
Sixth Irish Workshop on Computer Graphics (2005)
Eurographics Irish Chapter

Geometry Reduction for Urban Simulation on Handheld
Devices

A. Brosnan, J. Hamill and C. O’Sullivan

Image Synthesis Group, Trinity College Dublin, Ireland

Abstract
We present a real-time urban simulation on a Personal Digital Assistant (PDA). An existing desktop urban simula-
tion is used to automatically generate potential visibility data, sub-divide the world into areas of similar potential
visibility, and generate imposter images for complex and distant objects; all of which are used to achieve interac-
tive frame-rates on a handheld device.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithms; I.3.7
[Computer Graphics]: Virtual reality

1. Introduction

Simulating detailed urban environments in real-time requires
that the geometric complexity of the scene be reduced before
rendering. If all the geometry in the world is to be rendered,
interactive frame-rates will not be achieved on a standard
desktop PC. The need to cull geometry from the scene is
even greater when the simulation is to be run on a hand-
held device, such as a Personal Digital Assistant (PDA) or
mobile phone. These devices have considerably less compu-
tational power than desktop PCs, and many do not have ded-
icated graphics acceleration hardware. They also have lim-
ited memory for storage of geometric models and textures.
For these reasons aggressive geometry culling is a neces-
sity when displaying city walkthroughs on handheld plat-
forms. Many culling techniques require considerable run-
time processing. PDAs have limited computational power,
besides their limited graphical capabilities; pre-processing
techniques which cull geometry with minimal run-time com-
putation are preferable.

In this paper we describe the generation of Potential Vis-
ibility (PV) data for an urban environment, tailored for use
on a handheld device. The PV data defines the subset of all
objects in the virtual world which are visible from particular
areas in that world. We describe the use of this information
to achieve interactive frame-rates in an urban simulation on a
mobile platform. The PV data is used to sub-divide the world
into sections. Associated with each section is a limited num-
ber of objects (models of buildings in a city), each of which

is visible from some or all points within that section. For ob-
jects visible but distant, billboard imposters are generated.
Each imposter is comprised of a simple quad and texture,
used to replace a 3-D model and thus speed up rendering.
The PV data, sections and imposters are generated at a pre-
processing step, to limit the amount of computation needed
at run-time. They are all generated automatically from an ex-
isting, PC-based urban simulation. An automated system to
generate the data is far preferable to generating it manually,
which would be laborious and inaccurate. Furthermore, the
automated process allows easy re-building of the data when
the virtual world is enlarged, or otherwise modified to keep
pace with the real city on which it is modeled. Section6 of
this paper details the results of this endeavour, a real-time
urban simulation on a PDA.

2. Background

We describe general geometry culling techniques; the desk-
top urban simulation used to generate data for the handheld
system; earlier work on the PDA urban simulation, and tech-
niques used in other handheld systems.

2.1. Potential Visibility & Geometry Culling

Much work has been done in the area of geometry culling
for real-time walkthroughs, games and other applications.
Removal of unnecessary geometry before rendering is es-
sential in order to achieve interactive frame-rates in de-

c© The Eurographics Association 2005.



A. Brosnan, J. Hamill & C. O’Sullivan / Geometry Reduction for Urban Simulation on Handheld Devices

tailed, 3-Dimensional virtual worlds. Run-time culling tech-
niques include backface-culling (removal of polygons that
face away from the camera), frustum-culling (removal of
polygons outside the camera view frustum), and occlusion
culling (removal of polygons obscured by other polygons).
Another technique involves the use of Potentially Visible
Sets (PVS). PVS, often pre-computed, describe those objects
in the world which can be seen from a particular point or area
within the world.

In [TS91], Teller et al. describe a system of visibility
pre-processing for building walkthroughs. An axis-aligned
architectural model is divided into rectangularcells, corre-
sponding roughly to the rooms of the building. The bound-
aries of the cells coincide with the walls of the rooms. The
walls act as occluders, obscuring polygons behind them.
Thus only a small number of cells are visible at any given
time — the cell in which the camera is positioned, and
nearby cells visible through doorways and otherportals in
the world. Portals are non-opaque cell boundaries. They are
used to produce anadjacency graphwhich describes the
inter-connectivity of the cells. As a final pre-processing step,
cell-to-cell visibility is computed by examining which pairs
of cells have unobstructed lines of sight between them. Thus
a data structure is created which sub-divides the world into
cells, and describes which other cells are visible from a given
cell. The geometry in the current and other visible cells con-
stitutes the potentially visible set of polygons.

Only the appropriate cells are considered for rendering at
run-time, providing significant geometry culling and hence
improved frame-rate. A further reduction in geometry is
achieved at run-time by excluding cells not in the cam-
era’s view frustum; for example a cell on the other side of
a doorway the viewer has just entered through. The above-
mentioned pre-processing and run-time culling techniques
are used by Teller et al. for a walkthrough of a single archi-
tectural model,i.e. indoors. However, similar techniques can
be employed in a cityscape where tall buildings surround the
viewer, occluding other buildings in much the same way that
walls within a building occlude other rooms in that building.

Airey et al. [ARB90] also pre-compute potential visibility
data for a single, complex building. In addition, they strike a
balance between visual quality and frame-rate by using low-
level-of-detail polygonal meshes when the viewer is moving;
then switching to higher-detail meshes when the viewer is
stationary, and the scene static.

2.2. Desktop Urban Simulation

In [HO03], Hamill et al. describe Virtual Dublin, a desktop
urban simulation in which the user navigates around a recre-
ation of Dublin City Centre. Figure1 is a screenshot from
Virtual Dublin, showing the Front Square of Trinity College.
Virtual Dublin is a detailed 3-D environment, running at 60
frames per second (fps) on a desktop PC. In [DHOO05],

Figure 1: Virtual Dublin desktop urban simulation

Dobbyn et al. enhance this virtual city by the addition of
animated virtual humans. Virtual Dublin uses a variety of
run-time culling techniques to reduce the number of build-
ings drawn at each frame and thus achieve interactive frame-
rates.

Firstly, buildings outside of the view frustum,i.e. those
out-of-view behind or to the side of the camera, are culled.
This subset of the city’s buildings is further reduced by a
method of occlusion culling. All buildings in the view frus-
tum are drawn to an occlusion buffer. Each building is drawn
to this buffer in a single unique colour. If that colour is found
when the buffer is scanned, the building is not occluded
by other buildings and should be drawn to the screen. The
additional occlusion-draw is much faster than a full draw,
as the resolution is reduced, and lighting and texturing are
not used; therefore, the speed-up achieved by the resultant
culling outweighs the time taken for the occlusion-draw. By
these means a list of visible buildings is determined for the
current camera position and orientation — these and only
these buildings are rendered. In addition, OpenGL provides
a simple run-time backface cull, removing those polygons
facing away from the viewer.

Imposters are used to replace some of the visible geomet-
ric models, providing further increases in frame-rate. An im-
poster is a 2-Dimensional entity consisting of a single quad
with a texture bound to it. The quad adjusts to face the cam-
era — the imposter is like a rotating billboard. Different tex-
tures are used depending on where the camera is with respect
to the building. From distance the loss of detail when the
imposter replaces the geometric model is imperceptible, so
imposters are often used for background objects, while 3-D
models appear in the foreground. Some systems create tex-
tures from all angles around the object as a pre-processing
step, and select the appropriate one at run-time; this requires
a large amount of memory to store all the imposter tex-
tures. However, Virtual Dublin generates the imposter tex-
tures at run-time, and the speed-up is achieved by re-using
the same texture for a number of frames. This method works

c© The Eurographics Association 2005.



A. Brosnan, J. Hamill & C. O’Sullivan / Geometry Reduction for Urban Simulation on Handheld Devices

(a) (b) (c)

Figure 2: Successive screenshots

best when the camera is stationary, but can be used when the
camera is moving, so long as a new texture is created when
the old one becomes obsolete; this happens when the change
in angle between camera and object reaches a certain value,
and the inaccuracy of the old texture becomes apparent to
the viewer (Hamill et al. examine the perceptibility thresh-
olds in [HMDO05]).

Jeschke et al. [JWSP05] use visibility culling, geomet-
ric simplification (substitution of less-detailed polygonal
meshes), and imposters to achieve interactive frame-rates
in a desktop urban simulation. The amount of memory re-
quired to store their imposters is low, because they use the
same imposter texture from a variety of positions, and create
imposter textures for groups of adjacent objects rather than
individual textures for each object.

2.3. Handheld Urban Simulation

Initial work on the mobile version of Virtual Dublin was
done by Rossi et al. [RCO03]. At pre-processing, the world
is sub-divided into small areas, and the appropriate build-
ings are assigned to each area. At run-time the designated
buildings are displayed. This is a Potential Visibility (PV)
technique similar to the one described in this paper (see Sub-
section6.1). However, they generate the PV data and section
boundaries manually. This technique cannot reasonably be
applied to a large, ever-expanding virtual city. In addition
to the work being tedious and time-consuming, the resulting
PV data would most-likely be less accurate than if a rigorous
automated technique were used. Furthermore, no attempt is
made to optimise the sub-division. The research described in
this paper is motivated by the need for automatic generation
and re-generation of data, as well as the desire for a better,if
not absolutely optimal, sub-division. Rossi et al. describe the
distributed, multi-user aspect of the handheld system. The
building models are downloaded to multiple client devices
(handheld or otherwise). These devices communicate with
each other via the server to coordinate their positions in the
world (a dead reckoning algorithm is used to reduce the as-
sociated network traffic).

Other work on handheld (or other graphically limited)
platforms use image-based rendering [CG02], point-based
rendering [DD04] and other geometry reduction techniques,
at the expense of reduced visual fidelity. In [Cum03], Cum-
mins provides an overview of culling techniques and ren-
dering speed-ups suitable for use on handheld devices. In
this paper we attempt toavoid unnecessary geometry in-
stead of reducing the geometric complexity, and visual qual-
ity, of each model. We calculate (with minimal run-time
computation) which geometric models need to be rendered,
and render most of them at full resolution. Low-resolution
and imposter-based models do not look as good as high-
resolution geometry, so we prefer to identify salient build-
ings (those in view and relatively close), and render them
fully.

3. Generation of PV data

Virtual Dublin is a desktop PC urban simulation. Users of
this program can navigate a 3-D simulation of Dublin City
Centre in real-time. Virtual Dublin was used to generate Po-
tential Visibility (PV) data for the handheld system, as fol-
lows.

The virtual world was built using a standard Cartesian co-
ordinate system. A 2-D grid was laid over the world, dividing
it into squares 2 virtual metres along each side. The squares
run parallel to the x- (east-west) and z- (north-south) axes.
For each intersection point on the grid, the PV was calcu-
lated. The PV calculation was achieved by placing the cam-
era at the point in question, spinning the camera through 360
degrees, and recording those objects (buildings) displayed
by Virtual Dublin during the spin. This provides a complete
list of buildings visible from the given point, irrespective of
the direction in which the camera was pointing. Given ini-
tial parameters defining the target area of the world (usu-
ally the entire city), the system automatically generates the
PV data for every sample point in the target area. Figure2
shows three screenshots (a), (b) and (c) from Virtual Dublin,
all taken from the same position, with the camera rotated a
fixed distance after each shot. A full 360 degree revolution

c© The Eurographics Association 2005.



A. Brosnan, J. Hamill & C. O’Sullivan / Geometry Reduction for Urban Simulation on Handheld Devices

on the same point will display all buildings potentially visi-
ble from that point.

As mentioned in Subsection2.2, Virtual Dublin uses
frustum- and occlusion-culling at run-time. Within the Vir-
tual DublinDraw() function an array is created of buildings
not culled by the above methods. Identification numbers for
these buildings are put output to a data structure, and this
data structure stores the PV data for each sample point in
the world. As mentioned above, the distance between sam-
ple points (in both north-south and east-west directions) is
equivalent to 2 metres in real-world terms. A smaller dis-
tance would naturally require a larger data structure. No er-
rors are observed as a result of the sampling —i.e., there
are no buildings which should be visible from a position be-
tween two sample points, but which are not visible from the
sample points themselves.

4. Generation of Sections

Given the Potential Visibility (PV) data, describing which
buildings are visible from every point within the world, it is
desirable to group these points intosections. A section of the
virtual world is a 2-D area from which a known subset of the
virtual city’s buildings are visible. Only those buildingsare
rendered as the viewer moves within that section.

A user of the handheld urban simulation will move be-
tween sections as they navigate around the world. When (or
preferably before) the user changes section, the newly re-
quired building models are downloaded to the mobile device.
It is desirable to minimise the run-time network traffic on
low-bandwidth, handheld devices. This would involve hav-
ing geographically large sections, containing a large num-
ber of buildings. The viewer could explore large areas of
the world without changing sections and downloading new
models. From this point of view, the ideal section covers the
whole virtual city, and after a large download at start-up no
further bandwidth would be required. However the handheld
devices are also constrained by memory limitations. They
cannot store the entire world in memory at one time. From
this perspective, geographically small sections — contain-
ing only the few buildings visible from the current location
— are desirable. Also, as sections are increased in size, re-
dundancy appears — buildings visible from some but not
all points in the section, which will be drawn irrespective of
where the viewer is in that section. From this point of view,
the ideal section is a single point.

A balance must be found. Sections should neither be so
large that the associated buildings cannot be stored in mem-
ory, or that excessive redundancy is introduced; nor so small
that new buildings must continually be downloaded, and
other overheads incurred. The algorithm used to generate the
section boundaries is presented below.

For a given pointp, with Potential VisibilityPVp, a sets is
found of all other points withPVp, or whose PV is a subset of

Figure 3: Inner rectangle (blue) of points s (red)

PVp. From this irregularly shaped sets, the inner rectangle
is extracted. The inner rectangle is a lattice-like rectangular
group of sample points with no internal gaps. See Figure3.
The red points are the lists, and those in the blue box make
up the inner rectangle — a contiguous, rectangular subset of
s. Strictly rectangular sections are used because this simpli-
fies the run-time calculation of which section the camera is
in (of which more anon). The inner rectangle forms the ba-
sis for the section — it is subsequently expanded, retaining
the rectangular shape, according to the following condition.
If the section can be expanded on any side with the addition
of no more than a threshold number of buildings to the Po-
tential Visibility PVs of the section, the expansion is allowed.
This process is repeated until the section cannot be expanded
any further. When multiple inner rectangles are available,the
one that produces the largest section is chosen.

So long as the section achieves a minimum size, it is ac-
cepted, and all the points included in it are removed from
the list of unassigned points. The section generation process
is repeated for all points not already assigned to a section.
If points remain which have not been assigned, the mini-
mum size restriction for sections is relaxed and all points
are assigned to a section. Sections can overlap, but will not
do so unnecessarily; if a section expansion only adds points
already assigned to other sections, the expansion is not per-
formed.

Once the full extents of the final section are known, the
boundaries of the sections (which will be axis-aligned) are
computed, and the PV data aggregated for all points in the
section. Thus the section is represented by its maximum and
minimum x- and z- coordinates (describing a rectangle in the
world) and an associated list of building models. It should be

c© The Eurographics Association 2005.



A. Brosnan, J. Hamill & C. O’Sullivan / Geometry Reduction for Urban Simulation on Handheld Devices

noted that the geographic area of a section need not include
the buildings assigned to it — merely points from which the
buildings are visible. The final set of sections will vary de-
pending on the order in which the section generation process
is performed on the sample points — refinement of the al-
gorithm to generate the best possible set of sections is left
to future work. We take advantage of the fact that adjacent
sections contain many of the same buildings, thus reducing
the number of new buildings that must be downloaded when
a new section is entered. If sufficient memory is available,
buildings for multiple sections are stored. Thus thrashing
does not occur as the viewer moves back and forth between
two sections.

5. Generation of Imposters

The Potential Visibility (PV) data, generated as described
in Section3, details the set of building models visible from
each sample point in the world. Some of these buildings will
be very close to the viewer; others are far away, or mostly
occluded, or both. If a building is barely visible, it is waste-
ful to perform a full rendering of the geometric model. We
replace far-away buildings with imposters. Some buildings
feature such a high polygon-count that they cause an unac-
ceptable loss of frame-rate when displayed on a low-power,
handheld device. These buildings are also replaced by im-
posters, irrespective of their distance from the camera. Inall
cases the imposters textures are pre-rendered. At run-time
the appropriate images are chosen, based on the angle be-
tween the camera and the building; and the imposter quad is
oriented toward the camera.

5.1. Distant-Building Imposters

If a buildingb, assigned to a sections, is at least a distanced
from all points along the boundary of a section, buildingb is
drawn from sectionsas an imposter. The Potential Visibility
data is amended to reflect this. In many cases a single im-
poster texture will suffice from any point ins — i.e., the an-
gle between the camera position andb does not change suf-
ficiently to invalidate the texture, unless the viewer movesto
another section. However, if the section is sufficiently large
that multiple imposter images are required, the appropriate
image is selected at run-time. Note that it is not sufficient to
check thatb is at least distanced from the corners of section
s — if s is wide, andb is roughly equidistant from the two
extremes ofs, b may be far from the corners but close to a
point half-way along the width of the section boundary.

The imposter textures are generated as follows. Using
the desktop Virtual Dublin system, the building is isolated
against a black background and rendered, producing a 128×

128-pixel texture. This is the maximum texture size allowed
by the PocketGL API (PocketGl is a subset of OpenGL for
PocketPC handheld devices). If necessary the building is ro-
tated and the process repeated. The PV data determines what

Figure 4: Imposter of complex building

angle or angles the building needs to be rendered from, for a
particular section. Multiple sections may require the same
or very similar imposter images. If this is the case, only
one texture need be stored on the PDA. The PV data can
be manually tweaked so that sections requiring very similar
imposters (textures rendered from almost identical angles)
use the same imposter. In this way, the minimum of imposter
textures are stored on the low-memory handheld device. At
run-time, transparency in the imposter images is provided by
the API, so the black background does not appear.

5.2. Complex-Building Imposters

Imposters are generated in a similar way for buildings too
polygonally complex to render in real-time on the mobile
platform. An example is the model of Trinity College’s Cam-
panile, which weighs in at 12,000 polygons. In this case
imposters are needed from all angles around the building,
and the imposter is always used in place of geometry. Ide-
ally a higher-resolution texture would be used at close range,
but as mentioned above the PocketGl API limits textures to
128×128-pixels. However the result is tolerable. See Fig-
ure 4 for the imposter image (at a higher resolution) and
Figures5 and7 for the imposter in use in the handheld urban
simulation.

6. Results

The PDA used is a HP iPaq hx4700, which features a
480×640 VGA display. The device does not have graphics
acceleration hardware. The urban simulation runs at approx-
imately 20 fps as the user navigates through the city, which
covers a number of square kilometres of Dublin City Centre.

c© The Eurographics Association 2005.



A. Brosnan, J. Hamill & C. O’Sullivan / Geometry Reduction for Urban Simulation on Handheld Devices

Figure 5: Imposter (in foreground) in use on the PDA

Figure 6: Geometric model on PDA

6.1. Sections

The sections, generated from the Potential Visibility data,
are defined by their limits (maximum and minimum x- and
z-coordinates) and a list of buildings. Complex and distant
buildings are flagged to be drawn as imposters. For the com-
plex buildings, and some of the distant buildings, multiple
images are available — this fact is denoted by a flag. All
this data is put out to a text file, and is then inserted into
SQL database tables. The SQL database is used at run-time
to calculate which models should be sent to the handheld
device, depending on which section the viewer is in. The
PDA determines if the user has switched sections by a sim-
ple test of the camera position against the limits of the sec-
tion — the current section has changed if the camera po-

Figure 7: Geometric models and imposter (in foreground)
on PDA

sition’s x-coordinate is greater than the section’s maximum
x-coordinate (or less than the minimum coordinate, or simi-
larly for the z-coordinate). The low computational complex-
ity of this method is the advantage of axis-aligned, rectan-
gular sections. When required, buildings for the new section
are sent from a PC server, via WiFi wireless LAN, to the
device. The usefulness of the section sub-division depends
on the topology of the city — it is more useful in long nar-
row streets than in wide open spaces. However interactive
frame-rates are achieved irrespective of the composition of
the current section.

6.2. Imposters

The imposters used to replace distant buildings are indis-
tinguishable from their geometric counterparts. The visual
quality of the imposters used to replace complex buildings is
less agreeable, but not wholly unacceptable. With a more ad-
vanced graphics API, larger textures could be used to good
effect. The complex-building imposters can be seen in Fig-
ures5 and7.

7. Conclusions and Future Work

We conclude that pre-processing of Potential Visibility (PV)
data, and fast use of this data at run-time, allied to the judi-
cious use of imposters, enables interactive urban simulation
on handheld devices.

Future work will involve optimising the sections. We
wish to determine the ideal section size, at which the trade-
off between section-switching overhead, and redundancy,
is optimal. Non-rectangular, non-axis-aligned sections will

c© The Eurographics Association 2005.



A. Brosnan, J. Hamill & C. O’Sullivan / Geometry Reduction for Urban Simulation on Handheld Devices

be implemented and their performance compared and con-
trasted with the rectangular ones. Although greater compu-
tation will be involved in determining the viewers current
section, there will be less redundant buildings in the sec-
tions, and there may be an overall performance gain. Non-
axis-aligned sections better reflect the streets of a city, like
Dublin, which does not follow a regular grid system. The PV
techniques should also be benchmarked against other culling
techniques.

A technique to predict user movement between sections,
and download the necessary building models in advance,
will be implemented. Section-to-section adjacency data will
be generated and used to this end. More advanced image-
based rendering (i.e. imposter) techniques may be used in
the future. At present the imposters are simple billboards;ro-
tating quads with single textures attached. A more advanced
graphics API would allow more detailed textures to be used,
where necessary. Work has already been done on populat-
ing the city with animated crowds, and will continue. On-
going advances in mobile computing technology, especially
the introduction of graphics cards for handheld devices, will
enable more ambitious crowd and urban simulations on the
mobile platform.

8. Acknowledgements

This research was funded by Enterprise Ireland and the Irish
Higher Education Authority.

References

[ARB90] A IREY J. M., ROHLF J. H., BROOKS JR F. P.:
Towards image realism with interactive update rates in
complex virtual building environments. InSI3D ’90: Pro-
ceedings of the 1990 symposium on Interactive 3D graph-
ics (New York, NY, USA, 1990), ACM Press, pp. 41–50.

[CG02] CHANG C.-F., GER S.-H.: Enhancing 3d graph-
ics on mobile devices by image-based rendering. InPCM
’02: Proceedings of the Third IEEE Pacific Rim Con-
ference on Multimedia(London, UK, 2002), Springer-
Verlag, pp. 1105–1111.

[Cum03] CUMMINS A.: Real-time Display of 3D Graph-
ics for Handheld Mobile Devices. Master’s thesis, Trinity
College Dublin, 2003.

[DD04] DUGUET F., DRETTAKIS G.: Flexible point-
based rendering on mobile devices.IEEE Comput. Graph.
Appl. 24, 4 (2004), 57–63.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: a real-time geometry / im-
postor crowd rendering system. InSI3D ’05: Proceedings
of the 2005 symposium on Interactive 3D graphics and
games(New York, NY, USA, 2005), ACM Press, pp. 95–
102.

[HMDO05] HAMILL J., MCDONNELL R., DOBBYN S.,
O’SULLIVAN C.: Perceptual evaluation of impostor rep-
resentations for virtual humans and buildings.Computer
Graphics Forum (Eurographics 2005), To Appear(2005).

[HO03] HAMILL J., O’SULLIVAN C.: Virtual dublin - a
framework for real-time urban simulation. InProceedings
of WSCG(2003), vol. 11, pp. 221–225.

[JWSP05] JESCHKE S., WIMMER M., SCHUMANN H.,
PURGATHOFER W.: Automatic impostor placement for
guaranteed frame rates and low memory requirements. In
SI3D ’05: Proceedings of the 2005 symposium on Interac-
tive 3D graphics and games(New York, NY, USA, 2005),
ACM Press, pp. 103–110.

[RCO03] ROSSI C., CUMMINS A., O’SULLIVAN C.:
Distributed mobile multi-user urban simulation. In
GRAPH ’03: Proceedings of the SIGGRAPH 2003 con-
ference on Sketches & applications(New York, NY, USA,
2003), ACM Press, pp. 1–1.

[TS91] TELLER S. J., SEQUIN C. H.: Visibility pre-
processing for interactive walkthroughs. InSIGGRAPH
’91: Proceedings of the 18th annual conference on Com-
puter graphics and interactive techniques(New York, NY,
USA, 1991), ACM Press, pp. 61–70.

c© The Eurographics Association 2005.


