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Abstract 
 
A memory model based on “stage theory”, the dominant view of memory from the field 
of cognitive psychology, is presented for application to autonomous virtual humans. The 
virtual human senses external stimuli through a synthetic vision system. The vision 
system incorporates multiple modes of vision in order to accommodate a perceptual 
attention approach. The memory model is used to store perceived and attended object 
data at different stages in a filtering process. 
The methods outlined in this paper have applications in any area where simulation-based 
agents are used: training, entertainment, ergonomics and military simulations to name 
but a few. 
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1. Introduction 
 
When modelling agent-object interactions in 
virtual environments, virtual humans are 
generally provided with complete access to 
all objects in the environment, including 
their precise current states, through the 
scene database. This is unrealistic 
conceptually – as real humans we know that 
life is not that simple. When we are getting 
dressed in the morning, and need to find the 
companion to that sock underneath our bed, 
we do not have the luxury of requesting its 
whereabouts from a scene database. Instead, 
we must use our intelligence, knowledge 
and senses to find it. Obviously, our 
memory of everything from what a sock 
looks like, to where we usually keep socks, 
plays a key role in the process. 
 
If we agree that endowing an agent with the 
ability to follow this process would improve 

their level of autonomy, it may also be 
agreed upon that the purpose of the search is 
not only important in terms of functionality 
for the agent that initiates it, but perhaps 
also just as important in terms of plausibility 
from the point of view of those avatars who 
witness it. 
 
Given that an agent is made autonomous in 
this way, we must then equip that agent with 
the ability to store useful data and disregard 
extraneous information. Luckily, it turns out 
that real humans have a very elaborate 
system for doing this already. Using 
perceptual attention, we limit our processing 
to restricted regions of interest in our 
environment in order to balance the scales 
between perception and cognition.  
 
This paper combines a synthetic vision 
module with a memory model based on 
“stage theory” [1] to provide a virtual 



human with a means of attending to their 
environment. Attention is very important 
with respect to memory, since it can act as a 
filter for determining what information is 
stored in memory and for how long. We 
focus on goal driven attention as opposed to 
stimulus driven attention, since the methods 
described here are intended for use in an 
autonomous prehension system. 
 
2. Related Work 
 
Numerous researchers have suggested the 
use of a virtual model of perception in order 
to permit agents to perceive their 
environment [8, 10]. An early example 
applies group behaviours to simulated 
creatures [9]. Tu and Terzopoulos [11] 
implemented a realistic simulation of 
artificial fishes. Noser et al. [7] proposed a 
navigation system for animated characters 
using synthetic vision and memory. Kuffner 
and Latombe [5] provide real-time synthetic 
vision, memory and learning, and apply it to 
the navigation of animated characters, using 
the synthetic vision system from [7]. 
 
Badler et al. [2] propose a framework for 
generating visual attention behaviour in a 
simulated human agent based on 
observations from psychology, human 
factors and computer vision. A number of 
behaviours are described, including eye 
behaviours for locomotion, monitoring, 
reaching, visual search and free viewing.  
 
Hill [4] provides a model of perceptual 
attention in order create plausible virtual 
human pilots for military simulations. 
Objects are grouped according to various 
criteria, such as object type. The granularity 
of object perception is then based on the 
attention level and goals of the pilot. 
 
3. Synthetic Vision 
 
Our synthetic vision module is based on the 
model described by Noser et al. [7]. This 
model uses false-colouring and dynamic 
octrees to represent the visual memory of 
the character. We adopt a similar system to 

[5], by removing the octree structure. 
Rather, scene description information is 
encoded with a vector that contains object 
observation information.  
 
The process is as follows: Each object in the 
scene is assigned a single, false colour. The 
rendering hardware is then used to render 
the scene from the perspective of each agent. 
The frequency of this rendering may be 
varied. In this mode, objects are rendered 
with flat shading in the chosen false-colour. 
No textures or other effects are applied. The 
agent’s viewpoint does not need to be 
rendered into a particularly large area: our 
current implementation uses 128x128 
renderings [Fig. 1]. The false-coloured 
rendering is then scanned, and the object 
false-colours are extracted.  
 
We extend the synthetic vision module by 
providing multiple vision modes. Each mode 
uses a different palette for false-colouring 
the objects. The differing vision modes are 
useful for capturing varying levels of 
information detail of information about the 
environment. The two main vision modes 
are referred to as distinct mode, and grouped 
mode.  
 
In the distinct vision mode, each object is 
false-coloured with a unique colour. The 
unique colours of objects in the viewpoint 
rendering may then be used to do a look-up 
of the object’s globally unique identifier in 
the scene database. This identifier is then 
passed to the memory model. This mode is 
useful when a specific object is being 
attended to (Fig 1c). 
 
The other primary vision mode is called 
grouped vision mode. In this mode, objects 
are false-coloured with group colours, rather 
than individual colours. Objects may be 
grouped according to a number of different 
criteria. Some examples of possible 
groupings are brightness, luminance, shape, 
proximity, and type. The grouped vision 
mode is useful for lower detail scene 
perception (Fig 1d, Fig 1e).  



The information acquired by the virtual 
human under the above circumstances is 
referred to as an observation. In our 
implementation, the precise position of an 
object or group in the environment is not 
stored as part of an observation unless a 
certain amount of attention has been given 
to it. Rather, an approximation of the 
object’s location in spherical coordinates 
with respect to the agent’s viewing frame is 
used. During the scanning process, bounding 
boxes are assembled for each object based 
on the object’s minimum and maximum x 
and y coordinates extracted from the view 
specific rendering, and the object’s 
minimum and maximum z coordinates 
extracted from the z-buffer for that view. 
The object’s position is then estimated to be 
the centre of this bounding box. This process 
has the overall effect of making accurate 
judgements about the positions of partially 
occluded objects more difficult. Also, 

estimates made about the distance to the 
centre of the object will vary depending on 
the obliqueness of the object with respect to 
the viewer.  
 
An observation is represented as a tuple that 
is composed of the following components: 
 

objID globally unique identifier 
of the object 

objAzi azimuth of object 

objEle elevation of object 

objDis distance to object 

t time stamp 

 
A specific object will have at most a single 
observation per agent. The observation will 
match the last perceived state of the object, 
although it must be noted that this may not 
correspond with the actual current state of 

 

 

    
 
Fig 1(a) A perspective view of a scene containing the agent and a number of objects. (b) – (e) Views as seen from the perspective of 
the agent with no false colouring applied (b), false colouring according to object id (c), false colouring according to object type (d) 

and false colouring according to object proximity (e). 
 



the object. Observations are also stored for 
groups of objects, using a similar process, 
where groups are bounded and their 
positions calculated as above. Finally, it 
should be noted that when observations are 
stored as memories (see section 4), their 
coordinates are expressed in Cartesian rather 
than spherical coordinates. 
 
4. Memory Model 
 
We base our system of memory on what is 
referred to as “stage theory” by Atkinson 
and Shiffrin [1]. They propose a model 
where information is processed and stored in 
3 stages: sensory memory (STSS), short-
term memory (STM) and long-term memory 
(LTM).  
 

Short-term sensory storage (STSS) is a short 
duration memory area where a variety of 
sources of information (e.g. light, smell, 
sound, etc) are converted into signals that 
the brain can understand. Since this memory 
has a very fast rate of decay, it is essential 
that information be attended to in order to 
transfer it to the next stage of processing 
(short-term memory). Our model of STSS 
only takes account of the visual modality 
and is derived from the viewpoint rendering 
discussed previously. Observations extracted 
from this rendering comprise the STSS. We 
allow a large number of observations to be 
stored in the STSS, although it should be 
noted that only visually sensed items will 
make it into this memory, and many of these 
items will be groups of objects rather than 
individual objects. The STSS is updated 

with each refresh of the viewpoint 
rendering. 
 
Short-term memory (STM) relates to our 
thoughts at any given moment in time. It is 
created by attention to an external stimulus 
or internal thoughts. Short-term memory is 
limited both in duration and by the number 
of units of information that can be processed 
at any one time. Research suggests that the 
STM can process between 7±2 and 5±2 
units or chunks of information [6]. These 
units correspond to letters, numbers, and 
also larger units such as words and phrases. 
 
Our model allows a maximum of 8 units of 
storage, where we define a unit as either an 
object observation or a group observation. 
Memory entries are removed from the STM 
under two conditions: they are displaced by 
newer memories when the STM is full, and 
they also decay over time (forgetting). The 
default time allotted to each memory in the 
STM module is 20 seconds, after which it 
decays. In the case where the memory entry 
is rehearsed however, we extend the time 
allotted to the memory to 20 minutes. 
Rehearsal occurs when attention is paid to a 
specific object over a period of time. In 
general, we assume that the more an item is 
attended, the longer it will be allowed to 
stay in the STM. Because we use a goal-
directed attention approach, the items that 
are attended to (and thus, would be expected 
to occupy the STM) will be those relating to 
the goal. Take, for example, the goal of 
searching for the brown bottle object in a 
scene. At the end of this search, we would 
expect the STM to contain other bottles that 
the agent attended, the group containing the 
brown bottle, and finally the brown bottle 
object itself.  
 
Long-term memory (LTM) allows long-term 
storage of information, and generally allows 
this information to be recalled provided 
suitable cues are available, although it may 
take several minutes or even hours to do 
this. We assume that memories that are 
stored in the LTM do not expire. Although 
there are numerous ways to transfer 

 
Fig 2 The adopted memory model from [1]. 

 



memories from the STM to the LTM, we 
assume that only repeated exposure is 
necessary to encode them into the latter.  
 
Attention is modelled in the system by using 
the different vision modes to control the 
detail of the information acquired. When the 
agent becomes attentive towards an object, 
that object is rendered in the distinct vision 
mode mentioned earlier. In this mode, the 
full object data may be obtained, including 
its globally unique identifier. The pre-
attentive agent state is modelled using the 
‘group by proximity’ vision mode. In this 
mode, individual objects are not discerned, 
but rather the states of whole groups of 
objects are perceived. This type of filtering 
allows the virtual human, as well as the real 
human, to reduce large amounts of 
perceptual data into a manageable size. The 
‘group by type’ vision mode could be 
viewed as being part of the attention 
acquiring process. It operates with finer 
granularity than the ‘group by proximity’ 
mode, and is suitable for goal-directed 
requests by object type (e.g. “take a bottle”).  
 
5. Implementation 
 
The implementation of memory is split into 
a number of separate memory modules: one 
each for the STSS, STM and LTM. Each 
memory module is based on memory 
duration, capacity and a rehearsal value. 
Unlike the other memory modules, the STSS 
module also contains the view-port 
rendering. Each module contains a list of 
memory entries. A ‘memory entry’ contains 
an observation, and other information such 
as how many times the memory has been 
rehearsed, and when the last rehearsal took 
place. The LTM module contains encode 
(add memory), decode (retrieve memory) 
and recall (query memory) functions. When 
an item is retrieved from LTM, it is moved 
into the STM, overwriting anything 
currently in the STM. This is useful for 
modelling a context switch, where the 
agent’s focus of attention is changed. The 
class hierarchy for the memory system is 
shown in Fig 3.  

Our implementation of the goal driven 
memory and attention process is 
summarised as follows: 
 
A goal command is given to the virtual 
human. This goal command contains the 
globally unique identifier of the object that 
attention is to be directed towards. If the 
object is already memorised in the STM or 
the LTM, then the observation information 
is extracted, and the virtual human will 
become attentive towards (look at) the 
object and update its perception of the object 
using the distinct vision mode. If the object 
was memorised in the STM, this procedure 
is regarded as a rehearsal.  
 

 
 

Fig 3 Class hierarchy for implementation of memory 
 
If the object is not in the STM or the LTM, 
then the agent’s perception of the 
environment will be rendered using the 
‘group by proximity’ vision mode 
(currently, agents do not initiate an active 
search of their surroundings; they only 
search the groups in their view at the time 
the task is issued). They will then go 
through the groups in the STM one by one, 
and render them using the ‘group by type’ 
vision mode. If an object of the same type as 
the requested object is there, then they will 
become attentive towards the object and will 
check to see if it is the goal object. If it is 
not, the search will continue through other 
objects of similar type in the group, and in 
the case where there are no more, the search 
will proceed to other groups. If it is the goal 



object, the perceived state of the object is 
entered in the STM. 
 
The memory model was implemented on the 
ALOHA animation system [3], an animation 
system for the real-time rendering of 
characters. This system uses the OpenGL 
API on a Windows platform.  
 
6. Conclusions and Future Work 
 
We have presented a memory model that 
uses a synthetic vision module in order to 
acquire information about a virtual 
environment. The granularity at which this 
information processed by an agent is 
determined by the use of multiple vision 
modes. As mentioned, the intended purpose 
for the memory model is for the 
implementation of an attention-based 
prehension system for virtual humans. Aside 
from modelling virtual human prehension, 
work will also focus on a realistic visual 
search algorithm.  
 
References 
 
[1] Atkinson R, Shiffrin R, “Human 
memory: a proposed system and its control 
processes”, In K Spence and J Spence, the 
psychology of learning and motivation: 
advances in research and theory, Vol. 2. 
New York: Academic Press, 1968. 
 
[2] Chopra S, Badler N, “Where to look? 
Automating attending behaviors of virtual 
human characters”, Autonomous Agents and 
Multi-Agent Systems 4 (1/2): 9-23, 2001. 
 
[3] Giang T, Mooney R, Peters C, 
O’Sullivan C, “ALOHA: adaptive level of 
detail for human animation”, Eurographics 
2000, Short Presentations, 2000. 

[4] Hill RW, “Perceptual Attention in 
Virtual Humans: Towards Realistic and 
Believable Gaze Behaviours”, Simulating 
Human Agents, Fall Symposium, 2000. 
 
[5] Kuffner J, Latombe JC, “Fast synthetic 
vision, memory, and learning models for 
virtual humans”, Proc. of Computer 
Animation, IEEE, pages 118-127, 1999. 
 
[6] Miller GA, “The magical number seven, 
plus or minus two: Some limits on our 
capacity for processing information”, 
Psychological Review, 63, pages 81-97, 
1956. 
 
[7] Noser N, Renault O, Thalmann D, 
Thalmann NM, “Navigation for digital 
actors based on synthetic vision, memory 
and learning”, Computer Graphics, 19, 
pages 7-19, 1995. 
 
[8] Renault O, Thalmann NM, Thalmann D, 
“A vision-based approach to behavioural 
animation”, Visualization and Computer 
Animation, Vol. 1, pages 18-21, 1990. 
 
[9] Reynolds CW, “Flocks, herds and 
schools: A distributed behavioural model”, 
Computer Graphics, 21(4), pages 25-34, 
1987. 
 
[10] Tu X, “Artificial animals for computer 
animation: biomechanics, locomotion, 
perception, and behaviour”, PhD thesis, 
University of Toronto, Toronto, Canada, 
1996. 
 
[11] Tu X, Terzopoulos D, “Artificial fishes: 
Physics, locomotion, perception, 
behaviour”, Proc. SIGGRAPH ’94, pages 
43-50, 1994.

 
 
 


