which we found resulted in larger case 
bases but better generalisation accuracy [�1]. 

4 Static Evaluation 

Two types of evaluation of ECUE were performed. Firstly, evaluations on 4 static 
datasets of 1000 emails each were performed to determine which feature 
representation was appropriate for the cases in the case base and to evaluate how a 
case-based classifier would perform compared to a Naïve Bayes classifier. These 
evaluations are discussed in this section. The second type of evaluation, the 
performance of the case-based system, ECUE, in a dynamic situation is discussed in 
Section �5. 

It is worth noting that rudimentary feature extraction techniques, described in 
Section 3, were used for all evaluations. To achieve a high performance comparable 
with existing commercial spam filtering systems, such as Spamassassin, “commercial 
grade” feature extraction techniques need to be implemented. 

4.1 Experimental Setup 

The objectives of the static evaluations were two-fold, to determine the most 
appropriate case representation and to compare a case-based classifier with a Naïve 
Bayes classifier. Four datasets were used. The datasets were derived from two corpora 
of spam and legitimate email collected by two individuals over a period of 
approximately eighteen months up to and including December 2003 for Dataset 1 and 
up to and including January 2004 for Dataset 2. The legitimate emails in each corpus 
include a variety of personal, business and mailing list emails.  

Two datasets of one thousand cases were extracted from each corpus. Each 
included five hundred spam emails and five hundred non-spam or legitimate emails. 
Datasets Feb-1 and Feb-2 consisted of 500 consecutive spam and legitimate emails 
received up to and including February 2003 while Datasets Nov-1 and Nov-2 
consisted of 500 spam and legitimate consecutive emails received between February 



2003 and November 2003. Given the evolving nature of spam it was felt that these 
datasets gave a representative collection of spam. 

4.2 Evaluation Metrics 

Since FPs are much more serious that FNs, accuracy (or error) as a measure of 
performance does not present the full picture. Two filters with similar accuracy may 
have very different FP and FN rates. 

In previous work on spam filtering a variety of measures have been used to report 
performance. The most common performance metrics are precision and recall [�9]. 
Sakkis et al. [�3] introduce a weighted accuracy measure which incorporates a measure 
of how much more costly an FP is than an FN. Although these measures are useful for 
comparison purposes, the actual FP and FN rate are not visible so the true 
effectiveness of the classifier is not evident. For these reasons, where appropriate, we 
will use the rate of FPs, the rate of FNs, and the average within class error rate, 
AvgError = (FPRate+FNRate)/2 as our evaluation metrics.  

4.3 Evaluation of Feature Representation 

The objective of this evaluation was to determine whether a binary or numeric feature 
representation resulted in better generalisation accuracy. For each dataset we used 50 
fold cross-validation, dividing the dataset into 50 stratified divisions or folds. Each 
fold in turn is considered as a test set with the remaining 49 folds acting as the 
training set.  

For each test fold and training set combination we built two case bases, the first 
using a binary feature representation for the cases and the second using numeric 
features. Section �3.2 discusses how these representations were achieved. Each case 
base representation was then edited using CBE (see Section �3.5). We then calculated 
the performance measures of the test set against each of the four case base 
configurations; binary and numeric feature representation, edited and not edited. 
Confidence levels were calculated using McNemar’s test [�21] between each 
combination of two case base configurations to determine whether significant 
differences existed. For each test example the result is recorded and, in order to 
compare case base configuration A with B, a table such as Table 1 is constructed. 

 
n00 = the number of 
examples misclassified by 
both case base 
configurations 

n01 = the number of 
examples misclassified by 
case base configuration A 
but classified correctly by B 

n10 = the number of 
examples classified correctly 
by case base configuration A 
but misclassified by B 

n11 = the number of 
examples classified correctly 
by both case base 
configurations 

Table 1: McNemar’s Results Table 

The total number of test examples is n = n00 + n11 + n01 + n10. If no difference exists 
between the two case base configurations then n10 = n01.  McNemar’s test requires the 



statistic in Equation 4 to be calculated. This statistic is distributed (approximately) as 
2χ  with 1 degree of freedom. 
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The advantage that McNemar’s test has over the cross-validated paired t-test is a 
lower Type I error (the probability of incorrectly detecting a difference when no 
difference exists) but it also has good power (the ability to detect a difference where 
one exists) [�21].  

The results of our evaluations for each dataset and the average over all datasets are 
presented in Fig 2. It is worth noting that in the overall results, since we are 
calculating confidence levels using 4000 test examples, significance can be observed 
where the effect is quite marginal.  
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DataSet 2 (Feb)
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Overall Results (over 4 datasets)
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Fig 2: Results of Feature Representation Evaluations 



The results can be summarised as follows: 
(i) Case base editing improves performance for both case representations 

although the performance for numeric features is not as significant (It 
only measures as significant at 95% confidence level for the overall result 
across all datasets whereas 2 of the 4 datasets demonstrate significant 
improvement for binary features at 99% level or higher with an overall 
significance level of 99.9%).  

(ii) Case base editing also improves the performance on FPs with the binary 
feature representation showing higher levels of significance.  

(iii) Using numeric features on a full (non-edited) case base has significantly 
better performance (at 99% or higher) than binary features in 3 of the 4 
datasets. However, the FP performance is not significantly different 
except in Dataset 1 (Feb) (at the 95% level). 

(iv) The performance of an edited case base with binary features is not 
consistently significantly better than a full or edited case base with 
numeric features.  

We then evaluated whether feature weighting improved performance or not. Each 
feature was weighted with a weight equal to the IG value of the feature identified 
during the feature selection process as suggested by Sakkis et al. [�3]. We evaluated 
each case base configuration with and without feature weighting. The results are 
shown in Fig 3. 

The results can be summarised as follows: 
(i) Using feature weights has a negative effect on FP performance, with 5 of 

the 12 comparisons showing a significant difference (at 95% or higher) 
indicating that the rate of FPs is better without feature weighting.  The 
remaining comparisons have no significant difference. 

(ii) Using feature weights significantly improves the accuracy only in Dataset 
2 (Nov) where 3 of the 4 comparisons show a lower error rate, with 
feature weighting, significant at 99% or higher. The remaining datasets do 
not demonstrate any significant improvement using feature weighting.  

Looking at the overall results for feature weighting, the best performance appears 
to be using numeric features on an edited case base. There is a significant difference 
in accuracy (at the 99.9% level) using feature weighting, but no significant difference 
in FP rate. A close second is using binary features on an edited case base with no 
feature weighting. The accuracy is not as good (a difference of 1.5%) significant at 
the 99.9% level but the difference in FP rate is not significant. Therefore in terms of 
classification accuracy, numeric features on an edited case base using feature weights 
wins.  

However, there is a considerable performance hit when using numeric features. 
The improvements in speed offered by the CRN are not realised for numeric features, 
only for symbolic or binary features. While numeric feature impact on response time 
at run-time the real performance hit comes at case base editing time which involves 
classifying each case in the case base multiple times. This is significant as it is clear 
that case based editing improves accuracy. A case base configuration that has long 
response time will have a large effect on the performance of a real time system. In the 
case of commercial applications like spam filtering, this cannot be ignored. For these 
reasons we chose to use a binary feature representation and an edited case base over 
the numeric features. We lose slightly in overall classification accuracy but the FP 



rate is not affected. We expect that including domain specific feature extraction 
methods will improve the accuracy. 
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Overall Results (over 4 datasets)
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Fig 3: Results of Feature Weighting Evaluation 

4.4 CBR vs NB  

A key objective was to evaluate the generalisation accuracy of ECUE using a k-NN 
classifier with different values of k. A number of k-NN classifiers were evaluated. 
Once the k-NN classifier returns the cases that are determined to be closest to the 
query case, a voting algorithm is implemented to determine the classification of the 
query case. For this evaluation we used a distance weighted voting algorithm. The 
vote returned for classification ci for query case xq, over the k nearest neighbours 
x1,…,xk using distance weighted voting is given in Equation 5 where 1),(1 =ba  if 

ba = , 0),(1 =ba if ba ≠ , wj is given in Equation 6 and cj is the classification of 
neighbour xj. The classification with the highest vote is deemed to be the 
classification of the query case.  
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The votes for spam and non spam are normalised and the spam normalised vote is 
compared with a set threshold. If the spam vote is greater than the threshold the query 
case is considered to be spam. By varying the threshold from 0 to 1 and plotting the 
resulting rate of False Positive (FP) classifications (legitimate emails classified 
incorrectly as spam), against 1 minus the rate of False Negative (FN) classifications 
(spam emails classified incorrectly as legitimate), an ROC curve can be plotted [�22]. 

In order to compare ECUE with the current spam filtering technique of choice, a 
NB classifier was implemented using the algorithm described in Section �2.1. 
Normalising the probabilities returned by the NB algorithm and varying the threshold 
for a spam classification as described above allowed an ROC curve to be plotted for 
the NB classifier. The larger the area under the curve for an ROC curve, the better the 
classifier. The results of the best k-NN classifier, for an edited and non edited case 
base and the NB classifier are presented in Fig. 4. To show the detail of the curve 
more clearly, only the top left hand corner of the graphs are presented.  

The results presented above do not show that one classifier outperforms in all 
cases. NB seems to perform best in the February datasets while the k-NN classifier on 
an edited case base performs best in the November datasets. 
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DataSet Feb-2 - ROC curves
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Fig. 4. Results of comparing different classifiers 

5 Dynamic Evaluation  

We also evaluated how ECUE performs over a period of over a period of a year using 
2 datasets of over 10,000 emails each, allowing the system to dynamically update its 



training data with examples of spam and legitimate email that were incorrectly 
classified.  

5.1 Experimental Setup 

Two datasets were used. The datasets were derived from the same two corpora of 
email as described above. A case base of 1000 cases, 500 spam emails and 500 
legitimate emails were set up in each case. This training data included the last 500 
spam and non spam emails received up to and including February 2003 in the case of 
Dataset 1 and up to and including January 2003 in the case of Dataset 2. This left the 
remainder of the data for testing. Table 2 shows the number of spam and legitimate 
emails received each month for both datasets.  

A case base was set up for each training dataset using binary word and letter 
features. The classifier selected was k-nearest neighbour with k = 3. Due to the fact 
that an FP is much more serious than an FN, the classifier used unanimous voting to 
determine whether the target case was spam or not. All neighbours returned had to 
have a classification of spam in order for the target case to be classified as spam. This 
corresponds to the leftmost point on the ROC curve in Fig. 4. This strongly biases the 
classifier away from false positives.  

Each case base was edited using the k-NN classifier with k = 3 and the CBE editing 
technique. Our previous experiments with case editing using CBE and a unanimous 
voting classifier indicated that generalisation accuracy increased using an edited case 
base [�1]. Each email in the testing datasets, documented in Table 2, was presented for 
classification in date order to closely simulate what would happen in a real-time 
situation.  

Table 2: Profile of the testing data 
  Feb 

‘03 
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan 

‘04 
Tot 

Data
Set 1 

spam  629 314 216 925 917 1065 1225 1205 1830 576  8902 

 non 
spam 

 93 228 102 89 50 71 145 103 85 105  1076 

Data
Set 2 

spam 142 391 405 459 406 476 582 1849 1746 1300 954 746 9456 

 non 
spam 

151 56 144 234 128 19 30 182 123 113 99 130 1409 

5.2 Evaluation Methods 

A number of experiments were performed, varying from making no updates to the 
original case base to updating the case base on a monthly, weekly and daily basis with 
those emails that were misclassified over the specified period. Our evaluation showed 
the best performance occurred when updating the case base on a daily basis with any 
emails misclassified that day. These results are presented in Fig. 5.  
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Fig. 5. Results of evaluations over a period of time 

The same experiments were performed using the NB classifier on unedited training 
data. The training data could not be edited for the NB classifier as the editing 
technique is a competence-based editing technique which uses a k-NN classifier to 
determine the competence of each case in the case base and analyses the competence 
properties of the cases to determine which cases should be removed. Due to the 
significance of FPs, the NB classifier was configured to be biased away from false 
positives by setting the threshold equal to 1.0. Fig. 5 includes the results of using NB. 

5.3  Results 

Although NB has a lower overall error rate over the datasets with no updating, the 
CBR system performs better in both datasets when dynamically updating the data to 
learn from incorrectly classified emails. It can be seen that daily updating of the 
training data with misclassified emails improves performance of the CBR system but 
has an overall detrimental effect on the NB classifier. NB with daily updates does 
improve the FP rate more than ECUE but the degradation of the FN rate has an 
overall negative effect on performance.  

CBR only needs individual marker cases to construct its model whereas NB 
requires a full concept description. This may affect the performance of the NB 
classifier however the need to train the NB classifier on a full set of data presents its 
own set of data management problems. 

It is worth noting that updating a system using NB with any new training data 
requires a separate learning process to recalculate the probabilities for all features. 
Updating a CBR system, such as ECUE, with new training data simply requires new 
cases to be added to the case base. 

6 Future Work 

The focus of the research presented in this paper is on the case base classifier’s 
ability to dynamically update the training data as new examples of spam and non 
spam are encountered. However, we envisage a hierarchy of learning within this 
domain where this continuous updating with misclassified emails is only the first 
level within three levels of learning.  

As time passes and spam changes, the features selected for earlier training data 
may not be as predictive for new training examples. The second level of learning is to 
re-train the classifier by performing the feature selection process on the updated 



training data. This level of retraining may need to be performed infrequently, e.g. 
every month or every other month. The highest level of learning, performed even 
more infrequently than feature selection, is to allow new feature extraction techniques 
to be added to the system. For instance, when domain specific features are used in the 
system, new feature extraction techniques will allow new features to be included. The 
benefit of using a CRN for implementing the second and third levels of learning is 
that it can easily handle cases with new features. The fact that these features may be 
missing in old cases is not a problem. 

Future work on our CRN will also incorporate CNG-type activation spreading to 
allow cases that do not include the actual selected features to influence the 
classification process. 

7 Conclusions 

The initial stage of this research focused on identifying the most appropriate case 
base configuration for a case-based classifier for spam filtering. Evaluations indicated 
that the best accuracy was provided by a numeric feature representation using feature 
weighting. However, this benefit is marginal (1.5% in accuracy and not significant on 
the all important FP figures) and using numeric features has a significant impact on 
the speed of the system, particularly at the case editing stage. For this reason we are 
inclined to stay with the binary representation and seek to achieve accuracy 
improvements from improved feature extraction techniques. An alternative is to seek 
to speed up the editing of a case base that incorporates numeric features using caching 
of similarity scores for case pairs.  

Using CBR for spam filtering is certainly no worse than using NB. As techniques 
which utilise a probabilistic classifier to detect spam e-mail are already patented [�24], 
it is necessary to find other techniques which offer at least comparable results. In fact, 
our research suggests that CBR demonstrates better performance for learning over 
time than NB. CBR as a lazy learner offers significant advantages; it provides 
capabilities to learn seamlessly without the need for a separate learning process and 
facilitates extending the learning process over different levels of learning.  
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