
Adaptive Offset Subspace Self-Organizing Map:

An Application to Handwritten Digit

Recognition?

Huicheng Zheng, Pádraig Cunningham, and Alexey Tsymbal

Dept of Computer Science
Trinity College Dublin, Ireland

{zhengh, cnnnghmp, tsymbalo}@tcd.ie

Abstract. An Adaptive-Subspace Self-Organizing Map (ASSOM) can
learn a set of ordered linear subspaces which correspond to invariant
classes. However the basic ASSOM cannot properly learn linear manifolds
that are shifted away from the origin of the input space. In this paper, we
propose an improvement on ASSOM to amend this deficiency. The new
network, named AOSSOM for Adaptive Offset Subspace Self-Organizing
Map, minimizes a projection error function in a gradient-descent fash-
ion. In each learning step, the winning module and its neighbors update
their offset vectors and basis vectors of the target manifolds towards the
negative gradient of the error function. We show by experiments that
the AOSSOM can learn clusters aligned on linear manifolds shifted away
from the origin and separate them accordingly. The proposed AOSSOM
is applied to handwritten digit recognition and shows promising results.

1 Introduction

The Adaptive-Subspace Self-Organizing Map (ASSOM) [1] is basically a com-
bination of the traditional SOM and the subspace method. The single weight
vectors at map units in the SOM are replaced by sets of basis vectors that span
some linear subspaces in the ASSOM. By setting filters to correspond to pat-
tern subspaces, some transformation groups, such as translation, rotation and
scaling, can be taken into account. The simulation results in [1] and [2] have
demonstrated that the ASSOM can induce ordered filter banks to account for
translation, rotation and scaling. The ASSOM is an alternative to the standard
Principal Component Analysis (PCA) method of feature extraction. An earlier
neural approach for the PCA problem can be found in [3]. The ASSOM can learn
topologically ordered filters corresponding to feature subspaces thanks to spatial
interactions between processing units of the network. It has been successfully ap-
plied to speech processing [4], texture segmentation [5], image retrieval [6] and
image classification [6] [7], etc. in the literature. A supervised variant of the
ASSOM (SASSOM) was proposed by Ruiz del Solar in [5].

? This work was carried out during the tenure of a MUSCLE Internal fellowship
(http://www.muscle-noe.org).

2

Although each module (a processing unit at the lattice locations in an AS-
SOM) performs an incremental PCA-like operation, in the traditional realization
of the ASSOM, the module only learns a subspace of pattern vectors whose cor-
responding linear manifold must pass through the origin of the input space.
Supposing we have a cluster of pattern vectors spreading on a linear manifold
of the input space which does not pass through the origin, the ASSOM cannot
learn this cluster properly. The learned network will thus lack discriminability.

In order to amend the above-mentioned deficiency, López-Rubio et al. [8]
proposed a Principal Components Analysis Self-Organizing Map (PCASOM),
where the manifold learning is realized by using an incremental PCA. However
computations related to the updating of covariance matrices and the correspond-
ing eigenproblem make PCASOM computationally expensive. Liu [9] devised an
Adaptive Manifold Self-Organizing Map (AMSOM) as an extension of the basic
algorithm of the ASSOM, which attempts to learn linear manifolds. The AM-
SOM was applied to face recognition and demonstrated superior performance to
the standard PCA method as shown in [9]. An extension of AMSOM that uses
a kernel method to account for nonlinear manifolds was proposed in [10].

In this paper, we propose to learn organized linear manifolds based on gra-
dient descent. A previous gradient-descent method for the ASSOM has been in-
troduced in [11], where a new basis updating rule of the ordinary subspaces has
been proposed. The experiments in [11] showed that a gradient-descent method
achieved faster convergence and less average projection error than the conven-
tional ASSOM learning method. The method that we propose in this paper
updates the offset vector and the basis vectors of a linear manifold simulta-
neously at each learning step. The resulting algorithm will be referred to as
AOSSOM for Adaptive Offset Subspace Self-Organizing Map. The AOSSOM is
a theoretically plausible method in the sense that there exists a predefined error
function. It is more robust to local minima than the AMSOM, as will be justified
by experiments in the paper.

The AOSSOM is applied to handwritten digit recognition in this paper. A
major difficulty of handwritten digit recognition is the large variety of writ-
ing styles depending on national and regional origins of people, their individual
habits and the circumstances in which they write [12]. Transformations to the
handwritten digit images such as translation, rotation and scaling are common
in real writing. It is hard to devise a hand-crafted feature extractor to cope
with all the varieties. On the other hand, hand-crafted feature extraction can
be advantageously replaced by carefully designed learning machines that operate
directly on pixel images [13]. Since ASSOM-type networks can learn transforma-
tion groups with subspace competition, they can be used for handwritten digit
recognition and learn filters invariant to a certain extent of variations.

This paper is organized as follows. Section 2 reviews the basic ASSOM algo-
rithm. The proposed AOSSOM is derived in Section 3. Section 4 demonstrate the
ability of AOSSOM to separate clusters by learning linear manifolds. Section 5 is
devoted to the application of AOSSOM to handwritten digit recognition. Finally,
Section 6 concludes this paper and suggests some perspectives.

3

2 ASSOM Learning

2.1 Orthogonal Subspace Projection

Each module in the ASSOM can be realized by a two-layer neural network [2],
as shown in Fig. 1. Supposing a subspace L is spanned by a set of basis vectors
{b1,b2, . . . ,bH}, where H is the dimension of L, the h-th neuron in the first
layer take the orthogonal projection xTbh of x on bh, where 1 ≤ h ≤ H . The
basis vectors are supposed to be orthonormalized. The only quadratic neuron
of the second layer sums up the squared outputs of the first-layer neurons. The
output of the module is then ‖x̂L‖

2, with x̂L being the orthogonal projection of
x on L. It can be regarded as a measure of the matching between x and L.

The input to an ASSOM network is typically an episode, i.e. a sequence of
pattern vectors supposed to approximately span some linear subspace. Typi-
cal examples of episodes used in the literature include sequences of temporally
consecutive speech signals, transformations of image patchs. These vectors shall
also be referred to as component vectors of the episode in this paper. By learn-
ing the episode as a whole, the ASSOM is able to capture the transformation
coded in the episode. For an input episode X = {x(s), s ∈ S}, where S is
the index set of vectors in the episode, Kohonen proposed to use the energy

m(X,L) =
∑

s∈S ‖x̂L(s)‖2 as the measure of matching between X and L [2].

1b 2b Hb

Q

x

1
Tbx

2ˆ
L
x

2
Tbx HbxT

Fig. 1. A module of the ASSOM realized as a neural network

2.2 ASSOM Learning Process

The learning process of ASSOM approximately minimizes the average projection
error of input vectors in an iterative way. In each learning iteration, there are two
basic stages: 1) Competition of the modules for an input episode; 2) Updating of
the winner and its neighbors towards the input in a weighted fashion. A detailed
account of the learning process at each iteration step t is as follows:

1. For the current input episode X = {x(s), s ∈ S}, locate the winning module
c = argmaxi∈I m(X,Li), where I is the index set of modules in the ASSOM.

4

2. For each module i in the neighborhood of c, including c itself, update the
subspace Li for each component vector x(s), s ∈ S, that is, update the basis

vectors b
(i)
h , according to the following rules:

(a) Rotate b
(i)
h according to:

b
(i)
h =

[

I + λ(t)h(i)
c (t)

x(s)xT(s)

‖x̂Li
(s)‖‖x(s)‖

]

b
′(i)
h , (1)

where b
(i)
h is the new basis vector and b

′(i)
h the old one. I is the identity

matrix, λ(t) a learning-rate factor that diminishes with t. h
(i)
c (t) is a

neighborhood function defined on the ASSOM lattice.

(b) Dissipate the basis vectors b
(i)
h , i.e. discard very small “noisy” compo-

nents of the basis vectors, to force the basis vectors to learn the stronger
and more fundamental features [2]. Orthonormalize these basis vectors
afterwards.

A naive implementation of (1) requires a matrix multiplication which needs
not only a large amount of memory, but also a computational load quadratic to
the input dimension. In fact the formula (1) can be further simplified. It is not
hard to get the following alternative formula:

b
(i)
h = b

′(i)
h + ∆b

(i)
h , (2)

where
∆b

(i)
h = α

(i)
c,h(s, t)x(s) (3)

with α
(i)
c,h(s, t) being a scalar value defined by:

α
(i)
c,h(s, t) = λ(t)h(i)

c (t)
xT(s)b

′(i)
h

‖x̂Li
(s)‖‖x(s)‖

. (4)

This shows that the correction ∆b
(i)
h is in fact a scaling of the component

vector x(s), as illustrated in Fig. 2. After updating, b
(i)
h represents better x(s).

Careful examination of (3) would reveal similarity of this formula with a recursive
PCA suggested in [14]. The main difference is that here the gain of stochastic ap-
proximation is modulated by a neighborhood function dependent on the module

competition. Note that the computation of xT(s)b
′(i)
h in (4) can be saved since

it was computed when calculating the projection ‖x̂Li
(s)‖ (cf. Fig. 1). If we cal-

culate the scaling factor α
(i)
c,h(s, t) first, and then use it to scale the component

vector x(s), the basis vector updating speed can be dramatically improved.

2.3 A Deficiency of the ASSOM

As mentioned in Introduction, an intrinsic deficiency of the basic ASSOM is that
it cannot learn linear manifolds which have a shift from the origin. An illustration

5

)(i
hb

)(' i
hb

)(),()(
,

)(stsi
hc

i
h xb α=∆

)(sx

Fig. 2. An insightful view of the basis vector updating rule of ASSOM

of this problem is the two clusters shown in Fig. 3. The basic ASSOM is unable to
separate these two clusters. For a network of two modules with 1-D subspaces,
each module learned one of the two basis vectors marked by the two dotted
lines in the graph. This is also a difficult case for PCA since the first principal
component will point to the vertical direction. However if we can also learn the
offsets of the clusters, then theoretically the learning would be more accurate
and consequently the two clusters can be separated properly. There has been
some work in this direction in the literature. In the next section, we shall review
some of this work.

-12

-9

-6

-3

0

3

6

9

12

-12 -9 -6 -3 0 3 6 9 12

Fig. 3. Two 1-D subspaces (marked by dotted lines) learned by the basic ASSOM

6

3 Learning Linear Manifolds with the AOSSOM

The PCASOM and the AMSOM were proposed to improve the ASSOM so that
the map can learn linear manifolds which do not necessarily pass through the
origin. However the PCASOM is computationally expensive due to the covari-
ance matrices to update and the eigenproblem to solve at each learning step. The
AMSOM [9] is a direct extension of the ASSOM by appending a mean vector m

to each learned subspace. At each learning step, m is first updated according to
the input vector by using an SOM training rule. Then the AMSOM shifts the
manifold to the origin and updates the basis vectors in the same way as the AS-
SOM does. Liu did not provide an objective error function in [9]. Minimization
of the projection error by AMSOM is still to be theoretically justified. Contrary
to the AMSOM, the AOSSOM proposed in this paper starts from an objective
function, which is the average projection error. The algorithm is derived by min-
imizing this error function in a gradient-descent manner. Convergence of the
algorithm will at least guarantee a local minimum of the error function.

3.1 Projection Error Minimization by Gradient Descent

Each module i of an AOSSOM represents a linear manifold Ai described by an

offset vector r(i) and a set of basis vectors b
(i)
h , h = 1, . . . , H. It is not necessary

for the offset vector to be the mean vector of the samples lying in Ai. An error
function is defined for the learning procedure:

E =

∫

∑

i∈I

h(i)
c d(X,Ai)P (X)dX , (5)

where P (X) is the distribution of the random episode X = {x(s); s ∈ S}. c is

the index of the module which wins X. h
(i)
c is a neighborhood function as in the

basic ASSOM. d(X,Ai) is a measure of the distance from X to Ai and defined
as the projection error of X on Ai:

d(X,Ai) =
∑

s∈S

‖x(s) − x̂Ai
(s)‖2 . (6)

In the basic ASSOM, Ai is a linear subspace and the orthogonal projection of
x(s) on Ai is simply

x̂Ai
(s) =

H
∑

h=1

(xT(s)b
(i)
h)b

(i)
h . (7)

While in the more general case where Ai is a linear manifold defined by an offset

vector r(i) and the basis {b
(i)
1 , . . . ,b

(i)
H }, the projection is defined by:

x̂Ai
(s) = r(i) +

H
∑

h=1

(

x′T
Ai

(s)b
(i)
h

)

b
(i)
h , (8)

7

where
x′
Ai

(s) = x(s) − r(i) . (9)

The projection residual of x(s) on the linear manifold Ai is therefore defined by

x̃Ai
(s) = x(s) − x̂Ai

(s) . (10)

The relationship between parameters of the linear manifold Ai, x′
Ai

(s), x̂Ai
(s)

and x̃Ai
(s) is shown in Fig. 4 for the case where Ai is 1-dimensional.

Fig. 4. The relationship between parameters of the 1-D linear manifold Ai, x′
Ai

(s),
x̂Ai

(s) and x̃Ai
(s)

In (5), the index c of the winning module depends on the input episode X as
well as on the status of all the modules in the network. The exact minimization
of an objective function like (5) may be very complicated [2]. Instead, by using a
stochastic approximation, we target the “sample” objective function at a certain
learning step t based on the last input episode X and the last status of the
network:

Es(t) =
∑

i∈I

h(i)
c (t)d(X,Ai) . (11)

The same strategy has been used to derive the basic ASSOM algorithm [2].
Taking gradients of Es(t) with respect to the basis vectors, we have

∂Es

∂b
(i)
h

(t) = h(i)
c (t)

∂d(X,Ai)

∂b
(i)
h

. (12)

This is all that we need for the basic ASSOM. Here for AOSSOM however
we have the offset vector r(i) to update for each linear manifold Ai. Thus we
need an additional partial derivative for r(i):

∂Es

∂r(i)
(t) = h(i)

c (t)
∂d(X,Ai)

∂r(i)
. (13)

Details of the proof for solving out the partial derivatives are omitted in
order not to distract the reader from the main focus. However with some linear

8

algebraic and calculus skills they are not hard to get. We suppose that the
basis vectors are kept orthonormal in the gradient-descent process. Here are the
results, for the offset vector r(i),

∂Es

∂r(i)
(t) = −2h(i)

c (t)
∑

s∈S

x̃Ai
(s) , (14)

and for the basis vectors,

∂Es

∂b
(i)
h

(t) = −2h(i)
c (t)

∑

s∈S

(

x′T
Ai

(s)b
(i)
h

)

x̃Ai
(s) . (15)

Taking a step length 1
2λb(t) in the opposite direction to the gradients for

the basis vectors, where λb(t) is a learning-rate factor for the basis vectors, the
correction made to the basis vectors should be:

∆b
(i)
h = h(i)

c (t)λb(t)
∑

s∈S

(

x′T
Ai

(s)b
(i)
h

)

x̃Ai
(s) , (16)

and updating of the offset vector r(i) would be:

∆r(i) = h(i)
c (t)λr(t)

∑

s∈S

x̃Ai
(s) , (17)

where λr(t) is the learning-rate factor for the offset vector r(i).

Since x̃Ai
(s) ⊥ b

(i)
h , ∀s, h, it is easy to show that

∆b
(i)
h1

⊥ b
(i)
h2

, ∀h1, h2 (18)

and ∆r(i) ⊥ b
(i)
h , ∀h . (19)

That is, updating of the linear manifold Ai is perpendicular to any current basis
vector of Ai. This is also the steepest direction to update Ai towards the input.
We remark that in the traditional ASSOM and in the AMSOM, the updating of
the basis vectors has a redundant direction corresponding to the projection of
the input vector on the (affine) subspace (cf. (3)). This might not be desirable
since it would introduce instability to the basis vectors. Let us suppose that an
input vector x(s) lies perfectly in the (affine) subspace of the module i. With the
ASSOM and the AMSOM, the basis vectors are still updated as long as x(s) has
a non-zero projection on the (affine) subspace. While with the AOSSOM, since
the projection residual x̃Ai

(s) is zero, the basis vectors remained unchanged,
which is a more desirable behavior.

3.2 AOSSOM Learning Process

The AOSSOM follows a similar learning procedure as the ASSOM learning. Each
learning iteration consists of the module competition and the updating of the
winner and its neighbors. The learning procedure of AOSSOM at each iteration
step t can be summarized as follows:

9

1. For an input episode x(s), s ∈ S, locate the winning module indexed by

c = arg min
i∈I

∑

s∈S

‖x̃Ai
(s)‖2 . (20)

2. For each module i in the neighborhood of c, including c itself, update the

linear manifold Ai, i.e. update the offset vector r(i) and basis vectors b
(i)
h

for each component vector x(s), s ∈ S. To update r(i), we use:

r(i) = r
′(i) + ∆r(i) , (21)

where ∆r(i) is defined by (17). To update b
(i)
h , we use

b
(i)
h = b

′(i)
h + ∆b

(i)
h , (22)

where ∆b
(i)
h is defined by (16). The basis vectors b

(i)
h are orthonormalized

at the end of this step.

4 Cluster Separating Experiments

In this section, we demonstrate the capacity of the AOSSOM to learn and sepa-
rate clusters which lie in linear manifolds away from the origin. For easier reading
of this section, we first present some common parameters of the ASSOM, the
AMSOM and the AOSSOM used in the following experiments. For each of the
networks, the learning takes T = 10, 000 steps. The neighborhood function is
fixed to be Gaussian:

h(i)
c (t) = exp

(

−
‖uc − ui‖

2

2σ2(t)

)

, (23)

where uc and ui are respectively the coordinates of the winning module c and
the module i in the network lattice. σ(t) is related to the Full Width at Half
Maximum (FWHM) w(t) by σ(t) = w(t)/2.3548. For all the networks through-
out this section except the “AMSOM 1” in the third experiment, w(t) has the
common form:

w(t) = w0
T

T + 99t
, (24)

where w0 should be set as such that the whole lattice can be properly covered at
the beginning of the learning procedure. The learning-rate parameters are λ(t) =
λ0

T
T+99t

for the ASSOM, λm(t) = λb(t) = λ0
T

T+99t
for the AMSOM, and λr(t) =

λb(t) = λ0
T

T+99t
for the AOSSOM. λm(t) is the learning-rate function for the

mean vectors of the AMSOM. The initial learning rate λ0 shall be properly
chosen in the respective experiments.

10

4.1 First Experiment

In the first experiment, the goal is to learn the two Gaussian clusters in Fig. 3.
The basic ASSOM is unable to learn the two clusters properly. Even with PCA,
the first principal component would be directed to a vertical orientation, which
does not give the best description of the two clusters and cannot separate them
properly.

The settings of the first experiment are as follows. Each cluster in Fig. 3 is
generated with a 2-D Gaussian distribution which shows an evident orientation,
so that the cluster can be approximated by a 1-D linear manifold, which is a
line, in the 2-D input space. 500 samples are generated for each cluster. We first
show that the AOSSOM is able to learn the corresponding linear manifolds. Two
modules are implemented in the AOSSOM network with each containing an offset
vector and a basis vector. The initial learning rate λ0 = 1. The learning results
are shown in Fig. 5. In the figure, the solid lines with arrows show the offset
vectors learned by the AOSSOM. The dotted lines mark the 1-D linear manifolds
learned by the AOSSOM. We can appreciate how well AOSSOM learned the two
clusters and separated them by different offset vectors. Both modules found the
linear manifolds which describe best the clusters in the sense of MSE (mean
squared error).

-12

-9

-6

-3

0

3

6

9

12

-12 -9 -6 -3 0 3 6 9 12

Fig. 5. Result of learning two 1-D linear manifolds with the AOSSOM

We have run the basic ASSOM, the AMSOM and the AOSSOM to compare
their performance in separating such a distribution. Two modules are imple-
mented in each network. The ASSOM tries to learn 1-D linear subspaces from
the data whereas the AMSOM and the AOSSOM try to learn 1-D linear man-
ifolds. Efforts were made for each network so that all of them work optimally.

11

After learning, each module was labeled with the cluster that it won for the
most of the times. In testing, each input sample was assigned the label of the
winning module. The experiments were repeated ten times for each network. In
each repeat, 500 training samples and 500 test samples were randomly generated
for each cluster and the networks were initialized randomly with different ran-
dom seeds. The resulting classification accuracies are summarized in Table. 1.
In the table, TR represents the training sets and TT the test sets. We can see
that ASSOM works very poorly on such a distribution, it is practically a random
predictor. Both AOSSOM and AMSOM can separate the two clusters with very
high accuracies across different runs with various initializations of the networks.

Table 1. Classification accuracies for ten runs of the ASSOM, the AMSOM and the
AOSSOM to separate the two Gaussian clusters in Fig. 5

n ASSOM AMSOM AOSSOM

TR TT TR TT TR TT

1 50.3% 52.3% 99.6% 99.9% 99.7% 99.9%

2 51.5% 51.3% 99.7% 99.8% 99.8% 99.9%

3 51.8% 50.9% 99.7% 99.9% 99.9% 99.8%

4 52.4% 50.3% 99.8% 99.9% 99.9% 99.7%

5 51.7% 50.9% 99.8% 99.8% 100% 99.7%

6 51.5% 51.4% 99.7% 99.9% 99.8% 99.8%

7 51.5% 51.4% 99.8% 99.8% 99.8% 99.7%

8 50.4% 50.1% 99.8% 100% 99.9% 100%

9 53% 49.8% 99.9% 99.8% 99.7% 100%

10 50.7% 52.2% 99.9% 99.8% 99.8% 99.9%

4.2 Second Experiment

In the second experiment, the goal is to learn the three Gaussian clusters in
Fig. 6. Each cluster is generated with a 2-D Gaussian distribution with one of
the shown orientations, so that it can be approximated by a 1-D linear manifold.
We intentionally introduced overlapping between different clusters to add to the
difficulty of learning. 500 samples were generated for each cluster. We first show
the capacity of the AOSSOM to learn the three linear manifolds. Three modules
are implemented in the AOSSOM network with each containing an offset vector
and a basis vector. As shown in Fig. 6, the AOSSOM learned the three clusters
correctly despite the overlapping between clusters.

The basic ASSOM, the AMSOM and the AOSSOM are compared in terms
of their ability to separate the three clusters. The experimental settings are
the same as the previous experiment with two clusters except that here we
use three modules in each network. λ0 = 1 was used for the ASSOM and the
AOSSOM, λ0 = 1.5 for the AMSOM. In the experiment we observed unstable

12

-15

-12

-9

-6

-3

0

3

6

9

12

15

-15 -12 -9 -6 -3 0 3 6 9 12 15

Fig. 6. Result of learning three 1-D linear manifolds with the AOSSOM. The offset
vector of the middle cluster is not plotted since it is too close to a zero vector

phenomena of the AMSOM when λ0 = 1. Even though the learning rate should
conventionally be in [0, 1], as suggested by Liu [9], a larger starting learning
rate seemed to have worked better for the AMSOM in this experiment. We will
discuss this problem in the third experiment. For now we just choose the good
parameters. The experiment was repeated ten times for each of the networks. 500
training samples and 500 test samples were randomly generated for each cluster
at each run. The resulting classification accuracies are summarized in Table. 2.
Due to overlapping between clusters, no classifiers can give perfect separation.
The performance of the ASSOM is very poor for such a distribution. Both the
AOSSOM and the AMSOM can separate these clusters with reasonably high
accuracies across different runs with various initializations of the networks.

We may conclude that the AOSSOM is able to properly learn and separate
clusters of these kinds, which are best described by distributions along linear
manifolds shifted away from the origin. Such distributions cannot be adequately
identified by linear subspaces used in the basic ASSOM.

4.3 Third Experiment

In the previous experiment we observed unstable phenomena of the AMSOM
when λ0 = 1. A larger starting learning rate λ0 = 1.5 seemed to have worked
better. The explanation for this could be that a smaller learning rate has a
better convergent property, however it cannot pull the network out of “bad”
local minima. However in a general case, a large initial learning rate does not
always lead to a good performance, as we observed in other experiments on the
AMSOM. The sensitivity of the AMSOM to local minima seems to be evident
in some cases. To demonstrate this, we devised the following experiment.

13

Table 2. Classification accuracies for ten runs of the ASSOM, the AMSOM and the
AOSSOM to separate the three Gaussian clusters in Fig. 6

n ASSOM AMSOM AOSSOM

TR TT TR TT TR TT

1 37.7% 34.9% 90.5% 91.2% 89.9% 91.7%

2 37.1% 36.4% 90.2% 90.5% 89.9% 91.2%

3 37.9% 36.8% 89.6% 91.3% 90.5% 89.9%

4 36.3% 37.7% 90.5% 91.3% 89.9% 90.9%

5 37.5% 36.5% 90.9% 90% 90.5% 91.2%

6 36.5% 37.5% 89.6% 90.5% 89.9% 90.6%

7 36.6% 37.5% 91% 89.7% 91.7% 90.6%

8 37% 37.3% 91.1% 91% 89.9% 90.9%

9 36.8% 35.5% 90.4% 91.1% 90.2% 91.3%

10 39% 38.3% 90.5% 91.7% 89.9% 91.1%

We randomly generated 10 different data sets. Each data set was composed
of 4 clusters with 2-D Gaussian distributions. 500 training samples and 500
test samples were generated for each cluster. The mean vector of each cluster is
random, with components in [−4, 4] and a Euclidean norm not less than 2. Except
the above settings, the clusters are allowed to have any amount of overlapping.
So in general, they cannot be perfectly separated. Each AMSOM network as
well as each AOSSOM network contains 4 modules. There is one basis vector in
each module to simulate a 1-D linear manifold.

For the AMSOM, we experimented two configurations. In the first configura-
tion, we used the exponential neighborhood-decreasing scheme suggested in [9]:

w(t) = w0 exp(−
t

F
) , (25)

where F is the learning step when w(F) = 0.368w0. In our experiments, we set
F = 5000. Changes to F did not show improved performance in our experiments.
w0 was set to 4 so that the full lattice could be covered at the beginning. The
initial learning rate λ0 = 1. We did not observe improvement of the performance
with different λ0 in this experiment. The results we got on the first configuration
of the AMSOM are shown in Table 3 in the column “AMSOM 1”. In the table, D
is the serial number of the data sets generated. Different data sets have different
four-cluster distributions. For a fair comparison, in the second configuration of
the AMSOM, we chose the same neighborhood-decreasing function as that of the
AOSSOM, which is shown in (24). The initial learning-rate was set to λ0 = 1.
Other values of λ0 did not show improved performance in our experiments. The
results for the AMSOM of the second configuration are summarized in Table 3
in the column “AMSOM 2”. The configuration of the AOSSOM was the same
as the second configuration of the AMSOM. The results of the AOSSOM are
also summarized in Table 3. According to the table, the AOSSOM worked the
best in 8 runs out of 10. In the second run even though the AOSSOM did not

14

Table 3. Classification accuracies of the AMSOM and the AOSSOM for separating
four Gaussian clusters. The boldface font emphasizes the best results at each run

D AMSOM 1 AMSOM 2 AOSSOM

TR TT TR TT TR TT

1 54.7% 53.6% 41.2% 42% 78.9% 79%

2 53.2% 51.8% 67.6% 68.2% 65.5% 65.7%

3 48.4% 48.6% 63% 63.1% 74.5% 74.1%

4 42.9% 42.3% 45.2% 45.2% 78.1% 75.4%

5 45.9% 45.7% 50.1% 49.2% 57.4% 57.9%

6 42.9% 42.7% 52.4% 53.8% 46.5% 46.4%

7 43.9% 45.4% 44.9% 44.9% 57.7% 59.1%

8 60.3% 60% 44.9% 47.8% 61.9% 62.3%

9 47% 46.2% 59.6% 61.3% 75.3% 73.3%

10 53.4% 54.4% 46.4% 47.1% 72.3% 70.9%

work the best, it still achieved a fairly good performance which is only at a little
distance from the best.

To see what happened when the AMSOM was trapped in a local minimum,
we recorded the average projection errors on the test data set 1 in Table 3 with
the AMSOM and the AOSSOM, which are shown in Fig. 7. As we can see from
the figure, the “AMSOM 1” and the “AMSOM 2” converged to higher error
levels than the AOSSOM. Higher error levels correspond to worse local minima.
The “AMSOM 1” and the “AMSOM 2” seem to have stablized on the “bad”
local minima and could not get out of them. In the process of convergence the
AOSSOM also encountered a “bad” local minimum at around t = 4, 000, where
the error was 0.47. However it was able to get out of that “bad” local minimum
and finally stablized at a better minimum, which was 0.40. In fact, even the
“bad” local minimum 0.47 of the AOSSOM is already smaller than the converged
local minima of the “AMSOM 1” and the “AMSOM 2”. The reason that the
AOSSOM worked better than the AMSOM in most of the cases could be that
the AOSSOM learning algorithm was derived from the gradient descent of the
projection error function. Updating of the linear manifolds in a direction other
than the negative gradient direction is more likely to be stuck in undesirable
local minima.

5 Application of the AOSSOM to Handwritten Digit

Recognition

5.1 Related Work and Database

Zhang et al. [7] have applied a variant of the ASSOM for handwritten digit
recognition. They designed an ASSOM network in which the modules are re-
alized by three-layer neural networks trained as autoencoders. To improve the
stability of the autoencoders and overcome restrictions of linear subspaces in the

15

0

1

2

3

4

5

6

7

8

0 1500 3000 4500 6000 7500 9000
learning step

p
ro

je
ct

io
n

 e
rr

o
r

AMSOM 1

AMSOM 2

AOSSOM

Fig. 7. Average projection errors of the first data set in Table 3 with the “AMSOM
1”, the “AMSOM 2” and the AOSSOM

basic ASSOM, they introduced nonlinearity to the hidden-layer neurons of the
autoencoders. Their experiments showed impressive performance on a database
of the U.S. National Institute of Standards and Technology (NIST), which con-
sists of 20, 000 numerals. In this section, we apply the AOSSOM, an alternative
improvement of the basic ASSOM, to handwritten digit recognition.

The handwritten digit image database used in this paper is a modified NIST
(MNIST) database by mixing NIST’s datasets. The database is made publicly
available by LeCun et al. [13]. Images in this database were size normalized and
centered in a 28 × 28 pixel field. The resulting images contain gray levels as a
result of the interpolation technique used by the normalization algorithm. The
foreground is coded with high gray levels and the background with low gray
levels. The database contains a training set of 60, 000 digits and a test set of
10, 000 digits. Some examples from this database are shown in Fig. 8. A large
variety of writing styles are covered by the database as shown by these examples.

5.2 Learning Handwritten Digits with the AOSSOM

As an application of the AOSSOM, our handwritten digit recognition system is
designed as follows. An AOSSOM network is trained for each class of examples.
An input digit image is classified by examining which network gives the best
reconstruction. Similar ideas were proposed in [15] and [7]. In [15], PCA and
factor analysis (FA) were proposed as local models of handwritten digit image
manifolds. In [7], ASSOM networks realized by non-linear autoencoders were
implemented for the local modeling.

Before a digit image is input into the AOSSOM networks, its mean value
was subtracted. Then the pattern vector representing the image was normalized

16

Fig. 8. Some examples from the MNIST handwritten digit image database

before entering the networks. The learning steps of each AOSSOM network is set
to T = 30, 000. The learning-rate factor has the form λr(t) = λb(t) = λ0

T
T+99t

where λ0 was set to 1. The neighborhood function is Gaussian with the FWHM
w(t) = w0

T
T+99t

where the initial value w0 depends on the network size. The
trained AOSSOM networks of 5 × 5 modules with two basis vectors are shown
in Fig. 9. Each module in the k-th network Mk, k = 0, . . . , 9, learned a linear
manifold for the images of the digit k. Each manifold contains an offset vector r

and two basis vectors b1 and b2. These vectors are visualized by normalizing the
grayscales into [0, 255]. For a mean-subtracted and normalized test input digit
image x, each network Mk gives a reconstruction vector x̂Mk

. The class label of
x is determined by the network which gives the minimum reconstruction error:

k∗ = argmin
k

‖x− x̂Mk
‖ . (26)

Now it comes to the question of how to build the reconstruction x̂Mk
for

each network. The idea is to combine the set of reconstruction vectors x̂Aki
from

the |Ik| modules in the network Mk, where Ik is the set of modules in Mk and
Aki the linear manifold learned by the i-th module in Mk. The combination is
a weighted average:

x̂Mk
=

∑

i∈Ik
akix̂Aki

∑

i∈Ik
aki

. (27)

This weighted average was also used in [7]. There is no clear evidence that
the choice of the weighting function is critical [16]. One choice is the Gaussian
function which has infinite extent [7]:

aki = exp

(

−
‖x− x̂Aki

‖2

2σ2
ki

)

, (28)

where σki controls the response range of the corresponding module. In general,
σki can be chosen in a reasonable range without significant difference [7]. We
have chosen σki = 0.1 in our experiments.

17

x=
↓

M0 M1 M2 M3 M4

r

b1

b2

↓ ↓ ↓ ↓ ↓

x̂Mk

M5 M6 M7 M8 M9

r

b1

b2

↓ ↓ ↓ ↓ ↓

x̂Mk

Fig. 9. AOSSOM networks trained for the MNIST database. For a mean-subtracted
and normalized test input digit image x, each network builds a reconstruction vector
x̂Mk

18

5.3 Experimental Results

We have experimented on different sizes of AOSSOM networks with different
numbers of basis vectors in each module. The results are summarized in Table 4.
The network lattices are squares with the dimension W varying from 3 to 8.
Thus the number of modules in each network is W 2. As we can see, in general, a
larger network size leads to a better recognition accuracy. But this also increases
the training and testing time. A higher manifold dimension can achieve a better
performance, this is more evident when the network size is smaller. In general,
this classification system exhibits a promising recognition performance on the
handwritten digit images.

Table 4. Handwritten digit recognition accuracies of the AOSSOM network with dif-
ferent lattice sizes W and linear manifold dimensions H

W H = 1 H = 2 H = 3

TR TT TR TT TR TT

3 94.6% 94.7% 95.6% 95.6% 96.3% 96.2%

4 95.7% 95.7% 96.4% 96.3% 96.9% 96.5%

5 96.3% 96.2% 96.9% 96.7% 97.2% 96.8%

6 96.7% 96.3% 97.1% 96.8% 97.7% 97.1%

7 97.1% 96.6% 97.4% 96.9% 97.6% 96.9%

8 97.5% 97% 97.8% 97.1% 98% 97.3%

Some of the correctly recognized digits are shown in Fig. 10. In the figure,
the first column shows the input digit images. The other columns show the
images reconstructed by the individual networks. The images are equalized to
255 gray levels. In the first column, numbers to the left of the arrows are the ture
labels and numbers to the right are the labels assigned by the system. Numbers
in the other columns are reconstruction errors of the individual networks. For
each shown input digit image, the network corresponding to the correct digit
label gives the best reconstruction, as confirmed by the output reconstruction
errors. The other networks often output ambiguous reconstruction vectors, e.g.
the output of the 4-th network for the input digit 2 and that of the 8-th network
for the input digit 6. The written style of the input digit 9 is similar to 4, and
this is confirmed by the output of the 4-th network, whose reconstruction error
is close to that of the 9-th network.

Figure 11 shows some incorrectly classfied digits. Some of the input examples
are really ambiguous, e.g. 4 → 9 and 9 → 1. We have observed in the experi-
ments that the most probable errors come from 2 → 7, 4 → 9 and 6 → 0. By
examining the output reconstruction errors, we can find that even though the
recognition failed, the error of the true-class network could be very close to the
minimum error. For example, in the false classification 9 → 1, the shown error
of the network M1 is practically the same as that of M9. In fact, the errors
are discriminable only by using more numerical precision. The error from M1

19

0 → 0 0.41 1.02 0.76 0.81 0.92 0.72 0.78 0.92 0.78 0.91

2 → 2 0.92 0.88 0.62 0.85 0.91 0.92 0.85 0.92 0.88 0.94

4 → 4 0.91 0.96 0.86 0.84 0.51 0.81 0.84 0.73 0.79 0.71

6 → 6 0.83 0.99 0.90 0.94 0.90 0.90 0.64 0.98 0.90 0.95

8 → 8 0.79 0.89 0.65 0.76 0.78 0.76 0.78 0.81 0.60 0.76

9 → 9 0.83 0.77 0.78 0.68 0.52 0.73 0.85 0.66 0.61 0.48

Fig. 10. Some digits correctly recognized by the AOSSOM networks

is effectively 0.4637 and that from M9 is 0.4639. The difference is practically
negligible here. Better accuracies could be achieved by rejecting some input in-
stances when the smallest reconstruction error and the second smallest are very
close.

6 Conclusions and Perspectives

In this paper, the AOSSOM, an improvement of the basic ASSOM, was pro-
posed. It is able to learn a set of ordered linear manifolds. The AOSSOM works
by minimizing a projection error function in a gradient-descent manner. We
demonstrated by experiments that the AOSSOM is able to learn linear manifolds
of clusters shifted away from the origin and separate the clusters accordingly.
The basic ASSOM cannot identify clusters of such kinds adequately. The AOS-
SOM is more robust to local minima than the AMSOM as revealed by the cluster
separating experiments. The reason could be that the updating of the manifolds
follows the negative gradient direction. Other directions, such as the one used in
the AMSOM, could be more prone to local minima. The proposed network was
then applied to handwritten digit recognition and showed promising results.

The number of modules in our AOSSOM network (which correponds to the
number of linear manifolds) and the number of basis vectors in each module
(which corresponds to the minifold dimension) were determined heuristically. In
a real-world data mining problem, the potential number of clusters and their
dimensions are often not known. So networks which can learn the optimal num-
bers of modules and basis vectors from the empirical data would be desirable.
This issue will be considered in our further research.

20

0 → 6 0.77 1.04 0.83 0.90 0.88 0.89 0.74 0.88 0.95 0.87

2 → 7 0.94 0.72 0.62 0.74 0.78 0.86 0.98 0.56 0.70 0.73

4 → 9 0.92 0.82 0.84 0.77 0.56 0.76 0.92 0.66 0.76 0.51

6 → 0 0.72 1.08 0.91 0.88 0.94 0.85 0.78 0.86 0.92 0.95

7 → 9 0.76 0.98 0.75 0.84 0.82 0.86 0.90 0.62 0.80 0.61

9 → 1 0.87 0.46 0.79 0.65 0.56 0.69 0.83 0.62 0.62 0.46

Fig. 11. Some digits incorrectly recognized by the AOSSOM networks

References

1. Kohonen, T.: The Adaptive-Subspace SOM (ASSOM) and its use for the imple-
mentation of invariant feature detection. In Fogelman-Soulié, F., Gallinari, P., eds.:
Proc. ICANN’95, Int. Conf. on Artificial Neural Networks. Volume 1., Paris (1995)
3–10

2. Kohonen, T., Kaski, S., Lappalainen, H.: Self-organized formation of various
invariant-feature filters in the Adaptive-Subspace SOM. Neural Computation 9(6)
(1997) 1321–1344

3. Oja, E.: Principal components, minor components, and linear neural networks.
Neural Networks 5(6) (1992) 927–935

4. Hase, H., Matsuyama, H., Tokutaka, H., Kishida, S.: Speech signal processing using
Adaptive Subspace SOM (ASSOM). Technical Report NC95-140, The Inst. of Elec-
tronics, Information and Communication Engineers, Tottori University, Koyama,
Japan (1996)

5. Ruiz-del-Solar, J.: TEXSOM: Texture segmentation using Self-Organizing Maps.
Neurocomputing 21(1-3) (1998) 7–18

6. de Ridder, D., Lemmers, O., Duin, R.P.W., Kittler, J.: The Adaptive Subspace
Map for image description and image database retrieval. In: SSPR/SPR. (2000)
94–103

7. Zhang, B., Fu, M., Yan, H., Jabri, M.: Handwritten digit recognition by Adaptive-
Subspace Self-Organizing Map (ASSOM). IEEE Trans. Neural Networks 10(4)
(1999) 939–945

8. López-Rubio, E., Muñoz-Pérez, J., Gómez-Ruiz, J.A.: A Principal Components
Analysis Self-Organizing Map. Neural Networks 17(2) (2004) 261–270

9. Liu, Z.Q.: Retrieving faces using Adaptive Subspace Self-Organising Map. In: Proc.
International Symposium on Intelligent Multimedia, Video and Speech Processing,
Hong Kong (2001) 377–380

21

10. Kawano, H., Horio, K., Yamakawa, T.: Adaptive Affine Subspace Self-organizing
Map with kernel method. In Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui,
S.K., eds.: Proc. 11th Int. Conf. on Neural Information Processing. Volume 3316
of Lecture Notes in Computer Science., Calcutta, India, Springer (2004) 387–392

11. López-Rubio, E., Muñoz-Pérez, J., Gómez-Ruiz, J.A., Domı́nguez-Merino, E.: New
learning rules for the ASSOM network. Neural Comput & Applic 12(2) (2003)
109–118

12. Suen, C.Y., Nadal, C., Legault, R., Mai, T.A., Lam, L.: Computer recognition of
unconstrained handwritten numerals. Proc. IEEE 80(7) (1992) 1162–1180

13. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11) (1998) 2278–2324

14. Oja, E.: Subspace Methods of Pattern Recognition. Research Studies Press, Letch-
worth, UK (1983)

15. Hinton, G.E., Dayan, P., Revow, M.: Modeling the manifolds of images of hand-
written digits. IEEE Trans. Neural Networks 8(1) (1997) 65–74

16. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artificial
Intelligence Review 11(1-5) (1997) 11–73

