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Abstract The performance of many human tracking algorithms
rely on accurate motion models. Due to the nature of human motion
it is often difficult to determine the suitability of a chosen model. It is
typically the case that over the tracking duration the characteristics
of the observed motion will fit many different models. Commonly
used motion models in the area of tracking include the constant po-
sition (CP), constant velocity (CV) and constant acceleration (CA)
motion models. This paper applies the Kalman filtering algorithm
to the problem of tracking a person's position using a finite set of
different motion models. The statistical properties of the innovation
sequence are used as a basis for motion model selection.
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I INTRODUCTION

The successful determination of a moving person's
position requires the filtering of useful information
from state observations made in the presence of
noise. In order to extract this information it is
necessary to make assumptions on the characteris-
tic motion of the person being tracked. Although
this may be a simple assumption such as for ex-
ample, the person existing in 2D space, it may
also be an assumption on the nature of their un-
derlying movements. In general the more precise
a priori knowledge of the person's characteristic
motion that can be determined, the more useful
information can be extracted from noisy position
measurements.

It is often the case in object tracking algorithms
that a priori knowledge is incorporated into the
estimation procedure through the assumption of
a motion model. Many motion models have been
proposed in the area of tracking such as, the con-
stant position, constant acceleration and constant
velocity models [1]. Although these motion mod-
els have found applications in many areas of track-
ing, it is often difficult to assign an object's mo-
tion to one particular model. It may be sufficient,
for example, to assume constant acceleration when
tracking the trajectory of a falling object, although
this assumption could not be justifiably applied to
tracking motion of a changeable nature such as
that of human motion. Typically, in moving, a
human will transgress over many different mod-

els. For this reason in tracking humans it is often
difficult to determine a suitable model. One com-
mon model used in people tracking which reflects
unpredictability is that of the Brownian motion
model. This particular model assumes indepen-
dent direction of motion at each time step. It does
not however reflect the intuition that often over
long durations human motion is correlated in time.

One technique in tracking which addresses the
problem of changing dynamics is the use of adap-
tive motion models which enable the target's mo-
tion characteristics to change appropriately over
time [2]. The problem with this approach is in
defining the criteria by which the motion model
should be adapted. This requires continuous
monitoring of the tracking filter's performance
whereby any deviation from it's expected perfor-
mance would indicate a degradation in the accu-
racy of the position estimates.

This paper examines motion model selection as
applied to the problem of tracking human move-
ments through the use of the Kalman filter algo-
rithm. The statistical properties of the innovation
sequence of the Kalman filter are examined in de-
tecting divergence in the Kalman filter resulting
from modelling inaccuracies. The remaining sec-
tions of this paper are organised as follows. Sec-
tion II gives an overview of kinematic state esti-
mation. Section III examines a simulated tracking
problem. In Section IV, motion model selection
in a real tracking problem is examined. Section V
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presents discussion and conclusions.

II BACKGROUND

A common approach in tracking is to approximate
the position Xk of a target by it's Taylor series
expansion [2] i.e.,

T2
Xk+1 = Xk++ Txk+ xk + (1)

2

where the time interval k to k + 1 is of duration
T. It is well known that a correct approxima-
tion requires all derivatives of the position. Where
such information is not possible to determine a
truncated Taylor series is used. This is equiva-
lent to assuming the target trajectory to follow
some polynomial of finite order. In order to re-
lax this assumption the highest order derivative of
the truncated Taylor series is often modelled as a
random process. The derivatives of position define
the moving target's kinematic state model Xk i.e.

Xk = [Xkk... X k] where Xk denotes the position
and the kinematic state model is of dimension n.
The primary aim in tracking is to estimate the evo-
lution of the state over time.

a) Kinematic State Estimation

The estimated kinematic state process with control
input Uk and measurement process Zk required to
implement the Kalman tracking filter are,

Xk+1 - Akkk + BkUf ± CkVk (2a)

Zk+1 = Hk+lRk+1 + Gk±lCk+1 (2b)
where Hk+1 is the measurement matrix and Bk,
Ck and Gk denote the gain matrices correspond-
ing to the control input Uk, process noise vk and
measurement noise WVk respectively. The process
noise Vk and measurement noise wk are assumed
to be zero mean, independent Gaussian random
processes with associated covariance matrices,

6klQk - £ [Ckbkl;E;] , (3a)

6klRk - E [Gkwkwl;] (3b)

where 6k1 denotes the kronecker delta function.
Using the state model of (2) the equations which

describe the discrete Kalman filter are

Xk+llk+l = Xk+1Ik + Kk+lik+l (4)

V'k+l -Zk+1 - Hk+1Xk+llk (5)

Xk+±Ik = AkXkIk (6)

Pk+llk -Ak+lPkikAk+l + Qk+l (7)

(8)Pk+1lk+1 = (I - Kk+±Hk+l)Pk+llk
Sk+l = Hk+lPk+llkHk+l + Rk+l
-K-- ,I -l
Kk+l = Pk+llkHk+l k+l-

(9)

(10)

where x is filtered state estimate, P is the covari-
ance of the error in the state estimate, K is the
Kalman gain, io is the innovation sequence and S
is the covariance of the innovation. The notations
klk - 1 and kjk are used to denote the prediction
and filtering steps of the Kalman filter respectively.
The state transition and noise gain matrices of typ-
ical motion models and the models referred to in
this paper are shown in Table 1 for reference.

Model Ak Ck

CP [1 [T]

cv 1T 2i;
CA 0iT T] TL~

Table. 1: Transition and process noise gain matrices for a
constant position model CP, constant velocity model CV
and constant acceleration model CA.

Where the state model of (2) represents the true
state model, the Kalman gain is optimal and the
error in the state estimate is minimum in a mean
square sense. In general this is not the case and
the state model of (2) represents only an estimate
of some true state model,

Xk+l - AkXk + BkUk + CkVk

Zk+l - Hkxk+l + Gk+lWk+l-

(hla)

(llb)

In the remainder of this discussion the estimated
observation matrix Hk is taken to be Hk = Hk
i.e. the estimated observation matrix is know to
be correct.

b) Divergence in the Kalman Filter

Divergence in the Kalman filter occurs when the
error in the filtered state estimate does not cor-
respond to that determined by the Kalman filter
equations (4) - (10). Divergence in the Kalman
filter can be classified as either true divergence,
where the errors become unbounded, or apparent
divergence where finite degradations are observed
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in the filtered state estimates [3]. This paper is
concerned with apparent divergence in the track-
ing Kalman filter due to inaccuracies in motion
modelling.

It can be seen from equation (5) that the innova-
tion sequence represents the error in the predicted
measurement based on model (2). For this rea-
son it does not represent the true innovation. It
is clear that the innovation in relation to the true
state model of (11) can be obtained by replacing
Zk+1 in equation (5) by Zk+l. The actual innova-
tion is therefore [4],

Vk+1 = Zk+l- Hk+lXk+llk (12)

Substituting this expression for the true innova-
tion into equation (4), the true error in the filtered
state estimate,

ek+llk+l - -X1 k+lk+1, (13)
after some manipulation is found to be,

ek+llk+l - qk+1Akekjk + Ok+lBk(Uk - Uk) (14)
+ qk+1AAkXk + bk+lABkUk
+ Ok+1CkVk - Kk+lGk+lWk

where qk+ 1 [I -Kk+±Hk+1], AAk - Ak -Ak
and XBk - Bk-Bk-

In the case where the motion model of (2) rep-
resents the true motion, the innovation sequence
can be shown to be zero mean and orthogonal [5].
In expanding equation (12), it can be seen that
all modelling errors manifest in the innovation se-
quence i.e.,

-k+l= Hk+lAkeklk + Hk+lAAkXk (15)
+ Hk+ Bk(Uk -Ulk)

± Hk+lABkuk + Hk+lCkvk
+ Gk+lWk+l1

It is clear that continually monitoring the statis-
tical properties of the innovation sequence provides
a basis for detecting modelling errors. This is the
basis of many existing methods of divergence de-
tection and control in the Kalman filter [6]. Of
particular interest in the area of motion model se-
lection from a finite set of models, is the problem of
determining the most appropriate model from the
observed divergence. The following section exam-
ines a finite set of motion models and innovation
sequences of the corresponding tracking filters in a
computer simulated tracking problem.

III COMPUTER SIMULATED TRACKING
PROBLEM

The class of motion models examined in this sec-
tion is defined in Table 2. This table defines a set

of motion models for the tracking scenarios of a
person not moving (CP), moving at constant ve-
locity (CV) and moving with constant acceleration
(CA). Also shown in the table is the actual simu-
lated model (Act.). This model represents a con-
trollable system whereby all states are reachable
through acceleration or deceleration. The control-
lable acceleration component corresponds to the
entry a in matrix Uk.

In relation to equation (16), it can be seen that if
E [Wkj is zero mean then the error due to an inac-
curate motion model propagates in the expected
value of the innovation sequence through AAk,
,ABk, Bk and Vk. In this simulated case, E [vk]
is the change in acceleration over the time step
T. Over periods of constant acceleration there-
fore, E [Vk] - 0. Taking Uk = 0 from Table 2, the
expected value of the innovation sequence in the
simulated case becomes,

E [vk+1] = Hk+l,AkE[eklk] +
+ Hk+lAAkXk + Hk+lBkUk

+ Hk+lABkuk + Hk+lCkE [Vkl

(16)

- Hk+l [AkE[eklkl + AAkXk + BkUk
+ CkE[Vk11

The following examines E [Vk] in tracking the
simulated motion using the CP, CV and CA mod-
els.

* Using the CP Motion Model

AAk-[o ~T2 ] ]

/\A-k 0

O T2] BkU a

LO 0 1 L0

T2 T3
E [vk+1j = E Leklk] +TiXk + - Xk ± - E [Vkj (17)2 6

* Using the CV Motion Model

O O
/Aik= O O

L O

T2
2
T I BkUk [
T2 T3

E [vk+±] =E [eklk] + - Xk+ E[Vk}

* Using the CA Motion Model

Ak, = °0 0 BkUk = a

T3
E [Vk+ll = E [eklk] +-6 E [Vk]

0
a

0 I
(18)

I

(19)
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Table. 2: Matrices for a constant position model CP, constant velocity model CV and constant acceleration model CA.

Summarised in Table 3 is the expected value of
the innovation sequence E [vkl using the CP, CV
and CA models, under the simulated scenarios of
a person not moving (k O), moving with con-

stant velocity (xk 0) and moving with constant
acceleration.
From Table 3 it can be seen that in using a CP

motion model over periods of constant acceleration
(xk a), the expected value of the innovation
sequence increases linearly. Using a CV motion
model results in an offset in the expected value of
the innovation sequence. As the CA motion model
estimates all states of the simulated motion it is the
optimal model and is therefore zero mean. Simi-
larly, over periods of constant velocity both the CV
and CA motion models are zero mean and an offset
is observed in E ["ki where the CP model is used.
This is illustrated in fig. 1, where the simulated
tracking problem is that of a person starting from
an initial stationary position to a state of constant
velocity and then decelerating back to a stationary
position.

IV MOTION MODEL SELECTION IN A REAL
TRACKING APPLICATION

The motion models of Table 2 were applied to
the problem of tracking a person in an image se-

quence. The image sequence used, consisted of a

person walking on a grid1 of known width (4.35m)
and length (5m). The video tracking method of

background subtraction was used to locate the
person in each frame. The captured background
was taken from a section of the image sequence

where the grid was unoccupied. The use of back-
ground subtraction and the application of a suit-
able threshold to account for changes in lighting,
enabled the person to be located in each frame of
the image sequence. The person's position on the
grid was determined through a mapping of frame
co-ordinates to grid co-ordinates. The mapping
of frame co-ordinates to positions on the grid was

achieved using a technique which exploits the fact
that the intersection of the diagonals of a trape-
zoid are invariant under perspective distortion [7].
This recursive algorithm firstly determines the per-

son's y position on the grid in a similar manner to
the secant method for root finding. Secondly the
person's x position is determined in relation to the
grid boundaries. Knowing the grid dimensions and
also the location of the corners of the grid therefore
enabled the geometry of the frame to be mapped
to that of the geometry of the grid. An example
frame from the image sequence used is shown in
fig. 2. In this sequence the person walks horizon-
tally across the full width of the grid.

Shown in fig. 3 (a) are the ID position measure-

ments Zk, of the person for each of the 188 frames
of the image sequence. Due to the frame resolu-
tion of 576 x 720 and the area occupied by the grid
within the frame,
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the position measurements were determined to be
accurate to O.Olm over the mid section of the grid.
For this reason the variance of the measurement
noise Wk was chosen to be o2 0.0001m2. In ex-

amining the position measurements, suitable val-
ues for the process noise 2 were determined to be

02 2
5~2= 0.04m2 c, = 0.25m and i = 0.25 s4 for

the CP, CV and CA Motion Models respectively.
Similarly in the case of the computer simulated
tracking problem the control input was assumed
to be uik = 0. The innovation sequences of the
Kalman filters applied to the tracking problem us-

ing these three motion models are shown in fig. 3.

As can be seen in fig. 3 (b) the offset in the
mean of the innovation sequence corresponding to
the CP model indicates the person is moving with
constant velocity. The suitability of a CV motion
model is seen in fig. 3 (c) where after the initial
divergence of the filter, the innovation sequence is
zero mean over the period of constant velocity. It
is also seen in fig. 3 (d) that the higher dimension
CA model also results in a zero mean innovation
sequence but time required for the filter to con-

verge after the initial divergence is greater.

(d)

Fig. 1: Innovation sequences for the CP (a), CV (b) and
CA (c) motion models in a computer simulated tracking
problem. The simulated data is that of a person starting at
an initial stationary position at k = 0 and accelerating over

k = 30 to k 60, maintaining a constant velocity (5m/s)
from k = 60 to k = 90 and then decelerating back to a

stationary position at k = 120. (T = 0.25s).

Table. 3: Expected value of the true innovation k±+l for
different estimating models under motion scenarios of con-

stant acceleration (CA) and constant velocity (CV).

Fig. 2: Frame from the image sequence of a person walking
across a grid. The video tracking technique of background
subtraction was used to determine a bounding box for the
person in each frame.

V DISCUSSION AND CONCLUSIONS

The successful tracking of humans using the
Kalman filter requires accurate motion models.
Due to the nature of human motion it is difficult
to determine the suitability of a particular model.
Inaccurate motion modelling causes bounded di-
vergence in the Kalman filter resulting in biased
position estimates. In order to correct the esti-
mates obtained from the filter it is necessary to
control the divergence by adapting or changing the
model.
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Fig. 3: Innovation sequences of the Kalman filter for the
CP (a), CV (b) and CA (c) motion models as applied to
the problem of tracking the person in the image sequence.
(T= 0.04s)

It has been shown that the tracking performance
of a particular motion model can be determined
through monitoring of the innovation sequence.
The performance of a finite set of motion mod-
els was examined under various simulated motion
scenarios. It was seen that the deviation in the ex-
pected value of the innovation sequence provided a
basis for not only detecting divergence in the filter
but also for classifying the motion being tracked.
The particular set of motion models used en-

abled the observed motion to be classified as either
fitting a CP, CV or CA model. In this way moni-
toring the innovation sequence was seen to provide
a basis for motion model selection.
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